
Diffracting Trees

(PRELIMINARY VERSION)

Nir Shavit” Asaph Zemach*

Abstract

Shared counters are among the most basic coordination struc-
tures in multiprocessor computation, with applications rang-

ing from barrier synchronization to dynamic load balanc-
ing. Introduced in this paper are diffracting trees, novel

distributed-parallel data structures for shared counting. Diff-

racting trees combine a randomized coordination method
together with a combinatorial data structure, to yeild a log-

arithmic depth counter that improves on the log2 depth

of counting networks, and overcomes the resiliency draw-
backs of combining trees. Empirical evidence collected on a

simulated distributed shared-memory multiprocessor shows
that diffracting trees substantially outperform both combin-
ing trees and counting networks, currently the most effective
known methods for shared counting. Not only do diffracting

trees have higher throughput and lower latency, but unlike
any known technique, their latency remains almost constant

as the number of processors increases.

1 Introduction

It is hard to imagine a program that doesn’t count some-

thing, and indeed, on multiprocessor machines shared coun-
ters are the key to solving a variety of coordination prob-

lems such as barrier synchronization [20], index distribution,
shared program counters [21] and concurrent data structures
(see also [12, 14, 25]). In its purest form, a counter is an ob-

ject that holds an integer value and provides a jetch&inc

operation, incrementing the count er and returning its previ-
ous value. Given that the majority of current multiprocessor

designs do not provide specialized hardware support for ef-
ficient counting, there is a growing need to develop effective

software based counting techniques.

The simplest way to implement a counter is to place it in

a spin-lock protected critical section, adding an exponential-
backoff mechanism [1, 4, 15] or a queue lock as devised by

“ Department of Computer Science, School of Mathemat-

ics, Tel-Aviv Umversity, Tel-Aviv 69978, Israel. Contact:
shanM!2math, tau.ac il

This work was supported by a Dig]t]al Equipment Corporation

ERP Equ]pment Grant

Keywords: Shared Counters, Counting Networks, Load Balancing,

Concurrent Data Structures, Randomization.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and thu
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

Mellor-Crummey and Scott [20] or Anderson [4] to reduce
contention. Unfortunately, such cent ralized methods are in-
herently non-parallel and cannot hope to scale well.

A recent survey of counting techniques by Herlihy, Lim,

and the present author [16] suggests that scalable counting

can only be achieved by methods that are distributed and

therefore have low contention on memory and interconnect,

and are parallel, and thus allow many requests to be dealt
with concurrently. The Software Combining Trees of Yew,

Tzeng, and Lawrie [26] and Goodman, Vernon, and Woest
[13], and the Counting Networks of Aspnes, Herlihy, and

the present author [5], both meet the above criteria, and

indeed were found by [16] to be the most effective methods
for concurrent counting.

A combining tree is a distributed data structure with a

shared count er at its root. Processors combine their incre-
ment requests going up the tree from the leaves to the root,

eliminating the need for all to actually reach the counter.
A Bitonic countinrz network is a distributed data structure

having a layout is~morphic to a Bitonic sorting network [6]

with a local counter at the end of each output wire. The

network has width w << n and depth ~ log2 W.l Combining
Jtrees have logarithmic depth and the esirable property that

the unavoidable “collisions” of processors at their nodes are

utilized to increase parallelism, but int reduce high depen-

dency among processes and cannot withstand even a single
processor failure. Counting networks on the other hand,

support complete independence among requesting processes
and are highly fault tolerant, but have log2 depth and do

not make use of the collisions at their nodes.
This paper introduces diffracting trees, a new di.stributed-

parallel technique for shared counting that enjoys the bene-

fits of each of the above methods and avoids many of their
drawbacks. In a manner similar to counting networks, diff-

racting trees are constructed from simple one-input two-

output computing elements called balatacers that are con-
nected to one another by wires to form a balanced binary
tree. Tokens arrive on the balancer’s input wire at arbitrary

times, and are output on its output wires. Intuitively one
may think of a balancer as a toggle mechanism, that given
a stream of input tokens, repeatedly sends one token to the
left output wire and one to the right, effectively balancing

the number of tokens that have been output. To illustrate

this property, consider an execution in which tokens traverse

1~l”german and plaxton [18] have designed elegant combinatOrlal

constructions of counting networks with depth close to O(log w), un-

fortunately though, at this point in time the constants revolved are
‘[exponentially large”

S!%A 94- 6/94 Cape May, N.J, USA
0 1994 ACM 0-89791-671 -9/94/0006..$3.50

167

the tree sequentially, one completely after the other. Fig-

ure I shows such an execution on a tree of width 4. As

can be seen, the tree moves input tokens to output wires in

increasing order modulo 4. Trees of balancers having this

property can easily be adapted to count the total number
of tokens that have entered the network. Counting is done
by adding a “local counter” to each output wire i, so that
tokens coming out of that wire are consecutively assigned

numbers i,i+4, i +(4.2)...
A clear advantage of a tree over a network is its depth

which is logarithmic in w. However, it seems that we are
back to square one since the root of the tree will be a hot-

spot and a sequential bottleneck that is no better than a
centralized counter implementation. This would indeed be

true if one were to use the accepted counting network im-

plementation of a balancer – a bit toggled by each pass-

ing token. We are able to overcome the rmoblem based on.
the following simple observation: an even number of tokens

passing through a balancer leave the toggle bit unchanged.

