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Modeling and Veri�cation of Randomized Distributed Real-Time SystemsbyRoberto SegalaSubmitted to the Department of Electrical Engineering and Computer Scienceon May 15, 1995, in partial ful�llment of therequirements for the degree ofDoctor of Philosophy in Electrical Engineering and Computer ScienceAbstractRandomization is an exceptional tool for the design of distributed algorithms, sometimes yield-ing e�cient solutions to problems that are inherently complex, or even unsolvable, in the settingof deterministic algorithms. However, this tool has a price: even simple randomized algorithmscan be extremely hard to verify and analyze.This thesis addresses the problem of veri�cation of randomized distributed algorithms. Weconsider the problem both from the theoretical and the practical perspective. Our theoreticalwork builds a new mathematical model of randomized distributed computation; our practicalwork develops techniques to be used for the actual veri�cation of randomized systems. Ouranalysis involves both untimed and timed systems, so that real-time properties can be investi-gated.Our model for randomized distributed computation is an extension of labeled transitionsystems. A probabilistic automaton is a state machine with transitions, where, unlike for labeledtransition systems, a transition from a state leads to a discrete probability distribution over pairsconsisting of a label and a state, rather than to a single label and a single state. A probabilisticautomaton contains pure nondeterministic behavior since from each state there can be severaltransitions, and probabilistic behavior since once a transition is chosen the label that occurs andthe state that is reached are determined by a probability distribution. The resolution of purenondeterminism leads to probabilistic executions , which are Markov chain like structures. Oncethe pure nondeterminism is resolved, the probabilistic behavior of a probabilistic automatoncan be studied.The properties of a randomized algorithm are stated in terms of satisfying some other prop-erty with a minimal or maximal probability no matter how the nondeterminism is resolved.In stating the properties of an algorithm we also account for the possibility of imposing re-strictions on the ways in which the nondeterminism is resolved (e.g., fair scheduling, obliviousscheduling,: : :). We develop techniques to prove the correctness of some property by reducingthe problem to the veri�cation of properties of non-randomized systems. One technique isbased on coin lemmas , which state lower bounds on the probability that some chosen randomdraws give some chosen outcomes no matter how the nondeterminism is resolved. We identifya collection of progress statements which can be used to prove upper bounds to the expectedrunning time of an algorithm. The methods are applied to prove that the randomized diningphilosophers algorithm of Lehmann and Rabin guarantees progress in expected constant timeand that the randomized algorithm for agreement of Ben-Or guarantees agreement in expectedexponential time.To ensure that our new model has strong mathematical foundations, we extend some of the3



common semantics for labeled transition systems to the probabilistic framework. We de�ne acompositional trace semantics where a trace is replaced by a probability distribution over traces,called a trace distribution, and we extend the classical bisimulation and simulation relations inboth their strong and weak version. Furthermore, we de�ne probabilistic forward simulations ,where a state is related to a probability distribution over states. All the simulation relationsare shown to be sound for the trace distribution semantics.In summary, we obtain a framework that accounts for the classical theoretical results ofconcurrent systems and that at the same time proves to be suitable for the actual veri�cationof randomized distributed real-time systems. This double feature should lead eventually to theeasy extension of several veri�cation techniques that are currently available for non-randomizeddistributed systems, thus rendering the analysis of randomized systems easier and more reliable.Thesis Supervisor: Nancy A. LynchTitle: Professor of Computer ScienceKeywords: Automata, Distributed Algorithms, Formal Methods, Labeled Transition Systems,Randomized Systems, Real-Time Systems, Veri�cation
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Chapter 1Introduction1.1 The Challenge of RandomizationIn 1976 Rabin published a paper titled Probabilistic Algorithms [Rab76] where he presentede�cient algorithms for two well-known problems: Nearest Neighbors , a problem in computa-tional geometry, and Primality Testing , the problem of determining whether a number is prime.The surprising aspect of Rabin's paper was that the algorithms for Nearest Neighbors and forPrimality Testing were e�cient, and the key insight was the use of randomized algorithms,i.e., algorithms that can ip fair coins. Rabin's paper was the beginning of a new trend ofresearch aimed at using randomization to improve the complexity of existing algorithms. It iscurrently conjectured that there are no e�cient deterministic algorithms for Nearest Neighborsand Primality Testing.Another considerable achievement came in 1982, when Rabin [Rab82] proposed a solutionto a problem in distributed computing which was known to be unsolvable without random-ization. Speci�cally, Rabin proposed a randomized distributed algorithm for mutual exclusionbetween n processes that guarantees no-lockout (some process eventually gets to the criticalregion whenever some process tries to get to the critical region) and uses a test-and-set sharedvariable with O(logn) values. On the other hand, Burns, Fisher, Jackson, Lynch and Patter-son [BFJ+82] showed that 
(n) values are necessary for a deterministic distributed algorithm.Since then, several other randomized distributed algorithms were proposed in the literature,each one breaking impossibility results proved for deterministic distributed algorithms. Severalsurveys of randomized algorithms are currently available; among those we cite [Kar90, GSB94].The bottom line is that randomization has proved to be exceptionally useful for problems indistributed computation, and it is slowly making its way into practical applications. However,randomization in distributed computation leaves us with a challenge whose importance increasesas the complexity of algorithms increases:\How can we analyze randomized distributed algorithms? In particular, how can weconvince ourselves that a randomized distributed algorithm works correctly?"The analysis of non-randomized distributed systems is challenging already, due to a phenomenoncalled nondeterminism. Speci�cally, whenever two systems run concurrently, the relative speedsof the two systems are not known in general, and thus it is not possible to establish a priorithe order in which the systems complete their tasks. On the other hand, the ordering of the13



completion of di�erent tasks may be fundamental for the global correctness of a system, since,for example, a process that completes a task may prevent another process from completingits task. The structure of the possible evolutions of a system can become intricate quickly,justifying the statement \there is rather a large body of sad experience to indicate that aconcurrent program can withstand very careful scrutiny without revealing its errors" [OL82].The introduction of randomization makes the problem even more challenging since twokinds of nondeterminism arise. We call them pure nondeterminism and probabilistic nondeter-minism. Pure nondeterminism is the nondeterminism due to the relative speeds of di�erentprocesses; probabilistic nondeterminism is the nondeterminism due to the result of some ran-dom draw. Alternatively, we refer to pure nondeterminism as the nondeterministic behavior ofa system and to probabilistic nondeterminism as the probabilistic behavior of a system. Themain di�culty with randomized distributed algorithms is that the interplay between probabil-ity and nondeterminism can create subtle and unexpected dependencies between probabilisticevents; the experience with randomized distributed algorithms shows that \intuition often failsto grasp the full intricacy of the algorithm" [PZ86], and \proofs of correctness for probabilisticdistributed systems are extremely slippery" [LR81].In order to meet the challenge it is necessary to address two main problems.� Modeling: How do we represent a randomized distributed system?� Veri�cation: Given the model, how do we verify the properties of a system?The main objective of this thesis is to make progress towards answering these two questions.1.1.1 ModelingFirst of all we need a collection of mathematical objects that describe a randomized algorithmand its behavior, i.e., we need a formal model for randomized distributed computation. Themodel needs to be su�ciently expressive to be able to describe the crucial aspects of randomizeddistributed computation. Since the interplay between probability and nondeterminism is oneof the main sources of problems for the analysis of an algorithm, a �rst principle guiding ourtheory is the following:1. The model should distinguish clearly between probability and nondeterminism.That is, if either Alice or Bob is allowed to ip a coin, the choice of who is ipping a coin isnondeterministic, while the outcome of the coin ip is probabilistic.Since the model is to be used for the actual analysis of algorithms, the model should allowthe description of randomized systems in a natural way. Thus, our second guiding principle isthe following:2. The model should correspond to our natural intuition of a randomized system.That is, mathematical elegance is undoubtedly important, but since part of the veri�cationprocess for an algorithm involves the representation of the algorithm itself within the formalmodel, the chance of making errors is reduced if the model corresponds closely to our view ofa randomized algorithm. A reasonable tradeo� between theory and practice is necessary.14



Our main intuition for a computer system, distributed or not, is as a state machine thatcomputes by moving from one state to another state. This intuition leads to the idea of LabeledTransition Systems (LTS) [Kel76, Plo81]. A labeled transition system is a state machine withlabels associated with the transitions (the moves from one state to another state). Labeledtransition systems have been used successfully for the modeling of ordinary distributed systems[Mil89, Jon91, LV91, LT87, GSSL94], and for their veri�cation [WLL88, SLL93, SGG+93,BPV94]; in this case the labels are used to model communication between several systems. Dueto the wide use of labeled transition systems, the extensive collection of veri�cation techniquesavailable, and the way in which labeled transition systems correspond to our intuition of adistributed system, two other guiding principles for the thesis are the following:3. The new model should extend labeled transition systems.4. The extension of labeled transition systems should be conservative, i.e., whenever a systemdoes not contain any random choices, our new system should reduce to an ordinary labeledtransition system.In other words our model is an extension of the labeled transition system model so that ordinarynon-randomized systems turn out to be a special case of randomized systems. Similarly, all theconcepts that we de�ne on randomized systems are generalizations of corresponding conceptsof ordinary non-randomized systems. In this way all the techniques available should generalizeeasily without the need to develop completely new and independent techniques. Throughoutthe thesis we refer to labeled transition systems as automata and to their probabilistic extensionas probabilistic automata.1.1.2 Veri�cationOnce the model is built, our primary goal is to use the model to describe the properties thata generic randomized algorithm should satisfy. If the model is well designed, the propertiesshould be easy to state. Then, our second goal is to develop general techniques that can beused for veri�cation.We investigate veri�cation techniques from two perspectives. On one hand we formalizesome of the kinds of the informal arguments that usually appear in existing papers; on theother hand we extend existing abstract veri�cation techniques for labeled transition systemsto the probabilistic framework. Examples of abstract techniques include the analysis of traces[Hoa85], which are ordered sequences of labels that can occur during the evolution of a system,and of simulation relations [Mil89, Jon91, LV91], which are relations between the states oftwo systems such that one system can simulate the transitions of the other via the simulationrelation. To provide some intuition for traces and simulations, Figure 1-1 represents threelabeled transition systems, denoted by A1; A2, and A3. The empty sequence and the sequencesa and ab are the traces of A1; A2, and A3. For example, a computation that leads to ab is theone that starts from s0, moves to s1, and then to s3. The dotted lines from one state to anotherstate (the arrows identify the from-to property) are examples of simulation relations from oneautomaton to the other. For example, consider the simulation relation from A3 to A2. State s0of A3 is related to state s0 of A2; states s1 and s2 of A3 are related to state s1 of A2; state s3of A3 is related to state s3 of A2. The transition of A3 from s0 to s2 with action a is simulatedin A2 by the transition from s0 to s1 with label a. There is a strong simulation also from A215
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A1 A2 A3Figure 1-1: Simulation relations for automata.to A3 (each state si of A2 is related to state si of A3), from A1 to A2, and from A2 to A1.There is an even stronger relation between A1 and A2, which is called a bisimulation and isrepresented by the double-arrow dotted lines between the states of A1 and A2. A bisimulationis an equivalence relation between the states of two automata. In this case each automaton cansimulate the transitions of the other via the bisimulation relation.Direct Veri�cationIn the description of a randomized distributed algorithm pure nondeterminism represents theundetermined part of its behavior, namely, in what order the processes are scheduled. Schedul-ing processes is the activity of removing the nondeterminism, and the object that does thescheduling is usually referred to as a scheduler or an adversary . The intuition behind the name\adversary" is in proving the correctness of an algorithm a scheduler is viewed as a maliciousentity that degrades the performance of the system as much as possible.Once the nondeterminism is removed, a system looks like a Markov chain, and thus it ispossible to reason about probabilities. A common argument is then\no matter how the scheduler acts, the probability that some good property holds isat least p."Actually, in most of the existing work p is 1, since the proofs are easier to carry out in this case.In this thesis we are interested in every p since we are concerned also with the time complexityof an algorithm. Throughout the thesis it will become clear why we need every p for the studyof time complexity.One of our major goals is to remove from the informal arguments of correctness all \danger-ous" statements, i.e., all statements that rely solely on intuition rather than on actual deduc-tions, and yet keep the structure of a proof simple. In other words, we want to provide toolsthat allow people to argue as before with a signi�cantly higher con�dence that what they say iscorrect. Then, we want to develop techniques that allow us to decompose the veri�cation taskof complex properties into simpler veri�cation tasks. This feature is important for scalability.Here we give examples of two issues that we believe to be important.� Make sure that you know what probability space you are working in. Or, at least, makesure that you are working in a probability space. This is a rule of thumb that is valid inother �elds like Information Theory and Detection Theory. Probability is very tricky. The16



fact that a speci�c probability space was not identi�ed was the reason for a bug discoveredby Saias [Sai92] in the original algorithm of Rabin [Rab82], later �xed by Kushilevitz andRabin [KR92]. Of course, in order to make sure we know what probability spaces we areworking in, we need some easy mechanisms to identify those probability spaces. Suchmechanisms were not available in 1982.� Avoid arguments of the kind \now the worst thing that can happen is the following."These arguments are usually based on the intuition that the designers have about theirown algorithm. Speci�cally, as has happened in the past, the designers argue based onworst cases they can think of rather than the actual worst case. What is missing is aproof showing that the worst case has been identi�ed. A much better statement wouldbe \no matter what happens, something else will happen", since it does not require us toidentify the worst scenario. Using our methodology, Aggarwal [Agg94] discovered a bugin an algorithm designed by himself and Kutten [AK93] which was due to an argument ofthe kind cited above. Similarly, we discovered a bug in the timing analysis of the mutualexclusion algorithm of Pnueli and Zuck [PZ86]. This bug arose for the same reason.The reader familiar with existing work, and in particular familiar with model checking, maybe a bit puzzled at this point. There is a considerable amount of work on model checkingof randomized distributed systems, and yet we are introducing new techniques. Furthermore,although there is some ongoing work on automating part of the proof methods developed in thisthesis [PS95], we do not address any decidability issue here. Our favorite analogy to justify ourapproach is that we view model checking as the program \Mathematica", a popular programfor symbolic manipulation of analytic expressions. If we are given a simple analytical problem,we can use Mathematica to get the solution from a computer. On the other hand, if we havea complex analytical problem, say a complex function that we have de�ned, and we want toverify that it respects some speci�c constraints, or maybe we want to �nd the constraints, thenthings are very di�erent, since the problem in general is undecidable, i.e., not solvable by acomputer. We can plot part of the given function using Mathematica and have a rough idea ofwhether it satis�es the desired constraints. If the plot shows that the function violates someof the constraints, then we have to change either the function or the constraints; if the plotshows that the function does not violate the constraints, then we can start to use all the toolsof analysis to prove that the given function satis�es the constraints. In this way Mathematicasaves us a lot of time. In using the analytical tools we need to use our creativity and ourintuition about the problem so that we can solve its undecidable part. We view our research asbuilding the analytical tools.SimulationsThe study of traces and simulations carried out in the thesis contributes more directly to theorythan to practice. In particular, we do not give any examples of veri�cation using simulations.However, due to the success that simulation relations have had for the veri�cation of ordinarylabeled transition systems, it is likely that the same methods will also work for randomizedsystems.A considerable amount of research has been carried out in extending trace semantics andsimulation relations to the probabilistic case, especially within process algebras [Hoa85, Mil89,17



BW90]; however, most of the existing literature does not address pure nondeterminism, andthus it has limited practical applicability. We believe it is important to have a model that isboth useful for realistic problems and accounts for the existing theoretical work. In particu-lar, based on some of the interpretations that are given to nondeterminism within ordinaryautomata, we realize that, also in the probabilistic case, pure nondeterminism can be used toexpress much more than just the relative speeds of processes running concurrently. Speci�cally,nondeterminism can be used to model the following phenomena.1. Scheduling freedom. This is the classical use of nondeterminism, where several processesrun in parallel and there is freedom in the choice of which process performs the nexttransition.2. External environment . Some of the labels can represent communication events due to theaction of some external user, or more generally, to the action of an external environment .In this case nondeterminism models the arbitrary behavior of the external environment,which is chosen by an adversary.3. Implementation Freedom. A probabilistic automaton is viewed as a speci�cation, andnondeterminism represents implementation freedom. That is, if from some state thereare two transitions that can be chosen nondeterministically, then an implementation canhave just one of the two transitions. In this case an adversary chooses the implementationthat is used.It is important to recognize that, in the labeled transition system model, the three uses ofnondeterminism described above can coexist within the same automaton. It is the speci�cinterpretation that is given to the labels that determines what is expressed by nondeterminismat each point.1.2 Organization of the ThesisThe thesis is divided in two main parts: the �rst part deals with the untimed model and thesecond part deals with the timed model. The second part relies heavily on the �rst part andadds a collection of results that are speci�c to the analysis of real-time properties. We describethe technical contributions of the thesis chapter by chapter.An Overview of Related Work. Chapter 2 gives an extensive overview of existing workon modeling and veri�cation of randomized distributed systems.Preliminaries. Chapter 3 gives the basics of probability theory that are necessary to under-stand the thesis and gives an overview of the labeled transition systems model. All the topicscovered are standard, but some of the notation is speci�c to this thesis.Probabilistic Automata. Chapter 4 presents the basic probabilistic model. A probabilisticautomaton is a state machine whose transitions lead to a probability distribution over the labelsthat can occur and the new state that is reached. Thus, a transition describes the probabilisticbehavior of a probabilistic automaton, while the choice of which transition to perform describes18



the nondeterministic behavior of a probabilistic automaton. A computation of a probabilisticautomaton, called a probabilistic execution, is the result of resolving the nondeterminism in aprobabilistic automaton, i.e., the result of choosing a transition, possibly using randomization,from every point. A probabilistic execution is described essentially by an in�nite tree withprobabilities associated with its edges. On such a tree it is possible to de�ne a probabilityspace, which is the object through which the probabilistic properties of the computation canbe studied. We extend the notions of �niteness, pre�x and su�x of ordinary executions tothe probabilistic framework and we extend the parallel composition operator. Finally, we showhow to project a probabilistic execution of a compound probabilistic automaton onto one ofits components and we show that the result is a probabilistic execution of the component.Essentially, we show that the properties of ordinary automata are preserved in the probabilisticframework. The probabilistic model is an extension of ordinary automata since an ordinaryautomaton can be viewed as a probabilistic automaton where each transition leads just to oneaction and one state.Direct Veri�cation: Stating a Property. Chapter 5 shows how to formalize commonlyused statements about randomized algorithms and shows how such formal statements can bemanipulated. We start by formalizing the idea of an adversary , i.e., the entity that resolvesthe nondeterminism of a system in a malicious way. An adversary is a function that, giventhe past history of a system, chooses the next transition to be scheduled, possibly using ran-domization. The result of the interaction between an adversary and a probabilistic automatonis a probabilistic execution, on which it is possible to study probabilistic properties. Thus,given a collection of adversaries and a speci�c property, it is possible to establish a bound onthe probability that the given property is satis�ed under any of the given adversaries. We callsuch bound statements probabilistic statements . We show how probabilistic statements can becombined together to yield more complex statements, thus allowing for some form of compo-sitional veri�cation. We introduce a special kind of probabilistic statement, called a progressstatement , which is a probabilistic extension of the leads-to operator of UNITY [CM88]. Infor-mally, a progress statement says that if a system is started from some state in a set of statesU , then, no matter what adversary is used, a state in some other set of states U 0 is reachedwith some minimum probability p. Progress statements can be combined together under somegeneral conditions on the class of adversaries that can be used.Finally, we investigate the relationship between deterministic adversaries (i.e., adversariesthat cannot use randomness in their choices) and general adversaries. We show that for a largeclass of collections of adversaries and for a large class of properties it is su�cient to analyzeonly deterministic adversaries in order to derive statements that concern general adversaries.This result is useful in simplifying the analysis of a randomized algorithm.Direct Veri�cation: Proving a Property. Chapter 6 shows how to prove the validityof a probabilistic statement from scratch. We introduce a collection of coin lemmas , whichcapture a common informal argument on probabilistic algorithms. Speci�cally, for many proofsin the literature the intuition behind the correctness of an algorithm is based on the followingfact: if some speci�c random draws give some speci�c results, then the algorithm guaranteessuccess. Then, the problem is reduced to showing that, no matter what the adversary does,the speci�c random draws give the speci�c results with some minimum probability. The coin19



lemmas can be used to show that the speci�c random draws satisfy the minimum probabilityrequirement; then, the problem is reduced to verifying properties of a system that does notcontain probability at all. Factoring out the probability from a problem helps considerably inremoving errors due to unexpected dependencies.We illustrate the method by verifying the correctness of the randomized dining philosophersalgorithm of Lehmann and Rabin [LR81] and the algorithm for randomized agreement withstopping faults of Ben-Or [BO83]. In both cases the correctness proof is carried out by provinga collection of progress statements using some coin lemmas.Finally, we suggest another technique, called the partition technique, that departs consid-erably from the coin lemmas and that appears to be useful in some cases. We illustrate thepartition technique on a toy resource allocation protocol, which is one of the guiding examplesthroughout Chapters 5 and 6.Hierarchical Veri�cation: Trace Distributions. Chapter 7 extends the trace-based se-mantics of ordinary automata [Hoa85] to the probabilistic framework. A trace is a orderedsequence of labels that occur in an execution; a trace distribution is the probability distribu-tion on traces induced by a probabilistic execution. We extend the trace preorder of ordinaryautomata (inclusion of traces) to the probabilistic framework by de�ning the trace distributionpreorder . However, the trace distribution preorder is not preserved by the parallel compositionoperator, i.e., it is not a precongruence. Thus, we de�ne the trace distribution precongruenceas the coarsest precongruence that is contained in the trace distribution preorder. Finally, weshow that there is an elementary probabilistic automaton called the principal context that dis-tinguishes all the probabilistic automata that are not in the trace distribution precongruencerelation. This leads us to an alternative characterization of the trace distribution precongruenceas inclusion of principal trace distributions .Hierarchical Veri�cation: Simulations. Chapter 8 extends the veri�cation method basedon simulation relations to the probabilistic framework. Informally, a simulation relation fromone automaton to another automaton is a relation between the states of the two automata thatallows us to embed the transition relation of one automaton in the other automaton. In theprobabilistic framework a simulation relation is still a relation between states; however, sincea transition leads to a probability distribution over states, in order to say that a simulationrelation embeds the transition relation of a probabilistic automaton into another probabilisticautomaton we need to extend a relation de�ned over states to a relation de�ned over probabil-ity distributions over states. We generalize the strong and weak bisimulation and simulationrelations of Milner, Jonsson, Lynch and Vaandrager [Mil89, Jon91, LV91] to the probabilisticframework. Then, we introduce a coarser simulation relation, called a probabilistic forwardsimulation, where a state is related to a probability distribution over states rather than to asingle state. We prove an execution correspondence theorem which, given a simulation relationfrom one probabilistic automaton to another probabilistic automaton, establishes a strong cor-respondence between each probabilistic execution of the �rst probabilistic automaton and oneof the probabilistic executions of the second automaton. Based on the execution correspon-dence theorem, we show that each of the relations presented in the chapter is sound for thetrace distribution precongruence. Thus, simulation relations can be used as a sound techniqueto prove principal trace distribution inclusion.20



Probabilistic Timed Automata. Chapter 9 starts the second part of the thesis. We extendprobabilistic automata with time following the approach of Lynch and Vaandrager [LV95], wherepassage of time is modeled by means of transitions labeled with positive real numbers. In orderto use most of the untimed theory, we force time-passage transition not to be probabilistic.We extend probabilistic executions to the timed framework, leading to probabilistic timedexecutions, and we show the relationship between probabilistic executions and probabilistictimed executions. The main idea is that in several circumstances it is su�cient to analyze theprobabilistic executions of a system in order to study its real-time behavior.Direct Veri�cation: Time Complexity. Chapter 10 introduces new techniques for theveri�cation of real-time properties of a randomized algorithm. The techniques of Chapter 5still apply; however, due to the presence of time, it is possible to study the time complexityof an algorithm. We augment the progress statements of Chapter 5 with an upper bound t tostate the following: if a system is started from some state in a set of states U , then, no matterwhat adversary is used, a state of some other set of states U 0 is reached within time t withsome minimum probability p. Based on these timed progress statements , we show how to deriveupper bounds on the expected time to reach some set of states. We illustrate the techniqueby showing that the randomized dining philosophers algorithm of Lehmann and Rabin [LR81]guarantees progress within expected constant time.By extending the technique for the analysis of expected time, we show how to derive boundson more abstract notions of complexity. In particular, we consider the algorithm for randomizedagreement of Ben-Or as an example. The algorithm of Ben-Or runs in stages. From the waythe algorithm is structured, it is not possible to give meaningful bounds on the time it takesto make progress from any reachable state. However, using abstract complexities, it is easyto prove an upper bound on the expected number of stages that are necessary before reachingagreement. Once an upper bound on the expected number of stages is derived, it is easy toderive an upper bound on the expected time to reach agreement.Hierarchical Veri�cation: Timed Trace Distributions and Timed Simulations. Chap-ters 11 and 12 extend the trace distribution precongruence and the simulation relations of theuntimed framework to the timed framework. A trace is replaced by a timed trace, where atimed trace is a sequence of labels paired with their time of occurrence plus a limit time. Thetimed trace distribution precongruence is characterized by a timed principal context , which isthe principal context augmented with arbitrary time-passage transitions. All the timed simu-lation relations are shown to be sound for the timed trace distribution precongruence. All theresults are proved by reducing the problem to the untimed framework.Conclusion. Chapter 13 gives some concluding remarks and several suggestions for furtherwork. Although this thesis builds a model for randomized computation and shows that it issu�ciently powerful for the analysis of randomized distributed real-time algorithms, it justdiscovers the tip of the iceberg. We propose a methodology for the analysis of randomization,and we give several examples of the application of such methodology; however, there are severalother ways to apply our methodology. It is very likely that new probabilistic statements, newresults to combine probabilistic statements, and new coin lemmas can be developed based on thestudy of other algorithms; similarly, the fundamental idea behind the trace semantics that we21



present can be used also for other kinds of observational semantics like failures [Hoa85, DH84].We give hints on how it is possible to handle liveness within our model and state what we knowalready. Furthermore, we give ideas of what is possible within restricted models where someform of I/O distinction like in the work of Lynch and Tuttle [LT87] or some timing restrictionlike in the work of Merritt, Modugno and Tuttle [MMT91] is imposed. Finally, we address theissue of relaxing some of the restrictions that we impose on the timed model.1.3 Reading the ThesisThe two parts of the thesis, the untimed and the timed part, proceed in parallel: each chapter ofthe untimed part is a prerequisite for the corresponding chapter in the timed part. Each part issubdivided further into two parts: the direct veri�cation and the hierarchical veri�cation. Thetwo parts can be read almost independently, although some knowledge of the direct veri�cationmethod can be of help in reading the hierarchical method. The direct method is focused mainlyon veri�cation of algorithms, while the hierarchical method is focused mainly on the theoreticalaspects of the problem. Further research should show how the hierarchical method can be ofsigni�cant help for the analysis of randomized algorithms.Each chapter starts with an introductory section that gives the main motivations and anoverview of the content of the chapter. Usually, the more technical discussion is concentratedat the end. The same structure is used for each section: the main result and short proofs areat the beginning of each section, while the long proofs and the more technical details are givenat the end. A reader can skip the proofs and the most technical details on a �rst reading inorder to have a better global picture. It is also possible to read just Chapter 3 and the �rstsection (including subsections) of Chapters 4 to 12, and have a global view of the results ofthe thesis. In a second reading, the interested reader can concentrate on the proofs and on thetechnical de�nitions that are necessary for the proofs. The reader should keep in mind thatseveral proofs in the thesis are based on similar techniques. Such techniques are explained infull detail only the �rst time they are used.A reader interested only in the techniques for the direct veri�cation of algorithms and notinterested in the arguments that show the foundations of the model can avoid reading the proofs.Moreover, such a reader can just glance over Section 4.2.6, and skip Sections 4.2.7, 4.3, and 4.4.In the timed framework the reader interested just in the techniques for the direct veri�cationof algorithms can skip all the comparison between the di�erent types of probabilistic timedexecutions and concentrate more on the intuition behind the de�nition of a probabilistic timedexecution.
22



Chapter 2An Overview of Related WorkIn this chapter we give an extensive overview of existing work on modeling and veri�cation ofrandomized distributed systems. We defer the comparison of our work with the existing workto the end of each chapter. Some of the descriptions include technical terminology which maybe di�cult to understand for a reader not familiar with concurrency theory. Such a readershould focus mainly on the high level ideas and not worry about the technical details. The restof the thesis presents our research without assuming any knowledge of concurrency theory. Weadvise the reader not familiar with concurrency theory to read this chapter again after readingthe thesis.There have been twomain research directions in the �eld of randomized distributed real-timesystems: one focused mainly on modeling issues using process algebras [Hoa85, Mil89, BW90]and labeled transition systems [Kel76, Plo81] as the basic mathematical objects; the otherfocused mainly on veri�cation using Markov chains as the basic model and temporal logicarguments [Pnu82] and model checking [EC82, CES83] as the basic veri�cation technique. Mostof the results of the �rst of the research directions fail to model pure nondeterminism, whilethe results of the second of the research directions model pure nondeterminism successfully, butnot in its full generality. As expressed at the end of Section 1.1.2, pure nondeterminism arisesonly in the choice of what process is performing the next instruction at each moment. Belowwe summarize the results achieved in both of the research directions. Furthermore, at the endof each chapter we add a section where we explain how the results described in this section arerelated to our research.2.1 Reactive, Generative and Strati�ed ModelsWe present some of the existing work on modeling which is based on a classi�cation due to vanGlabbeek, Smolka, Ste�en and Tofts [GSST90]. They de�ne three types of processes: reactive,generative, and strati�ed .� Reactive model: Reactive processes consist of states and labeled transitions associatedwith probabilities. The restriction imposed on a reactive process is that for each state thesum of the probabilities of the transitions with the same label is 1.� Generative model: Generative processes consist of states and labeled transitions associatedwith probabilities. The restriction imposed on a generative process is that for each state23
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3/4 1/4Figure 2-1: Reactive, generative and strati�ed processes, from left to right.either there are no outgoing transitions, or the sum of the probabilities of all the outgoingtransitions is 1.� Strati�ed model: Strati�ed processes consist of states, unlabeled transitions associatedwith probabilities, and labeled transitions. The restriction imposed on a strati�ed processis that for each state either there is exactly one outgoing labeled transition, or all theoutgoing transitions are unlabeled and the sum of their probabilities is 1.Figure 2-1 gives an example of a reactive, a generative, and a strati�ed process. Informally,reactive processes specify for each label (also called action) the probability of reaching otherstates; generative processes also give additional information concerning the relative probabili-ties of the di�erent actions; strati�ed processes add some probabilistic structure to generativeprocesses. Observe that among the three models above only the reactive model has a struc-ture that can be used to express some form of pure nondeterminism (what action to perform),although in van Glabbeek et al. [GSST90] this issue is not considered.2.1.1 Reactive ModelRabin [Rab63] studies the theory of probabilistic automata, which are an instance of the reactivemodel. He de�nes a notion of a language accepted by a probabilistic automaton relative to acut point � and shows that there are �nite state probabilistic automata that de�ne non-regularlanguages.Larsen and Skou [LS89, LS91] de�ne a bisimulation type semantics, called probabilisticbisimulation, and a logic, called probabilistic model logic (PML), for reactive processes, andthey introduce a notion of testing based on sequential tests and a copying facility. They showthat two processes that satisfy the minimal probability assumption are probabilistically bisim-ilar if and only if they satisfy exactly the same PML formulas, and that two processes thatsatisfy the minimal probability assumption and that are not probabilistically bisimilar can bedistinguished through testing with a probability arbitrarily close to 1. The minimum proba-bility assumption states that for every state the probability of each transition is either 0 or isabove some minimal value. This condition corresponds to the image-�niteness condition fornon-probabilistic processes. Bloom and Meyer [BM89] relate the notions of probabilistic andnon-probabilistic bisimilarity by showing that two non-probabilistic �nitely branching processesP and Q are bisimilar if and only if there exists an assignment of probabilities to the transi-tions of P and Q such that the corresponding reactive processes P 0 and Q0 are probabilisticallybisimilar.Larsen and Skou [LS92] introduce a synchronous calculus for reactive processes where theprobabilistic behavior is obtained through a binary choice operator parameterized by a prob-24



ability p. They de�ne a bisimulation relation on the new calculus, and they introduce a newextended probabilistic logic (EPL) which extends PML in order to support decomposition withrespect to parallel composition. Both the probabilistic bisimulation and the extended proba-bilistic logic are axiomatized.2.1.2 Generative and Strati�ed ModelsGiacalone, Jou and Smolka [GJS90] de�ne a process algebra for generative processes, calledPCCS, which can be seen as a probabilistic extension of Milner's SCCS [Mil93]. In PCCS twoprocesses synchronize at every transition regardless of the action that they perform. That is, ifone process performs a transition labeled with action a with probability pa and another processperforms a transition labeled with b with probability pb, then the two processes together canperform a transition labeled with ab with probability papb. The authors provide an equationaltheory for PCCS based on the probabilistic bisimulation of Larsen and Skou [LS89], and providean axiomatization for probabilistic bisimulation (the axiomatization is shown to be sound andcomplete in [JS90]). Furthermore, the authors de�ne a notion of �-bisimulation, where twoprocesses can simulate each other's transition with a probability di�erence at most �. Based on�-bisimulation, the authors de�ne a metric on generative processes.Jou and Smolka [JS90] de�ne trace and failure equivalence for generative processes. Theyshow that, unlike for nondeterministic transition systems, maximality of traces and failures doesnot increase the distinguishing power of trace and failure equivalence, where by maximality ofa trace we mean the probability to produce a speci�c trace and then terminate. More precisely,knowing the probability of each �nite trace of a generative process gives enough information todetermine the probability that a �nite trace occurs leading to termination; similarly, knowingthe probability of every failure of a generative process gives enough information to determinethe probability of each maximal failure. Jou and Smolka show also that the trace and failureequivalences are not congruences. Our probabilistic executions are essentially generative pro-ceses, and our trace distributions are essentially the trace semantics of Jou and Smolka. In ourcase the properties shown by Jou and Smolka follow directly from measure theory.Van Glabbeek et al. [GSST90] state that the generative model is more general than thereactive model in the sense that generative processes, in addition to the relative probabilitiesof transitions with the same label, contain information about the relative probabilities of tran-sitions with di�erent labels. They show also that the strati�ed model is a generalization of thegenerative model in the sense that a probabilistic choice in the generative model is re�ned bya structure of probabilistic choices in the strati�ed model. Formally, the authors give threeoperational semantics to PCCS, one reactive, one generative, and one strati�ed, and show howto project a strati�ed process into a generative process and how to project a generative processinto a reactive process, so that the operational semantics of PCCS commute with the projec-tions. The reactive and generative processes of Figure 2-1 are the result of the projection ofthe generative and strati�ed processes, respectively, of Figure 2-1. Finally, the authors de�neprobabilistic bisimulation for the generative and for the strati�ed models and show that bisim-ulation is a congruence in all the models and that bisimulation is preserved under projectionfrom one model to the other. The results of van Glabbeek et al. [GSST90], however, are basedon the fact that parallel composition is synchronous.Tofts [Tof90] introduces a weighted synchronous calculus whose operational semantics resem-25



bles the strati�ed model. The main di�erence is that the weights associated with the transitionsare not probabilities, but rather frequencies , and thus their sums are not required to be 1. Toftsde�nes two bisimulation relations that are shown to be congruences. The �rst relation is sensi-tive to the actual frequencies of the transitions leaving from a state, while the second relationis sensitive only to the relative frequencies of the transitions leaving from a state. In particular,the second relation coincides with the strati�ed bisimulation of van Glabbeek et al. [GSST90]after normalizing to 1 the frequencies of the transitions that leave from every state. The ad-vantage of Tofts' calculus is that it is not necessary to restrict the syntax of the expressions sothat the weights of the choices at any point sum to 1 (such a restriction is imposed in PCCS).Moreover, it is possible to de�ne a special weight ! that expresses in�nite frequency and canbe used to express priorities. A similar idea to express priorities is used by Smolka and Ste�enin [SS90], where the strati�ed semantics of PCCS is extended with 0-probability transitions.Baeten, Bergstra and Smolka [BBS92] de�ne an algebra, prACP�I , which is an extensionof ACP [BW90] with generative probabilities. The authors show that prACP�I and a weakerversion of ACP (ACP�I ) are correlated in the sense that ACP�I is the homomorphic imageof prACP�I in which the probabilities are forgotten. The authors also provide a sound andcomplete axiomatization of probabilistic bisimulation.Wu, Smolka and Stark [WSS94] augment the I/O automaton model of Lynch and Tuttle[LT87] with probability and they study a compositional behavioral semantics which is alsoshown to be fully abstract with respect to probabilistic testing. A test is a probabilistic I/Oautomaton with a success action w. The model is reactive for the input actions and generativefor the output actions. This allows the authors to de�ne a meaningful parallel compositionoperator, where two probabilistic I/O automata synchronize on their common actions andevolve independently on the others. In order to deal with the nondeterminism that arises fromparallel composition, the authors attach a delay parameter to each state of a probabilistic I/Oautomaton, which can be seen as the parameter of an exponential probability distribution onthe time of occurrence of the next local (i.e., output or internal) action. Whenever there is aconict for the occurrence of two local actions of di�erent probabilistic I/O automata, the delayparameters associated with the states are used to determine the probability with which eachaction occurs. The behavior of a probabilistic I/O automaton A is a function EA that associatesa functional EA� with each �nite trace � . If the length of � is n, then EA� takes a function fthat given n+1 delay parameters computes an actual delay, and returns the expected value off applied to the delay parameters of the computations of A that lead to �.2.2 Models based on TestingResearch on modeling has also focused on extending the testing preorders of De Nicola andHennessy [DH84] to probabilistic processes. To de�ne a testing preorder it is necessary tode�ne a notion of a test and of how a test interacts with a process. The interaction betweena test and a process may lead to success or failure. Then, based on the success or failure ofthe interactions between a process and a test, a preorder relation between processes is de�ned.Informally, a test checks whether a process has some speci�c features: if the interaction betweena test and a process is successful, then the process has the desired feature.Ivan Christo� [Chr90b, Chr90a] analyzes generative processes by means of testing. A testis a nondeterministic �nite-state process, and the interaction between a process and a test is26



obtained by performing only those actions that both the processes o�er and by keeping therelative probability of each transition unchanged. Four testing preorders are de�ned, each onebased on the probability of the traces of the interaction between a process and a test. Christo�also provides a fully abstract denotational semantics for each one of the testing preorders: eachprocess is denoted by a mapping that given an o�ering and a trace returns a probability. Ano�ering is a �nite sequence of non-empty sets of actions, and, informally, describes the actionsthat the environment o�ers to a process during the interaction between the process and a test.Linda Christo� [Chr93] builds on the work of Ivan Christo� and de�nes three linear se-mantics for generative processes: the trace semantics, the broom semantics, and the barbedsemantics. The relations are de�ned in a style similar to the denotational models of IvanChristo�, and, in particular, the trace and barbed semantics coincide with two of the semanticsof [Chr90b]. Linda Christo� also de�nes three linear-time temporal logics that characterize herthree semantics and provides e�cient model checking algorithms for the recursion-free versionof the logics.Testing preorders that are more in the style of De Nicola and Hennessy [DH84] are presentedby Yi and Larsen in [YL92], where they de�ne a process algebra with all the operators of CCSplus a binary probabilistic choice operator parameterized by a probability p. Thus, the calculusof Yi and Larsen allows for nondeterminism. A test is a process of their calculus with anadditional label w. Depending on how the nondeterminism is resolved, w occurs with di�erentprobabilities in the interaction between a process and a test. Then, Yi and Larsen de�ne a maypreorder, which is based on the highest probability of occurrence of w, and a must preorder,which is based on the lowest probability of occurrence of w. The two preorders are shown tocoincide with the testing preorders of De Nicola and Hennessy [DH84] when no probability ispresent. In more recent work Jonsson, Ho-Stuart and Yi [JHY94] give a characterization ofthe may preorder based on tests that are not probabilistic, while Jonsson and Yi [JY95] give acharacterization of the may and must preorders based on general tests.Cleaveland, Smolka and Zwarico [CSZ92] introduce a testing preorder on reactive processes.A test is a reactive process with a collection of successful states and a non-observable action.The interaction between a test and a process allows an observable action to occur only ifthe two processes allow it to occur, and allows the non-observable action to occur if the testallows it to occur. The result is a generative process, where each of the actions that occur ischosen according to a uniform distribution (thus the formalism works only for �nitely manyactions). Two processes are compared based on the probability of reaching a successful state inthe interaction between a process and a test. The authors show that their testing preorder isclosely connected to the testing preorders of De Nicola and Hennessy [DH84] in the sense thatif a process passes a test with some non-zero probability, then the non-probabilistic versionof the process (the result of removing the probabilities from the transition relation of theprocess) may pass the non-probabilistic version of the test, and if a process passes a test withprobability 1, then the non-probabilistic version of the process must pass the non-probabilisticversion of the test. An alternative characterization of the testing preorder of Cleaveland et al.[CSZ92] is provided by Yuen, Cleaveland, Dayar and Smolka [YCDS94]. A process is representedas a mapping from probabilistic traces to [0; 1], where a probabilistic trace is an alternatingsequence of actions and probability distributions over actions. Yuen et al. use the alternativecharacterization to show that the testing preorder of Cleaveland et al. [CSZ92] is an equivalencerelation. 27



2.3 Models with Nondeterminism and Denotational Models2.3.1 Transitions with Sets of ProbabilitiesJonsson and Larsen [JL91] introduce a new kind of probabilistic transition system where thetransitions are labeled by sets of allowed probabilities. The idea is to model speci�cations wherethe probabilities associated with the transitions are not completely speci�ed. They extend thebisimulation of Larsen and Skou [LS89] to the new framework and they propose two criteria forre�nement between speci�cations. One criterion is analogous to the de�nition of simulationsbetween non-probabilistic processes; the other criterion is weaker and regards a speci�cationas a set of probabilistic processes. Re�nement is then de�ned as inclusion of probabilisticprocesses. Finally, Jonsson and Larsen present a complete method for verifying containmentbetween speci�cations.2.3.2 Alternating ModelsHansson and Jonsson [HJ89, HJ90] develop a probabilistic process algebra based on an alternat-ing model . The model of Hansson and Jonsson, which is derived from the Concurrent MarkovChains of Vardi [Var85], is a model in which there are two kinds of states: probabilistic states ,whose outgoing transitions are unlabeled and lead to nondeterministic states, and nondetermin-istic states , whose outgoing transitions are labeled and lead to probabilistic states. Only thetransitions leaving from probabilistic states are probabilistic, and for each probabilistic statethe probabilities of the outgoing transitions add to 1. The authors de�ne a strong bisimulationsemantics in the style of Larsen and Skou [LS89] for which they provide a sound and completeaxiomatization. The model of Hansson and Jonsson [HJ90] di�ers substantially from the modelsof van Glabbeek et al. [GSST90] in that there is a clear distinction between pure nondeterminismand probability. The model could be viewed as an instance of the reactive model; however, theparallel composition operation de�ned by Hansson and Jonsson [HJ90] is asynchronous, whilethe classi�cation of van Glabbeek et al. [GSST90] works only for synchronous composition. Acomplete presentation of the work of Hansson and Jonsson [HJ89, HJ90] appears in Hansson'sPhD thesis [Han91], later published as a book [Han94]. Our simple probabilistic automata arevery similar in style to the objects of Hansson's book.2.3.3 Denotational SemanticsSeidel [Sei92] extends CSP [Hoa85] with probability. The extension is carried out in two steps.In the �rst step a process is a probability distribution over traces; in the second step, in orderto account for the nondeterministic behavior of the environment, a process is a conditionalprobability measure, i.e., an object that given a trace, which is meant to be produced by theexternal environment, returns a probability distribution over traces.Jones and Plotkin [JP89] use a category theoretic approach to de�ne a probabilistic pow-erdomain, and they use it to give a semantics to a language with probabilistic concurrency.It is not known yet how the semantics of Jones and Plotkin compares to existing operationalsemantics. 28



2.4 Models with Real TimeThere are basically two models that address real time issues. One model is the model of Hanssonand Jonsson [Han94], where special � actions can appear in the transitions. The occurrence ofan action � means that time has elapsed, and the amount of time that elapses in a computationis given by the number of occurrences of action �. Thus, the time domain of Hansson andJonsson's model is discrete.The other model is based on stochastic process algebras and is used in the �eld of performanceanalysis. In particular, actions are associated with durations, and the durations are expressedby random variables. In order to simplify the analysis, the random variables are assumed to havean exponential probability distribution, which is memoryless. Research in this area includeswork from G�otz, Herzog and Rettelbach [GHR93], from Hillston [Hil94], and from Bernardo,Donatiello and Gorrieri [BDG94].2.5 Veri�cation: Qualitative and Quantitative MethodsMost of the research on the veri�cation of randomized distributed systems is concerned withproperties that hold with probability 1. The advantage of such properties is that for �nitestate processes they do not depend on the actual probabilities of the transitions, but rather onwhether those transitions have probability 0 or probability di�erent from 0. Thus, the problemof checking whether a system satis�es a property with probability 1 is reduced to the problemof checking whether a non-randomized system satis�es some other property. This method iscalled qualitative, as opposed to the quantitative method, where probabilities di�erent from 1also matter.The rationale behind the qualitative method is that a randomized process, rather thanalways guaranteeing success, usually guarantees success with probability 1, which is practicallythe same as guaranteeing success always. The quantitative method becomes relevant whenevera system has in�nitely many states or the complexity of an algorithm needs to be studied.Almost all the papers that we describe in this section are based on a model where n Markovchains evolve concurrently. Each Markov chain represents a process, and the pure nondeter-minism arises from the choice of what Markov chain performs the next transition (what processis scheduled next). The object that resolves the nondeterminism is called a scheduler or adver-sary , and the result of a scheduler on a collection of concurrent Markov chains is a new Markovchain that describes one of the possible evolutions of the global system. Usually a scheduler isrequired to be fair in the sense that each process should be scheduled in�nitely many times.2.5.1 Qualitative Method: Proof TechniquesHuart, Sharir and Pnueli [HSP83] consider n �nite state asynchronous randomized processesthat run in parallel, and provide two necessary and su�cient conditions to guarantee that agiven set of goal states is reached with probability 1 under any fair scheduler. A scheduler isthe entity that at any point chooses the next process that performs a transition. The resultof the action of a scheduler on n processes is a Markov chain, on which it is possible to studyprobabilities. A scheduler is fair if and only if, for each path in the corresponding Markovchain, each process is scheduled in�nitely many times. The authors show that in their model29



each property described by reaching a collection of states has either probability 0 or probability1. Then, they describe a decision procedure for the almost sure reachability of a set of goalstates. The procedure either constructs a decomposition of the state space into a sequence ofcomponents with the property that any fair execution of the program must move down thesequence with probability 1 until it reaches the goal states (goal states reached with probability1), or �nds an ergodic set of states through which the program can loop forever with probability1 (goal states reached with probability 0). Finally the authors give some examples of problemswhere the use of randomization does not provide any extra power over pure nondeterminism.The proof principle of [HSP83] is generalized to the in�nite state case by Hart and Sharir[HS85].Lehmann and Shelah [LS82] extend the temporal logic of linear time of Pnueli [Pnu82] toaccount for properties that hold with probability 1, and they provide three complete axioma-tizations of the logic: one axiomatization is for general models, one is for �nite models, andone is for models with bounded transition probabilities (same as the minimum probability re-quirement of Larsen and Skou [LS91]). A model of the logic is essentially a Markov chain,or alternatively an unlabeled generative process. The logic of Lehmann and Shelah [LS82] isobtained from the logic of Pnueli [Pnu82] by adding a new modal operator O whose meaningis that the argument formula is satis�ed with probability 1.Pnueli [Pnu83] introduces the notion of extreme fairness and shows that a property thatholds for all extreme fair executions holds with probability 1. Furthermore, Pnueli presents asound proof rule based on extreme fairness and linear temporal logic. The model consists of nrandomized processes in parallel. Each process is a state machine where each state enables aprobabilistic transition, which lead to several modes . Resolving the nondeterminism leads to aMarkov chain. However, only those Markov chains that originate from fair scheduling policiesare considered. Then, an execution (a path in the Markov chain) is extremely fair relativeto a property � (� is a property that is satis�ed by states) if and only if for each transitionthat occurs in�nitely many times from states that satisfy �, each mode of the transition occursin�nitely many times. An execution is extremely fair if and only if it is extremely fair relativeto any formula � expressed in the logic used in [Pnu83]. The proof rule of Pnueli [Pnu83],along with some other new rules, is used by Pnueli and Zuck [PZ86] to verify two non-trivialrandomized algorithms, including the Randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81]. Zuck [Zuc86] introduces the notion of �-fairness and shows that �-fairnessis complete for temporal logic properties that hold with probability 1.Rao [Rao90] extends UNITY [CM88] to account for randomized systems and propertiesthat hold with probability 1. The main emphasis is on properties rather than states. A newnotion of weak probabilistic precondition is introduced that, together with the extreme fairnessof Pnueli, generalizes weakest preconditions. Finally, based on the work of Huart et al. [HSP83],Rao argues that his new logic is complete for �nite state programs.2.5.2 Qualitative Method: Model CheckingVardi [Var85] presents a method for deciding whether a probabilistic concurrent �nite stateprogram satis�es a linear temporal logic speci�cation, where satisfaction means that a formulais satis�ed with probability 1 whenever the scheduler is fair. A program is given as a ConcurrentMarkov Chain, which is a transition system with nondeterministic and probabilistic states. A30



subset F of the nondeterministic states is called the set of fair states. A scheduler is a functionthat, based on the past history of a program, chooses the next transition to perform froma nondeterministic state. The result of the action of a scheduler on a program is a Markovchain on which it is possible to study the probability that some linear temporal logic formulais satis�ed. A path in the Markov chain is fair if for each fair state that occurs in�nitely manytimes each one of the possible nondeterministic choices from that state occurs in�nitely manytimes; a scheduler is fair if the fair paths have probability 1 in the corresponding Markov chain.The model checking algorithm of Vardi works in time polynomial in the size of the program anddoubly exponential in the size of the speci�cation. By considering a slightly restricted logic,Vardi and Wolper [VW86] reduce the complexity of the model checking algorithm to only oneexponent in the size of the formula.Courcoubetis and Yannakakis [CY88, CY90] investigate the complexity of model checkinglinear time propositional temporal logic of sequential and concurrent probabilistic processes. Asequential process is a Markov chain and a concurrent process is a Concurrent Markov Chain.They give a model checking algorithm that runs in time linear in the size of the program andexponential in the size of the formula, and they show that the problem is in PSPACE. Moreover,they give an algorithm for computing the exact probability with which a sequential programsatis�es a formula.Alur, Courcoubetis and Dill [ACD91a, ACD91b] develop a model checking algorithm forprobabilistic real-time systems. Processes are modeled as a generalized semi-Markov process ,which are studied in [Whi80, She87]. Essentially a process is a �nite state transition systemwith timing constraints expressed by probability distributions on the delays. They impose therestriction that every distribution is either discrete, or exponential, or has a density functionwhich is di�erent from 0 only on a �nite collection of intervals (in [ACD91a] only this last caseis studied). The temporal logic, called TCTL, is an extension of the branching-time temporallogic of Emerson and Clarke [EC82] where time delays are added to the modal operators. TCTLcan detect only whether a formula is satis�ed with probability 0, or with a positive probability,or with probability 1. The model checking algorithm transforms a process into a �nite stateprocess without probabilities and real-time, thus allowing the use of other existing algorithms.The problem of model-checking for TCTL is PSPACE-hard.2.5.3 Quantitative Method: Model CheckingHansson [Han91, Han94] de�nes a model checking algorithm for his Labeled Concurrent MarkovChain model and his branching-time temporal logic TPCTL. Time is discrete in Hansson'smodel, but the logic improves on previous work because probabilities can be quanti�ed (i.e.,probabilities can be between 0 and 1). The previous model checking algorithms relied heavilyon the fact that probabilities were not quanti�ed. The algorithm is based on the algorithmfor model checking of Clarke, Emerson and Sistla [CES83], and on previous work of Hanssonand Jonsson [HJ89] where a model checking algorithm for PCTL (TPCTL without time) ispresented. In order to deal with quanti�ed probabilities, the algorithm reduces the computationof the probability of an event to a collection of �nitely many linear recursive equations. Thealgorithm has an exponential complexity; however, Hansson shows that for a large class ofinteresting problems the algorithm is polynomial.31
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Chapter 3Preliminaries3.1 Probability TheoryThe rigorous study of randomized algorithms requires the use of several probability measures.This section introduces the basic concepts of measure theory that are necessary. Most of theresults are taken directly from Halmos [Hal50] and Rudin [Rud66], and the proofs can be foundin the same books or in any other good book on measure theory or probability theory.3.1.1 Measurable SpacesConsider a set 
. A �eld on 
, denoted by F , is a family of subsets of 
 that contains 
, andthat is closed under complementation and �nite union. A �-�eld on 
, denoted by F , is a �eldon 
 that is closed under countable union. The elements of a �-�eld are called measurable sets .The pair (
;F) is called a measurable space.A �eld generated by a family of sets C, denoted by F (C), is the smallest �eld that containsC. The �-�eld generated by a family of sets C, denoted by �(C), is the smallest �-�eld thatcontains C. The family C is called a generator for �(C). A trivial property of a generator C is�(C) = �(F (C)).The �eld generated by a family of sets can be obtained following a simple procedure.Proposition 3.1.1 Let C be a family of subsets of 
.1. Let F1(C) be the family containing ;, 
, and all C � 
 such that C 2 C or (
� C) 2 C.2. Let F2(C) be the family containing all �nite intersections of elements of F1(C).3. Let F3(C) be the family containing all �nite unions of disjoint elements of F2(C).Then F (C) = F3(C).3.1.2 Probability Measures and Probability SpacesLet C be a family of subsets of 
. A measure � on C is a function that assigns a non-negativereal value (possibly 1) to each element of C, such that1. if ; is an element of C, then �(;) = 0. 33



2. if (Ci)i2N forms a sequence of pairwise disjoint elements of C, and [iCi is an element ofC, then �([iCi) =Pi �(Ci).The last property is called �-additivity . If (
;F) is a measurable space, then a measure on Fas called a measure on (
;F).A measure on a family of sets C is �nite if the measure of each element of C is �nite.A measure space is a triple (
;F ; �), where (
;F) is a measurable space, and � is a measureon (
;F). A measure space (
;F ; �) is complete i� for each element C of F such that �(C) = 0,each subset of C is measurable and has measure 0, i.e., for each C0 � C, C 0 2 F and �(C0) = 0.A measure space is discrete if F is the power set of 
 and the measure of each measurable setis the sum of the measures of its points. Discrete spaces will play a fundamental role in ourtheory.A probability space is a triple (
;F ; P ), where (
;F) is a measurable space, and P is ameasure on (
;F) such that P (
) = 1. The measure P is also referred to as a probabilitymeasure or a probability distribution. The set 
 is called the sample space, and the elementsof F are called events . We denote a generic event by E, possibly decorated with primes andindices. A standard convention with probability measures and event is that the measure of anevent is denoted by P [E] rather than by P (E).3.1.3 Extensions of a MeasureThe following two theorems shows methods to extend a measure de�ned on a collection of sets.The �rst theorem says that it is possible to de�ne a probability measure P on a measurablespace (
;F) by specifying P only on a generator of F ; the second theorem states that everymeasure space can be extended to a complete measure space.Thus, from the �rst theorem we derive that in order to check the equality of two probabilitymeasures P1 and P2 on (
;F), it is enough to compare the two measures on a �eld that generatesF .Theorem 3.1.2 (Extension theorem) A �nite measure � on a �eld F has a unique exten-sion to the �-�eld generated by F . That is, there exists a unique measure �� on �(F ) such thatfor each element C of F , ��(C) = �(C).Theorem 3.1.3 Let (
;F ; �) be a measure space. Let F 0 be the set of subsets of 
 of the formC [N such that C 2 F and N is a subset of a set of measure 0 in F . Then, F 0 is a �-�eld.Furthermore, the function �0 de�ned by �0(C [ N) = �(C) is a complete measure on F 0. Wedenote the measure space (
;F 0; �0) by completion((
;F ; �)).3.1.4 Measurable FunctionsLet (
;F) and (
0;F 0) be two measurable spaces. A function f : 
 ! 
0 is said to be ameasurable function from (
;F) to (
0;F 0) if for each set C of F 0 the inverse image of C,denoted by f�1(C), is an element of F . The next proposition shows that the measurability off can be checked just by analyzing a generator of F 0.Proposition 3.1.4 Let (
;F) and (
0;F 0) be two measurable spaces, and let C be a generatorof F 0. Let f be a function form 
 to 
0. Then f is measurable i� for each element C of C, theinverse image f�1(C) is an element of F . 34



Another property that we need is the closure of measurable functions under composition.Proposition 3.1.5 Let f be a measurable function from (
1;F1) to (
2;F2), and let g be ameasurable function from (
2;F2) to (
3;F3). Then f �g is a measurable function from (
1;F1)to (
3;F3).3.1.5 Induced Measures and Induced Measure SpacesProposition 3.1.6 Let f be a measurable function from (
;F) to (
0;F 0), and let � be ameasure on (
;F). Let �0 be de�ned on F 0 as follows: for each element C of F 0, �0(C) =�(f�1(C)). Then �0 is a measure on (
0;F 0). The measure �0 is called the measure induced byf , and is denoted by f(�).Based on the result above, it is possible to transform a measure space using a function f .Let (
;F ; �) be a measure space, and let f be a function de�ned on 
. Let 
0 be f(
), andlet F 0 be the set of subsets C of 
0 such that f�1(C) 2 F . Then, F 0 is a �-�eld, and f is ameasurable function from (
;F) to (
0;F 0). Thus, the space (
0;F 0; f(�)) is a measure space.We call such a space the space induced by f , and we denote it by f((
;F ; �)). Observe thatif (
;F ; �) is a probability space, then f((
;F ; �)) is a probability space as well, and thatinduced measure spaces preserve discreteness and completeness.3.1.6 Product of Measure SpacesLet (
1;F1) and (
2;F2) be two measurable spaces. Denote by F1 
 F2 the �-�eld generatedby the set of rectangles fC1 � C2 j C1 2 F1; C2 2 F2g. The product space of (
1;F1) and(
2;F2), denoted by (
1;F1)
 (
2;F2), is the measurable space (
1 � 
2;F1 
F2).Proposition 3.1.7 Let (
1;F1; �1) and (
2;F2; �2) be two measure spaces where �1 and �2are �nite measures. Then there is a unique measure, denoted by �1 
 �2, on F1
F2 such thatfor each C1 2 F1 and C2 2 F2, �1 
 �2(C1 � C2) = �1(C1)�2(C2).The product measure space of two measure spaces (
1;F1; �1) and (
2;F2; �2), denoted by(
1;F1; �1)
 (
2;F2; �2), is the measure space (
1�
2;F1
F2; �1
 �2). It is easy to checkthat if (
1;F1; �1) and (
2;F2; �2) are probability spaces, then their product is a probabilityspace as well.The product of two measure spaces is invertible. Let (
;F ; �) = (
1;F1; �1)
 (
2;F2; �2),and let �i, i = 1; 2, be a projection function from 
1 � 
2 to 
i, that maps each pair (x1; x2)to xi. Let 
0i = �i(
i), and let F 0i = fC j ��1i (C) 2 Fig. Then (
0i;F 0i) = (
i;Fi), and �i isa measurable function from (
;F) to (
0i;F 0i). The measure �i(�) coincides with �i, since foreach C 2 F1, ��11 (C) = C � 
2, and for each C 2 F2, ��12 (C) = 
1 � C. Thus, the projectionof (
;F ; �) onto its ith component is (
i;Fi; �i).3.1.7 Combination of Discrete Probability SpacesIn our theory there are several situations in which a discrete probability space is chosen accord-ing to some probability distribution, and then an element from the chosen probability space35



is chosen according to the corresponding probability distribution. The whole process can bedescribed by a unique probability space.Let f(
i;Fi; Pi)gi�0 be a family of discrete probability spaces, and let fpigi�0 be a familyof real numbers between 0 and 1 such thatPi�0 pi = 1. De�ne Pi�0(
i;Fi; Pi) to be the triple(
;F ; P ), where 
 = [i�0
i, F = 2
, and, for each x 2 
, P [x] =Pi�0jx2
i piPi[x]. It is easyto verify that (
;F ; P ) is a probability space.The process described by (
;F ; P ) is the following: a probability space (
i;Fi; Pi) is drawnfrom f(
i;Fi; Pi)gi�0 with probability pi, and then an element x is drawn drom 
i with prob-ability Pi[x].3.1.8 Conditional ProbabilityLet (
;F ; P ) be a probability space, and let E be an element of F . Frequently, we need tostudy the probability of an event E0 of F knowing that event E has occurred. For example, wemay want to study the probability that a dice rolled 6 knowing that it rolled a number greaterthan 3. The probability of a conditional event is expressed by P [E 0jE]. If P [E] = 0, thenP [E 0jE] is unde�ned; if P [E] > 0, then P [E 0jE] is de�ned to be P [E \E 0]=P [E].Suppose that P [E] > 0, and consider the triple (
jE;FjE;P jE) where 
jE = E, FjE =fE 0 \E j E 0 2 Fg, and for each event E0 of FjE, P jE[E 0] = P [E 0jE]. Then it is easy to showthat (
jE;FjE;P jE) is a probability space. We call this space a conditional probability space.Conditional measures give us an alternative way to express the probability of the intersectionof several events. That is,P [E1 \ � � � \En] = P [E1]P [E2jE1] � � �P [EnjE1 \ � � � \ En�1]:If P [E 0] = P [E 0jE], then P [E \E 0] = P [E]P [E 0]. In this case the events E and E 0 are saidto be independent .3.1.9 Expected ValuesLet (
;F) be a measurable space, and let (<;R) be the measurable space where < is the setof real numbers, and R is the �-�eld generated by the open sets of the real line. A randomvariable on (
;F), denoted by X , is a measurable function from (
;F) to (<;R).We use random variables to deal with timed systems. An example of a random variable isthe function that, given a computation of a system, returns the time it takes to the system toachieve a goal in the given computation. In our case, the computations of a system are chosenat random, and thus, a natural estimate of the performance of the system is the average timeit takes to the system to achieve the given goal.The above idea is expressed formally by the expected value of a random variable, which is aweighted average of X . Speci�cally, let (
;F ; P ) be a probability space, and let X be a randomvariable on (
;F). Then the expected value of X , denoted by E[X ], is the weighted averageof X based on the probability distribution P . We do not show how to compute the expectedvalue of a random variable in general, and we refer the interested reader to [Hal50]. Here wejust mention that if 
 can be partitioned in a countable collection of measurable sets (Ci)i�0such that for each set Ci, X(Ci) is a singleton, then E[X ] =Pi�0 P [Ci]X(ci), where for each ici is an element of Fi. 36



3.1.10 NotationThroughout the thesis we adopt some conventional notation concerning probability spaces. Weuse the notation P , possibly decorated with indexes and primes, to denote a generic probabilityspace. Thus, the expression P 0i stands for the probability space (
0i;F 0i; P 0i ). Furthermore, ifa generic expression exp denotes a probability space (
;F ; P ), we use 
exp ;Fexp , and Pexp todenote 
;F , and P , respectively.If (
;F ; P ) is a probability space, and E is a generic set, we use P [E] to denote P [E \ 
].If E \ 
 is not an element of F , then P [E] is unde�ned.A special kind of probability space is a probability space with a unique element in its sampleset. The corresponding measure is called a Dirac distribution. We use the notation D(x) todenote a probability space (
;F ; P ) where 
 = fxg.Another important kind of probability space is a space with �nitely many elements, eachone with the same probability. The corresponding measure is called a uniform distribution.We use the notation U(x1; : : : ; xn) to denote a discrete probability space (
;F ; P ) where 
 =fx1; : : : ; xng and, for each element xi of 
, P [xi] = 1=n.In the thesis we use heavily discrete probability spaces with no 0-probability elements. Itis easy to verify that the sample set of these probability spaces is at most countable. If C isany set, then we denote by Probs(C) the set of discrete probability spaces (
;F ; P ) with no0-probability elements such that 
 � C.3.2 Labeled Transition SystemsA Labeled Transition System [Kel76, Plo81] is a state machine with labeled transitions. Thelabels, also called actions , are used to model communication between a system and its externalenvironment. Labeled transition systems have been used successfully for the analysis of con-current and distributed systems [DH84, Mil89, LT87, LV93a]; for this reason we choose themas our basic model.Currently there are several de�nitions of labeled transition systems, each one best suitedfor the kind of application it is meant for. In this section we present a de�nition of labeledtransition systems in the style of [LV93a].3.2.1 AutomataAn automaton A consists of four components:1. a set states(A) of states.2. a nonempty set start(A) � states(A) of start states.3. an action signature sig(A) = (ext(A); int(A)), where ext(A) and int(A) are disjoint setsof external and internal actions, respectively. Denote by acts(A) the set ext(A) [ int(A)of actions.4. a transition relation trans(A) � states(A)�acts(A)�states(A). The elements of trans(A)are referred to as transitions or steps . 37



insert(i) extract(i)Figure 3-1: The Bu�er automaton.Thus, an automaton is a labeled transition system, possibly with multiple start states, whoseactions are partitioned into external and internal actions. The external actions model com-munication with the external environment; the internal actions model internal communication,not visible from the external environment.We use s to denote a generic state, and a and b to denote a generic action. We also use � todenote a generic internal action. All our conventional symbols may be decorated with primesand indexes. We say that an action a is enabled from a state s in A if there exists a state s0 ofA such that (s; a; s0) is a transition of A.A standard alternative notation for transitions is s a�! s0. This notation can be extended to�nite sequences of actions as follows: s a1���an�! s0 i� there exists a sequence of states s1; : : : ; sn�1such that s a1�! s1 a2�! � � �sn�1 an�! sn. To abstract from internal computation, there is anotherstandard notion of weak transition, denoted by s a=) s0. The action a must be external, andthe meaning of s a=) s0 is that there are two �nite sequences �1; �2 of internal actions such thats �1a�2�! s0. As for ordinary transitions, weak transitions can be generalized to �nite sequencesof external actions. A special case is given by the empty sequence: s =) s0 i� either s0 = s orthere exists a �nite sequence � of internal actions such that s ��! s0.Example 3.2.1 A classic example of an automaton is an unbounded ordered bu�er that storesnatural numbers (see Figure 3-1). An external user sends natural numbers to the bu�er, andthe bu�er sends back to the external environment the ordered sequence of numbers it receivesfrom the user.The automaton Bu�er of Figure 3-1 can be described as follows. All the actions of Bu�erare external and are of the form insert(i) and extract(i), where i is a natural number, i.e., theactions of Bu�er are given by the in�nite set [i2Nfinsert(i); extract(i)g. The states of Bu�erare the �nite sequences of natural numbers, and the start state of Bu�er is the empty sequence.The actions of the form insert(i) are enabled from every state of Bu�er , i.e., for each states and each natural number i there is a transition (s; insert(i); is) in Bu�er , where is denotesthe sequence obtained by appending i to the left of s. The actions of the form extract(i) areenabled only from those states where i is the rightmost element in the corresponding sequenceof numbers, i.e., for each state s and each natural number i there is a transition (si; extract(i); s)of Bu�er . No other transitions are de�ned for Bu�er .Observe that from every state of Bu�er there are in�nitely many actions enabled. Theway to choose among those actions is not speci�ed in Bu�er . In other words, the choice of thetransition to perform is nondeterministic. In this case the nondeterminism models the arbitrarybehavior of the environment. 38



