
On the Space Complexity of Randomized

Synchronization

Faith Fich Maurice Herlihy

Computer Science Department Digital Equipment Corporation

University of TOrODtO Cambridge Research Lab

Nir Shavit

Computer Science Department

Tel-Aviv University

Abstract

The “wait-free hierarchy” defines a deterministic

computability separation among multiprocessor syn-

chronization primitives based on the values of n for

which they are able to solve n-process consensus. It

has been shown that this separation does not hold in

a randomized setting; that is, even read-wrtte regis-

ters suffice in order to solve n-process consensus for

arbitrarily large n.

In this paper, we propose a separation for random-

ized computation based on the space complexity of so-

lutions to n-process consensus. We present the first-

ever lower bound for randomized wait-free computa-

tion by proving that Q(@) read-write registers are

necessary to solve n-process consensus, even if each

register has unbounded size.

We then use this result to relate the random-

ized complexity of basic multiprocessor synchroniza-

tion primitives such as shared counters, swap regis-

ters, fetcht3add registers, and compare@swap regis-

ters. Viewed collectively, our results imply that there

is a hierarchy based on space complexity for synchro-

nization primitives in randomized computation, and

that its structure differs from that of the determinis-

tic “wait-free hierarchy.”

1 Introduction

Traditionally, the theory of interprocess synchroniza-

tion has centered around the notion of mutual ex-

cluston: ensuring that only one process at a time is

allowed to modify complex shared data objects. As
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a result of the growing realization that unpredictable

delay is an increasingly serious problem in modern

multiprocessor architectures, a new class of wait-free

algorithms have become the focus of both theoretical

and experimental research [2, 7]. An implementation

of a concurrent object is waif-free if

it guarantees that every process will com-

plete an operation within a finite number

of its own steps, independent of the level of

contention and the execution speeds of the

other processes.

Wait-free algorithms provide the additional benefit of

being highly fault-tolerant, since a process can com-

plete an operation even if all n – 1 others fail by halt-

ing.

The “wait-free hierarchy” [11] defines a determin-

istic computability separation among concurrent ob-

jects and multiprocessor synchronization primitives

based on the values of n for which they are able to

solve n-process consensus. For example, it is impossi-

ble to solve n-process consensus using read-write reg-

isters and swap registers, for n > 2. It haa been shown

[1, 8] that this separation does not hold in a random-

ized setting; that is, even read-write registers suffice

to solve n-process consensus. This is a rather fortu-

nate outcome, since it opens the possibility of using

randomization to efficiently implement highly concur-

rent objects without resorting to non-resilient mutual

exclusion based algorithms [10]. However, it raises

the question of evaluating the randomized computa-

tional power of known synchronization primitives.

In this paper, we propose a complexity separation

for randomized computation, based on the space com-

plexity of solutions to n-process consensus. It is a step

towards a theory that will allow designers and pro-

grammers of multiprocessor machines to use mathe-

matical tools to recognize when certain protocols are

impossible, to evaluate the power of alternative syn-

chronization primitives, and to understand the inher-

ent cornplexit y involved in solving a given problem.
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Our main result is a proof that Q(@) read-write

registers are necessary to solve n-process consensus,

even if the size of each register is unbounded. To the

best of our knowledge, this is the first lower bound for

randomized wait-free computation, and among the

few known lower bounds for fault-tolerant distributed

syst ems allowing randomization. Unlike the known

randomized lower bound of Graham and Yao [9] for

byzantine agreement, we derive our bound from the

asynchronous nature of the computation, not from

the byzantine power of the adversary. Our impossi-

bility proof is based on a new method of “cutting”

and “splicing together” interruptible executions, ones

that can be broken into pieces between which execu-

tions involving other processes can be inserted.

