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Abstract

An atomic snapshot memory is an implementation of a multiple-location shared memory
that can be atomically read in its entirety without preventing concurrent writing. The design of
wait-free implementations of atomic snapshot memories has been the subject of extensive theo-
retical research in recent years. This paper introduces the coordinated-collect algorithm, a novel
wait-free atomic snapshot construction which we believe is a �rst step in taking snapshots from
theory to practice. Unlike previous algorithms, it uses currently available multiprocessor synchro-
nization operations to provide an algorithm that has only O(1) update complexity and O(n) scan
complexity, with very small constants. We evaluated the performance of known snapshot algo-
rithms for a collection of benchmarks on a simulated distributed shared-memory multiprocessor.
Our empirical evidence suggests that coordinated-collect will outperform all known wait-free,
lock-free, and locking snapshot algorithms in terms of overall throughput and latency. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

An atomic snapshot memory [2, 6] is an implementation of a multiple-location
shared memory that can be atomically read in its entirety. The ability to collect such an
instantaneous view is a powerful tool for designing concurrent data structures, as it
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greatly reduces the need to argue about inconsistent views of memory. Snapshots have
been widely used in theoretical work [1, 4, 12, 14, 15, 23, 26], and o�er a yet untapped
potential for practical use in applications such as check-pointing, generating concurrent
backups, or interactive debugging of multiprocessor programs. Snapshots can also serve
as building blocks of state-of-the-art fault-tolerant real-time applications such as a mul-
tiprocessor server of a radar tracking system, where multiple sensors generate updates
concurrently with multiple requests for consistent system states. The design of asymp-
totically e�cient implementations of an atomic snapshot memory has been the subject
of extensive and highly creative research in recent years [2, 6, 8, 11, 13, 18, 21, 30].
An atomic snapshot memory is an abstract data-type equivalent to a memory par-

titioned into n segments, one for each processor. There are two types of operations
on the object, a scan and an update. In an update operation, a processor writes the
contents of its associated segment, while in a scan, it obtains an instantaneous “global
picture” of all n segments. Snapshots should be fault-tolerant and non-interfering. That
is, applications (for example, programs being check-pointed) on the system should
have minimal disruption or loss of performance as a result of ongoing snapshots, and
in the extreme should continue to run even in the face of severe timing anomalies. An
atomic snapshot implementation is wait-free if the execution of any implemented scan
or update operation completes within a bounded number of machine instructions inde-
pendently of the pace of other processors [24]. Fault-tolerance and non-interference are
the major advantages of wait-free methods over standard lock-based implementations.
This paper takes a practical look at the question of providing wait-free implementa-

tions of atomic snapshots on multiprocessor architectures. A snapshot implementation
that is to be practical should have the following properties:
• The complexity of performing an update operation should be within a small constant
of that of a simple “write” to memory, since the typical user does not want to
sacri�ce the speed of updating memory to support e�cient snapshots.

• Register sizes and hardware synchronization primitives should conform with ones
available on multiprocessor architectures.

• Memory contention should be minimized by distributing and load-balancing work,
otherwise good asymptotic complexity will not result in good performance.

1.1. Coordinated collecting

The main contribution of this paper is in introducing the coordinated-collect al-
gorithm, a novel atomic snapshot construction which we believe is a �rst step in
taking snapshots from theory to practice. It uses Load-linked=Store-conditional opera-
tions [19, 28, 32] to provide a multi-scanner algorithm 1 that uses real-world registers
(each containing at most O(1) values, where a value is typically at least the size of a
processor identi�er) with only O(1) update complexity (in fact, at most four opera-
tions), O(n) scan complexity, and O(n2) space complexity.

1 A multi-scanner algorithm is one in which concurrent scan operations by di�erent processors are allowed.
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Table 1
A comparison of atomic snapshot algorithms

Snapshot Primitive Update Scan Register Space
algorithm used complexity complexity size complexity

Lock free r=w register O(1) ∞ O(1) O(n)
Block update r=w register ∞ O(n) O(1) O(n)
Anderson [6] r=w register O(2n) O(2n) O(1) O(n3 log n)
Aspnes and Herlihy [8] r=w register O(n2) O(n2) O(n) O(n2)
Afek et al. [2] Unbounded r=w register O(n2) O(n2) O(n) O(n)

Bounded r=w register O(n2) O(n2) O(n) O(n2)
Kirousis et al. [30] One scanner r=w register O(1) O(n) O(1) O(n)
Dwork et al. [21] Weak snapshot r=w register O(n) O(n) O(n) O(n2)
Chandra Dwork [18] LL=SC O(n) O(n) O(n) ∞
Attiya and Herlihy Version 1 T&S O(n log2 n) O(n log2 n) O(n) ∞
Rachman [11] Version 2 dyn. T&S O(n) O(n) O(n) ∞
Attiya and Rachman [13] Unbounded r=w register O(n log n) O(n log n) O(n2) ∞
Coordinated collect LL=SC O(1) O(n) O(1) O(n2)

Though one might think that the use of strong primitives like Load-linked=Store-
conditional would allow us to readily modify the elegant snapshot algorithms in the
literature [2, 6, 8, 11, 13, 18, 21] to achieve similar complexity, it turns out that this is
not the case (see the summary in Table 1). These multi-scanner snapshot protocols
have an algorithmic structure in which each updater and=or scanner collects a view of
memory in its register, and then processors try to agree which of the views to return.
This leads to a situation where, even with the added power of a Load-linked=Store-
conditional operation to speed up the view-agreement process, the complexity of an
update remains an unacceptable �(n), and the registers used in the algorithms are
required to hold simultaneously �(n) values.
Our presentation begins with the introduction of a new single-scanner protocol 2

– a greatly simpli�ed version of the innovative single-scanner protocol of Kirousis
et al. [30]. We build the coordinated-collect multi-scanner algorithm based upon our
single-scanner protocol. The algorithm has updaters perform the same O(1) sequence of
operations as in our single-scanner algorithm, but uses a novel collection methodology
to allow multiple scanners to return coherent views of memory. Instead of deciding on
one of many collected views as in previous algorithms, coordinated-collect has all the
active scanners distribute the work and ‘help’ each other to collect values from the n
registers into a pre-agreed shared view area. This allows us to achieve an O(n) scan
complexity without increasing the update complexity. The helping process is tailored to
maintain low contention by load-balancing processors over the shared view locations.

2 The version we present uses unbounded time stamps (60-bits or more will su�ce in practice) but can
be easily bounded using a sequential time-stamp system [29, 34].
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1.2. A comparison of atomic snapshot algorithms

The second contribution of this paper, in Section 6, is a comparison of the perfor-
mance of several single- and multi-scanner algorithm snapshot techniques, including
our own, on a simulated distributed shared-memory multiprocessor using the well ac-
cepted Proteus Parallel Hardware Simulator [16, 17] of Brewer et al. Our choice of
algorithms for simulation was driven not only by their asymptotic complexity, but also
by the feasibility of implementing them on multiprocessor machines.
The �rst two compared methods are an algorithm that blocks updates during a scan

and a lock-free algorithm that never blocks updates but does not guarantee scan ter-
mination in the face of repeated updating. Of the known wait-free methods, we chose
to implement the unbounded-register versions of the algorithms of Afek et al. [2]
and Attiya and Rachman [13], and the consensus-based algorithm of Chandra and
Dwork [18]. The �rst two algorithms use n-valued read=write registers to have pro-
cessors agree among collected views, and the last uses n-valued registers and an
agreement mechanism which we implemented using the powerful Load-linked=Store-
conditional operation. We did not implement the intricate test&set based algorithms
of Attiya et al. [11] which achieve asymptotically e�cient agreement among views
using an unbounded number of test&set registers. Transforming them into bounded
algorithms would introduce a substantial overhead in space and in memory contention,
making them inferior to the Load-linked=Store-conditional based agreement scheme
which we tested. Given that the above algorithms assume the availability of atomic
n-value registers, we tested them both under the (unrealistic) assumption that such
operations are available in hardware, and under the (more realistic) one that each
n-valued read operation takes at least n local operations. We found that their perfor-
mance was only slightly improved by assuming n-valued registers were available in
hardware.
We found that our single-scanner and multi-scanner coordinated-collect algorithms

outperform all known algorithms both in throughput and latency. Surprisingly, their
update throughput is as good as that of the lock-free method which lets updates succeed
at the price of very low scan throughput. 3 The scan throughput of our algorithms
remains consistently high as the number of processors increases, even though the size
of the collected views grows linearly. However, it has an associated overhead and
generates a certain level of contention which prevents it from reaching the throughput
of the blocking algorithm (one which blocks all updates during a scan).
In summary, we believe our work is an example of using current multiprocessor

synchronization operations to develop snapshot algorithms that are more “realistic” in
terms of register size and the complexity of update operations. Our hope is that this
and future improvements in the performance of this important building block will help
in advancing wait-free data structures from theory to practice.

3 In the lock-free algorithm, the scanner repeatedly collects the contents of the registers. If it reads the
contents of the registers twice, and no register has been changed, it returns the collected values as a result.
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The paper is structured as follows. Section 2 presents the model. In Section 3 we
present our single-scanner algorithm. Section 4 presents our multi-scanner algorithm.
The proofs of both algorithms can be found in Section 5. Finally, Section 6 presents
a performance analysis of the algorithms.

2. Snapshots and the shared memory model

Our computation model follows [12, 13, 27]. A concurrent system consists of a col-
lection of n processors. Processors communicate through shared data structures called
objects. Each object has a set of primitive operations that provide the only means to
manipulate that object. Each processor P is a sequential thread of control [27] which
applies a sequence of operations to objects by issuing an invocation and receiving the
associated response. A history is a sequence of invocations and responses of some
system execution. Each history induces a “real-time” order of operations where an
operation A precedes another operation B if A’s response occurs before B’s invoca-
tion. Two operations are concurrent if they are unrelated by the real-time order. A
sequential history is a history in which each invocation is followed immediately by
its corresponding response. The sequential speci�cation of an object is the set of legal
sequential histories associated with it. The basic correctness requirement for a con-
current implementation is linearizability [27]: every concurrent history is “equivalent”
to some legal sequential history which is consistent with the real-time order induced
by the concurrent history. In a linearizable implementation, operations appear to take
e�ect atomically at some point between their invocation and response. In our model
every shared memory location L of a multiprocessor machine memory is a linearizable
implementation of an object which provides every processor Pi with the following set
of sequentially speci�ed operations (see [24, 25] for details):
Readi(L) reads location L and returns its value.
Load-linked i(L) reads location L and returns its value. Marks L as read by Pi.
Store-conditional i(L; v) if location L is marked as read by Pi, the operation writes the
value v to L, erases all existing marks on L and returns a success status. Otherwise
it returns a failure status.
Writei(L; v) writes the value v to location L. Erases all existing marks on L.