Buffer Buffer1 2

extract(i)insert(i) (i)τFigure 3-2: Concatenation of two bu�ers.The role of internal actions becomes clear when we concatenate two bu�ers as in Figure 3-2.The communication that occurs between the two bu�ers is internal in the sense that it does nota�ect directly the external environment. Another useful observation about the concatenationof the two bu�ers in Figure 3-2 is that nondeterminism expresses two di�erent phenomena: thearbitrary behavior of the environment, and the arbitrary scheduling policy that can be adoptedin choosing whether Bu�er1 or Bu�er 2 performs the next transition. In general nondeterminismcan express even a third phenomenon, namely, the fact that an arbitrary state can be reachedafter the occurrence of an action. Such a form of nondeterminism would arise if we assume thata bu�er may lose data by failing to modify its state during an insertion operation.3.2.2 ExecutionsThe evolution of an automaton can be described by means of its executions. An executionfragment � of an automaton A is a (�nite or in�nite) sequence of alternating states and actionsstarting with a state and, if the execution fragment is �nite, ending in a state� = s0a1s1a2s2 � � �where for each i, (si; ai+1; si+1) is a transition of A. Thus, an execution fragment represents apossible way to resolve the nondeterminism in an automaton.Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the last state of�. Furthermore, denote by frag�(A) and frag(A) the sets of �nite and all execution fragmentsof A, respectively.An execution is an execution fragment whose �rst state is a start state. Denote by exec�(A)and exec(A) the sets of �nite and all execution of A, respectively. A state s of A is reachable ifthere exists a �nite execution of A that ends in s.The length of an execution fragment �, denoted by j�j, is the number of actions that occurin �. If � is in�nite, then j�j =1.A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written �1 a �2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. If � = �1 a �2, then we denote �2 by �.�1(read \� after �1").An execution fragment �1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2,if either �1 = �2 or �1 is �nite and there exists an execution fragment �01 of A such that�2 = �1 a �01. The execution fragment �01 is also called a su�x of �2 and is denoted by �2.�1.39



3.2.3 TracesThe executions of an automaton contain a lot of information that is irrelevant to the environ-ment, since the interaction between an automaton and its environment occurs through externalactions only. The trace of an execution is the object that represents the actual interaction thatoccurs between an automaton and its environment during an execution.The trace of an execution (fragment) � of an automaton A, written traceA(�), or justtrace(�) when A is clear, is the list obtained by restricting � to the set of external actions ofA, i.e., trace(�) = � � ext(A). We say that � is a trace of an automaton A if there exists anexecution � of A with trace(�) = �. Denote by traces�(A) and traces(A) the sets of �nite andall traces of A, respectively. Note, that a �nite trace can be the trace of an in�nite execution.3.2.4 Trace SemanticsIn [LV93a] automata are compared based on traces. Speci�cally, a preorder relation is de�nedbetween automata based on inclusion of their traces:A1 vT A2 i� traces(A1) � traces(A2):The trace preorder can express a notion of implementation, usually referred to as a safe imple-mentation. That is, A1, the implementation, cannot do anything that is forbidden by A2, thespeci�cation. For example, no implementation of the bu�er of Figure 3-1 can return naturalnumbers that were never entered or natural numbers in the wrong order.Although the trace preorder is weak as a notion of implementation, and so �ner relationscould be more appropriate [DeN87, Gla90, Gla93], there are several situations where a tracebased semantics is su�cient [LT87, Dil88, AL93, GSSL94]. The advantage of a trace basedsemantics is that it is easy to handle.In this thesis we concentrate mainly on trace based semantics; however, the techniques thatwe develop can be extended to other semantic notions as well.3.2.5 Parallel CompositionParallel composition is the operator on automata that identi�es how automata communicateand synchronize. There are two main synchronization mechanisms for labeled transition sys-tems, better known as the CCS synchronization style [Mil89], and the CSP synchronizationstyle [Hoa85]. In the CCS synchronization style the external actions are grouped in pairs ofcomplementary actions; a synchronization occurs between two automata that perform comple-mentary actions, and becomes invisible to the external environment, i.e., a synchronization isan internal action. Unless speci�cally stated through an additional restriction operator, anautomaton is allowed not to synchronize with another automaton even though a synchroniza-tion is possible. In the CSP synchronization style two automata must synchronize on theircommon actions and evolve independently on the others. Both in the CCS and CSP styles,communication is achieved through synchronization.In this thesis we adopt the CSP synchronization style, which is essentially the style adoptedin [LT87, Dil88, LV93a]. A technical problem that arises in our framework is that automatamay communicate through their internal actions, while internal actions are not supposed to bevisible. To avoid these unwanted communications, we de�ne a notion of compatibility between40



automata. Two automata A1; A2 are compatible i� int(A1) \ acts(A2) = ; and acts(A1) \int(A2) = ;.The parallel composition of two compatible automata A1; A2, denoted by A1kA2, is theautomaton A such that1. states(A) = states(A1)� states(A2).2. start(A) = start(A1)� start(A2).3. sig(A) = (ext(A1) [ ext(A2); int(A1) [ int(A2)).4. ((s1; s2); a; (s01; s02)) 2 trans(A) i�(a) if a 2 acts(A1), then (s1; a; s01) 2 trans(A1), else s01 = s1, and(b) if a 2 acts(A2), then (s2; a; s02) 2 trans(A2), else s02 = s2.If two automata are incompatible and we want to compose them in parallel, the problemcan be solved easily by renaming the internal actions of one of the automata. The renamingoperation is simple: just rename each occurrence of each action in the action signature and thetransition relation of the given argument automaton. At this point it is possible to understandhow to build a system like the one described in Figure 3-2. Bu�er 1 is obtained from Bu�er byrenaming the actions extract(i) into �(i), and Bu�er2 is obtained from Bu�er by renaming theactions insert(i) into �(i). Then, Bu�er1 and Bu�er2 are composed in parallel, and �nally theactions �(i) are made internal. This last step is achieved through a Hide operation, whose onlye�ect is to change the signature of an automaton.We conclude by presenting two important properties of parallel composition. The �rstproperty concerns projections of executions. Let A = A1kA2, and let (s1; s2) be a state of A.Let i be either 1 or 2. The projection of (s1; s2) onto Ai, denoted by (s1; s2)dAi, is si. Let� = s0a1s1 � � � be an execution of A. The projection of � onto Ai, denoted by �dAi is thesequence obtained from � by projecting all the states onto Ai, and by removing all the actionsnot in acts(Ai) together with their subsequent states.Proposition 3.2.1 Let A = A1kA2, and let � be an execution of A. Then �dA1 is an executionof A1 and �dA2 is an execution of A2.The projection of an execution of A onto one of the components Ai is essentially the view ofAi of the execution �. In other words the projection represents what Ai does in order for A toproduce �. Proposition 3.2.1 states that the view of Ai is indeed something that Ai can do.The second property concerns the trace preorder.Proposition 3.2.2 Let A1 vT A01. Then, for each A2 compatible with both A1 and A01,A1kA2 vT A01kA2.The property expressed in Proposition 3.2.2 is better known as substitutivity or compositionality .In other words vT is a precongruence with respect to parallel composition. Substitutivity is oneof the most important properties that an implementation relation should satisfy. Informally,substitutivity says that an implementation A1 of a system A01 works correctly in any contextwhere A01 works correctly. Substitutivity is also the key idea at the base of modular veri�cationtechniques. 41
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Chapter 4Probabilistic Automata4.1 What we Need to ModelOur main goal is to analyze objects that at any point can evolve according to a probabilitydistribution. The simplest example of a random computation is the process of ipping a coin.Thus, a program may contain an instruction likex := ipwhose meaning is to assign to x the result of a coin ip. From the state-machine point of view,the transition relation of the corresponding automaton should be speci�ed by giving the statesreachable after the coin ip, together with their probability. Thus, the coin ipping processcan be represented by the labeled transition system of Figure 4-1. The edges joining two statesare associated with an action and a weight, where the weight of an edge is the probability ofchoosing that speci�c edge. Thus, we require that for each state that has some outgoing edges,the sum of the weights of the outgoing edges is 1.However, we also need to deal with nondeterminism. Consider a more complicated processwhere a coin is ipped, but where the coin can be either fair, i.e., it yields head with probability1=2, or unfair by yielding head with probability 2=3. Furthermore, suppose that the processemits a beep if the result of the coin ip is head . In this case, the choice of which coin to ipis nondeterministic, while the outcome of the coin ip is probabilistic. The start state shouldenable two separate transitions, each one corresponding to the ip of a speci�c coin. Figure 4-2 represents the nondeterministic coin ipping process. The start state enables two separategroups of weighted edges; each group is identi�ed by an arc joining all of its edges, and theedges of each group form a probability distribution.At this point we may be tempted to ask the following question:
s0

tail

head

1/2

1/2

flip

flipFigure 4-1: The coin ipping process.43



s0

flip

flip

1/2

1/2

flip

flip

tail

beep
head s

1/3
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beepFigure 4-4: A computation of the triggered coin ipping process.buttons can be pressed by an external user. Suppose that pressing one button disables theother button, and suppose that the fair coin is ipped if the button marked fair is pressed,and that the unfair coin is ipped if the button marked unfair is pressed. The new processis represented in Figure 4-3. In this case the scheduler models the external environment, anda user may decide not to press any button, thus not scheduling any transition from s0 eventhough some transition is enabled. An external user may even decide to ip a coin and pressa button only if the coin gives head , or ip a coin and press fair if the coin gives head andpress unfair if the coin gives tail . That is, an external user acts like a scheduler that can userandomization for its choices. If we ask again the question about the probability of beeping, acorrect answer would be\Assuming that beep is scheduled whenever it is enabled, the probability that thetriggered coin ipper beeps, conditional to the occurrence of a coin ip, is between1=2 and 2=3."Suppose now that we resolve all the nondeterminism in the triggered coin ipper of Figure 4-3,and consider the case where the external user presses fair with probability 1=2 and unfairwith probability 1=2. In this case it is possible to study the exact probability that the processbeeps, which is 7=12. Figure 4-4 gives a representation of the outcome of the user we have justdescribed. Note that the result of resolving the nondeterminism is not a linear structure as isthe case for standard automata, but rather a tree-like structure. This structure is our notionof a probabilistic execution and is studied in more detail in Section 4.2.45



4.2 The Basic ModelIn this section we introduce the basic probabilistic model that is used in the thesis. We formalizethe informal ideas presented in Section 4.1, and we extend the parallel composition operatorof ordinary automata to the new framework. We also introduce several notational conventionsthat are used throughout the thesis.4.2.1 Probabilistic AutomataA probabilistic automaton M consists of four components:1. A set states(M) of states.2. A nonempty set start(M) � states(M) of start states.3. An action signature sig(M) = (ext(M); int(M)), where ext(M) and int(M) are disjointsets of external and internal actions, respectively. Denote by acts(M) the set ext(M) [int(M) of actions.4. A transition relation trans(M) � states(M)�Probs((acts(M)�states(M))[f�g). Recallfrom Section 3.1.10 that for each set C, Probs(C) denotes the set of discrete probabilityspaces (
;F ; P ) with no 0-probability elements such that 
 � C. The elements oftrans(M) are referred to as transitions or steps .A probabilistic automaton di�ers from an ordinary automaton only in the transition relation.Each transition represents what in the �gures of Section 4.1 is represented by a group of edgesjoined by an arc. From each state s, once a transition is chosen nondeterministically, theaction that is performed and the state that is reached are determined by a discrete probabilitydistribution. Each transition (s;P) may contain a special symbol �, which represents thepossibility for the system not to complete the transition, i.e., to remain in s without being ableto engage in any other transition.Example 4.2.1 (Meaning of �) To give an idea of the meaning of �, suppose thatM modelsa person sitting on a chair that stands up with probability 1=2. That is, from the start state s0there is a transition of M where one outcome describes the fact that the person stands up andthe other outcome describes the fact that the person does not stand up (this is �). The pointis that there is no instant in time where the person decides not to stand up: there are onlyinstants where the person stands up. What the transition leaving s0 represents is that overallthe probability that the person does the action of standing up is 1=2. The need for � is clari�edfurther in Section 4.2.3, where we study probabilistic executions, and in Section 4.3, where westudy parallel composition.The requirement that the probability space associated with a transition be discrete is imposedto simplify the measure theoretical analysis of probabilistic automata. In this thesis we workwith discrete probability spaces only, and we defer to further work the extension of the theoryto more general probability spaces. The requirement that each transition does not lead to anyplace with probability 0 is imposed to simplify the analysis of probabilistic automata. All theresults of this thesis would be valid even without such a restriction, although the proofs would46



contain a lot of uninteresting details. The requirement becomes necessary for the study of liveprobabilistic automata, which we do not study here.There are two classes of probabilistic automata that are especially important for our analysis:simple probabilistic automata, and fully probabilistic automata.A probabilistic automaton M is simple if for each transition (s;P) of trans(M) there is anaction a of M such that 
 � fag � states(M). In such a case, a transition can be representedalternatively as (s; a;P 0), where P 0 2 Probs(states(M)), and it is called a simple transition withaction a. The probabilistic automata of Figures 4-2 and 4-3 are simple. In a simple probabilisticautomaton each transition is associated with a single action and it always completes. The ideais that once a transition is chosen, then only the next state is chosen probabilistically. Inthis thesis we deal mainly with simple probabilistic automata for a reason that is made clearin Section 4.3. We use general probabilistic automata to analyze the computations of simpleprobabilistic automata.A probabilistic automaton M is fully probabilistic if M has a unique start state, and fromeach state of M there is at most one transition enabled. Thus, a fully probabilistic automatondoes not contain any nondeterminism. Fully probabilistic automata play a crucial role in thede�nition of probabilistic executions.Example 4.2.2 (Probabilistic automata) A probabilistic Turing Machine is a Turing ma-chine with an additional random tape. The content of the random tape is instantiated byassigning each cell the result of an independent fair coin ip (say 0 if the coin gives head and1 if the coin gives tail). If we assume that each cell of the random tape is instantiated onlywhen it is reached by the head of the machine, then a probabilistic Turing machine can berepresented as a simple probabilistic automaton. The probabilistic automaton, denoted by M ,has a unique internal action � , and its states are the instantaneous descriptions of the givenprobabilistic Turing machine; each time the Turing machine moves the head of its random tapeon a cell for the �rst time, M has a probabilistic transition that represents the result of reachinga cell whose content is 0 with probability 1=2 and 1 with probability 1=2.An algorithm that at some point can ip a coin or roll a dice can be represented as a simpleprobabilistic automaton where the ipping and rolling operations are simple transitions. If theoutcome of a coin ip or dice roll a�ects the external behavior of the automaton, then theip and roll actions can be followed by simple transitions whose actions represent the outcomeof the random choice. Another possibility is to represent the outcome of the random choicedirectly in the transition where the random choice is made by performing di�erent actions. Inthis case the resulting probabilistic automaton would not be simple. Later in the chapter weshow why we prefer to represent systems as simple probabilistic automata when possible.4.2.2 Combined TransitionsIn Section 4.1 we argued that a scheduler may resolve the nondeterminism using randomization,i.e., a scheduler can generate a new transition by combining several transitions of a probabilisticautomatonM . We call the result of the combination of several transitions a combined transition.Formally, let M be a probabilistic automaton, and let s be a state of M . Consider a �nite orcountable set f(s;Pi)gi2I of transitions of M leaving from s, and a family of non-negative47



weights fpigi2I such that Pi pi � 1. LetP 4= 0@ Xi2Ijpi>0 piPi1A+  1�Xi2I pi!D(�); (4.1)i.e., P is a combination of discrete probability spaces as described in Section 3.1.7. Thepair (s;P) is called a combined transition of M and is denoted by Pi2I pi(s;Pi). Denoteby ctrans(M) the set of combined transitions of M . Note that trans(M) � ctrans(M).Thus, the combination of transitions can be viewed as a weighted sum of transitions wherethe sum of the weights is at most 1. If the sum of the weights is not 1, then nothing isscheduled by default. The reason for � by default will become clear when we analyze parallelcomposition in Section 4.3. Note that all the transitions (s;Pi) where pi = 0 are discarded inExpression (4.1), since otherwise P would contain elements whose probability is 0. We do notimpose the restriction that each pi is not 0 for notational convenience: in several parts of thethesis the pi's are given by complex expression that sometimes may evaluate to 0.Proposition 4.2.1 The combination of combined transitions of a probabilistic automaton Mis a combined transition of M .Proof. Follows trivially from the de�nition of a combined transition.4.2.3 Probabilistic ExecutionsIf we resolve both the nondeterministic and probabilistic choices of a probabilistic automaton,then we obtain an ordinary execution like those usually de�ned for ordinary automata. Thus, anexecution fragment of a probabilistic automatonM is a (�nite or in�nite) sequence of alternatingstates and actions starting with a state and, if the execution fragment is �nite, ending in a state,� = s0a1s1a2s2 � � � ;where for each i there is a transition (si;Pi+1) of M such that (ai+1; si+1) 2 
i+1. Executions,concatenations of executions, and pre�xes can be de�ned as for ordinary automata.In order to study the probabilistic behavior of a probabilistic automaton, we need a mech-anism to resolve only the nondeterminism, and leave the rest unchanged. That is, we need astructure that describes the result of choosing a transition, possibly using randomization, atany point in history, i.e., at any point during a computation. In Figure 4-4 we have given anexample of such a structure, and we have claimed that it should look like a tree. Here we givea more signi�cant example to justify such a claim.Example 4.2.3 (History in a probabilistic execution) Consider a new triggered coin ip-per, described in Figure 4-5, that can decide nondeterministically to beep or boo if the coin ipyields head , and consider a computation, described in Figure 4-6, that beeps if the user choosesto ip the fair coin, and boos if the user chooses to ip the unfair coin. Then, it is evident thatwe cannot identify the two states head of Figure 4-6 without reintroducing nondeterminism. Inother words, the transition that is scheduled at each point depends on the past history of thesystem, which is represented by the position of a state in the tree. For a formal de�nition of astructure like the one of Figure 4-6, however, we need to refer explicitly to the past history ofa system. 48
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let H be a probabilistic execution fragment of M . Let q0 be the start state of H . For eachextended execution � = q0a1q1 � � � of H , let�# 4= ( q0 a lstate(q0)a1lstate(q1)a2 � � � if � does not end in �,q0 a lstate(q0)a1lstate(q1)a2 � � �anlstate(qn)� if � = q0a1q1 � � �anqn�. (4.2)It is immediate to observe that �# is an extended execution fragment of M . For each extendedexecution fragment � of M such that q0 � �, i.e., � = q0 a s0a1s1 � � �, let�"q0 4= ( q0a1(q0 a s0a1s1)a2(q0 a s0a1s1a2s2) � � � if � does not end in �,q0a1(q0 a s0a1s1) � � �(q0 a s0a1s1 � � �ansn)� if � = q0 a s0a1s1 � � �ansn�. (4.3)It is immediate to observe that �"q0 is an extended execution of some probabilistic executionfragment of M . Moreover, the following proposition holds.Proposition 4.2.2 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q0 be the start state of H. Then, for each extended execution � of H,(�#)"q0 = �; (4.4)and for each extended execution fragment � of M starting with q0,(�"q0)# = �: (4.5)Proof. Simple analysis of the de�nitions.The bottom line is that it is possible to talk about extended executions of H by analyzing onlyextended execution fragments of M .4.2.4 Notational ConventionsFor the analysis of probabilistic automata and of probabilistic executions we need to refer toexplicit objects like transitions or probability spaces associated with transitions. In this sectionwe give a collection of notational conventions that ease the identi�cation of each object.TransitionsWe denote a generic transition of a probabilistic automaton by tr , possibly decorated withprimes and indices. For each transition tr = (s;P), we denote P alternatively by Ptr . If tr is asimple transition, represented by (s; a;P), we abuse notation by denoting P by Ptr as well. Thecontext will always clarify the probability space that we denote. If (s;P) is a transition, we useany set of actions V to denote the event f(a; s0) 2 
 j a 2 V g that expresses the occurrence ofan action from V in P , and we use any set of states U to denote the event f(a; s0) 2 
 j s0 2 Ugthat expresses the occurrence of a state from U in P . We drop the set notation for singletons.Thus, P [a] is the probability that action a occurs in the transition (s;P).If M is a fully probabilistic automaton and s is a state of M , then we denote the uniquetransition enabled from s in M by trMs , and we denote the probability space that appears intrMs by PMs . Thus, trMs = (s;PMs ). We drop M from the notation whenever it is clear fromthe context. This notation is important to handle probabilistic execution fragments.51



Transition Pre�xing and Su�xingThroughout the thesis we use transitions of probabilistic automata and transitions of proba-bilistic execution fragments interchangeably. If H is a probabilistic execution fragment of aprobabilistic automaton M , then there is a strong relation between the transitions of H andsome of the combined transitions of M . We exploit such a correspondence through two oper-ations on transitions. The �rst operation is called transition pre�xing and adds some partialhistory to the states of a transition; the second operation is called transition su�xing and re-moves some partial history from the states of a transition. These operations are used mainlyin the proofs of the results of this thesis.Let tr = (s;P) be a combined transition of a probabilistic automaton M , and let � be a�nite execution fragment of M such that lstate(�) = s. Then the transition � a tr is de�ned tobe (�; � a P). We call the operation �a transition pre�xing .Let tr = (q;P) be a transition of a probabilistic execution fragment H , and let q0 � q. Let.q0 be a function that applied to a pair (a; q00) of 
 returns (a; q00.q0), and applied to � returns�. Let P.q0 denote the result of applying .q0 to P . Then the transition tr.q0 is de�ned to be(q.q0;P.q0). We call the operation .q0 transition su�xing .The following properties concern distributivity of transition pre�xing and su�xing withrespect to combination of transitions.Proposition 4.2.3 LetM be a probabilistic automaton, and let q be a �nite execution fragmentof M .1. q aPi pitr i =Pi pi(q a tr i), where each tr i is a transition of M .2. Pi pitr i.q = Pi pi(tr i.q), where each tr i is a transition of some probabilistic executionfragment of M .Proof. Simple manipulation of the de�nitions.4.2.5 EventsAt this point we need to de�ne formally how to compute the probability of some event ina probabilistic execution. Although it is intuitively simple to understand the probability ofa �nite execution to occur, it is not as intuitive to understand how to deal with arbitraryproperties. A probabilistic execution can be countably branching, and can have uncountablymany executions. As an example, consider a probabilistic execution that at any point draws anatural number n > 0 with probability 1=2n. What is measurable? What is the probability ofa generic event?In this section we de�ne a suitable probability space for a generic probabilistic executionfragment H of a probabilistic automaton M . Speci�cally, given a probabilistic execution frag-ment H we de�ne a probability space PH as the completion of another probability space P 0Hwhich is de�ned as follows. De�ne an extended execution � of H to be complete i� either �is in�nite or � = �0� and � 2 
Hlstate(�0). Then, the sample space 
0H is the set of extendedexecutions of M that originate from complete extended executions of H , i.e.,
0H 4= f�# j � is a complete extended execution of Hg: (4.6)52



The occurrence of a �nite extended execution � of M can be expressed by the setCH� 4= f�0 2 
0H j � � �0g; (4.7)called a cone. We drop H from CH� whenever it is clear from the context. Let CH be the set ofcones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,F 0H 4= �(CH): (4.8)To de�ne a probability measure on F 0H , we start by de�ning a measure �H on CH such that�H(
H) = 1. Then we show that �H can be extended uniquely to a measure ��H on F (CH),where F (CH) is built according to Proposition 3.1.1. Finally we use the extension theorem(Theorem 3.1.2) to show that �H can be extended uniquely to a probability measure P 0H on�(F (CH)) = �(CH).The measure �H(CH� ) of a cone CH� is the product of the probabilities associated with eachedge that generates � in H . Formally, let q0 be the start state of H . If � � q0, then�H(CH� ) 4= 1; (4.9)if � = q0 a s0a1s1 � � �sn�1ansn, then�H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]; (4.10)where for each i, 1 � i < n, qi = q0 a s0a1s1 � � �si�1aisi; if � = q0 a s0a1s1 � � �sn�1ansn�, then�H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]Pqn [�]; (4.11)where for each i, 1 � i � n, qi = q0 a s0a1s1 � � �si�1aisi.Example 4.2.5 (Some commonly used events) Before proving that the construction ofP 0H is correct, we give some examples of events. The set describing the occurrence of an actiona (eventually a occurs) can be expressed as a union of cones of the form C� such that a appearsin �. Moreover, any union of cones can be described as a union of disjoint cones (follows fromLemma 4.2.4 below). Since a probabilistic execution fragment is at most countably branching,the number of distinct cones in CH is at most countable, and thus the occurrence of a can beexpressed as a countable union of disjoint cones, i.e., it is an event of F 0H . More generally, anyarbitrary union of cones is an event. We call such events �nitely satis�able. The reason for theword \satis�able" is that it is possible to determine whether an execution � of 
0H is within a�nitely satis�able event by observing just a �nite pre�x of �. That �nite pre�x is su�cient todetermine that the property represented by the given event is satis�ed.The set describing the non-occurrence of an action a is also an event, since it is the comple-ment of a �nitely satis�able event. Similarly, the occurrence, or non-occurrence, of any �nitesequence of actions is an event. For each natural number n, the occurrence of exactly n a's isan event: it is the intersection of the event expressing the occurrence of at least n a's and theevent expressing the non-occurrence of n+ 1 a's. Finally, the occurrence of in�nitely many a'sis an event: it is the countable intersection of the events expressing the occurrence of at least ia's, i � 0. 53



We now move to the proof that P 0H is well de�ned. First we use ordinal induction to show thatthe function �H de�ned on CH is �-additive, and thus that �H is a measure on CH (Lemma 4.2.6);then we show that there is a unique extension of �H to F (CH) (Lemmas 4.2.7, 4.2.8, and 4.2.9).Finally, we use the extension theorem to conclude that P 0H is well de�ned.Lemma 4.2.4 Let C�1; C�2 2 
H . If �1 � �2 then C�1 � C�2. If �1 � �2 and �2 � �1 thenC�1 \ C�2 = ;.Proof. Simple analysis of the de�nitions.Lemma 4.2.5 Let H be a probabilistic execution of a probabilistic automaton M , and let q bea state of H. Suppose that there is a transition enabled from q in H. Then�H(Cq) = ( P(a;q0)2
Hq �H(Cq0) if � =2 
HqP(a;q0)2
Hq �H(Cq0) + �H(Cq�) if � 2 
Hq : (4.12)Proof. Simple analysis of the de�nitions.Lemma 4.2.6 The function �H is �-additive on CH , and �H(
H) = 1.Proof. By de�nition �H(
0H) = 1, hence it is su�cient to show �-additivity. Let q be anextended execution of M , and let � be a set of incomparable extended executions of M suchthat Cq = [q02�Cq0 . If q ends in �, then � contains only one element and �-additivity istrivially satis�ed. Thus, assume that q does not end in �, and hence q is a state of H , and that� contains at least two elements. From Lemma 4.2.4, q is a pre�x of each extended executionof �. For each state q0 of H , let �q0 be the set fq00 2 � j q0 � q00g. We show �-additivityin two steps: �rst we assign an ordinal depth to some of the states of H and we show that qis assigned a depth; then we show that �H(Cq) = Pq02� �H(Cq0) by ordinal induction on thedepth assigned to q.The depth of each state q0 within some cone Cq00 (q00 � q0), where q00 2 �, is 0, and the depthof each state q0 with no successors is 0. For each other state q0 such that each of its successorshas a depth, if fdepth(q00) j 9a(a; q00) 2 
Hq0 g has a maximum, thendepth(q0) = max (fdepth(q00) j 9a(a; q00) 2 
Hq0 g) + 1; (4.13)otherwise, if fdepth(q00) j 9a(a; q00) 2 
q0g does not have a maximum, thendepth(q0) = sup(fdepth(q00) j 9a(a; q00) 2 
Hq0 g): (4.14)Consider a maximal assignment to the states of H , i.e., an assignment that cannot be extendedusing the rules above, and suppose by contradiction that q is not assigned a depth. Thenconsider the following sequence of states of H . Let q0 = q, and, for each i > 0, let qi be a stateof H such that (ai; qi) 2 
qi�1 , and qi is not assigned a depth. For each i, the state qi existssince otherwise, if there exists an i such that for each (ai; qi) 2 
qi�1 , qi is assigned a depth,then qi�1 would be assigned a depth. Note that the qi's form a chain under pre�x ordering, i.e.,for each i; j, if i � j then qi � qj . Consider the execution �1 = limi qi. From its de�nition, �1is an execution of Cq. Then, from hypothesis, �1 is an execution of [q02�Cq0 , and therefore�1 is an execution of some Cq0 such that q0 2 �. By de�nition of a cone, q0 is a pre�x of �1.54



Thus, q0 = qk for some k � 0. But then qk is within the cone Cq0 , and thus it is assigned depth0. This contradicts the fact that qk is not assigned any depth.Let  be the ordinal depth assigned to q. We show that �H(Cq) = Pq02� �H(Cq0) byordinal induction on . If  = 0, then � is either fqg or fq�g, and the result is trivial. Let be a successor ordinal or a limit ordinal. From Lemma 4.2.5, �H(Cq) = P(a;q0)2
q �H(Cq0)if � =2 
q, and �H (Cq) = P(a;q0)2
q �H(Cq0) + �H(Cq�) if � 2 
q. For each (a; q0) 2 
q,Cq0 = [q002�q0Cq00 . Moreover, for each (a; q0) 2 
q, the depth of q0 is less than . By induction,�H(Cq0) = Pq002�q0 �H(Cq00). Thus, �H(Cq) = P(a;q0)2
qPq002�q0 �H(Cq00) = Pq02� �H(Cq0) if� =2 
q, and �H(Cq) =P(a;q0)2
q Pq002�q0 �H(Cq00) + �H (Cq�) =Pq02� �H(Cq0) if � 2 
q.Lemma 4.2.7 There exists a unique extension �0H of �H to F1(CH).Proof. There is a unique way to extend the measure of the cones to their complements sincefor each �, �H(C�) + �H(
H � C�) = 1. Therefore �0H coincides with �H on the cones andis de�ned to be 1 � �H(C�) for the complement of any cone C�. Since, by the countablybranching structure of H , the complement of a cone is a countable union of cones, �-additivityis preserved.Lemma 4.2.8 There exists a unique extension �00H of �0H to F2(CH).Proof. The intersection of �nitely many sets of F1(CH) is a countable union of cones. Therefore�-additivity enforces a unique measure on the new sets of F1(CH).Lemma 4.2.9 There exists a unique extension �000H of �00H to F3(CH).Proof. There is a unique way of assigning a measure to the �nite union of disjoint sets whosemeasure is known, i.e., adding up their measures. Since all the sets of F3(CH) are countableunions of cones, �-additivity is preserved.Theorem 4.2.10 There exists a unique extension P 0H of �H to the �-algebra F 0H.Proof. By Theorem 3.1.2, de�ne P 0H to be the unique extension of �000H to F 0H .4.2.6 Finite Probabilistic Executions, Pre�xes, Conditionals, and Su�xesWe extend the notions of �niteness, pre�x and su�x to the probabilistic framework. Here weadd also a notion of conditional probabilistic execution which is not meaningful in the non-probabilistic case and which plays a crucial role in some of the proofs of Chapter 5.Finite Probabilistic ExecutionsInformally, �niteness means that the tree representation of a probabilistic execution fragmenthas a �nite depth. Thus, a probabilistic execution fragment H is �nite i� there exists a naturalnumber n such that the length of each state of H is at most n.55
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H jq;FH jq; PH jq) and (
H jCq;FH jCq; PH jCq) are the same probabilityspace (cf. Section 3.1.8). Indeed, the sample sets are the same, the generators are the same, andthe probability measures coincide on the generators. Thus, the following proposition, which isused in Chapter 5, is true.Proposition 4.2.11 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subsetE of 
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2. start(H.q) = min(states(H.q)), where the minimum is taken under pre�x ordering,3. for each state q0 of H 0, trH.qq0 = trHqaq0.q.H.q is called a su�x of H . It is a simple inductive argument to show that H.q is indeeda probabilistic execution fragment of M . Observe that the de�nition of a su�x for ordinaryexecutions is a special case of the de�nition we have just given.Example 4.2.8 (Su�xes) The probabilistic execution fragment H2 of Figure 4-9 is an ex-ample of a su�x. Speci�cally, H2 = H 00.(s0as2), where H 00 is represented in Figure 4-8. Thesu�xing operation essentially extracts the subtree of H 00 that starts with s0as2 and removesfrom each state the pre�x s0as2.It is easy to check that the probability spaces PH.q and PH jq are in a one-to-one correspondencethrough the measurable function f : 
H.q ! 
H jq such that for each � 2 
H.q, f(�) = q a �.The inverse of f is also measurable and associates �.q with each execution � of 
H jq. Thus,directly from Proposition 4.2.11, we get the following proposition.Proposition 4.2.12 Let H be a probabilistic execution fragment of a probabilistic automatonM , and let q be either a state of H, or a pre�x of the start state of H. Then, for each subsetE of 
H.q,1. E 2 FH.q i� (q a E) 2 FH .2. If E is an event, then PH [q a E] = PH [Cq]PH.q[E].4.2.7 Notation for TransitionsIn this section we extend the arrow notation for transitions that is used for ordinary automata.The extension that we present is meaningful for simple transitions only.An alternative representation for a simple transition (s; a;P) of a probabilistic automatonMis s a�! P . Thus, di�erently from the non-probabilistic case, a transition leads to a distributionover states. If P is a Dirac distribution, say D(s0), then we can represent the correspondingtransition by s a�! s0. Thus, the notation for ordinary automata becomes a special case of thenotation for probabilistic automata. If (s; a;P) is a simple combined transition of M , then werepresent the transition alternatively by s a�!C P , where the letter C stands for \combined".The extension of weak transitions is more complicated. The expression s a=) P meansthat P is reached from s through a sequence of transitions of M , some of which are internal.The main di�erence from the non-probabilistic case is that in the probabilistic framework thetransitions involved form a tree rather than a linear chain. Formally, s a=) P , where a is eitheran external action or the empty sequence and P is a probability distribution over states, i�there is a probabilistic execution fragment H such that1. the start state of H is s;2. PH [f�� j �� 2 
Hg] = 1, i.e., the probability of termination in H is 1;3. for each �� 2 
H , trace(�) = a; 58
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0 =f� j �� 2 
Hg, and for each � 2 
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timed framework this problem is even more important since it is feasible to assume that thereis some limit to the number of transitions that can be scheduled in a �nite time. Thus, a morereasonable and intuitive de�nition of a weak transition would require the probabilistic executionfragment H that represent a weak transition not to have any in�nite path. All the results thatwe prove in this thesis are valid for the more general de�nition where H can have in�nite pathsas well as for the stricter de�nition where H does not have any in�nite path. Therefore, we usethe more general de�nition throughout. The reader is free to think of the simpler de�nition toget a better intuition of what happens.An alternative way to represent a weak transition, which is used to prove the theorems ofChapter 8, is by means of a generator . If H represents a weak combined transition, then agenerator can be seen as an object that chooses the combined transitions of M that lead to H(in Chapter 5 this object is also called an adversary). More precisely, a generator is a functionO that associates a weak combined transition of M with each �nite execution fragment ofM . Before stating the formal properties that a generator satis�es, we give an example of thegenerator for the weak transition of Figure 4-10.Example 4.2.11 (Generators) Recall from Section 3.1.10 that U(x; y) denotes the probabil-ity space that assigns x and y probability 1=2 each. Then, the generator for the weak transitionof Figure 4-10 is the function O where O(s�s01as03) = (s03; �;U(s1; s2))O(s�s01) = (s01; a;U(s03; s04)) O(s�s01as04) = (s04; �;D(s2))O(s) = (s; �;U(s01; s02)) O(s�s02) = (s02; �;D(s05)) O(s�s02�s05) = (s05; a;U(s1; s2))and O(�) = (lstate(�);D(�)) for each � that is not considered above. The layout of thede�nition above reects the shape of the probabilistic execution fragment of Figure 4-10.Thus, if we denote the probabilistic execution fragment of Figure 4-10 byH , O is the functionthat for each state q ofH gives the combined transition ofM that corresponds to trHq . FunctionO is also minimal in the sense that it returns a transition di�erent from (lstate(q);D(�)) onlyfrom those states q that are relevant for the construction of H . We call active all the states ofH that enable some transition; we call reachable all the reachable states of H ; we call terminalall the states q of H such that � 2 
Hq .Let M be a probabilistic automaton and let s be a state of M . A generator for a weak(combined) transition s a�ext(M)=) P of M is a function O that associates a (combined) transitionof M with each �nite execution fragment of M such that the following conditions are satis�ed.1. If O(�) = (s0;P), then s0 = lstate(�). Call � active if P 6= D(�).2. If �bs0 is active, then fstate(�) = s and (b; s0) 2 
O(�).3. Call � reachable i� either � = s or � = �0bs0 and (b; s0) 2 
O(�0). Call � terminal i� � isreachable and PO(�as0)[�] > 0. Then, for each terminal �, the trace of � is a � ext(M).4. For each reachable execution fragment � = sa1s1a2s2 � � �aksk , letPO� 4= Y0�i<k PO(sa1s1 ���aisi)[(ai+1si+1)];60



Then,
 = flstate(�) j terminal(�)g;and for each s0 2 
,P [s0] = X�jlstate(�)=s0;terminal(�)PO� PO(�)[�]:Condition 1 says that the transition that O(�) returns is a legal transition ofM from lstate(�);Condition 2 guarantees that the active execution fragments are exactly those that are relevantfor the weak transition denoted by O; Condition 3 ensures that the weak transition representedby O has action a � ext(M); Condition 4 computes the probability space reached in the tran-sition represented by O, which must coincide with P . The term PO� represents the probabilityof performing � if O resolves the nondeterminism in M . Observe that terminal execution frag-ments must be reachable with probability 1 if we want the structure computed in Condition 4to be a probability space.Proposition 4.2.13 There is a weak combined transition s a=) P of M i� there is a functionO that satis�es the �ve conditions of the de�nition of a generator.Proof. Simple analysis of the de�nitions.4.3 Parallel CompositionIn this section we extend to the probabilistic framework the parallel composition operator andthe notion of a projection of ordinary automata. The parallel composition of simple probabilisticautomata can be de�ned easily by enforcing synchronization on the common actions as in thenon-probabilistic case; for general probabilistic automata, however, it is not clear how to givea synchronization rule. We discuss the problems involved at the end of the section.4.3.1 Parallel Composition of Simple Probabilistic AutomataTwo probabilistic automata M1 and M2 are compatible i�int(M1) \ acts(M2) = ; and acts(M1) \ int(M2) = ;.The parallel composition of two compatible simple probabilistic automataM1 and M2, denotedby M1kM2, is the simple probabilistic automaton M such that1. states(M) = states(M1)� states(M2).2. start(M) = start(M1)� start(M2).3. sig(M) = (ext(M1) [ ext(M2); int(M1) [ int(M2)).4. ((s1; s2); a;P) 2 trans(M) i� P = P1 
 P2 where61
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(s1;2; s2;1) have the same projection onto M1, and thus the transition leaving s1;2 in H1is s1;2 a�! s1;4. From the point of view of M1, there is just a transition s1;2 a�! s1;4;nothing is visible about the behavior of M2.To give a better idea of what we mean by \visible", suppose that M1 is a student whohas to write a report and suppose that the report can be written using a pen (actionc) or using a pencil (action b). Suppose that the teacher may be able to get a pencileraser (action d) and possibly erase the report written by the student once it is ready forgrading. Then the scheduler is an arbiter who gives the student a pen if the teacher getsan eraser. If the student starts in state s1;2, then from the point of view of the studentthe material for the report is prepared (action a), and then the arbiter gives the studenta pen with probability 1=2 and a pencil with probability 1=2; nothing is known about thetime the the arbiter made the choice and the reason for which the choice was made. Wecan also think of the student as being alone in a room and the arbiter as being a personwho brings to the student either a pen or a pencil once the material for the report isready.The detailed computation of the transition leaving from s1;2 in H1 works as follows: westart from state (s1;2; s2;0), which is the �rst state reached in H where M1 is in s1;2, andwe analyze its outgoing edges. We include directly all the edges labeled with actions ofM1 in the transition leaving s1;2; for the other edges, we move to the states that theylead to, in our case (s1;2; s2;1), and we repeat the same procedure keeping in mind thatthe probability of the new edges must be multiplied by the probability of reaching thestate under consideration. Thus, the edge labeled with a that leaves (s1;2; s2;0) is givenprobability 1=2 since its probability is 1=2, and the edge that leaves (s1;2; s2;1) is givenprobability 1=2 since the probability of reaching (s1;2; s2;1) from (s1;2; s2;0) is 1=2.s1;4 For the transition leaving s1;4, we observe that inH there are two states, namely (s1;4; s2;0)and (s1;4; s2;1), that can be reached separately and whose �rst component is s1;4. Eachone of the two states is reached in H with probability 1=4. The di�erence between thecase for state s1;2 and this case is that in the case for s1;2 state (s1;2; s2;0) occurs before(s1;2; s2;1), while in this case there is no relationship between the occurrences of (s1;4; s2;0),and (s1;4; s2;1). The transition leaving s1;4 depends on the state of M2 which, conditionalon M1 being in s1;4, is 1=2 for s2;0 and 1=2 for s2;1. Thus, from the point of view of M1,since the state of M2 is unknown, there is a transition from s1;4 that with probability 1=2leads to the occurrence of action b and with probability 1=2 leads to the occurrence ofaction c. Essentially we have normalized to 1 the probabilities of states (s1;4; s2;0) and(s1;4; s2;1) before considering their e�ect on M1.s1;1 The transition leaving s1;1 shows why we need the symbol � in the transitions of a proba-bilistic automaton. From state (s1;1; s2;0) there is a transition where action b occurs withprobability 1=2 and action � occurs with probability 1=2. After � is performed, nothingis scheduled. Thus, from the point of view of M1, nothing is scheduled from s1;1 withprobability 1=2; the transition of M2 is not visible by M1.63



Action Restricted TransitionsThe formal de�nition of a projection relies on a new operation on transitions, called actionrestriction, which is used also in several other parts of the thesis. The action restriction op-eration allows us to consider only those edges of a transition that are labeled with actionsfrom a designated set V . For example, V could be the set of actions of a speci�c probabilisticautomaton.Formally, let M be a probabilistic automaton, V be a set of actions of M , and tr = (s;P)be a transition of M . The transition tr restricted to actions from V , denoted by tr � V , isthe pair (s;P 0) where P 0 is obtained from P by considering only the edges labeled with actionsfrom V and by normalizing their probability to 1, i.e.,� 
0 = ( f(a; s0) 2 
 j a 2 V g if P [V ] > 0f�g otherwise� if P [V ] > 0, then for each (a; s0) 2 
0, P 0[(a; s0)] = P [(a; s0)]=P [V ].Two properties of action restriction concern commutativity with transition pre�xing, and dis-tributivity with respect to combination of transitions. These properties are used in the proofsof other important results of this thesis. The reader may skip the formal statements for themoment and refer back to them when they are used.Proposition 4.3.1 For each q and tr such that one of the expressions below is de�ned,q a (tr � V ) = (q a tr ) � V:Proof. Simple manipulation of the de�nitions.Proposition 4.3.2 Let ftigi2I be a collection of transitions leaving from a given state s, andlet fpigi2I be a collection of real numbers between 0 and 1 such that Pi2I pi � 1. Let V be aset of actions. Then(Xi pitr i) � V =Xi piPtr i [V ]Pi piPtr i [V ] (tr i � V );where we use the convention that 0=0 = 0.Proof. Let(s;P) 4= Xi pitr i; (4.15)(s;P 0) 4= (Xi pitr i) � V; (4.16)(s;P 00) 4= Xi piPtr i [V ]Pi piPtri [V ](tr i � V ): (4.17)We need to show that P 0 and P 00 are the same probability space.64



If P [V ] = 0, then both P 0 and P 00 are D(�) and we are done. Otherwise, observe thatneither 
0 nor 
00 contain �. Consider any pair (a; s0). Then,(a; s0) 2 
0i� (a; s0) 2 
 and a 2 V from (4.16) and (4.15)i� 9i(a; s0) 2 
tr i ; pi > 0; and a 2 V from (4.15)i� 9i(a; s0) 2 
tr i�V and pi > 0 from the de�nition of tr i � Vi� (a; s0) 2 
00 from (4.17).Consider now a pair (a; s0) of 
0. From the de�nition of action restriction and (4.16),P 0[(a; s0)] = P [(a; s0)]=P [V ]: (4.18)From the de�nition of P (Equation (4.15)), the right side of Equation 4.18 can be rewritteninto Xi piPi piPtr i [V ]Ptr i [(a; s0)]; (4.19)where Pi piPtri [V ] is an alternative expression of P [V ] that follows directly from (4.16). Bymultiplying and dividing each ith summand of Expression 4.19 by Ptri [V ], we obtainXi piPtr i [V ]Pi piPtr i [V ] (Ptri [(a; s0)]=Ptri [V ]): (4.20)Since Ptri [(a; s0)]=Ptri [V ] = Ptr i�V [(a; s0)], from the de�nition of P 00 (Equation (4.17)), Expres-sion 4.20 can be rewritten into P 00[(a; s0)]. Thus, P 0[(a; s0)] = P 00[(a; s0)]. This is enough toshow that P 0 = P 00.De�nition of ProjectionWe give �rst the formal de�nition of a projection, and then we illustrate its critical parts byanalyzing the example of Figures 4-12 and 4-13. It is very important to understand Expres-sions (4.21) and (4.22) since similar expressions will be used in several other parts of the thesiswithout any further explanation except for formal proofs.Let M = M1kM2, and let H be a probabilistic execution fragment of M .Let tr = (q;P) be an action restricted transition of H such that only actions ofMi, i = 1; 2,appear in tr . De�ne the projection operator on the elements of 
 as follows: (a; q0)dMi =(a; q0dMi), and �dMi = �. Recall from Section 3.1.5 that the projection can be extendedto discrete probability spaces. The projection of tr onto Mi, denoted by trdMi, is the pair(qdMi;PdMi).The projection of H onto Mi, denoted by HdMi, is the fully probabilistic automaton H 0such that1. states(H 0) = fqdMi j q 2 states(H)g;2. start(H 0) = fqdMi j q 2 start(H)g;3. sig(H 0) = sig(Mi); 65



4. for each state q of H 0, let qeH be the set of states of H that projected onto Mi give q,and let min(qeH) be the set of minimal states of qeH under pre�x ordering. For eachq0 2 (qeH), let�pqeHq0 4= PH [C�q]Pq002min(qeH) PH [Cq00] : (4.21)The transition enabled from q in H 0 istrH 0q 4= Xq02qeH �pqeHq0 PHq0 [acts(Mi)](trHq0 � acts(Mi))dMi: (4.22)Each summand of Expression 4.22 corresponds to the analysis of one of the states of H that caninuence the transition enabled from q in H 0. The subexpression (trHq0 � acts(Mi))dMi selectsthe part of the transition leaving from q0 where Mi is active, and projects onto Mi the targetstates of the selected part; the subexpression �pqeHq0 PHq0 [acts(Mi)] expresses the probability withwhich q0 inuences the transition enabled from q. PHq0 [acts(Mi)] is the probability that trHq0 doessomething visible byMi, and �pqeHq0 is the probability of being in q0 conditional on Mi being in q.Its value is given by Expression 4.21 and can be understood as follows. The state q0 is either aminimal state of qeH or is reached from a minimal state through a sequence of edges with actionsnot in acts(Mi). The probability of being in q0, conditional on Mi being in q, is the normalizedprobability of being in the minimal state of qeH that precedes q0 multiplied by the probabilityof reaching q0 from that minimal state. We encourage the reader to apply Expression (4.22) tothe states s1;0; s1;1; s1;2, and s1;4 of Figure 4-13 to familiarize with the de�nition. As examples,observe that min((s1;0bs1;2)eH) = f(s1;0; s2;0)b(s1;2; s2;0)g and that min((s1;0bs1;2as1;4)eH) =f(s1;0; s2;0)b(s1;2; s2;0)a(s1;4; s2;0); (s1;0; s2;0)b(s1;2; s2;0)d(s1;2; s2;1)a(s1;4; s2;1)g.If we analyze the state s1;3 of Figure 4-13 and we use Expression 4.22 to compute thetransition leaving s1;3, then we discover that the sum of the probabilities involved is not 1.This is because there is a part of the transition leaving (s1;3; s2;0) where no action of M1 everoccurs. From the point of view of M1 nothing is scheduled; this is the reason of our choice ofdeadlock by default in the de�nition of the combination of transitions (cf. Section 4.2.2).We now move to Proposition 4.3.4, which is the equivalent of Proposition 3.2.1 for theprobabilistic framework. Speci�cally, we show that the projection of a probabilistic executionfragment H of M1kM2 onto one of its components Mi is a probabilistic execution fragmentof Mi. Proposition 3.2.1 is important because it shows that every computation of a parallelcomposition is the result of some computation of each of the components. One of the reasonsfor our use of randomized schedulers in the model is to make sure that Proposition 3.2.1 isvalid. Before proving this result, we show that its converse does not hold, i.e., that there arestructures that look like a probabilistic execution, that projected onto each component give aprobabilistic execution of a component, but that are not probabilistic executions themselves.Example 4.3.1 (Failure of the converse of Proposition 4.3.4) Consider the probabilis-tic automata of Figure 4-14.a, and consider a potential probabilistic execution of the composi-tion as represented in Figure 4-14.b. Denote the two probabilistic automata of Figure 4-14.a byM1 andM2, and denote the structure of Figure 4-14.b by H . The projections of H ontoM1 and66
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b) A potential probabilistic execution of the composition.Figure 4-14: A counterexample to the converse of the projection proposition.M2 give a probabilistic execution of M1 and M2, respectively. The diagrams of Figure 4-14.acan be viewed as the projections of H as well. However, H is not a probabilistic execution ofM1kM2 since in no place of M1 it is possible to have a Dirac transition to s1 or s2.The rest of this section is dedicated to the proof of the proposition that corresponds to Propo-sition 3.2.1 and to the proof of an additional result (Proposition 4.3.5) that gives a meaning tothe denominator of Expression (4.21). We �rst state two preliminary properties of projectionof transitions (Proposition 4.3.3).Proposition 4.3.3 Let M = M1kM2. Then, for i = 1; 2,1. (Pj pjtr j)dMi =Pj pj(tr jdMi).2. (q a tr)dMi = (qdMi) a trdMi.Proof. Simple manipulation of the de�nitions.Proposition 4.3.4 Let M = M1kM2, and let H be a probabilistic execution fragment of M .Then HdM1 2 prexec(M1) and HdM2 2 prexec(M2).Proof. We show that HdM1 2 prexec(M1); the other statement follows from a symmetricargument. Let H1 denote HdM1. From Proposition 3.2.1, the states of H1 are executionfragments of M1.Consider now a state q of H1. We need to show that there is a combined transition tr ofM1 that corresponds to trH1q , i.e., such that trH1q = q a tr . From Propositions 4.2.1 and 4.2.3,it is su�cient to show that for each state q0 of qeH , there is a combined transition tr(q0) of M1such that(trHq0 � acts(M1))dM1 = q a tr(q0): (4.23)67



Then, the transition tr would betr = Xq02qeH �pqeHq0 PHq0 [acts(Mi)]tr(q0): (4.24)Proposition 4.2.1 is used to show that tr is a combined transition of M1; Proposition 4.2.3 isused to show that q a tr = trH1q . Since H is a probabilistic execution fragment of M , for eachstate q0 of qeH there exists a combined transition tr 0(q0) of M such thattrHq0 = q0 a tr 0(q0): (4.25)From the de�nition of a combined transition, there is a collection of transitions ftr 0(q0; i)gi2Iof M , and a collection of probabilities fpigi2I , such thattr 0(q0) =Xi pitr 0(q0; i): (4.26)Note that each transition tr 0(q0; i) is a simple transition. From the de�nition of action restrictionand (4.26), there is a subset J of I , and a collection of non-zero probabilities fp0jgj2J , such thattr 0(q0) � acts(M1) =Xj p0jtr 0(q0; j): (4.27)If we apply transition pre�x with q0 to both sides of Equation 4.27, we use commutativityof action restriction with respect to transition pre�xing (Proposition 4.3.1) and (4.25) on theleft expression, and we use distributivity of transition pre�xing with respect to combination oftransitions (Proposition 4.2.3) on the right expression, then we obtaintrHq0 � acts(M1) =Xj p0j �q0 a tr 0(q0; j)� : (4.28)By projecting buth sides of (4.28) ontoM1, and using distributivity of projection with respect tocombination of transitions (Proposition 4.3.3) and commutativity of projection and transitionpre�xing (Proposition 4.3.3) on the right expression, we obtain(trHq0 � acts(M1))dM1 =Xj p0j �q a (tr 0(q0; j)dM1)� : (4.29)From the distributivity of transition pre�xing with respect to combination of transitions (Propo-sition 4.2.3), Equation 4.29 becomes(trHq0 � acts(M1))dM1 = q aXj p0j(tr 0(q0; j)dM1): (4.30)From standard properties of the projection of product probability distributions (cf. Sec-tion 3.1.6) and the de�nition of parallel composition, each tr 0(q0; j)dM1 is a transition of M1.Thus, Pj p0j tr 0(q0; j)dM1 is the combined transition of M1 that satis�es Equation 4.23.Finally, we need to show that each state q of H1 is reachable. This is shown by inductionon the length of q, where the base case is the start state of H1. The start state of H1 istrivially reachable. Consider a state qas of H1. By induction, q is reachable. Let q0 be aminimal state of (qas)eH . Then, q0 = q00a(s; s2), where q00 is a state of qeH and s2 is a state68



of M2. Moreover, (a; q0) 2 
trHq00 , and thus, (a; qas) 2 
(trHq00�acts(M1))dM1. Since no edges withprobability 0 are allowed in a probabilistic automaton, the term �pqeHq00 PHq00 [acts(Mi)] is not 0,and thus (a; qas) 2 
H1q . This means that qas is reachable.We conclude this section with another property of projections that gives a meaning to thedenominator of Expression (4.21). Speci�cally, the proposition below allows us to compute theprobability of a �nitely satis�able event of the projection of a probabilistic execution fragmentH by computing the probability of a �nitely satis�able event of H . Observe that the rightexpression of (4.31) is indeed the denominator of (4.21).Proposition 4.3.5 Let M = M1kM2, and let H be a probabilistic execution fragment of M .Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,PHi [Cq] = Xq02min(qeH)PH [Cq0]: (4.31)Proof. The proof is by induction on the length of q, where the base case is for the start stateof Hi. If q is the start state of Hi, then the start state of H is the only minimal state of qeH .Both the cones denoted by the two states have probability 1.Consider now the case for qas. From the de�nition of the probability of a cone,PH1 [Cqas] = PH1 [Cq]PH1q [(a; qas)]: (4.32)By using Expression 4.22 and the de�nitions of action restriction and projection, the termPH1q [(a; qas)] can be rewritten intoXq02qeH �pqeHq0 PHq0 [acts(Mi)]0B@ Xq002(qas)eH j(a;q00)2
Hq0 PHq0 [(a; q00)]=PHq0 [acts(Mi)]1CA ; (4.33)which becomesXq02qeH �pqeHq0 0B@ Xq002(qas)eH j(a;q00)2
Hq0 PHq0 [(a; q00)]1CA ; (4.34)after simplifying the term PHq0 [acts(Mi)]. The case when PHq0 [acts(Mi)] = 0 is not a problemsince the innermost sum of Expression 4.33 would be empty. By expanding �pqeHq0 in Expres-sion 4.34 with its de�nition (Equation 4.21), applying induction to PH1 [Cq] in Expression 4.32,and simplifying algebraically, Equation 4.32 can be rewritten intoPH1 [Cqas] = Xq02qeH Xq002(qas)eH j(a;q00)2
Hq0 PH [Cq0]PHq0 [(a; q00)]: (4.35)Indeed, the denominator of the expansion of �pqeHq0 coincides with the expansion of PH1 [Cq].From the de�nition of the probability of a cone, the terms PH [Cq0]PHq0 [(a; q00)] that appearin Equation 4.35 can be rewritten into PH [Cq00].69



Consider now one of the states q00 of the right side of Equation 4.35. Then q00dMi = qas, andthere exists a state q0 of qeH such that (a; q00) 2 
q0 . This means that q00 can be expressed asq0as0 for some state s0 ofM . Since q0dMi = q, then q00 is a minimal state of (qas)eH . Conversely,let q00 be a minimal state of (qas)eH . Then q00 can be expressed as q0as0 for some state q0 of Hand some state s0 of M (otherwise q00 would not be minimal). Moreover, q0 is a state of qeHand (a; q00) 2 
Hq0 . Thus, q00 is considered in Equation 4.35. Finally, each minimal state q00 of(qas)eH is considered at most once in Equation 4.35, since there is at most one state q0 in Hsuch that (a; q00) 2 
Hq0 . Thus, Equation 4.35 can be rewritten intoPH1 [Cqas] = Xq002min((qas)eH)PH [Cq00]; (4.36)which is what we needed to show.4.3.3 Parallel Composition for General Probabilistic AutomataIn this section we give an idea of the problems that arise in de�ning parallel composition forgeneral probabilistic automata. The discussion is rather informal: we want to give just an ideaof why our intuition does not work in this case.The main problem that needs to be addressed is to choose when two transitions shouldsynchronize and how the synchronization would occur. We analyze the problem through sometoy examples. Consider two probabilistic automata M1;M2 with no internal actions and suchthat ext(M1) = fa; b; c; dg and ext(M2) = fa; b; c; eg. Let (s1; s2) be a reachable state ofM1kM2,and consider the following cases.1. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability1=2 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; b probability 1=2 to occur.
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2 2If we choose not to synchronize tr1 and tr2, then the only transitions that can be syn-chronized are the simple transitions, leading to a trivial parallel composition operatorthat does not handle any kind of transition with probabilistic choices over actions. Thetransitions tr1 and tr2 cannot be scheduled even independently, since otherwise the CSPsynchronization style would be violated.If we choose to synchronize tr1 and tr2, then both M1 and M2 choose an action betweena and b. If the actions coincide, then there is a synchronization, otherwise we have twopossible choices in our de�nition: either the system deadlocks, or the random draws arerepeated. The �rst approach coincides with viewing each probabilistic automaton as de-ciding its next action probabilistically independently of the other interacting automaton;the second approach is the one outlined in [GSST90], where essentially deadlock is notallowed, and assumes some dependence between the involved probabilistic automata.For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize;however, we leave unspeci�ed the way in which tr1 and tr2 synchronize.70



2. Suppose that from state s1 of M1 there is a transition tr1 giving actions a; b probability1=2 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; c probability 1=2 to occur.
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cNote that actions a; b and c are all in common between M1 and M2. If we choose notto synchronize tr1 and tr2, then only transitions involving the same sets of actions cansynchronize. However, we have the same problem outlined in Case 1, where neither tr 1,nor tr2 can be scheduled independently.If we choose to synchronize tr1 and tr2, then, since a is the only action that is in commonbetween tr1 and tr2, the only action that can occur is a. Its probability is either 1 or 1=4depending on how the synchronization in Case 1 is resolved. However, in both cases theonly action that appears in the sample space of the composite transition is a.For the rest of the discussion we assume that the transitions tr1 and tr2 do synchronize.Once again, we leave unspeci�ed the way in which tr1 and tr2 synchronize.3. Suppose that from state s1 ofM1 there is a transition tr1 giving actions a; b; d probability1=3 to occur, and suppose that from state s2 of M2 there is a transition tr2 giving actionsa; b; e probability 1=3 to occur.
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eIn this case each transition has some actions that are in common between M1 and M2,and some actions that are not in common.If we choose not to synchronize tr1 and tr2, then, beside the fact that tr1 and tr2 could notbe scheduled independently, the parallel composition operator would not be associative.Consider two new probabilistic automata M 01;M 02 with the same actions as M1 and M2,respectively. Suppose that from state s01 of M 01 there is a transition tr 01 giving actions a; bprobability 1=2 to occur, and suppose that from state s02 of M 02 there is a transition tr 02giving actions a; b probability 1=2 to occur.
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2 2tr : s’ ’ ’ ’If we consider (M 01kM1)k(M2kM 02), then in state ((s01; s1); (s2; s02)) tr 1 would synchronizewith tr 01 leading to a transition that involves actions a and b only, tr2 would synchronizewith tr 02 leading to a transition that involves actions a and b only, and the two new71



transitions would synchronize because of Case 1, leading to a transition that involvesactions a and b. If we consider (M 01k(M1kM2))kM 02, then in state ((s01; (s1; s2)); s02) tr1and tr2 would not synchronize, and thus associativity is broken.If we choose to synchronize tr1 and tr2, then problems arise due to the presence of actionsthat are not in common between M1 and M2. In particular we do not know what to do ifM1 draws action d and M2 draws action e, or if M1 draws action d and M2 draws actiona. Since we do not want to assume anything about the respective probabilistic behaviorsof M1 and M2, at least the �rst case is an evident case of nondeterminism.However, even by dealing with the �rst case above by means of nondeterminism, onlyone of actions d; e can be performed. Suppose that d is chosen, and thus M1 performs atransition while M2 does not. What happens to M2? Is action e supposed to be chosenalready after d is performed? Otherwise, what is the probability for e to occur? At thispoint we do not see any choice that would coincide with any reasonable intuition aboutthe involved systems.In the second case we are sure that action a cannot occur. Does this mean that action doccurs for sure? Or does this mean that a deadlock can occur? With what probabilities?Once again, intuition does not help in this case.The main problem, which is evident especially from Case 3, is that we do not know who is incontrol of a system, and thus, whenever there is a conict that is not solved by nondeterminismalone, we do not know what probability distribution to use to resolve the conict. However,if we decorate probabilistic automata with some additional structure that clari�es who is incontrol of what actions [LT87], then parallel composition can be extended safely to some formsof general probabilistic automata, where the external actions are partitioned into input andoutput actions, the transitions that contain some input action are simple transitions, and inputactions are enabled from every state (cf. Section 13.2.2). An observation along this line appearsin [WSS94].4.4 Other Useful OperatorsThere are two other operators on probabilistic automata that should be mentioned, since theyare used in general on ordinary automata. In this section we provide a short description ofthose operators. Since the relative theory is simple, this is the only point where we mentionthese operators during the development of the probabilistic model.4.4.1 Action RenamingLet � be a one-to-one function whose domain is acts(M). De�ne Rename�(M) to be theprobabilistic automaton M 0 such that1. states(M 0) = states(M).2. start(M 0) = start(M).3. sig(M 0) = (�(ext(M)); �(int(M))). 72



4. (s;P) 2 trans(M 0) i� there exists a transition (s;P 0) of M such that P = �0(P 0), where�0((a; s0)) = (�(a); s0) for each (a; s0) 2 
0, and �0(�) = �.Thus, the e�ect of Rename� is to change the action names of M . The restriction on � to beone-to-one can be relaxed as long as internal and external actions are not mixed, i.e., there isno pair of actions a; b where a is an external action, b is an internal action, and �(a) = �(b).4.4.2 Action HidingLet M be a probabilistic automaton, and let I be a set of actions. Then HideI(M) is de�nedto be a probabilistic automaton M 0 that is the same as M , except thatsig(M 0) = (ext(M)� I; int(M) [ I):That is, the actions in the set I are hidden from the external environment.4.5 DiscussionThe generative model of probabilistic processes of van Glabbeek et al. [GSST90] is a specialcase of a fully probabilistic automaton; simple probabilistic automata are partially capturedby the reactive model of [GSST90] in the sense that the reactive model assumes some formof nondeterminism between di�erent actions. However, the reactive model does not allownondeterministic choices between transitions involving the same action. By restricting simpleprobabilistic automata to have �nitely many states, we obtain objects with a structure similar tothat of the Concurrent Labeled Markov Chains of [Han91]; however, in our model we do not needto distinguish between nondeterministic and probabilistic states. In our model nondeterminismis obtained by means of the structure of the transition relation. This allows us to retain mostof the traditional notation that is used for automata.Our parallel composition operator is de�ned only for simple probabilistic automata, and thusa natural objection is that after all we are dealing just with the reactive model. Furthermore,the reactive model is the least general according to [GSST90]. Although we recognize that oursimple probabilistic automata constitute a restricted model and that it would be desirable toextend the parallel composition operator to general probabilistic automata, we do not think thatit is possible to use the classi�cation of [GSST90] to judge the expressivity of simple probabilisticautomata. The classi�cation of [GSST90] is based on a synchronous parallel composition, whileour parallel composition is based on a conservative extension of the parallel composition of CSP[Hoa85]. Furthermore, in the classi�cation of [GSST90] a model is more general if it containsless nondeterminism, while in our model nondeterminism is one of the key features.
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Chapter 5Direct Veri�cation: Stating aPropertyThis chapter presents a method to study the properties that a probabilistic automaton satis�es.We describe how an informally stated property can be made rigorous, and we show how simplestatements can be combined together to give more complex statements. In Chapter 6 we developtechniques to prove from scratch that a probabilistic automaton satis�es a given property.Part of this chapter is based on discussion with Isaac Saias who provided us with themotivations for the de�nition of progress statements (Section 5.5) and for the statement of theconcatenation theorem (Theorem 5.5.2).5.1 The Method of AnalysisIf we read through the papers on randomized algorithms and we look at the statements ofcorrectness, we see claims like\Whenever the algorithm X starts in a condition Y , no matter what the adversarydoes, the algorithm X achieves the goal Z with probability at least p."For convenience, denote the statement above by S. A possible concrete instantiation of S isthe following:\Consider a distributed system X, composed of n processors, that provides servicesunder request and suppose that some request R comes. Then, independently of therelative order in which the n processors complete their operations (no matter whatthe adversary does), a response to R is given eventually (the goal Z) with probabilityat least 2=3.Let us try to understand the meaning of the statement S. First of all, in S there is an entity,called adversary , that a�ects the performance of algorithm X . The adversary is seen as amalicious entity that degrades the performance of X as much as possible.If X is a distributed algorithm that runs on n separate processes, then the adversary is theentity that chooses what process performs the next transition, and possibly what the externalenvironment does. To account for all the possible ways to schedule processes, the adversary75
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R 1Figure 5-1: A toy resource allocation protocol.bases its choices on a complete knowledge of the state of a system, including its past history. Ifthe algorithm is represented as a probabilistic automaton, then an adversary is the object thatresolves the nondeterminism. In other words, an adversary is a scheduler seen as a maliciousentity.However, not all the schedulers guarantee in general that some speci�c property is satis�ed.For example, an adversary is usually required to be fair to all the processes of a system inorder to guarantee progress. In other cases, an adversary is not allowed to base its choices on acomplete knowledge of the history of a system: the correctness of an algorithm may rely on theadversary not to use the results of previous random draws in choosing the next process to bescheduled. Thus, in the statement S there is usually an implicit assumption that an adversaryhas some limitations.Example 5.1.1 (A toy resource allocation protocol) Figure 5-1 illustrates a toy scenariowhere correctness is guaranteed only for adversaries that do not know the outcome of the randomdraws of the processes. Two processes M1 and M2 compete for two resources R1 and R2. Eachprocess continuously runs through the following cycle:1. ip a coin to choose a resource;2. if the chosen resource is free, then get it;3. if you hold the resource, then return it.That is, each process continuously tries to get a randomly chosen resource and then returns it,possibly after using the resource. Of course this is a stupid protocol, but it highlights severalaspects of randomized distributed algorithms. Suppose every adversary to be fair, meaningthat both processes perform in�nitely many transitions. A malicious adversary can create asituation where M1 never succeeds in obtaining a resource with an arbitrarily high probability.The adversary works as follows. Fix an arbitrary probability p such that 0 < p < 1, and considera collection of probabilities fpigi2N such that Qi pi = p. We know that such a collectionof probabilities exists. Then the adversary works in rounds, where at round i the followinghappens:a. M1 is scheduled until it ips its coin;b. M2 is scheduled for su�ciently many times so that it gets the resource chosen by M1with probability at least pi (�nitely many times are su�cient). As soon as M2 gets theresource chosen by M1 the control goes to c;76



c. M1 is scheduled to check its resource and fails to get it.In this case M1 fails to obtain a resource with probability at least p. On the other hand, ifan adversary is not allowed to base its choices on the outcome of the coin ips, or better,if an adversary chooses the next process that performs a transition based only on the orderin which processes were scheduled in the past, then each process eventually gets a resourcewith probability 1 (this fact is proved in Section 6.6). Such an adversary is called an obliviousadversary or an o�-line scheduler .Let us move back to the problem of understanding the statement S. Consider a valid adversaryA, i.e., an adversary that satis�es the limitations that are implicitly assumed for S. Let Mbe a probabilistic automaton that describes algorithm X , and consider an arbitrary startingpoint q for M , i.e., q is a �nite execution fragment of M that describes a partial evolution ofM . If we let A resolve the nondeterminism in M starting from the knowledge that q occurred,then we obtain a probabilistic execution fragment of M , which we denote by prexec(M;A; q).According to S, if q satis�es condition Y , then prexec(M;A; q) should satisfy property Z withprobability at least p. However, Z is a property of M , and not a property of prexec(M;A; q).Thus, we need a way to associate with prexec(M;A; q) the event that expresses Z. The objectthat does this operation is called an event schema. At this point it is possible to formalize Sby stating the following:\For each valid adversary A and each valid starting condition q, the probability ofthe event associated with prexec(M;A; q) is at least p."This is an example of what we call a probabilistic statement .A probabilistic statement that plays an important role in our analysis is denoted byU �!p Advs U 0; (5.1)where U and U 0 are sets of states, p is a probability, and Advs is a set of adversaries. We callsuch a statement a progress statement . Its meaning is that if a protocol starts from a state ofU , then, no matter what adversary of Advs is used to resolve the nondeterminism, some state ofU 0 is reached with probability at least p. A progress statement is a probabilistic generalizationof the leads-to operator of UNITY [CM88].Example 5.1.2 It is possible to show (cf. Section 6.6) that the toy resource allocation protocolsatis�es R �!1=2Advs M1, where R is the set of reachable states ofM1kM2,M1 is the set of statesof M1kM2 where M1 holds a resource, and Advs is the set of fair oblivious and adversaries forM1kM2, i.e., the set of adversaries that are fair to each process and that do not base theirchoices on the outcomes of the coin ips (cf. Example 5.6.2 for a formal de�nition of a fairoblivious adversary).Progress statements are important because, under some general conditions, they can be com-bined together to obtain more complex progress statements, thus allowing the decompositionof a complex problem into simpler problems. 77



