Low Contention Linearizable Counting

Maurice Herlihy *

Abstract

The linearizable counting problem requires asyn-
chronous concurrent processes to assign themselves
successive values so that the order of the values as-
signed reflects the real-time order in which they
were requested. This problem lies at the heart of
concurrent timestamp generation, as well as con-
current implementations of shared counters, FIFO
buffers, and similar data structures. When the
processes communicate via shared memory, con-
ventional solutions to this problem require all pro-
cesses to synchronize at a common memory loca-
tion, resulting in poor performance from memory
contention and a sequential bottleneck.

This paper’s main contribution is to show that
the linearizable counting problem can be solved
without funneling all processes through a common
memory location. We give two new constructions
for linearizable counting networks, data structures
that solve the linearizable counting problem. Our
first construction is nom-blocking: some process
takes a value after O(n) network gates have been
traversed. Our second construction is wait-free: it
guarantees that each process takes a value after
it traverses O(wn) gates, where w is a parameter
affecting contention. We show that in any non-
blocking or wait-free linearizable counting network,

*Digital Equipment Corporation, Cambridge Research
Lab.

tMIT Lab. for Computer Science. Supported by
ONR contract N00014-91-J-1046, NSF grant CCR-8915206,
DARPA contracts N00014-89-J-1988 and N00014-87-K-0825
and by a Rothschild postdoctoral fellowship.

tStanford University. Supported by the NSF grant CCR-
8814921 and by ONR contract N00014-88-K-0166.

526
CH3062-7/91/0000/0526$01.00 © 1991 IEEE

Nir Shavit !

Orli Waarts *

processes must traverse an average of Q(n) gates,
and so our constructions are close to optimal. Fi-
nally, we construct a simpler and more efficient net-
work by giving up the robustness requirements and
allowing processes to wait for one another.

1 Introduction

In the linearizable counting problem, asynchronous
concurrent processes repeatedly assign themselves
successive values, such as integers or locations in
memory, so that the order of the values assigned
reflects the real-time order in which they were re-
quested. For example, if k values are requested,
then values 0. ..k —1 should be assigned, and if pro-
cess P is assigned a value before process) requests
one, then P’s value must be less than @’s. This
problem lies at the heart of a number of basic prob-
lems, such as concurrent time-stamp generation, as
well as concurrent implementations of shared coun-
ters, FIFO buffers, and similar data structures (e.g.
[6, 11, 17, 23]).

The requirement that the values chosen reflect
the real-time order in which they were requested is
called linearizability [13]. The benefits of lineariz-
ability are clear: the use of linearizable data ab-
stractions greatly simplifies both the specification
and the proofs of shared memory algorithms. As
discussed in more detail elsewhere [13], the notion
of linearizability generalizes and unifies a number of
ad-hoc correctness conditions in the literature, and
it is related to (but not identical with) correctness
criteria such as sequential consistency [18] and strict
serializability [20].

In a MIMD shared memory multiprocessor, the

naive solution to this problem has all n processors
synchronize at a common memory location, result-
ing in poor performance both from memory con-
tention and from the absence of concurrency. Re-
ducing such “hot-spot” contention has been the sub-
ject of extensive research in hardware architecture
design [2, 11, 16, 10, 21] and experimental work in
software [3, 8, 9, 19, 23].

1.1 Background

Recently, in [4], low-contention data structures
called counting networks were shown to provide
efficient non-linearizable solutions to the counting
problem. A counting network [4], like a sorting net-
work [5], is a directed graph whose nodes are sim-
ple computing elements called balancers, and whose
edges are called wires. Each foken (input item) en-
ters on one of the network’s w < n input wires,
traverses a sequence of balancers, and leaves on an
output wire. However, while a w input sorting net-
work sorts a collection of w input values only if they
arrive together, on separate wires, and propagate
through the network in lockstep, a w input count-
ing network can count any number N >> w of input
tokens even if they arrive at arbitrary times, are
distributed unevenly among the input wires, and
propagate through the network asynchronously.