We then use this result to relate the randomized

complexity of basic multiprocessor synchronization

primitives such as shared counters, fetch@ add regis-

ters, and cornpare~swap registers. By showing that

a single fetch @add register, which can deterministi-

cally solve 2-process consensus, can solve random-

ized n-process consensus, we are able to separate it

from other deterministic 2-consensus primitives such

as swap, and equate it with a “stronger” primitive

such as compare&swap. Together with results regard-

ing shared counters, our theorems imply that there

is a space complexity based hierarchy for synchro-

nization primitives in randomized computation, and

that its structure differs from that of the determinis-

tic “wait-free hierarchy.”

2 Model

Aspnes and Herlihy [5] give a formal model for ran-

domized asynchronous algorithms, using a simplified

form of the 1/0 automata formalism of Lynch and

Tuttle [15, 14]. Here, we give an informal descrip-

tion, focusing on intuition.

A concurrent system consists of a collection of n

processes that communicate by applying operations

to shared objects. Each process has an additional

operation, called a coin j?ip, that returns a random

value in {O, 1}. Both outcomes are equally likely, and

the out comes of all coin flips are jointly independent.

We make no fairness assumptions about processes. A

process can halt, or display arbitrary variations in

speed. In particular, one process cannot tell whether

another has halted or is just running very slowly.

Objects are data structures in memory. Each ob-

ject has a type, which defines a set of possible val-

ues and a set of primitive operations that provide the

only means to manipulate that object. Each object

has a sequential specification that defines how the ob-

j ect behaves when its operations are invoked one at

a time by a single process. In a concurrent system,

however, an object’s operations can be invoked by

concurrent processes, and it is necessary to give a

meaning to interleaved operation executions. An ob-

ject is linearizabie [12] if each operation appears to

take effect instant aneously at some point between the

operation’s invocation and response. In this paper we

focus primarily on read-write registers, which provide

linearizable read and write operations with the obvi-

ous semantics.

Because all objects considered in this paper are lin-

earizable, each process is viewed as executing a se-

quence of operations (both coin flips and data type

operations). A system executzon (or simply an eze-

cution) is an interleaving of the process executions

for all processes. A system configuration (or configu-

ration) is given by the state of the memory and the

states of the program counters and local variables for

each process.

It is convenient to view a randomized algorithm

as a game. One side, the processes, tries to achieve

agreement, against an adversary scheduler. The pro-

cesses flip coins and apply operations to the shared

objects, and the adversary chooses how these oper-

ations are interleaved. Our adversary is extremely

powerful: it has complete information about the pro-

cesses’ protocols, their internal states, and the state of

the shared memory. The adversary cannot, however,

predict future coin flips. This notion of adversary is

the same as that used by Abrahamson [1], Aspnes and

Herlihy [5], Attiya, Dolev, and Shavit [6], and Saks,

Shavit, and Well [16], and is more powerful than that

of Chor, Israeli, and Li [8].

An implementation of an object is randomized non-

blocking if there is always some non-faulty process

that completes an operation of this object within

a finite expected number of its steps when running

against the adversary scheduler. It is randomized

wait-free if every non-faulty process has this property.

Randomized wait-free implies non-blocking. The ran-

domized non-blocking property permits the adversary

to starve individual processes, but the system as a

whole will make progress, The randomized wait-free

property excludes starvation; any process that con-

tinues to take steps will finish its current operation.

For decision problems (such as consensus, discussed

belowj, where each process has only a finite number of

operations of the object to perform, the randomized

wait-free and non-blocking properties are identical.

A randorntzed n-process binary consensus protocol

is a protocol for n asynchronous processes that com-

municate through a set of shared objects. The pro-

cesses each start with an input value, either O or 1.
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Each process communicates with the others by ap-

plying operations to shared objects. Eventually, each

process decides on an output value and halts. A con-

sensus protocol is required to be:

Consistent: distinct processes never decide on

different values.

Randomized Wait-free: each process decides af-

ter abounded expected number of steps.

Valid the common decision value is the input to

some process.