This means that if one could have independent pairs of to-
kens diffracted in a coordinated manner oneto the left and

one to the right, they could leave the balancer without ever
having to toggle the shared bit. The idea behind diflrac-
tingtrees isto create such a “prism” mechanism, in front of
the toggle bit of every balancer. By distributing the prism
over many locations , and ensuring that each pair of to-

kens uses a different location, wewould get a highly parallel
balancer with very low contention. The diffraction mecha-

nism uses randomization to ensure high collision/diffraction
rates on the prism, and the tree structure guarantees cor-
rectness of the output values. Diffracting trees thus combine
the the high degree of parallelism and fault-tolerance of the

counting networks with the logarithmic depth and beneficial

utilization of “collisions” of a combinimz tree.

We compared the performance of d%racting trees with
the above techniques on a simulated distributed shared-

memory multiprocessor using the well accepted Proteus Par-
allel Hardware Simulator [8, 7]. We found that diffrac-
ting trees substantially outperform both combining trees

and counting networks, currently the most effective known

methods for shared counting. Not only do they have higher
throughput and lower latency, but in fact, their latency re-
mains almost constant as the number of processors increases.

Diffracting trees can also be used to create a highly par-

allel centralized job queue implementation or as a general

load balancing tool (dropping the counters at the end of the
output lines). Unlike the distributed j’ob queues of Rudolph,
Slivkin, and Upfal [24] and the randomized log w smooth-
ing networks of Aiello, Venkatesan, and Yung [3] which give
only a probabilistic correctness guarantee that the load will
be balanced, diffracting trees always correctly balance the

number of tokens on their output lines. We believe diffrac-
ting trees will prove to be an effective and useful technique

in other application areas, and are currently testing a mes-
sage passing version of the technique that can be used both

on multiprocessors and computer networks.
This preliminary version includes a description of count-

ing trees, a shared memory implementation of diffracting
balancers and an evaluation of their performance. The out-
lines of the correctness proofs can be found in the appen-
dices.

654321 =X

Figure 1: A Simple Counting Tree

yo= 15

Y1 =26

y2= 3

y3=4

2 Trees that count

We begin by introducing the abstract notion of a counting

tree, a special form of the counting network data structures
introduced in [5]. A counting tree balancer is a computing

element with one input wire and two output wires. Tokens
arrive on the balancer’s input wire at arbitrary times, and
are output on its output wires. Intuitively one may think
of a balancer as a toggle mechanism, that given a stream of
input tokens, repeatedly sends one token to the left output
wire and one to the right, effectively balancing the number

output on each wire. We denote by z the number of input
tokens ever received on the balancer’s input wire, and by

vi, i c {O, 1} the number of tokens ever output on its ith
output wire. Given any finite number of input tokens z,

it is guaranteed that within a finite amount of time, the
balancer will reach a quiescent state, that is, one in which

the sets of input and output tokens are the same. In any

quiescent state, yO = [z/21 and VI = [z/2]. We will abuse
this notation and use yi both as the name of the ith output
wire and as the count of the number of tokens output on the

wire.

A balancing tree of width w is a binary tree of balancers,
where output wires of one are connected to input wires of
another, having one designated root input wire and w des-

ignated output wires: yo, VI, . . . VW–I. Formal definitions of
the properties of balancing networks can be found in [5]. On

a shared memory multiprocessor, one can implement a bal-
ancing tree as a shared data structure, where balancers are

records, and wires are pointers from one record to another.
Each of the machine’s asynchronous processors can run a
program that repeatedly traverses the data structure from
the root input pointer to some output pointer, each time
shepherding a new token through the network.

We extend the notion of quiescence to trees in the natural
way, and define a counting tree of width w as a balancing tree
whose outputs y., ... y~ -1 satisfy the following step property

In any quiescent state, O ~ Vi – yj s 1 for any

i<j.

To illustrate this property, consider an execution in which
tokens traverse the tree sequentially, one completely after
the other. Figure 1 shows such an execution on a BINARY[4]

counting tree which we define formally below. As can be

seen, the net work moves input tokens to output wires in
increasing order modulo w. Balancing trees having this
property are called counting trees because they can em+

fly be adapted to count the total number of tokens that

168

have entered the network. Counting is done by adding a

“local counter” to each output wire Z, so that tokens com-

ing out of that wire are consecutively assigned numbers
i,t.+w,i + (Y, – 1) W. Code for implementing such a
counter can be found in Figure 2.

In ciur implementation we will be using a counting tree

called BIIYARYIUI], which we define below. Let w be a power

of two, and let us define the counting tree BINARY[2k] induc-

tively. WheR k is equal to 1, the BINARY[2k] network con-

sists of a single balancer with output wires gO and yl. For
k >1, we const~ct the BINARY[2k] tree from two BrINARY[k]

trees and one additional balancer. We make the input wire

z of the single balancer the root of the tree and connect each
of its output wires to the input wire of a tree of width k.
We then redesignate output wires yO, y], y~-1 of the tree

extending from the O output wire as the even output wires

yo, Y2, V2K2 of BINARY12k] and the wires YO, Y1, ..., y~–1
of the tree extending from the balancer’s 1 output wire as
the odd output ~~res yl, ys, yM-I. Theorem A.6 in AP-

pendix A proves that BINARY[2k] is indeed a counting tree.