Figure 2 shows a four-input four-output count-
ing network. Intuitively, a balancer (see Figure 1)
is just a toggle mechanism ! that repeatedly alter-
nates in sending tokens out on its output wires.
Figure 2 shows an example computation in which
input tokens traverse the network sequentially, one
after the other. For notational convenience, tokens
are labeled in arrival order, although these num-
bers are not used by the network. In this network,
the first input (numbered 1) enters on line 2 and
leaves on line 1, the second leaves on line 2, and
so on. (The reader is encouraged to try this for
him/herself.) Thus, if on the ith output line the
network assigns to consecutive output tokens the
values i,i4-4,i+ 2-4,..., it is counting the num-
ber of input tokens without ever passing them all
through a shared computing element!

Known counting network constructions [1, 4, 14]
are not linearizable.

1A balancer may be implemented using Compare€Swap,
Test € Set, or a randomized consensus primitive.

527

1.2 Summary of Results

There exist non-linearizable counting networks of
O(wlog? w) balancers, in which each token tra-
verses O(log? w) balancers, where w is independent
of n [4]. By contrast, we show in Section 3 that any
non-trivial linearizable network must encompass an
infinite number of balancers, and, if the network has
low contention, each token must traverse an aver-
age of Q(n) balancers. In other words, the structure
of linearizable counting networks is fundamentally
different from that of their non-linearizable coun-
terparts.

Our major result, presented in Section 4, is the
construction of two novel networks which we call
linearizers. A linearizer network, when connected
to any given counting network, transforms it into
a linearizable counting network. In the first SKEW
network (see Figure 3), each token traverses an av-
erage of O(n) balancers before leaving the network,
but an individual token may be forced along an in-
finite path if it is infinitely often overtaken. The
SKEW network is thus non-blocking: tokens that
undergo halting failures or delays cannot prevent
all non-faulty tokens from completing a network.
traversal. In the second REVERSE-SKEW network,
each token traverses O(n - w) balancers, but starva-
tion is impossible. This network is wait-free: tokens
that undergo halting failures or delays cannot pre-
vent any non-faulty token from completing a net-
work traversal. If implemented directly in terms of
balancers, these networks would have infinite size,
so we give a simple technique for “folding” these
infinite networks onto finite networks.

Finally, we observe that it is possible to construct
a simple and efficient linearizable counting network
if we augment non-linearizable counting networks
with a simple waiting primitive. This efficiency,
however, comes at a cost: the inopportune failure
of a single process can prevent all the non-faulty
processes from making progress.

2 A Brief Introduction to Counting
Networks

For lack of space we have eliminated many of the
formal definitions, which can be found in [4].

A balanceris a computing element with two input
wires, denoted as the north and south wires (and

input output

76421 1357

53 246

Figure 1: A Balancer.

indexed by 0 and 1), and two output wires, similarly
named. We denote by z;,i € {0,1} the number
of input tokens ever received on the balancer’s i-
th input wire, and similarly by y;, ¢ € {0,1} the
number of tokens ever output on its ¢-th output
wire. Let the state of a balancer at a given time
be defined as the sets of tokens that have visited its
input and output wires. A balancer never swallows
nor creates tokens, and given any finite number of
input tokens m = zgy + z; to the balancer, it is
guaranteed that within a finite amount of time, it
will reach a quiescent state, that is, one in which
o+ 21 = Yo + y1 = m. In any quiescent state, the
balancer’s outputs yy and y; have the step property:
0<yw-m<L

A balancing network of width w is a collection
of balancers, where output wires are connected
to input wires. It has w designated input wires
Lo, L1, .., Zw—1 (Which are not connected to output
wires of balancers), and w designated output wires
Y0, Y1, --» Yw—1 (similarly unconnected). The net-
work has no cycles, and thus its depth is defined
in the natural way. Let the state of a network at a
given time be defined as the union of the states of
its balancers.

In a shared memory multiprocessor, a balancing
network is implemented as a data structure, where
balancers are records and wires are pointers from
one record to another. Each of the machine’s n
asynchronous processors runs a program that re-
peatedly traverses the data structure, each time
shepherding a new token through the network (see
Section 5). The limitation on the number of con-
current processes translates into a limitation on the
number of tokens concurrently traversing the net-
work:

Y e~ Y w <n

A counting network of width w is a balancing net-
work whose outputs yg, .., yw—1 have the step prop-

528

erty in quiescent states:
0<yi—y; <lforanyi<j.