The first condition guarantees that the protocol

achieves agreement, and the third condition excludes

protocols which achieve it trivially by fixing the out-

come in advance. For brevity, we use randomized con-

sensus to mean n-process binary consensus. A set of

objects solves consensus if there exists a randomized

consensus protocol in which processes communicate

through those objects.

Theorem 2.1 Suppose O(f(n)) instances of object

X solve randomwed consensus and Q(g(n)) instances

of object Y are requtred to solve randomized consen-

sus. Then any randomized non-blocking implementa-

tion of X by Y requires Q(g(n)/f(n)) instances of Y.

Proof: ( outiine) Suppose there exists a random-

ized non-blocking implementation of X using h(n)

instances of Y. Let A denote the randomized consen-

sus protocol using O(~(n)) instances of X. Construct

a new protocol A’ by replacing each instance of X

with a randomized non-blocking implementation us-

ing h(n) instances of Y. The resulting protocol solves

randomized consensus with O(,f(n)h(n)) instances of

Y and therefore h(n) E Q(g(n)/f(n)). ■

3 Lower Bounds

A randomized consensus algorithm is required to

be consistent on every execution. Therefore, to

demonstrate that a randomized consensus algorithm

is faulty, it suffices to exhibit an execution in which

one process decides the value O and another process

decides the value 1. Such an execution is specified by

an adversary’s schedule and a sequence of outcomes

for the coin flips that are performed.

Throughout this section, we use the following no-

tation. The number of shared registers is r. If V is

a subset of these registers, then ~ denotes the subset

of these registers not in V. The sizes of V and ~ are

denoted by v and U, respectively.

A process P is said to be poised at register R if P

will write to R when next allocated a step. A block

write to a set of registers V consists of a sequence of v

consecutive write operations by v different processes

to the v different registers in V. Immediately before

a block write to a set of registers V can occur, there

must be at least one process poised at each register

in V.

We begin by proving a lower bound in the much

simpler situation where all processes are identical. In

other words, if two processes are in the same state,

they perform the same operation on the same regis-

ter when they are next allocated a step and, if the

outcomes of those operations are the same (e.g. the

values of their coin flips or the values that they read),

their resulting states will be the same as one another.

Furthermore, processes with the same input value

will be in the same initial state. Although the lower

bound proof in this restricted setting is considerably

easier than the general case, the overall structure of

both are similar and we feel it provides important

intuition.

One important idea used in the proof is that, when-

ever a process writes a value to a register, it is possi-

ble to leave behind a group of “clones” all poised to

write that value to that register. This is accomplished

by giving the process and its clones the same initial

state and by having the adversary schedule them as

a group. In other words, when one process in the

group is allocated a step, each of the other processes

in the group is immediately allocated a step. They

are also given the same sequence of outcomes for their

local coin flips. Then, up to any desired point in the

computation, the states of these processes remain the

same as one another and they perform exactly the

same sequence of operations.

Another essential idea is that, under certain favor-

able conditions, it is possible to combine an execution

that decides O with an execution that decides 1 to ob-

tain an execution in which both O and 1 are decided.

For example, suppose there is a configuration C in

which there is a set ‘P of processes, one poised at

each of the r registers. Let C’ be the configuration

obtained from C as a result of letting each process

in P take one step. Assume that, from C’, there is

an execution a deciding O which contains only steps

of processes in P and, from C, there is an execution

,8 deciding 1 which contains only steps of processes

not in P. Then the following is an execution from C

that decides both O and 1. First perform ~. Then let

the processes in P perform a block write. Call the

resulting configuration C“. Finally, perform a. See

Figure 1.

Note that the configurations C’ and C“ are indistin-
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Figure 1: Combining Two Executions

guishable to the processes in P. By writing, they have

obliterated all traces of @j so ~ is invisible to them.