Since the Load-linked and Store-conditional operations on some machines have a
di�erent semantics than those described above, we discuss in Section 6 how one can
implement them using existing synchronization primitives.

2.1. Atomic snapshots

An atomic snapshot object is a concurrent shared object which allows each processor
Pi, where 06i6n − 1 to perform two types of operations on the object: Updatei(r)
and Scani. Each Updatei operation has input r from some given range of values. Each
Scani returns a vector view[0::n− 1] of n values.
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We require that a correct implementation of an atomic snapshot object meet the
following sequential speci�cation:

De�nition 2.1. In every �nite or in�nite sequential history h= o1o2o3 : : :, if ok = Scani

where Scani returns view[0::n−1]; then for all j such that 06j¡n, the last Updatej(r)
operation (last meaning with highest subscript) in the subsequence o1 : : : ok−1,
has r= view[j]. If o1 : : : ok−1 does not contain any Update

j(r) operations then view[j]
= empty.

In terms of our implementation, proving correctness amounts to showing that each
possible concurrent history of the object’s execution �lls the following conditions:
(P1) The induced real-time order on the implemented Scan and Update operation

executions can be extended to a total order, such that
(P2) the totally ordered history is legal, that is, meets the sequential speci�cation.
We also require the implementation to be wait-free, requiring the execution of any

Scan or Update operation to complete within a bounded number of machine instruc-
tions [26].

3. The single-scanner algorithm

The following algorithm is a greatly simpli�ed variant of the Kirousis, Spirakis,
and Tsigas single-scanner snapshot algorithm [30]. The latter algorithm is based on
the innovative idea of letting the scanner change, in each scan, the memory location
where updaters write their values. This allows updaters to keep writing to memory
without disrupting an ongoing scan operation’s attempt to collect a snapshot view.
However, the price paid in [30] is a rather complicated scheme to eliminate the need to
search back through an unbounded number of possible locations in which updates were
recorded. The key to our algorithm, presented below, is a simple pragmatic structure
that eliminates the need for such a search with almost no overhead and achieves optimal
asymptotic time complexity, O(n) for a scan and O(1) for an update. Moreover, as can
be seen from the code in Fig. 1, the constants involved are very small. The algorithm
uses a sequential time-stamp system [29], a mechanism for maintaining order among
events using sequence numbers. In practice, implementing the “unbounded” sequence
numbers we use in the algorithm requires a register curr seq of 60 bits or more
(which on current multiprocessors will take hundreds of years before it over�ows)
though one can readily replace it by a more theoretical bounded sequential time-stamp
system [20, 29, 34] (one that never over�ows) to achieve a simple bounded read=write
register single-scanner protocol.
The algorithm is designed to allow carrying the update operation structure without

change over to the case of multiple scanners. The code for scan and update operations
appears in Fig. 1.
The algorithm uses a shared array memory[0::n− 1] of records, each having a high

and a low �eld, and a shared variable curr seq which holds a current time-stamp
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Shared data structures:
curr_seq: integer;
type value: integer or Empty or Null;

Register: record [ val: value, seq:integer ];
memory: array [0..n-1] of record [high:Register,low:Register];

shared data structures initialization:
for all k=0..n-1

memory[k].high = memory[k].low = [Empty, 0];
curr_seq = 0;

Scan()
variables

view: array [0..n-1] of value;
high_r, low_r: register; j: integer;

begin
curr_seq := curr_seq+1;
for j := 0 to n-1

high_r := memory[j].high;
if (high_r.seq < curr_seq)

view[j] := high_r.val
else

view[j] := memory[j].low.val;
return view;

end; {Scan}

Update(val) {for processor Pi}
variables

seq : integer; high_r: register;
begin

seq := curr_seq;
high_r := memory[i].high;
if (seq <> high_r.seq)

memory[i].low := high_r;
memory[i].high := [val,seq]

end; {Update}

Fig. 1. The single-scanner algorithm code.

(sequence number). The basic idea is to let the single-scanner set a new time-stamp as
its �rst step and then collect updaters’ values, while the �rst operation in each update
is to read this time-stamp.
The scanner classi�es the collected updaters’ values according to its newly created

time-stamp, and returns only those values that were written by update operations which
did not read its time-stamp. These updates must have started and performed the read
of curr seq before the scan, and so all their associated values could have existed
in memory at the point in the execution when the increment of the time-stamp was
performed (note that the fact that the values could have existed implies linearizability
[27]). To guarantee that such a value is found for each updater, even if scanning is
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Fig. 2. Ordering updates and scans.

concurrent with updating we keep, in an additional memory location (the low �eld),
the latest value updated with a time-stamp preceding that of the current=latest scan.
Therefore, in case an updater “sees” a scan which has started after its last update
operation it modi�es the low and high �elds of its update location. First, it updates the
low �eld to hold its previous update value which should be available for concurrent
scans, and then the high �eld to hold the new update value.
To prove the correctness of this construction we must show that each possible history

of this algorithm is equivalent to a legal history [27]. A detailed formal correctness
proof of the algorithm follows from that of the coordinated-collect algorithm and is
presented in Section 5. In a nutshell, given a concurrent history of the single-scanner
algorithm, we order every Scan operation S and Update operation U in the following
way: If U reads curr seq after S increments it, then U is ordered after S. If U reads
curr seq before S increments it, then if S reads memory[i].high before U writes
into it, U is ordered after S otherwise U is ordered before S. Two update operations,
U1 and U2 are ordered as follows: if there exists a Scan operation S, such that U1 is
ordered before S and U2 is ordered after S, then U2 is ordered after U1. Otherwise
U1 and U2 are ordered according to the order of their respective read operations on
curr seq.
Clearly, this total order extends the partial order induced by the concurrent history.

The only case for which this is not immediate is for two update operations U1 and U2
that are totally ordered in the concurrent history. Assume, without loss of generality,
that U1 precedes U2, and let us see why they are consistently ordered with respect
to scan operations. As depicted in Fig 2, if U2 is ordered in the total order before
some scan operation S, then U2 must have read the content of curr seq before S
incremented it. This implies that U1 updated its registers in the memory array before
S incremented curr seq and therefore before S read the memory array. Therefore, we
order U1 before S.

4. The coordinated-collect algorithm

To achieve an O(1) update complexity, we build the multi-scanner algorithm around
our single-scanner algorithm. As in the single-scanner algorithm, we keep a memory
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array and a curr seq time-stamp, and have updaters perform the sequence of opera-
tions in Fig. 1. We begin our multi-scanner design by noticing that a solution based on
simply incrementing the curr seq in every scan will force updaters to maintain a set
of O(n) last-updated values (one for each ongoing scan). This will a�ect not only the
update complexity but the scan complexity as well. On the other hand, incrementing
the curr seq only once for a collection of concurrent scans, will lead to a situation
where updaters can switch values of high=low memory locations in the middle of a
scan. Establishing an order among concurrent scans will thus not be possible. Take, for
example, an execution in which two update operations U1 and U2 on locations i and
j, respectively, are executed concurrently with two scan operations S1 and S2. Assume
that both U1 and U2 have read curr seq before it was incremented. In that case we
may have a concurrent history in which S1 read memory[i].high before U1 wrote
in it and read memory[j].high after U2 wrote in it, while S2 read memory[i].high

after U1 wrote in it and read memory[j].high before U2 wrote in it. Consequently,
S1 should have collected the value written by U1 but not the value written by U2, and
S2 should have collected the value written by U2 but not the value written by U1. This
creates a situation in which S1 and S2 cannot be ordered consistently. In short, to make
our e�cient single-scanner algorithm work for multiple scanners, we must ensure that
there are no concurrent scans.
Since we cannot prevent scans from actually taking place concurrently, our approach

is to have them emulate a sequence of virtual scan operations whose execution in-
tervals do not overlap. These sequential virtual scans together with the regular single-
scanner updates form executions. In these executions the values collected are identical
to the values collected by the scanner in the single-scanner algorithm. The key to our
multi-scanner construction is to guarantee that each of the concurrent scan operations
completely overlaps at least one virtual scan and returns its value. The total lineariza-
tion order on concurrent scan and update operations is de�ned by �rst ordering the
updates relative to the virtual scans and then ordering each of the concurrent scans
according to the order of its overlapped virtual scan, that is, as if it occurred at some
point within the virtual scan interval.
To create the sequence of non-overlapping virtual scans, we let all scanners that

execute concurrently share a special variable curr index that points to a pre-chosen
view: an array of n locations in which the current virtual scan’s snapshot “view” of
memory will be collected. Scanners start a new virtual scan operation only after the
current one completes. To provide wait-free behavior, each scanner must guarantee
that the view is collected even if all other scanners that share it have halted. This
means that (in the worst case) it must execute the collection code of the single-
scanner scan operation for all memory locations. Scanners working concurrently on
the same view might still read di�erent values from memory, and so we must make
sure that only one snapshot view is actually written to the shared view array. We
do so using a Load-linked and Store-conditional operation to guarantee that each
view location is written by only one of the concurrent scanners. The reason for using
a Load-linked and Store-conditional operation as opposed to a simple write is that
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Fig. 3. Returning an incorrect view.