type balancer {
lock : boolean
toggle: boolean
next: array [0. . i] of ptir to balancer

}

constants
width: global integer

root : global ptr to root of Binary [width] tred

function typical-balancer(b: ptr to balancer) :

ptr to balancer

lock(b->lock)
i := b->toggle

b->toggle := not(i)
unlock (b->lock)
return b->next [i]

function fetch& incro : integer
b := root
while not leaf(b)

b := balance

endrrhile
i : = increment-counter-at-leaf (b)

return i * width + b->number

Figure 2: A Shared-Memory tree-based counter implemen-
t ation

3 Diffraction Balancing

Diffracting trees are counting trees whose balancers are of aL
novel type called diffracting balancers. In the typical imple-
ment ation of balancers (as in Figure 2), each processor shep-
herding a token through the tree toggles the bit inside the

balancer, and accordingly decides on which wire to exit. If
many tokens attempt to pass through the same balancer con-

currently, the toggle bit quickly becomes a hot-spot. Even
if one applies contention reduction techniques such as expo-

nential backoff, the toggle bit still forms a sequential bot -
tleneck. One can overcome this sequential bottleneck basecl
on the following observation:

If an even number of tokens pass through a bal-

aracer, they are evenly balanced left and right, vet

the value of the toggle bit is unchanged.

If we could find a method that allows pairs of colhding to-
kens to “pair-off” and coordinate among themselves which

is diffracted “right” and which diffracted “Ieft”, they could

both leave the balancer without either of them ever havina
–“

to touch the toggle bit. By performing the colJ.ision/coor-
dination decisions in separate locations instead of a global

toggle bit, we will hopefully increase parallelism and lower
cent ention. However, we must guarantee that many such
collisions occur, not an obvious task given the aeynchrony
in the system.

On a high level, our implementation of the above is baaed
on adding a special prism array “in front” of the toggle blt

in every balancer. When a token (processor) P enters the

balancer, it first selects a location, L, in prism uniformly
at random. P tries to “collide” with the previous processor
to select L, or, by waiting for a fixed time, with the next
processor to do so. If a collision occurs, both processors leave

the balancer on separate wires without ever attempting to

toggle the bit.

Figure 3 gives the diffracting balancer data structure and
contains the code for this type of brdancer. Three synchro-
nization operations are used in the implementation code:

● register.tonemory ~wap (addr, val) writes val to ad-

dress addr, and returns the previous value there,

● compare and~wap (addr, old, new) checks if t he value

at address addr is equal to old, and if eo, replaces it

with new, returning TRUE, otherwise it returns FALSE,

and

Q test -and~et (addr) writes TRUE to address addr and

returns the previous value.

All three primitives can be implemented in a lock-free man-

ner using the fashionable load-linkecl/store-conditional op-
erations available on standard architectures [10, 19].

The code also uses two functions: (a) rsndom(i, j) re-
turns a random number between i and j; (b) not-empty(i)
returns TRUE if i is the PID of some processor and FALSE

otherwise.

The code translates into the following sequence of oper-
ations performed by a process shepherding a token through

a balancer. In Phase 1 of the code the processor announces
its arrival at the balancerj by writing to the global location

array. It then swaps its own PID for the one written in a
randomly chosen location in the prism array. Assuming it

has read the PID of an existing processor, it attempts to

collide wit h it. The collision itself is accomplished by per-
forming two compare-and-swap operations. The first erases
this processor from the list of processors waiting at this bal-

ancer (thus assuring no other processor will collide with it),
the second erases the other processor, completing the diff-

raction, and allowing the process to be diffracted to the

b-ynext [01 balancer. If the first compare-and-swap fails,
it means that some other processor hae already managed
to collide with it, and the processor is diffracted to the

b->next [I] balancer. If the first succeeds but the second
compare-and-swap fails, it means that the processor with

whom it waa trying to collide is no longer available, in which
case it goes on to phase 2.

In Phase 2 the processor repeatedly checks to see if it has

been diffracted by another processor. After spinning spin

169

type balancer {. .
size:

spin:

prism:

lock :

toggle:

next:

}

location:

integer

integer

array [1. . size] of integer

boolean

boolean

array [0. . i] of ptr to balancer

global array [1. . NJHPROCS] of ptr to balancer

function diff-bal(b: ptr to balancer) : ptr to balancer

/* phase i */

location [mypid] := b

place := random(i ,b-%ize)

him := register. to-memory -swap (b->prism[place] ,mypid)
if not.empty(him) then

if compare-and-swap (location [mypid] ,b ,E!lPTY) then
if compare-and-swap (locat ion [himl ,b ,EHPTY) then

return b->next [01 (a)
else location [mypid]

else return b->next [1]
endif

/* phase 2 */

forever

repeat b->spin times
if location [mypid] <>

return b->next [i]
endrepeat
if test -and- set(b->lock)

.= b

(b)

b then

(b)

then

if compare. and-swap (location [mypid] ,b ,EHPTY)

then
i := b->toggle

b->toggle := not(i)

unlock (b->lock)
return b->next [i] (c)

else

unlock (b->lock)
return b->next [1] (b)

end if
endif

end for

Figure 3: Code for traversing a diffracting balancer

times, giving some other processor a chance to diffract it,
the processor attempts to get the toggle bit. If successful,

it first removes itself from the list of waiting processors and
then toggles the bit and exits the balancer. If it could not

remove itself from the list, it follows that some other proces-
sor already collided wit h it, and it exits the balancer, being
diffracted to b->next [i]. If the toggle bit could not be

seized, the process resumes spinning. Appendix B containe
the formal correctness proof for this algorithm.