To illustrate this property, consider an execution in
which tokens traverse the network sequentially, one
completely after another. Figure 2 shows such an
execution on the BrToNIC[4] network defined in [4].
As can be seen, the network moves input tokens
to output wires in increasing order modulo w. A
balancing network having this property is called a
counting network, because it can easily be adapted
to count the number of tokens that have entered
the network. Counting is done by adding a “local
counter” to each output wire 7, so that tokens com-
ing out of that wire are consecutively assigned the
numbers i, i+w,i+2w, .., 1+ (y; —1)w. The number
i+w-k assigned by the counter at the end of output
line 7 to the k-th token exiting on it, is called the
token’s value.

Define the iraversal interval of a token through
the network to be the time interval [tenter,lesit]
from the moment it entered the balancing network
and until it exited it.

Definition 2.1. A counting network is linearizable
if for any two tokens a and b with traversal intervals
[tgnter!t:zit] and [tebnter)t:zit]’ ift:a:it < tebnter then

value(a) < value(d).

3 Lower Bounds

Linearizable counting networks are fundamentally
different from their non-linearizable counterparts.
There exist non-linearizable counting networks of
O(wlog? w) balancers, where each token traverses
0(log2 w) balancers, where w is independent of
n [4]. By contrast, we show here that any non-
trivial linearizable network must encompass an in-
finite number of balancers, and, if the network has
low contention, each token must traverse an aver-
age of Q(n) balancers. Interestingly, these results

inputs

outputs

15

26

37

762

Figure 2: A sequential execution of an input sequence to a Bitonic[4] network.

hold also when the wires are FIFO. In practice, the
space bound-is not as alarming as it sounds, since
we show later that it is possible to “fold” an infinite
number of balancers into a finite data structure.

3.1 Lower Bounds on Size

We first show that the only linearizable counting
network of finite width is the trivial one consisting
of a single balancer. Given a nontrivial finite count-
ing network, we construct an execution in which a
later token overtakes an earlier token, resulting in
non-linearizable behavior.

The following technical lemma is easily proved
by induction on the number of balancers in the net-
work.

Lemma 3.1. Consider a balancing network of
width w. If ezactly p tokens enter on each input
wire, then ezactly p tokens will arrive at each input
wire of each balancer.

Theorem 3.2. There is no linearizable counting
network of width greater than two.

Proof: We assume such a network and derive a
contradiction. Let b be the last balancer on wire
w — 1. Send w tokens pp, ..., Pw—1 Sequentially
through the network, where each p; enters on input
wire i. If a token arrives at balancer b, halt it on b’s
input wire, otherwise let it proceed until it takes a
value. Lemma 3.1 implies that there is exactly one
token on each input wire of b.

We claim that (1) the first token to visit b will
not exit on wire w — 1, and (2) one of these halted

529

tokens is py_3. To see why, consider the state of
the network before p,,_1 enters. At least one token
is halted before b. If all halted tokens resume their
traversals, then the step property implies that one
token will have emerged on each of wires 0,...,w—
2, and none on w—1. A contradiction arises if either
(1) the first token to visit b exits on w — 1, or (2)
there are two tokens halted at b, since one must exit
onw—1.

Now let p,,_1 resume its traversal, taking a value
less than w—1, and send w more tokens qo, ..., qw-1
sequentially through the network, where each g; en-
ters on input wire i. As before, if a token arrives at
balancer b, halt it on b’s input wire, otherwise let it
proceed until it takes a value. Each g; follows the
same path as p;, and by similar reasoning, two ¢;
are halted before b, one being gy -1. The remaining
w—2 > 0 tokens will each take values greater than
w— 1. If qy_1 resumes its traversal, it will be the
second token to visit b, hence it will take w — 1,
violating linearizability.]

This proof actually proves a slightly stronger re-
sult. In the execution we constructed, no token
overtakes another on a single wire, and therefore
there is no non-trivial finite linearizable counting
network even under the additional constraint that
the wires between balancers are FIFO.

Corollary 3.3. Any input wire of a linearizable
counting network can be used only a bounded num-
ber of times.