otherwise, delayed update operations that started before the current virtual scan may
cause concurrent scanners to overwrite view locations. In such cases, delayed scanners
may overwrite (and return) some already collected (and returned) snapshot. Similarly,
scanners running independently would eventually return snapshot results that cannot be
ordered consistently.
Having constructed a mechanism that ensures that each scanner will collect a snap-

shot view, we turn to guaranteeing that it can return a virtual scan operation that
it completely overlaps. The problem is similar to that noticed by Afek et al. [2]. If
the view returned by scanner A was collected by another concurrent scanner B, the
values U that are returned by A might be incorrect. As depicted in Fig. 3 the rea-
son is that there may be updates V completely after the updates U and completely
before A’s scan, that are “missed” by returning the values in U . The solution is to
use a variant of the double collect technique [2], namely, participate in two virtual
scans and return the view collected in the later one. A scanner participates in a vir-
tual scan collection only after getting a shared view pointed to by curr index and
verifying that it is still not fully collected with snapshot values. Since by de�nition
virtual scans are never concurrent, the second of them is completely within the scan
interval.
However, there can still be a situation in which a scanner in�nitely often fails to have

access to the view pointed to by curr index and also fails to participate in virtual
scans of two chosen views pointed by curr index. This may happen if it is delayed
between the agreement on the current view and the view collection, and meanwhile, all
other scanners complete the collecting process using the chosen view. We overcome
this problem by adding an array A[0::n− 1] indexed by curr index. The ith entry of
A is used by scanner Pi to post its proposed view. The new role of curr index is to
cycle among the A entries. As we prove below, every scanner is ensured to have its
proposed view (its entry in A) chosen within n virtual scan rounds. This means that if
a scanner fails to participate in a virtual scan n times, its own view must have been
chosen as some virtual scan’s returned view at some earlier point, hence it is �lled
with snapshot collected values (see Fig. 5).
We now turn our attention to the possibility of having delayed scanners, ones that

have not completed reading the view of the virtual scan they decided to collect. If
we had unbounded space available, we could simply never re-use a view area, and a
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type value: integer or Empty or Null;
index: integer or Null;
Register: record [val: value; seq: integer];
View : record [version: integer; sequence:
index; regs: array[0..n-1] of value];
Ind : record [value: integer; state: {fill, advance}];

shared data structures:
A: array [0..n-1] of index;
curr_index: Ind;
curr_seq: integer;
memory: array [0..n-1] of record [high:Register; low:Register];
views : array [0..2n-1] of View;

shared data structures initialization:
for all k = 0..n-1

A[k] = Null;
memory[k].high = memory[k].low = [Empty, 0];

curr_index = [0,advance]; curr_seq = 0;

private data structures
current_view: {0, 1};
result: array [0..n-1] of value;
fill_count: integer;

private data structure initialization
current_view = 0;

Fig. 4. Data types and variables of the coordinated-collect algorithm.

delayed scanner could participate in a virtual scan and collect the contents of the
shared view at its own pace. However, we observe that any view space that has
been �lled must be kept for no more than n virtual scan rounds before it can be
recycled and used in a new scan. The reason is that after n rounds, every potentially
delayed processor will have its own proposed view �lled. Therefore, each processor
can initially allocate two di�erent view spaces that will be alternately proposed in its A
entry. Each time it has to propose a view, the processor will pick its last unused view,
invalidate it for delayed processors, reinitialize its �elds, and write the view address
in its A entry. Then it will attempt to set its proposed view for the next virtual scan
by advancing the curr index pointer and setting it to point to this view. Concurrent
scans will be able to agree on one of their proposed views by using Load-linked=Store-
conditional operations to set curr index. Having set curr index, all scanners will
try to participate in the collection of the view. If a scanner is successful twice, it will
return the view’s contents.
Note that allocating only one view per processor does not su�ce. This is because

we may have a situation in which each time a processor helps some other processor
to complete a scan, the helped processor initiates a new scan operation and reuses its
view before the helping processor has a chance to copy the view’s content. In such a
case, the helping processor may have to help n − 1 other processors before ensuring
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Scan()
variables
helped_view, k: integer;
index: Ind;
first : boolean;

1: first := True; fill_count := 0;
forever do

2: if (A[i] = Null)
3: if first

index := curr_index;
4: if ((index.value mod n) <> i) or

(index.state <> fill)
5: first := False;
6: current_view = 1-current_view;
7: Init(2*i + current_view);
8: A[i] := 2*i + current_view; {Propose the view}
9: else

return views[2*i + current_view].regs;
10: index := LL(curr_index);

k := index.value mod n;
11: helped_view := A[k];
12: if (index.state = fill) {If a collection process is in progress}
13: if (helped_view <> Null)
14: if (help_fill(helped_view, index)

= SUCC and fill_count = 2)
return result;

else {The view has been filled already}
15: SC(curr_index,[index.value,advance]);

else
16: if (A[(index.value+1) mod n] <> Null) {If there is a pro-
posed view in the next entry}
17: SC(curr_index,[index.value+1,fill]); {Advance and begin

a collection process}
else

18: SC(curr_index,[index.value+1,advance]); {Advance to
the next Entry}

Init(x: integer)
19: views[x].version := views[x].version + 1;
20: views[x].sequence := Null;

for k := 0 to n-1
21: views[x].regs[k] := Null;

Fig. 5. Scan by processor i in the coordinated-collect algorithm.

that its own view has been �lled. This will cause the complexity of the scan operation
to be O(n2).
The following section provides a more detailed description of the algorithm’s code.

The multi-scanner algorithm’s pseudo-code for a scan operation appears in Figs. 5 and
6, while the code of the update operation is exactly as in the single-scanner case of
Fig. 1.
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Help_fill(x: integer, index: Ind)
22: version := views[x].version;
23: if (curr_index <> index)

return FAIL;
{If the collection process is still active}

24: if (LL(views[x].sequence) = Null)
if (version <> views[x].version)

return FAIL;
else

SC(views[x].sequence,curr_seq+1);

25: seq = views[x].sequence;
if (LL(curr_seq) = seq-1)

if (version <> views[x].version)
return FAIL;

else
SC(curr_seq,seq);

26: for j := 0 to n-1 do
{For each updated shared register follow the single
collect method}

27: high_r := memory[j].high;
low_r := memory[j].low;

28: if (LL(views[x].regs[j]) = Null)
if (version <> views[x].version)

return FAIL;
else

29: if (high_r.seq < views[x].sequence)
30: SC(views[x].regs[j],high_r.value);

else
31: SC(views[x].regs[j],low_r.value);
32: if (LL(A[index.value mod n]) = x)
33: if (curr_index = index)

SC(A[index.value mod n],Null);
34: fill_count := fill_count+1;
35: if (fill_count < 2)

return SUCC;
for j := 0 to n-1 do {Copy the shared view

registers into private space}
result[j] := views[x].regs[j];

if (views[x].version <> version)
return FAIL;

else
return SUCC;

Fig. 6. Help �ll by processor i in the coordinated-collect algorithm.

4.1. Implementation details

As mentioned earlier, the algorithm uses an array A[0::n − 1] of indexes in views,
an array of views (see Fig. 4). The shared variable curr index contains a value �eld
and a state �eld. The value �eld is an index into A and the state �eld indicates
whether the view speci�ed by A[curr index.value] is subject to an ongoing collec-
tion process (which we call a fill). If not, the curr index should be advanced (i.e.
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advance). Each view space contains: an array regs[0 : : : n − 1] in which a virtual
scan’s snapshot “view” of memory will be collected, a sequence �eld on which pro-
cessors will dump the content of curr seq , and a version �eld which contains an
integer representing the number of times this view was proposed. A processor invali-
dates a view for a delayed processor by incrementing the version �eld of the view
by one.
The algorithm executes as follows. A scanner repeatedly tries to participate in col-

lecting a view until it has taken part in two view collections or until a view it has
proposed after the beginning of the current scan operation is �lled for the second time.
Note that the algorithm uses a �ag first to ensure that the scanner will not return
its own view after the �rst �ll (line 3). The Null value is stored in the scanner A’s
entry at either the initialization of the snapshot object or after the scanner’s proposed
view has been �lled.
In detail, a scanner �rst checks whether no view is currently proposed in its entry

(line 2). If this is the case, then if the last proposed view was �lled after the scan
began, the scanner terminates and returns the content of its own view as the result
(line 9). Otherwise the scanner proposes a new recycled view (lines 6–8). The scanner
then reads the contents of curr index and the next view to be �lled according to
curr index (lines 10 and 11). If the view was not �lled, the scanner tries to participate
in an ongoing view collection. This can be done only if the collecting process has not
terminated yet (line 13). In this case the scanner calls the Help fill procedure (line
14). Otherwise, the scanner changes the index status to advance (line 15). If there
is no ongoing collection performed on the view pointed to by the curr index, the
scanner increments curr index and sets its status to:
• fill if there is some proposed view in the next index (line 17), and to
• advance (line 18) otherwise.
A scanner participating in a coordinated collection on some view (procedure

Help fill in Fig. 6), �rst reads the content of the version �eld of the view (line 22).
Since the owner of the view has to increment the version �eld before initializing the
view, the scanner will be able to check before each coordinated step that the view was
not invalidated by its owner. This prevents a delayed scanner from collecting a view af-
ter it was reinitialized and proposed again by its owner. After reading the version (line
22), the scanner veri�es that the curr index has not changed (line 23). If curr index

has changed, the view is already �lled and the processor exits the procedure.
As in the single-scanner algorithm there is a time-stamp which is incremented at

the beginning of each view collection. The time-stamp is incremented in the following
way: the scanners �rst agree on the content of curr seq by writing its previous value
to the �lled view (line 24), then they update curr seq according to the value stored
in the view (line 25). In this way we ensure that curr seq is incremented only once.
In the view collection (lines 26–31) scanners agree on the contents of the read register
by writing only to “Empty” registers (using Load-linked and Store-conditional).
Finally, the scanners complete the view collection by writing a Null value in the entry
in A indexed to by curr index (lines 32–33).
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5. Correctness proof

By the locality property of linearizeable objects [27] it is a valid technique to ignore
any speci�c implementation details of operations like Read, Write, Load-linked and
Store-conditional , and to assume that these operations occur as atomic actions some-
time within their corresponding operation interval. We may therefore assume that an
execution of the coordinated collect algorithm is, in fact, a (possibly in�nite) sequence
of events r= e1; e2; : : : where each event is one of the form:

Wi(var; val) Processor i performs a Write operation on variable var with value val.
Ri(var; value) Processor i performs a Read operation on variable var which returns
value val.