Example 5.1.3 Suppose that in some system M whenever a request is pending (M is in astate of some set P , a token is given eventually with probability at least 1=2 (reaching a stateof some set T ), and suppose that whenever a token is given a response is given eventually withprobability at least 1=3 (reaching a state of some set G). That is,P �!1=2Advs T and T �!1=3Advs G: (5.2)Then, it is reasonable to conclude that whenever a request is pending a response is giveneventually with probability at least 1=6, i.e.,P �!1=2Advs G: (5.3)This result is a consequence of the concatenation theorem (cf. Theorem 5.5.2).Example 5.1.4 Consider the toy resource allocation protocol again. We know from Exam-ple 5.1.2 thatR �!1=2Advs M1: (5.4)It is also possible to show thatR) RUnlessM1; (5.5)where R ) RUnlessM1 is a UNITY [CM88] expression stating that whenever a system is in astate of R the system remains in a state of R unless a state of M1 is reached. This means that(5.4) is applicable from any point in the evolution of the toy resource allocation protocol, andthis fact, together with the condition that every adversary is fair, is succicient to guarranteethat R �!1 Advs M1 (5.6)(cf. Proposition 5.5.6). The reader familiar with UNITY may note that the combination of(5.4) and (5.5) is a probabilistic generalization of the ensures operator of Chandy and Misra[CM88].To see more signi�cative applications of progress statements the reader is referred to Chapter 6,where we prove the correctness of the randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81], and we prove the correctness of the randomized algorithm of Ben-Or foragreement in asynchronous networks in the presence of stopping faults [BO83]. Instead, the �nalpart of this chapter concentrates on standard methods to specify event schemas and adversaryschemas, and on the relationship between deterministic and general (randomized) adversaries.The main lesson that we learn is that for a large class of probabilistic statements it is possibleto prove their validity by considering only deterministic adversaries, i.e., adversaries that donot use randomization in their choices. The reader who is reading only the �rst section of eachchapter should move to Chapter 6 at this point and skip the rest of this section.We said already that an event schema is a rule to associate an event with each probabilisticexecution fragment. More formally, an event schema is a function that given a probabilisticexecution fragment H returns an event of FH . However, we have not given any method to78



specify an event schema. Our de�nition of an event schema is very general since it allows forany kind of rule to be used in determining the event associated with a probabilistic executionfragment. On the other hand, there is a speci�c rule which is used in most of the existingliterature on randomized algorithms. Namely, given a probabilistic automaton M , a set � ofexecution fragments of M is �xed, and then, given a probabilistic execution fragment H of M ,the event associated with H is �\
H . We call such an event schema an execution-based eventschema. Since the start state of a probabilistic execution fragment contains part of the history ofM , and since in general we are interested in what happens only after the probabilistic executionfragment starts, we re�ne the de�nition of an execution-based event schema by associating aprobabilistic execution fragment H with the event � \ (
H.qH0 ), where qH0 is the start state ofH . In this way a progress statement can be stated in terms of execution-based event schemas,where � is the set of execution fragments of M that contain at least one occurrence of a statefrom U 0.To specify an adversary schema there are two main restrictions that are usually imposed.One possibility is to restrict the kind of choices that an adversary can make, and the otherpossibility is to restrict the on-line information that an adversary can use in making its choices.The �rst kind of restriction is usually achieved by �xing a set � of execution fragments before-hand and requiring that all the probabilistic execution fragments H generated by an adversarysatisfy 
H � �. We call the corresponding adversary schema an execution-based adversaryschema. The second kind of restriction is achieved by imposing a correlation on the choices ofan adversary on di�erent inputs. We call the corresponding adversary schema an adversariesschema with partial on-line information.Example 5.1.5 An example of an execution-based adversary schema is the set of fair adver-saries for n processes running in parallel. In this case � is the set of execution fragments ofthe composite system where each process performs in�nitely many transitions. An example ofan adversary schema with partial on-line information is the set of oblivious adversaries for thetoy resource allocation protocol. Execution-based adversary schemas and adversary schemaswith partial on-line information can be combined together. An example of an execution-basedadversary schema with partial on-line information is the set of fair and oblivious adversariesfor the toy resource protocol (cf. Example 5.6.2).Exacution-based adversaries and event schemas give us a good basis to study the relationshipbetween deterministic and general adversaries. Roughly speaking, and adversary is determin-istic if it does not use randomness in its choices. Then the question is the following: \doesrandomness add power to an adversary?" The answer in general is \yes"; however, there areseveral situations of practical relevance where randomness does not add any power to an ad-versary. In particular, we show that randomization does not add any power when dealing with�nitely satis�able execution-based event schemas in two scenarios: execution-based adversaryschemas and adversary schemas with partial on-line information.5.2 Adversaries and Adversary SchemasAn adversary , also called a scheduler , for a probabilistic automaton M is a function A thattakes a �nite execution fragment � of M and returns a combined transition of M that leaves79



from lstate(�). Formally,A : frag�(M)! Probs(ctrans(M))such that if A(�) = (s;P), then s = lstate(�).An adversary is deterministic if it returns either transitions of M or pairs of the form(s;D(�)), i.e., the next transition is chosen deterministically. Denote the set of adversariesand deterministic adversaries for a probabilistic automaton M by Advs(M) and DAdvs(M),respectively. We introduce deterministic adversaries explicitly because most of the existingrandomized algorithms are analized against deterministic adversaries. In Section 5.7 we studythe connections between deterministic adversaries and general adversaries.As we have noted already, the correctness of an algorithm may be based on some speci�cassumptions on the scheduling policy that is used. Thus, in general, we are interested only insome of the adversaries of Advs(M). We call a subset of Advs(M) an adversary schema, andwe use Advs to denote a generic adversary schema. Section 5.6 describes in more detail possibleways to specify an adversary schema.5.2.1 Application of an Adversary to a Finite Execution FragmentThe interaction of an adversary A with a probabilistic automaton M leads to a probabilisticexecution fragment, where the transition enabled from each state is the transition chosen byA. Given a �nite execution fragment � of M , the probabilistic execution of M under A withstarting condition �, denoted by prexec(M;A; �), is the unique probabilistic execution fragmentH of M such that1. start(H) = f�g, and2. for each state q of H , the transition trHq is q a A(q).Condition 2 ensures that the transition enabled from every state q of H is the transition chosenby A. It is a simple inductive argument to show that H is well de�ned.5.2.2 Application of an Adversary to a Finite Probabilistic Execution Frag-mentFrom the theoretical point of view, we can generalize the idea of the interaction between anadversary and a probabilistic automaton by assuming that the start condition is a �nite prob-abilistic execution fragment of M . In this case the adversary works from all the points ofextension of the starting condition. The resulting probabilistic execution fragment should bean extension of the starting condition. Formally, if H is a �nite probabilistic execution fragmentof M , then the probabilistic execution of M under A with starting condition H , denoted byprexec(M;A; H), is the unique probabilistic execution fragment H 0 of M such that1. start(H 0) = start(H), and2. for each state q of H 0, if q is a state of H , then trH 0q isp �trHq � acts(H)�+ (1� p) �q a A(q)� ;80
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From the de�nition of trH 0q ,PH 0q [(a; qas)] = PH [Cq]PH 0 [Cq]PHq [(a; qas)] +  1� PH [Cq]PH 0 [Cq]PHq [acts(H)]!PA(q)[(a; qas)]: (5.9)Here we have also simpli�ed the expression PHq [acts(H)] in the �rst term as we did in the proofof Proposition 4.3.5 (Expressions (4.33) and (4.34)). We will not mention this simpli�cationany more in the thesis.If we remove the second term from the right expression of Equation (5.9), turning Equa-tion (5.9) into an inequality, we obtainPH 0q [(a; qas)] � PH [Cq]PH 0 [Cq]PHq [(a; qas)]: (5.10)By using (5.10) in (5.8), and simplifying the factor PH 0 [Cq], we obtainPH 0 [Cqas] � PH [Cq]PHq [(a; qas)]: (5.11)The right part of (5.11) is PH [Cqas]. Thus, we concludePH 0 [Cqas] � PH [Cqas]: (5.12)5.3 Event SchemasIn the informal description of a probabilistic statement we said that we need a rule to associatean event with each probabilistic execution fragment. This is the purpose of an event schema.An event schema for a probabilistic automatonM , denoted by e, is a function that associates anevent of FH with each probabilistic execution fragment H of M . An event schema e is �nitelysatis�able i� for each probabilistic execution fragment H the event e(H) is �nitely satis�able.Union, intersection and complementation of event schemas are de�ned pointwise. Similarly,conditional event schemas are de�ned pointwise.The best way to think of an event schema is just as a rule to associate an event witheach probabilistic execution fragment. Although in most of the practical cases the rule can bespeci�ed by a set of executions (cf. Section 5.3.2), part of our results do not depend on theactual rule, and thus they would hold even if for some reason in the future we need to studydi�erent rules. Moreover, event schemas allow us to simplify the notation all over.5.3.1 Concatenation of Event SchemasIf e is a �nitely satis�able event schema, i.e., for each probabilistic execution fragment H theevent e(H) can be expressed as a union of cones, then it means that in every execution of e(H)it is possible to identify a �nite point where the property denoted by e is satis�ed. Sometimeswe may be interested in checking whether a di�erent property, expressed by another eventschema, is satis�ed eventually once the property expressed by e is satis�ed. That is, we wantto concatenate two event schemas. 82



Formally, let e1; e2 be two event schemas for a probabilistic automatonM where e1 is �nitelysatis�able, and let Cones be a function that associates a set Cones(H) with each probabilisticexecution fragment H of M such that Cones(H) is a characterization of e1(H) as a union ofdisjoint cones, i.e., e1(H) = [q2Cones(H)Cq, and for each q1; q2 2 Cones(H), if q1 6= q2, thenCq1 \Cq2 = ;. Informally, Cones(H) identi�es the points where the event denoted by e1(H) issatis�ed, also called points of satisfaction.The concatenation e1 �Cones e2 of e1 and e2 via Cones is the function e such that, for eachprobabilistic execution fragment H of M ,e(H) 4= [q2Cones(H) e2(H jq): (5.13)Proposition 5.3.1 The concatenation of two event schemas is an event schema. That is, ife = e1 �Cones e2, then e is an event schema.Proof. Consider a probabilistic execution fragment H . From Proposition 4.2.11 each sete2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is anevent of FH .Proposition 5.3.2 PH [e1 �Cones e2(H)] =Pq2Cones(H) PH [Cq]PH jq[e2(H jq)].Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtainPH [e1 �Cones e2(H)] = Xq2Cones(H)PH [e2(H jq)]: (5.14)From Proposition 4.2.11, for each q 2 Cones(H)PH [e2(H jq)] = PH [Cq]PH jq[e2(H jq)]: (5.15)By substituting (5.15) in (5.14) we obtain the desired result.5.3.2 Execution-Based Event SchemasOur de�nition of an event schema is very general; on the other hand, most of the existingwork on randomized algorithms is based on a very simple rule to associate an event with eachprobabilistic execution. Namely, a set � of execution fragments ofM is chosen beforehand, andthen, given a probabilistic execution fragment H , the event associated with H is the � a 
H .We call this class of event schemas execution-based . We have chosen to give a more generalde�nition of an event schema for two main reasons:1. The concatenation Theorem of Section 5.4.1 (Theorem 5.4.2) does not rely on the fact thatan event schema is execution-based, but rather on the fact that it is �nitely satis�able.Thus, if in the future some di�erent kinds of event schemas will become relevant, here wehave already the machinery to deal with them.2. The event schemas that we use later to de�ne a progress statement (cf. Section 5.5) arenot execution-based according to the informal description given above. Speci�cally, thestart state of a probabilistic execution fragment of M is a �nite execution fragment of83



M , i.e., it contains some history of M , and such history is not considered in determiningwhether there is some progress. On the other hand, it is plausible that sometimes wewant to consider also the history encoded in the start state of a probabilistic executionfragment. Thus, the more general de�nition of an event schema still helps.Nevertheless, execution-based adversary schemas are easier to understand and enjoy propertiesthat do not hold for general adversary schemas (cf. Section 5.7). For this reason we givea formal de�nition of an execution-based adversary schema, where we also assume that thehistory encoded in the start state of a probabilistic execution fragment is eliminated.Let � be a set of extended execution fragments of M . An event schema e for a probabilisticautomaton M is �-based i� for each probabilistic execution fragment H of M , e(H) = � \(
H.qH0 ). An event schema e for a probabilistic automatonM is execution-based i� there existsa set � of extended execution fragments of M such that e is �-based.5.4 Probabilistic StatementsGiven a probabilistic automatonM , an event schema e, an adversary A, and a �nite executionfragment �, it is possible to compute the probability Pprexec(M;A;�)[e(prexec(M;A; �))] of theevent denoted by e when M starts from � and interacts with A. As a notational convention,we abbreviate the expression above by PM;A;�[e]. Moreover, when M is clear from the contextwe write PA;�[e], and we write PA[e] if M has a unique start state and � is chosen to be thestart state of M .We now have all the machincery necessary to de�ne a probabilistic statement. A probabilisticstatement for a probabilistic automaton M is an expression of the form PrAdvs ;�(e) R p, whereAdvs is an adversary schema ofM , � is a set of starting conditions, i.e., a set of �nite executionfragments of M , e is an event schema for M , and R is a relation among =, �, and �. Aprobabilistic statement PrAdvs ;�(e) R p is valid forM i� for each adversary A of Advs and eachstarting condition � of �, PA;�[e] R p, i.e.,PrAdvs ;�(e) R p i� 8A2Advs8�2�PA;�[e] R p: (5.16)Proposition 5.4.1 Some trivial properties of probabilistic statements are the following.1. If p1 R p2 then PrAdvs ;�(e) R p1 implies PrAdvs ;�(e) R p2.2. If Advs1 � Advs2 and �1 � �2, then PrAdvs1;�1(e) R p implies PrAdvs2;�2(e) R p.5.4.1 The Concatenation TheoremWe now study an important property of probabilistic statements applied to the concatenationof event schemas. Informally, we would like to derive properties of the concatenation of twoevent schemas from properties of the event schemas themselves. The idea that we want tocapture is expressed by the sentence below and is formalized in Theorem 5.4.2.\If e1 is satis�ed with probability at least p1, and from every point of satisfaction ofe1, e2 is satis�ed with probability at least p2, then the concatenation of e1 and e2 issatis�ed with probability at least p1p2." 84



Theorem 5.4.2 Consider a probabilistic automaton M . Let1. PrAdvs ;�(e1) R p1 and,2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.Then, PrAdvs ;�(e1 �Cones e2) R p1p2.Proof. Consider an adversary A 2 Advs and any �nite execution fragment q 2 �. LetH = prexec(M;A; q). From Proposition 5.3.2,PH [e1 �Cones e2(H)] = Xq02Cones(H)PH [Cq0]PH jq0[e2(H jq0)]: (5.17)Consider an element q0 of Cones(H). It is a simple inductive argument to show thatH jq0 = prexec(M;A; q0): (5.18)Thus, from our second hypothesis,PH jq0[e2(H jq0)] R p2: (5.19)By substituting (5.19) in (5.17), we obtainPH [e1 �Cones e2(H)]R p2 Xq02Cones(e1(H))PH [Cq0]: (5.20)By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,Equation (5.20) can be rewritten intoPH [e1 �Cones e2(H)]R p2PH [e1(H)]: (5.21)From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,PH [e1 �Cones e2(H)]R p1p2: (5.22)This completes the proof.5.5 Progress StatementsIn this section we give examples of probabilistic statements, which we call progress statements,that play an important role in the analysis of algorithms. Progress statements are formaliza-tions of statements that are used generally for the informal analysis of randomized algorithms;however, many other statements can be de�ned depending on speci�c applications. We showalso how to derive complex statements by concatenating several simple statements.85



5.5.1 Progress Statements with StatesLet U and U 0 be sets of states of a probabilistic automaton M . A common informal statementis the following.\Whenever the system is in a state of U , then, under any adversary A of Advs, theprobability that a state of U 0 is reached is at least p."The probability p is usually 1. In this thesis we consider the more general statement where pis required only to be greater than 0. We represent the statement concisely by writingU �!p Advs U 0; (5.23)where Advs is an adversary schema. We call (5.23) a progress statement since, if we view U 0 asa better condition than U , then (5.23) states that from U it is possible to have some progresswith probability at least p. The reader familiar with UNITY [CM88] may note that a progressstatement is a probabilistic generalization of the leads-to operator of UNITY.Let us concentrate on the formal meaning of (5.23). Let eU 0 be an event schema that givena probabilistic execution fragment H returns the set of extended executions � of 
H such thata state of U 0 is reached in �.qH0 (recall that qH0 is the start state of H). Then (5.23) is theprobabilistic statementPrAdvs ;U(eU 0) � p: (5.24)Note that the starting conditions of statement (5.24) are just states of M , i.e., they do notcontain any past history of M except for the current state. This is because when we reasoninformally about algorithms we do not talk usually about the past history of a system. However,if we want to concatenate two progress statements according to Theorem 5.4.2, then we need toconsider the past history explicitly, and thus a better probabilistic statement for (5.23) wouldbe PrAdvs ;�U (eU 0) � p; (5.25)where �U is the set of �nite execution fragments of M whose last state is a state of U . So, whycan we, and indeed do people, avoid to deal with the past history explicitly? The point is that(5.24) and (5.25) are equivalent for most of the adversary schemas that are normally used.5.5.2 Finite History InsensitivityAn adversary schema Advs for a probabilistic automaton M is �nite-history-insensitive i�for each adversary A of Advs and each �nite execution fragment � of M , there exists anadversary A0 of Advs such that for each execution fragment �0 ofM with fstate(�0) = lstate(�),A0(�0) = A(�a �0). In other words, A0 does even though A0 does not know the �nite history �.Lemma 5.5.1 Let Advs be a �nite-history-insensitive adversary schema for a probabilistic au-tomaton M . Then (5.24) and (5.25) are equivalent probabilistic statements.86



Proof. From Proposition 5.4.1, since U � �U , Statement (5.25) implies Statement (5.24)trivially. Conversely, suppose that Statement (5.24) is valid. Consider an adversary A of Advs,and consider an element q of �U . Let Aq be an adversary of Advs such that for each executionfragment q0 of M with fstate(q0) = lstate(q), Aq(q0) = A(q a q0). We know that Aq exists sinceAdvs is �nite-history-insensitive. It is a simple inductive argument to show thatprexec(M;Aq; lstate(q)) = prexec(M;A; q).q: (5.26)Moreover,Pprexec(M;A;q)[Cq] = 1: (5.27)From the de�nition of eU 0, since the start state of prexec(M;A; q) is q,eU 0(prexec(M;Aq; lstate(q))) = eU 0(prexec(M;A; q)).q: (5.28)Thus, from Proposition 4.2.12 and (5.27),PA;q[eU 0] = PAq ;lstate(q)[eU 0]: (5.29)From hypothesis,PAq ;lstate(q)[eU 0] � p; (5.30)and thus, from (5.29), PA;q [eU 0] � p. This shows that Statement (5.25) is valid.5.5.3 The Concatenation TheoremWe now start to compose (simple) progress statements to derive other (more complex) progressstatements. This allows us to decompose a complex problems into simpler problems that can besolved separately. The examples of Chapter 6 contain explicit use of the concatenation theoremof this section.Suppose that from U we can reach U 0 with probability at least p, and that from U 0 wecan reach U 00 with probability at least p0. Then, it is reasonable that from U we can reach U 00with probability at least pp0. This result is an instantiation of the concatenation theorem ofSection 5.4.1.Theorem 5.5.2 Let Advs be a �nite-history-insensitive adversary schema. Then,U �!p Advs U 0 and U 0 �!p0 Advs U 00 imply U �!pp0 Advs U 00.Proof. Consider the event schemas eU 0 and eU 00 . Let Cones be the function that associateswith each probabilistic execution fragment H the setCones(H) 4= fq j lstate(q.q0) 2 U 0; 6 9q0<(q.q0) lstate(q0) 2 U 0g: (5.31)It is easy to check that Cones(H) is a characterization of eU 0 as a disjoint union of cones. Then,directly from the de�nitions, for each execution fragment H ,eU 0 �Cones eU 00(H) � eU 00(H): (5.32)87



Informally, the left expression represents the property of reaching a state of U 00 passing througha state of U 0, while the right expression represents the property of reaching a state of U 00 withoutpassing necessarily through a state of U 0.From Lemma 5.5.1, for each probabilistic execution fragment H , each adversary A of Advs,and each element q of Cones(H), since lstate(q) 2 U 0,PA;q[eU 00] � p0: (5.33)From hypothesis, (5.33), and Theorem 5.4.2 (concatenation of two event schemas),PrAdvs ;U(eU 0 �Cones eU 00) � pp0: (5.34)From (5.32) and (5.34),PrAdvs ;U(eU 00) � pp0: (5.35)This shows that U �!pp0Advs U 00.Proposition 5.5.3 Other trivial properties of progress statements are the following.1. U �!1 U .2. If U1 �!p1 U 01 and U2 �!p2 U 02, then U1 [ U2 �!min(p1;p2) U 01 [ U 02.5.5.4 Progress Statements with ActionsProgress statements can be formulated also in terms of actions rather than states. Thus, if Vis a set of actions, we could writeU �!p Advs V (5.36)meaning that starting from any state of U and under any adversary of Advs, with probability atleast p an action from V occurs. Formally, let eV be an event schema that given a probabilisticexecution fragment H returns the set of executions � of 
H such that an action from V occursin �.qH0 . Then (5.36) is the probabilistic statementPrAdvs ;U(eV ) � p: (5.37)Similarly, we can change the left side of a progress statement. Thus, we can writeV �!p Advs U (5.38)meaning that starting from any point where an action from V occurred and no state of U isreached after the last occurrence of an action from V , a state of U is reached with probabilityat least p. In other words, after an action from V occurs, no matter what the system hasdone, a state of U is reached with probability at least p. Formally, let �V;U be the set of �niteexecution fragments of M where an action from V occurs and no state of U occurs after thelast occurrence of an action from V . Then (5.38) is the probabilistic statementPrAdvs ;�V;U (eU) � p: (5.39)88



Finally, we can consider statements involving only sets of actions. Thus, the meaning ofV �!p Advs V 0 would be the probabilistic statementPrAdvs ;�V;V 0 (eV ) � p; (5.40)where �V;V 0 is the set of �nite execution fragments of M where an action from V occurs andno action from V 0 occurs after the last occurrence of an action from V .The concatenation theorem extendeds easily to the new kinds of progress statements.Theorem 5.5.4 Let Advs be a �nite-history-insensitive adversary schema, and let X;X 0 andX 00 be three sets, each one consisting either of actions of M only or states of M only. Then,X �!p1 Advs X 0 and X 0 �!p2 Advs X 00 imply X �!p1p2Advs X 00.Proof. This proof is similar to the proof of Theorem 5.5.2, and thus it is left to the reader.Observe that �nite-history-insensitivity is not necessary if X 0 is a set of actions.5.5.5 Progress Statements with Probability 1Usually we are interested in progress properties that hold with probability 1. A useful result isthat in most cases progress with probability 1 can be derived from progress with any probabilityp such that 0 < p < 1. Speci�cally, under the condition that an adversary never chooses � whenthe left side of a given progress statement is satis�ed and the right side of the same progressstatement is not satis�ed,1. if the left element of the progress statement is a set of actions, then progress is achievedwith probability 1;2. if the left element of the progress statement is a set of states U , the adversary schema is�nite-history-insensitive, and the system remains in a state of U unless the right side ofthe statement is satis�ed, then progress is achieved with probability 1.Proposition 5.5.5 Suppose that V �!p Advs X, and suppose that � =2 
A(q) for each adversaryA of Advs and each element q of �V;X. Then V �!1 Advs X.Proof. We give the proof for the case where X is a set of states. The other proof is similar.Denote X by U .Consider an element q0 of �V;U and an adversary A of Advs. Let H be prexec(M;A; q0),and let p0 = PH [eU(H)]. We know from hypothesis that p0 � p. Suppose by contradiction thatp0 < 1. Let � be the set of �nite execution fragments q of M such that q0 � q, lstate(q) 2 U ,and no state of U occurs in any proper pre�x of q.q0. Then � is a characterization of eU(H)as a union of disjoint cones. Thus,PH [eU (H)] = Xq2�PH [Cq]: (5.41)Let � be any real number such that 0 � � � p0. Then, from (5.41) and the de�nition of p0, it ispossible to �nd a natural number k� such that.Xq2�jjqj�k� PH [Cq] � (p0 � �): (5.42)89



Let �� be the set of states q of H such that jqj = k� and no pre�x of q is in �. That is, �� isthe set of states of H of length k� that are not within any cone Cq of eU (H) where jqj � k�.Equation (5.41) can be rewritten asPH [eU (H)] = 0@ Xq2�jjqj�k� PH [Cq]1A+0@Xq2�� PH [Cq]PH [eU(H)jCq]1A : (5.43)Observe that for each state q of ��, since a state of U 0 is not reached yet, q is an element of �V;U .Moreover, prexec(M;A; q) = H jq (simple inductive argument). Thus, from Proposition 4.2.11and hypothesis, PH [eU(H)jCq] � p, and (5.43) can be rewritten intoPH [eU (H)] � 0@ Xq2�jjqj�k� PH [Cq]1A+0@Xq2�� PH [Cq]p1A : (5.44)Observe that Pq2�jjqj�k� PH [Cq] +Pq2�� PH [Cq] = 1. This follows from the fact that if a stateq of H does not have any pre�x in �, then q 2 �V;X , which in turn means that � =2 
Hq . Inother words, in H it is not possible to stop before reaching either a state of fq 2 � j jqj � k�gor a state of ��. Thus, by using (5.42) in (5.44) we obtainPH [eU (H)] � (p0 � �) + (1� (p0 � �))p: (5.45)After simple algebraic manipulations, Equation (5.45) can be rewritten intoPH [eU (H)] � p0 + p(1� p0)� �(1� p): (5.46)If we choose � such that 0 < � < p(1�p0)=(1�p), which exists since p0 < 1, then Equation (5.46)shows that PH [eU(H)] > p0. This contradicts the fact that p0 < 1. Thus, PH [eU(H)] = 1.For the next proposition we de�ne the statement U UnlessX , where U is a set of states and Xis either a set of states only or a set of actions only. The statement is true for a probabilisticautomaton M i� for each transition (s;P) of M , if s 2 U �X then for each (a; s0) 2 
 eithera 2 X , or s0 2 U [X . That is, once in U , the probabilistic automaton M remains in U untilthe condition expressed by X is satis�ed.Proposition 5.5.6 Suppose that U �!p Advs X, U Unless X, Advs is �nite-history-insensitive,and � =2 
A(s) for each adversary A of Advs and each state s of U . Then, U �!1 Advs X.Proof. This proof is similar to the proof of Proposition 5.5.5. The main di�erence is that thepassage from Equation (5.43) to Equation (5.44) is justi�ed by using �nite-history-insensitivityas in the proof of Proposition 5.5.1.5.6 Adversaries with Restricted PowerIn Section 5.2 we have de�ned adversary schemas to reduce the power of an adversary; however,we have not described any method to specify how the power of an adversary is reduced. Inthis section we show two methods to reduce the power of an adversary. The �rst method,which is the most commonly used, reduces the kind of choices that an adversary can make;the second method, which is used in informal arguments but is rarely formalized, reduces theon-line information used by an adversary to make a choice. The two speci�cation methods areused in Section 5.7 to study the relationship between deterministic and randomized adversaries.90



5.6.1 Execution-Based Adversary SchemasIf n processes run in parallel, then a common requirement of a scheduler is to be fair to all theprocesses. This means that whenever an adversary resolves the nondeterminism and leads toa probabilistic execution fragment H , in all the executions of 
H each one of the n processesperforms in�nitely many transitions. More generally, a set � of extended execution fragmentsofM is set beforehand, and then an adversary is required to lead only to probabilistic executionfragments whose corresponding sample space is a subset of �.Formally, let � be a set of extended execution fragments of M . Let Advs� be the set ofadversaries A such that for each �nite execution fragment q of M , 
prexec(M;A;q) � �. ThenAdvs� is called �-based. An adversary schema Advs is execution-based i� there exists a set �of extended execution fragments of M such that Advs is �-based.The notion of �nite-history-insensitivity can be reformulated easily for execution-based ad-versary schemas. De�ne � to be �nite-history-insensitive i� for each extended execution frag-ment � of M and each �nite execution fragment �0 of M such that lstate(�0) = fstate(�), if�0 a � 2 � then � 2 �. It is easy to verify that if � is �nite-history-insensitive, then Advs� is�nite-history-insensitive.5.6.2 Adversaries with Partial On-Line InformationSometimes, like in the case of the toy resource allocation protocol, an adversary cannot baseits choices on the whole history of a system if we want to guarantee progress. In other words,some part of the history is not visible to the adversary.Example 5.6.1 (O�-line scheduler) The simplest kind of adversary for n processes that runin parallel is an adversary that �xes in advance the order in which the processes are scheduled.This is usually called an o�-line scheduler or an oblivious adversary . Thus, at each point �the next transition to be scheduled depends only on the ordered sequence of processes that arescheduled in �.To be more precise, the transition scheduled by the adversary depends also on the state thatis reached by �, i.e., lstate(�), since a speci�c process may enable di�erent transitions fromdi�erent states. This means that if �1 and �2 are equivalent in terms of the ordered sequenceof processes that are scheduled, the oblivious constraint says only that the transitions chosenby the adversary in �1 and �2 must be correlated, i.e., they must be transitions of the sameprocess.The formal de�nition of an adversary with partial on-line information for a probabilistic au-tomaton M is given by specifying two objects:1. an equivalence relation that speci�es for what �nite execution fragments of M the choicesof an adversary must be correlated;2. a collection of correlation functions that specify how the transitions chosen by an adver-sary must be correlated.Let � be an equivalence relation between �nite execution fragments of M , and let F be afamily of functions parameterized over pairs of equivalent execution fragments. Each function91



f��0 takes a combined transition of M leaving from lstate(�) and returns a combined transitionof M leaving from lstate(�0) such that1. f�0�(f��0(tr)) = tr ;2. f��0(Pi2I pitr i) =Pi2I pif��0(tr i).The pair (�; F ) is called an oblivious relation. An adversary A is oblivious relative to (�; F ) i�for each pair of equivalent execution fragments ofM , � � �0, A(�0) = f��0(A(�)). An adversaryschema Advs is said to be with partial on-line information i� there exists an oblivious relation(�; F ) such that Advs is the set of adversaries for M that are oblivious relative to (�; F ).Condition 1 is used to guarantee that there are oblivious adversaries relative to (�; F );Condition 2 is more technical and is used to guarantee that there are oblivious adversariesrelative to (�; F ) that do not use randomization in their choices. Condition 2 is needed mainlyto prove some of the results of Section 5.7.Adversaries with partial on-line information and execution-based adversaries can be com-bined together easily. Thus, an adversary schema Advs is said to be execution-based and withpartial on-line information i� there exists an execution-based adversary schema Advs0 and apair (�; F ) such that Advs is the set of adversaries of Advs 0 that are oblivious relative to (�; F ).Example 5.6.2 (Adversaries for the toy-resource allocation protocol) The fair obliv-ious adversaries for the toy resource allocation protocol are an example of an execution-basedadversary schema with partial on-line information. The set � is the set of executions of M1kM2where both M1 and M2 perform in�nitely many transitions. Two �nite execution fragments�1 and �2 are equivalent i� the ordered sequences of the processes that perform a transitionin �1 and �2 are the same. Let �1 � �2, and let, for i = 1; 2, tr i;1 and tr i;2 be the tran-sitions of M1 and M2, respectively, enabled from lstate(�i). Then f�1�2(tr1;1) = tr2;1 andf�1�2(tr1;2) = tr2;2.Another execution-based adversary schema with partial on-line information that works forthe toy resource allocation protocol is obtained by weakening the equivalence relation so thatan adversary cannot see only those coins that have not been used yet, i.e., those coins that havebeen ipped but have not been used yet to check whether the chosen resource is free.5.7 Deterministic versus Randomized AdversariesIn our de�nition of an adversary we have allowed the use of randomness for the resolution ofthe nondeterminism in a probabilistic automaton M . This power that we give to an adversarycorresponds to the possibility of combining transitions of M in the de�nition of a probabilisticexecution fragment. From the formal point of view, randomized adversaries allow us to model arandomized environment and to state and prove the closure of probabilistic execution fragmentsunder projection (Proposition 4.3.4). However, one question is still open:Are randomized adversaries more powerful than deterministic adversaries?That is, if an algorithm performs well under any deterministic adversary, does it perform wellunder any adversary as well, or are there any randomized adversaries that can degrade theperformance of the algorithm? In this section we want to show that in practice randomization92



does not add any power to an adversary. We say "in practice" because it is easy to buildexamples where randomized adversaries are more powerful than deterministic adversaries, butthose examples do not seem to be relevant in practice.Example 5.7.1 (Randomization adds power) Consider an event schema e that applied toa probabilistic execution fragment H returns 
H if H can be generated by a deterministicadversary, and returns ; otherwise. Clearly, if M is a nontrivial probabilistic automaton, theprobability of e is at least 1 under any deterministic adversary, while the probability of e canbe 0 under some randomized adversary; thus, randomization adds power to the adversaries.However, it is unlikely that a realistic event schema has the structure of e. Another lesspathological example appears in Section 5.7.2 (cf. Example 5.7.2).We consider the class of execution-based event schemas, and we restrict our attention to thesubclass of �nitely satis�able, execution-based event schemas. We show that randomization doesnot add any power for �nitely satis�able, execution-based event schemas under two scenarios:execution-based adversary schemas, and execution-based adversary schemas with partial on-lineinformation. In the second case we need to be careful (cf. Example 5.7.2).Informally, a randomized adversary can be seen as a convex combination of deterministicadversaries, and thus a randomized adversary satis�es the same probability bounds of a deter-ministic adversary. However, there are uncountably many deterministic adversaries, and thusfrom the formal point of view some more careful analysis is necessary.5.7.1 Execution-Based Adversary SchemasProposition 5.7.1 Let Advs be an execution-based adversary schema for M , and let AdvsDbe the set of deterministic adversaries of Advs. Let e be a �nitely-satis�able, execution-based,event schema for M . Then, for every set � of �nite execution fragments of M , every probabilityp, and every relation R among �, =, �, PrAdvs ;�(e) R p i� PrAdvsD;�(e) R p.In the rest of this section we prove Proposition 5.7.1. Informally, we show that each probabilisticexecution fragment H generated by an adversary of Advs can be converted into two otherprobabilistic execution fragments H 0 and H 00, each one generated by some adversary of AdvsD,such that PH 0 [e(H 0)] � PH [e(H)] � PH 00 [e(H 00)]. Then, if R is � we use H 00, and if R is � weuse H 0.An operation that is used heavily in the proof is called deterministic reduction. Let H be aprobabilistic execution fragment of a probabilistic automaton M , and let q be a state of H . Aprobabilistic execution fragment H 0 is said to be obtained from H by deterministic reductionof the transition enabled from q if H 0 is obtained from H through the following two operations:1. Let trHq = q a (Pi2I pitr i) where each pi is non-zero and each tr i is a transition of M .Then replace trHq either with (q;D(�)) or with q a tr j , under the restriction that (q;D(�))can be chosen only if Pi2I pi < 1.2. Remove all the states of H that become unreachable after trHq is replaced.Throughout the rest of this section we assume implicitly that whenever a probabilistic executionfragment is transformed, all the states that become unreachable are removed.93



Lemma 5.7.2 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let q be a stateof H. Then there exist two probabilistic execution fragments Hqlow ; Hqhigh, each one generatedby an adversary of Advs, that are obtained from H by deterministic reduction of the transitionenabled from q, and such that PHqlow [e(Hqlow)] � p, and PHqhigh [e(Hqhigh)] � p.Proof. Let trHq be q a (Pi2I pitr i), where each tr i is either a transition of M or the pair(lstate(q);D(�)), each pi is greater than 0, and Pi2I pi = 1. For each transition tr i, i 2 I , letHtri be obtained from H by replacing trHq with q a tr i. Observe that, since Advs is execution-based and H is generated by an adversary of Advs, Htri is generated by an adversary of Advs.The probability of e(H) can be written asPH [e(H)] = PH [Cq]PH [e(H)jCq] + (1� PH [Cq])PH [e(H)jCq]: (5.47)Observe that for each i 2 I , since H and Htri di�er only in the states having q as a pre�x,PH [Cq] = PHtri [Cq]. Since e is execution-based, e(H)\Cq = e(Htri)\Cq, and PH [e(H)\Cq] =PHtri [e(Htri) \ Cq] (use conditional probability spaces and Theorem 3.1.2). Moreover, as it isshown below, PH [e(H) \ Cq] =Pi2I piPHtri [e(Htri) \ Cq]. In fact,PH [e(H)\Cq] = PH [Cq]0B@PHq [�]PH [e(H)jCq�] + X(a;q0)2
Hq PHq [(a; q0)]PH [e(H)jCq0]1CA ;(5.48)where we assume that PH [e(H)jCq�] is 0 whenever it is unde�ned. For each (a; q0) of 
Hq ,PHq [(q; a0)] = Pi2I piPHtriq [(a; q0)], and for each i such that (a; q0) 2 
Htriq , PH [e(H)jCq0] =PHtri [e(Htri)jCq0] (simply observe that H.q0 = Htri.q0). Similarly, if � 2 
Hq , then PHq [�] =Pi2I piPHtriq [�], and for each i such that � 2 
Htriq , PH [e(H)jCq�] = PHtri [e(Htri)jCq�]. Thus,from (5.48),PH [e(H) \ Cq] =Xi2I piPHtri [Cq]0BB@PHtriq [�]PHtri [e(Htri)jCq�] + X(a;q0)2
Htriq PHtriq [(a; q0)]PHtri [e(Htri)jCq0]1CCA ; (5.49)which gives the desired equalityPH [e(H) \ Cq] =Xi2I piPHtri [e(Htri) \ Cq]: (5.50)Thus, (5.47) can be rewritten intoPH [e(H)] =Xi2I pi �PHtri [Cq]PHtri [e(Htri)jCq] + (1� PHtri [Cq])PHtri [e(Htri)jCq]� ; (5.51)which becomesPH [e(H)] =Xi2I piPHtri [e(Htri)]: (5.52)94



If there exists an element i of I such that PHtri [e(Htri)] = p, then �x Hqlow and Hqhigh to be Htri .If there is no element i of I such that PHtrq [e(Htri)] = p, then it is enough to show that thereare two elements i1; i2 of I such that PHtri1 [e(Htri1 )] < p and PHtri2 [e(Htri2 )] > p, respectively.Assume by contradiction that for each element i of I , PHtri [e(Htri)] < p. Then, from (5.52),Pi2I piPHtri [e(Htri)] < p, which contradicts PH [e(H)] = p. Similarly, assume by contradictionthat for each element i of I , PHtri [e(Htri)] > p. Then, from (5.52), Pi2I piPHtri [e(Htri)] > p,which contradicts PH [e(H)] = p again.Lemma 5.7.3 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based event schema such that PH [e(H)] = p. Let d be a naturalnumber, and let Ud be the set of states q of H such that jqj = d. Then there exist two probabilisticexecution fragments Hlow ; Hhigh, each one generated by an adversary of Advs, that are obtainedfrom H by deterministic reduction of the transitions enabled from the states of Ud, and suchthat PHlow [e(Hlow)] � p, and PHhigh [e(Hhigh)] � p.Proof. From Lemma 5.7.2 we know that for each state q of Ud there are two probabilistic exe-cution fragments Hqlow and Hqhigh , obtained from H by deterministic reduction of the transitionenabled from q, such that PHqlow [e(Hqlow)] � p, and PHqhigh [e(Hqhigh)] � p. Let Hlow be obtainedfrom H by replacing the transition enabled from each state q of Ud with the transition enabledfrom q in Hqlow , and let Hhigh be obtained from H by replacing the transition enabled from eachstate q of Ud with the transition enabled from q in Hqhigh . Since Advs is execution-based andall the involved probabilistic execution fragments are generated by an adversary of Advs, thenHhigh and Hlow are generated by an adversary of Advs. Since e is execution-based, for eachstate q of Ud, PHlow [e(Hlow) \ Cq] = PHqlow [e(Hqlow) \ Cq]. Thus,PHlow [e(Hlow)] = Xq2Ud PHlow [Cq]PHqlow [e(Hqlow)jCq]: (5.53)Observe that, for each state q of Ud, the di�erence between the probability of e(H) and theprobability of e(Hqlow ) is determined by the subcones of Cq. Thus,PHlow [e(Hlow)] � Xq2Ud PH [Cq]PH [e(H)jCq]: (5.54)The right side of (5.54) is PH [e(H)], which is p. In a similar way it is possible to show thatPHhigh [e(Hhigh)] � p.Now we use the fact that e is �nitely satis�able. For each probabilistic execution fragment Hof M , let Can(e(H)) the set of minimal elements of fq 2 states(H) j Cq � e(H)g [ fq� j q 2states(H); Cq� � e(H)g. Then, Can(e(H)) is a characterization of e(H) as a union of disjointcones. For each natural number d, let e�d be the function that given a probabilistic executionfragment H returns the set [q2Can(e(H))jjqj�dCHq .Lemma 5.7.4 Let e be an execution-based, �nitely satis�able, event schema for a probabilisticautomaton M , and let d; d0 be two natural numbers such that d � d0. Then, for each probabilisticexecution fragment H, PH [e�d(H)] � PH [e�d0(H)] � PH [e(H)].95



Proof. Follows trivially from the de�nitions.Lemma 5.7.5 Let e be an execution-based, �nitely satis�able, event schema for a probabilisticautomaton M , and let d be a natural number. Let H be a probabilistic execution fragment Hof M , and let H 0 be obtained from H by reducing deterministically any collection of states oflength greater than d. Then, PH [e�d(H)] � PH 0 [e�d(H 0)].Proof. Just observe that for each q 2 Can(e(H)) such that jqj � d there is a q0 2 Can(e(H 0))such that q0 � q, and that for each state q of H such that jqj � d, PH [Cq] = PH 0 [Cq].Lemma 5.7.6 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely satis�able event schema such that PH [e(H)] = p.Then there exists a probabilistic execution fragment H 0, generated by a deterministic adversaryof Advs, such that PH 0 [e(H 0)] � p.Proof. From Lemma 5.7.3 it is possible to �nd a sequence of probabilistic execution fragments(Hi)i�0, where H0 = H , each Hi+1 is obtained from Hi by deterministically reducing all itstransitions leaving from states of length i, and for each i, PHi+1 [e(Hi+1)] � PHi [e(Hi)]. Let H 0be obtained from H by replacing the transition enabled from each state q with the transitionenabled from q in any Hi such that jqj � i. It is immediate to check that H 0 is generated bysome deterministic adversary of Advs (every extended execution of 
H 0 is an extended executionof 
H).Suppose by contradiction that PH 0 [e(H 0)] > p. Then there exists a level d such thatPH 0 [e�d(H 0)] > p: (5.55)For each d0 � d, let Ed0 beEd0 4= [q2Can(e�d0(Hd0))j9q02Can(e�d(H0))q0�qCH 0q : (5.56)Then, the following properties are valid.1. for each d0 � d, E 0d is an element of FH 0 .Ed0 is a union of cones of FH 0.2. if d0 � d00, then Ed0 � Ed00Consider an element q 2 Can(e�d0(Hd0)) such that there exists a q0 2 Can(e�d(H 0)) suchthat q0 � q. Observe that, since Hd00 is obtained from Hd0 by deterministic reduction ofstates of length greater than d0, there exists a q00 2 Can(e�d00(Hd00)) such that q00 � q.Moreover, from the construction of H 0, q0 � q00. Thus, from (5.56), CH 0q00 � Ed00 . Sinceq00 � q, CH 0q � Ed00 , and therefore, Ed0 � Ed00 .3. e�d(H 0) � [d0�dEd0 .Consider an element � of e�d(H 0). Then, for each d0, � 2 e(Hd0). Let q0 2 Can(e(Hd))such that q0 � �, and let d0 be jq0j. Then, there exists a q00 2 Can(e�d0(Hd0)) such thatq00 � q0 � �, and thus � 2 Ed0 . 96



4. for each d0 � d, PHd0 [e�d0(Hd0)] � PH 0 [Ed0 ].From the construction of H 0, for each q such that jqj � d0, PHd0 [CHd0q ] = PH 0 [CH 0q ].Moreover, if CH 0q is used in the de�nition of Ed0 , then q 2 Can(e�d0(Hd0)).From 2 and 3, and from (5.55), there exists a value d0 such that PH 0 [Ed0 ] > p. From 4,PHd0 [e�d0(Hd0)] > p. From Lemma 5.7.4, PHd0 [e(Hd0)] > p. This contradicts the fact thatPHd0 [e�d0(Hd0)] � p.To build a probabilistic execution fragment H 0, generated by an adversary of AdvsD, such thatPH 0 [e(H 0)] � p, we need to extend part of Lemmas 5.7.2 and 5.7.3.Lemma 5.7.7 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversary ofAdvs. Let e be an execution-based, �nitely-satis�able, event schema. Let q be a state of H, andlet d be a natural number such that PH [e�d(H)] = p. Then there exist a probabilistic executionfragment Hqhigh , generated by an adversary of Advs, that is obtained from H by deterministicreduction of the transition enabled from q, such that PHqhigh [e�d(Hqhigh)] � p.Proof. This proof is similar to the proof of Lemma 5.7.2, with the di�erence that the = signof Equations (5.49), (5.50), (5.51), and (5.52), is changed into a �. In fact, in each one of theHtri some new cone of length at most d may appear.Lemma 5.7.8 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema, and let d be a naturalnumber such that PH [e�d(H)] = p. Let d0 be a natural number, and let Ud0 be the set of states qof H such that jqj = d0. Then there exist a probabilistic execution fragment Hhigh , generated byan adversary of Advs, that di�ers from H only in that the transitions enabled from the statesof Ud are deterministically reduced, such that PHhigh [e�d(Hhigh)] � p.Proof. This proof is similar to the proof of Lemma 5.7.3. In this case the arguments for theequation corresponding to Equation (5.54) is justi�ed from the additional fact that Hhigh mayhave more cone of depth at most d than H .Lemma 5.7.9 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] > p.Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministicadversary of Advs, such that PH [e(H 0)] > p.Proof. Since PH [e(H)]> p and e(H) is a union of cones, there exists a natural number d suchthat PH [e�d(H)] > p. From repeated applications of Lemma 5.7.8, one for each level d0 � d,there exists a probabilistic execution fragment H 00, obtained from H by deterministic reductionof the transitions enabled from every state q with jqj � d, such that PH 00 [e�d(H 00)] > p. FromLemma 5.7.4, PH 00 [e(H 00)] > p. Moreover, any probabilistic execution fragment H 000 obtained97



from H 00 by reducing deterministically transitions at depth greater than d (jqj > d) satis�esPH 000 [e�d(H 000)] > p, and thus PH 000 [e(H 000)] > p. Hence, H 0 can be any probabilistic executionfragment obtained from H 00 by reducing deterministically all the transitions at depth greaterthan d in any arbitrary way. It is easy to check thatH 0 is generated by a deterministic adversaryof Advs.Lemma 5.7.10 Let Advs be an execution-based adversary schema for a probabilistic automatonM , and let H be a probabilistic execution fragment of M that is generated by some adversaryof Advs. Let e be an execution-based, �nitely-satis�able, event schema such that PH [e(H)] � p.Then, there exists a probabilistic execution fragment H 0 of M , generated by a deterministicadversary of Advs, such that PH [e(H 0)] � p.Proof. If PH [e(H)] > p, then Lemma 5.7.9 su�ces. If PH [e(H)] = p, then by Lemma 5.7.3it is possible to �nd a sequence of probabilistic execution fragments (Hi)i�0, where H0 = H ,each Hi+1 is obtained from Hi by deterministically reducing all its i-level transitions, andfor each i, PHi+1 [e(Hi+1)] � PHi [e(Hi)]. If there exists a sequence (Hi)i�0 such that forsome i, PHi [e(Hi)] > p, then Lemma 5.7.9 su�ces. Otherwise, consider the sequence ofprobabilistic execution fragments de�ned as follows: H0 = H and, for each i, let di bethe level of Hi such that PHi [e�di(Hi)] � pPj�i(1=2)j+1. Let Hi+1 be obtained from re-peated applications of Lemma 5.7.8, till level di, so that PHi+1 [e�di(Hi+1)] � pPj�i(1=2)j+1.Note that PHi+1 [e(Hi+1)] = p, otherwise we can �nd a sequence (Hi)i�0 and an i such thatPHi+1 [e(Hi+1)] > p (simple argument by contradiction). Let H 0 be obtained from H by replac-ing the transition enabled from each state q with the transition enabled from q in any Hi suchthat jqj � di�1. It is easy to check that H 0 is generated by an adversary of Advs. Suppose bycontradiction that PH 0 [e(H 0)] = p0 < p. Then, from the construction of the Hi's, there exists ani such that pPj�i(1=2)j+1 > p0, and thus PHi+1 [e�di(Hi+1)] > p0. However, from the de�nitionof H 0, PHi+1 [e�di(Hi+1)] = PH 0 [e�di(H 0)], and thus p0 < PH 0 [e(H 0)], which contradicts the factthat PH 0 [e(H 0)] = p0.Proof of Proposition 5.7.1. Since AdvsD � Advs, PrAdvs ;�(e) R p implies PrAdvsD;�(e) R ptrivially. Conversely, suppose that PrAdvsD ;�(e) R p, and let H be a probabilistic executionfragment, generated by an adversary of Advs, whose start state is in �. We distinguish thefollowing cases.1. R is �.From Lemma 5.7.6, there is a probabilistic execution fragment H 0, generated by an ad-versary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)]. Fromhypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.2. R is �.From Lemma 5.7.10, there is a probabilistic execution fragment H 0, generated by anadversary of AdvsD, whose start state is in �, and such that PH 0 [e(H 0)] � PH [e(H)].From hypothesis, PH 0 [e(H 0)] � p. Thus, PH [e(H)] � p.3. R is =.This follows by combining Items 1 and 2.98



5.7.2 Execution-Based Adversary Schemas with Partial On-Line Informa-tionProposition 5.7.1 can be extended to adversary schemas that do not know all the past historyof a system, i.e., to execution-based adversary schemas with partial on-line information. Weneed to impose a technical restriction, though, which is that an adversary should always beable to distinguish two execution fragments with a di�erent length (cf. Example 5.7.2). Theproof of the new result is a simple modi�cation of the proof of Proposition 5.7.1.Proposition 5.7.11 Let (�; F ) be an oblivious relation such that for each pair �1 � �2 ofequivalent execution fragment, �1 and �2 have the same length. Let Advs be an execution-based adversary schema with partial on-line information such that each adversary of Advs isoblivious relative to (�; F ), and let AdvsD be the set of deterministic adversaries of Advs.Let e be a �nitely-satis�able, execution-based, event schema for M . Then, for every set � of�nite execution fragments of M , every probability p, and every relation R among �, =, �,PrAdvs ;�(e) R p i� PrAdvsD;�(e) R p.Proof. The proof is similar to the proof of Proposition 5.7.1. The main di�erence is in theproofs of Lemmas 5.7.2, 5.7.3 and 5.7.8, where equivalence classes of states rather than singlestates only must be considered. In these two proofs we use also the fact that equivalent executionfragments have the same length. The details of the proof are left to the reader.Example 5.7.2 (Why length sensitivity) The requirement that an adversary should al-ways see the length of a probabilistic execution fragment seems to be arti�cial; however, ran-domized adversaries have more power in general if they cannot see the length of a probabilisticexecution. Consider the probabilistic automaton M of Figure 5-3, and suppose that all theexecutions of M that end in states s1; s2; s3, and s6 are equivalent. Since for each state si thereis exactly one execution of M that ends in si, we denote such an execution by qi. Let � be theset of extended executions �� of M such that lstate(�) does not enable any transition in M .For each state si that enables some transition, let tr i;u be the transition that leaves from si andgoes upward, and let tr i;d be the transition that leaves from si and goes downward. Then, foreach pair i; j 2 f1; 2; 3; 6g, i 6= j, let fqiqj(tr i;u) = tr j;u, and let fqiqj(tr i;d) = tr j;d.Let Advs be the set of �-based adversaries for M that are oblivious relative to (�; F ), andlet AdvsD be the set of deterministic adversaries of Advs. Then, the statement fs0g �!1=2AdvsDfs7; s10g is valid, whereas the statement fs0g �!1=2Advs fs7; s10g is not valid, i.e., an adversary canuse randomization to reduce the probability to reach states fs7; s10g. In fact, the probabilisticexecutions H1 and H2 of Figure 5-3 are the only probabilistic executions of M that can begenerated by the adversaries of AdvsD, while H0 is generated by an adversary of Advs. Theprobability of reaching fs7; s10g in H1 and H2 is 1=2, whereas the probability of reachingfs7; s10g in H0 is 1=4.5.8 Probabilistic Statements without AdversariesThe current literature on randomized distributed algorithms relies on the notion of an adversary,and for this reason all the de�nitions given in this chapter are based on adversaries. However,99
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Figure 5-3: Randomization adds power for some adversaries with partial on-line information.the key objects of the theory that we have presented are the probabilistic execution fragments ofa probabilistic automaton, and not its adversaries. An adversary schema can be replaced by anarbitrary set of probabilistic execution fragments in the de�nition of a probabilistic statement,namely, the set of probabilistic execution fragments that the adversary schema can generate. Inother words, an adversary schema can be seen as a useful tool to express a set of probabilisticexecution fragments.5.9 DiscussionTwo objects that we have de�ned in this chapter and that do not appear anywhere in theliterature are adversary schemas and event schemas. Both the objects are needed because,di�erently from existing work, in this thesis we identify several di�erent rules to limit thepower of an adversary and several di�erent rules to associate an event with a probabilisticexecution fragment, and thus we need some way to identify each rule. The best way to thinkof an adversary schema and of an event schema is as a way to denote the rule that is used tolimit the power of an adversary and denote the rule that is used to associate an event with eachprobabilistic execution fragment.We have de�ned the classes of execution-based adversary schemas and execution-basedevent schemas, and we have proved that for �nitely satis�able execution-based event schemasrandomization does not increase the power of an execution-based adversary schema, or of aclass of execution-based adversary schemas with partial on-line information. These results areof practical importance because most of the known event schemas and adversary schemas ofpractical interest are execution-based. As a result, it is possible to verify the correctness ofa randomized distributed algorithm by analyzing only the e�ect of deterministic adversaries,100



which is easier than analyzing every adversary. A similar result is shown by Hart, Sharir andPnueli [HSP83] for fair adversaries and almost-sure termination properties, i.e., properties thatexpress the fact that under all fair adversaries the system reaches some �xed set of stateswith probability 1. Fair adversaries and termination events are expressible as execution-basedadversary schemas and �nitely satis�able execution-based event schemas, respectively; thus,the result of Hart, Sharir and Pnueli is implied by our result. Hart, Sharir and Pnueli provealso that another class of adversaries is equivalent to the class of fair adversaries, namely, thoseadversaries that lead to fair executions with probability 1. The same result holds here as well;however, it is not clear under what conditions a similar result holds in general.
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Chapter 6Direct Veri�cation: Proving aPropertyIn this chapter we illustrate techniques to prove the validity of a probabilistic statement fromscratch. The main technique, which is based on coin lemmas , consists of reducing the analysis ofa property of a probabilistic automaton to the analysis of a property of an ordinary automaton.We illustrate the methodology by applying it to some existing randomized algorithms.Part of this chapter is based on joint work with Anna Pogosyants and Isaac Saias. AnnaPogosyants suggested us the coin event OCC (Section 6.2.3) as a generalization of other lesselegant coin events that we had in mind and collaborated on the veri�cation of the randomizedalgorithm for agreement of Ben-Or (Section 6.5). The veri�cation of the randomized diningphilosophers algorithm of Lehmann and Rabin (Section 6.3) is based on joint work with NancyLynch and Isaac Saias [LSS94], and the veri�cation of the randomized algorithm for agreementof Ben-Or is a formalization of a proof that appears in the book on distributed algorithms ofNancy Lynch [Lyn95].6.1 How to Prove the Validity of a Probabilistic StatementIn Chapter 5 we have de�ned formally what is a probabilistic statement and we have shown howit is possible to combine probabilistic statements to derive more complex properties. However,one question is left open: how do we prove the validity of a given probabilistic statement fromscratch?The problem is not trivial: a property may rely on complicate global con�gurations of asystem that depend on several separated random draws. Analyzing the exact probability of anevent associated with a probabilistic execution fragment may be extremely hard. Fortunately,there are usually some key points, known to the designer of a system, where speci�c probabilisticchoices lead to the desired property. In this chapter we formalize the idea above by introducinga collection of coin lemmas . The idea behind a coin lemma is the following.1. We de�ne a mechanism to identify events of the kind \some speci�c probabilistic choicesyield some speci�c results". We call such events coin events since a common source ofrandomness is given by coin ips. 103



2. We prove a lower bound on the probability of the coin event that we identify.Then, the analysis of a probabilistic statement for a probabilistic automaton M proceeds asfollows.1. We �nd a coin event that expresses the key intuition behind the property to be shown.2. We show that the coin event is a subevent of the event expressing the desired property,i.e., we show that whenever the coin event is satis�ed, the desired property is satis�ed aswell.3. We use the lower bound on the probability of the coin event to obtain a lower bound onthe probability of the desired property.Example 6.1.1 (Coin lemmas and the toy resource allocation protocol) Let us con-sider the toy resource allocation protocol of Chapter 5 again. One of the coin lemmas ofthis chapter states that if we �x any two separate coin ips (ipping of di�erent coins) andwe consider the event where the two coin ips yield di�erent outcomes whenever they bothoccur, then, no matter how the nondeterminism is resolved, the considered event is satis�edwith probability at least 1=2. On the other hand, if the �rst coin ip of M1 after the �rst coinip of M2 is di�erent from the last coin ip of M2 before the �rst time M1 checks its resourceafter ipping, then M1 succeeds in getting its resource. Thus, whenever the property above canbe expressed as a coin event in a form suitable to the coin lemma above, we are guaranteed thatM1 eventually gets its resource with probability at least 1=2. It turns out that an adversarymust be fair, oblivious and deterministic in order to be able to de�ne the desired coin event (cf.Section 6.6). Our results about deterministic and randomized adversaries (Proposition 5.7.11)can then be used to remove the constraint that an adversary is deterministic.We present a large collection of coin lemmas, and we illustrate their use via two main examples:Section 6.3 proves the correctness of the randomized Dining Philosophers algorithm of Lehmannand Rabin [LR81], and Section 6.5 proves the correctness of the randomized algorithm of Ben-Or for agreement in asynchronous networks in the presence of stopping faults [BO83]. At theend of the chapter we hint at another technique, called the partition technique, that departsconsiderably from the coin lemmas and that is necessary to prove stronger claims about the toyresource allocation protocol. We leave to further work a deeper study of this other technique.6.2 Some Simple Coin LemmasIn this section we present some simple coin lemmas where we use actions to identify the randomdraws of interest. Speci�cally, we study the following coin lemmas.1. First occurrence of an action.In this coin lemma we consider an action a and a set of states U , and we study theprobability that either action a does not occur or the �rst occurrence of action a leads toa state of U . We show that this probability is at least the in�mum of the probability ofreaching a state of U over all the transitions of M that are labeled with action a.104



As an example, action a can identify the process of ipping a fair coin and U can identifythose states that are reached if the coin ip yields head. Then the coin lemma says thatno matter how the nondeterminism is resolved the probability that either the coin is notipped or the coin is ipped and yields head is at least 1=2.Observe that in the de�nition of the coin event we allow for those executions where nocoin is ipped. One reason for this choice is to avoid trivial lower bounds due to the factthat a generic adversary can always decide not to schedule any transition. Another reasonis that generally a randomized algorithm is structured so that that if no coin is ippedthen progress is guaranteed with certainty. Alternatively, a randomized algorithm can bestructured so that under any valid adversary some coin is ipped. In both cases it is ofabsolute importance to be aware of the existence of executions where no coin is ipped.Overlooking those executions is a common source of mistakes.2. First occurrence of an action among many.In this coin lemma we consider several pairs (ai; Ui) of actions and sets of states, and westudy the probability that either none of the ai's occur or the action aj that occurs �rstleads to a state of Uj . We show that, if for each i pi is the lower bound given for (ai; Ui)by the coin lemma of 1, then the probability mentioned above is at least the minimum ofthe pi's.As an example, consider n processes that run in parallel, and suppose that each processcan ip a fair coin. Then, the probability that either no process ips a coin or that the�rst process that ips a coin obtains head is at least 1=2.3. I-th occurrence of an action among many.In this coin lemma we consider the coin event of 2 with the di�erence that we considerthe ith occurrence of an action rather than the �rst occurrence. The lower bound on theprobability of this event is the same as the lower bound on the probability of the eventof 2.4. Conjunction of separate coin events.In this coin lemma we consider the conjunction of several coin events of the kind of 3. Weshow that if each one of the coin events involves disjoint occurrences of actions, then thelower bound on the probability of the conjunction is the product of the lower bounds onthe probability of each of the involved coin events.As an example, consider n processes that run in parallel, and suppose that each processcan ip a fair coin. For each i let xi be either head or tail. Then, the probability that foreach process i either no coin is ipped or the �rst coin that is ipped yields xi is at least1=2n.Some more general and complex coin lemmas are presented in Section 6.4; several other coinlemmas are likely to be derived in the future. Before presenting the simple coin lemmas in fulldetail we give just a rough idea of the coin lemmas of Section 6.4.5. Conjunction of separate coin events with multiple outcomes.105