3.2 Lower Bounds on Time

In any network state, token p has preferred path u
if p would traverse u if it were run in isolation until
exiting the network. The capacity ¢ of an execution
in which n tokens concurrently traverse a network
is defined to be the maximal number of tokens that
arrive on any input wire.

The following lemma is implied by Lemma 3.1.

Lemma 3.4. In any ezecution where no more than
¢ tokens enter on any input wire, there are never
more than ¢ tokens on any wire.

The capacity ¢ of a network is the maximum ca-
pacity of any of its executions that involve only n
concurrent tokens. Lemma 3.4 implies that in a net-
work with capacity ¢, no more than ¢ tokens arrive
on any wire during an execution involving n tokens.

Theorem 3.5. Consider a linearizable counting
network for n processes with capacity c. In any qui-
escent state, the preferred path for any token p must
traverse at least [n/c] — 1 balancers.

Proof: Consider the following execution. Sup-
pose the network is in a quiescent state, and 7 — 1
is the last value taken by a token. For each token ¢
distinct from p, run ¢ in isolation until either

1. ¢ is about to leave the filter with value k.
2. ¢ is about to join p’s preferred path.

We claim the first case cannot occur. Since the filter
is in a quiescent state, all values less than ¢ have
been taken, and therefore ¢’s preferred path must
exit the filter on wire . If ¢ exits with a value k,
then k must be greater than 7, since ¢’s path did not
intersect p’s preferred path. If ¢ exits with k > i,
however, then p can traverse the entire network and
emerge with value i after ¢ left the network with
value k > i, violating linearizability. Therefore ¢’s
path must eventually intersect p’s preferred path.
No more than ¢ — 1 tokens can share p’s input
wire. The remaining n — ¢ tokens will halt on an
input wire to a balancer connected to p’s preferred
path. Lemma 3.4 implies that not more than ¢ ad-
ditional tokens can arrive at each such balancer.
Since there are n — ¢ such tokens, there are at least
[(n=c¢)/c] = [n/c] —1 distinct balancers along p’s
preferred path. []

530

Theorem 3.6. In any sequential ezecution, every
token traverses at least [n/c] — 1 balancers.

Proof: Initially, the network is quiescent, and
Theorem 3.5 implies that the first token traverses
at least [n/c] — 1 balancers. After each token leaves
the network, the network returns to a quiescent
state, and the same argument applies. ||

Elsewhere, [4] it has been shown that the set of
balancers traversed by a set of tokens does not de-
pend on how transitions are interleaved, which im-
plies:

Corollary 3.7. In any execution, the average num-
ber of balancers iraversed by each token is at least

[nfe] —1.

Notice that the network capacity ¢ is a measure of
potential contention. If ¢ is high, so is the maximum
number of concurrent accesses to a balancer. These
lower bounds therefore imply a reciprocal relation
between contention, the number of tokens that can
arrive concurrently at a balancer, and latency, the
number of balancers a token must traverse.

4 Linearizable
Constructions
In this section we describe two linearizable counting
network constructions. In the previous section, we
proved that in any linearizable counting network,
each input wire could be used only a finite num-
ber of times. In this section we give two construc-
tions for networks in which each input wire is used
only once. Each token chooses an input wire by
traversing an auxiliary (non-linearizable) counting
network (e.g., [4]), and uses the resulting value as
the index of its input wire. Another way to visualize
this two-part construction is to view the linearizable
counting network as a “filter” that linearizes the
outputs of a standard counting network. Our lower
bounds from the previous section apply to the time
and space complexity of the filter network. In par- .
ticular, if each input wire is used only once, then
¢ = 1, and each token must traverse an average
of Q(n) balancers. Although these constructions
require an infinite number of balancers, we show
in Section 5 how they can be “folded” into data
structures of bounded size. Qur first construction

Counting Network

is non-blocking: it guarantees that some token al-
ways emerges after the network as a whole has taken
a bounded number of steps, but it allows individual
tokens to run forever without taking a value. The
second construction is wail-free: it guarantees that
every token emerges after taking a fixed number of
steps.