The following lemma shows that this kind of com-

bining can be done under the general conditions il-

lustrated in Figure 2, provided there are sufficiently

many processes available. A solo execution is a finite

execution all of whose steps are taken by the same

process.

block

solo !p

Figure 2: Conditions of Lemma 3.1

Lemma 3.1 Consider any configuration C in which

there is a set of v ~ 1 processes p poised at some

set OJ registers V and a disjoint set of w ~ 1 pro-

cesses Q poised at some (not necessarily disjoint) set

of registers W. Suppose that, afler a block write to

V by processes in P, there is a solo execution a by a

process in P that decades O and, symmetrically, afier

a block write to W by processes in Q, there is a solo

execution ~ by a process in Q that decides 1. Then

there is an execution from C that dccidca both O and

1 and uses at most r2 – r + (3v + 3W – V2 – w2)/2

identzcal processes.

Proof: The proof is by induction on u + ~.

First, suppose V G W (which must be the case if

m= o).

If all writes in a are to registers in W, consider

the following execution starting from C. First, pro-

cesses in P block write to V, next m is performed,

and then processes in Q block write to W. Note that

the resulting configuration is indistinguishable to pro-

cesses in Q from the configuration obtained from C

by just performing the write to W. Finally, @ is per-

formed. This execution decides both O and 1 and

uses v + w processes. Since v, w < r, it follows that

v+w~r2— r+ (3v + 3W — V2 — w2)/2.

Otherwise, there is some first point in a at which a

register R $? W is written to. Let C’ be the con-

figuration just before this write occurs, let a’ de-

note that part of a occurring after this write, and

let V’ = VU {R}. Then v’ = v + 1, because R @ W

and V ~ W. During the execution from C to C’,

every register in V is written to at least once. Thus,

if there are sufficiently many processes, a clone can

be left poised at each register in V, ready to re-write

the value it cent ains at C’. These processes, together

with the process poised at R, will form ‘P’. From

C’, writing to R has the same effect on the registers

as performing the block write to V’ by P’. Thus, in

either case, a’ can be performed, deciding the value

O. Furthermore, C and C’ are indistinguishable to

processes in Q. Therefore, starting at C’, if the pro-

cesses in Q block write to W and then /3 is performed,

the value 1 is decided. This is illustrated in Figure

3 By the induction hypothesis, there is an execution

from C’ that decides both O and 1 and uses at most

r2 – r + (3(v + 1) + 3w — (v + 1)2 — w2)/2 processes.

Prepending the execution from C to C’ yields an ex-

ecution from C that decides both O and 1 and uses

(v – 1) additional processes (those in P – P’) for a

total of at most r2 – r + (3v + 3W – V2 – w2)/2.

block

c write write
Ckto R.to V?*---Y~0--~O

~ jl~c~

write

J

to w

t
1

Figure 3: V ~ W and m writes to R @ W

Similarly, if W ~ V, then there is an execution

starting from C that decides both O and 1. Therefore,

suppose that neither V nor W is a subset of the other.

Consider any terminating execution from C that

begins with a block write to U = VU W and continues

with a solo execution y by one of these u processes.

Without loss of generality, suppose -y decides O. This

is illustrated in Figure 4. Let ‘P’ consist of P plus
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a clone of each process in Q which, at C, is poised

at a register in W– V. Since u– 1 ~ v ~ 1, it

follows from the induction hypothesis that there is

an execution from C that decides both O and 1 and

uses at most rz – r+ (3u+3z0– U2 –w2)/2 ~ rz –

r + (3W + 3w — vz — 202)/2 processes. ■

block block
write write to

7

block
----- --- +0

write
to w 1

1
#

Figure 4: V ~ W, W ~ }’, and -y decides O

Lemma 3.2 At most r2 – r + 1 identical processes

can achieve randomized consensus using r read-write

registers.

Proof: Let P and Q be processes with initial values

O and 1, respectively. Let a denote any terminating

solo execution by P and let /3 denote any terminating

solo execution by Q. By validity, CYmust decide O and

/3 must decide 1.