LLi(var; val) Processor i performs a Load-linked operation on variable var which re-
turns value val.

SCi(var; value; success) Processor i performs a successful Store-conditional operation
on variable var with value val.

SCi(var; value; failure) Processor i performs a unsuccessful Store-conditional opera-
tion on variable var with value val.

Sometimes we use the notation Ri(variable; �(variable)) or LLi(variable;
�(variable)) for some predicate �, as a short form for Ri(variable; value) or
LLi(variable; value) and � (value)= true. In other words, Ri(variable; �(variable))
means that processor i reads the content of variable and gets a value that satis�es �.
When the subscripts are clear from the context or unimportant we will at times omit
them. For every execution r= e1; e2 : : : we refer to the content of every shared memory
location loc after every event e as Content(r; e; loc); subject to the speci�cation of the
primitives used. We use ∗ to replace a value unimportant in a given context. We use
SCi(var; value) as a shorthand for SCi(var; value; success).

De�nition 5.1. For every execution r; the real-time order of events in r (denoted as
“→ ”) is the total order such that for two events ei and ej in r; ei→ ej i� i¡j. The
real-time order of subsequences is the partial order

seq→ such that for two subsequences
s= ej1 : : : ejl and s

′= ej′1 : : : ej′l′ ; s
seq→ s′ i� ejl → ej′1 .

For simplicity we usually write s→ s′ instead of s
seq→ s′.

Let Updatei(v) be a call to the procedure Update by processor i with input v. Then
given an execution r, we denote by Ui(v), the sequence of events in r performed by
i during Updatei(v). Similarly, given Scani(view[0 : : : n− 1]) a call to procedure Scan
by i that returned view[0 : : : n−1], let Si(view[0 : : : n−1]) be the subsequence of events
in r performed by i during Scani(view[0 : : : n− 1]).
In order to prove the linearizability of our algorithm we have to show that for every

execution, we can provide a total ordering ⇒ between the calls to Update and Scan,
which is consistent with the partial order between the event subsequences created by
the calls, and to show that this total order induces a legal history. Informally, the proof
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will be structured as follows. We �rst show that although many processes may execute
a scan operation concurrently, there is at most one “scaning process” in progress at
any moment. We then attribute to every such “virtual” scan a vector view[0 : : : n− 1]
as its returned value. Our next step is to show that one can linearize the sequence of
virtual scans and the sequences of updates to create a legal history. To complete the
proof we show that every “actual” scan operation can be matched with a returned view
of a “virtual” scan that is contained within its execution interval.
The following two claims hold directly from the algorithm and the speci�cation of

the Load-linked and Store-conditional operations.

Claim 5.1. Let r be an execution of the coordinated-collect algorithm. Then each of
the value transitions of the curr index variable in r; can be categorized as having one
of the following forms:
1. [value,fill] to [value,advance];
2. [value,advance] to [value+1,fill];
3. [value,advance] to [value+1,advance]:

Claim 5.2. Let r be an execution of the coordinated-collect algorithm. Then each of
the value transitions of the curr seq variable in r has the form: x to x + 1.

De�nition 5.2. For every execution and every value x, if SC(curr index; [x; fill])
and SC(curr index; [x; advance]) are contained in that execution, we de�ne the �ll-
ing interval of x denoted Ix, as the (unique) subsequence in the execution start-
ing with a SC(curr index; [x; fill]) and ending with SC(curr index; [x; advance]) if
SC(curr index; [x; advance]) exists. We call such �lling intervals closed. If SC
(curr index; [x; advance]) does not exist, Ix extends to the end of the execution. In
that case we say that Ix is an open �lling interval. Sometimes we use the term interval
as shorthand for �lling interval.

An execution may thus contain many closed intervals and its last interval can be
either closed or open. Note that from our de�nition, an execution is not “covered” by
intervals, rather, they are scattered throughout it.

De�nition 5.3. Given an interval Ix, we denote SC(curr index; [x; fill]) (the starting
event of Ix) by Startx. If Ix is a closed interval we denote SC(curr index;
[x; advance]) (the ending event of Ix) by Endx.

From the above de�nitions and Claim 5.1 we can deduce:

Claim 5.3. If two intervals Ix and Iy are included in an execution r; then Ix and Iy
do not overlap; and if x¡y then Ix→ Iy.

In the following lemma, we show that during an interval Ix there is only one view on
which scanners may potentially operate.
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Lemma 5.4. For every execution r and every interval Ix contained in r; the following
properties are satis�ed:
(a) Content(r; Startx; A[x mod n]) �= Null.
(b) During Ix; the content of A[x mod n] changes at most once; and to Null. If Ix

is a closed interval then A[x mod n] is updated to Null during Ix.

Proof. We show that the properties hold for every interval Ix contained in the execution
by induction on x. Assume that the properties hold for all the intervals Iy where y¡x,
and let us prove that they hold for Ix.

Proof. (a) Assume by way of contradiction that the property does not hold. By the
algorithm the sequence of operations executed by processor p which has set curr index
to [x,fill] is the following:

LLp(curr index; [x − 1; advance])→ Rp(A[x; mod n]; A[x; mod n] �= Null)

→ SCp(curr index; [x; fill]):

In that case, there is some processor q that updated A[x mod n] to Null after Rp

(A[x mod n], A[x mod n] �= Null) and before SCp(curr index; [x; fill]). Since by
the algorithm, A[x mod n] is set to Null only by processes executing procedure
Help fill the sequence of events executed by q (lines 32 and 33) must be

LLq(A[ymod n]; V )→ Rq(curr index; index)→ SCq(A[ymod n]; Null)

for some y s.t. y mod n= x mod n and some view V . Since SCq(A[y mod n]; Null)
→ Startx and since q has read curr index before Startx, by Claim 5.1, y¡x. Now, since
q has executed lines 10–12 in Scan before calling Help fill, index=
[y,fill]: Therefore by Claim 5.1, the only possible interleaving between p and q’s
events is

LLq(A[ymod n]; V )→ Rq(curr index; [yfill])

→ LLp(curr index; [x − 1; advance])

→ Rp(A[ymod n] �= Null)

→ SCq(A[ymod n]; Null):

Clearly, Iy is a closed interval, and Content(r; Endy; A[y mod n])= Null) by the induc-
tion hypothesis on property (b). Since by Claim 5.1 Endy→LLp(curr index;
[x − 1; advance]), it follows by the speci�cation of the Store-conditional operation,
that SCq(A[y mod n]; Null) should have failed, a contradiction.
(b) We show that (1) during Ix no processor ever writes in A[x mod n] a value

that di�ers from Null, and (2) if Ix is a closed interval there is some processor which
updates A[x mod n] to Null during Ix. To prove (1), assume by way of contradiction
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that some processor writes a non-Null value in A[x mod n] during Ix. Since by the
algorithm the only processor which may write into A[x mod n] a value which di�ers
from Null is processor o= x mod n, o has executed (lines 2, 4 and 8):

Ro(A[o]; Null)→ Ro(curr index; curr index valuemod n �= o

∨curr index state �= fill)→ Wo(A[o]; V ′)

for some view V ′. Since we assume that Wo(A[o]; V ′) occurs during Ix and since by
Property (a), at Startx, A[x mod n] �= Null we may deduce that

Startx → Ro(A[o]; Null)

→ Ro(curr index; curr index:valuemod n �= o

∨curr index:state �= fill)

→Wo(A[o]; V ′)→ Endx:

However, by Claim 5.1 and by De�nition 5.2 during Ix, curr index= [x; fill] and
therefore Ro(curr index; curr index:value mod n �= o∨ curr index:state �= fill) cannot
occur – a contradiction. To prove part (2), let u be the processor that performed
SC(curr index; [x; advance]). By Claim 5.1 and by the algorithm (lines 10 and 15), u
executed:

Startx → LLu(curr index; [x; fill])→ Ru(A[xmod n]; Null)

→ SCu(curr index; [x; advance]):

By this equation and since by property (a) at Startx, A[x mod n] �= Null, the claim
holds.

De�nition 5.4. An interval Ix during which A[x mod n] changes to Null; is a com-
pleted interval.

Clearly, by Lemma 5.4 any closed interval is a completed interval.

De�nition 5.5. For every completed interval Ix, we denote by Donex the event in Ix,
in which by the previous lemma, A[x mod n] changes to Null. For a given execution
r and a processor o, we denote all the intervals Ix s.t. x mod n= o as o’s intervals. We
also denote all the write events performed by o during the calls to procedure Init as
o’s initialization events.

Clearly Donex→End x, since by Lemma 5.4 A[x mod n] changes to Null during Ix.

Lemma 5.5. Let r be an execution. If e is an event in r of the form SC(A[o]; Null);
then e is contained in one of o’s intervals.
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Proof. Consider p, the processor that performed e. By the algorithm p executed (lines
10, 32 and 33):

LLp(curr index; [x; fill])→ LLp(A[xmod n]; A[xmod n] �= Null)

→ Rp(curr index; [x; fill])→ e;

where x mod n= o. By Claim 5.1 Startx → Rp(curr index; [x; fill]). Ix is either
open, in which case it extends to the end of the execution, or it is closed, and
then by Lemma 5.4, at End x A[x mod n]= Null. It follows that e→End x, otherwise
SC(A[o]; Null) would have failed.

Lemma 5.6. Given an execution r and a processor o; no initialization event of o is
contained in any of o’s intervals.

Proof. Assume by way of contradiction that some initialization event e of processor o
is contained in one of o’s intervals Ix. Since the Init procedure is called only at line
7 of the algorithm, o executed (lines 2–8):

Ro(A[o]; Null)→ Ro(curr index; curr index:valuemodn �= o

∨curr index:state �= fill)→ e:

By the assumption Startx→ e. Since by the de�nition of o’s intervals x mod n= o, and
since only processor o may write non-Null values into A[o] (line 8), by the �rst part
of Lemma 5.4, Startx→Ro(A[o]; Null). In such case, by Claim 5.1 and De�nition 5.2,

Ro(curr index; curr index:valuemod n �= o ∨ curr index:state �= fill)

may occur only after Endx, a contradiction.