3.1 Some implementation details

When a large number of processors concurrently enter the

balancer, the chances for successful collisions in prism are

high, and contention on the toggle bit is unlikely. When
there are few processors, each will spin a short while, reach

for the toggle bit and be off, since all spinning is done on
a cached copy of the value of 10 c at ion [mypidl it incurs no
overhead. The only case where a processor ie repeatedly

makinrz accesses to memorv. is when no other mocessor can-
cels (b; diffractimz) it. an:’ it is const antlv re~chirw for the

lock ~~ the toggl~’bit This becomes inc”reasingly”urdikely
as more processors enter the balancer. Two parameters are

of critical importance to the performance of the diffracting
balancer:

1

‘1

size — This value effects the chances of a successful
pairing-off. If it is too high, then processors will tend

to miss each other, failing to pair-off and causing con-
tention on the toggle bit. If it is too low, contention

will occur on the array prism as too many processors
will be trying to access it at the same time.

~. spin — If this value is too low, processors will not
h&e a chance to pair-off, and cont&tion will occur on

the toggle bit. If it is too high, processors wiU tend to
wait for a long time, even though the toggle bit may

be free, causing a degradation in performance.

The choice of these parameters is obviously architecture de-
pendent. In our simulations we used size = 8,4,2,1,1 for

the various levels of a width 32 tree. We also employed

a form of exponential backoff on the balancer’s toggle bit.

Each processor kept a local copy of the diffracting balancer’s

spin variable, and doubled it each time it could not seize
the lock, thus increasing the amount of time it waited to
be collided with. The value of the local copy was not re-
tained between calls. In order to maximize the distribution

of the balancer’s data structure the prism array was actually
an array of pointers to different modules of memory. The

random number function we used was Proteus’ fast~andom
which is an implementation of the ACM Minimal Standard

Random Number Generator [22, 9].

4 Performance

We evaluated the performance of counting trees relative to
other known methods by running a collection of benchmarks
on a simulated distributed shared-memory multiprocessor

similar to the MIT A ~ewife machine [2]. Our simulations
were performed using Proteusz, a multiprocessor simulator

developed by Brewer, Dellarocas, Colbrook and Weihl [8].
In this abstract we present the results of running a bench-
mark called Index- Dist r~but ion. Index-distribution, is a load

‘Version 300, dated February 18, 1993,

170

balancing technique, in which processors dynamically choose

loop iterations to execute in parallel. As mentioned in [16],

a simple example of index distribution is the problem of

rendering the M andelbrot Set. Each loop iteration covers a

rectangle in the screen. Because rectangles are independent

of one another, they can be rendered in parallel, but because

some rectangles take unpredictably longer than others, dy-

namic load-balancing is important for performance. Here is

the pseudo-code for this benchmark:

Procedure index-dist-bench(uork: integer)

loop: i := get-next-indexo

repeat random(O,work) times
/*nothing *I

endrepeat
goto loop

In our benchmark, after each index is delivered proces-
sors pause for a random amount of time, between O and

work. When work is chosen aa O, this benchmark actually
becomes the well known counting benchmark, where proces-

sors attempt to load a shared counter to full capacity.
We ran the benchmark several times, varying the num-

ber of processors participating in the simulation, and the
amount of work done. Each time we measured:

Latency The average amount oftime between the moment
getnextindex wasca.lled, and the timeit returned
with a new index. This was measured by taking the
time at the beginning ofeach call, the timeat the end,

and adding the difference to a global counter, which
was then divided by the number of increments per-

formed.

Throughput Theaverage number ofindices distributedin

a one million cycle period. This cycle count includes
the time spent spinning in the work loop. It was mea-

sured by marking the time after the first 100 incre-
ments where performed, and then measuring, t, the
time it took tomaked more increments. The through-
put is: 106d/t.

We compared a collection of the fastest known software
counting techniques with respect to the index-distribution

benchmark.

ExpBackoff A lock using Z’est6YTest&Set with exponential

backoff [4, 15].

MCS The MCS lock of [20]. Each processor locks the
shared counter, increments it, and then unlocks it. The

code was taken directly from the article, and imple-
ment ed using atomic Swap and Compare&Swap oper-

ations.

CTree Fetch fJInc using an optimal depth combining tree.
We implemented the software combining tree proto-
col of Goodman et al. [13], modified according to [16],

OptimaJ depth means that when p processors partici-
pate in the simulation, a tree of ,depth [log2 PI is used

Throughput with work=O

‘:-
03 70000
2
u i
5

60000

50000

40000

30000

20000

10000

X-

/

h’”,i +.----
A~ ----..---,./ /.-”

J ,*”-
,,.

.+”~.
,* -+

./”’ -+’

**-9.*+-Q-*.-----.-*g

./
,./

,/.
./

./.’
./.’

4’”’
}~

A’

12000

10000

8000

6000

4000

2000

0 50 100 150 200 250 300
Processors

Latencv with work=O

I { 1 I 1 1

x CNet[321 +
CTree -+-.