If one of these executions, say a, cent ains no writes,

then the execution consisting of a followed by f? de-

cides both O and 1. Therefore, we may assume that

both a and P contain at least one write.

Let a’ denote the portion of a occurring after the

first write and let V be the singleton set consisting of

the register P first writes to. Define ,E? and W analo-

gously. Let -y be the execution consisting of those op-

erations of cr and /? occurring before their first writes

and let C be the configuration obtained from the ini-

tial configuration by performing -y. If there are at

least r2 – r + 2 processes, it follows by Lemma 3. I

that there is an execution from C that decides both

O and 1. Prep ending this execution by y yields an

execution from the initial configuration that decides

both O and 1. This violates the consistency condition.

■

Next, we show our main result: 0(X) read-write

registers are necessary in order to solve randomized n-

procem binary consensus in a wait-free manner. The

key to the lower bound is the definition of an inter-

ruptible execution. Informally, an interruptible exe-

cution is an execution that can be broken into pieces,

between which executions involving other processes

can be inserted. Each piece of an interruptible exe-

cution begins with a block write to a set of registers.

Note that executions that do not write to registers

outside this set can be inserted immediately before

this piece without affecting it.

Definition 3.1 An execution a starting from config-

uration C is interruptible with initial register set V

and process set P if

● only processes in P take steps in a.

. at C, there are F + 1 processes in P poised at

every register in V,

b a = alcyll,

Q CY’ begins with a block write to V

● cJ contains no writes to registers in ~, and

● if Cl is the configuration obtained from C by ex-

ecuting a’, then either some process has decided

at C’ or cd’ is an interruptible execution starting

from C’ with some initial register set V’ ~ V

and some process set P’ ~ P.

In other words, if an execution a is interruptible

with initial register set V and process set P, then a

can be divided into pieces a = al . . . ~k such that

ai begins with a block write to a set of registers Vt,

all writes in cri are to registers in ~, and V = VI ~

. . . ~ vk. Furthermore, all the steps of a are taken

by processes in P and, after a has been performed,

some process has decided.

Definition 3.2 An interruptible execution a start-

ing from configuration C with initial register set V

and process set P leaves processes for a set of regis-

ters U if, at C, there are at least u processes not in

P poised at every register in V n U. l%thermorej if

a = cJa” and no process has decided a value by the

end of the first piece a’, then a“ leaves processes for

u.

Provided that a configuration C has the necessary

number of processes poised at the specified registers

and there are sufficiently many processes available,

there is an interruptible execution starting from C.

Lemma 3,3 Consider any configuration C in which

there are at least ii+ 1 processes in P poised at every

register in V and at least u processes not in P poised

at every register in V n U. If P contains more than

(r’ – r– v’ +v)/2+u lVn ~1 processes, then there w

an interruptible executton starting from C with initial

register set V and process set P that leaves processes

for U.
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Proofi By induction on ~.

Let Q ~ P be a set of VT processes, u poised at

every register in V. Consider any execution 6 starting

from configuration C with the following properties:

● only processes in P — Q take steps in 6,

● 6 begins with a block write to V

● 6 contains no writes to registers in ~, and

● at the configuration (Y obtained from G by ex-

ecuting 6, either some process in P – Q has de-

cided or all processes in P – Q are poised at

registers in F.

Such an execution may be obtained by performing a

block write to V and then running each process in

P – Q one at a time, until each is poised at a register

in ~ or one of them haa decided.

If, at C’, some process has decided (which must be

the case if u = O), then 6 is an interruptible execu-

tion that satisfies the desired conditions. Therefore

assume that, at Cl, every process in P – Q is poised

at a register in ~.

For every integer i ~ 1, let yi and .zi be the number

of registers in ~ n ~ and ~ n U, respectively, with

at least i processes in ‘P – Q poised at them. Then

Yi ? Yi+l and zi ? z~+l.