Following Lemma 5.4, for every interval Ix:

De�nition 5.6. Let Ix’s view be de�ned to be the only non-Null value which was in
A[x mod n] during Ix.

De�nition 5.7. Since by the algorithm (lines 6–8), A[o] contains either 2o or 2o+ 1
and since only o’s initialization events may write to view[V].version, by Lemma
5.6 the value contained in view[V].version where V (Ix’s view), remains unchanged
during Ix. This value is Ix’s version and we denote it as verx.

De�nition 5.8. We say that a processor executing Help fill operates on view V
with version ver if the parameter x passed to the Help fill call contains =V and
the value read view[V].version at line 22 is equal to ver.
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For every interval Ix, we say that a processor p, executing lines 24–35 in Help fill

is helping Ix if the index

parameter passed to Help fill call contains [x; fill].
All the events performed by processors while helping Ix are the helping events of

Ix.

Lemma 5.7. Every processor helping Ix operates on Ix’s view with version verx.

Proof. Every helping processor p of Ix performed the following sequence of operations
during the Scan (lines 10 and 11) and Help fill (lines 22 and 23):

LLp(curr index; [x; fill])→ Rp(A[xmod n]; V )

→ Rp(views[V ]:version; ver)

→ Rp(curr index; [x; fill]);

for some version ver and view V �= Null. By Claim 5.1 this whole sequence occurred
within Ix. Therefore, by Lemma 5.4 and De�nitions 5.7 and 5.8, V and ver are Ix’s
view and version, respectively.

In the next lemma we show that every completed interval has at least one processor
helping it.

Lemma 5.8. Given a completed interval Ix; let p be the processor that executed
Donex. Then p helps Ix and Donex is one of Ix’s helping events.

Proof. By the algorithm, p executed (lines 10, 11, 32 and 33)

Rp(curr index; [y; fill])→ Rp(A[ymod n]; V )

→ LLp(A[ymod n]; A[ymod n] �= Null)

→ Rp(curr index; [y; fill])

→ SCp(A[ymod n]; Null)

for some V �= Null where y mod n= x mod n. By Lemma 5:1, y6x. If y ¡ x then
Iy must be a closed interval and by Lemma 5.4 at SC(curr index; [y; advance]),
A[y mod n]= Null and SCp(A[y mod n]; Null) must have failed. Therefore we may
deduce that y= x.

De�nition 5.9. A virtual �ll execution on a view V is a sequence of the form

LLinit(curr seq ; seq)→ SCinit
′
(curr seq ; seq+ 1)

→ coordinated fill(V )
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for some value seq, where coordinated fill(V )= {s0; : : : ; sn−1}, and where each si is
a sequence of events of one of the forms

Rki(memory[i]:high; vali)→ LLki(views[V ]:regs[i]; Null)

→ SCki(views[V ]:regs[i]; vali:value);

where vali:seq¡seq+ 1 or

Rki(memory[i]:high; high)→ Rki(memory[i]:low; vali)

→ LLki(views[V ]:regs[i]; Null)

→ SCki(views[V ]:regs[i]; vali:value);

where high:seq= seq+1. Denote the vector val0:value; val1:value; : : : valn−1:value as the
result of the virtual �ll execution. Denote init, init′ and k0 : : : kn−1 as the participating
processors of the virtual �ll execution.

De�nition 5.10. Given a completed interval Ix, let SeqAgreex be the �rst helping event
of Ix in the execution, that was generated by the execution of line 25 in the Help fill

procedure. Let NewSeqx be the �rst helping event of Ix in the execution, that was
generated by the execution of line 26 in the Help fill procedure. From this de�nition
and by Lemma 5.8, such events exist and

Startx → SeqAgreex → NewSeqx → Donex:

Notice that in the above de�nition we use the notation SCinit
′
even though it may

be the same process init that performed the operation. We did this in order to avoid
the need to prove that the same processor performed both operations.
We now proceed to show that every completed interval contains a virtual �ll exe-

cution.

Lemma 5.9. For every execution r; if Ix is a completed interval contained in r and
V is Ix’s view; then the following properties hold:
(a) Content(r;Startx; l)= Null for every location l in views[V].regs or views[V]:

sequence.
(b) Content(r;SeqAgreex; views[V ]:sequence)=Content(r;Startx; curr seq)+1 and

no helping event of Ix updates views[V].sequence after SeqAgreex.
(c) Content(r;NewSeqx; curr seq)=Content(r;Startx; curr seq) + 1 and none of

the helping events of Ix update curr seq after NewSeqx.
(d) Content(r;Donex; views[V].regs[i]) �= Null for all i=0; : : : ; n−1; and no help-

ing event of Ix updates views[V ]:regs[i] after Done.

At this point we remind the reader that an execution may contain at most one open
interval, and that this interval extends up to the end of the execution.
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Proof. By induction on x. Assume that properties (a)–(d) are satis�ed for all the
intervals Iy y ¡ x and let us show that they hold for Ix:

Proof. (a) By Lemma 5.4 and De�nition 5.6, Content(r; Startx; A[x mod n])=V . Let
o= x mod n. By the algorithm, processor o initialized all the �elds in views[V] before
writing V in A[o mod n]. By Lemma 5.6 the initialization events did not occur during
any of o’s intervals. Since by the induction hypothesis, the helping events of previous
intervals do not update the views outside the intervals, and since views[V].regs can
be modi�ed only by helping or initialization events, views[V] remains unchanged until
Startx.
(b) Consider processor p which executed SeqAgreex. By the algorithm, p either read

views[V].sequence as �= Null or tried to update it. However, since by property (a)
at Startx views[V ]:sequence= Null, and since by the induction hypothesis it will re-
main so until one of the helping events of Ix updates it, there is one helping processor of
Ix that executed LL(views[V ]:sequence; Null)→R(curr seq ; seq)→ SC(views
[V].sequence; seq + 1) before SeqAgreex. By the induction hypothesis, curr seq

is updated only by the helping events of Ix during Ix, and therefore it will remain
unchanged at least until SeqAgreex. Therefore,

Content(r; SeqAgreex; views[V ]:sequence) = Content(r; Startx; curr seq) + 1:

Assume by way of contradiction that some helping event e of Ix updated views

[V ].sequence after SeqAgreex. By the algorithm the processor q that performed e
executed:

LLq(views[V ]:sequence; Null)→ Rq(views[V ]:version; ver)

→ SCq(views[V ]:sequence; ∗);
where by Lemma 5.7, ver=verx. Clearly SeqAgreex→LL(views[V]:sequence; Null),
otherwise SC(views[V ]:sequence; ∗) would have failed by the �rst part of prop-
erty (b). That means, that view[V].sequence was reinitialized by o= x mod n after
SeqAgreex. By the algorithm, o also incremented views[V ]. version before initializing
views[V mbox]:sequence. In that case Rq(views[V]. version; verx) could not have
occurred, a contradiction.
(c) We �rst show that one of the helping events updated curr seq before NewSeqx.

Let p′ be the processor that executed NewSeqx. Assume that p
′ did not update

curr seq before NewSeqx. By the algorithm (line 25 in the Help fill procedure) this
may happen for one of the three following reasons: (1) p′ read a value in curr seq

that di�ered from the value it has read in views[V ].sequence minus one, or (2) p′

read a value in views[V].version that di�ers from the content of its private variable
version, or (3) p′ failed in the SC(curr seq ; seq) operation.
Case (1): By property (b), views[V].sequence remained unchanged from Seq

Agreex until at least Donex. Therefore curr seq was updated after SeqAgreex. By the
induction hypothesis, during Ix curr seq can be updated only by Ix’s helping events.
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Case (2): Could not happen since p′ is the processor that executed NewSeqx, and
since by Lemma 5.6 the version �eld stays unchanged during intervals.
Case (3): If the Store-conditional operation failed that means that curr seq was

updated following the Load-linked operation on curr seq , and by the induction hy-
pothesis, curr seq could be updated only by one of the helping events of Ix.
Let q be the processor that performed the helping event that updated curr seq while

according to the algorithm, q performed R(views[V ]:sequence; seq)→ SC(curr seq ;
seq), after SeqAgreex and before NewSeqx. Therefore, by the previous property Content
(r;NewSeqx; curr seq)=Content(r;Startx; curr seq) + 1.
Assume that some processor q′ while helping Ix updated curr seq after NewSeqx.

Processor q′ must have executed

R(views[V ]:sequence; seq′)→ LL(curr seq ; seq′ − 1)

→ R(views[V ]:version; verx)

→ SC(curr seq ; seq′):

By Claim 5.2 this could have happened only if V was reinitialized and reused after
NewSeqx. However in that case views[V ]:version must have been incremented and
we get a contradiction since R(views[V ]:version; verx) could not have occured.
(d) Consider p′′, the processor that executed Donex. By the algorithm, p′′ has either

read views[V ].regs[i] as �= Null or tried to update it. However, since by property (a)
at Startx, views[V ].regs[i] = Null, and since by the induction hypothesis it remained
so until one of the helping events of Ix updated it, there is a helping event of Ix that
updated views[V ]:regs[i] before Donex.
The proof that none of the helping events of Ix will update views[V ]:regs[i] from

this point on continues as for property (b) above: assume by way of contradiction
that some processor q helping Ix updated views[V ]:reg[i] for some 0 �= i �= n− 1 after
Donex. By the algorithm q executed:

LLq(views[V ]:reg[i]; Null)→ Rq(views[V ]:version; ver)

→ SCq(views[V ]:reg[i]; v)

for some value v where by Lemma 5.7, ver= verx. Clearly Donex→LL(views[V ]:reg
[i]; Null), otherwise SC(views[V ]:reg[i]; v) would have failed by the �rst part of
property (d). That means, that view[V ]:reg[i] was reinitialized by o= x mod n after
Donex. By the algorithm, o also incremented views[V ]:version before initializing
views[V ]:sequence. In that case Rq(views[V ]:version; verx) could not have occurred,
a contradiction.