ExpBackof f .B. -
MCS 1 ock -W_-

/ DTree[321 ~.-

13,.-

[
. . .

. . .
~ ,,.

,.. +,.. ,./
,.. ./

..-
,.. . ..-””

..-
,.*.%R.’: ----

:/:

/
;

,’

/+. : /
f/+

;/

// ~.i
;;

,.

;+ m“
,,,

,hA-&<&.A-A.*.-.-._. -.-.-.-.-.-. -.-.4

w“

,/

d“

“o 50 100 150 200 250 300
Processors

CNet A BITONIC counting network of width 32 [16]. The
Figure 4: Throughput and Latency of Major Counting Tech-
niques

toggle bit was implemented using a short critical sec..
tion.

DTree A Diffracting Tree of width 32.

171

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

Throughput with work=1000

1 1 1 1 1

CNet[32] e
CTree -+- P

DTree[32] -B-. ,,,

/’
#,,

,.$
,..

,,,
,.,

,.$

,,;
,,,

,,,
,,,

.,:

,ti”

,d”

/0”

J?(

o~
o 50 100 150 200 250 300

Processors

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

Latency with work.1000

I 1 1 1 1

CNet[32] 4-
CTree -+- .-+

DTree [321 .i5..
#-----

~+.+ ------

,/’
;

+

1 I 1 , [
0 50 100 150 200 250 300

Processors

Figure5: Throughput and Latency with work=1000

The graphs in Figure 4 show the latency and through-
put of the various counting methods. They confirm previ-

ous findings and in particular, they agree with the results of
[16] on AS.fM, the Aiewi~e machine simulator [2]. We have

not included results of various optimizations such as build-
ing counting networks from balancers with four or more in-

put /output wires. Elsewhere [11], and in our simulations,
these have been shown to give performance improvements of

at most 25~o, when work=O and almost no improvement as
work increases. It is clear from these graphs that the MCS

lock and the exponential backoff lock do not scale well, la-
tency grows quickly, and throughput diminishes. This is

not surprising, since both are methods for eliminating con-
tention but do not support parallelism.

We therefore concentrate on the latency and throughput
results of the three distributed-parallel techniques: combin-

ing trees, bitonic counting networks and diffracting trees.
The graphs in Figures 4 and 5 show that diffracting trees
give consistently better throughput than the other meth-
ods and that in terms of latency they scale extremely well,

tending to hand out numbers in almost constant time (on
average).

25

20

5

0
0 50 100 150 200 250 300

Processors

Ratio of Diffraction Per Toggle

r , I , #

work. O, top balancer +
work=O, level 2 balancers -+-.

work.looo, top balancer -E!--
work= 1000, level 2 balancers ..x

P

/

,D

...”
,.,

/(,,,
..

,..’

,,. ” +
..” ..-”./-

...”’ /-

*:+F.$ti;”::.=’’”
,,#fm#“””

,497.x”~””’
~.x

Figure 6: Diffraction Rate

The high throughput is explained by the parallelism, due
to the optimized rate of successful collisions in the prism ar-
rays of balancers. we claim that while processors that failed
to combine in a combining tree must waste cycles waiting for
earlier processors to ascend the tree, processors in a diffrac-
ting tree proceed in an almost uninterrupted manner. The

justification of this claim is provided by the graph in Fig-
ure 6 which shows the diffracting rate of tokens in the top
two balancers. The diffracting rate is the number of diff-
racted processors, leaving the balancer without toggling the
bit, divided by the number of those that did toggle. For

172

example, when the diffraction rate is 20, it means that for

ever y token toggling the bit, 20 will be diffracted. If we mea-

sure a diffraction rate of r at some balancer, we conclude,

that if till now t tokens have entered it, then the total num-

ber of tokens toggling the bit, r, is given by & and the

tot al number diffracted is ~. The diffraction graph indi-

cates a linear a relationship of the form r = cp, where p is
the number of processors participating in the simulations,
and c is some constant. We can now restate the previous

formula, and say that r x ~. Our measurements indi-

cate this predictor to be accurate to within 15% when the

number of processors is above 64. During sufficiently short
time periods, t is bounded by p, since only p tokens can

exists simultaneously, and we get ~ < ~ < ~. The num-

ber of processors reaching for the toggle bit simultaneously

(the contention on it) is thus bounded by the constant ~
(We measured this constant at about 8.5 for the top-level

balancer, when work was O). The diffracting baJancer thus
tends to keep the contention at the toggle bit constant, re-

gardless of the total number of processors in the system, an
indication of the robustness of the construction.

There is an interesting resemblance between the shape
of the throughput graphs of the combining tree and the

diffracting tree. This is probably the result of both trees
having a similar coordination property: combining collided

requests in one and successful diffracting of collided tokens

in the other. As shown above, as the number of processes in

the tree increases, the likelihood of such collisions happen-
ing grows. Counting networks do not gain a performance
advantage (and even loose performance) from this phenom-

ena, since they are designed only to minimize the number of

collisions on individual toggle variables, not to take advan-
tage of them. When processors fail to meet at the nodes,

performance of both the tree methods diminishes, but like
counting networks, diffracting trees still have an advantage
given the low contention on the toggle variables.