Suppose y~ + z.+~ < T – i for all 1 < i s D. In

particular, ~ + zu+~ ~ O, so y~ = zu+~ = O for all

i ~ D. Then

1P- q = ~(yi +Z)

i>l

T- 1 u

= ~(Ya’+4+i)+~zi

i=l i=]

i=l a’=1

= ~(~–1)/2+ti.l~nU\

< U(V–– 1)/2+ IPI – (?-2– r– V2 +v)/2

= /?/– vti=[P-Qj.

This is a contradiction. Therefore, there exists i such

thatl~i~~andyi+zu+i~~– i+l.

Suppose Y ~ ~ 0 ~ and Z ~ ~ n U are sets of

registers such that there are i processes poised at ev-

ery register in Y, there are u + i processes poised at

every register in Z, and IYI + 121 = u – i + 1. Let

V’=V&JY UZ. Thenv’=v+~-i+ 1=~–i+l,

so i = VI + 1. Construct P’ from P by removing u

processes poised at every register in Z. Then, at C’,

there are at least u processes not in P’ poised at every

register in Z = (V’ – V) n U. Since none of the pro-

cesses outside P take any steps in 6, there are at least

u processes not in P and, hence, not in P’ poised at

every register in V n U. By definition of Y and Z, at

C’, there are i = ~+ 1 processes in P’ poised at every

register in Y U Z. Furthermore, there are ~ ~ ~ + 1

processes in Q ~ Pi poised at every register in V.

Finally, since v < v’ and

/P’l = IPI-UIZI

> (~2–r–v2+ ~))/2+~. lVn Ul–u. lZl

= (r2-r-v2+v)/2 +u17nUl

~ (~2–~–(v’)2 +v’)/2+u l~nul,

it follows from the induction hypothesis that there

is an interruptible execution 6’ from C’ with initial

register set V’ and process set P’ that leaves processes

for U. In this case, the execution 661 satisfies the

desired conditions. ■

The next result describes conditions under which

two interruptible executions can be combined to

form an inconsistent execution. It is analogous to

Lemma 3.1.

Lemma 3.4 Let a and P be two interruptible execu-

tions, both darting at configuration C. Suppose a and

~ have initial register sets V and W, have process sets

P and Q, and decide O and 1, respectively. IfQ leaves

processes for ~, $’ leaves processes for ~, P and Q

are disjoint, IPI > (r2 – r – V2 + v)/2 + G. [~n~l,

and \Ql > (r2–r–w2+w)/2 +ti. l~nlFl, then there

is an execution starting from C that decides both O

and 1.

Proofi By induction on E + ~.

First, suppose V ~ W (which must be the case if

~ = O). Let a’ be the first piece of a and let C’ be the

configuration obtained from C by executing CY’. Since

all of the writes in & are to registers in V ~ W, ,6

begins with one write to each register in W, and P

and Q are disjoint, the configurate ions C and Cl are

indistinguishable to processes in Q. If some process

has decided at C’, then a’,8 is an execution from C

that decides both O and 1. Otherwisej there is an

interruptible execution a“ starting from C’ with some

initial register set V’ J V and process set P’ ~ P

that decides O and leaves processes for ~. Without

loss of generality, P’ can be all of P except for ~ .

(IV’ n~l – IV n~l) processes that must be removed

to ensure that a“ leaves processes for ~. Then

IP’I 2 lP1-iT(lV’n7Vl-lVnml)

> (r2–r–v2+ v)/2–~. lV’rl~l

~ (r2–r–(v’)2 +v’)/2–liJ. lv’n~l.

246



By the induction hypothesis applied to CY” and ,6,

there is an execution 6 starting from C’ that decides

both O and 1. Hence, cr’6 is an execution starting

from C that decides both O and 1.