4.1 The Skew Network

Our first filter is the SKEW network, illustrated in
Figure 3. A SKEW-LAYER network is an unbounded
balancing network consisting of a sequence of bal-
ancers b;, for 0 < i. For bg, both input wires are
network input wires. For all b;, the north output
wire is a network output wire, and the south out-
put wire is the north input wire for b;41. A SKEW
network of layer depth 2 d is constructed by layer-
ing d SKEW-LAYER networks so that the i*? output
wire of one is the i** input wire to the next. We say
that a balancer b has layer i if it belongs to the i*?
SKEW-LAYER component.

This filter is combined with a counting network
as follows. Each token first traverses the counting
network, and then uses the resulting value as the
index of its input wire into the SKEW network. It
is easy to show that the result is still a counting
network.

Lemma 4.1. Consider a counting network where
n is a bound on the number of concurrent tokens.
When a token takes a value v, then there are at
most n — 1 values less than v that are yet untaken.

Proof: Suppose otherwise. A value is missing if
no token has taken it. Let i be the least value to
violate the claim. If we let the network quiesce, then
all values less than ¢ will be taken. Therefore every
missing value corresponds to a token traversing the
network, and the claim follows because there are at
most n tokens in the network. []

Note that when a token takes v, it may not yet
be determined which token will take which of the
lower values.

A northwest barrier in a SKEW network is a se-
quence of balancers by, ..., b; such that the south
output wire of b; is joined to the north input wire

2Layer depth should not be confused with depth, which
is infinite for SKEW.

531

of b;41, and each balancer’s state is 1. Any token
that approaches a northwest barrier will be diverted
south below the barrier, effectively protecting all
wires behind the barrier from late-arriving tokens.

Lemma 4.2. If a token p exits a balancer on iis
south wire, then there is a northwest barrier starting
from the token and continuing as far as it can go.

Proof: By induction on i, the number of the wire
on which p exited south. For ¢ = 0 the result is
immediate. Otherwise, assume the claim for i — 1.
Since p exited on the balancer’s south wire, another
token must already have visited this balancer. One
of the two tokens must have traversed the south
output wire of the preceding balancer, and hence
must have exited south on wire i — 1. The result
now follows from the induction hypothesis. | |

Lemma 4.3. Let g be a token that enters the filter
after token p has taken a value. If q traverses a
lower wire (higher numbered) than p at layer k, then
it does so at all layers greater than k.

Proof: Assume otherwise. Then, p’s path and ¢’s
must cross. The only way their paths can cross in
this network is if they traverse a common balancer.
Since each balancer is visited by only two tokens
and since p got there first, p must exit on the north
wire, and ¢ on the south. |

Theorem 4.4. If processes use ¢ non-linearizable
counting network to choose their input wires, then
the SKEW filter is linearizable ifd > n—1. '

Proof: The network is clearly a counter. We
argue inductively that linearizability is preserved
among all tokens that have entered the network on
wires less than or equal to k. When k = 0, the
result is immediate, so assume the result for wires
less than k > 0.

Suppose that token p exits the network, and to-
ken ¢ then enters the network and exits with a value
less than p’s. Lemma 4.3 implies that p entered the
filter on a lower wire than ¢. The inductive hypoth-
esis implies therefore that p enters the filter on wire
k. There are two cases to consider: (1) p leaves
some balancer on its south wire, and (2) p leaves
every balancer on its north wire.

i, Y5,

Y2, Y60

Y5, Y,

Skew Network

yo.y4 e

Folded Skew Network

Figure 3: Skew Network and Folding

In the first case, Lemma 4.2 implies that there
is a northwest barrier extending up to the top line.
Lemma 3.4 implies that token ¢ must be diverted
south below the barrier. Lemma 4.3 implies there-
fore that ¢ will take a value greater than p’s, a con-
tradiction.