The low latency of diffracting trees is due in part to their
low depth. While combining trees have a depth of log n

where n is the number of processes, and counting networks

have a fixed depth of 1/2 log2 w where w is the width of the

net work, diffracting trees have a depth of only log w. For ex-
ample, with 256 processors, the combining tree rises to depth

8, the width 32 counting networks have depth 10, whereas

diffracting trees have depth of only 5. The low latency of

diffracting trees remains almost constant as the number of
processes increases, since the high rate of successful colli-

sions works in their favor by lowering contention and thus
ensuring that most processes take order of log w steps.

The graphs in Figure 5 show that, as the amount of
work between accesses to the shared counter increases, the

throughput of all methods decreases, as would be expected.

The latency of the counting network remains unchanged,

that of the combining tree initially grows rapidly and then
seems to begin evening out. The latency of the diffracting

trees evens out much sooner, and even slightly diminishes
as the number of processors increases. We can conclude

that diffracting trees maintain their superiority even in the
face of substantial work loads. When the number of pro-

cessors is small (less than 64), the latency of all methods,
including our own, is greater than that of the exponential

backoff lock. We are currently studying adaptive versions of
the algorithm, (able to shrink or grow in order accommodate
different numbers of processors) that promise to address this
difficulty.

In summary, diffracting trees enjoy both the parallelism
of counting networks and the high coordination of combining

trees. One must also remember that like counting networks

and unlike combining trees, diffracting trees can be made

“lock-free,” that is, guarantee progress even if processors
fail.

5 Conclusions

Current approaches to multiprocessor computing are geared
towards providing performance speedup for input/output
problems (as in numericaJ computing) that are solved us-

ing parallelized sequential algorithms. This, in our view,

is the reason why one can program distributed and asyn-
chronous multiprocessor machines using tight synchroniza-

tion paradigms like critical sections and barriers, and still
observe good performance. However, future roles of multi-

processor machines will include application areas in indus-
trial production control, aircraft flight control, and eventu-
ally even robot brains. These will require general purpose
multitasking capabilities and on-line control of high speed

asynchronous data arriving from multiple sources, and are in-
herently asynchronous and distributed in nature. They will

gain more from methods that promote coordination between
processors without actuaJly synchronizing them.

Combining Trees are an example of a data structure that
achieves parallelism by synchronizing multiple accesses to a

single location. Diffracting Trees, on the other hand, achieve
parallelism by distributing requests to different locations, as-

suring correctness through coordination. They are an exam-
ple of a novel Distributed-Coordinated (DisCo if you will) ap

preach to concurrent data structure design. We believe this
novel approach (which includes lock-free and wait-free meth-

ods, but does not prohibit use of locks) will better bridge
the gap between the applications and the machines which

run them.

References

[1]

[2]

[3]

[4]

[5]

A. Agarwal and M. Cherian. Adaptive Backoff Synchro-

nization Techniques. In Proceedings of the 16th Inter-
national Symposium on Computer Architecture, June

1989.

A. Agarwal et al. The MIT Alewife Machine: A Large-

Scale Distributed-Memory Multiprocessor. In Proceed-
ings of Workshop on Scalable Shared Memory Multi-

processors. Kluwer Academic Publishers, 1991. An ex-
tended version of this paper has been submitted for

publication, and appears as MIT/LCS Memo TM-454,
1991.

B. Aiello, R. Venkatesan and M. Yung. OptimaJ Depth
Counting Networks. personal communication.

T. E. Anderson. The Performance of Spin Lock Alterna-
tives for Shared-Memory Multiprocessors. IEEE Trans-
actions on Parallel and Distributed Systems, 1(1):6–16,

January 1990.

J. Aspnes, M. P. Herlihy, and N. Shavit. Counting Net-
works and Multi- Processor Coordination. In Proceed-
ings of the 23rd Annual Symposium on Theory of Com-
puting, May 1991.

173

[6] K.E. Batcher. Sorting Networks and their Applications.
In Proceedings of AFIPS Joint Computer Conference,

pages 338–334, 1968.

[7] E.A. Brewer, C.N. DelJarocas. PROTEUS User Docu-

rnentation. MIT, 545 Technology Square, Cambridge,
MA 02139, 0.5 edition, December 1992.

[8] E. A. Brewer, C. N. Dellarocas, A. Colbrook and W.E.
Weihl. PROTEUS: A High-Performance Parallel-

Architecture Simulator. MIT Technical Report

/MIT/LCS/TR-561, September 1991.

[9] D. G. Carta Two Fast Implementations of the’’Minimal
Standard” Random Number Generator. CA CM,33(1),
January 1990.

[10] Digital Equipment Corporation. Alpha system refer-
ence manual.

[11] E. W. Felten, A. LaMarca, R. Ladner Building Counting
Networks from Larger Balancers University of Wash-

ington T.R. #93-04-09

[12] E. Freudenthal and A. Gottlieb. Process Coordination

with Fetch-and-Increment. In Proceedings of the ~th
International Conference on Architecture Support for

Programming Languages and Operating Systems, April
1991, Santa Clara, California. To appear.

[13] J.R. Goodman, M.K. Vernon, and P.J. Woest. Effi-
cient Synchronization Primitives for Large-Scale Cache-

Coherent multiprocessors. In Proceedings of the %d AS-
PLOS, pages 64-75. ACM, April 1989.