Similarly, if W ~ V, then there is an execution

starting from C that decides both O and 1. Therefore,

suppose that neither V nor W is a subset of the other.

Let V’ = W’ = V U W. Consider the situation at

configuration C. Since a is an interruptible execution

with initial register set V, there are E + 1 > ~ + 1

processes in P poised at each register in V. Since /3

leaves processes for ~, there are D z ~ + 1 processes

not in Q poised at each register in V) – V. Form P)

by adding these processes to P. Note that P’ and

Q are disjoint. Furthermore, since a leaves processes

for ~, there are % processes not in P poised at each

register in V n ~ = V’ n W’. These processes are

not in P’ either, because the processes in ~’ — p are

poised at registers in ~. Since V ~ V’,

By Lemma 3.3, there exists an interruptible execution

a’ starting from configuration C with initial register

set V’ and process set P’ that leaves processes for

~. If a’ decides O, then it follows from the induc-

tion hypothesis applied to a’ and ,6 that there is an

execution starting from C that decides both O and 1.

Therefore we may assume that a’ decides 1.

Similarly, we may assume that there exists an in-

terruptible execution P starting from C with initial

register set V’ and process set Q’ that leaves pro-

cesses for ~ and decides O, where Q’ is constructed

analogously to P’.

Since (V’ – V) and (lV’-W) are disjoint and P and

Q are disjoint, P’ and Q’ are disjoint. Furthermore,

V’ ~ V and W’ ~ W imply that

IP’I > (T2 – r– (v’)’ +v’)/2+~. l~n~l, and

IQ’] > (r” - r - (w’)’ +ul)/2 +~ l~n~[. It

then follows from the induction hypothesis applied to

@ and a’ that there is an execution starting from C

that decides both O and 1. ■

Lemma 3.5 At most 3r2–r+l processes can achieve

ran dornized consensus using r read-write registers.

Proof: Consider any (randomized) algorithm that

purports to achieve wait-free binary consensus among

3r2 – r + 2 processes using r read-write registers. Par-

tition these processes into two sets, P and Q, each

containing (3T2 – r + 2)/2 processes. Give each pro-

cess in P the initial value O and give each process in

Q the initial value 1.

RMW(R: register, f: function) returns(value);

previous := R;

R := f(R);

return (previous);

end RMW

Figure 5: The read-modify-write operation

Let V = W = 0. By Lemma 3.3, there is an in-

terruptible execution a starting from the initial con-

figuration with initial register set V and process set

P that leaves processes for ~. Since the processes

in P all have initial value O, a must decide O. Sim-

ilarly, there is an interruptible execution @ starting

from the initial configuration with initial register set

W and process set Q that leaves processes for ~ and

decides 1. Hence, Lemma 3.4 implies that there is

an execution starting from the initial configuration

that decides both O and 1, violating the consistency

condition. ■

The following result is a direct consequence of

Lemma 3.5.

Theorem 3.6 A randomized wait-free implementa-

tion of consensus from read-write registers requires

Q(X) instances of these registers.

By slightly modifying the definition of interruptible

execution, it is possible to extend Theorem 3.6 to

registers that allow swaps as well as reads and writes.

Theorem 3.7 A randomized wait-free implementa-

tion of consensus from read-write and swap registers

requires Q(W) instances of these registers.

4 Separation Results

We use our main theorem to derive a series of results

relating the proposed randomized wait-free hzerarchy

with the deterministic hierarchy of [11]. For brevity,

we say that object X is more powerful than object

Y if n-process randomized consensus requires asymp-

totically fewer instances of X than Y.

Define a read-modify-write operation (Figure 5) to

be non-trivial if f is not the identity function.

Definition 4.1 Let F be a set of functions indexed

by an arbitrary set S. Define F to be interfering if

for all valuefi v and all i and j in S, either:

1. The functions fi and fj commute: f~ ( fj (v)) =

fj(fi(v)).
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SWAP(R : register, x : value) returns(vaiue);

previous := R;

R := X;

return (previous);

end SWAJ?