In this coin lemma we consider again the conjunction of several coin events that involvedisjoint occurrences of actions. However we allow more freedom. First of all an action ispaired with more than one set of states, thus allowing the observation of more than oneoutcome; second, we allow for multiple joint observations.As an example, the coin lemma says that if n processes run in parallel and each one ofthem can ip a coin, then the probability that at least half of the processes either do notip a coin or ip head is at least 1=2. Similarly, if each process can roll a dice, then theprobability that if process 1 rolls 1 then the other processes do not roll a number di�erentfrom 1 is at least (1=6)n + 5=6, which is essentially the probability of rolling n dices andthat either all processes give 1 or process 1 does not give 1.6. A generalized coin lemma.In this coin lemma we generalize the idea of 5, but this time we do not use actions toidentify the random draws of interest. The reader is referred to Section 6.4.2 for furtherdetails.6.2.1 First Occurrence of an ActionLet M be a probabilistic automaton, and let (a; U) be a pair consisting of an action of M anda set of states of M . Let FIRST(a; U) be a function that applied to a probabilistic executionfragment H of M returns the set of executions � of 
H such that either a does not occur in�.qH0 , or a occurs in �.qH0 and the state reached after the �rst occurrence of a is a state of U .It is simple to check that FIRST(a; U) is an event schema since, for each probabilisticexecution fragment H of M , the complement of FIRST(a; U)(H) is the set of executions � of
H such that action a occurs in �.qH0 , and the state reached after the �rst occurrence of a isnot a state of U . This set is expressible as a union of cones, and thus it is an event.The event schema FIRST(a; U) identi�es the �rst random draw associated with action athat occurs in a probabilistic execution fragment H , and requires the outcome of the randomdraw to be in a speci�c range, namely in U . The intuition behind the use of such a coin event,is that a system performs well if the outcome of the �rst random draw involving a is in U .From the de�nition of FIRST(a; U), we assume also that the system performs well whenever adoes not occur at all. Thus, if an adversary has the possibility not to schedule a, then it has abetter chance to degrade the performance of a system by scheduling a.The following lemma provides a lower bound to the probability of FIRST(a; U). Informally,it states that if whenever there is a transition of M that involves action a the occurrence of aimplies that a state of U is reached with probability at least p, then p is a lower bound on theprobability of FIRST(a; U).Lemma 6.2.1 Let M be a probabilistic automaton, and let (a; U) be a pair consisting of anaction of M and a set of states of M . Let p be a real number between 0 and 1 such that foreach transition (s;P) of M where P [a] > 0, P [U ja] � p. Then, for each probabilistic executionfragment H of M , PH [FIRST(a; U)(H)]� p.Proof. For convenience denote FIRST(a; U)(H) by E, and for each state q of H , denote by
(q; U) the set f(a; q0) 2 
Hq j lstate(q0) =2 Ug. Let � be the set of states q of H such that106



action a does not occur in q.qH0 , and PHq [a] > 0. Then,PH [E] = Xq2� X(a;q0)2
(q;U)PH [Cq]PHq [(a; q0)]: (6.1)By expressing PHq [(a; q0)] as a conditional probability and rearranging the expression, we obtainPH [E] = Xq2�PH [Cq]PHq [a]0B@ X(a;q0)2
(q;U)PHq [(a; q0)ja]1CA : (6.2)From the de�nition of a probabilistic execution fragment and the de�nition of 
(q; U), for eachelement q of � there is a combined transition tr =Pi pitr i of M such that trHq = q a tr andX(a;q0)2
(q;U)PHq [(a; q0)ja] = Ptr [U ja] = Ptr [U \ a]Ptr [a] = Pi piPtr i [U \ a]Pi piPtr i [a] : (6.3)By multiplying and dividing each ith summand of the enumerator by Ptr i [a], using the hypoth-esis of the lemma, i.e., for each i Ptr i [U \ a] � (1� p), and simplifying algebraically, from (6.3)we obtainX(a;q0)2
(q;U)PHq [(a; q0)ja] � (1� p): (6.4)By using (6.4) in (6.2) we obtainPH [E] � (1� p)0@Xq2�PH [Cq]PHq [a]1A : (6.5)Furthermore, the subexpression Pq2� PH [Cq]PHq [a] is the probability that a occurs in H , whichis at most 1. Thus,PH [E] � (1� p): (6.6)This completes the proof.6.2.2 First Occurrence of an Action among ManyThe event schema FIRST(a; U) can be generalized to account for the �rst action that occursamong several possible ones. Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un)be pairs consisting of an action of M and a set of states of M such that the actions ai areall distinct. Then de�ne FIRST((a1; U1); : : : ; (an; Un)) to be the function that applied to aprobabilistic execution fragment H ofM returns the set of executions � of 
H such that eithernone of the ai's occurs in �.qH0 , or some of the ai's occur in �.qH0 , and if ai is the �rst of thoseactions that occurs, then the state reached after the �rst occurrence of ai is a state of Ui.It is simple again to check that FIRST((a1; U1); : : : ; (an; Un)) is an event schema since, foreach probabilistic execution fragment H , the complement of FIRST((a1; U1); : : : ; (an; Un))(H)can be expressed as a union of cones.Lemma 6.2.1 extends to this case. 107



Lemma 6.2.2 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-sisting of an action of M and a set of states of M such that the actions ai are all distinct. Letfpigi=1;:::;n be a collection of real numbers between 0 and 1 such that for each i, 1 � i � n,and each transition (s;P) of M where P [ai] > 0, P [U jai] � pi. Then, for each probabilisticexecution fragment H of M , PH [FIRST((a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).Proof. Let V be fa1; : : : ; ang, and let p be the minimum of fp1; : : : ; png. For convenience,denote FIRST((a1; U1); : : : ; (an; Un))(H) by E, and for each state q of H , denote by 
(q; E)the set [i2f1;:::;ngf(ai; q0) 2 
Hq j lstate(q0) =2 Uig. Then, for each transition (q;PHq ) of H suchthat PHq [V ] > 0,PHq [
(q; E)jV ] � (1� p): (6.7)To prove (6.7), let, for each i = 1; : : : ; n, 
(q; ai; U i) denote the set f(ai; q0) 2 
Hq j lstate(q0) =2Uig. Then,PHq [
(q; E)jV ] = Xi2f1;:::;ngPHq [
(q; ai; U i)jV ]: (6.8)By using conditional probabilities, Equation (6.8) can be rewritten intoPHq [
(q; E)jV ] = Xi2f1;:::;ngPHq [aijV ]PHq [
(q; ai; U i)jai]: (6.9)Following the same argument as in the proof of Lemma 6.2.1, for each i, PHq [
(q; ai; U i)jai] �(1� p); moreover, Pi PHq [aijV ] = 1. Thus, (6.7) follows directly.The rest of the proof follows te lines of the proof of Lemma 6.2.1. Let � be the set of statesq of H such that no action of V occurs in q.qH0 , and PHq [V ] > 0. Then,PH [E] = Xq2� X(a;q0)2
(q;E)PH [Cq]PHq [(a; q0)]: (6.10)By expressing PHq [(a; q0)] as a conditional probability and rearranging the expression, we obtainPH [E] = Xq2�PH [Cq]PHq [V ]0B@ X(a;q0)2
(q;E)PHq [(a; q0)jV ]1CA : (6.11)The subexpression P(a;q0)2
(q;E) PHq [(a; q0)jV ] is PHq [
(q; E)jV ], which is less than or equal to(1� p) from (6.7). Thus,PH [E] � (1� p)0@Xq2�PH [Cq]PHq [V ]1A : (6.12)Furthermore, the subexpression Pq2� PH [Cq]PHq [V ] is the probability that an action from Voccurs in H , which is at most 1. Thus,PH [E] � (1� p): (6.13)This completes the proof. 108



6.2.3 I-th Occurrence of an Action among ManyIn the de�nition of FIRST we have considered the �rst action among a given set that occursin a probabilistic execution fragment H . However, the results for FIRST are valid also ifwe consider the ith occurrence of an action instead of the �rst occurrence. This observationsuggests a new more general event schema.Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs consisting ofan action of M and a set of states of M such that the actions ai are all distinct. Thende�ne OCC (i; (a1; U1); : : : ; (an; Un)) to be the function that applied to a probabilistic executionfragment H of M returns the set of executions � of 
H such that either there are less than ioccurrences of actions from fa1; : : : ; ang in �.qH0 , or there are at least i occurrences of actionsfrom fa1; : : : ; ang, and, if aj is the action that occurs as the ith one, then the state reachedafter its occurrence is a state of Ui.Since in the proof of Lemma 6.2.2 we never use the fact that it is the �rst occurrence of anaction that is considered, Lemma 6.2.2 carries over to the ith occurrence trivially.Lemma 6.2.3 Let M be a probabilistic automaton, and let (a1; U1); : : : ; (an; Un) be pairs con-sisting of an action of M and a set of states of M such that the actions ai are all distinct. Letfpjgj=1;:::;n be a collection of real numbers between 0 and 1 such that for each j 2 f1; : : : ; ngand each transition (s;P) of M where P [aj ] > 0, P [U jaj ] � pj. Then, for each probabilisticexecution fragment H of M , PH [OCC(i; (a1; U1); : : : ; (an; Un))(H)]� min(p1; : : : ; pn).6.2.4 Conjunction of Separate Coin EventsIn this section we study what happens if we consider several events of the kind OCC together.In order to simplify the notation, we consider only event schemas of the kind OCC(i; (a; U))since, as we have seen in the proof of Lemma 6.2.2, the case with multiple actions can bereduced to the case with a single action.The lemma that we prove states that if we consider several separate coin events, i.e., coinevents that involve di�erent random draws, each one with its own lower bound, then the lowerbound of their conjunction is the product of the lower bounds. In other words, an adversarycan introduce dependencies by increasing the probability of the conjunction of events, but itcan never decrease the probability below the value that we would get by considering all theevents to be independent.Lemma 6.2.4 Let M be a probabilistic automaton, and let (k1; a1; U1); : : : ; (kn; an; Un) be acollection of triplets consisting of a natural number, an action of M and a set of states ofM , such that the pairs (ki; ai) are all distinct. Let fpjgj=1;:::;n be a collection of real num-bers between 0 and 1 such that for each j 2 f1; : : : ; ng and each transition (s;P) of Mwhere P [aj ] > 0, P [U jaj ] � pj. Then, for each probabilistic execution fragment H of M ,PH [OCC(k1; (a1; U1))(H)\ � � � \ OCC(kn; (an; Un))(H)] � p1 � � �pn.Proof. For each I � f1; : : : ; ng, denote a generic event schema \i2IOCC(ki; (ai; Ui)) by eI .For each i = 1; : : : ; n and each state q of H , denote by 
(q; i; Ui) the set f(ai; q0) 2 
Hq jlstate(q0) 2 Uig of pairs where ai occurs and Ui is reached, and denote by 
(q; i; Ui) the setf(ai; q0) 2 
Hq j lstate(q0) =2 Uig of pairs where ai occurs and Ui is not reached. For each action109



a and each state q of H , let a(q) denote the number of occurrences of action a in q.qH0 . Foreach i = 1; : : : ; n, let �i be the set of states q of H such that each action aj ; 1 � j � n occursless than kj times in q.qH0 , action ai occurs ki � 1 times in q.qH0 , and PHq [ai] > 0. For eachi = 1; : : : ; n and each state q of H such that ai(q) < ki, let OCC(ki; (ai; Ui)).q denote the eventschema OCC (ki � ai(q); (ai; Ui)). Finally, for each I � f1; : : : ; ng and each suitable state q ofH , let eI.q denote the event schema \i2IOCC (ki; (ai; Ui)).q.We prove the lemma by induction on n. If n = 1, then the result follows directly fromLemma 6.2.1. Otherwise,PH [e1;:::;n(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)]1CA+ 0@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)]PH.q0 [ef1;:::;i�1;i+1;:::;ng.q0(H.q0)]1A1A : (6.14)The �rst summand of Expression (6.14) expresses the probability that action ai occurs from qand leads to a state not in Ui; the second summand expresses the probability that ai occurs, leadsto a state of Ui, and from the reached state something happen so that the resulting executionis not in e1;:::;n(H). From induction, and by using conditional probabilities, we obtainPH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0B@0B@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)jai]1CA+ 0@ X(ai;q0)2
(q;i;Ui)PHq [(ai; q0)jai])(1� p1 � � �pi�1pi+1 � � �pn)1A1A : (6.15)Let, for each i and each q, pi;q = PHq [
(q; i; Ui)jai]. Then, (6.15) becomesPH [e1;:::;n(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]((1� pi;q) + (1� p1 � � �pi�1pi+1 � � �pn)pi;q); (6.16)which becomesPH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai](1� p1 � � �pi�1pi;qpi+1 � � �pn) (6.17)after simple algebraic simpli�cations. Using the same argument as in the proof of Lemma 6.2.1,for each i and each q, pi;q � pi. Thus,PH [e1;:::;n(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai](1� p1 � � �pn): (6.18)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [ai] is the probability that for some i actionai occurs at least ki times. Thus,PH [e1;:::;n(H)] � (1� p1 � � �pn): (6.19)This completes the proof. 110



Figure 6-1: The Dining Philosopher problem with 6 philosophers.6.3 Example: Randomized Dining PhilosophersIn this section we apply the methodology presented so far to prove the correctness of the Ran-domized Dining Philosophers algorithm of Lehmann and Rabin [LR81]. The proof is structuredin two levels. The high level proof consists of a collection of progress statements that are con-catenated together; the low level proof consists of the proofs of the statements of the high levelproof. The low level proof is based on the coin lemmas.6.3.1 The ProblemThere are n philosophers sat at a round table. Each philosopher has a plate in from of him, afork on its left, and a fork on its right. The left fork is shared with his left neighbor philosopher,and the right fork is shared with his right neighbor philosopher. At the center of the table thereis a bowl full of spaghetti. Figure 6-1 illustrates the situation for n = 6. Each philosophergoes repeatedly through phases where he is thinking and where he is eating. However, eachphilosopher needs both of its forks in order to eat. The problem is the following:\What procedure should each philosopher follow to get his forks and to put themdown in order to make sure that every philosopher that is hungry will eventually beable to eat?"A simpler problem is the following.\What procedure should each philosopher follow to get his forks and to put them downin order to make sure that whenever somebody is hungry somebody will eventuallybe able to eat?"The second problem is simpler than the �rst problem since it allows for some philosopherto starve. It is known from [LR81] that there is no symmetric solution even for the simpledining philosophers problem, i.e., there is no deterministic solution for the dining philosophersproblem where each philosopher follows exactly the same protocol; some mechanism to breakthe symmetry is necessary. In the algorithm of Lehmann and Rabin each philosopher followsexactly the same protocol and randomness is used to break the symmetry.111



Shared variables: Resj 2 ffree; takeng; j = 1; : : : ; n, initially free.Local variables: ui 2 fleft; rightg; i = 1; : : : ; nCode for process i:0. try ** beginning of Trying Section **1. < ui  random> ** choose left or right with equal probability **2. < if Res(i;ui) = free thenRes(i;ui) := taken ** pick up �rst resource **else goto 2. >3. < if Res(i;opp(ui)) = free thenRes(i;opp(ui)) := taken; ** pick up second resource **goto 5. >4. < Res(i;ui) := free; goto 1.> ** put down �rst resource **5. crit ** end of Trying Section **** Critical Section **6. exit ** beginning of Exit Section **7. < ui  left or right ** nondeterministic choice **Res(i;opp(ui)) := free > ** put down �rst resources **8. < Res(i;ui) := free > ** put down second resources **9. rem ** end of Exit Section **** Remainder Section **Figure 6-2: The Lehmann-Rabin algorithm. The operations between angular brackets areperformed atomically.6.3.2 The AlgorithmEach hungry philosopher proceeds according to the following protocol.1. Flip a fair coin to choose between the left and the right fork.2. Wait for the chosen fork to become free and get it.3. Try to get the second fork:if it is free, then get it;if it is taken, then put down the �rst fork and go to 1.4. Eat.Each philosopher that has terminated to eat puts down his forks one at a time. The intuitionbehind the use of randomness is that the actual protocol used by each philosopher is determinedby an in�nite sequence of random coin ips. Thus, with probability 1 each philosopher followsa di�erent protocol.Figure 6-2 gives a more precise representation of the protocol, using a terminology thatis closer to computer science; thus, a philosopher is called a process, and a fork is called aresource. A philosopher who is thinking is said to be in its reminder region; a philosopher112
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2Figure 6-3: Numbering processes and resources in the Dining Philosophers problem.who is eating is said to be in its critical region; a philosopher who is trying to get its forks issaid to be in its trying region; and a philosopher who is putting down its forks is said to be inits exit region. The n resources (forks) are represented by n shared variables Res1; : : : ;Resn,each of which can assume values in ffree; takeng. Each process (philosopher) i ignores itsown name and the names of its adjacent resources. However, each process i is able to referto its adjacent resources by relative names: Res(i;left) is the resource located to the left, andRes(i;right) is the resource to the right of i. Each process i has a private variable ui, whose valueis in fleft; rightg, which is used either to keep track of the resource that process i currentlyholds, or, if no resource is held, to keep track of the resource that process i is going to takenext. For notational convenience we de�ne an operator opp that complements the value of itsargument, i.e., opp(right) = left and opp(left) = right.We now de�ne a probabilistic automatonM that represents the evolution of n philosophers.We assume that process i + 1 is on the right of process i and that resource Resi is betweenprocesses i and i+ 1 (see Figure 6-3). We also identify labels modulo n so that, for instance,process n + 1 coincides with process 1.A state s of M is a tuple (X1; : : : ; Xn;Res1; : : : ;Resn) containing the local state Xi of eachprocess i, and the value of each resource Resi. Each local state Xi is a pair (pci; ui) consistingof a program counter pci and the local variable ui. The program counter of each process keepstrack of the current instruction in the code of Figure 6-2. Rather than representing the valueof the program counter with a number, we use a more suggestive notation which is explainedin Table 6.1. Also, the execution of each instruction is represented by an action. Actions tryi,criti, remi, exiti are external; all the other actions are internal.The start state of M assigns the value free to all the shared variables Resi, the value R toeach program counter pci, and an arbitrary value to each variable ui. The transition relationof M is derived directly from Figure 6-2. For example, for each state where pci = F there isan internal transition labeled with flipi that changes pci into W and assigns left to ui withprobability 1=2 and right to ui with probability 1=2; from each state where Xi = (W; left)there is a transition labeled with waiti that does not change the state if Res(i;left) = taken,and changes pci into S and Res(i;left) into taken if Res(i;left) = free; for each state where113



Nr. pci Action Informal meaning0 R tryi Reminder region1 F flipi Ready to Flip2 W waiti Waiting for �rst resource3 S secondi Checking for Second resource4 D dropi Dropping �rst resource5 P criti Pre-critical region6 C exiti Critical region7 EF dropfi Exit: drop First resource8 ES dropsi Exit: drop Second resource9 ER remi Exit: move to Reminder regionTable 6.1: Program counter and action names for the Lehmann-Rabin algorithm.pci = EF there are two transitions labeled with action dropfi: one transition sets ui to rightand makes Res(i;left) free, and the other transition sets ui to left makes Res(i;right) free. Thetwo separate transitions correspond to a nondeterministic choice that is left to the adversary.The value of each pair Xi can be represented concisely by the value of pci and an arrow(to the left or to the right) which describes the value of ui. Thus, informally, a process i is instate S! or D! (resp. S or D ) when i is in state S or D while holding its right (resp. left)resource; process i is in state W! (resp. W ) when i is waiting for its right (resp. left) resourceto become free; process i is in state ES! (resp. ES ) when i is in its exit region and it is stillholding its right (resp. left) resource. Sometimes we are interested in sets of pairs; for example,whenever pci = F the value of ui is irrelevant. With the simple value of pci we denote the set ofthe two pairs f(pci; left); (pci; right)g. Finally, with the symbol # we denote any pair wherepci 2 fW;S;Dg. The arrow notation is used as before.For each state s = (X1; : : : ; Xn;Res1; : : : ;Resn) of M we denote Xi by Xi(s) and Resi byResi(s). Also, for any set St of states of a process i, we denote by Xi 2 St , or alternativelyXi = St the set of states s of M such that Xi(s) 2 St . Sometimes we abuse notation in thesense that we write expressions like Xi 2 fF;Dg with the meaning Xi 2 F [ D. Finally, wewrite Xi = E for Xi = fEF ; ES ; ERg, and we write Xi = T for Xi 2 fF;W; S;D;Pg.6.3.3 The High Level ProofIn this section we give the high level proof that the algorithm of Lehmann and Rabin guaranteesprogress, i.e., that from every state where some process is in its trying region, some processenters eventually its critical region with probability 1. We assume that each process that isready to perform a transition is allowed eventually to do so: process i is ready to perform atransition whenever it enables an action di�erent from tryi or exiti. Actions tryi and exitiare under the control of the user (a philosopher decides whether to eat or think), and hence,by assumption, under the control of the adversary.Formally, consider the probabilistic automaton M of Section 6.3.2. De�ne an extendedexecution � of M to be fair i� for each process i either � is �nite and its last state enables114



tryi or exiti, or � is in�nite and either actions of process i occur in�nitely many times in �or � = �1 a �2 and all the states of �2 enable either tryi or exiti. De�ne Fairadvs to be theset of adversaries A for M such that, for every �nite execution fragment � of M the elementsof 
prexec(M;A;�) are extended fair execution fragments of M . Then Fairadvs is �nite-history-insensitive: if A is an adversary of Fairadvs and q is a �nite execution fragment of M , then itis easy to verify that the adversary Aq such thatAq(�) = ( A(�.q) if q � �A(�) otherwiseis an adversary of Fairadvs. Let rstates(M) denote the set of reachable states of M . LetT 4= fs 2 rstates(M) j 9iXi(s) 2 fTggdenote the sets of reachable states of M where some process is in its trying region, and letC 4= fs 2 rstates(M) j 9iXi(s) = Cgdenote the sets of reachable states of M where some process is in its critical region. We �rstshow thatT �!1=8Fairadvs C; (6.20)i.e., that, starting from any reachable state where some process is in its trying region, for allthe adversaries of Fairadvs, some process enters its critical region eventually with probability atleast 1=8. Note that (6.20) is satis�ed trivially if some process is initially in its critical region.Our proof is divided into several phases, each one concerned with the property of makingsome partial progress toward C. The sets of states associated with the di�erent phases areexpressed in terms of T ;RT ;F ;G;P ; and C. Here,RT 4= fs 2 T j 8iXi(s) 2 fER; R; Tggis the set of states where at least one process is in its trying region and where no process is inits critical region or holds resources while being in its exit region.F 4= fs 2 RT j 9iXi(s) = Fgis the set of states of RT where some process is ready to ip a coin.P 4= fs 2 rstates(M) j 9iXi(s) = Pgis the sets of reachable states of M where some process is in its pre-critical region, i.e., wheresome process is ready to enter its critical region. The set G is the most important for theanalysis. To motivate the de�nition, we de�ne the following notions. We say that a process iis committed if Xi 2 fW;Sg, and that a process i potentially controls Resi (resp. Resi�1) ifXi 2 fW!; S!; D!g (resp. Xi 2 fW ; S ; D g). Informally said, a state in RT is in G if and onlyif there is a committed process whose second resource is not potentially controlled by anotherprocess. Such a process is called a good process. Formally,G 4= fs 2 RT j 9iXi(s) 2 fW ; S g and Xi+1(s) 2 fER; R; F;#!g; orXi(s) 2 fW!; S!g and Xi�1(s) 2 fER; R; F;# gg115



Reaching a state of G is a substantial progress toward reaching a state of C. Somehow, a goodstate is a place where the symmetry is broken. The progress statements of the proof are thefollowing.T �!1 RT [ C (Proposition 6.3.3),RT �!1 F [ G [ P (Proposition 6.3.16),F �!1=2 G [ P (Proposition 6.3.15),G �!1=4 P (Proposition 6.3.12),P �!1 C (Proposition 6.3.1).The �rst statement says that eventually every process in its exit region relinquishes its resources.In this way we avoid to deal with resources held by processes who do not want to enter thecritical region. The second statement says that eventually either a good state is reached, or aplace where some process is ready to ip its coin is reached. The ipping points are potentialpoints where the symmetry is broken, and thus reaching a ipping point means progress. Thethird statement says that from a ipping point there is probability 1=2 to reach a good state.Finally, the fourth statement says that from a good state there is probability 1=4 to be readyto enter the critical region. By combining the statements above by means of Proposition 5.5.3and Theorem 5.5.2 we obtainT �!1=8 C; (6.21)which is the property that was to be proven. Observe that once some process is in the tryingregion there is always some process in the trying region until some process reaches the criticalregion. Formally, M satis�es T Unless C. Thus, Proposition 5.5.6 applies, leading toT �!1 C: (6.22)6.3.4 The Low Level ProofIn this section we prove the �ve progress statements used in Section 6.3.3. The proofs aredetailed operational arguments. The main point to observe is that randomness is handledexclusively by the coin lemmas, and thus, any technique for the veri�cation of ordinary automatacould be applied as well.For the sake of clarity, we do not prove the relations in the order they were presented.Throughout the proof we abuse notation by writing expressions of the kind FIRST(flipi; left)for the event schema FIRST(flipi; fs 2 states(M) j Xi(s) = W g). We write also sentences ofthe form \If FIRST(flipi; left) then �" meaning that for each valid probabilistic executionfragment H , each element of FIRST(flipi; left)(H) satis�es �.Proposition 6.3.1 If some process is in P , then some process enters C, i.e.,P �!1 C:Proof. Let i be the process in P . Then, from the de�nition of Fairadvs, process i is scheduledeventually, and enters C. 116



Lemma 6.3.2 If some process is in its Exit region, then it will eventually enter R.Proof. The process needs to perform two transitions to relinquish its two resources, and thenone transition to send a rem message to the user. Every adversary of Fairadvs guarantees thatthose three transitions are performed eventually.Proposition 6.3.3 T �! RT [ C.Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resources.If no process begins in C or enters C in the meantime, then the state reached at this point isa state of RT ; otherwise, the starting state or the state reached when the �rst process entersC is a state of C.We now turn to the proof of G �!1=4 P . The following lemmas form a detailed cases analysisof the di�erent situations that can arise in states of G. Informally, each lemma shows that aspeci�c coin event is a sub-event of the properties of reaching some other state. A preliminarylemma is an invariant of M , which guarantees that the resources are held by those processeswho think to be holding them.Lemma 6.3.4 For each reachable state s of M and each i, 1 � i � n, Resi = taken i�Xi(s) 2 fS!; D!; P; C; EF ; ES!g or Xi+1(s) 2 fS ; D ; P; C; EF ; ES g. Moreover, for each reachablestate s of M and each i, 1 � i � n, it is not the case that Xi(s) 2 fS!; D!; P; C; EF ; ES!g andXi+1(s) 2 fS ; D ; P; C; EF ; ES g, i.e., only one process at a time can hold one resource.Proof. The proof of this lemma is a standard proof of invariants. Simply verify that the twoproperties are true for the start states of M and are preserved by each transition of M .Lemma 6.3.51. Let Xi�1 2 fER; R; Fg and Xi = W . If FIRST(flipi�1; left), then, eventually, eitherXi�1 = P or Xi = S.2. Let Xi�1 = D and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.3. Let Xi�1 = S and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.4. Let Xi�1 = W and Xi = W . If FIRST(flipi�1; left), then, eventually, either Xi�1 = Por Xi = S.Proof. The four proofs start in the same way. Let s be a state of M satisfying the respectiveproperties of items 1 or 2 or 3 or 4 . Let A be an adversary of Fairadvs, and let � be anexecution of 
prexec(M;fsg;A) where the result of the �rst coin ip of process i � 1, if it occurs,is left. 117



1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nitionof Fairadvs, i performs a transition eventually in �. If i � 1 does not hold Resi�1 wheni performs this transition, then i progresses into con�guration S. If not, it must be thecase that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1 ipsleft, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .2. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transitioneventually. Let � = �1 a �2 such that the last transition of �1 is the �rst transition takenby process i � 1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W . Since processi� 1 did not ip any coin during �1, from the �nite-history-insensitivity of Fairadvs andItem 1 we conclude.3. If Xi = S eventually, then we are done. Otherwise, process i � 1 performs a transitioneventually. Let � = �1 a �2 such that the last transition of �1 is the �rst transition takenby process i � 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it must bethe case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W . Since process i� 1 did notip any coin during �1, from the �nite-history-insensitivity of Fairadvs and Item 2 weconclude.4. If Xi = S eventually, then we are done. Otherwise, process i checks its left resourceeventually and fails, process i � 1 gets its right resource before, and hence reaches atleast state S. Let � = �1 a �2 where the last transition of �1 is the �rst transition of �that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W .Since process i� 1 did not ip any coin during �1, from the �nite-history-insensitivity ofFairadvs and Item 3 we conclude.Lemma 6.3.6 Assume that Xi�1 2 fER; R; Tg and Xi = W . If FIRST(flipi�1; left), then,eventually, either Xi�1 = P or Xi = S.Proof. Follows directly from Lemma 6.3.5 after observing thatXi�1 2 fER; R; Tg is equivalentto Xi�1 2 fER; R; F;W; S;D;Pg.The next lemma is a useful tool for the proofs of Lemmas 6.3.8, 6.3.9, and 6.3.10.Lemma 6.3.7 Let Xi 2 fW ; S g or Xi 2 fER; R; F; D g with FIRST(flipi; left). Further-more, let Xi+1 2 fW!; S!g or Xi+1 2 fER; R; F; D!g with FIRST(flipi+1; right). Then the�rst of the two processes i or i+ 1 testing its second resource enters P after having performedthis test (if this time ever comes).Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both iand i+ 1. Whichever tests for it �rst gets it and enters P .Lemma 6.3.8 If Xi = S and Xi+1 2 fW!; S!g then, eventually, one of the two processes i ori+ 1 enters P . The same result holds if Xi 2 fW ; S g and Xi+1 = S!.118



Proof. Being in state S, process i tests its second resource eventually. An application ofLemma 6.3.7 �nishes the proof.Lemma 6.3.9 Let Xi = S and Xi+1 2 fER; R; F; D!g. If FIRST(flipi+1; right), then, even-tually, one of the two processes i or i+1 enters P . The same result holds if Xi 2 fER; R; F;Dg,Xi+1 = S! and FIRST(flipi; left).Proof. Being in state S, process i tests its second resource eventually. An application ofLemma 6.3.7 �nishes the proof.Lemma 6.3.10 Assume that Xi�1 2 fER; R; Tg, Xi = W , and Xi+1 2 fER; R; F;W!; D!g. IfFIRST(flipi�1; left) and FIRST(flipi+1; right), then eventually one of the three processesi� 1, i or i+ 1 enters P .Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W , and Xi+1(s) 2fER; R; F;W!; D!g. Let A be an adversary of Fairadvs, and let � be an extended execution of
prexec(M;fsg;A) where the result of the �rst coin ip of process i � 1 is left and the resultof the �rst coin ip of process i + 1 is right. By Lemma 6.3.6, eventually either processi � 1 reaches con�guration P in � or process i reaches con�guration S in �. If i � 1 reachescon�guration P , then we are done. If not, then let � = �1 a �2 such that lstate(�1) is the�rst state s0 of � with Xi(s0) = S . If i + 1 enters P before the end of �1, then we are done.Otherwise, Xi+1(fstate(�2)) is either in fW!; S!g or it is in fER; R; F; D!g and process i + 1has not ipped any coin yet in �. From the �nite-history-insensitivity of Fairadvs we can thenapply Lemma 6.3.7: eventually process i tests its second resource and by Lemma 6.3.7 processi enters P if process i+ 1 did not check its second resource in the meantime. If process i + 1checks its second resource before process i does the same, then by Lemma 6.3.7 process i + 1enters P .Lemma 6.3.11 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W!, and Xi 2 fER; R; F;W ; D g. IfFIRST(flipi; left) and FIRST(flipi+2; right), then eventually one of the three processes i,i+ 1 or i+ 2, enters P .Proof. The proof is analogous to the one of Lemma 6.3.10. This lemma is the symmetric caseof Lemma 6.3.10.Proposition 6.3.12 Starting from a global con�guration in G, then, with probability at least1=4, some process enters P eventually. Equivalently:G �!1=4 P :Proof. Lemmas 6.3.8 and 6.3.9 jointly treat the case where Xi = S and Xi+1 2 fER; R; F;#!gand the symmetric case where Xi 2 fER; R; F;# g and Xi+1 = S!; Lemmas 6.3.10 and 6.3.11jointly treat the case where Xi = W and Xi+1 2 fER; R; F;W!; D!g and the symmetric casewhere Xi 2 fER; R; F;W ; D g and Xi+1 = W!.119



Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) andFIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus theprobability of reaching P eventually is at least 1=4.We now turn to F �!1=2 G [ P . The proof is divided in two parts and constitute the globalargument of the proof of progress, i.e., the argument that focuses on the whole system ratherthan on a couple of processes.Lemma 6.3.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1; Xi+1) 6= (#!;# ), then, with probability at least 1=2 a state of G[P is reached eventually.Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be suchthat Xi(s) = F and (Xi�1; Xi+1) 6= (#!;# ). Assume without loss of generality that Xi+1 6= # ,i.e., Xi+1 2 fER; R; F;#!g. The case for Xi�1 6= #! is similar. Furthermore, we can assumethat Xi+1 2 fER; R; F; D!g since if Xi+1 2 fW!; S!g then s is already in G. We show that theevent schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probabilityat least 1=2, leads eventually to a state of G [ P . Let A be an adversary of Fairadvs, and let� be an extended execution of 
prexec(M;fsg;A) where if process i ips before process i+ 1 thenprocess i ips left, and if process i+ 1 ips before process i then process i+ 1 ips right.Then, eventually, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the �rst ofi and i+1 that reaches W and let s1 be the state reached after the �rst time process j reachesW . If some process reached P in the meantime, then we are done. Otherwise there are twocases to consider. If j = i, then, flipi yields left and Xi(s1) = W whereas Xi+1 is (still) infER; R; F; D!g. Therefore, s1 2 G. If j = i + 1, then flipi+1 yields right and Xi+1(s1) = W!whereas Xi(s1) is (still) F . Therefore, s1 2 G.Lemma 6.3.14 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1(s); Xi+1(s)) = (#!;# ). Then, with probability at least 1=2, a state of G [ P is reachedeventually.Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#!; F;# ).Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a processk pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,i.e., Xk(s) 2 fW ; S ; D g and Xk+1(s) 2 fER; R; F;W!; S!; D!; Pg.If Xk(s) 2 fW ; S g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P thens 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D .We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-bility at least 1=2, leads eventually to G [ P . Let A be an adversary of Fairadvs, and let �be an extended execution of 
prexec(M;fsg;A) where if process k ips before process k + 1 thenprocess k ips left, and if process k + 1 ips before process k then process k + 1 ips right.Then, eventually, process k performs at least two transitions and hence goes to con�gurationW . Let j 2 fk; k+1g be the �rst of k and k+1 that reaches W and let s1 be the state reachedafter the �rst time process j reachesW . If some process reached P in the meantime, then we are120



done. Otherwise, we distinguish two cases. If j = k, then, flipk yields left and Xk(s1) = W whereas Xk+1 is (still) in fER; R; F;#!g. Therefore, s1 2 G. If j = k + 1, then flipk+1 yieldsright and Xk+1(s1) = W! whereas Xk(s1) is (still) in fD ; Fg. Therefore, s1 2 G.Proposition 6.3.15 Start with a state s of F . Then, with probability at least 1=2, a state ofG [ P is reached eventually. Equivalently:F �!1=2 G [ P :Proof. The hypothesis of Lemmas 6.3.13 and 6.3.14 form a partition of F .Finally, we prove RT �!1 F [ G [ P .Proposition 6.3.16 Starting from a state s of RT , then a state of F [ G [ P is reachedeventually. Equivalently:RT �!1 F [ G [ P :Proof. Let s be a state of RT . If s 2 F [ G [ P , then we are trivially done. Supposethat s =2 F [ G [ P . Then in s each process is in fER; R;W; S;Dg and there exists at leastprocess in fW;S;Dg. Let A be an adversary of Fairadvs, and let � be an extended executionof 
prexec(M;fsg;A).We �rst argue that eventually some process reaches a state of fS;D; Fg in �. This is triviallytrue if in state s there is some process in fS;Dg. If this is not the case, then all processes areeither in ER or R or W . Eventually, some process in R or W performs a transition. If the�rst process not in ER performing a transition started in ER or R, then it reaches F and weare done; if the �rst process performing a transition is in W , then it reaches S since in s noresource is held. Once a process i is in fS;D; Fg, then eventually process i reaches either stateF or P , and we are done.6.4 General Coin LemmasThe coin lemmas of Section 6.2 are su�ciently general to prove the correctness of the Random-ized Dining Philosophers algorithm of Lehmann and Rabin. However, there are several othercoin events that are relevant for the analysis of distributed algorithms. For example, the toyresource allocation protocol that we used in Chapter 5 cannot be veri�ed yet. In this sectionwe present two general coin lemmas: the �rst one deals with multiple outcomes in a randomdraw; the second one gives a generalization of all the coin lemmas presented in the thesis.Unfortunately, generality and simplicity are usually incompatible: the two coin lemmas of thissection are conceptually more complicated than those of Section 6.2.6.4.1 Conjunction of Separate Coin Events with Multiple OutcomesThe coin lemma of Section 6.2.4 deals with the result of the intersection of several coin events.Thus, for example, if each coin event expresses the process of ipping a coin, then the coinlemma of Section 6.2.4 can be used to study the probability that all the coins yield head.121



However, we may be interested in the probability that at least half of the coins yield head,or in the probability that exactly 5 coins yield head. The coin lemmas of Section 6.2 are notadequate. Suppose now that we use each coin event to express the process of rolling a dice.The coin events of Section 6.2 are not adequate again since they can deal only with binaryoutcomes: we can observe only whether a speci�c set U is reached or not. How can we expressthe event that for each number i between 1 and 6 there is at least one dice that rolls i?In this section we de�ne a coin event and prove a coin lemma that can deal with the scenariosoutlined above. LetM be a probabilistic automaton, and let S be a set of n tuples fx1; : : : ; xng,where for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and kpairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For eachextended execution � of M and each i, 1 � i � n, letUi(�) = 8><>: f(i; 1); : : : ; (i; k)g if ai does not occurf(i; j)g if ai occurs and its �rst occurrence leads to Ui;j; otherwise:Then de�ne GFIRST(S; E) to be the function that associates with each probabilistic executionfragment H of M the set of extended executions � of 
H such that E \ (U1(�.qH0 ) � � � � �Uk(�.qH0 )) 6= ;.We illustrate the de�nition above by encoding the dice rolling example. In each tuple(ai; Ui;1; : : : ; Ui;k) ai identi�es the action of rolling the ith dice, k = 6, and for each j, Ui;j isthe set of states where the ith dice rolls j. The set E identi�es the set of outcomes that areconsidered to be good. In the case of the dices E is the set of tuples ((1; j1); : : : ; (n; jn)) wherefor each number l between 1 and 6 there is at least one i such that ji = l. The function Ui(�)checks whether the ith dice is rolled and identi�es the outcome. If the dice is not rolled, then,we allow any outcome as a possible one; if the dice is rolled and hits Ui;j , then the outcome is(i; j); if the the dice is rolled and the outcome is not in any one of the sets Ui;j 's, then there isno outcome (this case does not arise in our example). Then, an extended execution � of 
His in the event GFIRST(S; E)(H) if at least one of the outcomes associated with �.qH0 is anelement of E, i.e., if by choosing the outcome of the dices that are not rolled in �.qH0 all thesix numbers appear as the outcome of some dice.Let p be the probability that by rolling n dices all the six numbers appear as the outcomeof some dice. Then, the lemma below states that PH [GFIRST(S; E)(H)]� p for each H .Proposition 6.4.1 LetM be a probabilistic automaton. Let S be a set of n tuples fx1; : : : ; xngwhere for each i, 1 � i � n, xi is a tuple (ai; Ui;1; : : : ; Ui;k) consisting of an action of M and kpairwise disjoint sets of states of M . Let the actions ai be all distinct. Let E be a set of tuples((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji is between 1 and k. For eachi; j, 1 � i � n, 1 � j � k, let pi;j be a real number between 0 and 1 such that for each transition(s;P) of M where P [ai] > 0, P [Ui;j jai] � pi;j, and let C be the collection of the pi;js. Let PC [E]be the probability of the event E assuming that each experiment i is run independently, andthat for each i a pair (i; j) is chosen with probability pi;j. Then, for each probabilistic executionfragment H of M , PH [GFIRST(S; E)(H)]� PC [E].Proof. For each state q of H , each i 2 f1; : : : ; ng, and each j 2 f1; : : : ; kg, denote by 
(q; Ui;j)the set f(ai; q0) 2 
Hq j lstate(q0) 2 Ui;jg of pairs where ai occurs and leads to a state of Ui;j ,122



and denote by 
(q; Ui) the set f(ai; q0) 2 
Hq j lstate(q0) =2 [jUi;jg of pairs where ai occurs andnone of the Ui;js is reached. For each i 2 f1; : : : ; ng, let �i be the set of states q of H such thatno action aj , 1 � j � n, occurs in q.qH0 , and PHq [ai] > 0.We prove the lemma by induction on n. If n = 1 then the result follows from Lemma 6.2.1(the event can be transformed into a new event with two outcomes); otherwise,PH [GFIRST(S; E)(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(ai;q0)2
(q;Ui)PHq [(ai; q0)]1CA+ 0@ Xj2f1;:::;kg X(ai;q0)2
(q;Ui;j)PHq [(ai; q0)]PH.q0 [GFIRST(Si; E(i;j))(H.q0)]1A1A : (6.23)where Si is obtained from S by removing the tuple (ai; Ui;1; : : : ; Ui;k), and E(i;j) is the set of tu-ples ((1; j1); : : : ; (i�1; ji�1); (i+1; ji+1); : : : ; (n; jn)) such that ((1; j1); : : : ; (i�1; ji�1); (i; j); (i+1; ji+1); : : : ; (n; jn)) 2 E. Let Ci be obtained from C by removing all the probabilities of theform pi;j , 1 � j � k. Then, by induction,PH.q0 [GFIRST(Si; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.24)From the properties of conditional probabilities and the de�nition of C,PCi [E(i;j)] = PC[Ej(i; j)]: (6.25)Thus, by using (6.24) and (6.25) in (6.23), and by expressing PHq [(ai; q0)] as PHq [ai]PHq [(ai; q0)jai],we obtainPH [GFIRST(S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0B@0B@ X(ai;q0)2
(q;Ui)PHq [(ai; q0)jai]1CA+ 0@ Xj2f1;:::;kg X(ai;q0)2
(q;Ui;j)PHq [(ai; q0)jai](1� PC [Ej(i; j)])1A1A : (6.26)For each i; j and q, let pi;j;q be PHq [
(q; Ui;j)jai]. Then, from (6.26),PH [GFIRST(S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@(1� pi;1;q � � � � � pi;k;q) +0@ Xj2f1;:::;kg pi;j;q(1� PC[Ej(i; j)])1A1A ; (6.27)which becomesPH [GFIRST(S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j;q1A (6.28)123



after some simple algebraic simpli�cations. Using the same argument as in the proof ofLemma 6.2.1, for each i; j and each q, pi;j;q � pi;j . Thus,PH [GFIRST(S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [ai]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j1A : (6.29)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [ai] is the probability that some action aioccurs, and observe that Pj2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,PH [GFIRST(S; E)(H)] � 1� PC[E] (6.30)6.4.2 A Generalized Coin LemmaAll the coin lemmas that we have studied in this chapter share a common characteristic. Givena probabilistic execution fragmentH , we identify n separate classes of random draws to observe.Each class can be observed at most once in every execution � of 
H , and if any class cannotbe observed, then we allow for any arbitrary outcome. In this section we formalize this idea.Let H be a probabilistic execution fragment of a probabilistic automaton M . A coin-eventspeci�cation for H is a collection C of tuples (q;X;X1; : : : ; Xk) consisting of a state of H , asubset X of 
Hq , and m pairwise disjoint subsets of X , such that the following properties aresatis�ed:1. for each state q of H there is at most one tuple of C whose state is q;2. for each state q of H such that there exists a tuple of C with state q, there is no pre�x q0of q such that there exists a tuple (q0; X;X1; : : : ; Xk) in C and a pair (a; q00) in X whereq00 is a pre�x of q.The set C is the object that identi�es one of the classes of random draws to be observed. Foreach transition trHq and each tuple (q;X;X1; : : : ; Xk) of C, the set X identi�es the part of trHqthat is relevant for C, and the sets X1; : : : ; Xk identify some of the possible outcomes. The �rstrequirement for C guarantees that there is at most one way to observe what happens from astate q of H , and the second requirement states that along every execution of 
H there is atmost one place where C is observed.As an example, consider the observation of whether the �rst occurrence of an action a,which represents a coin ip, leads to head. Then C is the set of tuples (q;X;X1) where actiona does not occur in q.qH0 and PHq [a] > 0, X is the set of pairs of 
Hq where action a occurs,and X1 is the set of pairs of X where the coin ips head.Let � be an extended execution of 
H , and let q be a state of H such that q � �. We saythat C occurs in � at q i� there exists a tuple (q;X;X1; : : : ; Xk) in C and a pair (a; q0) in Xsuch that q0 � �. Moreover, if (a; q0) 2 Xj , we say that C occurs in � at q and leads to Xj .Two coin event speci�cations C1 and C2 are said to be separate i� from every state q ofH , if (q;X1; X1;1; : : : ; X1;k) is a tuple of C1 and (q;X2; X2;1; : : : ; X2;k) is a tuple of C2, thenX1 \X2 = ;. In other words, there is no interference between the observations of C1 and the124



observations of C2. Let S = fC1; : : : ; Cng be a set of pairwise separate coin-event speci�cations.For notational convenience, for each i 2 f1; : : : ; ng and each state q of H such that there existsa tuple in Ci with state q, denote such tuple by (q;Xq;i; Xq;i;1; : : : ; Xq;i;k)Let E be a set of tuples ((1; j1); : : : ; (n; jn)) where for each i, 1 � i � n, the value of ji isbetween 1 and k. For each extended execution � of 
H and each i, 1 � i � n, letUi(�) = 8><>: f(i; 1); : : : ; (i; k)g if Ci does not occur in �f(i; j)g if Ci occurs in � leading to Xq;i;j; otherwise:Then, de�ne GCOIN (S; E)(H) to be the set of extended executions of 
H such that E \(U1(�.qH0 )� � � � � Uk(�.qH0 )) 6= ;.Lemma 6.4.2 Let H be a probabilistic execution fragment of a probabilistic automaton M . LetS = fC1; : : : ; Cng be a set of separate coin-event speci�cations for H. For each i; j, 1 � i � n,1 � j � k, let pi;j be a real number between 0 and 1 such that for each i 2 f1; : : : ; ng and eachtuple (q;Xq;i; Xq;i;1; : : : ; Xq;i;m) of Ci, PHq [Xq;i;jjXq;i] � pi;j. Let C be the collection of the pi;j's.Let PC[E] be the probability of the event E assuming that each experiment i is run independently,and for each i a pair (i; j) is chosen with probability pi;j. Then, PH [GCOIN (S; E)(H)]� PC [E].Proof. For each state q of H and each i, 1 � i � n, if there exists a tuple in Ci with state q,then denote Xq;in [j2f1;:::;kg Xq;i;j by Xq;i. For each i, 1 � i � n, let �i be the set of states qof H such that there exists a tuple with state q in Ci and no coin-event Cj, 1 � j � n, occursin q.qH0 .We prove the lemma by induction on n, using n = 0 for the base case. For n = 0 we assumethat P [E] = 1 and that GCOIN (S; E)(H) = 
H . In this case the result is trivial. Otherwise,PH [GCOIN (S; E)(H)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@0B@ X(a;q0)2Xq;i PHq [(a; q0)]1CA+ 0@ Xj2f1;:::;kg X(a;q0)2Xq;i;j PHq [(a; q0)]PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)]1A1A : (6.31)where S.q0 is obtained from S by removing Ci and, for each j 6= i, by transforming the set Cjinto f(q.q0; X.q0; X1.q0; : : : ; Xk.q0) j (q;X;X1; : : : ; Xk) 2 Cj; q0 � qg. Then, by induction,PH.q0 [GCOIN (S.q0; E(i;j))(H.q0)] � (1� PCi [E(i;j)]): (6.32)From the properties of conditional probabilities and the de�nition of C,PCi [E(i;j)] = PC[Ej(i; j)]: (6.33)Thus, by using (6.32) and (6.33) in (6.31), and expressing PHq [(a; q0)] as PHq [Xq;i]PHq [(a; q0)jXq;i],we obtainPH [GCOIN (S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0B@0B@ X(a;q0)2Xq;i PHq [(a; q0)jXq;i]1CA+ 0@ Xj2f1;:::;kg X(a;q0)2Xq;i;j PHq [(a; q0)jXq;i](1� PC [Ej(i; j)])1A1A : (6.34)125



For each i; j and q, let pi;j;q be PHq [Xq;i;jjXq;i]. Then, from (6.34),PH [GCOIN (S; E)(H)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0@(1� pi;1;q � � � � � pi;k;q) +0@ Xj2f1;:::;kg pi;j;q(1� PC[Ej(i; j)])1A1A ; (6.35)which becomesPH [GCOIN (S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xi;j]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j;q1A (6.36)after some simple algebraic simpli�cations. From hypothesis, for each i; j and each q, pi;j;q �pi;j . Thus,PH [GCOIN (S; E)(H)]� Xi2f1;:::;ng Xq2�i PH [Cq]PHq [Xq;i]0@1� Xj2f1;:::;kgPC [Ej(i; j)]pi;j1A : (6.37)Finally, observe that Pi2f1;:::;ngPq2�i PH [Cq]PHq [Xq;i] is the probability that some Ci occurs,and observe that Pj2f1;:::;kg PC [Ej(i; j)]pi;j = PC [E]. Thus,PH [GCOIN (S; E)(H)] � 1� PC [E] (6.38)6.5 Example: Randomized Agreement with Stopping FaultsIn this section we analyze the Randomized Agreement algorithm of Ben-Or [BO83]. Its proofof correctness is an application of Lemma 6.4.2. The proof that we present in this section is notas detailed as the proof of the Dining Philosophers algorithm, but contains all the informationnecessary to �ll in all the details, which we leave to the reader.6.5.1 The ProblemConsider n asynchronous processes that communicate through a network of reliable channels(i.e., channels that deliver all the messages in the same order as they are received, and thatnever fail to deliver a message), and suppose that each process i starts with an initial valuevi 2 f0; 1g. Suppose that each process can broadcast a message to every other process in asingle operation. Each process runs an algorithm that at some point may decide on one valueof f0; 1g. Each process decides at most once. The algorithm should be designed so that thefollowing properties are satis�ed.1. Agreement: all the processes that decide choose the same value.126



2. Validity: if all the processes have the same initial value v, then v is the only possibledecision value.3. f-failure termination: if at most f processes fail, then all the non-failing processesdecide a value.We assume that a process fails by stopping, i.e., by failing to send messages to other processesfrom some point on. Since the processes are asynchronous, no processes can distinguish a slowprocess from a failing process.Unfortunately, it is known from [FLP85] that there is no deterministic algorithm for asyn-chronous processes that solves the agreement problem and guarantees 1-failure termination.Here we present the randomized algorithm of Ben-Or [BO83], which solves the agreement prob-lem with certainty, and guarantees f -failure termination with probability 1 whenever n > 3f .6.5.2 The AlgorithmEach process i has local variables x, initially vi, and y, initially null , and executes a series ofstages numbered 1; 2; : : :, each stage consisting of two rounds . Each process runs forever, evenafter it decides. At stage st � 1, process i does the following.1. Broadcast (�rst; st; v), where v is the current value of x, and then wait to obtain n � fmessages of the form (�rst; st; �), where � stands for any value. If all the messages havethe same value v, then set y := v, otherwise set y := null .2. Broadcast (second; st; v), where v is the current value of y, and then wait to obtain n� fmessages of the form (second; st; �). There are three cases:(a) if all the messages have the same value v 6= null , then set x := v and perform adecide(v)i operation if no decision was made already;(b) if at least n� 2f messages, but not all the messages, have the same value v 6= null ,then set x := v without deciding (the assumption n > 3f guarantees that therecannot be two di�erent such values v);(c) otherwise, set x to 0 with probability 1=2 and to 1 with probability 1=2.The intuition behind the use of randomness is that at each stage, if a decision is not made yet,with probability at least 1=2n all the processes that choose a value at random choose the same"good" value. Thus, with probability 1 there is eventually a stage where the processes thatchoose a value at random choose the same good value, and this leads to a decision.We now give an idea of the structure of the probabilistic automatonM that describes Ben-Or's algorithm. Each process i has the two variables x and y mentioned in the descriptionof the algorithm, plus a queue mj for each process j that records the unprocessed messagesreceived from process j, initially null , a stage counter st , initially 1, a program counter pc,and a boolean variable decided that is set to true i� process i has decided already. Thereis a channel Ci;j between every pair of processes. Each channel Ci;j is essentially a bu�erlike the bu�er described in Chapter 3 (cf. Figure 3-1), whose inputs are actions of the form(�rst; st ; v)i and (second; st; v)i, and whose outputs are actions of the form (�rst; st; v)i;j and(second; st; v)i;j. To broadcast a message (�rst ; st; v), process i performs the action (�rst ; st; v)i.127



A message (�rst; st; v) is received by process i from process j through the action (�rst ; st; v)j;i.The de�nition of the transition relation of M is straightforward.6.5.3 The High Level ProofAgreement and validity are easy to prove and do not involve any probabilistic argument.Lemma 6.5.1 Ben-Or's algorithm satis�es the agreement and validity conditions.Proof. We start with validity. Suppose that all the processes start with the same value v.Then it is easy to see that every process that completes stage 1 decides on v in that stage. Thisis because the only value sent or received by any process in the �rst round is v, and thus theonly value sent or received by any process in the second round is v, leading to the decision of v.For agreement, suppose that some process decides, and let process i be the �rst processthat decides. Let v and st be the value decided by process i and the stage at which processi decides, respectively. Then it must be the case that process i receives n � f (second; st; v)messages. This implies that any other process j that completes stage st receives at least n� 2f(second; st; v) messages, since it hears from all but at most f of the processes that process ihears from. This means that process j cannot decide on a value di�erent from v at stage st ;moreover, process j sets x := v at stage st . Since this is true for all the processes that completestage st , then an argument similar to the argument for validity shows that any process thatcompletes stage st + 1 and does not decide in stage st decides v at stage st + 1.The argument for f -failure termination involves probability. We assume that all the processesbut at most f are scheduled in�nitely many times. Thus, let f-fair be the set of adversaries forM such that for each probabilistic execution fragment H generated by an adversary of f-fairthe set 
H contains only executions ofM where at least n�f processes are scheduled in�nitelymany times. It is easy to check that f-fair is �nite-history-insensitive.Let B be the set of reachable states of M ; let F be the set of reachable states of M whereno process has decided yet and there exists a value st and a number i such that process ireceived exactly n� f messages (�rst; st ; �), and no other process has ever received more thann� f � 1 messages (�rst; st; �); �nally, let O be the set of reachable states of M where at leastone process has decided.It is easy to show thatB �!1 f-fair F [ O: (6.39)Speci�cally, let � be an f -fair execution fragment of M starting from a reachable state s ofM ,and let st be the maximum value of the stages reached by each process in s. Then, stage st +1is reached eventually in �, and thus there is a state s0 in � where some process is the �rst oneto receive n� f messages (�rst ; st + 1; �). The state s0 is a state of F [O.In Section 6.5.4 we show thatF �!1=2nO: (6.40)Thus, combining (6.39) and (6.40) with Theorem 5.5.2, and by using Proposition 5.5.6, weobtainB �!1 O: (6.41)128



Finally, we need to show that in every f -fair execution where at least one process decides allthe non-failing processes decide eventually. This is shown already in the second part of theproof of Lemma 6.5.1.6.5.4 The Low Level ProofIn this section we prove the progress statement of (6.40) using the generalized coin lemma.Consider a state s of F , and let i be the process that has received n� f messages (�rst ; st; v).Let A be an adversary of f-fair , and let H be prexec(M;A; s).For each j, 1 � j � n, let Cj be the set of triplets (q;X;X1) where q is a state ofH such thatprocess j is at stage st in lstate(q) and there is a non-zero probability that process j choosesrandomly between 0 and 1 from q, X is the set of pairs of 
Hq where process j performs atransition, and X1 is de�ned as follows. Let s0 be lstate(q), and let v be a good value if at leastf + 1 of the messages (�rst ; st; �) processed by process i have value v. We emphasize the word\processed" since, although each process can receive more that n�f messages (�rst; st; �), onlyn� f of those messages are used (processed).1. If 0 is a good value, then let X1 be the set of pairs of X where process i chooses 0;2. if 1 is a good value and 0 is not a good value, then let X1 be the set of pairs of X whereprocess i chooses 1.Observe that in s0 there is at least one good value, and at most two values; thus, Cj is wellde�ned. It is easy to check that C1; : : : ; Cn are separate coin event speci�cations; more-over, for each j, 1 � j � n, and each triplet (q;X;X1) of Cj , PHq [X1jX ] = 1=2. LetE = f((1; 1); (2; 1); : : : ; (n; 1)g. From Lemma 6.4.2, PH [GCOIN ((C1; : : : ; Cn); E)(H)]� 1=2n.We are left with the proof that in each extended execution of GCOIN ((C1; : : : ; Cn); E)(H)all the non-faulty processes choose a value. More precisely, we show that the non-faulty pro-cesses complete stage st setting x to the same value v. Then, the second part of the proof ofLemma 6.5.1 can be used to show that all the non-faulty processes decide on v at the end ofstage st + 1; in particular at least one process decides. We distinguish two cases.1. In s0 there is exactly one good value v.In this case every other process receives at least one copy of v during the �rst round ofstage st , and thus y is set either to v or to null . Therefore, v is the only value thata process chooses by a non-random assignment at the end of stage st . On the otherhand, if a process j chooses a value at random at the end of stage st , the de�nition of Cjguarantees that the value chosen is v. Thus, every process that completes stage st setsx := v.2. In s0 there are two good values.In this case every process receives at least one copy of 0 and one copy of 1, and thus yis set to null . Therefore, each process chooses a value at random at the end of stage st .The de�nition of C1; : : : ; Cn guarantees that every process that completes stage st setsx := 0. 129



6.6 Example: The Toy Resource Allocation ProtocolLemma 6.4.2 can be used also to prove formally that the toy resource allocation protocol ofSection 5.1 guarantees that, under any deterministic fair oblivious adversary (cf. Example 5.6.2for the de�nition of a fair oblivious adversary), process M1 eventually gets a resource. Thisresult can be extended to general oblivious adversaries by using the results about deterministicand randomized adversaries proved in Chapter 5 (cf. Proposition 5.7.11).Recall from Example 6.1.1 that we want to identify a coin event that expresses the followingproperty: the �rst coin ip of M1 after the �rst coin ip of M2 is di�erent from the last coinip of M2 before the �rst time M1 checks its resource after ipping. In the rest of the sectionwe specify two coin event speci�cations C1 and C2. The speci�cation C1 identi�es the �rst coinip of M1 after the �rst coin ip of M2, while the speci�cation C2 identi�es the last coin ip ofM2 before the �rst time M1 checks its resource after ipping.Let H be a probabilistic execution fragment, generated by a deterministic fair obliviousadversary, such that the �rst state of qH0 is reachable in M . Let C1 be the set of tuples(q;X;X1; X2) where1. q is a state of H such that M2 ips at least once in q.qH0 , M1 does not ip in q.qH0 afterthe �rst time M2 ips, and M1 ips from q,2. X is the set 
Hq ,3. X1 is the set of pairs of X where M1 ips head,4. X2 is the set of pairs of X where M1 ips tail.Observe that C1 is a coin-event speci�cation. Moreover, observe that for each tuple of C1,PHq [X1jX ] = 1=2 and PHq [X2jX ] = 1=2. Let C2 be the set of tuples (q;X;X1; X2) where1. q is a state of H such that either(a) M1 does not ip in q.qH0 after M2 ips, M2 ips from q, and there exists a stateq0 � q such that M2 ips exactly once in q0.q and M1 ips and checks its resourceafter ipping in q0.q, or(b) M1 ips and does not check its resource after the �rst ip of M2 in q.qH0 , M2 ipsfrom q, and there exists a state q0 � q such that M2 ips exactly once in q0.q, M1does not check its resource in q0.q, and M1 checks its resource from q0,2. X is the set 
Hq ,3. X1 is the set of pairs of X where M2 ips head,4. X1 is the set of pairs of X where M2 ips tail.Informally, C2 identi�es the coin ip of M2 that precedes the point where M1 checks theresource determined by C1. Figure 6-4 illustrates graphically the two cases of the de�nitionof C2. Observe that for each tuple of C2, PHq [X1jX ] = 1=2 and PHq [X2jX ] = 1=2. Since H isgenerated by an oblivious deterministic adversary, then it is easy to verify that C2 is a coin-eventspeci�cation. The important point is to verify that Condition 2 of the de�nition of a coin eventis satis�ed; this is the point where the fact that an adversary is oblivious and deterministic isused. 130
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6.7 The Partition TechniqueEven though the coin lemmas can be used to prove the correctness of several nontrivial algo-rithms, two of which have been illustrated in this chapter, there are algorithms for which thecoin lemmas do not seem to be suitable. One example of such an algorithm is the random-ized algorithm for maximal independent sets of Awerbuch, Cowen and Smith [ACS94]; anotherexample is the toy resource allocation protocol again.Example 6.7.1 (The coin lemmas do not work always) In Section 6.6 we have shownthat the toy resource allocation protocol guarantees progress against fair oblivious adversaries;however, in Example 5.6.2 we have stated that the toy resource allocation protocol guaranteesprogress also against adversaries that do not know only the outcome of those coins that havenot been used yet. Such a result cannot be proved using the coin lemmas of this chapter be-cause situations like those outlined in Example 6.6.1 arise. For example, after the �rst timeM2ips, we could schedule M2 again and then schedule M1 to test its resource only if M2 gets theresource R1.Another way to obtain a situation where the coin lemmas of this chapter do not apply is tomodify the second instruction of the resource allocation protocol as follows2. if the chosen resource is free, then get it, otherwise go back to 1 .Example 6.7.1 shows us that some other techniques need to be developed; it is very likely thatseveral new techniques will be discovered by analyzing other algorithms. In this section we hintat a proof technique that departs considerably from the coin lemmas and that is su�cientlypowerful to deal with the toy resource allocation protocol. We illustrate the technique with anexample.Example 6.7.2 (The partition technique) Let A be a generic fair adversary for the toyresource allocation protocol that does not know the outcome of those coin ips that have notbeen used yet, and letH be a probabilistic execution generated by A. Assume for simplicity thatA is deterministic; the result for a generic adversary follows from Proposition 5.7.11. Consideran element of 
H , and consider the �rst point q where M1 ips a coin (cf. Figure 6-6). Thecoin ipping transition leads to two states qh and qt that are not distinguishable by A, whichmeans that from qh and qt the adversary schedules the same process. If the process scheduledfrom qh and qt isM2, then the states reached from qh are in one-to-one correspondence with thestates reached from qt, since they di�er only in the value of the coin ipped by M1. Figure 6-6illustrates the case where M2 ips a coin. Furthermore, two corresponding states are reachedwith the same probability. The one-to-one correspondence between the states reached form qhand qt is maintained until M1 tests its chosen resource.Consider now a point whereM1 tests its resource. Figure 6-6 illustrates four of these points,denoted by qt;1, qh;1, qt;2, and qh;2. If M1 fails to obtain the resource, it means that M2 holdsthat resource at that point. However, M2 holds the same resource in the corresponding statevia the one-to-one correspondence M2, while M1 tests the other resource. Thus, M1 succeedsin getting the chosen resource. (cf. states qt;1 and qh;1 of Figure 6-6.The bottom line is that we have partitioned the states where M1 checks its resource intwo sets, and we have shown that for each pair of corresponding states there is at least onestate where M1 succeeds in getting a resource. In some cases, like for states qt;2, and qh;2 of132
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Chapter 7Hierarchical Veri�cation: TraceDistributions7.1 IntroductionSo far we have de�ned a model to describe randomized concurrent and distributed systems,and we have shown how to study the properties of a system by means of a direct analysis of itsstructure. A speci�cation is a set of properties that an implementation should satisfy, and animplementation is a probabilistic automaton that satis�es the desired properties.Another approach to the analysis of a system considers an automaton as a speci�cation itself.Then, an abstract notion of observation is de�ned on automata, and an automaton is said tobe an implementation of another automaton i� there is a speci�c relation, usually a preorderrelation, between their abstract observations. Examples of observations are traces [Hoa85, LV91](cf. Section 3.2.3), and failures [Hoa85, BHR84]; in these two cases implementation is expressedby set inclusion.7.1.1 Observational SemanticsFormally, an automaton A is associated with a set Obs(A) of observations, and a preorderrelation R is de�ned over sets of observations (for example R can be set inclusion). Then, anautomaton A1 is said to implement another automaton A2, denoted by A1 v A2, i� Obs(A1) RObs(A2). The function Obs() is called an observational semantics , or alternatively a behavioralsemantics ; in the second case the observations are thought as the possible behaviors of anautomaton.The methodology based on preorder relations is an instance of the hierarchical veri�cationmethod: a speci�cation, which is usually very abstract, can be re�ned successively into lessabstract speci�cations, each one implementing the more abstract speci�cation, till the actualimplementation is obtained. Figure 7-1 gives an example of a speci�cation that is re�ned twotimes to build the actual implementation. Of course it is implicitly assumed that the relevantproperties of a system are only those that are preserved by the chosen implementation relation.Thus, given a relation, it is important to understand what properties it preserves. Coarserelations may not preserve all the relevant properties, but they are usually easy to verify, i.e., itis usually easy to establish whether such a relation holds; �ner relations that preserve exactly the135
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Theorem 7.1.1 Let Obs() be an observational semantics, R be an equivalence relation oversets of observations, and let, for each set x of observations, [x]R be the equivalence class ofx under R. Let A1 � A2 i� Obs(A1) R Obs(A2). Then the following two statements areequivalent.1. � is substitutive, i.e., if A1 � A2 then for each A3, A1kA3 � A2kA3;2. Obs() is compositional, i.e., there exists an operator k on equivalence classes of observa-tions such that [Obs(A1kA2)]R = [Obs(A1)]Rk[Obs(A1)]R.If R is set equality, then we can remove the equivalence classes from the second statementsince each set of observations is an equivalence class. The substitutivity of a preorder relationis stronger than the substitutivity of its kernel equivalence relation, since the direction of theinequality must be preserved under parallel composition. For this reason our primary concernin this chapter is the substitutivity of the implementation relation.7.1.3 The Objective of this ChapterIn this chapter we study the simplest implementation relation based on observations, i.e., traceinclusion, and we extend the corresponding precongruence to the probabilistic framework. Thetrace preorder constitutes the basis for several other implementation relations and is known topreserve the safety properties of a system [AS85]. Roughly speaking, a safety property says that\something good holds forever" or that \something bad does not happen". The trace preorderis important for ordinary automata for its simplicity and for the availability of the simulationmethod [LT87, Jon91, LV91] (cf. Chapter 8), which provides several su�cient conditions forthe trace preorder relation to hold. Other relations, based either on failures [Hoa85, BHR84]or on any other form of enriched traces, can be obtained by following the same methodologythat we present here.In the probabilistic framework a trace is replaced by a trace distribution, where the tracedistribution of a probabilistic execution fragment H is the distribution over traces induced byPH , the probability space associated with H . The trace distribution preorder is de�ned asinclusion of trace distributions.Unfortunately, the trace distribution preorder is not a precongruence (cf. Example 7.4.1),which in turn means that the observational semantics based on trace distributions is not com-positional. A standard approach in this case is to de�ne the trace distribution precongruenceas the coarsest precongruence that is contained in the trace distribution preorder; then, inorder to have a compositional observational semantics that captures the trace distribution pre-congruence, an alternative, more operational and constructive characterization of the tracedistribution precongruence is derived. We give an alternative characterization of the trace dis-tribution precongruence by exhibiting a context, called the principal context , that distinguishestwo probabilistic automata whenever there exists a distinguishing context. This leads to thenotion of a principal trace distribution, which is a trace distribution of a probabilistic automatonin parallel with the principal context; the trace distribution precongruence can be characterizedalternatively as inclusion of principal trace distributions.Several other characterizations of the trace distribution precongruence could be found, pos-sibly leading to di�erent observational semantics equivalent to the principal trace distributionsemantics. Further experience with each one of the alternative semantics will determine which137
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’Figure 7-3: Trace distribution equivalent probabilistic automata.one is more useful. One of the problems with the principal trace distribution characterizationis that, although from Theorem 7.1.1 there exists an operator k de�ned on principal traces,the de�nition of k is not simple. For ordinary automata the traces of a parallel compositionof two automata are exactly those sequences of actions that restricted to each component givea trace of the component. This property does not hold for principal trace distributions (cf.Example 7.4.1). It is desirable to �nd a semantics that characterizes the trace distributionprecongruence and for which the corresponding parallel composition operator has a simplede�nition; however, it is not clear whether such a semantics exists.7.2 Trace DistributionsLet H be a probabilistic execution fragment of a probabilistic automaton M , and let f be afunction from 
H to 
 = ext(H)�[ext(H)! that assigns to each execution of 
H its trace. Thetrace distribution of H , denoted by tdistr(H), is the probability space completion((
;F ; P ))where F is the �-�eld generated by the cones C�, where � is a �nite trace ofH , and P = f(PH).Observe that, from Proposition 3.1.4, f is a measurable function from (
H ;FH) to (
;F), sincethe inverse image of a cone is a union of cones. Denote a generic trace distribution by D. A tracedistribution of a probabilistic automatonM is the trace distribution of one of the probabilisticexecutions of M . Denote by tdistrs(M) the set of the trace distributions of a probabilisticautomaton M .It is easy to see that trace distributions extend the traces of ordinary automata: the tracedistribution of a linear probabilistic execution fragment � is a distribution that assigns proba-bility 1 to trace(�).Given two probabilistic execution fragments H1 and H2, it is possible to check whethertdistr(H1) = tdistr(H2) just by verifying that Ptdistr(H1)[C�] = Ptdistr(H2)[C�] for each �nitesequence of actions �. This is an easy consequence of the extension theorem (cf. Theorem 3.1.2).Example 7.2.1 (Reason for the de�nition of 
) The reader may wonder why we havenot de�ned 
 to be trace(
H). This is to avoid to distinguish two trace distribution just be-cause they have di�erent sample spaces. Figure 7-3 illustrates the idea. The two probabilisticautomata of Figure 7-3 have the same trace distributions; however, the left probabilistic au-tomaton has a probabilistic execution where the trace a1 occurs with probability 0, while theright probabilistic automaton does not. Thus, by de�ning the sample space of tdistr(H) to betrace(
H), the two probabilistic automata of Figure 7-3 would be distinct. In Chapter 8 we138



de�ne several simulation relations for probabilistic automata, and we show that they are soundfor the trace distribution precongruence; such a result would not be true with the alternativede�nition of a trace distribution.Pre�xesThe notion of a pre�x for traces can be extended to the probabilistic framework by followingthe same idea as for the notion of a pre�x de�ned on probabilistic executions (cf. Section 4.2.6).A trace distribution D is a pre�x of a trace distribution D0, denoted by D � D0, i� for each�nite trace �, PD [C�] � PD0 [C�]. Thus, two trace distributions are equal i� each one is a pre�xof the other.Lemma 7.2.1 Let H1 and H2 be two probabilistic execution fragments of a probabilistic au-tomaton M . If H1 � H2, then tdistr(H1) � tdistr(H2).Action RestrictionSimilarly to the ordinary case, it is possible to de�ne an action restriction operator on tracedistributions. Let D = (
;F ; P ) be a trace distribution, and let V be a set of actions. Thenthe restriction of D to V , denoted by D � V , is the probability space completion((
0;F 0; P 0))where 
0 = 
 � V , F 0 is the �-�eld generated by the sets of cones of 
0, and P 0 is the inverseimage of P under the function that restricts traces to V .Lemma 7.2.2 Let D be a trace distribution. Then (D � V1) � V2 = D � (V1 \ V2).Proof. This is a direct consequence of the fact that restricting a trace to V1 and then to V2 isequivalent to restricting the same trace to V1\V2. Formally, � � (V1\V2) = (� � V2) � (� � V1).Finally, we want to show that, if M = M1kM2, then the projection of a trace distribution ofM onto M1 and M2 is a trace distribution of M1 and M2, respectively. Formally,Proposition 7.2.3 If D 2 tdistrs(M1kM2), then D � acts(Mi) 2 tdistrs(Mi), i = 1; 2.The converse of Proposition 7.2.3 is not true; an illustrating example is given in Section 7.4(cf. Example 7.4.1). The rest of this section is dedicated to the proof of Proposition 7.2.3. Westart with a de�nition of an internal trace distribution, which is a trace distribution that doesnot abstract from internal actions.Let � be an execution of a probabilistic automaton M . The internal trace of �, denotedby itrace(�), is the subsequence of � consisting of the actions of M . Let H be a probabilisticexecution fragment of M , and let f be a function from 
H to 
 = acts(H)� [ acts(H)! thatassigns to each execution of 
H its internal trace. The internal trace distribution of H , denotedby itdistr(H), is the probability space completion((
;F ; P )) where F is the �-�eld generatedby the cones of 
, and P = f(PH). Observe that, from Proposition 3.1.4, f is a measurablefunction from (
H ;FH) to (
;F). Denote a generic internal trace distribution by D. Denotethe set of internal trace distributions of a probabilistic automaton M by itdistrs(M).Lemma 7.2.4 Let H be a probabilistic execution fragment of a probabilistic automaton M .Then, tdistr(H) = itdistr(H) � ext(H). 139