In the second case, if k¥ < n — 1, then p goes
north until it reaches the top line, and the result is
immediate. Otherwise, if £ > n — 1, then p goes
north on all n — 1 balancers, and hence gets value
k—n+1. Since k > n—1, Lemma 4.1 implies that
at least k —n-+1 tokens must have entered the filter
on lines less than k and left it before p entered the
skew. Therefore there exists a token r that exited
the network before p entered the filter, and took a
value > k—n. It follows that r exits the network be-
fore g entered it, and by the induction hypothesis, it
took a lesser value than ¢, since otherwise we would
have a linearizability violation among the first k£ — 1
lines. But in this case, ¢’s value must be smaller
than p’s and greater than r’s, a contradiction. M

Although the SKEW network permits starvation,
the average path length is O(n), so this filter is op-
timal up to a constant factor.

532

Lemma 4.5. The average number of balancers tra-
versed by any token in the SKEW filter is 2n — 2.

Proof: In any quiescent state, k tokens have en-
tered and exited the network on the top k wires.
There are k wires of 2n — 2 balancers each, yielding
an average path length of 2n — 2. []

4.2 The Reverse-skew Network

Our second filter is the REVERSE-SKEW network. A
REVERSE-LAYER network is the mirror image of the
SKEW-LAYER. It consists of a sequence of balancers
b;, for 0 < i. For by, both output wires are network
output wires. For all b;, 7 > 0, the south output wire
is a network output wire, and the north output wire
is the south input wire for b;_;. A REVERSE-SKEW
network of layer depth d is constructed by layering
d REVERSE-LAYER networks so that the i** output
wire of one is the #*# input wire to the next.

Theorem 4.6. The result of joining a counting
network of width w to the REVERSE-SKEW filter is
a linearizable counter ifd > [(n —1)/2]w - L.

The proof of this theorem is omitted for lack of
space, but it is nearly identical to that of Theorem

4.4. Tt uses one additional observation, which is:
Lemma 4.1 implies that there is no violation of lin-
earizability between any two tokens that enter the
filter on input wires that are of distance greater than
[(n — 1)/2]w — 1. Therefore, the northwest barrier
created when some token exits the network, need
only protect against tokens that entered on input
wires that are less than [(n—1)/2]w apart from its
filter input wire.

As in Lemma 4.5, the average number of bal-
ancers traversed by any token in the REVERSE-
SKEW filter is 2[(n — 1)/2]w — 2.

Finally, the following lemma shows that the
REVERSE-SKEW network is wait-free.

Lemma 4.7. The number of balancers traversed by
any token in the REVERSE-SKEW filter is al most
2[(n—-1)/2lw+n—3.

5 Implementation
5.1 Implementing an Infinite Network

A balancer can be represented as a record with the
following fields: toggle is a boolean value, and north
and south are pointers which reference either other
balancers, or counter cells. A process shepherds a
token through the network by executing the proce-
dure shown in Figure 4. It toggles the balancer’s
state by calling fetch&complement, which atomi-
cally complements the toggle field and returns the
old value. Based on the toggle state, it goes either
north or south. When it encounters a counter, it
atomically increments it by w and returns the old
value. Both complementing and incrementing can
be accomplished either by a short critical section,
or by a read-modify-write operation if the hardware
supports it.

Note that balancers are bounded, but counters,
by definition, are not.

5.2 Folding the Network

We now show how to represent the infinite SKEW
network using a finite network. (The construction
for the REVERSE network is omitted, since it is
nearly identical.) We first define a coordinate sys-
tem for identifying balancers. Each balancer is de-
noted b; j, where i ranges from 0 to infinity, and
j ranges from 0 to d — 1, where d is the network’s
layer depth. Balancer b; ¢ is the first balancer whose

533

balancer = [toggle: integer, north, south: pointer]
visit(b: pointer) returns(integer)
loop until counter(b)
i := fetch&complement(b.toggle)
ifi=0
then b := b.north
else b := b.south
end if
end loop
v := fetch&add(b.state, w)
return v
end visit

Figure 4: Code for Traversing an Infinite Network

north output wire is on row ¢, b; 4_1 is the last bal-
ancer on row i (equivalently, whose north output
wire is on row), and b; ; is balancer on layer j and
on row i.

A folded SKEW network is a w by d array of multi-
balancers c; j. co,0 has two input wires, each ¢,
i > 0, has one input wire, and each ¢; 41 has one
output wire. For 0 < i < w and 0 < j < d, there is
one wire from ¢; j to ¢;41 j, where index arithmetic
ismod w;and for 0 < i <wand 0 < j<d-—1,
there is also one wire from c;; to ¢ j41. The
multibalancer ¢; ; simulates each of the balancers
bi iy bitw,j bitaw,jy - The folding for a network
with w = 3, and d = 3 is illustrated in Figure 3.