Corollary 5.10. Given an execution r and an event e in r of the form SC(l; val)
where l is one of the �elds in view[V].regs or view[V].sequence for some view
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V; or curr seq then if e is contained in some interval Ix; e is one of the helping
events of Ix.

Note that we do not care about the case where e is not contained in an interval
since as we will see later, in this case it cannot be included in the view returned by
a scan.

Proof. According to the algorithm a processor may perform e only while helping some
interval Iy (lines 24, 25, 30 and 31), where [y; fill] is the value read by the processor
in line 10 of the algorithm. If y �= x, then by Claim 5.1 y¡x and by Lemma 5.9(d),
we have a contradiction. Therefore x=y and by the De�nition 5.8, e is a helping event
of Ix.

Corollary 5.11. Given a completed interval Ix; curr seq ; views[V].sequence and
all the �elds of views[V].reg where V is Ix’s view; are updated during Ix exactly
once and by the helping events of Ix.

Proof. According to Corollary 5.10 we may assume that only helping events of Ix
update those �elds during Ix. By Lemma 5.9(a), (b) and (c), views[V].sequence
and all the �elds of views[V].reg change from a Null to a non-Null value during
Ix. By the algorithm (lines 24, 25, 28, and 29) the transitions of the values stored in
views[V].sequence and all the �elds of views[V].reg are of the form Null to
non-Null. Since by Lemma 5.6, those �elds could not be initialized during Ix, they
will be updated exactly once. According to Lemma 5.9(c), curr seq is updated at
least once during Ix. Since by the algorithm (line 25) all changes on curr seq are of
the form x to x + 1, it follows that curr seq will be updated exactly once.

Lemma 5.12. Every completed interval Ix contains exactly one virtual �ll execution
on Ix’s view.

Proof. Given a completed interval Ix, let V be Ix’s view. By Corollary 5.11 curr seq ,
views[V].sequence and all the �elds of views[V].reg, are updated during Ix ex-
actly once and by the helping events of Ix. According to De�nition 5.9, we construct a
virtual �ll execution in the following way: choose init to be the processor that while
helping Ix updated views[V].sequence. Choose init′ to be the processor that while
helping Ix updated curr seq. Clearly by Lemma 5.9(b) and (c), init and init′ per-
formed LLinit(curr seq ; seq) and SCinit

′
(curr seq ; seq+ 1) for some value seq, respec-

tively. Now, for every i=0 : : : n− 1, choose ki to be the processor that while helping
Ix updated views[V].regs[i]. By Lemma 5.9 all those processors read seq + 1 in
views[V].sequence while executing line 29 in the algorithm. For that reason and
according to lines 29–31 in the algorithm, for every i=0; : : : ; n− 1; ki has performed

Rki(memory[i]:high; vali)→ LLki(views[V ]:regs[i]; Null)

→ SCki(views[V ]:regs[i]; vali:value);
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where vali:seq¡seq+ 1 or

Rki(memory[i]:high; high)→ Rki(memory[i]:low; vali)

→ LLki(views[V ]:regs[i]; Null)

→ SCki(views[V ]:regs[i]; vali:value);

where high:seq= seq+1. Therefore Ix contains at least one virtual �ll execution. Now,
by Corollary 5.10, during Ix, any SCp(l; val) event where l is one of the sequence

or reg �elds of a view, must be one of the helping events of Ix. Consequently, by
Lemma 5.7, any such event operates on V . By Corollary 5.11, Ix contains at least one
virtual �ll execution.

De�nition 5.11. Given a completed interval Ix we denote the virtual �ll execution that
occurred during Ix as VF x.

Corollary 5.13. Given a completed interval Ix, let V be Ix’s view and let v0; v1; : : : ; vn−1
be the results of VF x (see De�nition 5:9); then for every 06i6n− 1;

Content(r; Donex; views[V ]:regs[i]) = vi:

Proof. Follows directly from the construction of VF x in Lemmas 5.12, 5.9 and Corol-
lary 5.10.

As all the intervals during the execution are totally ordered by →, so are the virtual
�lling executions.

De�nition 5.12. Given a sequence of events S, we denote by OPS(var,val) the event
(assuming that it exists and that it is unique) of the form OP(var,val) that occurs in S.

For example, for a virtual �ll execution VF x, SCVF x (curr seq ; ∗) represents the
SC(curr seq ; ∗) event contained in VFx. We now proceed to prove that our algorithm
meets property P1 (see Section 2.1). First, we show that there exists a linearization
order between the update sequences and the virtual �ll sequences. Informally, an update
operation will be linearized before the �rst virtual �ll which “sees” this update.

De�nition 5.13. The linearization order of update and virtual �ll sequences denoted
by (⇒) abides by the following rules:
1. VFx⇒VFx′ i� VF x→VF x′ .
2. Ui⇒VFx i�

RUi(curr seq ; ∗)→ SCVF x (curr seq ; ∗)
and

WUi(memory[i]:high; ∗)→ RVFx(memory[i]:high; ∗):
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3. Ui⇒Uj i�

RUi(curr seq ; ∗)→ RUj (curr seq ; ∗)
and there is no VFx, such that

Uj → VFx and VFx → Ui:

Lemma 5.14. The linearization order (⇒) between update and virtual �ll sequences
is consistent with the real time order →.

Proof. We must show that all the following hold:
1. If VF x→VF x′ then VFx⇒VFx′ .
2. If Ui→VF x then Ui⇒VFx.
3. If VF x→Ui then VF x⇒Ui.
4. If Ui→Uj then Ui⇒Uj.

Cases 1–3 follow immediately from De�nition 5.13. To prove Case 4, assume by way
of contradiction that for two updates Ui and Uj; U i→Uj but Uj⇒Ui. By De�nition
5.13, this may happen only if there is some VFx such that Uj⇒VFx⇒Ui. In that case,
according to the same de�nition Uj⇒VFx implies that RUj (curr seq ; ∗)→ SCVF x
(curr seq ; ∗). Since, by the hypothesis, Ui→Uj, it follows that RUi(curr seq ; ∗)→
RUj (curr seq ; ∗) and therefore RUi(curr seq ; ∗)→ SCVF x (curr seq ; ∗). Therefore,
since VFx⇒Ui; RVF x (memory[i].high; ∗)→WUi(memory[i].high; ∗). In that case,
SCVF x (curr seq ; ∗)→WUi(memory[i].high; ∗) and therefore SCVF x (curr seq ; ∗)
→RUj (curr seq ; ∗) and consequently VFx⇒Uj which is a contradiction.

Lemma 5.15. Assume that p is helping Ix; then while helping Ix; p executes line 34
only if Ix is a completed interval and only after Donex.

Proof. Assume by way of contradiction that p executes line 34 while helping Ix and
either Ix is an interval that is not completed or p executes line 34 before Donex. In
both cases, p reached line 34 in Help fill without updating A[x mod n] to Null.
By Lemma 5.7, this may happen only if while executing lines 32 and 33, p has either
(1) read a value in A[x mod n] that di�ers from Ix’s view, or (2) read a value in
curr index that di�ers from [x, fill], or (3) failed in the SCp(A[x mod n]; Null).
By line 10 of the algorithm for a processor helping an interval to execute Help fill

with parameter index [x, fill], it must have read in line 10 the value of [x, fill]
into curr index. By Claim 5.1, p may read a value in curr index that di�ers from
[x, fill] only after Endx, and consequently after Donex. This precludes Case (2).
By Lemma 5.4, during Ix A[x mod n] contains one and only one value that di�ers
from Null. Therefore, if p has read some value di�erent from Ix’s view, the value
read by p must be Null, implying case (1) cannot hold. Therefore, p failed to update
A[x mod n] in the SCp(A[x mod n]; Null) operation. However, this may occur only
if the content of A[x mod n] was changed before SCp(A[x mod n]; Null). Since by
Lemma 5.4, A[x mod n] was changed to Null, we have a contradiction.
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Lemma 5.16. The value returned by a scan operation is the result of a virtual �ll
which occurs within the scan execution interval.

Proof. Assume that processor p performed a Scan(view[0 : : : n−1]) operation. By the
algorithm, p returned either (1) the contents of one of its views (line 9 in the Scan

procedure) or (2) a copy of a view it helped to �ll (line 14 in the Scan procedure).
We will show that in both cases the claim holds.
Case (1): Processor p must have executed

Rp(A[p]; Null)→ Wp(A[p]; V )→ Rp(A[p]; Null);

where V is one of p’s views. In that case, there is an event e = SC(A[p]; Null), such
that W (A[p]; V )→ e→Rp(A[p]; Null). By Lemma 5.5, e occurred within one of p’s
intervals, let us say Ix, which is obviously a completed interval. In that case, since
only p writes non-Null values into A[p], by Lemma 5.4 at Startx, A[p] �= Null, and
therefore W (A[p]; V )→Startx→Donex→R(A[p]; Null) and V is Ix’s view. Finally,
by Lemma 5.9, at Donex, views[V] contained the result of VF x. Since p is the owner
of the view and only p may change non-Null values, the view will remain unchanged
between Donex and p’s read, implying the claim.
Case (2): By the algorithm (lines 34 and 35 in procedure Help fill) this situation

occurred after p helped two intervals, say Ix and Ix′ . By Lemma 5.15, both intervals are
completed and p started to collect the �lling result (line 35) after Donex and Donex′ ,
respectively. Since at Donex A[x mod n] = Null and since p must have performed
R(A[x mod n] �= Null) before starting to help Ix′ we may conclude that x �= x′. There-
fore, p helped two di�erent intervals. It follows from the sequence of events in the
construction of a virtual �ll in the proof of Lemma 5.12, that VF x′ occurred before
Donex′ and therefore VF x′ occurred within the scan interval. By Lemma 5.7, processor
p operated on Ix′ ’s view with Ix′ ’s version value.
Assume by way of contradiction, that the result of VF x′ di�ers from the vector col-

lected by p. According to Lemma 5.15 and Corollary 5.13, this may happen only if one
of the locations in views[V].regs was updated after Donex and before p read it. In
that case, by Corollary 5.10 there is some interval I

′′
x , where x

′′
mod n= x′ mod n

and I ′x and I
′′
x have the same view. Now, notice that processor o= x′mod n �rst

increases the version �eld before reinitializing and reusing a view, and p executed
Rp(views[V].version; verx) after copying views[V].regs. It follows that by the
algorithm p should have returned a FAIL value and could not have returned the content
of result – a contradiction.