Proof. This is a direct consequence of the fact that the set of executions of H whose tracecontains a given � is the set of executions of H whose internal trace restricted to the externalactions of H contains �. Formally, trace(�) = itrace(�) � (� � ext(H)).Lemma 7.2.5 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 aretwo compatible probabilistic automata. Then itdistr(HdMi) = itdistr(H) � acts(Mi), i = 1; 2.Proof. Let P denote itdistr(HdMi), and let P 0 denote itdistr(H) � acts(Mi). We need toshow that for each �nite internal trace �, P [C�] = P 0[C�]. Let P 00 denote itdistr(H). From thede�nition of an internal trace,P [C�] = PHdMi [� 2 
HdMi j � � itrace(�)]: (7.1)From the de�nition of P 0 and P 00,P 0[C�] = P 00[�0 2 
00 j � � �0 � acts(Mi)]: (7.2)From the de�nition of itdistr(H) and (7.2),P 0[C�] = PH [� 2 
H j � � itrace(�) � acts(Mi)]: (7.3)Thus, from (7.1) and (7.3), we need to show thatPHdMi[� 2 
HdMi j � � itrace(�)] = PH [� 2 
H j � � itrace(�) � acts(Mi)]: (7.4)By using a characterization of the involved events as a disjoint union of cones, and by rewritingEquation 7.4 accordingly, we obtainPHdMi[ [q2states(HdMi)jitrace(q)=�;lact(q)=lact(�)Cq] (7.5)= PH [ [q2states(H)jitrace(q)�acts(Mi)=�;lact(q)=lact(�)Cq]:Observe that for each q 2 states(H) such that itrace(q) � acts(Mi) = � and lact(q) =lact(�), the state qdMi is a state of HdMi such that itrace(qdMi) = � and lact(qdMi) =lact(�). Moreover, the states q of the left expression of (7.5) are partitioned by the relationthat relates q and q0 whenever qdMi = q0dMi. Thus, if we show that for each trace � and eachq 2 states(HdMi) such that itrace(q) = � and lact(q) = lact(�),PHdMi[Cq] = PH [[q02qeH jlact(q0)=lact(�)Cq0 ]; (7.6)Equation (7.5) is proved. Observe thatPH [[q02states(H)jq0dMi=q;lact(q0)=lact(�)Cq0 ] = Xq02min(qeH)PH [Cq0]; (7.7)since fq0 2 states(H) j q0dMi = q; lact(q0) = lact(�)g = min(qeH). Thus, Equation (7.6)becomesPHdMi[Cq] = Xq02min(qeH)PH [Cq0]; (7.8)which is true from Proposition 4.3.5. 140



Lemma 7.2.6 Let H be a probabilistic execution fragment of M1kM2, where M1 and M2 aretwo compatible probabilistic automata. Then tdistr(HdMi) = tdistr(H) � acts(Mi).Proof. From Lemma 7.2.4,tdistr(HdMi) = itdistr(HdMi) � ext(Mi): (7.9)From Lemma 7.2.5 and (7.9),tdistr(HdMi) = (itdistr(H) � acts(Mi)) � ext(Mi): (7.10)From Lemma 7.2.2 and (7.10),tdistr(HdMi) = (itdistr(H) � ext(H)) � acts(Mi): (7.11)From Lemma 7.2.4 and (7.11),tdistr(HdMi) = tdistr(H) � acts(Mi); (7.12)which is what we needed to prove.Proof of Proposition 7.2.3. Let D 2 tdistrs(M1kM2). Then there exists a probabilis-tic execution H of M1kM2 such that tdistr(H) = D. From Proposition 4.3.4, HdMi is aprobabilistic execution of Mi. From Lemma 7.2.6, tdistr(HdMi) = D � acts(Mi). Thus,D � acts(Mi) 2 tdistrs(Mi).7.3 Trace Distribution PreorderOnce trace distributions are de�ned, the trace distribution preorder can be de�ned as tracedistribution inclusion. Formally, let M1;M2 be two probabilistic automata with the sameexternal action signature. The trace distribution preorder is de�ned as follows.M1 vD M2 i� tdistrs(M1) � tdistrs(M2): (7.13)The trace distribution preorder is a conservative extension of the trace preorder of ordinaryautomata, and it preserves properties that resemble the safety properties of ordinary automata[AS85]. Here we give some examples of such properties.Example 7.3.1 The following property is preserved by the trace distribution preorder.\After some �nite trace � has occurred, then the probability that some other trace�0 occurs, is not greater than p."In fact, suppose that M1 vD M2, and suppose that M2 satis�es the property above, whileM1 does not. Then there is a trace distribution of M1 where the probability of �0 after �conditional to � is greater than p. Since M1 vD M2, there is a trace distribution of M2 wherethe probability of �0 after � conditional to � is greater than p. This contradicts the hypothesisthatM2 satis�es the property above. Observe that the property above would still be preservedif we replace �0 with a set of traces. 141



Example 7.3.2 The following property is preserved by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, ifa �nite trace � occurs, then the probability that some other trace �0 occurs after �given that � occurs is at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, every request of service eventually gets a response with probability atleast p". This property is de�nitely more interesting than the property of Example 7.3.1 since itinvolves a progress statement, one of the property of key interest for the analysis of randomizeddistributed algorithms. Thus, if in a system it is always possible to avoid a deadlock, underthe assumption that we always schedule a transition and under the condition that no in�niteinternal computation is possible, the property above guarantees progress. However, in order tobe sure that if M1 vD M2 and M2 satis�es the property above then M1 guarantee progress, weneed to make sure that from every state of M2 it is possible to avoid deadlock and there is nopossibility of in�nite internal computation. Such a property must be veri�ed separately since itis not guaranteed by the trace distribution preorder. Fortunately, there are several cases (e.g.,n processes running in parallel that communicate via shared memory) where it is easy to verifythat it is always possible to avoid a deadlock.To prove that the property above is preserved, suppose that M1 vD M2, and suppose thatM2 satis�es the the property above, while M1 does not. Then there is a trace distribution ofM1with in�nite external computation where the probability of �0 after � conditional to � is greaterthan p. Since M1 vD M2, there is a trace distribution ofM2 with in�nite external computationwhere the probability of �0 after � conditional to � is greater than p. This contradicts thehypothesis that M2 satis�es the property above.Example 7.3.3 The following property is preserved by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, if a�nite trace � occurs, then, no matter what state is reached, a trace �0 occurs ofter� with probability at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, if a process has requested a service (�), then, no matter what state isreached, either the service has received a positive acknowledgment already (�0), or a positiveacknowledgment will be received eventually with probability at least p". This property is pre-served by the trace distribution preorder since it is equivalent to the property of Example 7.3.2with p = 1 (cf. Proposition 5.5.5 to have an idea of why this is true).Essentially, the rule of thumb to determine what properties can be guaranteed to be preservedunder the trace distribution preorder is the following: express the property of interest as aproperty � of the trace distributions of a probabilistic automatonM plus a condition  on thestructure ofM . If M1 vD M2, then the trace distributions ofM1 satisfy the property �. Thus,if we know that M2 satis�es the property of interest, it is enough to verify separately that M1satis�es  in order to be guaranteed that also M1 satis�es the property of interest.142
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eFigure 7-5: A probabilistic execution of M2kC.7.4 Trace Distribution PrecongruenceAlthough the trace distribution preorder preserves some properties that are useful for the anal-ysis of randomized distributed systems, the trace distribution preorder is not a precongruence,and thus it does not allow us to use modular analysis.Example 7.4.1 (The trace distribution preorder is not substitutive) Consider the twoprobabilistic automata M1 and M2 of Figure 7-4. It is easy to check that M1 and M2 havethe same trace distributions. Consider now the context C of Figure 7-4. Figure 7-5 shows aprobabilistic execution of M2kC where there is a total correlation between the occurrence ofactions d and f and actions e and g. Such a correlation cannot be obtained from M1kC, sincethe choice between f and g must be resolved before knowing what action among d and e ischosen probabilistically. Thus, M1kC and M2kC do not have the same trace distributions.This leads us to the de�nition of the trace distribution precongruence, denoted by vDC , as thecoarsest precongruence that is contained in the trace distribution preorder. This de�nition of thetrace distribution precongruence is not constructive, and thus it is di�cult to understand whatwe have de�ned. Furthermore, we do not have any observational semantics that characterizesthe trace distribution precongruence. In Section 7.5 we give an alternative characterizationof the trace distribution precongruence that gives a better idea of the relation that we havede�ned. Here we give some examples of properties that are preserved by the trace distributionprecongruence and that are not preserved by the trace distribution preorder.Example 7.4.2 The following property is preserved by the trace distribution precongruencebut not by the trace distribution preorder. 143



\After some �nite trace � has occurred, no matter what state is reached, the prob-ability that some other trace �0 occurs from the state reached is not greater thanp."This property is not preserved by the trace distribution preorder since trace distributions cannotdetect all the points where we may start to study the probability of �0 to occur. However, thistask is possible with the help of an external context. We use a context C that performs a freshaction o and then stops.Suppose that M1 vDC M2 and suppose that M2 satis�es the property above, while M1does not. Then there is a probabilistic execution H1 of M1 where some state q is reached afterthe occurrence of �, and the probability that �0 occurs from q is greater than p. Consider aprobabilistic execution H 01 ofM1kC such that H 01dM1 = H1 and such that action o is scheduledexactly from the minimal state q0 such that q0dM1 = q. Then, o occurs always after �, andthe conditional probability of �0 after o given that o occurred is greater than p in the tracedistribution of H 01. Since M1 vDC M2, then there is a probabilistic execution H 02 of M2kCwhose trace distribution is the same as the trace distribution of H 02. This means that there is atleast one state q00 in H 02, reached immediately after the occurrence of o, where the probabilitythat �0 occurs from q00 in H 02 is greater than p. Consider H 02dM2, and change its transitionrelation to obtain a probabilistic execution H2 such that H2.(q00dM2) = (H 02dM2).(q00dM2).Then the probability that �0 occurs from q00dM2 in H2 is greater than p. Moreover, � hasoccurred when qdM2 is reached. This contradicts the hypothesis that M2 satis�es the propertyabove.Example 7.4.3 The following property is preserved by the trace distribution precongruencebut not by the trace distribution preorder.\In every computation where in�nite external activity occurs with probability 1, if a�nite trace � occurs, then, no matter what state is reached, if another trace �00 hasnot occurred yet after �, then a trace �0 occurs with probability at least p."A more concrete instantiation of the property above is \under the hypothesis that a distributedsystem never deadlocks, if a process has requested a service (�) and has not received yet arefusal (�00) then, no matter what state is reached, a positive acknowledgment (�0) will bereceived eventually with probability at least p". Observe that the main di�erence from theproperty of Example 7.3.3 is in the use of �00. The presence of �00 does not guarantee that �0occurs with probability 1.Even in this case in the proof we use a context C with a fresh action o. Suppose thatM1 vDC M2 and suppose thatM2 satis�es the property above, while M1 does not. Then thereis a probabilistic execution H1 ofM1 where in�nite external activity occurs such that there is astate q of H1 that is reached after the occurrence of � and before the occurrence of �00, and suchthat the probability that �0 occurs from q is smaller than p. Consider a probabilistic executionH 01 of M1kC such that H 01dM1 = H1 and such that action o is scheduled exactly from theminimal state q0 such that q0dM1 = q. Then, o occurs always after � and before �00 occurs after�, and the conditional probability of �0 after o given that o occurred is greater than p in thetrace distribution of H 01. Since M1 vDC M2, then there is a probabilistic execution H 02 ofM2kCwhose trace distribution is the same as the trace distribution of H 02. This means that there is at144
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start startFigure 7-6: The principal context (left) and the simple principal context (right).least one state q00 in H 02, reached immediately after the occurrence of o, where the probabilitythat �0 occurs from q00 in H 02 is smaller than p. Consider H 02dM2, and change its transitionrelation to obtain a probabilistic execution H2 such that H2.(q00dM2) = (H 02dM2).(q00dM2).Then the probability that �0 occurs from q00dM2 in H2 is smaller than p. Moreover, � hasoccurred when qdM2 is reached and similarly �00 has not occurred after the occurrence of �.This contradicts the hypothesis that M2 satis�es the property above.7.5 Alternative Characterizations of the Trace DistributionPrecongruenceIn this section we give an alternative characterization of the trace distribution precongruencethat is easier to manipulate. We de�ne a principal context , denoted by CP , and we show thatthere exists a context C that can distinguish two probabilistic automata M1 and M2 i� theprincipal context distinguishes M1 and M2.7.5.1 The Principal ContextThe principal context is a probabilistic automaton with a unique state and three self-loop tran-sitions labeled with actions that do not appear in any other probabilistic automaton. Twoself-loop transitions are deterministic (Dirac) and are labeled with action left and right , respec-tively; the third self-loop transition is probabilistic, where one edge leads to the occurrence ofaction pleft with probability 1=2 and the other edge leads to the occurrence of action prightwith probability 1=2. Figure 7-6 shows the principal context.The principal context is not a simple probabilistic automaton; however, since it does nothave any action in common with any other probabilistic automaton, the parallel compositionoperator can be extended trivially: no synchronization is allowed. Alternatively, if we do notwant a non-simple context, we can replace the principal context with the simple principalcontext , represented in Figure 7-6, as well. In this case we need to assume that also action startdoes not appear in any other probabilistic automaton. The main theorem is the following.Theorem 7.5.1 M1 vDC M2 i� M1kCP vD M2kCP .As a corollary we obtain an alternative characterization of the trace distribution precongruenceand a compositional observational semantics for probabilistic automata. A principal trace distri-145



bution of a probabilistic automatonM is a trace distribution ofMkCP . Denote by ptdistrs(M)the set tdistrs(MkCP ).Corollary 7.5.2 M1 vDC M2 i� ptdistrs(M1) � ptdistrs(M2).The fact that the principal context is not a simple probabilistic automaton may appear tobe confusing. Here we shed some light on the problem. First of all, in Chapter 4 we havede�ned parallel composition only for simple probabilistic automata; in this section, in order toaccount for the principal context, we have extended parallel composition to pairs of probabilisticautomata, not necessarily simple, that do not have any action in common. This raises animmediate question: is the trace distribution precongruence de�ned based solely on contextsthat are simple probabilistic automata or is it de�ned based on any compatible context accordingto the new extended parallel composition? The answer to this question, as it will become clearfrom the proof of Theorem 7.5.1, is that it does not matter because the two de�nitions areequivalent. That is, if there is a non-simple context that distinguishes two simple probabilisticautomata M1 and M2, then the simple principal context distinguishes M1 and M2 as well.Our choice of the principal context is just stylistic since it contains less structure thanthe simple principal context. The reader should keep in mind that there are in�nitely manycontexts with the same properties as the principal and the simple principal contexts; any oneof those contexts can be chosen to give an alternative characterization to the trace distributionprecongruence.7.5.2 High Level ProofThe rest of this section is dedicated to the proof of Theorem 7.5.1. The proof is structuredin several steps where at each step a generic distinguishing context C is transformed intoa simpler distinguishing context C0. The proof of each transformation step is structured asfollows. Given a distinguishing context C for M1 vD M2, build a simpler context C0. Supposeby contradiction that C0 is not a distinguishing context and consider a trace distribution D ofM1kC that is not a trace distribution of M2kC. Let H1 be a probabilistic execution of M1kCsuch that tdistr(H1) = D. Transform H1 into a probabilistic execution H 01 ofM1kC0, and showthat if there is a probabilistic execution H 02 of M2kC 0 such that tdistr(H 02) = tdistr(H 01), thenH 02 can be transformed into a probabilistic execution H2 of M2kC such that tdistr(H2) = D.This leads to a contradiction.The high level proof of Theorem 7.5.1 is then the following.=): Assuming that the principal context distinguishes M1 and M2, we show that the simpleprincipal context distinguishes M1 and M2.(=: We consider a generic context C that distinguishes M1 and M2, and we transform it intothe principal context, showing that the principal context distinguishes M1 and M2. Thetransformation steps are the following.1. Ensure that C does not have any action in common withM1 andM2 (Lemma 7.5.3);2. Ensure that C does not have any cycles in its transition relation (Lemma 7.5.4);3. Ensure that the branching structure of C is at most countable (Lemma 7.5.5);146



4. Ensure that the branching structure of C is at most binary (Lemma 7.5.6);5. Ensure that the probabilistic transitions ofC lead to binary and uniform distributions(Lemma 7.5.7);6. Ensure that each action of C is external and appears exactly in one edge of thetransition relation of C (Lemma 7.5.8);7. Ensure that each state of C enables two deterministic transitions and one probabilis-tic transition with a uniform binary distribution (Lemma 7.5.9);8. Rename all the actions of the context of 7 according to the action names of theprincipal context and then collapse all the states of the new context into a uniquestate, leading to the principal context (Lemma 7.5.10).7.5.3 Detailed ProofLemma 7.5.3 Let C be a distinguishing context for two probabilistic automata M1 and M2.Then there exists a distinguishing context C0 for M1 and M2 with no actions in common withM1 and M2. C0 is called a separated context.Proof. The context C0 is built from C be replacing each action a in common with M1 and M2,called a shared action, with two new actions a1; a2, and by replacing each transition (c; a;P) ofC with two transitions (c; a1; c0) and (c0; a2;P), where c0 denotes a new state that is used onlyfor the transition (c; a;P). We denote c0 also by c(c;a;P) when convenient. We also denote theset of actions of the kind a1 and a2 by V1 and V2, respectively.Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider aprobabilistic execution H1 of M1kC such that tdistr(H1) = D, and consider the scheduler thatleads to H1. Apply to M1kC0 the same scheduler with the following modi�cation: whenever atransition ((s1; c); a;P1
P) is scheduled in M1kC, schedule ((s1; c); a1;D((s1; c0))), where c0 isc(c;a;P), followed by ((s1; c0); a;P1
D(c0)), and, for each s01 2 
1, followed by ((s01; c0); a2;D(s01)
P). Denote the resulting probabilistic execution by H 01 and the resulting trace distribution byD0. Then,D0 � acts(M1kC) = D: (7.14)To prove (7.14) we de�ne a new construction, called collapse and abbreviated with clp, to beapplied to probabilistic executions of MikC 0, i = 1; 2, where each occurrence of a shared actiona is followed immediately by an occurrence of its corresponding action a2.Let H 0 be a probabilistic execution of MikC0 where each occurrence of a shared action a isfollowed immediately by an occurrence of its corresponding action a2. For convenience denoteclp(H 0) by H . A state q of H 0 is closed if each occurrence of a shared action a is followedeventually by an occurrence of the corresponding action a2. For each closed state q of H 0, letclp(q) be obtained from q as follows: each sequence(s0; c0)a1(s0; ctr)�2(s2; ctr) � � ��k(sk; ctr)a(s; ctr)a2(s; c)is replaced with(s0; c0)�2(s2; c0) � � ��k(sk; c0)a(s; c); 147



and each sequence(s0; c0)a1(s1; ctr)�2(s2; ctr) � � ��k(sk; ctr)occurring at the end of q is replaced with(s0; c0)�2(s2; c0) � � ��k(sk; c0):De�nestates(H) 4= fclp(q) j q 2 states(H 0); closed(q)g: (7.15)Let (q;P) be a restricted transition of H 0 where q is a closed state, and suppose that no actionof V1 [ V2 occurs. Consider a pair (a; q0) of 
. If a is not a shared action, then letP(a;q0) 4= D((a; clp(q0))); (7.16)if a is a shared action, then let
(a;q0) 4= f(a; clp(q00)) j (a2; q00) 2 
H 0q0 g; (7.17)and for each (a; q000) 2 
(a;q0), letP(a;q0)[(a; q000)] 4= Pq0 [a2 � clp�1(q000)]; (7.18)where for each state q of H , clp�1(q) is the set of closed states q0 of H 0 such that clp(q0) = q.The transition clp((q;P)) is de�ned to beclp((q;P)) 4= 0@clp(q); X(a;q0)2
P [(a; q0)]P(a;q0)1A : (7.19)For the transition relation of H , consider a state q of H Let min(clp�1(q)) be the set of minimalstates of clp�1(q) under pre�x ordering. For each state �q 2 clp�1(q), let�pclp�1(q)�q 4= PH 0 [C�q]Pq02min(clp�1(q)) PH 0 [Cq0] : (7.20)The transition enabled in H from q isXq02clp�1(q) �pclp�1(q)q0 PH 0q0 [acts(MikC)]clp(trH 0q0 � acts(MikC)): (7.21)Note the similarity with the de�nition of the projection of a probabilistic execution fragment(cf. Section 4.3.2).The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of clp.From (7.21) it is enough to check that for each closed state q0 of H 0, the transitionclp(trH 0q0 � acts(MikC)) is generated by a combination of transitions of MikC. Since trH 0q0is a transition of H 0, (trH 0q0 � acts(MikC)) can be expressed as Pj pj(q0 a tr j), where eachtr j is a transition of MikC0. We distinguish three cases.148



1. tr j is a non-shared transition of Mi.Then tr j = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s, as it follows directlyfrom the de�nition of clp. De�ne tr 0j to be the transition ((s; c0); a;P
D(c0)). Thentr 0j is a transition of MikC and clp(q0 a tr j) = clp(q0) a tr 0j2. tr j is a non-shared transition of C 0.Then tr j = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(clp(q0)) = (s0; c0). Then, s0 = s and c0 = c, as it followsdirectly from the de�nition of clp after observing that q0 must be a closed state inorder to enable tr j . De�ne tr 0j to be tr j . Then tr 0j is a transition of MikC andclp(q0 a tr j) = clp(q0) a tr 0j3. tr j is a shared transition.Then tr j = ((s; ctr); a;P
D(ctr)) for some action a and probability space P , where(s; ctr) = lstate(q0). In particular, ctr is one of the states that are added to thoseof C, and tr is a simple transition of C with action a. Moreover, from each state(s0; ctr) 2 
P
D(ctr), there is a transition ((s0; ctr); a2;D(s0) 
 Ptr) enabled. Letlstate(clp(q0)) = (s0; c0). Then, s0 = s. De�ne tr 0j to be ((s; c0); a;P 
 Ptr). Then,from the de�nition of C0, tr 0j is a transition of MikC.Observe that clp distributes over combination of transitions. Moreover, from Equa-tion (7.19), observe that for each j clp(q0 a tr j) = clp(q0) a tr 0j . Thus, clp(trH 0q0 �acts(MikC)) = clp(q0) a (Pj pjtr 0j), which is generated by a combination of transitions ofMikC.b. For each state q of H ,PH [Cq] = Xq02min(clp�1(q))PH 0 [Cq0 ]: (7.22)This is shown by induction on the length of q. If q consists of a start state only, then the re-sult is trivial. Otherwise, from the de�nition of the probability of a cone, Equation (7.21),and a simple algebraic simpli�cation,PH [Cqas] = PH [Cq]0@ Xq02clp�1(q) �pclp�1(q)q0 Fq0(qas)1A ; (7.23)where Fq0(qas) expresses the probability of the completions of q0 to a state whose col-lapse gives qas without using actions from V1 [ V2 in the �rst transition. Formally,if a is not a shared action, then Fq0(qas) is PH 0q0 [a � clp�1(qas)]; otherwise, Fq0(qas)is PH 0q0 [(a; q0a(s0; ctr))]PH 0q0a(s0;ctr )[(a2; q0a(s0; ctr)a2(s0; c))], where ctr = lstate(q0)dC 0, ands = (s0; c). In the �rst case, 
H 0q0 \ (fag � clp�1(qas)) contains only one element, say(a; q0as00), and PH 0 [Cq0]Fq0(qas) gives PH 0 [Cq0as00 ]; in the second case PH 0 [Cq0]Fq0(qas)gives PH 0 [C(q0a(s0;ctr)a2s)]. 149



Observe that the states of min(clp�1(qas)) are the states of the form described above(simple cases analysis). Thus, by applying induction to (7.23), using (7.20), simplifyingalgebraically, and using the observations above,PH [Cqas] = Xq02min(clp�1(qas))PH 0 [Cq0]: (7.24)c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or H 0. Then f� 2 
H 0 j � � trace(�) � acts(MikC)g can beexpressed as a union of disjoint cones [q2�Cq where, if the last action of � is a and a isnot a shared action,� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = ag; (7.25)and if the last action of � is a and a is a shared action,� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = a2g: (7.26)Observe that � is a set of closed states. The set clp(�) is the setclp(�) = fq 2 states(H) j trace(q) = �; lact(q) = ag; (7.27)which is a characterization of f� 2 
H j � � trace(�)g as a union of disjoint cones.Observe that min(clp�1(clp(�))) = �. Moreover, for each q1 6= q2 of clp(�), clp�1(q1) \clp�1(q2) = ;. Thus, from (7.22), PH 0 [[q2�Cq] = PH [[q2clp(�)Cq]. This is enough toconclude.To complete the proof of (7.14) it is enough to observe that H1 = clp(H 01). Property (7.14) isthen expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC0 whose trace distribution is D0, and such thateach shared action a is followed immediately by its corresponding action a2. Then we let H2 beclp(H 002 ). This leads to a contradiction since tdistr(H2) = D. The rest of the proof is dedicatedto the construction of H 002 .For each state q of H 02, let exch(q) be the set of sequences q0 that can be obtained from qas follows: each sequence(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr)a2(sh; c)is replaced with(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);each sequence(s0; ctr)a(s1; ctr)�2(s2; ctr) � � ��h(sh; ctr) 150



occurring at the end of q is replaced with(s0; ctr)a(s1; ctr)a2(s1; c)�2(s2; c) � � ��h(sh; c);where c is any of the states that a2 may lead to from ctr , and each sequence(s0; ctr)a(s1; ctr)occurring at the end of q, where a is a shared action, either it is replaced with(s0; ctr)a(s1; ctr)a2(s1; c);where c is any of the states that a2 may lead to from ctr , or it is not replaced. Then, de�nestates(H 002 ) 4= [q2states(H 02) exch(q): (7.28)Let (q;P) be a restricted transition of H 02, and suppose that no action of V2 occurs. Let q0 bea state of exch(q) that does not end with a shared action. Then, for each (a; q1) 2 
 there isexactly one q01 2 exch(q1) such that q0 � q01 and jq01j = jq0j+ 1 (simple analysis of the de�nitionof exch). Denote such q01 by exchq0(q1). Let 
0 = f(a; exchq0(q1) j (a; q1) 2 
g, and let, for each(a; q01) 2 
0, P 0[(a; q01)] = P [(a� exch�1(q01))], where exch�1(q) is the set of states q0 of H 02 suchthat q 2 exch(q0). Then de�ne the transition exchq0((q;P)) to beexchq0((q;P)) 4= (q0;P 0): (7.29)For each state q of H 002 , let min(exch�1(q)) be the set of minimal states of exch�1(q) underpre�x ordering. For each state q0 of exch�1(q), where q is closed, let� pqq0 4= PH 02 [Cq0 ] if q0 is closed , i.e., if each occurrence of a shared action a is followedeventually by an occurrence of its corresponding action a2;� pqq0 4= PH 02 [Cq0]Ptr [c] if q0 is open, where lstate(q0)dC0 = ctr and lstate(q)dC = c.For each q0 2 exch�1(q), let�pexch�1(q)q0 4= pqq0Pq002min(exch�1(q)) pqq00 : (7.30)If the last action of q is a shared action a, and lstate(q) = (s; ctr), then the transition enabledfrom q in H 002 isq a ((s; ctr); a2;D(s)
 Ptr): (7.31)If the last action of q is not a shared action, then the transition enabled from q in H 002 isXq02exch�1(q) �pexch�1(q)q0 PH 02q0 [acts(H 02)nV2]exchq(trH 02q0 � (acts(H 02)nV2)): (7.32)The probabilistic execution H 02 satis�es the following properties.151



a. H 002 is a probabilistic execution of M2kC0.The fact that each state of H 002 is reachable can be shown by a simple inductive argument;the fact that each state of H 002 is a �nite execution fragment of M2kC 0 follows from asimple analysis of the de�nition of exch .We need to check that for each state q of H 002 the transition enabled from q in H 002 isgenerated by a combination of transitions of M2kC 0. If the last action of q is a sharedaction, then the result follows immediately from Expression (7.31) and the de�nition ofC0. If the last action of q is not a shared action, then consider a state q0 2 exch�1(q).The transition trH 02q0 � (acts(H 02)nV2) can be expressed as Pi pi(q0 a tr i), where each tr i isa transition of M2kC 0 enabled from lstate(q0). We distinguish three cases.1. tr i is a non-shared transition of M2.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be thetransition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC 0 and exchq(q0atr i) =q a tr 0i.2. tr i is a non-shared transition of C 0.Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to betr i. Then tr 0i is a transition of M2kC 0 and exchq(q0 a tr i) = q a tr 0i.3. tr i is a shared transition.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0. De�ne tr 0i to betr i. Then tr 0i is a transition of M2kC 0 and exchq(q0 a tr i) = q a tr 0i.Observe that exch distributes over combination of transitions. Thus, exchq((trq0) �(acts(H 02)nV2)) can be expressed as Pi pi(q a tr 0i), which is generated by a combination oftransitions of M2kC 0. From (7.32), the transition enabled from q in H 002 is generated by acombination of transitions of M2kC 0.b. For each state q of H 002 ,PH 002 [Cq] = ( Pq02min(exch�1(q)) PH 02 [Cq0] if q ends with a shared action,Pq02min(exch�1(q)) pqq0 otherwise. (7.33)The proof is by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, consider PH 002 [Cqas]. We distinguish two cases.1. q is open.In this case, since in H 02 each shared action is followed immediately by the corre-sponding action of V2, a is an action of V2. Moreover, from the de�nition of exch ,exch�1(q) = min(exch�1(qas)) = min(exch�1(q)); (7.34)and all the elements of exch�1(q) are open states. From induction,PH 002 [Cq] = Xq02min(exch�1(q))PH 02 [Cq0]: (7.35)152



Let c = sdM2, and let ctr = lstate(q)dC 0. Then, for each q0 2 min(exch�1(q)),ctr = lstate(q0)dC 0, andpqasq0 = PH 02 [Cq0 ]Ptr [c]: (7.36)Moreover, PH 002q [(a; qas)] = Ptr [c]. Thus, from the de�nition of the probability of acone and (7.35),PH 002 [Cqas] = Xq02min(exch�1(q))PH 02 [Cq0]Ptr [c]: (7.37)By using the fact that min(exch�1(q)) = min(exch�1(qas)), and using (7.36), weobtainPH 002 [Cqas] = Xq02min(exch�1(qas)) pqasq0 : (7.38)2. q is closed.In this case, from the de�nition of the probability of a cone and (7.32),PH 002 [Cqas] = PH 002 [Cq]0@ Xq02exch�1(q) �pexch�1(q)q0 PH 02q0 [a� exch�1(qas)]1A : (7.39)Let P tr q [q0] denote Ptr [c], where c = lstate(q)dC 0, and ctr = lstate(q0)dC0. Then,from induction and (7.30),PH 002 [Cqas] = Xq02exch�1(q)jclosed(q0)PH 02 [Cq0]PH 02q0 [a� exch�1(qas)] + (7.40)Xq02exch�1(q)jopen(q0)PH 02 [Cq0 ]P tr q[q0]PH 02q0 [a� exch�1(qas)]:We distinguish two subcases.(a) a is a shared action.In this case each state q0 of exch�1(q) such that PH 02q0 [a � exch�1(qas)] > 0is closed. Thus, only the �rst summand of (7.40) is used. Moreover, eachstate of min(exch�1(qas)) is captured by Expression (7.40). Thus, PH 02 [Cqas] =Pq02min(exch�1(qas)) PH 02 [Cq0]. Observe that qas is open.(b) a is not a shared action.In this case, for each q0 2 exch�1(q), if q0 is closed, then all the states reached in
q0\(fag�exch�1(qas)) are closed, and if q0 is open, then all the states reachedin 
q0\(fag�exch�1(qas)) are open. Moreover, each state of min(exch�1(qas))is captured by Expression (7.40). Thus, from the de�nition of pqasq0 , PH 02 [Cqas] =Pq02min(exch�1(qas)) pqasq0 . Observe that qas is closed.c. tdistr(H 02) = tdistr(H 002 ).Let � be a �nite trace of H 02 or H 002 . Then f� 2 
H 02 j � � trace(�)g can be expressed asa union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.41)153



We distinguish two cases.1. � does not end with an action of V2.The set �0 = fq 2 exch(�) j lact(q) = lact(�)g is a characterization of f� 2 
H 002 j� � trace(�)g as a union of disjoint cones. Observe that min(exch�1(�0)) = � andthat for each pair of states q1 6= q2 of �0, min(exch�1(q1)) \ min(exch�1(q2)) =;. Thus, if � ends with a shared action, then (7.33) is su�cient to conclude thatPH 02 [f� 2 
H 02 j � � trace(�)g] = PH 002 [f� 2 
H 002 j � � trace(�)g]; if � does notend with a shared action, then, since all the states of � are closed, Equation (7.33)together with the de�nition of pqq0 are su�cient to conclude.2. � ends with an action of V2.In this case � = �0a2 for some action a2 2 V2. Observe that, both in H 02 and H 002 ,after the occurrence of a shared action a the corresponding action a2 occurs withprobability 1: for H 02 recall that tdistr(H 02) � acts(M2kC) = D; for H 002 see (7.31).Thus, the probability of � is the same as the probability of �0, and the problem isreduced to Case 1.Lemma 7.5.4 Let C be a distinguishing separated context for two probabilistic automata M1and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.Proof. C0 can be built by unfolding C. Every scheduler for MikC can be transformed into ascheduler for MikC 0 and vice versa, leading to the same trace distributions.Lemma 7.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistic au-tomata M1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1and M2 with a transition relation that is at most countably branching.Proof. Let D be a trace distribution of M1kC that is not a trace distribution of M2kC.Consider the corresponding probabilistic execution H . Observe that H has at most countablymany states, and that at each state of H there are at most countably many transitions of Cthat are scheduled. Thus, in total, only countably many transitions of C are used to generateD. Then C 0 is C without the unused transitions.Lemma 7.5.6 Let C be a distinguishing cycle-free, separated context for two probabilistic au-tomata M1 and M2 such that the transition relation of C is at most countably branching. Thenthere exists a distinguishing cycle-free separated context C0 for M1 and M2 that at each stateeither enables two deterministic transitions or a unique probabilistic transition with two possibleoutcomes. C 0 is called a binary separated context.Proof. For each state s of C, choose a new action start s. Let s enable the transitionstr1; tr2; : : :, where each tr i is a transition (s; ai;Pi). The transition relation of C0 is obtained intwo phases. First, a transition is chosen nondeterministically as shown in Figure 7-7, where eachsymbol � denotes a distinct state and each symbol � denotes a distinct internal action; then, foreach state �i, the transition tr i is encoded as follows. Let 
i be fsi;1; si;2; : : :g, pi;j 4= Pi[si;j ],and �pi;j 4= Pk�j pi;k. The transition relation from �i is represented in Figure 7-8, where each154
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is replaced with(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0)aj(s; c);where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions ofMi, and eachsequence either of the form(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �j)�1(sh; �) � � ��k(sh; �)or of the form(s0; c0)startc0(s0; �)b1(s1; �) � � �bh(sh; �)occurring at the end of q is replaced with(s0; c0)bi1(si1 ; c0) � � �bil(si;l; c0);where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of Mi. Then,states(H) 4= fshr(q) j q 2 states(H 0)g: (7.44)Let (q;P) be a restricted transition of H 0, and suppose that no action of acts(C0)nacts(C)occurs. Let 
0 = f(a; shr(q0)) j (a; q0) 2 
g, and for each (a; q00) 2 
0, let P 0[(a; q00)] =P [a � shr�1(q00)], where shr�1(q) is the set of states q0 of H 0 such that shr(q0) = q. Then thetransition shr((q;P)) is de�ned to beshr((q;P)) 4= (shr(q);P): (7.45)For the transition relation of H , consider a state q of H , and let min(shr�1(q)) be the set ofminimal states of shr�1(q) under pre�x ordering. For each state �q 2 shr�1(q), let�pshr�1(q)�q 4= PH 0 [C�q]Pq02min(shr�1(q)) PH 0 [Cq0] : (7.46)The transition enabled from q in H isXq02shr�1(q) �pshr�1(q)�q PH 0q0 [acts(MikC)]shr(trH 0q0 � acts(MikC)): (7.47)The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of shr .We need to show that for each state q of H the transition of Expression (7.47) is generatedby a combination of transitions of MikC. The states of shr�1(q) that enable some actionofMikC can be partitioned into two sets �c and �o of closed and open states, respectively.We analyze �c �rst. Let q0 2 �c. Since tr q0 is a transition of H 0, (tr q0 � acts(MikC)) canbe expressed as Pj pj(q0 a tr j), where each tr j is a transition of MikC 0. We distinguishtwo cases. 156



1. tr j is a transition of Mi.Then tr j = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(shr(q0)) = (s0; c0). Then, s0 = s, as it follows directlyfrom the de�nition of shr . Moreover, (s; a;P) is a transition of Mi. De�ne tr 0jto be the transition ((s; c0); a;P 
 D(c0)). Then tr 0j is a transition of MikC andshr q(q0 a tr i) = q a tr 0j .2. tr j is a transition of C 0.This case is not possible since, from the construction of C 0, no action of C can beenabled from a closed state.Observe that shr distributes over combination of transitions. Thus,shr(trH 0q0 � acts(MikC)) =Xj pj(shr(q0) a tr 0j); (7.48)which is generated by a combination of transitions of MikC.We now turn to �o. The set �o can be partitioned into sets (�j)j�0, where each set�j consists of those states q0 of �o where a particular state �j of C0 occurs without itsmatching action aj . Each element q0 of �j can be split into two parts q1 a q2, wherelstate(q1)dC0 = �j . Denote q1 by head(q0). Partition �j into other sets (�j;k)k�0, whereeach �j;k is an equivalence class of the relation that relates two states i� they have thesame head. Denote the common head of the states of �i;j by head(�i;j). For each pairof states q1; q2 of H 0 such that q1 � q2, denote by pq1q2 the probability value such thatPH 0 [CH 0q2 ] = PH 0 [CH 0q1 ]pq1q2 . Then, for each equivalence class �i;j , the expressionXq02�j;k �pshr�1(q)q0 PH 0q0 [acts(MikC)]shr(trH 0q0 � acts(MikC)) (7.49)can be rewritten into0@�pshr�1(q)head(�i;j) Xq02�j;k phead(q0)q01AXq02�j;k phead(q0)q0Pq02�j;k phead(q0)q0 PH 0q0 [aj ]shr(trH 0q0 � acts(MikC)) (7.50)where (7.50) is obtained from (7.49) by expressing each �pshr�1(q)q0 as �pshr�1(q)head(q0) phead(q0)q0 , bygrouping �pshr�1(q)head(�i;j), which is equal to �pshr�1(q)head(q0) for each q0 os �i;j , by substituting PH 0q0 [aj ]for PH 0q0 [acts(MikC] (action aj is the only action of MikC that can be performed from q0due to the structure of H 0), and by multiplying and dividing by Pq02�j;k phead (q0)q0 .Observe that each transition that appears in (7.50) is generated by some transitions ofMikC. Thus, the transition of (7.50) is generated by a combined transition of MikC.Denote this transition by tr j;k. Then, in Expression (7.47) it is possible to substi-tute each subexpression Pq02�j;k �pshr�1(q)q0 PH 0q0 [acts(MikC)]shr(tr q0 � acts(MikC)) with(�pshr�1(q)head(q0) Pq02�j;k phead(q0)q0)tr j;k. This is enough to conclude.157



b. For each state q of H ,PH [Cq] = Xq02min(shr�1(q))PH 0 [Cq0]: (7.51)This is shown by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, from the de�nition of the probability of a cone and (7.47),PH [Cqas] = Xq02shr�1(q)PH 0 [Cq0]PH 0q0 [a� shr�1(qas)]: (7.52)Observe that the states ofmin(shr�1(qas)) are the states that appear in (a�shr�1(qas))\
q0 for some q0 2 shr�1(q). Thus, PH [Cqas] =Pq02min(shr�1(qas)) PH 0 [Cq0].c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or the projection of a �nite trace of H 0. Then f� 2 
H 0 j � �trace(�) � acts(MikC)g can be expressed as a union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (7.53)Observe that � is a set of closed states. The set shr(�) is the setshr(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (7.54)which is a characterization of f� 2 
H j � � trace(�)g as a union of disjoint cones.Observe that min(shr�1(shr(�))) = �. Moreover, for each q1 6= q2 of shr(�), shr�1(q1)\shr�1(q2) = ;. Thus, from (7.51), PH 0 [[q2�Cq] = PH [q 2 shr(�)Cq].To complete the proof of (7.43), it is enough to observe that H1 = shr(H 01). Property (7.43) isthen expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 ofM2kC 0 whose trace distribution is D0, such that thereis no action of M2 between each state of the kind �i and the occurrence of the correspondingexternal action of C, and such that all the transitions between a state of the kind �j and thecorresponding occurrences of action aj are scheduled. Then we let H2 = shr(H 002 ). This leadsto a contradiction since tdistr(H2) = D. The rest of the proof is dedicated to the constructionof H 002 .For each state q of H 02, let shf (q) be the set of sequences q0 that can be obtained from q asfollows: each sequence(s0; �j)b1(s1; �) � � �bk(sk; �)aj(s; c)is replaced with(s0; �j)bi1(s0; �) � � �bil(s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)158



where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C 0, andk1; : : : ; km is the ordered sequence of the indexes of the b's that are actions ofM2; each sequence(s0; �j)b1(s1; �) � � �bk(sk; �)occurring at the end of q either is replaced with(s0; �j)bi1(s0; �) � � �bil(s0; �) a � a (s0; �)aj(s0; c)bk1(sk1 ; c) � � �bkm(s; c)where i1; : : : ; il is the ordered sequence of the indexes of the b's that are actions of C 0, k1; : : : ; kmis the ordered sequence of the indexes of the b's that are actions ofM2, and �, called an extensionfor q, is an arbitrary execution fragment of M2kC0 that leads to the occurrence of aj , or, isreplaced with a pre�x of (s0; �j)bi1(s0; �) � � �bil(s0; �). Then,states(H 002 ) 4= [q2states(H 02) shf (q): (7.55)Let (q;P) be a restricted transition of H 02, and suppose that only actions ofM2 and Vstart occur.Let q0 be a state of shf (q). Then, for each (a; q1) 2 
 there is exactly one q01 2 shf (q1) such thatq0 � q01 and jq01j = jq0j + 1. Denote such q01 by shf q0(q1). Let 
0 = f(a; shf q0(q1) j (a; q1) 2 
g,and let, for each (a; q01) 2 
0, P 0[(a; q01)] = P [(a� shf �1(q01))], where shf �1(q) is the set of statesq0 of H 02 such that q 2 shf (q0). Then de�ne the transition shf q0((q;P)) to beshf q0((q;P)) 4= (q0;P): (7.56)For each state q of H 002 , let min(shf �1(q)) be the set of minimal states of shf �1(q) under pre�xordering. Let q be a closed state of H 002 , and let q0 2 shf �1(q). If q0 is an open state, then let �be the extension for q0 that is used in q, and let Eqq0 be the product of the probabilities of theedges of �. For each state q0 of shf �1(q), where q is closed, let� pqq0 4= PH 02 [Cq0] if q0 is closed;� pqq0 4= PH 02 [Cq0]Eqq0 if q0 is open.For each q0 2 shf �1(q), let�pshf�1(q)q0 4= pqq0Pq002min(shf�1(q)) pqq00 : (7.57)If q is open, then the transition enabled from q in H 002 is the one due to the transition of C 0enabled from lstate(q)dC0; if q is closed, then the transition enabled from q in H 002 isXq02shf�1(q) �pshf�1(q)q0 PH 02q0 [acts(H 02)n(acts(C) [ V2)] (7.58)shf q(trH 02q0 � (acts(H 02)n(acts(C) [ V2))):The probabilistic execution H 002 satis�es the following properties.159



a. H 002 is a probabilistic execution of M2kC0.The fact that each state of H 002 is reachable can be shown by a simple inductive argument;the fact that each state of H 002 is a �nite execution fragment of M2kC 0 follows from asimple analysis of the de�nition of shf .We need to check that for each state q of H 002 the transition enabled from q in H 002 isgenerated by a combination of transitions ofM2kC0. If q is an open state, then the resultfollows immediately from the de�nition of the transition relation of H 002 . If q is a closedstate, then consider a state q0 2 shf �1(q). The transition trH 02q0 � (acts(H 02)nV2), whichappears in Expression (7.58), can be expressed as Pi pi(q0 a tr i), where each tr i is atransition of M2kC0 enabled from lstate(q0). We distinguish two cases.1. tr i is a transition of M2.Then tr i = ((s; c); a;P 
 D(c)) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s. De�ne tr 0i to be thetransition ((s; c0); a;P
D(c0)). Then tr 0i is a transition ofM2kC 0 and shf q(q0a tr i) =q a tr 0i.2. tr i is a transition of C0.Then tr i = ((s; c); a;D(s)
 P) for some action a and probability space P , where(s; c) = lstate(q0). Let lstate(q) = (s0; c0). Then, s0 = s and c = c0 (q is closed).De�ne tr 0i to be tr i. Then tr 0i is a transition of M2kC 0 and shf q(q0 a tr i) = q a tr 0i.Observe that shf distributes over combination of transitions, and thus, the transitionshf q(tH 02q0 � (acts(H 02)nV2)) can be expressed as Pi pi(q a t0i), which is generated by acombination of transitions of M2kC 0.b. For each state q of H 002 ,PH 002 [Cq] = ( Pq02min(shf�1(q)) pqq0 if q is closed,Pq02min(shf�1(q)) PH 02 [Cq0 ] if q is open. (7.59)The proof is by induction on the length of q. If q consists of a start state only, then theresult is trivial. Otherwise, consider PH 002 [Cqas]. We distinguish two cases.1. q is open.In this case a is an action of V2 [ acts(C), and each state of shf �1(q) is open. Fromthe de�nition of the probability of a cone and induction,PH 002 [Cqas] = 0@ Xq02min(shf�1(q))PH 02 [Cq0]1APH 002q [(a; qas)]: (7.60)We distinguish two other cases.(a) a 2 V2.Observe that all the states of min(shf �1(q)) enable the same transition of C 0that is enabled from q. Moreover, for each q0 2 min(shf �1(q)), action a occurswith probability 1 (in D0 each occurrence of a start action is followed by an160



external action with probability 1), and the probability of reaching a state ofmin(shf �1(qas)) given that a occurs is PH 002q [(a; qas)] (recall that q enables onlyaction a). Since all the states of min(shf �1(qas)) are open and have a pre�x inmin(shf �1(q)), we can concludePH 002 [Cqas] = Xq02min(shf�1(qas))PH 02 [Cq0 ]: (7.61)(b) a 2 acts(C).From the de�nition of H 002 , PH 002q [(a; qas)] = 1. Observe that all the states ofmin(shf �1(q)) enable the same transition of C that is enabled from q. Moreover,for each q0 2 min(shf �1(q)), action a occurs with probability 1 (in D0 eachoccurrence of a start action is followed by an external action with probability1), leading to a state of shf �1(qas) for sure (recall that q enables only action a).Thus, for each q0 2 shf �1(q),PH 02 [Cq0] = Xq002min(shf�1(qas))jq0�q00 PH 02 [Cq00]: (7.62)Combining (7.60) and (7.62), we obtainPH 002 [Cqas] = Xq02min(shf�1(qas))PH 02 [Cq0 ]: (7.63)For each q0 2 min(shf �1(qas)), if q0 is open, then pqasq0 = PH 02 [Cq0] by de�nition;if q0 is closed, then pqasq0 = PH 02 [Cq0] since Eqasq0 = 1 (no � must be added by shfto get q0 from qas). Thus, (7.63) becomesPH 002 [Cqas] = Xq02min(shf�1(qas)) pqasq0 : (7.64)2. q is closed.In this case, from the de�nition of the probability of a cone and (7.58),PH 002 [Cqas] = PH 002 [Cq]0@ Xq02shf�1(q) �pshf�1(q)q0 PH 02q0 [a� shf �1(qas)]1A (7.65)From induction, the de�nition of �pshf�1(q)q0 , and an algebraic simpli�cation,PH 002 [Cqas] = Xq02shf�1(q)jclosed(q0)PH 02 [Cq0]PH 02q0 [a� shf �1(qas)] + (7.66)Xq02shf�1(q)jopen(q0)PH 02 [Cq0]Eqq0PH 02q0 [a� shf �1(qas)]:We distinguish two subcases.(a) qas is open.In this case each state q0 of shf �1(q) such that PH 02q0 [a � shf �1(qas)] > 0 isclosed, and thus only the �rst summand of (7.66) is used. Moreover, for each q0of shf �1(q) the set 
H 02q0 \ a� shf �1(qas) is made of open states q0as0 such thatEqasq0as0 = 1. Observe that all the states of min(shf �1(qas)) are captured. Thus,PH 002 [Cqas] = Xq02min(shf�1(qas)) pqq0 : (7.67)161



(b) qas is closed.In this case, for each q0 2 shf �1(q), if q0 is closed, then all the states reached in
q0 \ (fag� shf �1(qas)) are closed, and if q0 is open, then all the states reachedin 
q0 \ (fag � shf �1(qas)) are open and the extension � does not change, i.e.,the term E does not change. Observe that all the states of min(shf �1(qas)) arecaptured. Thus,PH 002 [Cqas] = Xq02min(shf�1(qas)) pqq0 : (7.68)c. tdistr(H 02) = tdistr(H 002 ).Let � be a �nite trace of H 02 or H 002 . Then f� 2 
H 02 j � � trace(�)g can be expressed asa union of disjoint cones [q2�Cq. We distinguish two cases.1. � does not end with an action of C.Then � = fq 2 states(H 0) j trace(q) = �; lact(q) = lact(�)g: (7.69)The set �0 = fq 2 shf (�) j lact(q) = lact(�)g is a characterization of f� 2 
H 002 j� � trace(�)g as a union of disjoint cones. Observe that min(shf �1(�0)) = � andthat for each q1 6= q2 of �0, min(shf �1(q1))\min(shf �1(q2)) = ;. Thus, from (7.51),PH 02 [f� 2 
H 02 j � � trace(�)g] = PH 002 [f� 2 
H 002 j � � trace(�)g].2. � ends with an action of C.In this case � = �0aj for some action aj 2 acts(C). Since in H 02 and H 002 after theoccurrence of a state �j the corresponding action aj occurs with probability 1, wecan assume that all the states of � end in �j , i.e.,� = fq 2 states(H 0) j trace(q) = �0; and lstate(q) is one of the �j 'sg: (7.70)Then the set �0 = min(shf (�)) is a characterization of f� 2 
H 002 j � � trace(�)g as aunion of disjoint cones. Observe that all the elements of � are open. Property (7.59)is su�cient to conclude.Lemma 7.5.7 Let C be a distinguishing binary separated context for two probabilistic automataM1 and M2. Then there exists a distinguishing total binary separated context C0 for M1 andM2 where all the probabilistic transitions have a uniform distribution. C0 is called a balancedseparated context.Proof. We achieve the result in two steps. First we decompose a binary probabilistic transitioninto several binary uniform probabilistic transitions, leading to a new distinguishing contextC1; then we use Lemma 7.5.4 to make C1 into a cycle-free context.The context C1 is obtained from C by expressing each probabilistic transition of C bymeans of, possibly in�nitely many, binary probabilistic transitions. For each state s of C, letstarts be a new action. If s enables a probabilistic transition with actions a1; a2 to states s1; s2,respectively, and with probabilities p1; p2, respectively, then C1 enables from s a deterministictransition with action starts. Then, C1 enables an internal probabilistic transition with auniform distribution. If p1 > p2 (p2 > p1), then one of the states that is reached enables a162



deterministic transition with action a1 (a2). The other state enables a new internal probabilistictransition with a uniform binary distribution, and the transitions from the successive states aredetermined by giving a1 probability 2(p1 � 1=2) and a2 probability 2p2 (a1 probability 2p1and a2 probability 2(p2 � 1=2)). If p1 = p2, then one state enables a1, and the other stateenables a2. For example, if p1 = 5=8 and p2 = 3=8, then the corresponding transitions of C1are represented below. Let D be a trace distribution of M1kC that is not a trace distribution
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τof M2kC. Consider a probabilistic execution H1 of M1kC whose trace distribution is D, andconsider the scheduler that leads to H1 in M1kC. Apply to M1kC1 the same scheduler withthe following modi�cation: whenever a probabilistic transition of C is scheduled, schedule thestart action from C1, then schedule the internal transitions to resolve the probabilistic choice,and �nally schedule the chosen action. Denote the resulting probabilistic execution by H 01 andthe resulting trace distribution by D0. Then,D0 � acts(M1kC ) = D: (7.71)To prove (7.71), we de�ne a new construction shr1, similar to shr , to be applied to probabilisticexecutions ofMikC1 such that no action ofMi occurs between the occurrence of a starts actionand the occurrence of one of the corresponding external actions of C, and such that all thetransitions of C1 between the occurrence of an action start s and the occurrence of one of thecorresponding external actions of C are scheduled. The new function is identical to shr if weconsider each state reached immediately after the occurrence of a start action like the states �jused in Lemma 7.5.6. We leave the details to the reader.Suppose by contradiction that it is possible to obtainD0 fromM2kC1. Consider the schedulerthat leads to D0 in M2kC1, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC1 whose trace distribution is D0, such thatno action of Mi occurs between the occurrence of a starts action and the occurrence of oneof the corresponding external action of C, and such that all the transitions of C1 betweenthe occurrence of an action start s and the occurrence of one of the corresponding externalaction of C are scheduled. Then we let H2 = shr1(H 002 ). This leads to a contradiction sincetdistr(H2) = D.The construction of H 002 , which is left to the reader, is the same as shf if we consider eachstate reached immediately after the occurrence of a start action like the states �j used inLemma 7.5.6.Lemma 7.5.8 Let C be a distinguishing balanced separated context for two probabilistic au-tomata M1 and M2. Then there exists a distinguishing binary separated context C0 for M1and M2 with no internal actions and such that each action appears exactly in one edge of thetransition tree. C0 is called a total balanced separated context.163



Proof. The context C0 is obtained from C by renaming all of its actions so that each edge ofthe new transition relation has its own action.Let D be a trace distribution of M1kC that is not a trace distribution ofM2kC. Consider aprobabilistic execution H1 of M1kC whose trace distribution is D, and consider the schedulerthat leads to H1 inM1kC. Apply toM1kC 0 the same scheduler with the following modi�cation:whenever a transition of C is scheduled, schedule the corresponding transition of C0. Denote theresulting probabilistic execution by H 01 and the corresponding trace distribution by D0. Fromconstruction, H1 and H 01 are the same up to the names of the actions of C. Thus, if �0 is thefunction that maps each action of C0 to its original name in C, D = �0(D0) (the renaming of atrace distribution is the probability space induced by the function that renames traces).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC 0, and let H 02 be the corresponding probabilistic execution. Apply toM2kC the same scheduler with the following modi�cations: whenever a transition of C0 isscheduled, schedule the corresponding transition of C with the unrenamed actions. Let H2 bethe resulting probabilistic execution. From the construction, H2 and H 02 are the same up tothe names of the actions of C. Thus, tdistr(H2) = �0(D0) = D, which is a contradiction.Lemma 7.5.9 Let C be a distinguishing total balanced separated context for two probabilisticautomata M1 and M2. Then there exists a distinguishing total balanced separated context C 0for M1 and M2 that from every state enables two deterministic transitions and a probabilistictransition with a uniform distribution over two choices. C0 is called a complete context.Proof. In this case it is enough to complete C by adding all the missing transitions and states.If D is a trace distribution of M1kC that is not a trace distribution of M2kC, then it is enoughto use on M1kC 0 the same scheduler that is used in M1kC. In fact, since each new transitionof C 0 has a distinct action, none of the new transitions of C 0 can be used in M2kC0 to generateD.Lemma 7.5.10 Let C be a distinguishing complete context for two probabilistic automata M1and M2. Then the principal context CP is a distinguishing context for M1 and M2.Proof. The result is achieved in two steps. First the actions of C are renamed so that each stateenables two deterministic transitions with actions left and right , respectively, and a probabilistictransition with actions pleft and pright . Call this context C1. Then, by observing that eachstate s of C1 is uniquely determined by the trace of the unique execution of C1 that leads to s,all the states of C1 are collapsed into a unique one.Thus, we need to show only that C1 is a distinguishing context. Let D be a trace distributionof M1kC that is not a trace distribution of M2kC. Consider the scheduler that leads to D inM1kC, and apply to M1kC1 the same scheduler with the following modi�cation: whenever atransition of C is scheduled, schedule the corresponding transition of C1. Denote the resultingtrace distribution by D0. Note that if we rename all the actions of C1 into their original namein C, then we obtain D.Suppose by contradiction that it is possible to obtain D0 from M2kC1. Consider the sched-uler that leads to D0 in M2kC1, and apply to M2kC the same scheduler with the followingmodi�cation: whenever a transition of C1 is scheduled, schedule the corresponding transitionof C. The resulting trace distribution is D, which is a contradiction.164



Lemma 7.5.11 Let CP be a distinguishing context for two probabilistic automata M1 and M2.Then the simple principal context, denoted by C, is a distinguishing context for M1 and M2.Proof. Let D be a trace distribution of M1kCP that is not a trace distribution of M2kCP .Consider a probabilistic execution H1 of M1kCP whose trace distribution is D, and considerthe scheduler that leads to H1 in M1kCP . Apply to M1kC the same scheduler with the follow-ing modi�cation: whenever the probabilistic transition of CP is scheduled, schedule the startaction of C followed by the next transition of C that becomes enabled. Denote the resultingprobabilistic execution by H 01 and the resulting trace distribution by D0. Then,D0 � acts(M1kCP) = D: (7.72)To prove (7.72), we de�ne a new construction shr2, similar to shr , to be applied to probabilisticexecutions of MikC such that no action of Mi occurs between the occurrence of a start actionand the occurrence of one of the actions pleft and pright , and such that the transitions labeledwith pleft and pright occur whenever they are enabled. The new function is identical to shrif we consider each state reached after an action start as a state of the kind �j . We leave thedetails to the reader.Suppose by contradiction that it is possible to obtain D0 fromM2kC. Consider the schedulerthat leads to D0 in M2kC, and let H 02 be the corresponding probabilistic execution. First, webuild a new probabilistic execution H 002 of M2kC whose trace distribution is D0, such that noaction of M2 occurs between the occurrence of a start action and the occurrence of one ofthe actions pleft and pright , and such that the transitions labeled with pleft and pright occurwhenever they are enabled. Then we let H2 = clp2(H 002 ). This leads to a contradiction sincetdistr(H2) = D.The construction of H 002 , which is left to the reader, is the same as shf if we consider eachstate reached immediately after the occurrence of a start action like the states �j used inLemma 7.5.6.Proof of Theorem 7.5.1. Let M1 vDC M2. Then, from Lemma 7.5.11,M1kCP vD M2kCP .Conversely, let M1kCP vD M2kCP . Then, from Lemmas 7.5.3, 7.5.4, 7.5.5, 7.5.6, 7.5.7, 7.5.8,7.5.9, and 7.5.10,M1 vDC M2.7.6 DiscussionA trace-based semantics similar to ours is studied for generative processes by Jou and Smolka[JS90]. One of the processes of Jou and Smolka is essentially one of our probabilistic executions.The semantics of a process is given by a function, called a trace function, that associates a prob-ability with each �nite trace. Since our trace distributions are determined by the probabilitiesof the cones, our trace distributions are characterized completely by the trace functions of Jouand Smolka. In other words, the trace semantics of Jou and Smolka is the semantics that weuse to say that two probabilistic executions have the same trace distribution.Jou and Smolka de�ne also a notion of a maximal trace function. Given a probabilisticexecution H , the interpretation of a maximal trace function in our framework is a function thatassociates with each �nite trace � the probability of the extended executions on 
H that end in� and whose trace is �. Jou and Smolka show that the trace function of a process is su�cient165



to determine the maximal trace function of the process. In our trace distributions the maximaltrace function of a probabilistic execution is given by the probability of each �nite trace in thecorresponding trace distribution. From the de�nition of a trace distribution the probability ofeach �nite trace is determined uniquely by the probabilities of the cones, and thus the result ofJou and Smolka holds also in our framework.
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Chapter 8Hierarchical Veri�cation:Simulations8.1 IntroductionIn Chapter 7 we have studied the trace distribution precongruence as an instance of the hierar-chical method for the veri�cation of probabilistic systems. Another instance of the hierarchicalmethod is called the simulation method . According to the simulation method, rather thancomparing two probabilistic automata through some abstract observations, two probabilisticautomata are compared by establishing some relation between their states and by showing thatthe two probabilistic automata can simulate each other via the given relation. Standard workon simulation relations appears in [Mil89, Jon91, LV91]. Simulation relations are stronger thanthe trace preorder, and are often used as a sound proof technique for the trace preorder.In this chapter we study how to extend some of the relations of [Mil89, Jon91, LV91] to theprobabilistic framework. We start with the generalization of the simplest relations that do notabstract from internal computation, and we conclude with the generalization of the forwardsimulations of [LV91] that approximate closely the trace distribution preorder. We prove theequivalent of the Execution Correspondence Lemma [GSSL94] for probabilistic automata, whichstates that there is a strong connection between the probabilistic executions of two probabilisticautomata related by some simulation relation. Finally, we use the new Execution Correspon-dence Lemma to prove that the existence of a probabilistic forward simulation is su�cient toprove the trace distribution precongruence relation.8.2 Strong SimulationsOne of the �nest equivalence relations for ordinary automata would be graph isomorphism;however, it is widely recognized that graph isomorphism distinguishes too much. A coarserequivalence relation is strong bisimulation [Par81, Mil89], where two automata A1 and A2 areequivalent i� there is an equivalence relation between their states so that for each pair (s1; s2)of equivalent states,if s1 a�! s01, then there exists a state s02 equivalent to s01 such that s2 a�! s02.167
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2 mustrepresent one or more states of 
1. Figure 8-2 gives an example of two probability spaces that168