Like a balancer, a multibalancer can also be rep-
resented as a record with toggle, north, and south
fields. The north and south fields are still point-
ers to the neighboring multibalancers or counters,
but the toggle component is more complex, since it
encodes the toggle states of an infinite number of
balancers. The following theorem shows that this
infinite sequence has a simple structure.

Theorem 5.1. Let sq,s1,... be the toggle states
of b j,bitw,j, ... If there are m active processes,
then there are at most 2m + 2 values of k such that

Sk F Sk41-

Proof: We argue by induction on m. Let N
be the total number of tokens in the network, in-
cluding those whose traversals have completed. If
m = 0, the network is quiescent, the first |N/2|
balancers have been visited by 2 tokens, the next

by N (mod 2) tokens, and the rest by no tokens.
Assume the result for m — 1 active tokens, and con-
sider the situation where there are m active tokens.
Choose any active token, run it to completion, and
let s}, be the new toggle state of balancer (i+kw, 5).
By the induction hypothesis, there are at most 2m
values of k such that s} # s} ;. The result follows
because there are at most two k such that s} # s},
and s = Sk41- |

Corollary 5.2. There are at most 2n + 2 values of
k such that s¢ # sp41.

The toggle component of the multibalancer c¢; ;
can therefore be treated as a set containing (at
most) 2n + 2 pairs (k,s) such that biygy; #
b4 (k-1)w,j, and an additional pair of (0, sq). This
set could be implemented with a short critical sec-
tion (which introduces a small likelihood of block-
ing) or it could be implemented without block-
ing using read-modify-write operations as discussed
elsewhere [12].

6 Other Solutions

So far, linearizability seems like an expensive prop-
erty: linearizable counting networks must encom-
pass an infinite number of balancers and each
traversal takes linear average time. Nevertheless,
we now show that it is still possible to construct
efficient linearizable counters by augmenting the
counting network structure with a simple waiting
primitive.

Just as before, we construct a network from two
component networks. One is an arbitrary non-
linearizable counting network (e.g., [4]), and the
other is a waiting filier. Informally, the waiting fil-
ter is a kind of barrier, where each token waits for
the tokens with lower values to “catch up.” A to-
ken leaves the filter only when all lower values have
been assigned, guaranteeing that every token that
enters the network later will receive a higher value.
More precisely, a waiting filter is an n-element ar-
ray of boolean values, called toggle bits, where in-
dexing starts from 0. Define the function toggle(v)
to be |(v/n)] mod 2. When a token exits the non-
linearizable counting network with value v, it awaits
its predecessor by going to location (v — 1) mod n
in the filter, and waiting for that location to be set
to toggle(v — 1). When this event occurs, it notifies

534

its successor by setting location v to toggle(v), and
then it returns its value.

Lemma 6.1. When token p with value v sets ils
toggle bit, every token that takes a lesser value has
also set its toggle bit.

Proof: Let p be the first token to violate this
property. It must have seen location v — 1 modn
in the filter set to toggle(v — 1), but that value was
written by the token with value v—2kn—1, for some
k > 0. In particular, the token with valuev—n—1
has not yet written its toggle bit, and by the in-
duction hypothesis, neither have the n tokens with
values v — n...v — 1. Since there can be at most n
tokens in the network, we have a contradiction.

Corollary 6.2. The waiting filter is a linearizable
counter.

Note that the waiting filter has very low con-
tention, since each position is concurrently read by
only one process and written by only one process.
As an aside, we remark that waiting for a loca-
tion to change value is very efficient on a cache-
consistent architecture, since the waiting process
simply rereads the value in its cache, and does not
need to access the shared memory until the cache is
invalidated.

The principal disadvantage of this scheme is that
it is blocking. A failure or delay by any single token
will result in the failure or delay of all the other to-
kens. Preliminary investigation of the waiting filter
shows that it performs well in experiments, where
failures are non-existent and timing anomalies are
rare.