Let the linearization order of a scan operation with respect to update operations be
that of the virtual �ll execution whose result is returned by the scan. By Lemmas 5.14
and 5.16 it follows that:

Lemma 5.17. The coordinated-collect multi-scanner algorithm meets property (P1).
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We now proceed to prove that our algorithm meets property (P2). Given an execution
r let r′ be the same sequence of events as r, preceded the by the update sequences

U 0(Empty); U 2(Empty) : : : U n−1(Empty):

These operations do not change the shared memory and do not a�ect the local state of
the processors, and r′ is a possible execution of the algorithm. Thus if r′ is linearizable
so is r. We henceforth assume executions have the form r′, with “ghost” sequences at
their beginning. This assumption simpli�es the proof of property (P2) since it ensures
that every scan operation has at least one update operation execution ordered before it.

Lemma 5.18. Let VFx be a virtual �lling operation execution with result view[0 : : :
n− 1]. For every i=0; : : : ; n− 1; if view[i] = x; the last update operation on register
i; U i(val) which is linearized before VF x; satis�es val= x.

Proof. Consider the last Ui(val) operation linearized before VF x and assume by way
of contradiction that val �= view[i]. According to the de�nition of the linearization order
⇒ (see De�nition 5.13)

RUi(curr seq ; seq)→ SCVFx(curr seq ; new)

and

WUi(memory[i]:high; [val; seq])→ RVFx(memory[i]:high; [val
′; seq′]):

Now, if [val′; seq′] = [val; seq], by De�nition 5.9 VF x contains an event SC(views[V ]:
regs[i],val) and consequently view[i] = val, a contradiction. Therefore memory[i].
high must have been updated before RVF x (memory[i]:high; [val

′; seq′]). Consider U ′i

the update operation that wrote [val′; seq′] into memory[i].high. Since we assumed
that Ui is the last update operation linearized before VF x, it follows that VF x⇒U ′i.
According to De�nition 5.13, either U ′i read curr seq before it was updated by VFx,
or U ′i wrote to memory[i].high after VFx read it. Since we assume that U ′i wrote
to memory[i].high before it was read by VF x, U ′i must contain RU ′

i
(curr seq ; new)

and consequently seq′= new. In that case, by De�nition 5.9, VF x contains:

RVFx(memory[i]:high; val
′; seq′)→ RVFx(memory[i]:low; [val

′′; [seq′′])

→ SC(view[V ]:regs[i]; val′′)

implying that the value collected for entry i during VF x was the value stored in i’s
low register. We will show now that [seq′′′; val′′] = [val; seq].
By the code of the Update procedure, U ′i contains

RU ′
i
(curr seq ; new)→ RU ′

i
(memory[i]:high; [val; seq])

→WU ′
i
(memory[i]:low; [val; seq])

→WU ′
i
(memory[i]:high; [val′; new]):
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Since

WU ′
i
(memory[i]:high; [val′; new])→ RVFx(memory[i]:high; [val

′; seq′]);

it follows that

WU ′
i
(memory[i]:low; [val; seq])→ RVFx(memory[i]:high; [val

′; seq′])

→ RVFx(memory[i]:low; [val
′′; seq′′]):

By the Update algorithm, any update operation U ′
i that occurs after U

′i and that
read curr seq before the end of VF x will not modify memory[i].low, and therefore
the claim holds.

From Lemmas 5.16 and 5.18 we have:

Lemma 5.19. The coordinated-collect multi-scanner algorithm meets property (P2).

We now proceed to prove that the coordinated-collect is wait free. We �rst make
a distinction between the various situations that may cause a processor to exit the
Help �ll procedure without being able to return a scan result. We say that a non-
participating failure occurred whenever a processor does not enter the Help fill

procedure after reading curr index (lines 15–18 in Scan procedure), or after it returns
from Help fill with a Fail status before participating in the collect process (line 23
in Help fill). Otherwise, when a processor returns a Fail value from Help fill,
we say that a participating failure has occurred. The reader can easily convince her-
self that every non-participating failure takes O(1) machine instructions, while every
participating failure takes O(n) machine instructions.

Lemma 5.20. During a scan operation; the number of non-participating failures a
processor may su�er from is at most O(n) and the number of participating failures
it may su�er from is at most O(1).

Proof. Assume that some processor p starts to execute Scan. We �rst show that af-
ter O(1) non-participating failures A[p] �= Null. If at the beginning of the execution
A[p] �= Null, then we are done. Thus, assume that at the beginning of the execu-
tion A[p] = Null. By the algorithm (line 4 in Fig. 5) p will not be able to post
a new view in A[p] only if curr index:valuemod n= i and curr index:state= fill

holds. However, by property a in Lemma 5.4, after one non-participating failure, this
condition will not hold anymore at least until A[p] �= Null. Proving the �rst part of
the claim is easy. Every time that a non-participating failure occurs, curr indexis
advanced, and so a processor is ensured that after at most O(n) non-participating fail-
ures curr indexpoints to its entry in A. Therefore, by Lemma 5.4, its entry in A must
contain Null before the next advance of curr index. Consequently, the scanner will
exit and return its own view. Assume now, that a participating failure occurred during
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processor p’s scan operation. Processor p executed:

Rp(curr index; [x; fill])→ Rp(A[x mod n]; V )→ Rp(views[V ]:version; ver)

→ Rp(curr index; [x; fill])

→ Rp(views[V ]:version; views[V ]:version �= ver)

for some values x; ver and some view V . By the algorithm, only processor o= xmod n
may update views[V].version, and that only during the call to init function at line
7. Since every processor proposes its two views alternately (line 6 in the algorithm),
in order to use view V twice o must have executed (lines 2–8):

Ro(A[o]; Null)→Wo(views[V ]:version; ver)→ Wo(A]o]; V )→ Ro(A]o]; Null)

→ Ro(curr index; curr index:valuemod n �= o

∨curr index:state �= fill)

→Wo(views[V ′]:version; ∗)→ Wo(A[o]; V ′)→ Ro(A[o]; Null)

→Wo(views[V ]:version; ver + 1);

where V and V ′ are processor o’s views. Since p must have executed Rp(curr index;
[x; fill])→Rp(A[x mod n]; V )→Rp(curr index; [x; fill]) we may deduce that Rp

(A[x mod n]; V )→Endx. Therefore, the interval between Rp(A[x mod n]; V ) and

Rp(views[V ]:version; views[V ]:version �= verp)

overlaps at least a part of Ix and Ix+n. But since between two virtual �lls on views from
the same announce entry (i.e. same processor) curr index must have been advanced
at least once over the entire announce array, p’s view should have been �lled during
this interval.

The following theorem is a direct corollary from Lemma 5.20.

Theorem 5.21. In the coordinated-collect algorithm an Update operation takes O(1)
machine instructions and a Scan takes O(n) machine instructions.

A similar but simpler proof can establish the correctness of the single-scanner algo-
rithm. On an intuitive level, since there is only a single scanner, by de�nition every
scan operation contains a trivial virtual �ll operation, and all virtual �ll operations
are serialized. Correctness will follow from Lemmas 5.17 and 5.19 by viewing every
Store-conditional as a trivial write operation. Wait-freedom will follow trivially from
the code in Fig. 1. We leave this to the interested reader.
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Corollary 5.22. The single-scanner algorithm of Fig. 1 is a wait-free implementation
of a single-scanner atomic snapshot object.

6. Performance evaluation of snapshot algorithms

We compared a collection of snapshot algorithms on a 64-processor simulated
Alewife cache-coherent distributed-memory machine [5] developed by Agrawal et al.
using the Proteus simulator developed by Brewer et al. [17] 4 . Proteus simulates par-
allel code by multiplexing several parallel threads on a single CPU. Each thread runs
on its own virtual CPU with accompanying local memory, cache and communica-
tions hardware, keeping track of how much time is spent using each component.
In order to facilitate fast simulations, Proteus does not support complete simulation
of the hardware. Instead, operations which are local (i.e. do not interact with the
parallel environment) are executed uninterruptedly on the simulating machine’s CPU
and memory. The amount of time used for local calculations is added to the time
spent performing (simulated) globally visible operations to derive each thread’s notion
of the current time. Proteus makes sure a thread can only see global events within
the scope of its local time. Since actual machine instructions are counted for lo-
cal operations, the quality of the code used to implement algorithms under Proteus
can play an important part in determining the running time of the entire application.
Though the simulator allows the user to determine the relative weight of local op-
erations, we used the simulator’s default costs which are derived from the Alewife
machine.
In our simulations each processor had a cache with 2048 lines of 8 bytes and a mem-

ory access cost of 4 cycles. The cost of switching or wiring in the Alewife architecture
was 1 cycle=packet. The current version of Proteus does not support Load-linked=Store-
conditional instructions. Instead we used a slightly modi�ed version that supports a 64-
bit Compare-and-Swap operation where 32 bits serve as a time stamp. Naturally, this
operation is less e�cient than the theoretically accepted Load-linked=Store-conditional
[25] (which we could have built directly into Proteus), since a failing Compare-and-
Swap will cost a memory access while a failing Store-conditional will not. However,
we believe the 64-bit Compare-and-Swap is closer to the real world than the theoretical
Load-linked=Store-conditional since existing implementations of Load-linked=Store-
conditional as on Alpha [19] or PowerPC [28] do not allow shared memory locations
to be accessed between the Load-linked and the Store-conditional operations. On ex-
isting machines, the 64 bit compare-and-swap may be implemented by using a 64 bit
Load-linked=Store-conditional as on the Alpha [33].
For each scan and update implementation we measured:
Throughput: The total number of completed operations by all the processors in the

system running for 106 cycles.