2.

Figure 6: The swap operation

One function “overwrites” the other: ~i(~f (w)) =

fi(v) or fi(.fi(v)) = f~(v)

.

Examples of non-trivial and interfering read-modify-

write operations include the swap operation of Fig-

ure 6 and the fetch@ add operation of Figure 7. The

compare@swap operation of Figure 8 is non-trivial but

not interfering. Theorems 3 and 4 of [11] show that

registers with non-trivial and interfering read-modify-

write operations solve 2-process consensus and, there-

fore, form a class of objects that are deterministically

more powerful than read-write registers, which can-

not solve 2-process consensus, and less powerful than

operations such as compare&swap, which can solve

n-process consensus.

We first show that, in randomized computation,

as in the deterministic case, compare&swap is still

more powerful than read-write and swap operations.

The swap and fetchtZJadd operations, however, are not

in the same randomized class, even though they are

in the same (non-trivial and interfering) determinis-

tic class. Moreover, swap is weaker than a bounded

counter, an object with a deterministic implementa-

tion from read-write registers, while fetcht!ladd is as

strong as compare &wap.

Herlihy [11, Theorem 5] shows that binary con-

sensus can be implemented deterministically using a

single bounded comparetYswap register. Hence, from

Theorem 3.7, we have:

Corollary 4.1 Any randomized non- blocktng

bounded compare&swap register implementation us-

ing read-write and swap registers requires Q(@) in-

stances of these registers.

A bounded counter object has an integer state that

can assume a range of values, and it provides the fol-

lowing operations: inc and dec respectively increment

F&A(R: regz’sier, z: va~u. e) returns(va~ue);

previous := R;

R:= R+x;

return (previous);

end F&A

Figure 7: The fetcht?4add operation

COMPARE& SWAP(R: register, old value, new: vahe)

returns(valut);

previous := R;

if previous = old then R := new;

end if

return (previous);

end COMPARE&SWAP

Figure 8: The compare@swap operation

and decrement the counter (without returning any

information), write initializes the counter to a fixed

state, and read returns the counter’s current value.

Aspnes [3] gives a randomized binary consensus pro-

tocol in which n processes share three bounded coun-

ters: the first two keep track of the number of pro-

cesses with preference O and 1 respectively, and the

third is used as the cursor for a random walk. The

first two counters assume values between O and n,

while the third assumes values between —3n and 3n.

(The first two counters can be eliminated at some cost

in performance [4].)

Theorem 4.2 (Aspnes) There is a deterministic

bounded shared counter implementation using O(n)

read-write regtsters, and a randomized consensus im-

plenhentatton using one bounded shared counter.

From Theorems 2.1, 3.7, and 4.2 we have:

Corollary 4.3 Any randomized non-blocking

bounded counter implementation using read-write and

swap registers requires Q(W) instances of these reg-

isters.

Surprisingly, both lower bounds are independent of

the number of values any object can assume: they

hold even when the read-write and swap registers

used in the implementation are unbounded, but the

counter being implemented is bounded.

Similar results hold for fetch~increment,

fetcht3decrement, and fetchtladd, a constant number

of which suffice to implement a counter. In the full

paper we show how proper encoding can allow a sin-

gle instance of a fetch&add operation to implement

three instances of a shared counter, and so we have

that fetch@ add and compare @swap, which are in sep-

arate classes in the deterministic hierarchy, have sim-

ilar randomized power in the sense that one instance

of each suffices to solve randomized consensus.

Theorem 4.4 Randomized consensus can be solved

using a single instance of a fetch&add register.

In addition, by Theorems 2.1 and 3.7 we have:
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Corollary 4.5 Any randomized non-blockang imple-

mentation of a fetch@ add register using read- wrtte

and swap registers requires Q(W) instances of these

registers.
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