1/2

1/2

1/3

1/3

1/3

1/3

1/3

1/6

1/6

s1,1

s

s

s

s

1,2

2,1

2,2
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Lemma 8.2.1 Let PX;i vR PY;i via a weight function wi, and let fpigi�0 be a family ofreal numbers between 0 and 1 such that Pi�0 pi = 1. Then Pi�0 piPX;i vR Pi�0 piPY;i viaPi�0 piwi.Proof. Let PX = Pi�0 piPX;i, PY = Pi�0 piPY;i, and w = Pi�0 piwi. Let x 2 
X . ThenPy2
Y w(x; y) = Py2
Y Pi�0 piwi(x; y) = Pi�0 pi(Py2
Y wi(x; y)) = Pi�0 piPX;i[x] = PX [x].Condition 2 of the de�nition of vR is veri�ed similarly. For Condition 3, let w(x; y) > 0. Thenthere exists an i such that wi(x; y) > 0, and thus x R y.Lemma 8.2.2 Let X; Y be two disjoint sets, R be an equivalence relation on X [ Y , and letP1 and P2 be probability spaces of Probs(X) and Probs(Y ), respectively. Then, P1 �R P2 i�for each equivalence class C of (X [ Y )=R, P1[C \ 
1] = P2[C \ 
2].Proof. Suppose that P1 �R P2, and let w be the corresponding weight function. Then, foreach equivalence class C of (X [ Y )=R,P1[C \ 
1] = Xx2C\
1 P1[x] = Xx2C\
1 Xy2C\
2 w(x; y); (8.1)and P2[C \ 
2] = Xy2C\
2 P2[y] = Xy2C\
2 Xx2C\
1 w(x; y): (8.2)From the commutativity and associativity of sum,P1[C \ 
1] = P2[C \ 
2]: (8.3)Conversely, suppose that each equivalence class (X [ Y )=R has the same probability in P1 andP2. We de�ne w(x; y) for each equivalence class of (X [ Y )=R, and we assume implicitly thatw is 0 for all the pairs (x; y) 2 
1 � 
2 that are not considered in the construction below.Consider any equivalence class C of (X [ Y )=R, and let X 0 = C \
1, and Y 0 = C \
2. Fromhypothesis we know that P1[X 0] = P2[Y 0]. Let x1; x2; : : : be an enumeration of the points ofX 0, and let y1; y2; : : : be an enumeration of the points of Y 0. For each i, let pi = Pk<i P1[xi]and let qi =Pk<i P2[yi]. Thenw(xi; yj) = ( 0 if pi+1 � qj or qj+1 � pimin(pi+1; qj+1)�max (pi; qj) otherwise.Informally, the construction above works as follows. Consider two intervals [0; P1[X 0]], andmark the �rst interval with the points pi and the second interval with the points qj . Eachinterval [pi; pi+1] has length P1[xi] and each interval [qj ; qj+1] has length P2[yj ]. The weightfunction w(xi; yj) is de�ned to be the length of the intersection of the intervals associated withxi and yj , respectively. It is simple to verify that w is a weight function for P1 and P2.170
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It is easy to check that 'P is an equivalence relation, that vSPS is a preorder relation, andthat both 'P and vSPS are preserved by the parallel composition operator. It is easy as wellto verify that a strong bisimulation is also a strong probabilistic bisimulation and that a strongsimulation is also a strong probabilistic simulation.8.4 Weak Probabilistic SimulationsThe abstraction from internal computation can be obtained in the same way as for ordinaryautomata: a transition of a probabilistic automaton should be simulated by a collection ofinternal and external transitions of another probabilistic automaton. For the formal de�nitionwe use the weak combined transitions of Chapter 4.For convenience assume that M1 and M2 do not have common states. A weak probabilisticbisimulation between two simple probabilistic automataM1 and M2 is an equivalence relationR over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of either M1 or M2, thereexists a weak combined transition s2 a�ext(M2)=)C P2 of either M1 orM2 such that P1 �R P2.We writeM1 =P M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic bisimulationbetween M1 and M2.A weak probabilistic simulation between two simple probabilistic automataM1 and M2 is arelation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of M1, there exists a weakcombined transition s2 a�ext(M2)=)C P2 of M2 such that P1 vR P2.We write M1 vWPS M2 whenever ext(M1) = ext(M2) and there is a weak probabilistic simula-tion from M1 to M2. We denote the kernel of weak probabilistic simulation by �WPS.It is easy to verify that a strong probabilistic bisimulation is also a weak probabilisticbisimulation and that a strong probabilistic simulation is also a weak probabilistic simulation.However, it is not as easy to verify that =P is an equivalence relation, that vWPS is a preorderrelation, and that both =P and vWPS are preserved by the parallel composition operator. Theveri�cation of these properties is a simpli�cation of the veri�cation of the same properties forthe relation of the next section. For this reason we omit the proofs from this section.8.5 Probabilistic Forward SimulationsOne of the main results of this chapter is that all the relations presented so far are sound forthe trace distribution precongruence. However, none of the relations of the previous sectionsallow for one probabilistic operation to be implemented by several probabilistic operations.172
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’Figure 8-4: Implementation of a probabilistic transition with several probabilistic transitions.
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’Figure 8-5: A more sophisticated implementation.Example 8.5.1 (Weak probabilistic simulations are too coarse) Consider the two prob-abilistic automata of Figure 8-4. The probabilistic automatonM2, which chooses internally oneelement out of four with probability 1=4 each, is implemented by the probabilistic automatonM1, which ips two fair coins to make the same choice. However, the �rst transition of M1cannot be simulated by M2 since the probabilistic choice of M2 is not resolved completely yetin M1. This situation suggests a new preorder relation where a state of M1 can be relatedto a probability distribution over states of M2. The informal idea behind a relation s1 R P2is that s1 represents an intermediate stage of M1 in reaching the distribution P2. For exam-ple, in Figure 8-4 state s1 would be related to a uniform distribution P over states s03 and s04(P = U(s03; s04)), meaning that s1 is an intermediate stage ofM1 in reaching the distribution P .It is also possible to create examples where the relationship between s and P does not meansimply that s is an intermediate stage of M1 in reaching the distribution P , but rather thats is an intermediate stage in reaching a probability distribution that can be reached from P .Consider the two probabilistic automata of Figure 8-5. Although not evident at the moment,M1 and M2 are in the trace distribution precongruence relation, i.e., M1 vDC M2. Followingthe same idea as for the example of Figure 8-4, state s1 is related to U(s03; s04). However, s1 is173



not an intermediate stage ofM1 in reaching U(s03; s04), since s1 enables a transition labeled withan external action l, while in M2 no external action occurs before reaching U(s03; s04). Rather,from s03 and s04 there are two transitions labeled with l, and thus the only way to simulatethe transition s1 l�! U(s3; s4) from U(s03; s04) is to perform the two transitions labeled withl, which lead to the distribution U(s07; s08; s09; s010). Now the question is the following: in whatsense does U(s07; s08; s09; s010) represent U(s3; s4)? The �rst observation is that s3 can be seen asan intermediate stage in reaching U(s07; s08), and that s4 can be seen as an intermediate stage inreaching U(s09; s010). Thus, s3 is related to U(s07; s08) and s4 is related to U(s09; s010). The secondobservation is that U(s07; s08; s09; s010) can be expressed as 1=2U(s07; s08) + 1=2U(s09; s010). Thus,U(s07; s08; s09; s010) can be seen as a combination of two probability spaces, each one representingan element of U(s3; s4). This recalls the lifting of a relation that we introduced at the beginningof this chapter.Based on Example 8.5.1, we can move to the formal de�nition of a probabilistic forward simu-lation. A probabilistic forward simulation between two simple probabilistic automata M1 andM2 is a relation R� states(M1)� Probs(states(M2)) such that1. each start state of M1 is related to at least one Dirac distribution over a start state ofM2;2. for each s R P 0, if s a�! P1, then(a) for each s0 2 
0 there exists a probability space Ps0 such that s0 a�ext(M2)=)C Ps0 , and(b) there exists a probability space P 02 of Probs(Probs(states(M2))) satisfying P1 vR P 02,such that Ps02
0 P 0[s0]Ps0 =PP2
02 P 02[P ]P .We write M1 vFS M2 whenever ext(M1) = ext(M2) and there is a probabilistic forward simu-lation from M1 to M2.Example 8.5.2 (A probabilistic forward simulation) The probabilistic forward simula-tion for the probabilistic automata M1 and M2 of Figure 8-5 is the following: s0 is relatedto U(s00); each state si, i � 7, is related to D(s0i); each state si, 1 � i � 6, is related toU(s02i+1; s02i+2). It is an easy exercise to check that this relation is a probabilistic forwardsimulation. Observe also that there is no probabilistic forward simulation from M2 to M1. In-formally, s03 cannot be simulated by M1, since the only candidate state to be related to s01 is s1,and s1 does not contain all the information contained in s03. The formal way to see that thereis no probabilistic forward simulation from M2 to M1 is to observe that M2 and M1 are not inthe trace distribution precongruence relation and then use the fact that probabilistic forwardsimulations are sound for the trace distribution precongruence relation (cf. Section 8.7). InM2kCP it is possible force action left to be scheduled exactly when M2 is in s03, and thus itis possible to create a correlation between action left and actions a and b; in M1kCP such acorrelation cannot be created since action left must be scheduled before action l.It is easy to check that a weak probabilistic simulation is a special case of a probabilistic forwardsimulation where each state ofM1 is related to a Dirac distribution. The veri�cation that vFS174



is a preorder that is preserved by parallel composition is more complicated. In this sectionwe show that vFS is preserved by parallel composition; the proof that vFS is a preorder ispostponed to Section 8.6.4.Proposition 8.5.1 vFS is preserved by the parallel composition operator.Proof. Let M1 vFS M2, and let R be a probabilistic forward simulation from M1 to M2. LetR0 be a relation between states(M1)� states(M3) and Probs(states(M2)� states(M3)), de�nedas follows:(s1; s3) R0 P i� P = P2 
D(s3) for some P2 such that s1 R P2. (8.4)Condition 1 of the de�nition of a probabilistic forward simulation is immediate to verify. Con-dition 2 for transitions that involve M1 only or M3 only is immediate to verify as well.Let (s1; s3) R0 P2 
 D(s3), and let (s1; s3) a�! P1 
 P3, where s1 a�! P1, and s3 a�!P3. From the de�nition of a probabilistic forward simulation, for each s 2 
2 there existsa weak combined transition s2 a=)C Ps of M2, and there exists a probability space P 02 ofProbs(Probs(states(M2))), such thatXs2
2 P2[s]Ps = XP2
02 P 02[P ]P ; (8.5)and P1 vR P 02: (8.6)For each s 2 
2, let Os be a generator for s a=)C Ps. De�ne a new generator O0s as follows:for each �nite execution fragment � of M2kM3 starting in (s; s3),1. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transition ofM2, and �dM3 = s3, thenO0s(�) =Xi pi((s0; s3); ai;Pi 
 P 0i);whereP 0i = D(s3) if ai 6= a, and P 0i = P3 if ai = a.2. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transition ofM2, �dM3 = s3as03, and s03 2 
3, thenO0s(�) =Xi pi((s0; s03); ai;Pi 
 D(s03));3. if none of the above cases holds, then O0s(�) = D(�).175



The weak combined transition generated by each O0s is (s; s3) a=)C Ps
P3. In fact, an executionfragment � of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and �dM3 = s3as03 fors03 2 
3, and thus 
O0s = 
s � 
3. Moreover, for each � 2 
O0s , PO0s� = POs�dM2P3[lstate(�dM3)].Denote Ps 
 P3 by P(s;s3). Then, for each (s; s3) 2 
2 � D(s3), we have identi�ed a weakcombined transition (s; s3) a=)C P(s;s3). These are the spaces of Condition 2.a in the de�nitionof a probabilistic forward simulation. Note that P(s;s3) can be expressed alternatively asP(s;s3) = Xs032
3 P3[s03] �Ps 
 D(s03)� : (8.7)Let P 02;3 4= Xs032
3 P3[s03] �P 02 
D(D(s03))� ; (8.8)where the pairing of two probability spaces is meant to be their product. For each s03 2 
3,since P1 vR P 02, P1 
 D(s03) vR P 02 
 D(D(s03)). Thus, from Lemma 8.2.1, P1 
 P3 vR P 02;3.This is enough to show that Condition 2.b of the de�nition of a probabilistic forward simulationis satis�ed.We are left withPs2
2 P2[s]P(s;s3) =PP2
02;3 P 02;3[P ]P , which is shown as follows. From (8.7),Xs2
2 P2[s]P(s;s3) = Xs2
2 Xs032
3 P2[s]P3[s03] �Ps 
D(s03)� : (8.9)From (8.5),Xs2
2 P2[s]P(s;s3) = Xs032
3 XP2
02 P 02[P ]P3[s03] �P 
 D(s03)� : (8.10)From a simple algebraic manipulation,Xs2
2 P2[s]P(s;s3) = Xs032
3 XP2
P02
D(D(s03)) P3[s03]P 02[P ]P : (8.11)From (8.8),Xs2
2 P2[s]P(s;s3) = XP2
02;3 P 02;3[P ]P : (8.12)8.6 The Execution Correspondence TheoremThe existence of some simulation relation between two probabilistic automata implies that thereis some strict relation between their probabilistic executions. This relationship is known as theexecution correspondence lemma for ordinary automata [GSSL94] and is useful in the contextof liveness. In this section we prove the execution correspondence theorem for probabilisticautomata; a corollary, which is proved in Section 8.7, is that the existence of a probabilisticforward simulation is sound for the trace distribution precongruence.176
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Figure 8-7: Execution Correspondence Structures: the role of Condition 2.4. Let, for each i � 0, each q1 2 fringe(H1; i), and each q2 2 states(H2), Wi(q1; q2) 4=PP wi(q1;P)P [q2]. If Wi(q1; q02) = 0 for each pre�x or extension q02 of q2, then, for eachextension q01 of q1 such that q01 2 fringe(H1; i+ 1) and each pre�x or extension q02 of q2,Wi+1(q01; q02) = 0.Informally, an execution correspondence structure is an object that shows how a probabilisticexecution H1 of M1 is represented by a probabilistic execution H2 of M2 via R. H2 is said tobe the probabilistic execution fragment that corresponds to H1. Conditions 1 and 3 state thateach fringe fringe(H1; i) is represented by the fringe m(i) in H2, and Condition 2 states thatat the limit each state of H2 represents some part of H1. Figure 8-7 gives an example of anexecution correspondence structure (left) and of a structure that fails to satisfy Condition 2since state q is not captured (right). Condition 4 enforces the correspondence between H1 andH2. Informally, it states that if two states q1 and q2 of H1 and H2, respectively, are connectedthrough the ith fringes, then for each j < i there are two pre�xes q01 and q02 of q1 and q2,respectively, that are connected through the jth fringes. This condition allows us to derive acorrespondence structure between the execution fragments ofM1 andM2 that denote the statesof H1 and H2. We do not use Condition 4 to prove any of the results that we present in thisthesis; however, this condition is necessary to prove the results that Segala and Lynch presentin [SL94].If R is a weak probabilistic simulation, then an execution correspondence structure is atriplet (H1; H2; m): Condition 3 becomes fringe(H1; i) vR m(i), where q1 R q2 i� trace(q1) =trace(q2) and either q1 and q2 end in � and �-strip(lstate(q1)) R �-strip(lstate(q2)), or lstate(q1) Rlstate(q2); Wi(q1; q2) becomes wi(q1; q2), and Condition 4 says that for each i � 0, givenq1 2 fringe(H1; i) and q2 2 states(H2), if wi(q1; q02) = 0 for each pre�x or extension q02 of q2,then, for each extension q01 of q1 such that q01 2 fringe(H1; i+ 1), and each pre�x or extensionq02 of q2, wi+1(q01; q02) = 0. 178



IfR is a strong probabilistic simulation, then an execution correspondence structure is a pair(H1; H2): Conditions 1 and 2 are removed; Condition 3 becomes fringe(H1; i) vR fringe(H2; i)where q1 R q2 i� itrace(q1) = itrace(q2) and either q1 and q2 end in � and �-strip(lstate(q1)) R�-strip(lstate(q2)), or lstate(q1) R lstate(q2); Condition 4 says that for each i � 0, given q1 2fringe(H1; i) and q2 2 fringe(H2; i), if wi(q1; q2) = 0, then, for each extension q01 of q1 such thatq01 2 fringe(H1; i+1) and each extension q02 of q2 such that q02 2 fringe(H2; i+1), wi+1(q01; q02) = 0.8.6.3 The Main TheoremTheorem 8.6.1 Let M1 vFS M2 via the probabilistic forward simulation R, and let H1 be aprobabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, a map-ping m from natural numbers to fringes of M2, and a mapping S from natural numbers toprobability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an executioncorrespondence structure via R.Proof. Let q1 be a state of H1, and let P2 be a distribution over potential states of H2 suchthat q1 vR P2 according to the de�nition given in the de�nition of an execution correspondencestructure. Denote by Pq1H1 the probability space such that trH1q1 =Ptr2
q1H1 P q1H1 [tr ](q1 a tr ). Lettr1 2 
q1H1 , and let Ptr1 be the probability space reached in q1 a tr 1.Since R is a probabilistic forward simulation, then for each state q2 of 
2 there exists aweak transition tr q1P2tr1q2 of H2 with action a � ext(M2), leading to a distribution over statesPq1P2tr1q2 , such that there exists a probability distribution over probability distributions ofpotential states of H2, denoted by PSq1P2tr1 , satisfyingXP2
Sq1P2tr1 PSq1P2tr1 [P ]P = Xq22
2 P2[q2]Pq1P2tr1q2 (8.15)and Ptr1 vR PSq1P2tr1 (8.16)via a weight function wq1P2tr1 . Denote the probability spacePq22
2 P2[q2]Pq1P2tr1q2 by Pq1P2tr1 ,i.e., Pq1P2tr1 4= Xq22
2 P2[q2]Pq1P2tr1q2 : (8.17)Denote the generator of each weak transition tr q1P2tr1q2 by Oq1P2tr1q2 (cf. Section 4.2.7). For thesake of this proof, we change the notation for the generators of the transitions of a probabilisticexecution. Thus, for each q02 such that q2 � q02, Oq1P2tr1q2(q02) stands for Oq1P2tr1q2(q02"q2), andPOq1P2tr1q2q02 stands for POq1P2tr1q2q02"q2 .For each state q1 and each probability distribution over states P2, let �q1 4= D(q1�), �P2 4=Pq22
2 P2[q2]�q2 , �SP2 4= D(�P2), and w�q1P2 be a weight function such that w�q1P2(q1�;P2) = 1.Note that, if for each q2 2 
2, trace(q1) = trace(q2), then�q1 vR �SP2 (8.18)179



via w�q1P2 . Moreover,�P2 = XP2
SP2 P�SP2 [P ]P : (8.19)Let s1 be the start state of H1, and s2 be a start state ofM2 that is related to s1. We knowthat s2 exists since R is a probabilistic forward simulation. Let Active be the smallest set suchthat1. (s1;D(s2)) 2 Active;2. if (q1;P2) 2 Active, tr1 2 
q1H1 , and (q01;P 02) 2 
tr1 � 
Sq1P2tr1 , then (q01;P 02) 2 Active;3. if (q1;P2) 2 Active, P q1H1 [�] > 0, then (q1�; �SP2) 2 Active.Observe that for each pair (q1;P2) 2 Active, q1 R P2 (simple inductive argument). For each q1such that there exists some P2 with (q1;P2) 2 Active, each tr1 2 
q1H1 , and each q2 2 
2, letactive(q1;P2; tr1; q2) be the set of states that are active in Oq1P2tr1q2 , and let reach(q1;P2; tr1; q2)be the set of states that are reachable in Oq1P2tr1q2 . Let active denote the union of the setsreach(q1;P2; tr1; q2) where (q1;P2) 2 Active, tr1 2 
q1H1 , and q2 2 
2. For each i � 0, letActive(i) be the set of pairs (q1;P2) 2 Active such that either jq1j = i or jq1j � i and q1 endsin �. For each pair (q1;P2) of Active such that q1 does not end in �, letPq1 4= Xtr12
q1H1 P q1H1 [tr1]Ptr1 + P q1H1 [�]�q1 (8.20)be the probability space reached in H1 with the transition enabled from q1,Pq1P2 4= Xtr12
q1H1 P q1H1 [tr1]Pq1P2tr1 + P q1H1 [�]�P2 (8.21)be the probability space that is reached in the corresponding transition of P2,PSq1P2 4= Xtr12
q1H1 P q1H1 [tr1]PSq1P2tr1 + P q1H1 [�]�SP2 (8.22)be the probability space of probability spaces that corresponds to Pq1 , and for each q01;P 02,wq1P2(q01;P 02) 4= Xtr12
q1H1 P q1H1 [tr1]wq1P2tr1(q01;P 02) + P q1H1 [�]w�q1P2(q01;P 02) (8.23)be the corresponding weight function. From Lemma 8.2.1,Pq1 vR PSq1P2 (8.24)via the weight function wq1P2 .For each pair (q1;P2) of Active such that q1 ends in �, letPq1 4= D(q1); Pq1;P2 4= P2; PSq1;P2 4= D(P2); and wq1P2(q1;P2) 4= 1: (8.25)It is immediate to observe that Equation (8.24) holds also in this case.180



De�ne m(i); S(i) and wi inductively as follows.m(0) 4= D(s2); S(0) 4= D(m(0)); w0(s1; m(0)) 4= 1; (8.26)m(i+ 1) 4= X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 ; (8.27)S(i+ 1) 4= X(q1;P2)2Active(i)wi(q1;P2)PSq1P2 ; (8.28)wi+1(q01;P 02) 4= X(q1;P2)2Active(i)wi(q1;P2)wq1P2(q01;P 02): (8.29)To show that Equations (8.27), (8.28),and (8.29) are well de�ned, we show by induction thatfor each i � 0, P(q1;P2)2Active(i)wi(q1;P2) = 1. The base case is a direct consequence of (8.26)and the de�nition of Active(0). For the inductive step,X(q1;P2)2Active(i+1)wi+1(q1;P2)= X(q1;P2)2Active(i+1) X(q01;P 02)2Active(i)wi(q01;P 02)wq01P 02(q1;P2)= X(q01;P 02)2Active(i)wi(q01;P 02)= 1;where the �rst step follows from Equation (8.29), the second step follows from the fact thatwq01;P 02 is a weight function that is non zero only in pairs of Active(i + 1), and the third stepfollows from induction. LetWq1P2tr1q2(q02) 4= w(q1;P2)P q1H1 [tr1]P2[q2]POq1P2tr1q2q02 : (8.30)Consider a state q2 of active. Then the transition enabled from q2 isX(q01;P 02)2Active Xtr12
H1q01 Xq022
02jq22active(q01;P 02;tr1;q02) (8.31)POq1P2tr1q02 (q2)[acts(M2)]Wq01P 02tr1q02(q2)=W (q2) �Oq01P2tr1q02(q2) � acts(M2)� ;where W (s2) 4= 1, and for each q2 6= s2,W (q2) 4= X(q01;P 02)2Active Xtr12
H1q01 Xq022
02jq02 6=q2;q22reach(q01;P 02;tr1 ;q02)Wq01P 02tr1q02(q2): (8.32)It is easy to verify that Expression (8.31) denotes a valid transition of a probabilistic executionfragment of M since it is the combination of legal transitions of a probabilistic executionfragment of M . The fact that the projection of a legal transition of a probabilistic executionfragment of M onto acts(M) is still a legal transition of a probabilistic execution fragment ofM follows from the fact that M is a simple probabilistic automaton.181



Informally, the set active is used to identify all the states ofH2. The transition enabled fromeach one of those states, say q2, is due to several states of H1, and each state of H1 inuencesthe transition enabled from a speci�c state of H2 with a di�erent probability. Such a probabilitydepends on how much a state of H2 represents a state of H1, on the probability of the transitionof M1 that has to be matched, on the probability of reaching a speci�c state q02 of H2 duringthe matching operation, on the probability of reaching q2 from q02, and on the probability ofdeparting from q2. These conditions are captured by POq1P2tr1q02 (q2)[acts(M2)]Wq01P 02tr1q02(q2).These weights must be normalized with respect to the probability of reaching q2, which isexpressed by W (q2). The condition q02 6= q2 in the third sum of (8.32) is justi�ed by the factW (q2) is the probability of reaching q2.This completes the de�nition of H2, m(i), S(i), and the wi's. We need to show that(H1; H2; w; S) is an execution correspondence structure via R. Thus, we need to show thefollowing properties.1. For each i, m(i) is a fringe of H2;2. For each i, m(i) � m(i+ 1);3. For each state q of H2, limi!1Pq02
ijq�q0 Pi[q0] = PH [Cq];4. For each i, m(i) =PP2S(i) PS(i)[P ]P ;5. For each i, fringe(H1; i) vR S(i) via wi.6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q02) = 0 for eachpre�x or extension q02 of q2, then, for each extension q01 of q1 such that q01 2 fringe(H1; i+1)and each pre�x or extension q02 of q2, Wi+1(q01; q02) = 0.We show each item separately.1. For each i, m(i) is a fringe of H2.By construction m(i) is a probability distribution. Thus, we need to show only that foreach state q2 of H2,Xq022
m(i)jq2�q02 Pm(i)[q02] � PH2 [Cq2] (8.33)First we show that for each q2 2 states(H2),W (q2) = PH2 [Cq2]; (8.34)then we show that for each q2 2 states(H2),Xq022
m(i)jq2�q02 Pm(i)[q02] � W (q2): (8.35)The proof of (8.34) is by induction on the length of q2. If q2 = s2, then (8.34) holds byde�nition. Otherwise, let ~q2 be q2 without its last action and state, i.e., q2 = ~q2as for182



some action a and some state s. Then, from the de�nition of the probability of a cone,induction, Equation (8.31) and an algebraic simpli�cation,PH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 j~q22active(q01;P 02;tr1;q02)Wq01P 02tr1q02(~q2)POq01P2tr1q02(~q2)[q2]: (8.36)From Equation (8.30) and the de�nition of POq01P02tr1q02q2 (cf. Section 4.2.7), we obtainPH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 j~q22active(q01;P 02;tr1;q02)w(q01;P 02)P q01H1 [tr1]P 02[q02]POq01P02tr1q02q2 : (8.37)Observe that q02 2 
02 and ~q2 2 active(q01;P 02; tr1; q02) i� q02 2 
02, q02 6= q2, and q2 2reach(q01;P 02; tr1; q02). Thus, from Equation (8.31),PH2 [Cq2] = X(q01;P 02)2Active Xtr12
q01H1 Xq022
02 jq02 6=q2;q22reach(q01;P 02;tr1;q02)Wq01P 02tr1q02(q2): (8.38)At this point Equation (8.32) is su�cient to conclude the validity of Equation (8.34).The proof of Equation (8.35) is also by induction. If i = 0, then the result follows directlyfrom the fact that a fringe is a probability distribution. Otherwise, let N(q1) be true i�q1 does not end in �. Then, from Equation (8.27),Xq022
m(i+1)jq2�q02 Pm(i+1)[q02] (8.39)can be rewritten intoXq022
m(i+1)jq2�q02 X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 [q02]: (8.40)From the de�nition of Pq1;P2 (Equations (8.21) and (8.25)) and the de�nition of Pq1P2tr1(Equation (8.17)), Expression (8.40) can be rewritten intoXq022
m(i+1)jq2�q02 X(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2 (8.41)wi(q1;P2)P q1H1 [tr1]P2[q002 ]Pq1P2tr1q002 [q02]+ Xq02�2
m(i+1)jq2�q02 X(q1;P2)2Active(i);N(q1)wi(q1;P2)P q1H1 [�]P2[q02]+ Xq02�2
m(i+1)jq2�q02 X(q1�;P2)2Active(i)wi(q1�;P2)P2[q02�]:183



By exchanging sums in Expression (8.41), we obtainX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2 Xq022
m(i+1)jq2�q02 (8.42)wi(q1;P2)P q1H1 [tr1]P2[q002 ]Pq1P2tr1q002 [q02]+ X(q1;P2)2Active(i);N(q1) Xq02�2
m(i+1)jq2�q02 wi(q1;P2)P q1H1 [�]P2[q02]+ X(q1�;P2)2Active(i) Xq02�2
m(i+1) jq2�q02 wi(q1�;P2)P2[q02�];where the �rst summand comes from the �rst summand of (8.22), the second summandcomes from the second summand of (8.22), and the third summand comes from (8.25).Consider the �rst summand of Expression (8.42), and partition the states q002 of 
2 intothose that include q2 (q2 � q002) and those that do not. In the �rst case, since from (8.27),(8.21), and (8.17), 
q1P2tr1q002 � 
m(i+1), and since each element q02 of 
q1P2tr1q002 satis�esq2 � q02, Xq022
m(i+1)jq2�q02 Pq1P2tr1q002 [q02] = 1; (8.43)in the second case the same sum gives POq1P2tr1q002q2 . Consider the second summand ofExpression (8.42), and observe that, from (8.27), (8.21), and the de�nition of �P2 , q02� 2
m(i+1), q2 � q02, and P2[q02] > 0 i� q02 2 
2, q2 � q02, and P2[q02] > 0. Finally, considerthe third summand of Expression (8.42), and observe that all the states of 
2 end with �,and, from (8.27) and (8.21), q02� 2 
m(i+1), q2 � q02, and P2[q02�] > 0 i� q02� 2 
2, q2 � q02�,P2[q02�] > 0. By combining the observations above, Expression (8.42) can be rewritteninto X(q1;P2)2Active(i);N(q1) Xtr12
q1H1 wi(q1;P2)P q1H1 [tr1] (8.44)0@ Xq0022
2jq2�q002 P2[q002 ] + Xq0022
2jq002<q2 P2[q002 ]POq1P2tr1q002q2 1A+ X(q1;P2)2Active(i);N(q1) Xq0022
2jq2�q002 wi(q1;P2)P q1H1 [�]P2[q002 ]+ X(q1�;P2)2Active(i) Xq0022
2jq2�q002 wi(q1�;P2)P2[q002 ]:By regrouping expressions and simplifying, we obtainX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2jq2�q002 wi(q1;P2)P q1H1 [tr1]P2[q002 ]POq1P2tr1q002q2 (8.45)+ X(q1;P2)2Active(i) Xq0022
2jq2�q002 wi(q1;P2)P2[q002 ]:184



Finally, from Equation (8.30), Expression (8.45) can be rewritten intoX(q1;P2)2Active(i);N(q1) Xtr12
q1H1 Xq0022
2jq2�q002 Wq1P2tr1q002 (q2) (8.46)+ X(q1;P2)2Active(i) Xq0022
2jq2�q002 wi(q1;P2)P2[q002 ]:We now analyze the second summand of Expression (8.46), and we show by induction oni that it is 0 if i = 0 and q2 6= s2, it is 1 if i = 0 and q2 = s2, and it isXj<i X(q1;P2)2Active(j) Xtr12
q1H1 Xq0022
2jq002<q2Wq1P2tr1q002 (q2) (8.47)otherwise. For i = 0 the result is trivial. Otherwise, from Equation (8.29),X(q1;P2)2Active(i+1) Xq0022
2jq2�q002 wi+1(q1;P2)P2[q002 ] (8.48)can be rewritten intoX(q1;P2)2Active(i+1) X(q01;P 02)2Active(i) Xq0022
2jq2�q002 wi(q01;P 02)wq01P 02(q1;P2)P2[q002 ]: (8.49)From the de�nition of wq01P 02 (Equations (8.23) and (8.25)), Expression (8.49) can berewritten intoX(q1;P2)2Active(i+1) X(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0022
2jq2�q002 (8.50)wi(q01;P 02)P q01H1 [tr 01]wq01P 02tr 01(q1;P2))P2[q002 ]+ X(q1�;P2)2Active(i+1) X(q01;P 02)2Active(i);N(q01) Xq0022
2jq2�q002wi(q01;P 02)P q01H1 [�]w�q01P 02(q1�;P2)P2[q002 ]+ X(q01�;P 02)2Active(i) Xq0022
02jq2�q002 wi(q01�;P 02)P2[q002 ]:Observe that in the �rst summand of (8.50)X(q1;P2)2Active(i+1) Xq0022
2jq2�q002 wq01P 02tr 01(q1;P2)P2[q002 ]= XP2j9q1;(q1;P2)2Active(i+1) Xq0022
2jq2�q002 PSq01P 02tr 01 [P2]P2[q002 ]= Xq0002 2
02 Xq0022
q01P02tr01 jq2�q002 Pq01P 02tr 01q0002 [q002 ];185



where the �rst step follows from the fact that wq01P 01tr 01q0002 is a weight function, and thesecond step follows from (8.17), (8.15) and the fact that 
q01P 02tr 01 is the set of probabilityspace P2 such that there is a state q1 where (q1;P2) 2 Active(i + 1) (cf. the de�nitionof Active and observe that jq1j = i + 1). For the second summand of (8.50), observethat for each pair (q01�;P2) of Active(i + 1), if P q01H1 [�] > 0, then there is exactly one pair(q1;P 02) of Active(i) such that w�q01P 02(q01�;P2) > 0. In particular, q1 = q01, P2 = �P 02 , andw�q01P 02(q01�;P2) = 1. Conversely, for each pair (q01;P 02) of Active(i) such that P q01H1 [�] > 0,the pair (q01�;P2) is in Active(i+1) and w�q01P 02(q01�;P2) = 1. Thus, the term w�q01P 02(q01�;P2)and the sum P(q01�;P2)2Active(i+1) can be removed from the second summand of (8.50).Thus, by applying the observations above to (8.50), we obtainX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02 Xq0022
q01P02tr01q0002 jq2�q002 (8.51)wi(q01;P 02)P q01H1 [tr 01]P 02[q0002 ]Pq01P 02tr 01q0002 [q002 ]+ X(q01;P 02)2Active(i);N(q01) Xq0002 2
02jq2�q002 wi(q01;P 02)P q01H1 [�]P 02[q0002 ]+ X(q01�;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01�;P 02)P 02[q0002 ]:Consider the �rst summand of Expression (8.51). If q2 � q0002 , thenXq0022
q01P02tr01q0002 jq2�q002 Pq01P 02tr 01q0002 [q002 ] = 1; (8.52)If q0002 � q2, thenXq0022
q01P02tr01q0002 jq2�q002 Pq01P 02tr 01q0002 [q002 ] = POq01P02tr01q0002q2 : (8.53)Thus, from Equations (8.52) and (8.53), Expression (8.51) can be rewritten intoX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 wi(q01;P 02)P q01H1 [tr 01] (8.54)0@ Xq0002 2
02jq2�q0002 P 02[q0002 ] + Xq0002 2
02 jq0002 <q2 P 02[q0002 ]POq01P02tr01q0002q2 1A+ X(q01;P 02)2Active(i);N(q01) Xq0002 2
02jq2�q002 wi(q01;P 02)P q01H1 [�]P 02[q0002 ]+ X(q01�;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01�;P 02)P 02[q0002 ]:186



By regrouping the subexpressions in (8.54), we obtainX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02jq0002 <q2 wi(q01;P 02)P q01H1 [tr 01]P 02[q0002 ]POq01P02tr01q0002q2 (8.55)+ X(q01;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01;P 02)P 02[q0002 ]:From Equation (8.30), Expression (8.55) can be rewritten intoX(q01;P 02)2Active(i);N(q01) Xtr 012
q01H1 Xq0002 2
02jq0002 <q2Wq01P 02tr 01q0002 (q2) (8.56)+ X(q01;P 02)2Active(i) Xq0002 2
02jq2�q0002 wi(q01;P 02)P 02[q0002 ]:The induction hypothesis is now su�cient to conclude the validity of (8.47). From analternative characterization of the set fq002 2 
2 j q002 < q2g in Expressions (8.47) and (8.45),and by combining (8.45) and (8.47), we obtainXq022
m(i+1)jq2�q02 Pm(i+1)[q02] (8.57)= Xj�i X(q1;P2)2Active(j) Xtr12
q1H1 Xq0022
2jq002 6=q2 ;q0022reach(q1;P2;tr1;q2)Wq1P2tr1q002 (q2):Observe that the right expression of (8.57) contains a subset of the terms of the rightexpression of Equation (8.32). This is enough to conclude the validity of (8.35).2. For each i, m(i) � m(i+ 1).This result follows directly from Equation (8.57). In fact, for each state q2 of H2, Ex-pression (8.57) for m(i + 1) contains a subset of the terms of the Expression (8.57) form(i).3. For each state q of H2, limi!1Pq02
ijq�q0 Pi[q0] = PH [Cq].This result follows directly from Expression (8.57). In fact, as i!1, the right expressionof (8.57) converges to the right expression of (8.32).4. For each i, m(i) =PP2S(i) PS(i)[P ]P .For i = 0 the result is trivial. For i > 0, from Equation (8.27), m(i+ 1) is rewritten into.X(q1;P2)2Active(i)wi(q1;P2)Pq1P2 : (8.58)From Equation (8.21), Expression (8.58) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ Xtr12
q1H1 P q1H1 [tr1]Pq1P2tr2 + P q1H1 [�]�P21CA : (8.59)187



From Equation (8.17) applied to Pq1P2tr2 and Equations (8.15) and (8.19) applied toP q1H1 [�]�P2 , Expression (8.59) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ Xtr12
q1H1 P q1H1 [tr1]0B@ XP2
Sq1P2tr1 PSq1P2tr1 [P ]P1CA+ (8.60)P q1H1 [�] XP2
�P2 P�P2 [P ]P1CA :From Equation (8.22), Expression (8.60) can be rewritten intoX(q1;P2)2Active(i)wi(q1;P2)0B@ XP2
Sq1P2 PSq1P2 [P ]P1CA : (8.61)Finally, from Equation (8.28), Expression (8.61) can be rewritten intoXP2
S(i+1) PS(i+1)[P ]P ; (8.62)which is what we needed to show.5. For each i, fringe(H1; i) vR S(i) via wi.For i = 0 the result is trivial. By applying the de�nitions of a fringe and of fringe(H1; i+1),fringe(H1; i+ 1)= Xq12states(H2)jjq2j=ior q2=q02�;jq2j<iPH1 [Cq1]Pq1= X(q1;P2)2Active(i)wi(q1;P2)Pq1 :From (8.28),S(i+ 1) = X(q1;P2)2Active(i)wi(q1;P2)PSq1P2 :Since for each pair (q1;P2) of Active(i), Pq1 vR PSq1P2 via wq1;P2 , from Lemma 8.2.1,X(q1;P2)2Active(i)wi(q1;P2)Pq1 vR X(q1;P2)2Active(i)wi(q1;P2)PSq1P2via P(q1;P2)2Active(i)wi(q1;P2)wq1P2 , which is wi+1.188



6. For each i, each q1 2 fringe(H1; i), and each q2 2 states(H2), if Wi(q1; q02) = 0 for eachpre�x or extension q02 of q2, then, for each extension q01 of q1 such that q01 2 fringe(H1; i+1)and each pre�x or extension q02 of q2, Wi+1(q01; q02) = 0.Suppose by contradiction that there is an extension q01 of q1 such that q01 2 fringe(H1; i+1)and a pre�x or extension q02 of q2 such that Wi+1(q01; q02) > 0. From the de�nition of Wiand Equation (8.29),Wi+1(q1; q02) =XP X(�q1;P2)2Active(i)wi(�q1;P2)w �q1;P2(q1;P)P [q02]: (8.63)Since Wi(q1; q02) > 0, then there is at least one probability space P and one pair (�q1;P2) 2Active(i) such that wi(�q1;P2) > 0, w �q1;P2(q1;P) > 0, and P [q02] > 0. Then there is atleast one pre�x q002 of q02 such that P2[q002 ] > 0, which means that Wi(�q1; q002) > 0. However,this is a contradiction since q002 is either a pre�x or a su�x of q2.The execution correspondence theorem can be stated and proved similarly for weak and strongprobabilistic simulations. The proofs are simpler than the proof presented in this section, andthus we omit them from this thesis.8.6.4 Transitivity of Probabilistic Forward SimulationsNow we have enough machinery to prove that probabilistic forward simulations are transitive,i.e., if M1 vFS M2 and M2 vFS M3, then M1 vFS M3. We start by proving a lemma.Lemma 8.6.2 Let (H1; H2; m; S) be an execution correspondence structure via the probabilisticforward simulation R, and suppose that H1 represents a weak combined transition s a=)C P1.Then H2 represents a weak combined transition s0 a=)C P2 and there is a probability space PS2such that1. P1 vR PS2 and2. P2 =PP2
S2 PS2 [P ]P.Proof. Let wi be the weight functions for fringe(H1; i) vR S(i). Let P 01 be �-strip(PH1), P 02be �-strip(PH2), and letP 02;S 4= X��2
H1 XPjwj�j+1(��;P)>0wj�j+1(��;P)P : (8.64)For each �� 2 
H1 and each P 2 Probs(extstates(H2)), let w(��;P) 4= wj�j+1(��;P).We show that w is a weight function from P 01 to P 02;S and that P 02;S is well de�ned. This im-plies that P 01 vR P 02;S . Then we show that for each element �� of 
H2 ,PP2
02;S P 02;S [P ]P [��] =PH2 [C��]. Since all the elements of the probability spaces of 
02;S end with �, we obtain thatP 02 is well de�ned and that P 02 =PP2
02;S P 02;S [P ]P . Then the lemma is proved by de�ning P1to be lstate(P 01), P2 to be lstate(P 02), and P2;S to be lstate(P 02;S).To show that w is a weight function we have to verify the three conditions of the de�nitionof a weight function. If w(��;P) > 0, then, from the de�nition of w, wj�j+1(��;P) > 0.189



Since wj�j+1 is a weight function, then �� R P . Let P 2 
02;S . Then P��2
H1 w(��;P) =P��2
H1 wj�j+1(��;P), which is P 02;S [P ] by de�nition of P 02;S . Consider now an element �� of
H1 . Then, PP2
02;S w(��;P) =PP2
02;S wj�j+1(��;P). Since wj�j+1 is a weight function, thenthe sum above gives PH1 [C��] = P 01[��]. To show that P 02;S is well de�ned we need to show thatP��2
H1 PPjwj�j+1(��;P)>0wj�j+1(��;P) = 1. This follows immediately from the fact that w is aweight function and that, since H1 represents a weak combined transition,P��2
H1 P 01[��] = 1.We are left to show that for each element �� of 
H2 , PP2
02;S P 02;S [P ]P [��] = PH2 [C��].Observe that for each element �� of 
H1 , if i � j�j then wi(��;P) is unde�ned for each P , andif i > j�j, then for each j � i and each P , wi(��;P) is de�ned i� wj(��;P) is de�ned, and ifwi(��;P) is de�ned then wi(��;P) = wj(��;P). Thus, if we extend each wi by setting it to 0whenever it is not de�ned, then, for each �� 2 
H2 ,XP2
02;S P 02;S [P ]P [��] = XP2
02;S 0@ limi!1 X��2
H1 wi(��;P)1AP [��]: (8.65)Since for each i, wi is a weight function, and since from the de�nition of P 02;S each element Pfor which wi(��;P) > 0 is in 
02;S , then we deriveXP2
02;S P 02;S [P ]P [��] = XP2
02;S � limi!1PS(i)[P ]�P [��]: (8.66)By exchanging the limit with the sum and by using Condition 3 of the de�nition of an executioncorrespondence structure, the equation above can be rewritten intoXP2
02;S P 02;S [P ]P [��] = limi!1m(i)[��]; (8.67)which gives the desired result after using Condition 2 of the de�nition of an execution corre-spondence structure.Proposition 8.6.3 Probabilistic forward simulations are transitive.Proof. Let R1 be a probabilistic forward simulation from M1 to M2, and let R2 be a proba-bilistic forward simulation from M2 to M3. De�ne R so that s1 R P3 i� there is a probabilityspace P2, and a probability space PS3 , such that1. s1 R1 P2,2. P2 vR2 PS3 , and3. P3 =PP2
S3 PS3 [P ]P .We need to show that R is a probabilistic forward simulation fromM1 toM3. For this purpose,let s1 R P3, and let P2 and PS3 satisfy the three conditions above. Let s1 a�! P1. Let M 02be obtained from M2 by introducing a new state s02 and by adding a transition s02 ��! P2,where � is an internal action; similarly, let M 03 be obtained fromM3 by introducing a new states03 and by adding a transition s03 ��! P3, where � is an internal action. Let R01 be obtained190



from R1 by adding the pair (s1;D(s02)), and let R02 be obtained from R2 by adding the pair(s02;D(s03)). Observe that R01 is a probabilistic forward simulation from M1 toM 02 and that R02is a probabilistic forward simulation from M 02 to M 03.We want to �nd two probability spaces P 03 and P 03;S such that s03 a=)C P 03, P 01 vR P 03;S,and P 03 =PP2
03;S P 03;S [P ]P . From the de�nition of a weak transition, this is su�cient to showthat for each state s of P3 there is a weak combined transition s a=)C Ps of M3 such thatP 03 =Ps2
3 P3[s]Ps.Since R01 is a probabilistic forward simulation, there is a weak combined transition s02 a=)CP 02 of M 02 and a probability space P 02;S such thatP 02 = XP2
02;S P 02;S [P ]P and P 01 vR1 P 02;S : (8.68)Let H2 be the probabilistic execution fragment of M 02 that represents the weak combined tran-sition s02 a=)C P 02. Then, by de�nition of H2, P 02 = lstate(�-strip(PH2)) (cf. Section 4.2.7).From the Execution Correspondence Theorem there is an execution correspondence struc-ture (H2; H3; m; S), where H3 is a probabilistic execution fragment of M 03 that starts from s03.From Lemma 8.6.2, H3 represents a weak combined transition s03 a=)C P 003 for same probabilityspace P 003 . Moreover, there is a probability space P 003;S such thatP 003 = XP2
003;S P 003;S [P ]P and P 02 vR2 P 003;S: (8.69)Let w2 be the weight function for P 02 vR2 P 003;S . For each probability space P of 
02;S , letwP : states(M2) � Probs(states(M3)) ! [0; 1] be a function that is non-zero only in the set
� 
003;S and such that for each pair (s;P 0) of 
� 
003;S ,wP(s;P 0) = P [s]w2(s;P 0)P 02[s] : (8.70)Also, for each probability space P of 
02;S , letPP3;S 4= Xs2
 XP 02
003;S wP(s;P 0)D(P 0); (8.71)and letPP3 4= XP 02
P3;S PP3;S [P 0]P 0: (8.72)Let P 03;S be the discrete probability space where 
03;S = fPP3 j P 2 
2;Sg, and for each elementPP3 of 
03;S, P 03;S [PP3 ] =PP 02
02;S jPP3 =PP03 P 02;S [P 0]. Then, the following properties are true.1. For each probability space P of 
02;S, wP is a weight function from P to PP3;S .We verify separately each one of the conditions that a weight function must satisfy.191



(a) For each s 2 states(M2), P [s] =PP 02Probs(states(M3))wP(s;P 0).From the de�nition of wP , the right expression above can be rewritten intoXP 02Probs(states(M3)) P [s]w2(s;P 0)P 02[s] : (8.73)Since w2 is a weight function, PP 02Probs(states(M3))w2(s;P 0) = P 02[s], and thus Ex-pression 8.73 becomes P [s].(b) For each P 0 2 Probs(states(M3)), Ps2states(M2) wP(s;P 0) = PP3;S [P 0].From Equation (8.71), PP3;S [P 0] = Ps2
 wP(s;P 0). Since wP is non-zero only whenthe �rst argument is in 
, PP3;S [P 0] =Ps2states(M2)wP(s;P 0).(c) For each (s;P 0) 2 states(M2)� Probs(states(M3)), if wP(s;P 0) > 0 then s R2 P 0.If wP(s;P 0) > 0, then, from Equation (8.70), w2(s;P 0) > 0. Since w2 is a weightfunction, then s R2 P 0.2. PP2
03;S P 03;S [P ]P = P 003 .From the de�nition of P 03;S , Equation (8.72), Equation (8.71), and Equation (8.70),PP2
03;S P 03;S [P ]P can be rewritten intoXP2
02;S XP 02
003;S Xs2states(M2)P 02;S [P ]P [s]w2(s;P 0)P 02[s] P 0: (8.74)From (8.68), Expression (8.74) can be rewritten intoXP 02
003;S Xs2states(M2) P 02[s]w2(s;P 0)P 02[s] P 0: (8.75)After simplifying P 02[s], since w2 is a weight function from P 02 to P 003;S, Expression (8.75)can be rewritten intoXP 02
003;S P 003;S [P 0]P 0; (8.76)which can be rewritten into P 003 using Equation (8.69).3. For each pair (s01;P) such that s01 R1 P , s01 R3 PP3 .This follows directly from 1 and (8.72).Let P 03 be P 003 , and de�ne a new weight function w : states(M1) � Probs(states(M3)) ! [0; 1]such that, for each probability space P of 
02;S , w(s1;PP3 ) = w1(s1;P). Then, it is easy to checkthat P 01 vR P 03;S via w. This fact, together with 2, is su�cient to complete the proof.192



8.7 Probabilistic Forward Simulations and Trace DistributionsIn this section we show that probabilistic forward simulations are sound for the trace distributionprecongruence. Speci�cally, we show that M1 vFS M2 implies M1 vD M2. Thus, since vFS isa precongruence that is contained in vD , from the de�nition of vDC we obtain thatM1 vFS M2implies M1 vDC M2.Proposition 8.7.1 Let M1 vFS M2. Then M1 vD M2.Proof. Let R be a probabilistic forward simulation from M1 to M2, and let H1 be a proba-bilistic execution of M1 that leads to a trace distribution D1. From Lemma 8.6.1, there existsa probabilistic execution H2 of M2 and two mappings m;S such that (H1; H2; m; S) is an exe-cution correspondence structure for R. We show that H2 leads to a trace distribution D2 thatis equivalent to D1.Consider a cone C� of D1. The measure of C� is given byXq12states(H1)jtrace(q1)=�;lact(q1)=lact(�)PH1 [Cq1]: (8.77)The same value can be expressed aslimi!1 Xq12fringe(H1;i)j��trace(q1)PH1 [Cq1]: (8.78)Consider a cone C� of D2. The measure of C� is given byXq22states(H2)jtrace(q2)=�;lact(q2)=lact(�)PH2 [Cq2]: (8.79)The same value can be expressed aslimi!1 Xq22m(i)j��trace(q2)Pm(i)[Cq2]: (8.80)The reason for the alternative expression is that at the limit each cone of Expression (8.79) iscaptured completely. Thus, it is su�cient to show that for each �nite � and each i,Xq12fringe(H1;i)j��trace(q1)PH1 [Cq1] = Xq22m(i)j��trace(q2)Pm(i)[q2]: (8.81)This is shown as follows. Let wi be the weight function for m(i) vR S(i). Then,Xq2fringe(H1;i)j��trace(q)PH1 [Cq] = Xq12fringe(H1;i)j��trace(q1) XP22S(i)wi(q1;P2): (8.82)Observe that each probability space of S(i) has objects with the same trace, that each state qof fringe(H1; i) is related to some space of S(i), and that each space of S(i) is related to somestate q of fringe(H1; i). Thus, from (8.82),Xq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2) Xq12fringe(H1;i)wi(q1;P2): (8.83)193



Since wi is a weight function, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2)PS(i)[P2]: (8.84)Since in a probability space the probability of the whole sample space is 1, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = XP22S(i)j9q22
2��trace(q2) Xq22
2 PS(i)[P2]P2[q2]: (8.85)From an algebraic manipulation based on Condition 3 of an Execution Correspondence Struc-ture, we obtainXq2fringe(H1;i)j��trace(q)PH1 [Cq] = Xq22m(i)j��trace(q2) XP22S(i)jq22
2 PS(i)[P2]P2[q2]: (8.86)Finally, from Condition 3 of an Execution Correspondence Structure again, we obtain Equa-tion (8.81).8.8 DiscussionStrong bisimulation was �rst de�ned by Larsen and Skou [LS89, LS91] for reactive processes.Successively it was adapted to the alternating model by Hansson [Han94]. In this thesis wehave de�ned the same strong bisimulation as in [Han94]. The formal de�nition di�ers from thede�nition given by Hansson in that we have used the lifting of a relation to probability spacesas de�ned by Jonsson and Larsen [JL91].Strong simulation is similar in style to the satisfaction relation for the probabilistic speci�-cation systems of Jonsson and Larsen [JL91]. It is from [JL91] that we have borrowed the ideaof the lifting of a relation to a probability space.The probabilistic versions of our simulation relations are justi�ed both by the fact that ascheduler can combine transitions probabilistically, as we have said in this thesis, and by the factthat several properties, namely the ones speci�ed by the logic PCTL of Hansson and Jonsson[Han94], are valid relative to randomized schedulers i� they are valid relative to deterministicschedulers. This fact was �rst observed by Segala and Lynch [SL94] and can be proved easilyusing the results about deterministic and randomized schedulers that we proved in Chapter 5.The weak probabilistic relations were introduced �rst by Segala and Lynch [SL94]. Nosimulation relations abstracting from internal computation were de�ned before. Probabilisticforward simulations are novel in their de�nition since it is the �rst time that a state is relatedto a probability distribution over states.
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Chapter 9Probabilistic Timed Automata9.1 Adding TimeSo far we have extended labeled transition systems to handle probabilistic behavior; however,we have not addressed any real-time issue yet. The main objective of this chapter is to addtime to probabilistic automata.Following an approach that Abadi and Lamport [AL91] call the \old-fashioned recipe", weaddress real-time issues by augmenting probabilistic automata with some structure that modelspassage of time. In particular, we adopt the solution of Lynch and Vaandrager [LV95], wherea timed automaton is an ordinary automaton whose actions include the positive real numbers.The occurrence of a real number d means that time d elapses. In addition, a timed automatonof [LV95] is required to satisfy two trajectory axioms : the �rst axiom says that if time d canelapse and immediately afterwards time d0 can elapse, then time d+ d0 can elapse; the secondaxiom says that if time d can elapse, then there is a trajectory that allows us to associate everyreal time in the interval [0; d] with a state.The introduction of real-time in probabilistic automata presents two main problems.1. Time is a continuous entity, and the time that elapses between the occurrence of two sep-arate actions may depend on a probability distribution that is not discrete. For example,the response time of a system may be distributed exponentially. On the other hand, theprobability distributions that we allow in the untimed model are only discrete.2. In the untimed model the parallel composition operator is de�ned only for simple prob-abilistic automata. Since time-passage is modeled by actions of <+, in a simple proba-bilistic timed automaton it is not possible to let time pass according to some probabilitydistribution.The �rst problem could be solved by removing the requirement that the probability distributionassociated with a transition is discrete. However, in such case we would need to redevelop thewhole theory, while if we force each probability distribution to be discrete we can reuse mostof the results of the untimed model. For this reason, we choose to work only with discreteprobability distributions and we defer to further work the extension of the model to non-discreteprobability distributions (cf. Section 13.2.1). 195



For the second problem the reader may object that it originates from the choice of usinga distinct time-passage action for each amount of time that elapses in a transition, and thuswe may conclude that the problem would be solved by using a unique action that expressespassage of time [LV93b] rather than a di�erent action for every time; however, the problem hasdeeper roots.Example 9.1.1 (Problems with probabilistic passage of time) Suppose that from states1 a probabilistic timed automatonM1 lets time pass for 1 second with probability 1=2 and for2 seconds with probability 1=2 before performing an action a, and suppose that from state s2 aprobabilistic timed automatonM2 lets time pass for 0:5 seconds with probability 1=2 and for 1:5seconds with probability 1=2 before performing action a. What is the probability distributionon the time that elapses from state (s1; s2) of M1kM2 before performing a? What can wesay about the projections of a probabilistic execution of M1kM2? The reader may note thesimilarity with the problems encountered in the de�nition of parallel composition for generalprobabilistic automata (cf. Section 4.3.3).In order to simplify the handling of trajectories, in this thesis we impose an additional restric-tion on the time-passage transitions of a probabilistic timed automaton; namely, each transitioninvolving time-passage is required to lead to a Dirac distribution. Probabilistic behavior as-sociated with passage of time is allowed only within a probabilistic execution. Even thoughthis timed model may appear to be restrictive, it is su�ciently powerful to analyze non-trivialtimed properties of randomized algorithms (cf. Chapter 10).In the rest of this chapter we concentrate on the de�nition of the timed model as an extensionof the probabilistic automata of Chapter 4. Most of the concepts are extensions of the de�nitionsof [LV95] to the probabilistic framework; the non-trivial part of the chapter is the de�nition ofa probabilistic timed execution, where some measure-theoretical complications arise.9.2 The Timed ModelIn this section we de�ne probabilistic timed automata as an extension of the probabilisticautomata of Chapter 4, and we extend the timed executions of [LV95] to our framework. Dueto the complications that arise in the de�nition of a probabilistic timed execution, we de�neprobabilistic timed executions in a separate section.9.2.1 Probabilistic Timed AutomataA probabilistic semi-timed automaton M is a probabilistic automaton whose set of externalactions includes <+, the set of positive reals, and whose transitions with some action in <+are non-probabilistic, i.e., they lead to a Dirac distribution. Actions from <+ are referred to astime-passage actions , while non-time-passage actions are referred to as discrete actions . We letd; d0; : : : range over <+ and more generally, t; t0; : : : range over the set <[ f1g of real numbersplus in�nity. The set of visible actions is de�ned by vis(M) 4= ext(M) n <+.A probabilistic timed automaton is a probabilistic semi-timed automaton M that satis�esthe following two axioms.A1 If s d�! s0 and s0 d0�! s00, then s d+d0�! s00. 196



For the second axiom, we need an auxiliary de�nition of a trajectory , which describes thestate changes that can occur during time-passage. Namely, if I is any left-closed interval of <beginning with 0, then an I-trajectory is a function ! : I ! states(M), such that!(t) t0�t�! !(t0) for all t; t0 2 I with t < t0.Thus, a trajectory assigns a state to each time t in the interval I in a \consistent" manner. Wede�ne ltime(!), the \last time" of !, to be the supremum of I . We de�ne fstate(!) to be !(0),and if I is right-closed, we also de�ne lstate(!) to be !(ltime(!)). A trajectory for a transitions d�! s0 is a [0; d]-trajectory such that fstate(!) = s and lstate(!) = s0. Now we can state thesecond axiom.A2 Each time-passage transition s d�! s0 has a trajectory.A probabilistic timed automatonM is simple if M is a simple probabilistic automaton.Axioms A1 and A2 express natural properties of time: Axiom A1 says that if time canelapse in two transitions, then it can also elapse in a single transition; Axiom A2 says that iftime d can elapse, then it is possible to associate states with all times in the interval [0; d] in aconsistent way.Example 9.2.1 (The patient construction) A simple way to add time to a probabilisticautomaton is to add arbitrary self-loop timed transitions to each state of a probabilistic au-tomaton. Speci�cally, given a probabilistic automaton M , we de�ne patient(M) to be theprobabilistic timed automaton M 0 such that1. states(M 0) = states(M),2. start(M 0) = start(M),3. acts(M 0) = acts(M) [ <+,4. trans(M 0) = trans(M) [ f(s; d; s) j s 2 states(M); d 2 <+g.Thus, patient(M) is like M except that an arbitrary amount of time can elapse between twodiscrete transitions. It is immediate to verify that patient(M) satis�es axioms A1 and A2.The patient construction was �rst de�ned for ordinary automata in [VL92].Example 9.2.2 (Simple restrictions on time passage) The patient construction does notspecify any limitations to the way time can elapse. Sometimes we may want to specify upperand lower bounds to the time it takes for some transition to take place. Such a limitation canbe imposed easily by augmenting the states of a probabilistic automaton with variables thatexpress the time limitations that are imposed. As an easy example consider a probabilisticautomatonM with a unique state s and a unique discrete transition (s; a; s). Suppose that wewant to add time to M and impose that action a occurs once every at least 1 time unit and atmost 2 time units. Then the corresponding probabilistic timed automatonM 0 can be speci�edas follows.1. states(M 0) = f(s; l; h) j 0 � l � 1; 0 � l � h � 2g,197



2. start(M 0) = f(s; 0; 2)g,3. acts(M 0) = fag [ <+,4. trans(M 0) = f((s; 0; h); a; (s; 1; 2)) j 0 � h � 2g [ f((s; l; h); d; (s; l� d; h � d)) j d � l �hg [ f((s; 0; h); d; (s; 0; h� d))d � hg.The variables l and h keep track of the time that must or can elapse before performing a. Timepassage decreases both the variables unless they are 0. Action a can occur only when l = 0and leads to a state where l = 1. This means that at least 1 time unit must elapse before acan be performed again. No time can elapse if h = 0. At thet point the only transition thatcan be performed is the transition labeled with a. Thus, no more than 2 time units can elapsebetween the occurrence of two actions a. It is immediate to verify that M 0 satis�es axioms A1and A2.9.2.2 Timed ExecutionsSince a probabilistic timed automaton is also a probabilistic automaton, the executions of theuntimed model carry over to the timed case. However, an execution associates states with justa countable number of points in time, whereas the trajectory axiom A2 allows us to associatestates with all real times. Also, our intuition about the executions of a timed system is thatvisible actions occur at points in time, and that time passes \continuously" between thesepoints. In other words, at each point in time a system is in some state. This leads to thede�nition of a timed execution.Timed ExecutionsA timed execution fragment � of a probabilistic timed automaton M is a �nite or in�nitealternating sequence, � = !0a1!1a2!2 � � �, where1. Each !i is a trajectory and each ai is a discrete action.2. If � is a �nite sequence then it ends with a trajectory.3. If !i is not the last trajectory in � then its domain is a right-closed interval, and thereexists a transition (lstate(!i);P) of M such that (a; fstate(!i+1)) 2 
.A timed execution fragment describes all the discrete changes that occur, plus the evolutionof the state during time-passage transitions. If � is a timed execution fragment, then welet ltime(�) denote Pi ltime(!i). Note that we allow the case where the domain of the �naltrajectory is of the form [0;1); in this case ltime(�) = 1. We de�ne the initial state of �,fstate(�), to be fstate(!0)A timed execution is a timed execution fragment whose �rst state is a start state.The timed executions and timed execution fragments of a probabilistic timed automatoncan be partitioned into �nite, admissible, and Zeno timed executions and timed executionfragments. A timed execution (fragment) � is �nite, if it is a �nite sequence and the domain ofits �nal trajectory is right-closed; a timed execution (fragment) � is admissible if ltime(�) =1;a timed execution (fragment) � is Zeno if it is neither �nite nor admissible.198



There are basically two types of Zeno timed executions: those containing in�nitely manydiscrete actions in �nite time, and those containing �nitely many discrete actions and for whichthe time interval associated with the last trajectory is right-open. Thus, Zeno timed executionsrepresent executions of a probabilistic timed automaton where an in�nite amount of activityoccurs in a bounded period of time. (For the second type of Zeno timed executions, the in�nitelymany time-passage transitions needed to span the right-open interval should be thought of the\in�nite amount of activity".)We will be interested mostly in the admissible timed executions of a probabilistic timedautomaton since they correspond to our intuition that time is a force beyond our control thathappens to approach in�nity. However, according to our de�nition of a probabilistic timedautomaton, it is possible to specify probabilistic timed automata in which from some statesno admissible timed execution fragments are possible. This can be because only Zeno timedexecution fragments are possible from that state, or because time cannot advance at all (in whichcase a time deadlock has occurred). Although Zeno timed executions are usually non-desirable,research experience has shown that the analysis of a model would be more complicated if Zenotimed executions are ruled out.Denote by t-frag�(M), t-frag1(M), and t-frag(M) the sets of �nite, admissible, and alltimed execution fragments ofM . Similarly, denote by t-exec�(M), t-exec1(M), and t-exec(M)the sets of �nite, admissible, and all timed executions of M .A timed extended execution fragment of M , denoted by �, is either a timed executionfragment of M or a sequence �0� where �0 is a timed execution fragment of M . Denote byt-exec��(M) and t-exec�(M) the sets of �nite and all timed extended executions of M .Concatenations, Pre�xes and Su�xesIf ! is an I-trajectory where I is right-closed, and !0 is an I 0-trajectory such that lstate(!) =fstate(!0), then ! and !0 can be concatenated. The concatenation, denoted by !!0 is the leasttrajectory (the trajectory with the smallest domain) !00 such that !00(t) = !(t) for t 2 I , and!00(t+ ltime(!)) = !(t) for t 2 I 0. It is easy to show that !00 is a trajectory.Likewise, we may combine a countable sequence of \compatible" trajectories into one: if !iis an Ii-trajectory, 0 � i <1, where all Ii are right-closed, and if lstate(!i) = fstate(!i+1) forall i, then the in�nite concatenation !1!2 � � � is the least function ! such that for all i and allt 2 Ii, !(t+Pj<i ltime(!j)) = !i(t). It is easy to show that ! is a trajectory.A �nite timed execution fragment � = !0a1!1 � � �an!n ofM and a timed (extended) execu-tion fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) = fstate(�0). In thiscase the concatenation, written �a �0, is de�ned to be �00 4= !0a1!1 � � �an(!n!0n)an+1!n+1 � � �.It is easy to see that � is a timed (extended) execution fragment of M .The notion of pre�x for timed execution fragments and timed extended execution fragmentsis de�ned as follows. A timed (extended) execution fragment � of M is a pre�x of a timed(extended) execution fragment �0 of M , written � � �0, if either � = �0 or � is �nite and thereexists a timed (extended) execution fragment �00 of M such that �0 = � a �00. Likewise, � is asu�x of �0 if there exists a �nite timed execution fragment �00 such that �0 = �00 a �. Denote� by �0.�00.The length of a timed execution fragment � expresses the number of discrete actions in�. Thus, even though � is admissible or Zeno (and thus not �nite), its length may be �nite.199



Formally, de�ne the length of � = !0a1!1a2!2 � � � asj�j 4= ( n if � is a �nite sequence and ends in !n1 if � is an in�nite sequence.9.3 Probabilistic Timed ExecutionsSince a probabilistic timed automaton is also a probabilistic automaton, it is possible to talkabout the probabilistic executions of a probabilistic timed automaton. However, as we havepointed out already for ordinary executions, a probabilistic execution does not describe com-pletely the evolution of a probabilistic timed automaton since it does not allow us to associateevery real time with the states that are reached at that time. We need a structure that extendsprobabilistic executions in the same way as a timed execution extends an execution. A timedexecution di�ers from an execution in two aspects:1. a timed execution has trajectories to express passage of time;2. a timed execution does not contain any time-passage actions.In particular, a timed execution hides the time-passage transitions that are scheduled in anexecution to let time pass. Given a trajectory !, there are in�nitely many ways to schedule time-passage transitions to move in time ltime(!) from fstate(!) to lstate(!) (lstate(!) is meaningfulonly if the domain of ! is right-closed); the trajectory ! represents all those possible ways. In asimilar way, a probabilistic timed execution should not contain any information on the speci�ctime-passage transitions that are scheduled. Thus, a probabilistic timed execution should bea structure where each state records the past history and each transition contains informationon the trajectories that are spanned till the occurrence of the next action. However, it may bethe case that there is no next action since the next trajectory is right-open. This would notbe a problem except for the fact that from a state there can be uncountably many right-opentrajectories that leave even though they are generated by scheduling time-passage transitionsaccording to a discrete probability distribution.Example 9.3.1 (Uncountable branching from countable branching) Consider a prob-abilistic automatonM that can increase or decrease a variable x of its state at a constant speed,and suppose that every one time unit the speed of x can be complemented nondeterministi-cally. A valid scheduler A for M is a scheduler that every one time unit chooses the sign of thespeed of x according to a uniform binary distribution. As a result, there are uncountably manytrajectories leaving from the start state ofM if we use A to resolve the nondeterminism. Thus,if in a probabilistic timed execution we do not allow for a trajectory to be split into pieces,the probabilistic timed execution of M generated by A would have a non-discrete probabilitydistribution in its transition relation.To express the fact that we allow only discrete probability distributions on a scheduler, we de�neprobabilistic timed executions in two steps. First we de�ne probabilistic time-enriched execu-tions, which contain closed trajectories and time-passage actions (the time-passage transitionsthat are scheduled are visible); then, we remove the time-passage actions from probabilistictime-enriched executions to yield probabilistic timed executions.200