7 Acknowledgements
We thank Cynthia Dwork, Serge Plotkin, and

Vaughan Pratt for their many constructive com-
ments.

References

(1]

(2]

(3]

[4]

(5]

(6]

M

(8

[10]

f1]

(12]

E. Aharonson and H. Attiya. Counting networks
with arbitrary fan out. Technical Report 679, The
Technion, June 1991.

A. Agarwal and M. Cherian Adaptive backoff syn-
chronization techniques 16th Symposium on Com-
puter Architecture, June 1989.

T.E. Anderson. The performance implications of
spin-waiting alternatives for shared-memory mul-
tiprocessors. Technical Report 89-04-03, Univer-
sity of Washington, Seattle, WA 98195, April 1989.
To appear, IEEE Transactions on Parallel and Dis-
tributed Systems.

J. Aspnes, M.P. Herlihy, and N. Shavit. Counting
networks and multi-processor coordination In Pro-
ceedings of the 23rd Annual Symposium on Theory
of Computing, May 1991, New Orleans, Louisiana.

T.H. Cormen, C.E. Leiserson, and R. L. Rivest.
Introduction to Algorithms MIT Press, Cambridge
MA, 1990.

C.S. Ellis and T.J. Olson. Algorithms for parallel
memory allocation. Journal of Parallel Program-
ming, 17(4):303-345, August 1988.

M. Fischer, N.A. Lynch, and M.S. Paterson. Im-
possibility of distributed commit with one faulty
process. Journal of the ACM 32(2):374-382, April
1985.

D. Gawlick. Processing ’hot spots’ in high per-
formance systems. In Proceedings COMPCON'85,
1985.

J. Goodman, M. Vernon, and P. Woest. A set
of efficient synchronization primitives for a large-
scale shared-memory multiprocessor. In 3rd Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
April 1989.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.
McAuliffe, L. Rudolph, and M. Snir. The NYU
ultracomputer — designing an MIMD parallel com-
puter. IEEE Transactions on Computers, C-
32(2):175-189, February 1984.

A. Gottlieb, B.D. Lubachevsky, and L. Rudolph.
Basic techniques for the efficient coordination of
very large numbers of cooperating sequential pro-
cessors. ACM Transactions on Programming Lan-
guages and Systems, 5(2):164-189, April 1983.
M.P. Herlihy. A methodology for implementing
highly concurrent data structures. In Proceedings

535

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

of the Second ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages
197-206, Seattle, WA, March 14-16 1990.

M.P. Herlihy and J.M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463-492, July 1990.

M. Klugerman, An O(log nlog log n) counting net-
work. Unpublished Manuscript, MIT-LCS, June
1991.

D. Kranz, R. Halstead, and E. Mohr, “Mul-T, A
High-Performance Parallel Lisp®, ACM SIGPLAN
'89 Conference on Programming Language Design
and Implementation, Portland, OR, June 1989,
pp. 81-90.

C.P. Kruskal, L. Rudolph, and M. Snir. Efficient
synchronization on multiprocessors with shared
memory. In Fifth ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Au-
gust 1986.

L. Lamport. A new solution of Dijkstra’s concur-
rent programming problem. Communications of
the ACM, 17(8):453—455, August 1974.

L. Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess pro-
grams. IEEE Transactions on Computers, C-28(9),
September 1979

J.M. Melior-Crummey and M.L. Scott. Algorithms
for scalable synchromization on shared-memory
multiprocessors. Technical Report Technical Re-
port 342, University of Rochester, Rochester, NY
14627, April 1990.

C.H. Papadimitriou. The serializability of con-
current database updates Journal of the ACM,
26(4):631-653, October 1979.

G.H. Pfister et al. The IBM research parallel pro-
cessor prototype (RP3): introduction and archi-
tecture. In International Conference on Parallel
Processing, 1985.

G.H. Pfister and A. Norton. ‘hot spot’ contention
and combining in multistage interconnection net-
works. IEEE Transactions on Computers, C-
34(11):933-938, November 1985.

H.S. Stone. Database applications of the fetch-and-
add instruction. IEEE Transactions on Computers,
C-33(7):604-612, July 1984.