[14] A. Gottlieb, B.D. Lubachevsky, and L. Rudolph. Basic
techniques for the efficient coordination of very large

numbers of cooperating sequential processors. ACM
Transact~ons on Programming Languages and Systems,

5(2):164–189, April 1983.

[15] G. Graunke and S. Thakkar. Synchronization Al-

gorithms for Shared-Memory Multiprocessors. IEEE

Computer, 23(6):60-70, June 1990.

[16] M. Herlihy, B.H. Lim and N. Shavit. Low Contention

Load Balancing on Large Scale Multiprocessors. Pro-
ceedings of the %d Annual ASM Symposium on Paral-

lel Algorithms and Architectures, July 1992, San Diego,

CA. Full version available as a DEC TR.

[17] M.P. Herlihy. Wait-Free Synchronization. ACM
Transactions on Programming Languages and Systems,

13(1):123–149, January 1991.

[18] M. Klugerman and C.G. Plaxton. Small-depth Count-

ing Networks. 1992 ACM Symposium on the Theory of
Computing.

[19] MIPS Computer Company. The MIPS RISC Architec-
ture.

[20] J.M. Mellor-Crummey and M. L., Scott. Algorithms for
Scalable Synchronization on Shared-Memory Multipro-
cessors. Technical Report 342, University of Rochester,
Rochester, NY 14627, April 1990.

[21] J.M. Mellor-Crummey and T.J. LeBlanc. A software
instruction counter. In Proceedings of the %d ACM

International Conference On Architectural Support for
Programming Languages and Operating Systems, pages
78-86, April 1989.

[22] S.K. Park and K.W. Miller. Random number genera-

tors: Good ones are hard to find. CA CM, 31(10),0cto-
ber 1988.

[23] G.H. Pfister and A. Norton. ‘Hot Spot’ contention
and combining in multistage interconnection networks.

IEEE Transactions on Computers, C-34(11):933-938,
November 1985.

[24] L. Rudolph, M. Slivkin, and E. Upfal. A Simple Load

BaJancing Scheme for Task Allocation in Parallel Ma-
chines. In Proceedings of the 3rd ACM Symposium on

Parallel Algor~thms and Architectures, pages 237-245,

July 1991.

[25] H.S. Stone. Database applications of the fetch-and-

add instruction. IEEE Transactions on Computers, C-

33(7):604-612, July 1984.

[26] P.C Yew, N.F. Tzeng, and D.H, Lawrie. Distribut-

ing Hot-Spot Addressing in Large-Scale Multiproces-
sors. IEEE Transactions on Computers, pages 388–395,

April 1987.

174

A A proof that counting-trees count

Following [5], let the state of a balancer at a given time be

defined as the collection of tokens on its input and output
wires. For the sake of clarity we will assume that tokens are

all distinct. We can now formally state the properties of a
balancer:

safety In any state x ~ y. + YI. (i.e. a balancer never
creates output tokens).

liveness Given any finite number of input tokens m = z
to the balancer, it is guaranteed that within a finite

amount of time, it will reach a quiescent state, that is,
one in which the sets of input and output tokens are
the same.

balancing In any quiescent state, yO = (rn/21 and y] =
\m/2].

As described earlier, a Counttng Tree of width w is a

binary tree of balancers, where output wires are connected
to input wires, having one designated root input wire, z,
(which are not connected to output wires of balances), and
w designated output wires VO)VI).., VW–I (similarly uncon-
nected). Let the state of the tree at a given time be defined

as the union of the states of all its component balancers.

The safety and liveness of the tree follow naturally from the
above tree definition and the properties of balancers, namely,

that it is always the case that z > ~~=~] y,, and for any fi-
nite sequence of m input tokens, within finite time the tree

reaches a quiescent state, i.e. one in which ~~=~1 y, = m.
It is important to note that we make no assumptions about
the timing of token transitions from balancer to balancer in
the tree — the tree’s behavior is completely asynchronous.

We will show that if a counting tree reaches a quiescent

state, then its outputs, gO, yW_l have the stop property.

We present the following useful lemmas due to [5].

Lemma A.1 If yo, . . ., YW–1 is a sequence of non-negative

integer-s, the following statements are equivalent:

l. Foranyi <j, O~y, -y, sl.

Lemma A.2 Let ZO, . . . , Zk-1 and Ye,..., yk–1 be arbitrary
sequences having the step property. If

k–1 k–l

X’=xy’
,=0 ,=0

then x, = y, for all O ~ i < k.

Lemma A.3 Let XO, Xk_l andyo, yb_l be arbitrary
sequences having the step property. If

k–1 k-1

D= D+’
1=0 1=0

then there exists a uniquej, O ~ j < k, such that Xj = yj+l,

andx, =y, fori#j, O<i< k.

Using the above we can show that:

Lemma A.4 letxo, xl,xn andyo, yl,yn be two ar--

bdrary sequences having the step propery. Then if

n n

,=0 ,=0

then the sequence

xo, vo, ~1, Yl,~n. Yn

has the step property.

Proof outline: There are two cases:

1.

2.

EV=O Yt = ~~=o x,, in this case, by Lemma A.2 , both
sequences are identical, and the proof is trivial.

m = z~=o Y, = ~~=o z,+ 1, in this case, Lemma A.3,

applies. We know from Lemma A.1 that x, = f-l

and Y,= ~~1, this means that Vi,x, = y,+,. The
joint sequence haa the form Z. = yO = xl = yl = . . . =

Zj-] = yj-1 =$j=yj —l=rJ+l —l= yj+]— l,...,=

Zn – 1, yn – 1. This sequence haa the step property.