At the end of this section we show that probabilistic executions, probabilistic time-enrichedexecutions, and probabilistic timed executions are strongly related. Speci�cally, we show thateach probabilistic execution is a sampling of a probabilistic time-enriched execution wherethe information contained in the trajectories is lost, and that each probabilistic time-enrichedexecution is sampled by some probabilistic execution. Furthermore, we show that it is possible tode�ne an equivalence relation directly on probabilistic time-enriched executions that expressesthe fact that two probabilistic time-enriched executions denote the same probabilistic timedexecution (they just schedule time-passage transitions in a di�erent way).All the equivalence results that we prove in this section allow us to use the kind of proba-bilistic execution that is best suited for each problem. In particular, we use probabilistic timedexecutions for the theorems of Chapter 10, and we use probabilistic time-enriched executionsand probabilistic executions for the results of Chapters 11 and 12. Due to the purely technicalcontent of the comparison section (Section 9.3.3), the reader may focus just on the de�nitionsand on the informal explanations (Sections 9.3.1 and 9.3.2) at a �rst reading. Most of theconcepts are simple modi�cations of concepts de�ned for probabilistic executions.9.3.1 Probabilistic Time-Enriched ExecutionsTime-Enriched ExecutionsLetM be a probabilistic timed automaton. A time-enriched execution fragment ofM is a �niteor in�nite alternating sequence � = !0a1!1a2!2 � � � where1. The domain of !0 is [0; 0].2. Each !i is a trajectory with a closed domain and each ai is an action.3. If ai is a visible action, then the domain of !i is [0; 0], and there exists a transition(lstate(!i�1);P) of M such that (ai; fstate(!i)) 2 
.4. If ai is a time-passage action, then the domain of !i is [0; ai] and lstate(!i�1) = fstate(!i).Denote by te-frag�(M) and te-frag(M) the set of �nite and all time-enriched execution fragmentsof M , respectively. The notation for fstate(�), lstate(�) and ltime(�) extends trivially.A time-enriched execution fragment � contains more information than a timed executionfragment since it is possible to observe what time-passage transitions are used to generate �.A time-enriched extended execution fragment ofM is either a time-enriched execution frag-ment of M or a sequence �� where � is a �nite time-enriched execution fragment of M . Thenotation for lstate(�) extends trivially.A �nite time-enriched execution fragment � = !0a1!1 � � �an!n of M and a time-enrichedextended execution fragment �0 = !0nan+1!n+1 � � � of M can be concatenated if lstate(�) =fstate(�0). In this case the concatenation is de�ned to be �00 4= !0a1!1 � � �an!nan+1!n+1 � � �,and is denoted by � a �0. It is easy to see that �00 is a time-enriched extended executionfragment of M . A time-enriched extended execution fragment � of M is a pre�x of a time-enriched extended execution fragment �0 of M , written � � �0, if either � = �0 or � is �niteand there exists a time-enriched extended execution fragment �00 of M such that �0 = � a �00.Likewise, � is a su�x of �0 if there exists a �nite time-enriched execution fragment �00 suchthat �0 = �00 a �. Denote � by �0.�00. 201



Time-Enriched TransitionsLet (s;P) be a combined transition of M . For each pair (a; s0) of 
, if a is a discrete action,then let P(a;s0) be D((a; s0)); if a is a time-passage action, then let P(a;s0) be a discrete proba-bility distribution of Probs(trajectories(M; s; a; s0)), where trajectories(M; s; a; s0) denotes theset of trajectories for s a�! s0. The pair P(a;s0)2
 P [(a; s0)](s;P(a;s0)) is called a time-enrichedtransition of M .Thus, a time-enriched transition adds information to a combined transition by specifyingwhat state is reached at each intermediate time. A combined transition gives just the extremesof a trajectory, dropping all the information about what happens in the middle.Probabilistic Time-Enriched ExecutionsA probabilistic time-enriched execution fragment H of a timed probabilistic automatonM is afully probabilistic automaton such that1. states(H) � te-frag�(M)2. for each transition tr = (q;P) of H there is a time-enriched transition tr 0 = (lstate(q);P 0)of M , called the corresponding time-enriched transition, such that P = q a P 0.3. each state of H is reachable and enables one transition.A probabilistic time-enriched execution is a probabilistic time-enriched execution fragmentwhose start state is a start state of M . Denote by te-prfrag(M) the set of probabilistic time-enriched execution fragments of M , and by te-prexec(M) the set of probabilistic time-enrichedexecutions of M . Also, denote by qH0 the start state of a generic probabilistic time-enrichedexecution fragment H .As for the untimed case, there is a strong relationship between the time-enriched extendedexecution fragments of a probabilistic timed automaton and the extended executions of one ofits probabilistic time-enriched execution fragments. Speci�cally, let M be a probabilistic timedautomaton and let H be a probabilistic time-enriched execution fragment of M . Let q0 be thestart state of H . For each extended execution � = q0a1q1 � � � of H , let�# 4= ( q0 a lstate(q0)a1ltraj (q1)a2 � � � if � does not end in �,q0 a lstate(q0)a1ltraj (q1)a2 � � �anltraj (qn)� if � = q0a1q1 � � �anqn�, (9.1)where ltraj (qi) denotes the last trajectory of qi. It is immediate to observe that �# is a time-enriched extended execution fragment of M . For each time-enriched extended execution frag-ment � of M such that q0 � �, i.e., � = q0 a !0a1!1 � � �, let�"q0 4= ( q0a1(q0a1!1)a2(q0a1!1a2!2) � � � if � does not end in �,q0a1(q0a1!1) � � �(q0a1!1 � � �an!n)� if � = q0a1!1 � � �an!n�. (9.2)It is immediate to observe that �"q0 is an extended execution of some probabilistic timedexecution fragment of M . Moreover, the following proposition holds.202



Proposition 9.3.1 Let H be a probabilistic time-enriched execution fragment of a probabilistictimed automaton M . Then, for each extended execution � of H,(�#)"q0 = �; (9.3)and for each time-enriched extended execution fragment � of M starting with q0,(�"q0)# = �: (9.4)EventsThe probability space PH associated with a probabilistic time-enriched execution H is de�nedas for the untimed case. Thus, 
0H is the set of time-enriched extended execution fragments ofM that correspond to complete extended executions of H , i.e.,
0H 4= f�# j � is a complete extended execution of Hg; (9.5)where an extended execution � of H is complete i� either � is in�nite, or � = �0�, �0 is a �niteexecution of H , and � 2 
Hlstate(�). For each �nite time-enriched extended execution fragment� of M , let CH� denote the coneCH� 4= f�0 2 
H j � � �0g: (9.6)Let CH be the set of cones of H . Then de�ne F 0H to be the �-�eld generated by CH , i.e.,F 0H 4= �(CH): (9.7)De�ne a measure � on CH such that the measure �H(CH� ) of a cone CH� is the product of theprobabilities associated with each edge that generates � in H . Formally, let q0 be the startstate of H . If � � q0, then�H(CH� ) 4= 1; (9.8)if � = q0 a !0a1!1 � � �!n�1an!n, then�H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]; (9.9)where for each i, 1 � i < n, qi = q0 a !0a1!1 � � �!i�1ai!i; if � = q0 a !0a1!1 � � �!n�1an!n�,then �H(CH� ) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]Pqn [�]; (9.10)where for each i, 1 � i � n, qi = q0 a !0a1!1 � � �!i�1ai!i. Then the probability measure P 0H isthe unique measure on FH that extends �H , and PH is the completion of PH .Finite Probabilistic Time-Enriched Executions, Pre�xes, Conditionals, and Su�xesSince a probabilistic time-enriched execution is a fully probabilistic automaton, the de�nitionsof �niteness, pre�x, conditional and su�x of Section 4.2.6 extend directly: we just need tode�ne the length of a time-enriched execution fragment � as the number of actions that occurin �. 203



9.3.2 Probabilistic Timed ExecutionsWe now de�ne the probabilistic timed executions of a probabilistic timed automaton. Weuse probabilistic time-enriched executions to characterize those transitions that originate fromdiscrete schedulers.Timed TransitionsA timed transition expresses the result of choosing either an in�nite trajectory or a �nitetrajectory followed by some discrete action at random. However, a timed transition shouldbe the result of scheduling a collection of time-enriched transitions, so that we are guaranteedthat it is due to a discrete scheduler. For this reason, we derive a timed transition from theprobability distribution associated with a time-enriched probabilistic execution. The derivationproceeds in two steps: �rst all the time-passage actions are removed and the correspondingtrajectories are concatenated; then the resulting structure is truncated at the occurrence of the�rst action.Removing Time-Passage Actions. Let � = !0a1!1a2!2 � � � be a time-enriched executionfragment of a probabilistic timed automatonM . The timed execution represented by �, denotedby t-exec(�), is the sequence obtained from � by removing all the time-passage actions and byconcatenating all the trajectories whose intermediate action is removed.Let H be a probabilistic time-enriched execution fragment of a probabilistic timed automa-ton M . Let
 4= t-exec(
H) [ limits(t-exec(
H)); (9.11)where limits(t-exec(
H)) is the set of timed executions � ofM that end with an open trajectoryand such that for each �nite pre�x �0 of � there is an element �00 of t-exec(
H) such that �0 � �00.Then, t-exec(PH) denotes the probability space completion((
;F ; P )) where F is the �-�eldgenerated by the cones on 
, and P is t-exec(PH).The reason for the de�nition of the sample space of t-exec(PH) is mainly technical: wewant to establish a relationship between probabilistic time-enriched executions and probabilis-tic timed executions, and we want the relationship to be preserved by projection of probabilistictimed executions in a parallel composition context. Informally, we are interested in a distribu-tion over trajectories, possibly followed by an action, without keeping any information on howsuch a distribution is obtained. The elements of the sample space that end with right opentrajectories can be a�ected by the way the transitions are scheduled in a probabilistic time-enriched execution. Moreover, these elements of 
 can create problems for parallel composition.Closing the sample space under limit makes such di�erences invisible. The reader interested inmore details is referred to Sections 9.3.3 and 9.5, and speci�cally to Examples 9.3.3 and 9.5.1.Example 9.3.2 (What t-exec identi�es) Figure 9-1 gives an example of two probabilistictime-enriched executions that are mapped to the same structure by t-exec(). We assume tohave two functions ! and !0 de�ned on the real numbers, and we denote by !d;d0 the trajectory!00 with domain [0; d0� d] such that for each t � d0� d, !00(t) = !(t� d). A similar notation isused for !0. 204
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ωω ω’ ’ ’0,1 0,1 0,1Figure 9-1: Probabilistic time-enriched executions that are mapped to the same structure.Truncation at the First Action. Let M be a probabilistic timed automaton, and let q bea �nite timed execution fragment of M . For each extended timed execution fragment � of Msuch that q � �, lettruncateq(�) 4= ( � if no action occurs in �.qq a !0a1fstate(!1) if �.q = !0a1!1 � � � (9.12)Let H be a probabilistic time-enriched execution fragment of M , and let q be a pre�x ofthe start state of H . Then de�ne truncateq(t-exec(PH)) to be the probability space P where
 = truncateq(t-exec(
H)), F is the �-�eld generated by the cones of 
, and P is the measuretruncateq(t-exec(PH)).Timed Transitions. A timed transition of M leaving from a state s is a pair (s;P) suchthat there is a probabilistic time-enriched execution fragment H of M starting in s, and P =truncates(t-exec(PH)).Probabilistic Timed ExecutionsA probabilistic timed execution fragment of a probabilistic timed automatonM , denoted by H ,consists of four components.1. A set states(H) � t-frag�(M) of states.2. A unique start state qH0 .3. An action signature sig(H) = sig(M).4. A transition relation trans(M) consisting of pairs (q;P) such that there exists a timedtransition (lstate(q);P 0) of M satisfying P = q a P 0. Observe that, from the discussion inSection 3.1.5, q a P 0 is well de�ned.Moreover, each state ofH is reachable, enables at most one transition, and enables one transitioni� it is a �nite timed execution fragment of M . A probabilistic timed execution of M is aprobabilistic timed execution fragment of M whose start state is a start state of M .An execution of H is a sequence of states ofH , � = q0q1 � � � ; such that for each i, qi+1 2 
Hqi .As for the untimed case, there is a strong correspondence between the timed extended executionfragments of a probabilistic timed execution H of M and the executions of H . Speci�cally, let205



M be a probabilistic timed automaton and let H be a probabilistic timed execution fragmentof M . Let q0 be the start state of H . For each execution � = q0q1 � � � of H , let�# 4= limi qi; (9.13)where the limit is taken under pre�x ordering. It is immediate to observe that �# is a timedextended execution fragment of M . For each timed extended execution fragment � of M suchthat q0 � �, i.e., � = q0 a !0a1!1 � � �, let qi be q0 a !0a1!1 � � �aifstate(!i), and if �.q0 is a �nitesequence with n discrete actions, let qn+1 be �. Then let�"q0 4= q0q1q2 � � � : (9.14)It is immediate to observe that �"q0 is an execution of some probabilistic timed executionfragment of M . Moreover, the following proposition holds.Proposition 9.3.2 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M . Then, for each execution � of H,(�#)"q0 = �; (9.15)and for each timed extended execution fragment � of M starting with q0,(�"q0)# = �: (9.16)EventsThe probability space PH associated with a probabilistic timed execution fragmentH is de�nedsimilarly to the untimed case. The set 
0H the set of extended timed execution fragments ofM that correspond to complete executions of H , where an execution of H is complete i� it iseither in�nite or it leads to a state that does not enable any transition. The �-�eld F 0H is theminimum �-�eld that contains the class of cones of 
0H . The measure P 0H is the unique measurethat extends the measure de�ned on cones as follows: if � = qH0 a !0a1!1a2 � � �an!n, thenP 0H [C�] = PHq0 [q1] � � �PHqn�1 [qn]PHqn [C�] (9.17)where for each i � n, qi = qH0 a !0a1!1 � � �anfstate(!i); if � = qH0 a !0a1!1a2 � � �an!n�, thenP 0H [C�] = PHq0 [q1] � � �PHqn�1 [qn]PHqn [�] (9.18)where for each i � n, qi = qH0 a !0a1!1 � � �anfstate(!i). Observe that although there areuncountably many cones in F 0H , every union of cones is expressible as a countable union ofdisjoint cones. Then, PH is the completion of P 0H .Finite Probabilistic Timed Executions, Pre�xes, Conditionals, and Su�xesFiniteness and pre�x are de�ned similarly to the untimed case, and thus we do not repeat thede�nitions here.Conditionals and su�xes di�er in a small detail concerning the start state. The readershould observe the similarity of these de�nitions to those for the untimed case. Also, observethat the properties of conditionals and su�xes (Propositions 9.3.3 and 9.3.4) are the same as206



for the untimed case. This is what allows us to extend the results for the untimed case directlyto the timed case.Let H be a probabilistic timed execution fragment of a probabilistic timed automaton M ,and let q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H jq is a newprobabilistic execution fragment de�ned as follows:1. states(H jq) = fqg [ fq0 2 states(H) j q � q0g;2. start(H jq) = fqg.3. for each state q0 of H jq di�erent from q, trH jqq0 = trHq0 .4. let �q be the maximum state of H that is a pre�x of q. Then, trH jqq = (q;PH�q jCq).H jq is called a conditional probabilistic timed execution fragment. We show later that H jq is aprobabilistic timed execution. Observe that (
H jq;FH jq; PH jq) and (
H jCq;FH jCq; PH jCq) arethe same probability space (cf. Section 3.1.8): the sample spaces are the same, the generatorsare the same, and the probability measures coincide on the generators. Thus, the followingproposition is true.Proposition 9.3.3 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset Eof 
H jq,1. E 2 FH jq i� E 2 FH .2. If E is an event, then PH [E] = PH [Cq]PH jq[E].Let H be a probabilistic timed execution fragment of a probabilistic timed automatonM , andlet q be a pre�x of some state of H such that qH0 is a pre�x of q. Then H.q is a new probabilisticexecution fragment de�ned as follows:1. states(H.q) = fq0.q j q0 2 states(H jq)g;2. start(H jq) = flstate(q)g.3. for each state q0 of H.q, trH.qq0 = trH jqqaq0.q.H.q is called a su�x of H . It is easy to check that the probability spaces PH.q and PH jq arein a one-to-one correspondence through the measurable function f : 
H.q ! 
H jq such thatfor each � 2 
H.q, f(�) = q a �. The inverse of f is also measurable and associates �.q witheach timed execution � of 
H jq. Thus, directly from Proposition 9.3.3, we get the followingproposition.Proposition 9.3.4 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, for each subset Eof 
H.q,1. E 2 FH.q i� (q a E) 2 FH . 207



2. If E is an event, then PH [q a E] = PH [Cq]PH.q[E].We are left with showing that H jq is well de�ned. The proof of this apparently obvious fact isnot simple and contains several technical details.Proposition 9.3.5 Let H be a probabilistic timed execution fragment of a probabilistic timedautomaton M , and let q be a pre�x of a state of H such that qH0 � q. Then, H jq is a probabilistictimed execution fragment of M .Proof. We just need to verify that the transition leaving from state q in H jq is a timedtransition. Let �q be the maximum state of H that is a pre�x of q. Then, from the de�nitionof a timed transition, there is a probabilistic time-enriched execution fragment H�q of M suchthat PH�q = �q a truncate lstate(�q)(t-exec(PH�q)). From the de�nition of trH jqq , we need to �nd aprobabilistic time-enriched execution fragment Hq of M such that(�q a truncate lstate(�q)(t-exec(PH�q)))jCq = q a truncate lstate(q)(t-exec(PHq)): (9.19)Let q0 be q.�q. From the de�nition of �q, q0 is just one closed trajectory. Thus, if we build Hqsuch that(t-exec(PH�q))jCq0 = q0 a t-exec(PHq); (9.20)then Equation 9.19 follows easily using simple properties of truncate. Thus, the rest of thisproof is dedicated to the construction of an Hq that satis�es (9.20).Let q1; q2; : : : be an enumeration of the minimal states q00 of H such that q0 � t-exec(q00).We distinguish two cases.1. For each i, t-exec(qi) = q0.The construction for Hq in this case is carried out in the proof of Proposition 9.3.8 (cf.Equation 9.29). We give a forward pointer to avoid too many technical details at thispoint.2. There is an i such that q0 < t-exec(qi).We prove this case by reducing the problem to the previous case. That is, we build a newprobabilistic time-enriched execution fragment H 0�q such that t-exec(PH�q) = t-exec(PH 0�q)and such that the minimal states q00 of H 0�q such that q0 � t-exec(q00) satisfy q0 = t-exec(q0).Recall �rst that q0 is a trajectory whose domain is [0; d] for some d > 0. De�ne acollection of �nite time-enriched execution fragments q01; q02; � � � as follows: for each i, ift-exec(qi) = q0 then q0i = qi; otherwise, represent qi as �qi a lstate(�qi)di!i, where �qi isa state of H�q, and let q0i be �qi a lstate(�qi)di;1!i;1di;2!i;2di;3!i;3 where !i = !i;1!i;2!i;3,t-exec(�qi a lstate(�qi)di;1!i;1di;2!i;2) = q0, and the actions di;1 and di;2 are chosen in such away that for each i �qi a lstate(�qi)di;1!i;1 is not a pre�x of any of the q0j 's, j 6= i. In otherwords, we split all the qi's in such a way that a state that corresponds to q0 is reachedalways and such that none of the states of H�q are identi�ed. Then,states(H 0�q) = fq00 j 9iq00 � q0ig (9.21)[ [i fq0i a (q00.qi) j q00 2 states(H�q); qi < q00g! :208



The transition relation of H 0�q is obtained from the transition relation of H�q by schedulingthe same time-enriched transitions of M as before except for the states �qi where theintermediate transitions leading to the q0i's are scheduled. It is simple to check that H 0�qsatis�es the desired properties.9.3.3 Probabilistic Executions versus Probabilistic Timed ExecutionsIn this section we show the relationship between probabilistic executions, probabilistic time-enriched executions, and probabilistic timed executions. The main idea is that they all repre-sent the same structures with di�erent levels of detail. We show that a probabilistic executionis a sampling of a probabilistic time-enriched execution, where the information given by thetrajectories is lost. Conversely, we show that each probabilistic time-enriched execution issampled by some probabilistic execution. We show that each probabilistic time-enriched exe-cution represents a probabilistic timed execution and that each probabilistic timed executionis represented by some probabilistic time-enriched execution. Essentially, a probabilistic time-enriched execution is a probabilistic timed execution with the additional information of whattime-passage transitions are scheduled. Finally, we de�ne an equivalence relation on probabilis-tic time-enriched executions that captures the idea of representing the same probabilistic timedexecution. This equivalence relation will be useful for parallel composition.Probabilistic Executions versus Probabilistic Time-Enriched ExecutionsThere is a close relationship between the probabilistic executions of a probabilistic timed au-tomaton and its probabilistic time-enriched executions. Informally, a probabilistic time-enrichedexecution contains more information than a probabilistic execution because it associates a statewith every real time rather than with a countable set of times. In other words, a probabilisticexecution can be seen as a sampling of a probabilistic time-enriched execution at countablymany points. In later chapters we will see that probabilistic executions are su�cient for thestudy of the properties of a system whenever such properties do not depend on the actual statesthat are reached at each time. For the moment we just de�ne what it means for a probabilisticexecution to sample a probabilistic time-enriched execution, and we show that each probabilistictime-enriched execution is sampled by some probabilistic execution and that each probabilisticexecution samples some probabilistic time-enriched execution. We start by de�ning a func-tion sample that applied to a probabilistic time-enriched execution H of a probabilistic timedautomaton M gives a probabilistic execution H 0 of M , which by de�nition samples H .Let � = !0a1!1a2!2 � � � be a time-enriched execution of a probabilistic timed automatonM , and let sample(�) be the sequence �0 = lstate(!0)a1lstate(!1)a2lstate(!2) � � �. Then, it iseasy to check that �0 is an execution of M . We say that �0 samples �. De�nestates(H 0) 4= sample(states(H)): (9.22)Let (q;P) be a transition ofH . De�ne sample on 
 as follows: sample((a; q0)) = (a; sample(q0)),and sample(�) = �. Then, de�ne the transition sample((q;P)) to besample((q;P)) 4= (sample(q); sample(P)): (9.23)209



For each state q of H 0, let sample�1(q) be the set of states q0 of H such that sample(q0) =q. Observe that all the states of sample�1(q) are incomparable under pre�x. For each q0 2sample�1(q), let�psample�1(q)q0 4= PH [Cq0]Pq002sample�1(q) PH [Cq00 ] : (9.24)Then, the transition enabled from q in H 0 is de�ned to betrH 0q 4= Xq02sample�1(q) �psample�1(q)q0 sample(trHq0 ): (9.25)Observe the similarity of Equations (9.24) and (9.25) with the equations that the �ne theprojection of a probabilistic execution (cf. Equations (4.21) and (4.22)).Proposition 9.3.6 below shows that H 0 is a probabilistic execution of M . We say that H 0samples H . Then, Proposition 9.3.7 shows that each probabilistic execution samples someprobabilistic time-enriched execution.Proposition 9.3.6 For each probabilistic time-enriched execution H of a probabilistic timedautomaton M , sample(H) is a probabilistic execution of M .Proof. Let H 0 denote sample(H). The fact that each state of H 0 is reachable can be shownby a simple inductive argument; the fact that each state of H 0 is a �nite execution fragment ofM follows from a simple analysis of the de�nition of sample and of a time-enriched execution.We need to check that for each state q of H 0 the transition enabled from q in H 0 is generatedby a combined transition of M . From (9.25), it is enough to show that for each state q0 ofsample�1(q) the transition sample(trHq0 ) is generated by a combined transition of M .Since H is a probabilistic time-enriched execution of M , then there is a time-enrichedtransition (lstate(q0);P) of M such that PHq0 = q0 a P . From the de�nition of sample and thede�nition of a time-enriched transition, (lstate(q); sample(P)) is a combined transition of M ,and sample(PHq0 ) = sample(q0) a sample(P), which means that sample(PH 0q ) = q a sample(P).This is enough to conclude.Proposition 9.3.7 Let H be a probabilistic execution of a probabilistic timed automaton M .Then there is a probabilistic time-enriched execution H 0 of M such that H = sample(H 0).Proof. We build H 0 inductively in such a way that for each state q of H there is exactly onestate q0 of H 0 in sample�1(q). The start state of H 0 is the same as the start state of H .Suppose that the transition relation of H 0 is de�ned for each state of length at most i� 1and assume that for each state q of H of length at most i there is exactly one state q0 of H 0 insample�1(q). Let q be a state of H of length i and let q0 be the state of sample�1(q). Observefrom the de�nition of sample that the length of q0 is i. Let (lstate(q);P) be the combinedtransition of M that corresponds to trHq . For each pair (a; s) of 
, if a is a discrete action,then let P(a;s0) be D((a; s0)); if a is a time-passage action, then let P(a;s0) be D(wa;s0), wherewa;s0 2 trajectories(M; s; a; s0). Let P 0 =P(a;s)2
 P [(a; s)]P(a;s). Then, (lstate(q);P 0) is a time-enriched transition of M . Let trH 0q0 be (q0; q0 a P 0). Then, trH 0q0 is a legal transition for H 0.Moreover, from the de�nition of P 0, each state of PHq is the sampling of exactly one state ofPH 0q0 , and, vice versa, the sample of each state of PH 0q0 is a state of PHq .210



Probabilistic Time-Enriched Executions versus Probabilistic Timed ExecutionsWe de�ne a function t-sample that, given a probabilistic time-enriched execution fragment Hof M , builds a probabilistic timed execution H 0 as follows.states(H 0) = ft-exec(qH0 ) [ (9.26)fq 2 
t-exec(H) j q contains �nitely many actionsg [fq 2 t-frag�(M) j ltraj (q) is a [0,0]-trajectory and 9q02
t-exec(H)q � q0g:The start state of H 0 is t-exec(qH0 ), and for each state q of H 0 the transition enabled from q is(q; truncateq(t-exec(PH)jCq)).Proposition 9.3.8 t-sample(H) is a probabilistic timed execution fragment of M .Proof. We need to show that for each state q of H 0 that enables some transition there isa probabilistic time-enriched execution fragment Hq of M starting from lstate(q) such thatPHq = truncate lstate(q)(t-exec(PHq)).Let q1; q2; : : : be an enumeration of the states q0 of H such that t-exec(q0) = q, and for eachi let pi denote PH [Cqi]. Observe that, since q ends with the occurrence of a discrete action,for each state q00 of H such that q0 � t-exec(q00) there is an i such that qi � q00. De�ne Hq asfollows.states(Hq) 4= [i states(H.qi): (9.27)For each state q0 of Hq, lettrHqq0 4= Pijq02states(H.qi) PH [Cqiaq0 ](trHqiaq0.qi)Pijq02states(H.qi) PH [Cqiaq0 ] : (9.28)Then, it is enough to prove thatq a t-exec(PHq) = t-exec(PH)jCq: (9.29)Before proving (9.29), we show the following property: for each state q0 of Hq,PHq [Cq0] = Pijq02states(H.qi) PH [Cqiaq0 ]Pi PH [Cqi] : (9.30)This follows easily by induction using Equation (9.28) for the inductive step. The denominatoris necessary for the base case to work.We now turn to Equation (9.29). Consider an extended timed execution fragment � of M ,and distinguish the following two cases.1. � does not end with an open trajectory.Suppose that � 2 
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the con-ditional operation, q � � and there is a time-enriched execution �0 of 
H such thatt-exec(�0) = �. This means that there is a time-enriched execution �0 of 
H such thatt-exec(�0) = � and there is a state qi of H such that qi � �0. From the construction ofHq, each pre�x of �0 is a state of Hq, and thus �0 2 
t-exec(Hq). The argument can bereversed. 211



2. � ends with an open trajectory.Suppose that � 2 
t-exec(PH)jCq . Then, from the de�nition of t-exec() and of the condi-tional operation, q � � and for each �nite pre�x �0 of � there is a timed execution �00of t-exec(
H) such that �0 � �00. It is su�cient to show that for each �nite pre�x �0of � there is a timed execution �00q of t-exec(
Hq) such that �0 � (q a �00q). Consider apre�x �0 of �, and let �00 be an element of t-exec(
H) such that �0 � �00. Then there isa time-enriched execution �000 of 
H such that �0 � t-exec(�000), which means that thereis a �nite pre�x �0000 of �000 such that �0 � t-exec(�000) and q � t-exec(�000). Let qi bethe pre�x of �0000. We know that such pre�x exists. Then, from the de�nition of Hq,�0000.qi is a state of Hq, and thus there is a time-enriched execution �0q of 
Hq such that�0 � (q a t-exec(�0q)). Moreover, t-exec(�0q) 2 t-exec(PHq), which is su�cient to conclude.The argument can be reversed.Finally, we need to show that Pt-exec(PH)jCq and Pt-exec(PHq ) coincide on the cones of their samplespaces. Thus, consider a �nite timed execution fragment � ofM . From the de�nition of t-exec(),Pt-exec(PHq )[C�] = Xq02min(fq02states(Hq)j��t-exec(q0)g)PHq [Cq0]: (9.31)From (9.30),Pt-exec(PHq )[C�] = Xq02min(fq02states(Hq)j��t-exec(q0)g)Pijq02states(H.qi) PH [Cqiaq0 ]Pi PH [Cqi] : (9.32)From the de�nition of the states of Hq, (9.32) can be rewritten intoPt-exec(PHq )[C�] = PiPq02min(fq02states(H.qi)jqa��t-exec(qiaq0)g)PH [Cqiaq0 ]Pi PH [Cqi] : (9.33)By simplifying the concatenations we obtainPt-exec(PHq )[C�] = Pq02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]Pi PH [Cqi] : (9.34)From the de�nition of t-exec(), the de�nition of a conditional space, and the de�nition of theqi's, Pt-exec(PH)jCq [C�] = Pq02min(fq02states(H)jqa��t-exec(q0)g) PH [Cq0]Pi PH [Cqi] : (9.35)Since the right sides of Equations (9.34) and (9.35) are the same, we conclude thatPt-exec(PHq )[C�] = Pt-exec(PH)jCq [Cqa�]: (9.36)This completes the proof.Conversely, we show that every probabilistic timed execution of M is sampled by some proba-bilistic time-enriched execution of M . Let H be a probabilistic timed execution of M . Then,build H 0 as follows. Let H0 be a probabilistic timed execution consisting of a single state that212



is t-sampled by qH0 , i.e., t-sample(qH00 ) = qH0 . Strictly speaking H0 is not a probabilistic timedexecution because qH00 should enable a transition in general. Suppose now that Hi is de�ned.Then build Hi+1 be extending the transition relation of Hi from all the states of Hi that donot end in � and do not have any outgoing transition as follows. Consider a state q of Hi thatdo not end in � and do not have any outgoing transition, and let q0 be the state of H suchthat t-exec(q) = q0 (our construction ensures that there is always such a state since q ends witha [0; 0]-trajectory). From the de�nition of a probabilistic timed execution fragment, there isa probabilistic time-enriched execution fragment Hq0 of M starting from lstate(q0) such thatPHq0 = truncate lstate(q0)(t-exec(PHq0 )). Let H 0q0 be obtained from Hq0 by removing all the tran-sitions from states where an action has occurred and by removing all the states that becomeunreachable. Then, extend Hi from q0 with q0 a H 0q0 , i.e., Hi+1.q0 = H 0q0 .Then the states of H 0 are the union of the states of the Hi's, the start state of H 0 is qH00 ,and for each state q of H 0, if q is a state of Hi, then trH 0q = trHi+1q .Proposition 9.3.9 t-sample(H 0) = H.Proof. We prove that PH = t-exec(PH 0). Then the equality between t-sample(H 0) andH follows by induction after observing that t-sample(H 0) and H have the same start stateand that for each state q, stept-sample(H 0)q = (q; truncateq(t-exec(PH 0)jCq)), and that stepHq =(q; truncateq(PH jCq)).For the sample spaces, consider an element � of 
H . Then, by de�nition of 
H , there is anexecution �0�1 � � � of H such that limi �i = �, and such that either � is not a �nite execution,or the last element of � ends in �. We distinguish two cases.1. � is either an in�nite sequence or a �nite sequence �0�2 � � ��n where �n ends with �.From the de�nition of the transition relation of H 0, there is a sequence of extended time-enriched execution fragments q0; q1; : : : such that for each i �i = t-exec(q0 a � � � a qi),q0 a q1 a � � � is an element of 
H 0 , and t-exec(q0 a q1 a � � �) = �. Thus, � 2 
t-exec(H 0). Theconverse argument is a reversal of the argument above.2. � = �0�2 � � ��n where �n ends with an open trajectory.From the de�nition of the transition relation of H 0, there is a sequence of extendedtime-enriched execution fragments q0; q1; : : : ; qn�1 such that for each i � n � 1 �i =t-exec(q0 a � � � a qi) and q0 a � � � a qi is a state of H 0. Furthermore, for each �nite pre�x�0 of � there is a time-enriched execution fragment qn such that �0 � t-exec(q0 a � � �a qn)and q0 a � � � a qn�1 a qn is an element of 
H 0. This means that for each �nite pre�x �0 of� there is an element �00 of t-exec(
H 0) such that �0 � �00, and thus � 2 
t-exec(PH0). Theargument can be reversed.Consider now a cone C�. From the de�nition of t-exec(),Pt-exec(H 0)[C�] = Xq2min(fq2states(H 0)j��t-exec(q)g)PH 0 [Cq]: (9.37)If C� is not empty, then � = �1 � � ��n, where �n = �, �0 � � ��n�1 is an execution of H , andthere is a �0n such that �n � �0n and �1 � � ��0n is an execution of H . We show by induction on213



n thatPH [C�n ] = Xq2min(fq2states(H 0)j��t-exec(q)g)PH 0 [Cq]: (9.38)The base case is trivial since C�0 denotes the whole sample space. For the inductive case, fromthe de�nition of the probability of a cone,PH [C�n ] = PH [C�n�1]PH�n�1 [C�n]: (9.39)From the de�nition of the transition relation of H ,PH�n�1 [C�n] = Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq]Pt-exec(H 0.q)[C�n.�n�1 ]Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq] ; (9.40)wherePt-exec(H 0.q)[C�n.�n�1 ] = Xq02min(fq02states(H 0.q)j�n�t-exec(qaq0)g)PH 0.q[Cq0]: (9.41)Since �n�1 is a state of H , the last trajectory of �n�1 has domain [0; 0], and the set fq 2states(H 0) j t-exec(q) = �n�1g is a set of minimal states. Thus, by substituting (9.41) in (9.40),simplifying the numerator of (9.40), we obtainPt-exec(H 0.q)[C�n.�n�1 ] = Pq02min(fq02states(H 0)j�n�t-exec(q0)g)PH 0 [Cq0 ]Pq2states(H 0)jt-exec(q)=�n�1 PH 0 [Cq] : (9.42)By substituting (9.42) in (9.39), using induction and simplifying algebraically, we get (9.38).Equivalent Probabilistic Time-Enriched ExecutionsIt is possible to de�ne an equivalence relation on probabilistic time-enriched executions thatcaptures exactly the probabilistic timed executions that they represent.Let H1 and H2 be two probabilistic time-enriched execution fragments of a probabilistictimed automaton M . Then t-exec(PH1) and t-exec(PH2) are said to be equivalent , denoted byt-exec(PH1) � t-exec(PH2), i�1. for each timed extended execution fragment � ofM that does not contain in�nitely manydiscrete actions, � 2 
t-exec(PH1) i� � 2 
t-exec(PH2);2. for each �nite timed extended execution fragment � of M ,Pt-exec(PH1)[C�] = Pt-exec(PH2)[C�].H1 and H2 are said to be equivalent , denoted by H1 � H2, i� t-exec(qH10 ) = t-exec(qH20 ) andt-exec(PH1) � t-exec(PH2).Example 9.3.3 (Two equivalent probabilistic time-enriched executions) In the de�-nition above we do not require the sample spaces of the given probabilistic time-enriched ex-ecution fragments to contain the same timed executions with in�nitely many discrete actions.Figure 9-2 shows an example of two probabilistic time-enriched executions whose correspondingsample spaces di�er from a timed execution with in�nitely many discrete actions and such that214
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a direct analysis of the de�nition of t-exec() shows that t-exec(PH1)jCq � t-exec(PH2)jCq. Thetruncation operation is independent of the elements of 
 that contains in�nitely many discreteactions, and thus 
truncateq(t-exec(PH1)jCq) = 
truncateq(t-exec(PH2)jCq). Furthermore, directly fromthe de�nition of �, Ptruncateq(t-exec(PH1)jCq) and Ptruncateq(t-exec(PH2)jCq) coincide on the cones,and thus truncateq(t-exec(PH1)jCq) = truncateq(t-exec(PH2)jCq).Proposition 9.3.11 Let H be a probabilistic time-enriched execution of a probabilistic timedautomaton M . Then, Pt-sample(H) � t-exec(PH).Proof. Consider a �nite timed execution � of M . We prove the proposition in three steps.1. For each �nite timed extended execution � of M , there is a timed extended execution �0of 
t-sample(H) such that � � �0 i� there is a timed extended execution �00 of 
t-exec(PH)such that � � �00.Let �0 2 
t-sample(H) such that � � �0. Then there is a complete execution q0q1 � � � oft-sample(H) such that limiqi = �0. In particular, there is a value n such that � � qn.From the de�nition of the transition relation of t-sample(H), Pt-exec(H)[Cqn] > 0, and thusthere is a timed execution �00 of 
t-exec(PH) such that qn � �00, which means that � � �00.Conversely, suppose that there is a timed execution �00 of 
t-exec(PH) such that � � �00. If�00 contains �nitely many actions, then �00 2 
t-sample(H) by de�nition. Otherwise, thereis a �nite pre�x �000 of �00 such that � � �000 and the last trajectory of �000 has domain[0; 0]. From the de�nition of t-sample(H), �000 is a state of t-sample(H), and thus thereis a timed execution �0 of 
t-sample(H) such that �000 � �0, which means that � � �0.2. For each timed extended execution fragment � ofM that does not contain in�nitely manydiscrete actions, � 2 
t-sample(H) i� � 2 
t-exec(PH).Let � be a timed extended execution of M that does not contain in�nitely many discreteactions, and suppose that � 2 
t-sample(H). If � ends with �, then Item 1 is su�cientto conclude that � 2 
t-exec(PH). If � does not end with �, then there is a �nite execu-tion q0q1 � � �qn of t-sample(H) such that qn ends with a right-open trajectory. From thede�nition of the transition relation of t-sample(H), qn 2 truncateqn�1(t-exec(PH)jCqn�1).Since qn ends with an open trajectory, qn 2 
t-exec(PH), i.e., � 2 
t-exec(PH).Conversely, suppose that � 2 
t-exec(PH). If � ends with �, then Item 1 is su�cient toconclude that � 2 
t-sample(H). If � does not end with �, then there is a �nite pre�x �0 of �such that �.�0 does not contain any action, and either �0 is the start state of t-sample(H),or the last trajectory of �0 has domain [0; 0]. Thus, from the de�nition of t-sample(), �0 isa state of t-sample(H). From the de�nition of truncate, � 2 truncate�0(t-exec(PH)jC�0),and thus, from the de�nition of the transition relation of t-sample(H), � 2 
t-sample(H)�0 .Since � ends with an open trajectory, � 2 
t-sample(H).3. For each �nite timed extended execution fragment � of M ,Pt-sample(H)[C�] = Pt-exec(PH)[C�].Let � be a �nite timed execution. From Item 1, Ct-sample(H)� = ; i� Ct-exec(PH)� = ;.Suppose that Ct-sample(H)� is not empty. Then there is an execution of t-sample(H),216



�0�1 � � ��n�1�n such that �n�1 < � � �n. From the de�nition of the probability of acone, Pt-sample(H)[C�] = P�0 [C�1]P�1 [C�2] � � �P�n�2 [C�n�1]P�n�1 [C�]: (9.43)From the de�nition of t-sample(H), for each i < nP�i [C�i+1 ] = Pt-exec(H)jC�i [C�i+1]: (9.44)Thus, by substituting (9.44) in (9.43) and simplifying, we obtainPt-sample(H)[C�] = Pt-exec(H)[C�]: (9.45)This completes the proof.9.4 MovesIn the non-timed framework we have introduced the notion of a weak transition to abstractfrom internal computation. Informally, a weak transition is obtained by concatenating severalinternal and external transitions so that overall the system emulates a unique transition labeledwith at most one external action. In the timed framework, due to the presence of explicittime-passage actions, it may be the case that some time t cannot elapse without performingsome internal transitions in the middle. This problem becomes more evident when we extendthe simulation relations to the timed framework (cf. Chapter 12). For this reason we introducethe concept of a move, which extends weak transitions and abstracts from internal transitionsinterleaved with time-passage transitions..Let M is a probabilistic timed automaton, s be a state of M , P be a discrete probabilitydistribution over states of M , and a be an action of M or the value 0. If a is a visible action ofM then we use the expression s a; P to denote s a=) P ; if a = 0, then we use the expressions 0; P to denote s ; P , which is the same as s =) P ; if a is a time-passage action, i.e.,a = d for some d 2 <+, then we use the expression s d; P to denote that P is reached from sby means of several internal and time-passage transitions so that in each situation time d haselapsed. Formally, s d; P i� there is a probabilistic execution fragment H such that1. the start state of H is s;2. PH [f�� j �� 2 
Hg] = 1, i.e., the probability of termination in H is 1;3. for each �� 2 
H , t-trace(�) = t-trace(a);4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that 
0 =f� j �� 2 
Hg, and for each � 2 
0, P 0[�] = PH [C��];The notion of a generator for a weak transition can be extended to moves in a straightforwardway. 217



9.5 Parallel CompositionThe parallel composition operator for probabilistic timed automata is exactly the same as theparallel composition operator for probabilistic automata. Thus, we omit the formal de�nition.According to the de�nition of the transition relation of M1kM2, M1 and M2 synchronize onall their time-passage transitions, and thus time advances always at the same speed in M1 andM2.The de�nition of a projection of a probabilistic time-enriched execution is the same as thede�nition of a projection of a probabilistic execution, except that the states of a probabilistictime-enriched execution fragment are time-enriched execution fragments rather than ordinaryexecution fragments. Thus, we need to extend the de�nition of a projection to time-enrichedexecution fragments and time-enriched transitions.Let M be M1kM2, and let � be a time-enriched execution of M . The projection of � ontoMi, i = 1; 2, is the sequence obtained from � by projecting the codomain of each trajectoryontoMi, by removing all the actions not in acts(Mi), and by concatenating all the trajectorieswhose intermediate actions are removed. It is straightforward to check that � is a time-enrichedexecution of Mi.Let H be a probabilistic time-enriched execution of M , and let tr = (q;P) be an actionrestricted transition of H such that only actions of Mi, i = 1; 2, appear in tr . De�ne theprojection operator on the elements of 
 as follows: (a; q0)dMi = (a; q0dMi), and �dMi = �.The projection of tr onto Mi, denoted by trdMi, is the pair (qdMi;PdMi).Proposition 9.5.1 Let M = M1kM2, and let H be a probabilistic time-enriched executionfragment of M . Then HdM1 2 t-prexec(M1) and HdM2 2 t-prexec(M2).Proof. The structure of the proof is the same as the proof of Proposition 4.3.4. This time it isnecessary to observe that for each state q of H the transition (trHq0 � acts(M1))dM1 is generatedby a time-enriched transition of Mi.Proposition 9.5.2 Let M = M1kM2, and let H be a probabilistic time-enriched executionfragment of M . Let Hi be HdMi, i = 1; 2. Let q be a state of Hi. Then,PHi [Cq] = Xq02min(qeH)PH [Cq0]: (9.46)Proof. This proof has the same structure as the proof of Proposition 4.3.5.In the rest of this section we extend the results of Section 9.3.3 to account for parallel com-position. We show that sample commutes with projections and that the projections of twoequivalent probabilistic time-enriched executions are equivalent. The �rst result guaranteesthat sample and projection are well de�ned for probabilistic time-enriched executions; the sec-ond result allows us to de�ne indirectly a projection operator on probabilistic timed executions:namely, given a probabilistic timed execution H of M1kM2, let H 0 be any probabilistic time-enriched execution of M1kM2 such that t-sample(H 0) = H . Then, HdMi is de�ned to bet-sample(H 0dMi). Before proving these two results, we show why in the de�nition of t-exec()we force probabilistic time-enriched executions like those of Figure 9-1 to be mapped to thesame structure (cf. Example 9.3.2). 218



Example 9.5.1 (Reason for the de�nition of t-exec) We have already seen that the prob-abilistic time-enriched executions of Figure 9-2 are t-samples of the same probabilistic timedexecution. Suppose now the probabilistic time-enriched executions of Figure 9-2 to be proba-bilistic time-enriched executions of the parallel composition of two probabilistic timed automataM1 and M2, and suppose that a is an action of M2 only. By projecting the probabilistic time-enriched executions of Figure 9-2 ontoM1 we obtain two probabilistic time-enriched executionslike those of Figure 9-1, which must denote the same probabilistic timed execution if we wantt-sample to be preserved by the projection operation.Proposition 9.5.3 Let M be M1kM2, and let H be a probabilistic time-enriched execution ofM . Then, sample(HdMi) = sample(H)dMi.Proof. Since the sampling function commutes with the projection function, sample(HdMi)and sample(H)dMi have the same states.For convenience, denote sample(H) by H 0. Let q be one of the states of sample(H)dMi.Below we show that the equation for the transition leaving from q in sample(H)dMi and theequation for the transition leaving from q in sample(HdMi) denote the same transition. Thisis su�cient to show that sample(H)dMi and sample(HdMi) have the same transition relation.We use implicitly the fact that the projection onto Mi distributes over the sum of transitionsrestricted to acts(Mi).From (9.25), Proposition 4.3.2, and an algebraic simpli�cation, the expressionXq02qeH 0 �pqeH 0q0 PH 0q0 [acts(Mi)](trH 0q0 � acts(Mi))dMi (9.47)can be rewritten intoXq02qeH 0 Xq002sample�1(q0) �pqeH 0q0 �psample�1(q0)q00 sample(trHq00 � acts(Mi))dMi; (9.48)which becomesXq002sample�1(qeH 0) �pqeH 0sample(q00)�psample�1(sample(q00))q00 sample(trHq00 � acts(Mi))dMi; (9.49)after grouping the two sums.Denote HdMi by H 00. From (4.22), Proposition 4.3.2, and an algebraic simpli�cation,Xq02sample�1(q) �psample�1(q)q0 sample(trH 00q0 ) (9.50)can be rewritten intoXq02sample�1(q) Xq002q0eH �psample�1(q)q0 �pq0eHq00 PHq00 [acts(Mi)]sample(trHq00 � acts(Mi))dMi; (9.51)which becomesXq002(sample�1(q))eH �psample�1(q)q00dMi �p(q00dMi)eHq00 PHq00 [acts(Mi)]sample(trHq00 � acts(Mi))dMi (9.52)219



after grouping the two sums.From the commutativity of sample and projection, sample�1(qeH 0) = sample�1(q)eH .Thus, in order to show that (9.49) and (9.52) denote the same transition, it is su�cient toshow that for each state q00 of sample�1(qeH 0),�pqeH 0sample(q00)�psample�1(sample(q00))q00 = �psample�1(q)q00dMi �p(q00dMi)eHq00 : (9.53)By expanding the expressions above with their de�nitions, (9.53) becomesPH 0 [Csample(q00)]PH [Cq00 ](P�q02min(qeH 0) PH 0 [C�q0])(P�q002sample�1(sample(q00)) PH [C�q00 ]) (9.54)= PH 00 [Cq00dMi ]PH [Cq00 ](P�q02sample�1(q) PH 00 [C�q0])(P�q002min((q00dMi)eH) PH [C�q00]) :By simplifying common subexpressions, using Proposition 4.3.5, and observing thatPH 0 [Csample(q00)] = X�q002sample�1(sample(q00))PH [C�q00]; (9.55)(we have veri�ed properties like (9.55) several times) Equation (9.54) becomesX�q02min(qeH 0)PH 0 [C�q0] = X�q02sample�1(q)PH 00 [C�q0]; (9.56)which can be shown as follows:X�q02min(qeH 0)PH 0 [C�q0]= X�q02min(qeH 0) Xq002sample�1(�q0)PH [Cq00]= Xq002min(sample�1(qeH 0))PH [Cq00]= Xq002min((sample�1(q))eH)PH [Cq00]= X�q02sample�1(q) Xq002min(�q0eH)PH [Cq00]= X�q02sample�1(q)PH 00 [C�q0];where the �rst step follows from (9.55), the second and fourth steps follow from grouping andungrouping sums, the third step follows from the commutativity of sample and projection, andthe �fth step follows from Proposition 4.3.5.Proposition 9.5.4 Let H1 and H2 be two probabilistic time-enriched executions of M1kM2. IfH1 � H2, then H1dMi � H2dMi, i = 1; 2. 220



Proof. We show �rst that t-exec(PH1dMi) and t-exec(PH2dMi) assign the same probabilitiesto the same cones; then we show that the sample spaces of t-exec(PH1dMi) and t-exec(PH2dMi)satisfy the condition for �. This part of the proof relies on the way we have de�ned the samplespaces of the objects produced by t-exec(). For the cones, we show that for each �nite timedextended execution � of Mi,Pt-exec(PH1dMi)[C�] = X�02min(f�02t-frag��(M1kM2)j�=�0dMig)Pt-exec(H1)[C�0]: (9.57)and Pt-exec(PH2dMi)[C�] = X�02min(f�02t-frag��(M1kM2)j�=�0dMig)Pt-exec(H2)[C�0]: (9.58)Then, since H1 � H2, we conclude that the right sides of (9.57) and (9.58) are equal, and thus,H1dMi � H2dMi. We prove only (9.57); the proof for (9.58) is symmetric. From the de�nitionof t-exec(),Pt-exec(PH1dMi)[C�] = Xq2min(fq2states(H1dMi)j��t-exec(q)g)PH1dMi[Cq]: (9.59)From (4.31),Pt-exec(PH1dMi)[C�] = Xq2min(fq2states(H1dMi)j��t-exec(q)g)0@ Xq02min(qeH1)PH1 [Cq0 ]1A : (9.60)Consider a state q of min(fq 2 states(H1dMi) j � � t-exec(q)g) and a state q0 of min(qeH1).Then, from the de�nition of t-exec(), there is at least one �0 2 t-frag��(M1kM2) such that� = �0dMi and q0 2 min(fq0 2 states(H1) j �0 � t-exec(q0)g). Moreover, there is exactlyone minimum �0. Conversely, consider one �0 2 min(f�0 2 t-frag��(M1kM2) j � = �0dMig),and consider a state q0 of min(fq0 2 states(H1) j �0 � t-exec(q0)g). Let q = q0dMi. Then,q0 2 min(qeH1) and q is a state of min(fq 2 states(H1dMi) j � � t-exec(q)g). Thus, from (9.60)we obtain (9.57).We now move to the sample spaces. Let � be an element of 
t-exec(PH1dMi ) that does notcontain in�nitely many discrete actions. If � ends with �, then � is trivially an element of
t-exec(PH2dMi) since Pt-exec(PH2dMi)[C�] = Pt-exec(PH2dMi )[C�] > 0. Otherwise, � ends with anopen trajectory. Then, from the de�nition of 
t-exec(PH1dMi), for each �nite pre�x �0 of � thereis an element �1 of t-exec(
H1dMi) such that �0 � �1. It is enough to show that for each �nitepre�x �0 of � there is also an element �2 of t-exec(
H2dMi) such that �0 � �2.Let �0 be a �nite pre�x of � such that there is an element �1 of t-exec(
H1dMi) such that�0 � �1. Thus, there is a time-enriched execution �01 of 
H1dMi such that �0 � t-exec(�01).This means that there is a state q1 of H1dMi such that �0 � t-exec(q1). From the de�nitionof projection, there is a state q01 of H1 such that �0 � t-exec(q01dMi), and thus there is a timedexecution �001 of t-exec(
H1) such that �0 � (�001dMi). Consider a �nite pre�x �0001 of �001 suchthat �0 � (�0001 dMi). Then, Pt-exec(PH1)[C�0001 ] > 0. Since H1 � H2, Pt-exec(PH2)[C�0001 ] > 0, whichmeans that there is a timed execution �002 of 
t-exec(PH2) such that �0 � (�002dMi). Thus, thereis a state q02 of H2 such that �0 � t-exec(q02dMi), and from the de�nition of projection, thereis a state q2 of H2dMi such that �0 � t-exec(q2). This implies that there is an element �02 oft-exec(
H2dMi) such that �0 � �02, which is su�cient to conclude.221



9.6 DiscussionTo our knowledge, no general probabilistic models with dense time have been proposed exceptfor the automata of Courcoubetis, Alur and Dill [ACD91a, ACD91b]. In our model no prob-ability distributions over passage of time are allowed within a probabilistic timed automaton;time can elapse probabilistically only within a probabilistic timed execution, and the associatedprobability distributions can be only discrete. We have chosen to de�ne the timed model withsuch a restriction so that all the theory for the untimed model carries over.Further work should investigate on the extension of our model to non-discrete probabilitydistributions. A starting point could be the study of restricted forms of non-discrete distri-butions as it is done by Courcoubetis, Alur and Dill in [ACD91a, ACD91b]. Useful ideas cancome from the work on stochastic process algebras of G�otz, Herzog and Rettelbach [GHR93],Hillston [Hil94], and Bernardo, Donatiello and Gorrieri [BDG94].
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Chapter 10Direct Veri�cation: TimeComplexityPart of this chapter is based on joint work with Anna Pogosyants and Isaac Saias; some of theideas have been inuenced by discussion with Lenore Zuck. The veri�cation of the randomizeddining philosophers algorithm of Lehmann and Rabin (Section 10.6) is based on joint workwith Nancy Lynch and Isaac Saias [LSS94]; the veri�cation of the randomized algorithm foragreement of Ben-Or (Section 10.8) is joint work with Anna Pogosyants and is a formalizationof a proof that appears in the book on distributed algorithms of Nancy Lynch [Lyn95]. Closeinteraction with Anna Pogosyants lead us to the idea of the abstract complexity measures ofSection 10.7.10.1 General Considerations About TimeThe direct analysis of a probabilistic timed automaton is carried out exactly in the same wayas for untimed probabilistic automata. Thus, probabilistic statements and progress statementscan be generalized directly, and the coin lemmas can be applied without any modi�cation.In this chapter we concentrate more on topics that are speci�c to the presence of time. Inparticular, it is now possible to enrich the notation for progress statements and verify some ofthe real-time properties of a probabilistic timed automaton. We extend the progress statementsof Chapter 5 by adding a time parameter t: the expression U t�!p U 0 means that, starting froma state of U , a state of U 0 is reached within time t with probability at least p. Based on the newtimed progress statements we show how to derive upper bounds on the worst expected time forprogress.We generalize the method for time complexity analysis to more abstract complexity mea-sures. Then, rather than studying the expected time for progress, we study the expectedabstract complexity for progress. We use abstract complexity to derive an upper bound on theworst expected time for decision of the randomized algorithm for agreement of Ben-Or that wepresented in Chapter 5. Speci�cally, we show that under some conditions on the schedulingpolicy, each non-faulty process completes its ith stage within some upper bound, and we showan upper bound on the expected number of stages that are necessary to reach agreement. Inthis case the abstract complexity is the number of stages. A direct analysis of the expected time223



for success in Ben-Or's algorithm would not be as easy since there is no useful upper bound onthe time it takes to a process to move from a stage to the next stage.Sections 10.2, 10.3, and 10.4 simply extend the de�nitions of Chapter 5 to the timed case;Section 10.5 shows how to derive upper bounds on the worst expected time for progress givena timed progress statement, and Section 10.7 shows how to derive upper bounds on the worstexpected abstract complexity for progress given a timed progress statement with abstract com-plexity; Sections 10.6 and 10.8 present examples of application by proving that the randomizeddining philosophers algorithm of Lehmann and Rabin guarantees progress in expected constanttime and that the randomized agreement algorithm of Ben-Or guarantees agreement in expectedexponential time.10.2 AdversariesAn adversary for a probabilistic timed automaton M is a function A that takes a �nite timedexecution fragment � of M and returns a timed transition of M that leaves from lstate(�).Formally,A : t-frag�(M)! t-trans(M)such that if A(�) = (s;P), then s = lstate(�). Moreover, an adversary satis�es the followingconsistency condition: if A(�) = (s;P), then for each pre�x �0 of some element �00 of 
,A(� a �0) = (lstate(�0);P.�0). Informally, consistency says that an adversary does not changeits mind during a timed transition.An adversary is deterministic if it returns either deterministic timed transitions of M orpairs of the form (s;D(s�)), i.e., the next timed transition is chosen deterministically. Denotethe set of adversaries and deterministic adversaries for a probabilistic timed automaton M byAdvs(M) and DAdvs(M), respectively.The de�nitions of an adversary schema and of the result of the interaction between an adver-sary and a probabilistic timed automaton is the same as for the untimed case (cf. Section 5.2),and thus we do not repeat them here.To guarantee that our adversaries are well de�ned, we need to prove the following lemma.Lemma 10.2.1 If (s;P) is a timed transition of a probabilistic timed automaton M , then foreach pre�x �0 of some element �00 of 
, (lstate(�0);P.�0) is a timed transition of M .Proof. This is proved already in Proposition 9.3.5.10.3 Event SchemasAs for the untimed case we need a mechanism to associate an event with each probabilistictimed execution fragment of a probabilistic timed automaton. Thus, an event schema is afunction e that associates an event of the space PH with each probabilistic timed executionfragment H of M . The notion of �nite satis�ability extends directly from the untimed case.Observe that, although in PH there can be uncountably many cones, each �nitely satis�ableevent can be expressed as the union of countably many disjoint cones. Furthermore, everyuncountable family of cones contains at least two cones that are not disjoint.224



The de�nition of a timed probabilistic statement extends directly from the untimed case, andsimilarly the de�nition of the concatenation of two event schemas extends directly. Therefore,we omit the de�nitions, which are identical to those of Chapter 5.Proposition 10.3.1 The concatenation of two event schemas is an event schema. That is, ife = e1 �Cones e2, then e is an event schema.Proof. Consider a probabilistic timed execution fragment H . From Proposition 9.3.3 each sete2(H jq) is an event of FH . From the closure of a �-�eld under countable union, e(H) is anevent of FH .Proposition 10.3.2 PH [e1 �Cones e2(H)] =Pq2Cones(H) PH [Cq]PH jq[e2(H jq)].Proof. Since Cones(H) represents a collection of disjoint cones, from (5.13) we obtainPH [e1 �Cones e2(H)] = Xq2Cones(H)PH [e2(H jq)]: (10.1)From Proposition 9.3.3, for each q 2 Cones(H)PH [e2(H jq)] = PH [Cq]PH jq[e2(H jq)]: (10.2)By substituting (10.2) in (10.1) we obtain the desired result.Now it is possible to prove a concatenation property similar to the one for the untimed case.Proposition 10.3.3 Consider a probabilistic timed automaton M . Let1. PrAdvs ;�(e1) R p1 and,2. for each A 2 Advs, q 2 �, let PrAdvs ;Cones(prexec(M;A;q))(e2) R p2.Then, PrAdvs ;�(e1 �Cones e2) R p1p2.Proof. Consider an adversary A 2 Advs and any �nite timed execution fragment q 2 �. LetH = prexec(M;A; q). From Proposition 10.3.2,PH [e1 �Cones e2(H)] = Xq02Cones(H)PH [Cq0]PH jq0[e2(H jq0)]: (10.3)Consider an element q0 of Cones(H). It is a simple inductive argument to show thatH jq0 = prexec(M;A; q0); (10.4)where we use consistency for the base case. Thus, from our second hypothesis,PH jq0[e2(H jq0)] R p2: (10.5)By substituting (10.5) in (10.3), we obtainPH [e1 �Cones e2(H)]R p2 Xq02Cones(e1(H))PH [Cq0]: (10.6)225



By using the fact that Cones(H) is a characterization of e1(H) as a disjoint union of cones,Equation (10.6) can be rewritten intoPH [e1 �Cones e2(H)]R p2PH [e1(H)]: (10.7)From the �rst hypothesis, PH [e1(H)] R p1; therefore, from Proposition 5.4.1,PH [e1 �Cones e2(H)]R p1p2: (10.8)This completes the proof.10.4 Timed Progress StatementsAs a special case of a probabilistic statement for the timed case we can add some featuresto the notation X �!p Advs X 0. In particular we de�ne a timed progress statement to assertthat starting from a set of states U some other state of a set U 0 is reached within time t withprobability at least p. Such a statement, which we denote by U t�!p Advs U 0, or by U t�!p U 0 ifAdvs is clear from the context, is expressed by the probabilistic statement PrAdvs ;U(eU 0;t) � p,where the event schema eU 0;t applied to a timed probabilistic execution fragment H returns theset of timed executions � of 
H where a state from U 0 is reached within time t in �.qH0 . Sucha set can be expressed as a union of cones, and therefore it is an event.Similarly, the progress statements involving actions can be generalized to the timed frame-work. Thus, V t�!p Advs V 0 is the probabilistic statement PrAdvs ;�V;V 0 (eV 0;t) � p, where �V;V 0 isthe set of �nite timed execution fragments of M where an action from V occurs and no actionfrom V 0 occurs after the last occurrence of an action from V , and the event schema eV 0;t appliedto a timed probabilistic execution fragment H returns the set of timed executions � of 
H suchthat an action from V occurs in �.qH0 within time t.In order to generalize the concatenation theorem for progress statements, we need to extendthe de�nition of a �nite-history-insensitive adversary schema. Thus, an adversary schema Advsis �nite-history-insensitive i� for each adversary A of Advs and each �nite timed executionfragment � of M there is an adversary A0 of Advs such that for each timed execution fragment�0 such that � � �0, A(�0) = A0(�0.�). Then, the following theorem is shown in the same wayas for the untimed case.Theorem 10.4.1 Let Advs be �nite-history-insensitive. If X t1�!p1 Advs X 0 and X 0 t2�!p2 Advs X 00,then X t1+t2�!p1p2Advs X 00.10.5 Time ComplexityIn this section we show how to study the time complexity of a randomized distributed algorithm.We start by de�ning how to compute a worst expected time, and then we show how it is possibleto derive upper bounds on the worst expected running time of an algorithm based on timedprogress statements. 226



10.5.1 Expected Time of SuccessLet e be a �nitely satis�able event schema and suppose that PH [e(H)] = 1, i.e., that the propertydescribed by e is satis�ed in H with probability 1. Let Cones(H) be a characterization of e(H)as a disjoint union of cones, where each element of Cones(H) identi�es the �rst point alonga timed execution where the property denoted by e is satis�ed. Then, we can compute theexpected time to satisfy the property identi�ed by e asXq2Cones(H)PH [Cq](ltime(q.qH0 )): (10.9)In general, if e is a �nitely satis�able event-schema and Cones(H) identi�es the �rst point alonga timed execution where the property identi�ed by e is satis�ed, then for each probabilistic timedexecution fragment H of M we de�ne EH [e], the expected time to satisfy e in H , as follows.EH [e] = ( Pq2Cones(H)PH [Cq](ltime(q.qH0 )) if PH [e(H)] = 11 otherwise. (10.10)Then, the question is the following: are there easy ways to compute upper bounds on theexpected time for success in a randomized algorithm without computing explicitly (10.10)? Wegive a positive answer to this question.10.5.2 From Timed Progress Statements to Expected TimesTimed progress statements can be used to analyze the time complexity of a randomized algo-rithm. The main idea for the analysis is expressed by Proposition 10.5.1. Suppose that weknow the following:( U t�!p Advs U 0U ) (U Unless U 0): (10.11)Then, if Advs is �nite-history-insensitive and s� =2 
A(s) for each A 2 Advs and each s 2 U ,we know from Proposition 5.5.6 that U �!1 Advs U 0. Let e be a �nitely satis�able event schema,and let Cones express the points of satisfaction of e. Suppose that for each probabilistic timedexecution fragmentH and each state q ofH , if there is no pre�x q0 of q such that q0 2 Cones(H),then e(H.q) = e(H).q and Cones(H.q) = Cones(H).q (e.g., e can express the property ofreaching some state in a set U 00, or the property of performing some action). LetEU;Advs [e] 4= sups2U;A2AdvsEprexec(M;A;s)[e]: (10.12)Then the following property is valid.Proposition 10.5.1EU;Advs [e] � t + pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.13)Proof. We prove (10.13) by distinguishing four cases.1. EU 0;Advs [e] � EU;Advs [e].In this case (10.13) is satis�ed trivially. 227