4 Version 3.00, dated February 18, 1993.
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SCANNER:
while (current_time < MAX_TIME) {

repeat random(scan_wait) times
/* do nothing */ ;

scan();
}

UPDATER:
while (current_time < MAX_TIME) {

repeat random(update_wait) times
/* do nothing */ ;

update(val);
}

Fig. 7. Benchmarks.

Latency: The average amount of time between the start and the end of an operation
for all the processors in the system.
We present the results of evaluating the algorithms in executions where each

scanner=updater processor executes scan=update operations repeatedly (Fig. 7). Between
any two operations, a processor waits for an amount of time chosen uniformly at
random in the interval 0 to scan wait for a scanner, and 0 to update wait for an
updater. We used the following synthetic benchmarks:
Checkpoint: The system has only one processor which executes scan operations

(scanner) and the other processors execute update operations (updaters). This bench-
mark models the behavior of a “checkpoint” mechanism for collecting consistent back-
ups of a multiprocessor system or for concurrent debugging. The results we present
were tested with MAX TIME equal to 106 cycles, and scan wait and update wait

equal to 103 cycles.
Concurrent data structure: The system has half of the processors execute scans

and the other execute updates. Though this is a somewhat arbitrary choice, we feel
it is representative of possible use of snapshots for concurrent-data-structure design,
where multiple processors update or request an atomic view of the state of the shared
object. The presented results are algorithms tested with MAX TIME equal to 106 cycles,
and scan wait and update wait equal to 103 cycles. We ran several other sets of
tests, among them ones with update wait equal to 100 cycles in order to simulate a
“heavy load” of updaters but choose not to present them since we noted no signi�cant
di�erences in the relative performance of the tested algorithms.

6.1. The algorithms

In the checkpoint benchmark, we tested the single-scanner algorithm (denoted Sin-
gle in the graphs), as described in Section 3. In the concurrent data structure bench-
mark we tested the coordinated-collect multi-scanner algorithm (denoted as
coordinated).
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We compared our algorithms, with the following previously known snapshot algo-
rithms:
A+: The unbounded sequence number version of algorithm of the Afek et al. [2],

which has O(n2) scan and update complexity, and uses O(n)-valued registers. Each
register in this version consists of data, seq, and n-valued view components. This
algorithm has a bounded space version but we use the unbounded sequence number
one for simplicity and to improve performance. Since we could not implement O(n)
values registers, and since this algorithm’s �ow control is not dependent on the contents
of the n-valued view component of each register, we did not implement that component
of the register.
AR: The unbounded space version of the sophisticated Attiya and Rachman algorithm

[13], which has O(n log n) scan and update complexity and uses registers holding O(n2)
values simultaneously, was simulated. Each register, which participates in the lattice
agreement procedure, contains n vectors, where each vector represents a view of O(n)
values. The algorithm repeatedly creates a single new view vector using �elds from
two given view vectors. Since the vector elements values are not used by the algorithm,
we used a bit for each value instead of the complete n-valued vector.
CD: The unbounded space version of the e�cient Chandra and Dwork [18] algo-

rithm, which has a scan complexity of O(n) and update complexity of O(n + C(n)),
where C(n) is the consensus complexity. We used a Load-linked=Store-conditional
primitive to implement the consensus primitive achieving scan and update complexity
of O(n). However, this algorithm uses registers holding O(n) value simultaneously and
atomic writes to these multiple locations. For each scanner the algorithm has new and
old versions of an O(n) value view register and an O(1) value time-stamp. The control
�ow of the algorithm is dependent only on the values of the new and old time-stamp
components, therefore we included only these components in our implementation’s reg-
isters, without making the algorithm pay for the added O(n) values that must be stored
in other registers.
Lock-free: The simple algorithm in which a scanner repeatedly tries to perform a

successful double collect, during which no change to memory occurred, and an updater
which writes to its register in a straightforward manner. See details in [2].
Block-update: The scanner uses a multi-valued semaphore to “block” any updaters

from performing a write to any of the registers, while it collects their values. The
updaters use random backo� to control contention while “waiting” for the semaphore
to be cleared.
Our implementations of AR and CD use unbounded space (unbounded in the strong

sense, i.e an unbounded number of new register locations), and therefore their perfor-
mance is guaranteed to be better than any of appropriate bounded implementation of
the algorithms. Our benchmarks also make the realistic assumption that the implemen-
tation of registers containing �(k) values requires at least k local steps for each read
operation. We avoid making this assumption for write operations, since a write could
involve a change to only few of the n locations written. In summary, an n-valued read
costs n local operations while an n-valued write costs only O(1) local operations. As



196 Y. Riany et al. / Theoretical Computer Science 269 (2001) 163–201

Fig. 8. Checkpoint benchmark throughput (Log scale).

will be seen in Section 6.4, we also performed tests under the unrealistic assumption
of availability of an O(1) cost atomic O(n)-valued read, with no signi�cant changes
in our conclusions.

6.2. Checkpoint benchmark results

As expected, the checkpoint benchmark results (Fig. 8) show that the block-update
and lock-free algorithms are at extreme ends with respect to their scan and update
throughput. 5

The block-update algorithm has the highest scan throughput. Most likely the main
reason for this is that its scan operations are performed without any ‘interference’ from
the updaters (interference is in terms of interconnect contention and cache misses that
are known phenomena when running algorithms that access shared memory modules
[22]). It has very low update throughput, since the updates can be executed only
between scan operations. Nevertheless, there is a performance increase due to having
more concurrent update attempts.
The lock-free algorithm has very poor scan throughput because of repeated double

collect failures that increase with the number of updaters. On the other hand, its update
throughput scales linearly with the number of updaters. This is clearly due to the small
number of operations necessary to complete an update.
In the A+ algorithm, the throughput of the scan and update operations degrade

similarly as the number of processors grows. Failures of its double collects increase

5 The scan and update latency results are not presented since they are almost exactly inverse to the scan
and update throughput.
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with the number of updaters, increasing both its scan and update latency, (recall that its
update procedure includes a scan). The AR algorithm, though asymptotically superior
to A+, performs substantially worse than the A+ algorithm because of the constant
overhead involved in each operation which is independent of the actual number of
processors and also due to the additional cost of reading O(n2)-valued registers. The AR
algorithm does not manage to complete a single scan when the number of participating
processes is greater than 20. Its update throughput scales poorly for the same reasons
as in A+.
The CD algorithm has low update throughput which degrades moderately as the

number of updaters grows, due to the O(n) local work executed in each update op-
eration and the additional cost of reading O(n) valued registers. Its scan has good
throughput for small numbers, but scales poorly since the increase in the number of
updaters adds signi�cantly to the network contention.
The single-scanner algorithm’s update throughput is nearly the same as that of the

lock-free’s due to the small number (four) of operations constituting an update. It also
has a surprisingly high scan throughput, close to that of the non-interfering scan of the
block-update algorithm, since its scan collects the updated values in a straightforward
read sequence with no additional costs.
In conclusion, the key to an e�ective algorithm under the checkpoint benchmark is

simplicity. Minimized coordination and dependency on information gathered and passed
from one processor to another eliminates unnecessary computation and results in small
constants and good performance.

6.3. Concurrent data structure benchmark results

The results of the concurrent data structure benchmark, appear in Fig. 9. For most of
the tested algorithms these results have much in common with those of the checkpoint
benchmark. We will therefore concentrate on the major di�erences.
The block-update algorithm does not seem to succeed in completing an update for

concurrency levels of more than 10 processors due to the increased number of scanners
which disable the updaters’ progress. The scan throughput of the lock-free algorithm
degrades rapidly due to the increased failure of the double collects as the number of
updaters increases. The CD algorithm starts with a very good scan throughput and
some scaling but as the updaters’ ‘interference’ grows it degrades substantially.
The coordinated-collect algorithm maintains consistently high scan throughput and

linear scaling of scan latency (the size of the view collected increases linearly with
the number of processes). Unlike in the case of the checkpoint benchmark, there is an
improved throughput since in many cases the returned result of several scanners is the
same view.

6.4. Some �nal notes

We repeated our exact experiments without the added realistic cost of a multi-valued
read, in an attempt to �nd out the e�ect of assuming the existence of a powerful
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Fig. 9. Concurrent data structure results (Log scale).

multi-read operation on our experimental results. In our tests the CD algorithm [18]
showed no signi�cant improvement, most likely because the algorithm makes intensive
use of atomically writing n values but little use of the expensive atomic n-value read. As
can be seen when comparing the performance results for the checkpoint benchmark
in Figs. 8 and 10, the A+ and the AR algorithms have higher scan and update through-
put and less degradation when the n operation overhead is eliminated. However, this
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Fig. 10. Checkpoint throughput results – no additional cost (Log scale).

improvement does not signi�cantly a�ect their performance with respect to the single-
scanner algorithm, which remains substantially better in terms of scan and update
throughput. For the concurrent data structure benchmark in Figs. 9 and 11, the A+
and AR algorithms show improved performance. The scan throughput of the A+ al-
gorithm became better than the coordinated algorithm for small numbers of processors
because of the structural overhead of the coordinated algorithm is relatively high, yet
degrades as the number of processors grow. A similar improvement in the cost of up-
dates is not su�cient to overcome the update throughput of the coordinated algorithm.
In conclusion, the cost of register operations is not a major performance factor in

snapshot algorithms. The dominating factor with respect to algorithmic performance
is the amount of cooperation among processors in collecting returned views, and the
overhead associated with doing so.

7. Conclusions

This paper hopes to start researchers on the road to creating snapshot algorithms
that will have practical appeal. Though the asymptotic complexity of our algorithms
is optimal, there are quite a few directions in which their actual performance can be
enhanced.
Enhancements would involve eliminating some of the constant overheads and making

the algorithm’s complexity more closely dependent on the actual number of scanners
and updaters accessing it at a given time. Finally, the current trend towards running
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Fig. 11. Concurrent data structure results – no additional cost (Log scale).

multiprocessors applications in message passing architectures (farms of workstations)
raises the interesting question of an e�cient wait-free message passing implementation
of an atomic snapshot object.
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