■

Theorem A.5 The outputs of BINARYIW] have the step prop-
erty in any quiescent 9tate.

Proof outline: The proof is by induction. If w = 1 then
we are dealing with a BINARY[2] counting tree. This tree

has two outputs, and is therefore, simply, a balancer. By
definition, the outputs of a balancer have the step property.

Assume the theorem holds for all trees of width w ~ k, and
let us prove that it holds for w = 2k. According to the
construction given in section 2, the big tree of width 2k, is
actually one root balancer whose two outputs are connected

to small trees of width k. The even leaves of the the big

tree are the leaves of the left small tree, and the odd leaves,
are the leaves of the right small tree. Since the trees are

connected by a balancer, we know that the the number of
inputs to the left and right small trees differ by at most one.

By Lemma A.4, the outputs of BINARY[2k] have the step
property. ■

Building on the work of [5] the following theorem is now
immediate.

Theorem A.6 A BINARYIW] tree counts.

B A proof of the diffracting balancer implementation

This section outlines the proof that the shared memory im-
plementation of a diffracting balancer is indeed a balancer,

i.e., itconforms to the formal definition of a balancer given
in Appendix A. The proof makes the implicit assumption

that all threads run to completion. For brevity, we will be
using Ct4S instead of compareand~wap.

Lemma B.1 The implementation meets the safety condi-
tion.

Proof out line: In our shared memory implementation,
each token represents a thread on some processor. Since the
code contains no thread creation commands, no new token
can be created in the diffractingbalancer. ■

175

Lemma B.2 The implementation meets the liveness condi-
hon.

Proof outline: A single processor accessing the balancer
will by the code return within a finite number of steps. If

there are several processes executing the balancer code and
no processor performs a return then some process must be

repeatedly executing in the forever loop. By the code
this means it must be failing to obtain the lock via the

test-and_set operation. This in turn implies that the lock
must be taken by some other processor, which will within
a bounded number of operations return a value. For any
number m tokens passing through the balancer, it follows

that eventually all of them must exit the loop. ■

In order to prove the balancing property we will require
some definitions. Note that Figure 3 marks each return

point with a letter. A token exiting the diffracting balancer
code via the return marked (a) will be called a canceling

token. A token that leaves through a return marked (b) will
be called a cancelled token, and one that leaves through (c)
will be called a toggling token. By definition, any two tokens
passing through the tree concurrently are being shepherded

by processes with different PID. For a token t,PID(t), will
denote its PID.

Lemma B.3 At ang time that locati,on[PID(t)] = b there
M a process PID executing the code of (shepherding a token
t through) diffracting balancer b that, has not performed its
final operation on location [PID(t)].

Proof outline: Initially all location [PID(t)] locations are
empty, so this property holds. Assume that it holds in some
state S and let ns prove that it holds in any state S’ reach-
able from S following some operation. The only operation
that can set a location [PID(t)] to lJ is by process PID and

in its next step it is still a executing the code of balancer b.
All return events are conditional on a final operation that

either tests that location [mypid] is not b or explicitly sets
itto EMPTY. ❑

Lemma B.4 The number of canceiled tokens is equal to the

number of canceling tokens.

Proof outline: To show this, we have to show that with
each token that exited the diffracting balancer code at (a)

we can associate a unique token that exited at a point marked

(b). We first show that for each canceling token, {, there
is a unique cancelled token t.If ~ is canceling, then it must

have succeeded in both of its OtYS operations. This means
that it has written EMPTY to both location [PID(@ and

location [PID(t)], where t is some other token whose PID

is held in /’s him variable. By lemma B. 3, when { succeeded
in its C&S(locat ion [P ID(t)] ,b, EMPTY), process PID(t) had
yet to perform it final access to the location. This final ac-

cess can be either:

1. A read, that will find that location [PID(t)] <> b; or

2. C& S(location[PID(t)] ,b,EMPTY), that will fail.

In both cases t is a cancelled token. Token t is unique to i
since it only reads the array prism once.

We now show that for each cancelled token t there ex-
ists a unique canceling token ~. Once again we notice that
t,upon entering the diffracting balancer code executes the

statement location [P ID(t)l : =b at most twice. A successful
C&S(locat ion [PID(t)] ,b, EMPTY) by t itself, must precede

the second such write. Thus, since all erasing of b from
location [PID(t)] is done using a C&S operation only one

token ~ can succeed. Successful writing into another process’

location implies by the code that ~ returns as a canceling
token. ■

We can now complete the proof of Theorem B,5,

Theorem B.5 The diffracting blancer code of figure .9 im-
plements a balancer.

Proof outline: Lemmas B. 1 and B.2 prove token safety
and liveness. We now assume that the diffracting balancer

is in a quiescent state and proove that yO = [m/21 and

Y1 = [m/2j. Each token exiting the diffracting balancer
code must be either cancelled, canceling or toggling. Each

cancelled token increments VI by one, and each canceling

token increments y. by one. Lemma B.4 allows us to ignore
these tokens, and count only the toggling tokens which by

the proofs of [5] for a toggle based balancer are properly
balanced, 9

176