2. EU;Advs [e] =1 and p < 1.Also in this case (10.13) is satis�ed trivially.3. EU;Advs [e] =1 and p = 1.We show that EU 0;Advs [e] =1, which is enough to satisfy (10.13). Suppose by contradic-tion that EU 0;Advs [e] <1. Then we distinguish the following cases.(a) There is an adversary A of Advs and a state s of U such thatPprexec(M;A;s)[e(prexec(M;A; s))]< 1.(b) It is not the case that there is an adversary A of Advs and a state s of U such thatPprexec(M;A;s)[e(prexec(M;A; s))]< 1.For Case (a), let ConesU 0 be the function that expresses the points of satisfaction of eU 0,and let H be prexec(M;A; s), where Pprexec (M;A;s)[e(prexec(M;A; s))] < 1. Then,PH [e(H)] � Xq2ConesU 0(H)PH [Cq]PH.q(e(H.q)); (10.14)i.e., the probability of satisfying e is not smaller than the probability of reaching U 0 andthen from there satisfying e. From the �nite-history-insensitivity of Advs, for each state qof ConesU 0(H) there is an adversary A0 of Advs such that H.q = prexec(M;A0; lstate(q)),and thus, since EU 0;Advs [e] <1, PH.q(e(H.q)) = 1. By substituting this result in (10.14),we getPH [e(H)] � Xq2ConesU 0(H)PH [Cq]: (10.15)Since p = 1, the right side of (10.15) is equal to 1, i.e., PH [e(H)] � 1, a contradiction.For Case (b), let ConesU 0 be a function that expresses the points of satisfaction of eU ,and, for each d > 0, let Conesd be a function that expresses the event of reaching timed as a union of disjoint cones. From the de�nition of a probabilistic timed execution,we know that Conesd exists and that for each probabilistic timed execution fragment Hand each q 2 Conesd(H), ltime(q.qH0 ) = d. Let H be prexec(M;A; s). From (10.10) theexpected time for success for e isEH [e] = Xq2Cones(H)PH [Cq]ltime(q.qH0 ): (10.16)Let � be an arbitrary positive number. Let �1 be the set of elements q of ConesU 0(H)such that ltime(q.qH0 ) < t+ �, and let H2 be the set of elements q of Conest+�(H) that donot have any pre�x in �1. Since PH [eU(H)] = 1, then PH [[q2�1[�2Cq] = 1. Moreover,by hypothesis, PH [[q2Cones(H)Cq] = 1. Thus, observe that each element of Cones(H) haseither a proper pre�x or a su�x in �1 [�2. In fact, if there is an element q of Cones(H)that has no pre�x nor su�x in �1[�2, then the cone Cq would not be part of [q2�1[�2Cq,contradicting the hypothesis that PH [[q2Cones(H)Cq] = 1. Similarly, we can show that228



for each element q of �1 [ �2 has either a pre�x or a proper su�x in Cones(H). Thus,Cones(H) can be partitioned into two sets �p and �s of elements that have a properpre�x and a su�x, respectively, in �1 [�2, and �1 [�2 can be partitioned into two sets�p1;2 and �s1;2 of elements that have a pre�x and a proper su�x, respectively, in Cones(H).Based on these observations, the right side of Equation( 10.16) can be rewritten into0B@Xq2�p Xq02�s1;2jq0�q PH [Cq0]PH.q0 [Cq.q0 ](ltime(q0.qH0 ) + ltime(q.q0))1CA (10.17)+0B@Xq2�s Xq02�p1;2jq�q0 PH [Cq]PH.q[Cq0.q]ltime(q.qH0 )1CA :Observe that for each q 2 �s, Pq02�p1;2jq�q0 PH.q[Cq0.q] = 1, and observe that for eachq0 2 �s1;2,Pq2�pjq0�q PH.q0 [Cq.q0 ] = 1. By exchanging the sums in (10.17) and using somesimple algebraic manipulations, we obtain0B@ Xq02�s1;2 PH [Cq0]0@ltime(q0.qH0 ) + Xq2�pjq0�q PH.q0 [Cq.q0 ]ltime(q.q0)1A1CA (10.18)+0B@ Xq02�p1;2 Xq2�sjq�q0 PH [Cq]PH.q[Cq0.q]ltime(q.qH0 )1CA :In the �rst summand, since from the properties of e for each q0 2 �s1;2, e(H.q0) =e(H).q0, the subexpression Pq2�pjq0�q ltime(q.q0)PH.q0 [Cq.q0 ] denotes EH.q0 [e]. In thesecond summand, observe that for each q0 2 �p1;2 there is exactly one element q of �ssuch that q � q0. Moreover, PH [Cq]PH.q[Cq0.q] = PH [Cq0]. Thus, from (10.18) we obtainEH [e] � 0B@ Xq02�s1;2 PH [Cq0](ltime(q0.qH0 ) + EH.q0 [e])1CA (10.19)+ 0B@ Xq02�p1;2 PH [Cq0]ltime(q0.qH0 )1CA :By repartitioning �s1;2 [ �p1;2 into �1 and �2, and by observing that for each element qof �1 ltime(q.qH0 ) < t+ �, and for each element q of �2 ltime(q.qH0 ) = t + �, (10.19) canbe rewritten intoEH [e] � (t + �)0B@ Xq2�s1;2\�1 PH [Cq]EH.q[e])1CA+0B@ Xq2�p1;2\�1 PH [Cq]EH.q[e]1CA (10.20)+0B@ Xq2�s1;2\�2 PH [Cq]EH.q[e]1CA+ 0B@ Xq2�p1;2\�2 PH [Cq]EU;Advs [e]1CA ;229



where we have added EH.q[e] in the upper right summand and EU;Advs [e] in the lowerright summand. Since Advs is �nite history insensitive, for each q 2 �1 [ �2 there is anadversary A0 of Advs such that (H.q) = prexec(M;A; lstate(q)). Thus, (10.20) can berewritten intoEH [e] � (t + �)0@Xq2�1 PH [Cq]EU 0;Advs [e])1A+0@Xq2�2 PH [Cq]EU;Advs [e]1A ; (10.21)where we have used U ) (U Unless U 0) to say that the last states of the elements of �2are in U . Observe that Pq2�1 PH [Cq] is PH [eU 0;t(H)], which is 1 by hypothesis. Since byhypothesis EU 0;Advs [e] <1, from (10.21) we derive that EU;Advs [e] <1, a contradiction.4. EU;Advs [e] <1, EU 0;Advs [e] <1, and EU 0;Advs [e] � EU 0;Advs [e].Let A be an adversary of Advs and s be a state of U . Let H be prexec(M;A; s). Let �be any positive real number. Equation (10.21) can be derived also in this case using thesame identical argument as before. Since we have assumed that EU 0;Advs [e] � EU;Advs [e],the lowest possible value of the right side of (10.21) occurs by giving U 0 the lowest possibleprobability, which is p. Thus, (10.21) becomesEH [e] � (t + �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.22)Since Equation (10.22) is valid for any adversary Advs and any state of U , we obtaintimed execution fragmentEU;Advs [e] � (t+ �)pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.23)Since Equation (10.23) is valid for every �, Equation (10.23) is valid also for the in�mumof the values that � can have, i.e., 0, and thus,EU;Advs [e] � t+ pEU 0;Advs [e] + (1� p)EU;Advs [e]: (10.24)This completes the proof.Example 10.5.1 (From timed progress to expected time) As a simple example of ap-plication of Proposition 10.5.1, suppose that e expresses the property of reaching U 0. Then, weknow by de�nition that EU 0;Advs [e] = 0. By applying Equation (10.13), we obtain EU;Advs [e] �t + (1� p)EU;Advs [e], which gives EU;Advs [e] � t=p, i.e., the expected time to reach U 0 from Uis at most t=p. Informally speaking, we can view the process of reaching U 0 as a sequence ofBernoulli trials, each one performed every t time units. At time t, with probability p we havereached U 0, and with probability (1� p) we are still in U , and thus we apply the same exper-iment again. The expected number of rounds of such a process is 1=p, and thus the expectedtime for success is t=p. Suppose now that we know the following,8<: U0 t1�!p1 Advs U1 U0 ) (U0 Unless U1)U1 t2�!p2 Advs U2 U1 ) (U1 Unless U2); (10.25)230



and suppose that e expresses the property of reaching U2. Then, we know that EU2;Advs [e] = 0.By applying Proposition 10.5.1, we obtain( EU0;Advs [e] � t1 + p1EU1;Advs [e] + (1� p1)EU0;Advs [e]EU1;Advs [e] � t2 + (1� p2)EU1;Advs [e]: (10.26)From simple algebraic manipulations (10.26) becomes( EU0;Advs [e] � t1=p1 + EU1;Advs [e]EU1;Advs [e] � t2=p2; (10.27)and thus, after substituting the second inequality in the �rst inequality,( EU0;Advs [e] � t1=p1 + t2=p2EU1;Advs [e] � t2=p2: (10.28)Suppose now that in addition to (10.25) we know that8<: U0 t3�!p3 Advs U2U0 ) (U0 Unless U2); (10.29)which is possible if U1 � U0 [ U2. Then, from Proposition 10.5.1 we getEU0;Advs [e] � t3=p3; (10.30)which added to (10.28) gives( EU0;Advs [e] � min(t1=p1 + t2=p2; t3=p3)EU1;Advs [e] � t2=p2: (10.31)Therefore, more information may give us the possibility to prove better bounds.Proposition 10.5.1 can be proved also for timed progress statements that involve sets of actionsrather than sets of states. Let V; V 0 denote two sets of actions, and let Advs be an adversaryschema. Suppose thatV t�!p Advs V 0: (10.32)Let e be a �nitely satis�able event schema, and let Cones express the points of satisfaction ofe. Suppose that for each probabilistic timed execution fragment H and each state q of H , ifthere is no pre�x q0 of q such that q0 2 Cones(H), then e(H.q) = e(H).q and Cones(H.q) =Cones(H).q. Let EV;V 0;Advs [e] denote supq2�V;V 0 ;A2AdvsEprexec(M;A;q)[e]. Let �V 0 denote theset of �nite execution fragments of M whose last action is in V 0, and let EV 0 ;Advs [e] denotesupq2�V 0 ;A2AdvsEprexec(M;A;q)[e]. Suppose that q0� =2 
A(q) for each q0, each A 2 Advs and eachq 2 �V;V 0 . Then the following proposition is valid.Proposition 10.5.21. EV;V 0;Advs [e] � t + pEV 0;Advs [e] + (1� p)EV;V 0;Advs [e], and2. for each set of actions V 00, EV 0;Advs [e] � EV 0;V 00;Advs [e].Proof. The proof of the �rst item follows the lines of the proof of Proposition 10.5.1; the proofof the second item follows from the fact that �V 0 � �V 0;V 00 .231



10.6 Example: Randomized Dining PhilosophersTo illustrate the use of timed progress statements for the analysis of an algorithm, we reconsiderthe randomized dining philosophers algorithm of Lehmann and Rabin, and we show that, underthe condition that each process has a minimum speed, progress is guaranteed within expectedconstant time. First, we show how to add time to the probabilistic automaton that describes thealgorithm; then, we add time limitations to the progress statements that we used in Section 6.3.3and we derive the upper bound on the expected time for progress; �nally we repeat the lowlevel proof observing that the coin lemmas are applied in the same way as for the untimed case.10.6.1 Representation of the AlgorithmThe probabilistic timed automaton that represent the Algorithm of Lehmann and Rabin can beobtained directly from the probabilistic automaton of Section 6.3.2 by adding arbitrary self-looptime-passage transition from each state (same as the patient construction of Example 9.2.1).Then, in order to enforce a lower bound on the speed of each process, we impose some limitationson the adversaries that act on M . For convenience, but without loss of generality, we assumethat from any point each process in its trying or exit region performs one transition within time1. Thus, the adversary schema that we use on M is the set of adversaries A for M such thatfor each �nite timed execution fragment � of M ,1. Pprexec(M;A;�)[frag1(M)] = 1, and2. for each element �0 of 
prexec(M;A;�) there is no pair of pre�xes �1 � �2 of �0.� and noprocess i such that process i is in its trying or exit region in lstate(�1), ltime(�2.�1) > 1,and process i does not perform any discrete transition in �2.�1.We call this adversary schema Unit-Time.Remark 10.6.1 Observe that in Condition 1 we require the probability of the admissibleexecutions to be 1 rather than requiring the sample space to contain only admissible executions.The reason for using probabilities is technical and is due to the fact that the sample space of aprobabilistic timed executions always contains Zeno timed executions, even though they occurwith probability 0. From the practical point of view all the Zeno timed executions can beignored.In other words, it is not necessary to know the intricacies of the de�nition of a probabilistictimed executions since they are used only to guarantee that the events of interest are measurable.From the point of view of verifying the correctness of a randomized distributed algorithm, aslong as Zeno timed executions occur only with probability 0, it is possible to think that Zenotimed executions do not occur at all.Remark 10.6.2 (Alternative approach) Another alternative approach to modeling the al-gorithm of Lehmann and Rabin, which we do not use here, is to augment the probabilisticautomaton of Section 6.3.2 with an upper bound for each process i to the time by which pro-cess i must perform a transition, and to allow a time-passage transition only when no processgoes beyond its upper bound. Of course the upper bounds need to be updated opportunelywithin a transition. In this case the condition imposed on an adversary would be just that timeadvances unboundedly with probability 1. 232



10.6.2 The High Level ProofThe high level proof consists of the same progress statements that we used in Section 6.3.3together with a time bound. Speci�cally, we use the following timed progress statements.T 2�!1 RT [ C (Proposition 10.6.3),RT 3�!1 F [ G [ P (Proposition 10.6.15),F 2�!1=2 G [ P (Proposition 10.6.14),G 5�!1=4 P (Proposition 10.6.11),P 1�!1 C (Proposition 10.6.1).By combining the statements above by means of Proposition 5.5.3 and Theorem 10.4.1 weobtainT 13�!1=8 C: (10.33)Observing that if some process is in the trying region then some process is in the trying regionunless some process gets to the critical region, we apply Proposition 10.5.1 and we obtain thatthe expected time to reach C from RT is at most 104, i.e., the algorithm of Lehmann and Rabinguarantees progress within expected constant time.10.6.3 The Low Level ProofWe now prove the timed progress statements of Section 10.6.2. The proofs are exactly the sameas the proofs given in Section 6.3.4 with the di�erence that in this case we consider also timebounds and we consider only admissible timed execution fragments since we know that theyoccur with probability 1.Proposition 10.6.1 If some process is in P , then some process enters C within time 1, i.e.,P 1�!1 C:Proof. Let i be the process in P . Then, from the de�nition of Unit-Time, process i is scheduledwithin time 1, and enters C.Lemma 10.6.2 If some process is in its Exit region, then it will enter R within time 3.Proof. The process needs to perform two transitions to relinquish its two resources, and thenone transition to send a rem message to the user. Every adversary of Unit-Time guaranteesthat those three transitions are performed within time 3.Proposition 10.6.3 T 2�! RT [ C. 233



Proof. From Lemma 6.3.2, every process that begins in EF or ES relinquishes its resourceswithin time 2 . If no process begins in C or enters C in the meantime, then the state reachedat this point is a state of RT ; otherwise, the starting state or the state reached when the �rstprocess enters C is a state of C.We now turn to the proof of G 5�!1=4 P . The following lemmas form a detailed cases analysisof the di�erent situations that can arise in states of G. Informally, each lemma shows that aspeci�c coin event is a sub-event of the properties of reaching some other state. Here we do notrepeat the proof of Lemma 6.3.4 since it does not depend on timing issues.Lemma 10.6.41. Let Xi�1 2 fER; R; Fg and Xi = W . If FIRST(flipi�1; left), then, within time 1,either Xi�1 = P or Xi = S.2. Let Xi�1 = D and Xi = W . If FIRST(flipi�1; left), then, within time 2, eitherXi�1 = P or Xi = S.3. Let Xi�1 = S and Xi = W . If FIRST(flipi�1; left), then, within time 3, either Xi�1 =P or Xi = S.4. Let Xi�1 = W and Xi = W . If FIRST(flipi�1; left), then, within time 4, eitherXi�1 = P or Xi = S.Proof. The four proofs start in the same way. Let s be a state of M satisfying the respectiveproperties of items 1 or 2 or 3 or 4 . Let A be an adversary of Unit-Time, and let � be anadmissible timed execution of 
prexec(M;fsg;A) where the result of the �rst coin ip of processi� 1, if it occurs, is left.1. By hypothesis and Lemma 6.3.4, i � 1 does not hold any resource at the beginning of �and has to obtain Resi�2 (its left resource) before pursuing Resi�1. From the de�nitionof Unit-Time, i performs a transition within time 1 in �. If i � 1 does not hold Resi�1when i performs this transition, then i progresses into con�guration S. If not, it must bethe case that i� 1 succeeded in getting it in the meanwhile. But, in this case, since i� 1ips left, Resi�1 was the second resource needed by i� 1 and i� 1 therefore entered P .2. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transitionwithin time 1. Let � = �1 a �2 such that the last transition of �1 is the �rst transitiontaken by process i�1. Then Xi�1(fstate(�2)) = F and Xi(fstate(�2)) = W . Since processi � 1 did not ip any coin during �1, from the �nite-history-insensitivity of Unit-Timeand Item 1 we conclude.3. If Xi = S within time 1, then we are done. Otherwise, process i� 1 performs a transitionwithin time 1. Let � = �1 a �2 such that the last transition of �1 is the �rst transitiontaken by process i� 1. If Xi�1(fstate(�2)) = P then we are also done. Otherwise it mustbe the case that Xi�1(fstate(�2)) = D and Xi(fstate(�2)) = W . Since process i � 1 didnot ip any coin during �1, from the �nite-history-insensitivity of Unit-Time and Item 2we conclude. 234



4. If Xi = S within time 1, then we are done. Otherwise, process i checks its left resourcewithin time 1 and fails, process i� 1 gets its right resource before, and hence reaches atleast state S. Let � = �1 a �2 where the last transition of �1 is the �rst transition of �that leads process i� 1 to state S. Then Xi�1(fstate(�2)) = S and Xi(fstate(�2)) = W .Since process i� 1 did not ip any coin during �1, from the �nite-history-insensitivity ofUnit-Time and Item 3 we conclude.Lemma 10.6.5 Assume that Xi�1 2 fER; R; Tg and Xi = W . If FIRST(flipi�1; left),then, within time 4, either Xi�1 = P or Xi = S.Proof. Follows directly from Lemma 10.6.4 after observing that Xi�1 2 fER; R; Tg is equiva-lent to Xi�1 2 fER; R; F;W; S;D; Pg.The next lemma is a useful tool for the proofs of Lemmas 10.6.7, 10.6.8, and 10.6.9. It is justrepeated from Section 6.3.4.Lemma 10.6.6 Let Xi 2 fW ; S g or Xi 2 fER; R; F; D g with FIRST(flipi; left). Further-more, let Xi+1 2 fW!; S!g or Xi+1 2 fER; R; F; D!g with FIRST(flipi+1; right). Then the�rst of the two processes i or i+ 1 testing its second resource enters P after having performedthis test (if this time ever comes).Proof. By Lemma 6.3.4 Resi is free. Moreover, Resi is the second resource needed by both iand i+ 1. Whichever tests for it �rst gets it and enters P .Lemma 10.6.7 If Xi = S and Xi+1 2 fW!; S!g then, within time 1, one of the two processesi or i+ 1 enters P . The same result holds if Xi 2 fW ; S g and Xi+1 = S!.Proof. Being in state S, process i tests its second resource within time 1. An application ofLemma 10.6.6 �nishes the proof.Lemma 10.6.8 Let Xi = S and Xi+1 2 fER; R; F; D!g. If FIRST(flipi+1; right), then,within time 1, one of the two processes i or i + 1 enters P . The same result holds if Xi 2fER; R; F;Dg, Xi+1 = S! and FIRST(flipi; left).Proof. Being in state S, process i tests its second resource within time 1. An application ofLemma 10.6.6 �nishes the proof.Lemma 10.6.9 Assume that Xi�1 2 fER; R; Tg, Xi = W , and Xi+1 2 fER; R; F;W!; D!g.If FIRST(flipi�1; left) and FIRST(flipi+1; right), then, within time 5, one of the threeprocesses i� 1, i or i+ 1 enters P .Proof. Let s be a state of M such that Xi�1(s) 2 fER; R; Tg, Xi(s) = W , and Xi+1(s) 2fER; R; F;W!; D!g. Let A be an adversary of Unit-Time, and let � be an admissible timedexecution of 
prexec(M;fsg;A) where the result of the �rst coin ip of process i� 1 is left andthe result of the �rst coin ip of process i+ 1 is right. By Lemma 10.6.5, within time 4 eitherprocess i � 1 reaches con�guration P in � or process i reaches con�guration S in �. If i � 1235



reaches con�guration P , then we are done. If not, then let � = �1 a �2 such that lstate(�1) isthe �rst state s0 of � with Xi(s0) = S . If i+1 enters P before the end of �1, then we are done.Otherwise, Xi+1(fstate(�2)) is either in fW!; S!g or it is in fER; R; F; D!g and process i+ 1 hasnot ipped any coin yet in �. From the �nite-history-insensitivity of Unit-Time we can thenapply Lemma 10.6.6: within time 1 process i tests its second resource and by Lemma 10.6.6process i enters P if process i+1 did not check its second resource in the meantime. If processi+ 1 checks its second resource before process i does the same, then by Lemma 10.6.6 processi+ 1 enters P .Lemma 10.6.10 Assume that Xi+2 2 fER; R; Tg, Xi+1 = W!, and Xi 2 fER; R; F;W ; D g.If FIRST(flipi; left) and FIRST(flipi+2; right), then, within time 5, one of the three pro-cesses i, i+ 1 or i+ 2, enters P .Proof. The proof is analogous to the one of Lemma 10.6.9. This lemma is the symmetric caseof Lemma 10.6.9.Proposition 10.6.11 Starting from a global con�guration in G, then, with probability at least1=4, some process enters P within time 5. Equivalently:G 5�!1=4 P :Proof. Lemmas 10.6.7 and 10.6.8 jointly treat the case whereXi = S andXi+1 2 fER; R; F;#!gand the symmetric case where Xi 2 fER; R; F;# g and Xi+1 = S!; Lemmas 10.6.9 and 10.6.10jointly treat the case where Xi = W and Xi+1 2 fER; R; F;W!; D!g and the symmetric casewhere Xi 2 fER; R; F;W ; D g and Xi+1 = W!.Speci�cally, each lemma shows that a compound event of the kind FIRST(flipi; x) andFIRST(flipj ; y) leads to P . Each of the basic events FIRST(flipi; x) has probability at least1=2. From Lemma 6.2.4 each of the compound events has probability at least 1=4. Thus theprobability of reaching P within time 5 is at least 1=4.We now turn to F 2�!1=2 G [ P . The proof is divided in two parts and constitute the globalargument of the proof of progress, i.e., the argument that focuses on the whole system ratherthan on a couple of processes.Lemma 10.6.12 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1; Xi+1) 6= (#!;# ), then, with probability at least 1=2 a state of G [ P is reached withintime 1.Proof. If s 2 G [P , then the result is trivial. Let s be a state of F � (G [P) and let i be suchthat Xi(s) = F and (Xi�1; Xi+1) 6= (#!;# ). Assume without loss of generality that Xi+1 6= # ,i.e., Xi+1 2 fER; R; F;#!g. The case for Xi�1 6= #! is similar. Furthermore, we can assumethat Xi+1 2 fER; R; F; D!g since if Xi+1 2 fW!; S!g then s is already in G. We show that theevent schema FIRST((flipi; left); (flipi+1; right)), which by Lemma 6.2.2 has probabilityat least 1=2, leads eventually to a state of G [ P . Let A be an adversary of Unit-Time, and236



let � be an admissible timed execution of 
prexec(M;fsg;A) where if process i ips before processi+ 1 then process i ips left, and if process i+ 1 ips before process i then process i + 1 ipsright.Then, within time 1, i performs one transition and reaches W . Let j 2 fi; i+ 1g be the�rst of i and i+ 1 that reaches W and let s1 be the state reached after the �rst time process jreaches W . If some process reached P in the meantime, then we are done. Otherwise there aretwo cases to consider. If j = i, then, flipi gives left and Xi(s1) = W whereas Xi+1 is (still)in fER; R; F; D!g. Therefore, s1 2 G. If j = i+ 1, then flipi+1 gives right and Xi+1(s1) = W!whereas Xi(s1) is (still) F . Therefore, s1 2 G.Lemma 10.6.13 Start with a state s of F . If there exists a process i for which Xi(s) = F and(Xi�1(s); Xi+1(s)) = (#!;# ). Then, with probability at least 1=2, a state of G [ P is reachedwithin time 2.Proof. The hypothesis can be summarized into the form (Xi�1(s); Xi(s); Xi+1(s)) = (#!; F;# ).Since i�1 and i+1 point in di�erent directions, by moving to the right of i+1 there is a processk pointing to the left such that process k + 1 either points to the right or is in fER; R; F; Pg,i.e., Xk(s) 2 fW ; S ; D g and Xk+1(s) 2 fER; R; F;W!; S!; D!; Pg.If Xk(s) 2 fW ; S g and Xk+1(s) 6= P then s 2 G and we are done; if Xk+1(s) = P thens 2 P and we are done. Thus, we can restrict our attention to the case where Xk(s) = D .We show that FIRST((flipk; left); (flipk+1; right)), which by Lemma 6.2.2 has proba-bility at least 1=2, leads to G [P within time 2. Let A be an adversary of Unit-Time, and let �be an admissible timed execution of 
prexec(M;fsg;A) where if process k ips before process k+1then process k ips left, and if process k+1 ips before process k then process k+1 ips right.Within time 2 process k performs at least two transitions and hence goes to con�gurationW . Let j 2 fk; k + 1g be the �rst of k and k + 1 that reaches W and let s1 be the statereached after the �rst time process j reaches W . If some process reached P in the meantime,then we are done. Otherwise, we distinguish two cases. If j = k, then, flipk gives left andXk(s1) = W whereas Xk+1 is (still) in fER; R; F;#!g. Thus, s1 2 G. If j = k+1, then flipk+1gives right and Xk+1(s1) = W! whereas Xk(s1) is (still) in fD ; Fg. Thus, s1 2 G.Proposition 10.6.14 Start with a state s of F . Then, with probability at least 1=2, a state ofG [ P is reached within time 2. Equivalently:F 2�!1=2 G [ P :Proof. The hypothesis of Lemmas 10.6.12 and 10.6.13 form a partition of F .Finally, we prove RT �!1 F [ G [ P .Proposition 10.6.15 Starting from a state s of RT , then a state of F [ G [ P is reachedwithin time 3 Equivalently:RT 3�!1 F [ G [ P : 237



Proof. Let s be a state of RT . If s 2 F [ G [ P , then we are trivially done. Suppose thats =2 F [ G [ P . Then in s each process is in fER; R;W; S;Dg and there exists at least processin fW;S;Dg. Let A be an adversary of Unit-Time, and let � be an admissible timed executionof 
prexec(M;fsg;A).We �rst argue that within time 1 some process reaches a state of fS;D; Fg in �. Thisis trivially true if in state s there is some process in fS;Dg. If this is not the case, then allprocesses are either in ER or R orW . Eventually, some process in R orW performs a transition.If the �rst process not in ER performing a transition started in ER or R, then it reaches F andwe are done; if the �rst process performing a transition is in W , then it reaches S since in s noresource is held. Once a process i is in fS;D; Fg, then within time 2 process i reaches eitherstate F or P , and we are done.10.7 Abstract Complexity MeasuresWe have seen how to measure the expected time to satisfy a property. However, the techniquecan be extended to other kinds of measures of complexity. Speci�cally, let � be a complexitymeasure on timed execution fragments that is additive under concatenation, i.e., �(q1 a q2) =�(q1) + �(q2). Then we can compute the expected � rather than the expected time, where the� of a state q of H is de�ned to be �(q.qH0 ). We generalize the notation for timed progressstatements by writingU �(c)�!p Advs U 0 (10.34)with the meaning that PrAdvs ;U (eU 0;�(c)) � p, where the event schema eU 0;�(c) applied to a timedprobabilistic execution fragment H returns the set of timed executions � of 
H where a statefrom U 0 is reached within complexity c. More speci�cally, let ConesU 0;�(c)(H) be the set ofminimal timed execution fragments q of M such that CHq is not empty, lstate(q) 2 U 0, and�(q.qH0 ) � c. Then, eU 0;�(c)(H) = [q2ConesU 0;�(c)(H)CHq . Observe that time is just one of thepossible complexity measures.The same de�nition can be extended to sets of actions as we have done previously, and theconcatenation theorem is still valid.The expected complexity of a �nitely satis�able event schema can be de�ned easily. Speci�-cally, if e is a �nitely satis�able event-schema and Cones(H) identi�es the points of satisfactionof e, then for each probabilistic timed execution fragment H of M we de�ne EH;�[e], the ex-pected complexity to satisfy e in H , as follows.EH;�[e] = ( Pq2Cones(H)PH [Cq](�(q.qH0 )) if PH [e(H)] = 11 otherwise. (10.35)Then, a proposition similar to Proposition 10.5.1 can be proved.Proposition 10.7.1 Suppose that8<: U �(c)�!p Advs U 0U ) (U Unless U 0); (10.36)238
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aFigure 10-1: An example of the use of �.and suppose that Advs is �nite history insensitive and that s� =2 
A(s) for each A 2 Advs andeach s 2 U . Then,EU;Advs;�[e] � c+ pEU 0;Advs ;�[e] + (1� p)(� + EU;Advs;�[e]); (10.37)where� = supq2t-frag�(M)jlstate(q)2U �supq0>q �inf q00jq<q00�q0(�(q00.q))�� : (10.38)Proof. This proof has the same structure as the proof of Proposition 10.5.1. Here we describein detail only the main di�erences. In particular, we show part of the derivation from Equa-tion (10.16) to Equation (10.21), where the constant � is used. Observe that if we use � toexpress time complexity, then � = 0.From (10.35) the expected complexity for success for e isEH;�[e] = Xq2Cones(H)PH [Cq]�(q.qH0 ): (10.39)For each d > 0, let Conesd be a function that expresses the event of reaching complexity d asa union of disjoint cones. From the de�nition of a probabilistic timed execution, we know thatConesd exists and, from (10.38), we know that for each probabilistic timed execution fragmentH and each q 2 Conesd(H), d � �(q.qH0 ) � d + �. Let � be any positive number. Followingthe same derivation as in the proof of Proposition 10.5.1, we obtainEH;�[e] � (c+ �)0@Xq2�1 PH [Cq]EU 0;Advs ;�[e])1A+0@Xq2�2 PH [Cq](� +EU;Advs;�[e])1A : (10.40)One of the novel aspects of Proposition 10.7.1 is the constant �. Roughly speaking, � gives us alower bound to the minimum complexity increase that we can obtain by moving along a timedexecution fragment.Example 10.7.1 (Why � is necessary) For example, if the abstract complexity that we useis the number of discrete actions that appear in a timed execution fragment, then � = 1. In fact,whenever we perform a discrete action, the complexity increases by 1. Figure 10-1 shows anexample where � = 1 and where Equation (10.37) is invalidated if we do not include �. Denotethe probabilistic timed execution fragment of Figure 10-1 by H . Let U be fs0g, U 0 be fs1g, andlet e express the property of reaching U 0. Let Advs contain only one adversary that generates Hwhen applied to s0. Let � count the number of external actions in a timed execution fragment(no time-passage actions in H). Then, it is immediate to verify that the statement U �(1)�!1=2 U 0 is239



valid in H and that also U ) (U UnlessU 0) is valid. By applying Equation (10.37) with � = 1,we obtainEU;Advs;�[e] � t+ 1=2(1+ EU;Advs;�[e]); (10.41)which leads to EU;Advs;�[e] � 3. If we did not use � in Equation (10.37) we would have obtainedEU;Advs;�[e] � 2. We now show that EH;�[e] = 3. In fact,EH;�[e] = 12 + 314 + 518 + 7 116 + � � � (10.42)By rearranging the terms, we obtainEH;�[e] =Xi�0 12i �12 + 24 + 28 + 216 + � � �� : (10.43)Recall that Pi�0 1=2i = 2. Thus, by rearranging the terms again,EH;�[e] = 2 + 1=2�12 + 14 + 18 + 116 + � � �� = 3: (10.44)Roughly speaking, the transition relation of H is structured in such a way that whenever theexperiment of reaching U 0 from U fails, the system looses one additional complexity unit duringthe random draw. In the proof of Proposition 10.7.1 this phenomenon is detected when we de�nethe partition �1 and �2. To make sure that �1 and �2 partition an event with probability 1and that �1 captures all the places where U 0 is reached within time t, �2 must be based onstates reached after time t. In the probabilistic execution H of this example the states of �2have complexity t+ 1.10.8 Example: Randomized Agreement with TimeUsing abstract complexity measures it is possible to show that the randomized agreementalgorithm of Ben-Or guarantees agreement within an expected exponential time. This is notan exceptional complexity result, but it corresponds to the time complexity of the algorithm.In more detail, we add time to the probabilistic automaton that describes Ben-Or's protocolin the same way as we have done for the Dining Philosophers algorithm of Lehmann and Rabin.In this case each adversary is required to schedule every process that enables some transitionwithin time 1 from every point. Then we show an upper bound linear in st on the time ittakes to all processes to complete a speci�c stage st . Finally, we derive an upper bound onthe expected number of stages it takes for all processes to decide. This is achieved by de�ningan abstract complexity on the timed executions of M that checks the highest stage reached atevery point. A direct extension of the untimed proof without abstract complexities would not bepossible. In fact, given a reachable state s, the validity of the progress statement of Chapter 6relies on completing the highest stage reached in s, and we cannot establish any useful upperbound on the time to complete such stage: there is no useful bound on the di�erence betweenthe highest and the lowest stages reached in s, and the adversary may stop the processes withthe highest values of st . We start by proving the upper bound on the time it takes to eachprocess to complete some stage st . 240



Lemma 10.8.1 There is a constant d such that, for each stage st, each process completes stagest within time d � st.Proof. Let d1 be the maximum time it takes to each process from the moment it reaches a newstage st to the moment it broadcasts its value and its value is delivered; let d2 be the maximumtime it takes to each process to broadcast and deliver its second message after receiving enoughmessages from the �rst round; let d3 be the maximum time it takes to each process to move to anew stage once it has received enough messages from the second round. Then d = d1+d2+d3.Since we have not de�ned formally M , we cannot say explicitly what is the value of d.We show the result by induction on st where for the base case we assume that st = 0and that stage 0 is completed by time 0. By induction, by time d � st each non-faulty processhas completed round st . Then, by time d1 + d � st each non-faulty process has broadcastedand delivered its �rst round message, and thus every non-faulty process has received enoughmessages for the �rst round of stage st + 1. Within additional time d2 each non-faulty processdelivers its second message, and within additional time d3 each non-faulty process reaches stagest + 2, i.e., within time d(st + 1) each non-faulty process completes stage st + 1.For each �nite timed execution fragment � of M de�ne �(�), the stage complexity of �, tobe max-stage(lstate(�)) � max-stage(fstate(�)), where for each state s, max-stage(s) is themaximum stage that is reached in s by some process. Observe that this complexity measure isan upper bound to the stage at which some process decides since if at state s the �rst processhas just decided, thenmax-stage(s) is not smaller than the stage of the process that has decided.Thus, an upper bound on the expected � for the decision of the �rst process is an upper boundon the expected stage at which the �rst process decides. We show the following two statements.B �(1)�!1 f-fair F [ O: (10.45)F �(2)�!1=2nO: (10.46)Then, by combining (10.45) and (10.46) with Theorem 5.5.2, we obtainB �(3)�!1=2nO: (10.47)From Proposition 10.7.1, we obtainEB;Unit-Time;�[eO] � 3 + (1� 1=2n)(1 + EB;Unit-Time;�[eO]); (10.48)where 1 is the value of � given by (10.38). By solving Equation (10.48) we obtainEB;Unit-Time;�[eO] � 2n+2 � 1: (10.49)Since if a process decides at stage st then each other non-faulty process decides within stagest + 1, then we can derive that the expected stage by which every process decides is at most2n+2, and thus, from Lemma 10.8.1, each process decides within expected time d � 2n+1.The proofs for (10.45) and (10.46) have the same structure as the corresponding proofsfor the untimed case. Recall that the proof of (10.45) consider the maximum stage st of areachable state s and states that eventually stage st + 1 is reached, at which time a state of Fis reached. The proof of (10.46) states that a speci�c coin lemma leads a process to decide bystage max-stage(s)+1. Then, since if a process decides a stage st each process decides by stagest + 1, the complexity of the state where the �rst process decides is at most max-stage(s) + 2.241



10.9 DiscussionTo our knowledge this is the �rst time that statements similar to our timed progress statementshave been used for the analysis of the performance of a randomized distributed algorithm. Inparticular, we have been able to prove similar results only because we have studied techniques toprove properties that hold with some probability di�erent than 1. This should be a su�cientlystrong reason to pursue additional research on methodologies (automatic or not) for the analysisof properties that hold with probabilities di�erent than 1. The work of Hansson [Han94] andthe algorithm that Courcoubetis and Yannakakis present in [CY90] are in this direction.
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Chapter 11Hierarchical Veri�cation: TimedTrace Distributions11.1 IntroductionIn this chapter we extend the trace distribution preorder of Chapter 7 to the timed framework.The main di�erence is that we use timed traces rather than traces. A timed trace contains thesequence of discrete actions that occur within a timed execution plus the time of occurrenceof each action and the time at which the observation ends. That is, in a timed execution weobserve at what time each external action occurs and, if �nitely many actions occur, how muchtime elapses after the occurrence of the last action.We de�ne a preorder relation based on timed trace distribution inclusion, and we characterizethe coarsest precongruence that is contained in the timed trace distribution preorder by usinga timed principal context , which is just the principal context of Chapter 7 augmented witharbitrary time-passage self-loop transitions from its unique state. Most of the proofs followdirectly from the results already proved in Chapter 7, since in several cases it is su�cient tostudy ordinary trace distributions in order to derive properties of timed trace distributions.11.2 Timed TracesWe start by de�ning the main object of observation, i.e., timed traces. The de�nition of a timedtrace that we give in this section is taken directly from [LV95].Timed Sequence PairsLet K be any set that does not intersect <+. Then a timed sequence over K is de�ned to be a(�nite or in�nite) sequence  over K � <�0 in which the time components are nondecreasing,i.e., if (k; t) and (k0; t0) are consecutive elements in  then t � t0. We say that  is Zeno if it isin�nite and the limit of the time components is �nite.A timed sequence pair over K is a pair � = (; t), where  is a timed sequence over K andt 2 <�0 [ f1g, such that t is greater than or equal to all time components in . We writeseq(�), and ltime(�) for the two respective components of �. We denote by tsp(K) the set of243



timed sequence pairs over K. We say that a timed sequence pair � is �nite if both seq(�) andltime(�) are �nite, and admissible if seq(�) is not Zeno and ltime(�) =1.Let � and �0 be timed sequence pairs overK with � �nite. Then de�ne �; �0 to be the timedsequence pair (seq(�); ltime(�) + ltime(�0)), where  is the modi�cation of seq(�0) obtainedby adding ltime(�) to all the time components. If � and �0 are timed sequence pairs over a setK, then � is a pre�x of �0, denoted by � � �0, if either � = �0, or � is �nite and there exists atimed sequence pair �00 such that �0 = �; �00.Lemma 11.2.1 � is a partial ordering on the set of timed sequence pairs over K.Now we describe how to translate from a sequence over K [<+, and ordinary trace, to a timedsequence pair over K. First, if � is any sequence over K [ <+, then we de�ne the time ofoccurrence of any K-element in � to be the sum of all the reals that precede that element in�. We also de�ne ltime(�) to be the sum of all the reals in �. Finally, we de�ne t-trace(�) tobe the timed sequence pair (; ltime(�)), where  is the subsequence of � consisting of all theelements of K, each paired with its time of occurrence.If � is a sequence over K [ <+ then we say that � is admissible if the sum of the positivereals in � is in�nite.Lemma 11.2.2 If � is a �nite or admissible timed sequence pair then t-trace(trace(�)) = �.Lemma 11.2.3 If � is a sequence over K [ <+ then � is admissible if and only if t-trace(�)is admissible.Timed Traces of Timed Probabilistic AutomataSuppose that � = !0a1!1a2!2 � � � is a timed execution fragment of a timed probabilistic au-tomatonM . For each ai, de�ne the time of occurrence ti to be Pj<i ltime(!j), i.e., the sum ofthe lengths of all the trajectory intervals preceding ai in �. Let  be the sequence consisting ofthe actions in � paired with their times of occurrence: = (a1; t1)(a2; t2) � � � :Then t-trace(�), the timed trace of �, is de�ned to be the pair( � (vis(M)�<+); ltime(�)):Thus, t-trace(�) records the occurrences of visible actions together with their times of oc-currence, and together with the time spanned by �. Note that neither internal actions nortime-passage actions appear explicitly in the timed trace of �.Proposition 11.2.4 If � is a timed execution fragment of M then t-trace(�) is a timed se-quence pair over vis(M).Proposition 11.2.5 Let � be a timed execution fragment of M , and let trace(�) denote theordered sequence of external actions that appear in �. Then, t-trace(�) = t-trace(trace(�)).Proposition 11.2.6 If � = �1 a �2 is a timed execution fragment of M , then t-trace(�) =t-trace(�1); t-trace(�2). 244



We write t-traces(M) for the set of all timed traces of M , t-traces�(M) for the set of �nitetimed traces of M , and t-traces1(M) for the set of admissible timed traces of M ,The timed traces of a probabilistic timed automaton M can be characterized also in termsof its time-enriched executions or in terms of its ordinary executions. Speci�cally, if � is a time-enriched execution of M , then let t-trace(�) denote t-trace(t-exec(�)), and if � is an executionof M , then let t-trace(�) denote t-trace(trace(�)). The following proposition holds.Proposition 11.2.7 Let M be a probabilistic timed automaton.1. If � is a time-enriched execution of M , then there is a timed execution �0 of M such thatt-trace(�) = t-trace(�0).2. If � is a timed execution of M , then there is a time-enriched execution �0 of M such thatt-trace(�) = t-trace(�0).3. If � is a timed execution of M , then there is an execution �0 of M such that t-trace(�) =t-trace(�0).4. If � is an execution of M , then there is a timed execution �0 of M such that t-trace(�) =t-trace(�0).Proof.1. Let �0 be t-exec(�). Then, t-trace(�) = t-trace(�0) by de�nition.2. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let�0 = fstate(!0) a �1 a �2 a � � �, where for each i,�i = ( !i�1aifstate(!i) if !i�1 has domain [0; 0],fstate(!i�1)ltime(!i�1)!i�1aifstate(!i) otherwise;if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �0 = fstate(!0) a�1 a � � � a �n a �0n+1, where the �i's are de�ned above and �0n+1 = !00d1!01d2!02 � � � is anin�nite sequence such that !00!01!02 � � � = !n. It is immediate to verify that � and �0 havethe same timed trace since � = t-exec(�0).3. Let � be !0a1!1a2 � � �. If � is a �nite timed execution or an in�nite sequence, then let�0 = fstate(!0) a �1 a �2 a � � �, where for each i,�i = ( lstate(!i�1)aifstate(!i) if !i�1 has domain [0; 0],fstate(!i�1)ltime(!i�1)lstate(!i�1)aifstate(!i) otherwise;if � = !0a1!1a2 � � �an!n and the domain of !n is right-open, then let �00 = fstate(!0)a�1a� � �a�n a�0n+1, where the �i's are de�ned above and �0n+1 = fstate(!n)d1!n(d1)d2!n(d1+d2) � � � is an in�nite sequence such that Pi di = ltime(!n). It is immediate to verify that� and �0 have the same timed trace. 245



4. Given � = s0a1s1a2 � � �, build a time-enriched execution �00 by replacing each state si witha trajectory for (si�1; ai; si) whenever ai is a time-passage action. Then, t-trace(�) =t-trace(�00). Item 2 is enough to conclude.The bottom line of the proposition above is that for the study of the timed traces of a probabilis-tic timed automaton it is not necessary to observe the trajectories spanned by a computation.The points of occurrence of discrete actions are su�cient.11.3 Timed Trace DistributionsIn this section we de�ne the timed trace distributions of a probabilistic timed automaton and weextend the action restriction operation. The main result is that it is possible to study the timedtrace distributions of a probabilistic timed automatonM by considering either its probabilisticexecutions, or its probabilistic time-enriched executions, or its probabilistic timed executions.11.3.1 Three ways to De�ne Timed Trace DistributionsWe now de�ne the timed trace distribution of a probabilistic execution, of a probabilistic time-enriched execution, and of a probabilistic timed execution of a probabilistic timed automaton.The de�nitions are given in the same style as for the untimed case. Furthermore, we show thatthe three de�nitions lead to the same collection of timed trace distributions. This enforces theremark that for the study of the timed trace distributions of a probabilistic timed automatonit is not necessary to observe the trajectories spanned by a computation.Timed Trace Distribution of a Probabilistic ExecutionLetH be a probabilistic execution of a probabilistic timed automatonM , and let f be a functionfrom 
H to 
 = tsp(vis(M)) that assigns to each extended execution its timed trace. The timedtrace distribution of H , denoted by t-tdistr(H), is the probability space completion((
;F ; P ))where F is the �-�eld generated by the cones C�, where � is a �nite timed sequence pair oftsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is a measurable functionfrom (
H ;FH) to (
;F).Timed Trace Distribution of a Probabilistic Time-Enriched ExecutionLet H be a probabilistic time-enriched execution of a probabilistic timed automaton M , andlet f be a function from 
H to 
 = tsp(vis(M)) that assigns to each time-enriched extendedexecution its timed trace. The timed trace distribution of H , denoted by t-tdistr (H), is theprobability space (
;F ; P ) where F is the �-�eld generated by the cones C�, where � is a �nitetimed timed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4f is a measurable function from (
H ;FH) to (
;F).Timed Trace Distribution of a Probabilistic Timed ExecutionLet H be a probabilistic timed execution of a probabilistic timed automaton M , and let fbe a function from 
H to 
 = tsp(vis(M)) that assigns to each timed extended execution246



its timed trace. The timed trace distribution of H , denoted by t-tdistr(H), is the probabilityspace (
;F ; P ) where F is the �-�eld generated by the cones C�, where � is a �nite timedtimed sequence pair of tsp(vis(M)), and P = f(PH). Note that from Proposition 3.1.4 f is ameasurable function from (
H ;FH) to (
;F).Equivalence of the De�nitionsWe now show that the three de�nitions of a timed trace distribution lead to the same collectionof timed trace distributions when applied to a probabilistic timed automaton (cf. Proposi-tions 11.3.2 and 11.3.4). Thus, we can freely denote a generic timed trace distribution by Dand denote the timed trace distributions of a probabilistic tomed automatonM by t-tdistrs(M).Lemma 11.3.1 Let H be a probabilistic time-enriched execution of a probabilistic timed au-tomaton M . Then, t-tdistr (H) = t-tdistr(sample(H)).Proof. Let D be t-tdistr(H) and let D0 be t-tdistr (sample(H)) Consider a �nite timed trace�. From the de�nition of t-tdistr (),PD0 [C�] = Psample(H)[f� 2 
sample(H) j � � t-trace(�)g]: (11.1)Since C� is a �nitely satis�able event, there is a set of � of states of sample(H) such that foreach element q of �, � � t-trace(q), and such thatf� 2 
sample(H) j � � t-trace(�)g = [q2�Csample(H)q : (11.2)Thus,PD0 [C�] = Xq2�Psample(H)[Csample(H)q ]: (11.3)From Equation (9.55), Equation (11.3) becomesPD0 [C�] = Xq2sample�1(�)PH [CHq ]: (11.4)Observe that sample�1(�) is a characterization of C� for D, and thus,PD0 [C�] = PD [C�]: (11.5)This completes the proof.Proposition 11.3.2 Let M be a probabilistic timed automaton. Then, for each probabilis-tic time-enriched execution H of M there exists a probabilistic execution H 0 of M such thatt-tdistr(H) = t-tdistr(H 0), and for each probabilistic execution H of M there exists a proba-bilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).Proof. Follows directly from Propositions 9.3.6 and 9.3.7, and from Lemma 11.3.1.Lemma 11.3.3 Let H be a probabilistic time-enriched execution of a probabilistic timed au-tomaton M . Then, t-tdistr (H) = t-tdistr(t-sample(H)).247



Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(t-sample(H)). Consider a �nite timedsequence pair D of tsp(vis(M)). From the de�nition of t-tdistr ,PD[C�] = PH [f� 2 
H j � � t-trace(�)g]: (11.6)From the de�nition of t-exec(PH),PD[C�] = Pt-exec(PH)[f� 2 
t-exec(H) j � � t-trace(�)g]: (11.7)With a similar analysis,PD0 [C�] = Pt-sample(H)[f� 2 
t-sample(H) j � � t-trace(�)g]: (11.8)Since fromProposition 9.3.11 t-exec(PH) = Pt-sample(H), and since the events of (11.7) and (11.8)are unions of countably many disjoint cones, we conclude that PD [C�] = PD0 [C�].Proposition 11.3.4 Let M be a probabilistic timed automaton. Then, for each probabilistictime-enriched execution H of M there exists a probabilistic timed execution H 0 of M such thatt-tdistr(H) = t-tdistr(H 0), and for each probabilistic timed execution H of M there exists aprobabilistic time-enriched execution H 0 of M such that t-tdistr(H) = t-tdistr(H 0).Proof. Follows directly from Propositions 9.3.8 and 9.3.9, and from Lemma 11.3.3.Proposition 11.3.5 Let H1 and H2 be two equivalent probabilistic time-enriched executions ofa probabilistic timed automaton M . Then, t-tdistr(H1) = t-tdistr(H2).Proof. From Proposition 9.3.10, t-sample(H1) = t-sample(H2), and from Lemma 11.3.3,tdistr(H1) = tdistr(t-sample(H1)) and tdistr(H2) = tdistr(t-sample(H2)). Thus, combiningthe observations above, t-tdistr (H1) = t-tdistr(H2).11.3.2 Timed Trace Distribution of a Trace DistributionGiven a trace distribution of a probabilistic timed automaton, it is possible to de�ne its timedtrace distribution as we have done for ordinary traces. Thus, let D be a trace distribution of aprobabilistic automaton, and let f be a function from 
D to 
 = ft-trace(�) j � 2 
Dg thatassigns to each trace its timed trace. The timed trace distribution of D, denoted by t-tdistr (D),is the probability space completion((
;F ; P )) where F is the �-�eld generated by the conesC�, where � is a �nite timed trace, and P = f(PD). Note that from Proposition 3.1.4 f is ameasurable function from (
D;FD) to (
;F).Proposition 11.3.6 Let H be a probabilistic execution of a timed probabilistic automaton M .Then, t-tdistr (H) = t-tdistr (tdistr(H)).Proof. Let D be t-tdistr (H), and let D0 be t-tdistr(tdistr(H)). We show �rst that D and D0have the same sample space. Then, we show that they assign the same probability to each cone.To show that D and D0 have the same sample space, it is enough to show that for eachtimed sequence pair � of tsp(vis(M)) thehre is a trace �0 of ext(M)� [ ext(M)! such thatt-trace(�0) = �. Let (� = (a1; t1)(a2; t2); (a3; t3) � � � ; t). If seq(�) is an in�nite sequence, thenlet �0 = �1�2�3 � � �, where for each i, if ti+1 = ti, then �i = ai, and if ti+1 > ti, then �i =248



ai(ti+1� ti). If seq(�) is a �nite sequence, i.e., seq(�) = (a1; t1)(a2; t2); (a3; t3) � � � ; (an; tn) then�0 = �1�2�3 � � ��n�1�0n where the �i's are de�ned above, and �0n is an if tn = t, an(t � tn) if0 < t � tn < 1, and an followed by the in�nite sequence of 1's if t = 1. It is easy to verifythat in every case t-trace(�0) = �.To show that D and D0 assign the same probability to each cone, let � be a �nite timedtrace. From the de�nition of t-tdistr and tdistr ,PD0 [C�] = PH [f� 2 
H j � � t-trace(trace(�))g]: (11.9)From Proposition 11.2.5, (11.9) becomesPD0 [C�] = PH [f� 2 
H j � � t-trace(�)g]; (11.10)which is the de�nition of PD[C�].11.3.3 Action RestrictionFinally, we extend the action restriction operator to timed trace distributions. Let M be aprobabilistic timed automaton, and let V be a set of visible actions ofM . For each timed trace� = (; t) of M , let � � V be the pair ( 0; t) where  0 is obtained from  by removing all thepairs whose action is in V . Let D be a timed trace distribution of M . De�ne D � V to be thetimed trace distribution (
;F ; P ) where 
 = 
D � V , F is the �-�eld generated by the conesC�, where � is a �nite timed trace, and P = PD � V . Note that from Proposition 3.1.4 � V is ameasurable function from (
D;FD) to (
;F). Action restriction commutes with the operationof taking a timed trace distribution of a trace distribution.Proposition 11.3.7 Let D be a trace distribution of a probabilistic timed automaton M , andlet V be a set of visible actions of M . Then, t-tdistr(D � V ) = t-tdistr (D) � V .Proof. Let D0 be t-tdistr(D � V ), and let D00 be t-tdistr(D) � V . Let � be a �nite timed trace.By applying the de�nitions of t-tdistr and of �, we obtain the following two equations.PD0 [C�] = PD [f�0 2 
D j � � t-trace(�0 � V )g]: (11.11)PD00 [C�] = PD [f�0 2 
D j � � t-trace(�0) � V g]: (11.12)Observe that for each �0 of 
D , t-trace(�0 � V ) = t-trace(�0) � V . Thus, the right expressionsof (11.11) and (11.12) denote the same value. That is, PD0 [C�] = PD00 [C�].11.4 Timed Trace Distribution PrecongruenceLet M1;M2 be two probabilistic timed automata with the same external actions. The timedtrace distribution preorder is de�ned as follows.M1 vDt M2 i� t-tdistrs(M1) � t-tdistrs(M2):As for the untimed case, the timed trace distribution preorder is not a precongruence. Acounterexample can be created directly from the counterexample of Chapter 7 by augmentingthe probabilistic automata of Figure 7-4 with arbitrary self-loop time-passage transitions fromtheir deadlock states (the states that do not enable any transition). Thus, we de�ne thetimed trace distribution precongruence, denoted by vDCt, as the coarsest precongruence that iscontained in the timed trace distribution preorder.249



11.5 Alternative CharacterizationsThe timed trace distribution precongruence can be characterized by a timed version of theprincipal context of Chapter 7. Namely, let the timed principal context , denoted by CP bethe principal context of Figure 7-6 augmented with self-loop time-passage transitions for eachtime-passage action d. Then, the following holds.Theorem 11.5.1 M1 vDCt M2 i� M1kCP vDt M2kCP .Thus, if we de�ne the principal timed trace distributions of a probabilistic timed automatonM , denoted by pt-tdistrs(M), to be the timed trace distributions of MkCP , then we get thefollowing.Corollary 11.5.2 M1 vDCt M2 i� ext(M1) = ext(M2) and pt-tdistrs(M1) � pt-tdistrs(M2).The rest of this section is dedicated to the proof of Theorem 11.5.1. The structure of the prooffollows the same lines as the proof of Theorem 7.5.1, where only one additional transformationstep is added: a distinguishing context is transformed into a new time-deterministic contextwhere each state enables either discrete actions only or time-passage actions only. A time-deterministic context is a probabilistic automaton such that for each state s and each time-passage action d, if s d�! s1 and s d�! s2, then s1 = s2. All the lemmas except for one areproved by reducing the problem to the untimed framework.Lemma 11.5.3 Let C be a distinguishing context for two probabilistic timed automata M1 andM2. Then there exists a distinguishing context C 0 for M1 and M2 with no discrete actions incommon with M1 and M2. C0 is called a separated context.Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.3. The con-structions clp and exch work as well (they never exchange transitions involving time-passage),and the proof is carried out at the level of probabilistic executions rather than probabilistictimed executions.Speci�cally, let D be a timed trace distribution of M1kC that is not a timed trace distri-bution of M2kC. Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D,and consider the scheduler that leads to H1. Apply to M1kC 0 the same scheduler with thefollowing modi�cation: whenever a transition ((s1; c); a;P1
 P) is scheduled in M1kC, sched-ule ((s1; c); a1;D((s1; c0))), where c0 is c(c;a;P), followed by ((s1; c0); a;P1
D(c0)), and, for eachs01 2 
1, followed by ((s01; c0); a2;D(s01)
P). Denote the resulting probabilistic execution by H 01and the resulting timed trace distribution by D0. From Lemma 7.5.3, tdistr(H1) = tdistr(H 01) �vis(M1kC), and thus, from Propositions 11.3.6 and 11.3.7, D = D0 � vis(M1kC).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC 0, and let H 02 be the corresponding probabilistic execution. Then, fromLemma 7.5.3, clp(exch(H 02)) is a probabilistic execution ofM2kC0, and tdistr(clp(exch(H 02))) =tdistr(H 02) � acts(M1kC). From Propositions 11.3.6 and 11.3.7, D = t-tdistr (clp(exch(H 02))),which is a contradiction.Lemma 11.5.4 Let C be a distinguishing separated context for two probabilistic timed automataM1 and M2. Then there exists a distinguishing cycle-free separated context C0 for M1 and M2.250



Proof. The context C 0 can be built by unfolding C. Every scheduler for C can be transformedinto a scheduler for C 0 and vice versa, leading to the same timed trace distributions.Lemma 11.5.5 Let C be a distinguishing cycle-free, separated context for two probabilistictimed automata M1 and M2. Then there exists a distinguishing time-deterministic, cycle-freeseparated context C0 for M1 and M2 that from any state enables either time-passage actionsonly or discrete actions only.Proof. The context C0 is built from C as follows:1. for each time-passage transition s d�! s0 of C and each trajectory ! for s d�! s0, add anaction start! and an action end!;2. for each time-passage transition s d�! s0 of C and each trajectory ! for s d�! s0, add acollection of new states fs!;t j 0 � t � dg, a transition s start!�! s!;0, a transition s!;d end!�! s0,and for each 0 � t < t0 � d, a transition s!;t t0�t�! s!;t0 ;3. remove all the time-passage transitions leaving from states of C.Let D be a timed trace distribution of M1kC that is not a timed trace distribution of M2kC.Consider a probabilistic execution H1 of M1kC such that t-tdistr (H1) = D, and consider thescheduler that leads toH1. Apply toM1kC 0 the same scheduler with the following modi�cation:whenever a time-passage transition s d�! s0 is scheduled, choose a trajectory ! for s d�! s0and schedule start!, followed by d, and followed by end! . Denote the resulting probabilisticexecution by H 01 and the resulting timed trace distribution by D0. Then,D0 � acts(M1kC) = D: (11.13)To prove (11.13) we prove �rst that tdistr(H 01) � acts(M1kC) = tdistr(H1), and then we applyPropositions 11.3.6 and 11.3.7. To prove that tdistr(H 01) � acts(M1kC) = tdistr(H1) we de�nea construction tclp to be applied to probabilistic executions ofMikC 0 where each occurrence ofa start action is followed eventually by the corresponding end action with probability 1.Let H 0 be a probabilistic execution of MikC0 where each occurrence of a start action isfollowed eventually by the corresponding end action with probability 1, and denote tclp(H 0) byH . For each state q of H 0, let tclp(q) be obtained from q by replacing each state of the form s!;twith the state !(t), by removing each occurrence of a start action together with its followingstate, and by removing each end action together with its following state. Then,states(H) 4= tclp(states(H 0)): (11.14)Let (q;P) be a restricted transition of H 0, and suppose that no start or end action occurs. Let
0 = f(a; tclp(q0)) j (a; q0) 2 
g, and for each (a; q00) 2 
0, let P 0[(a; q00)] = P [a � tclp�1(q00)],where tclp�1(q) is the set of states q0 of H 0 such that tclp(q0) = q. Then the transitiontclp((q;P)) is de�ned to betclp((q;P)) 4= (tclp(q);P): (11.15)251



For the transition relation of H , consider a state q of H , and let min(tclp�1(q)) be the set ofminimal states of tclp�1(q) under pre�x ordering. For each state �q 2 tclp�1(q), let�ptclp�1(q)�q 4= PH 0 [C�q]Pq02min(tclp�1(q))PH 0 [Cq0 ] : (11.16)The transition enabled from q in H isXq02tclp�1(q) �ptclp�1(q)�q PH 0q0 [acts(MikC)]tclp(trH 0q0 � acts(MikC)): (11.17)The probabilistic execution H satis�es the following properties.a. H is a probabilistic execution of MikC.The fact that each state of H is reachable can be shown by a simple inductive argument;the fact that each state of H is a �nite execution fragment ofMikC follows from a simpleanalysis of the de�nition of tclp.From (11.17) it is enough to check that for each state q0 of H 0, the transition tclp(trH 0q0 �acts(MikC)) is generated a combined transition of MikC. Since trH 0q0 is a transition ofH 0, (trH 0q0 � acts(MikC)) can be expressed as q0 a tr , where tr is a combined transition ofMikC0 and no start or end action occurs in tr . Let tr 0 be obtained by substituting eachstate of the form s!;t with !(t) in tr . Then, tr 0 is a combined transition of MkC, and,from the de�nition of tclp, tclp(trH 0q0 � acts(MikC)) = tclp(q0) a tr 0.b. For each state q of H ,PH [Cq] = Xq02min(tclp�1(q))PH 0 [Cq0 ]: (11.18)This is shown by induction on the length of q. If q consists of a start state only, thenthe result is trivial. Otherwise, from the de�nition of the probability of a cone, Equa-tion (11.17), and a simple algebraic simpli�cation,PH [Cqas] = PH [Cq]0@ Xq02tclp�1(q) �ptclp�1(q)q0 PH 0q0 [a� tclp�1(qas)]1A : (11.19)Observe that for each q0 2 tclp�1(q) the set 
H 0q0 \ (fag � tclp�1(qas)) contains only oneelement, say (a; q0as00), and thus PH 0 [Cq0]PH 0q0 [a�tclp�1(qas)] gives PH 0 [Cq0as00 ]. Moreover,observe that the states of min(tclp�1(qas)) are the states of the form described in Equa-tion (11.19) (simple cases analysis). Thus, by applying induction to (11.19), using (11.16),simplifying algebraically, and using the observations above,PH [Cqas] = Xq02min(tclp�1(qas))PH 0 [Cq0 ]: (11.20)252



c. tdistr(H) = tdistr(H 0) � acts(MikC).Let � be a �nite trace of H or H 0. Then f� 2 
H 0 j � � trace(�) � acts(MikC)g can beexpressed as a union of disjoint cones [q2�Cq where� = fq 2 states(H 0) j trace(q) � acts(MikC) = �; lact(q) = lact(�)g: (11.21)The set tclp(�) is the settclp(�) = fq 2 states(H) j trace(q) = �; lact(q) = lact(�)g; (11.22)which is a characterization of f� 2 
H j � � trace(�)g as a union of disjoint cones. Ob-serve that min(tclp�1(tclp(�))) = �. Moreover, for each q1 6= q2 of tclp(�), tclp�1(q1) \tclp�1(q2) = ;. Thus, from (11.18), PH 0 [[q2�Cq] = PH [[q2tclp(�)Cq]. This is enough toconclude.To complete the proof of (11.13) it is enough to observe that H1 = tclp(H 01). Property (11.13)is then expressed by property (c).Suppose by contradiction that it is possible to obtain D0 fromM2kC 0. Consider the schedulerthat leads to D0 in M2kC0, and let H 02 be the corresponding probabilistic execution. Observethat, since the timed trace distribution of H 02 is D0, and since by construction in D0 each occur-rence of a start action is followed eventually by the corresponding end action with probability1, in H 02 each occurrence of a start action is followed eventually by the corresponding endaction with probability 1. Thus, tclp can be applied, and t-tdistr (tclp(H 02)) = D, which is acontradiction.Lemma 11.5.6 Let C be a distinguishing time-deterministic, cycle-free, separated context fortwo probabilistic timed automata M1 and M2 that from any state enables either time-passageactions only or discrete actions only. Then there exists a distinguishing time-deterministic,cycle-free separated context C0 for M1 and M2 that from any state enables either time-passageactions only or discrete actions only, and such that the transition relation from any stateenabling discrete actions is at most countably branching. C 0 is called a time-deterministic,countably-branching, cycle-free separated context.Proof. Let D a timed trace distribution of M1kC that is not a timed trace distribution ofM2kC. Consider one of the corresponding probabilistic executions H . Observe that H has atmost countably many states that enable discrete actions, and that at each state of H there areat most countably many transitions of C that are scheduled. Thus, in total, only countablymany discrete transitions of C are used to generate D. Then C0 is C without the useless discretetransitions.Lemma 11.5.7 Let C be a distinguishing time-deterministic, countably-branching, cycle-freeseparated context for two probabilistic timed automata M1 and M2. Then there exists a dis-tinguishing cycle-free separated context C0 for M1 and M2 that at each state enabling discreteactions either enables two deterministic transitions or a unique probabilistic transition with twopossible outcomes. C 0 is called a time-deterministic, binary separated context.253



Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.6. Theconstructions shr and shf work as well. The speci�c procedure is the same as the procedurefollowed in the proof of Lemma 11.5.3.Lemma 11.5.8 Let C be a distinguishing time-deterministic, binary separated context for twoprobabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,binary separated context C0 forM1 andM2 where all the probabilistic transitions have a uniformdistribution over two states. C 0 is called a time-deterministic, balanced separated context.Proof. The context C0 is built from C in the same way as in the proof of Lemma 7.5.7. Thespeci�c procedure is the same as the procedure followed in the proof of Lemma 11.5.3.Lemma 11.5.9 Let C be a distinguishing time-deterministic, balanced separated context for twoprobabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic,binary separated context C0 for M1 and M2 with no internal actions and such that for each timet each discrete action appears exactly in one edge of the transition tree that leaves from a statewhose time is t. C0 is called a time-deterministic, total balanced separated context.Proof. The context C0 is obtained from C by renaming all of its discrete actions so that foreach time t each edge of the new transition relation leaving from a state whose current time ist has its own action. The proof of Lemma 7.5.8 applies.Lemma 11.5.10 Let C be a distinguishing time-deterministic, total balanced separated contextfor two probabilistic timed automata M1 and M2. Then there exists a distinguishing time-deterministic, total, cycle-free separated context C0 for M1 and M2 that from every state en-ables one time-passage transition for each timed-action d, two deterministic transitions, and aprobabilistic transition with a uniform distribution over two choices. C0 is called a completecontext.Proof. In this case it is enough to complete C by adding all the missing transitions and states.If D is a timed trace distribution ofM1kC that is not a timed trace distribution ofM2kC, thenit is enough to use on M1kC 0 the same scheduler that is used in M1kC. In fact, since each newdiscrete transition of C 0 has a distinct action, none of the new discrete transitions of C 0 can beused in M2kC 0 to generate D, and since each state of C0 is uniquely determined by the timedtrace of all the executions leading to that state, none of the new time-passage transitions canbe scheduled (this would a�ect the resulting timed trace distribution).Lemma 11.5.11 Let C be a distinguishing complete context for two probabilistic timed au-tomata M1 and M2. Then the timed principal context is a distinguishing context for M1 andM2.Proof. The result is achieved in two steps. First the actions of C are renamed so that eachstate enables two deterministic transitions with actions left and right , a probabilistic transitionwith actions pleft and pright , and one transition for each time-passage action d. Call thiscontext C1. Then, by observing that the state of C1 is uniquely determined by the timed traceof any timed execution leading to it, all the states of C1 are collapsed into a unique one.Thus, we need to show only that C1 is a distinguishing context. The proof of Lemma 7.5.10applies. 254



Lemma 11.5.12 Let CP be a distinguishing context for two probabilistic timed automata M1and M2. Then the simple context C of Figure 7-6 augmented with a self-loop time-passagetransition from state s0 for each time-passage action d, where start is an action that does notappear in M1 and M2, is a distinguishing context for M1 and M2.Proof. The proof of Lemma 7.5.11 applies.Proof of Theorem 11.5.1. Let M1 vDCt M2. Then, from Lemma 11.5.12, M1kCP vDtM2kCP . Conversely, let M1kCP vDt M2kCP . Then, from Lemmas 11.5.3, 11.5.4, 11.5.5,11.5.6, 11.5.7, 11.5.8, 11.5.9, 11.5.10, and 11.5.11,M1 vDCt M2.
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Chapter 12Hierarchical Veri�cation: TimedSimulations12.1 IntroductionThe simulation method extends to the timed framework almost directly. The main di�erenceis that in a timed simulation that abstracts from internal computation we use moves (cf. Sec-tion 9.4) rather than weak combined transitions. The kind of results that we prove are a directextension of similar results for the untimed model. In particular, probabilistic timed forwardsimulations are sound for the timed trace distribution precongruence.12.2 Probabilistic Timed SimulationsWe start directly with simulation relations that abstract from internal computation; the strongrelations are essentially the same as for the untimed case.For convenience assume that M1 and M2 do not have common states. A probabilistic timedbisimulation between two simple probabilistic timed automata M1 and M2 is an equivalencerelation R over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of either M1 or M2, thereexists a move s2 a�ext(M2); P2 of either M1 or M2 such that P1 �R P2.We write M1 'Pt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed bisimu-lation between M1 and M2.A probabilistic timed simulation between two simple probabilistic timed automata M1 andM2 is a relation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of M1, there exists a moves2 a�ext(M2); P2 of M2 such that P1 vR P2.257



We writeM1 vPt M2 whenever ext(M1) = ext(M2) and there is a probabilistic timed simulationfrom M1 to M2. We denote the kernel of probabilistic timed simulation by �Pt.It is easy to check that 'Pt is an equivalence relation, that vPt is a preorder relation, andthat both 'Pt and vPt are preserved by the parallel composition operator. It is also easy toverify that a weak probabilistic bisimulation is a probabilistic timed bisimulation and that aweak probabilistic simulation is a probabilistic timed bisimulation.12.3 Probabilistic Timed Forward SimulationsA probabilistic timed forward simulation between two simple probabilistic timed automataM1;M2 is a relation R� states(M1)� Probs(states(M2)) such that1. each start state of M1 is related to at least one Dirac distribution over a start state ofM2;2. for each s R P 0, if s a�! P1, then(a) for each s0 2 
0 there exists a probability space Ps0 such that s0 adext(M2); Ps0 , and(b) there exists a probability space P 01 of Probs(Probs(states(M2))) satisfying P1 vR P 01,such that Ps02
0 P 0[s0]Ps0 =PP2
01 P 01[P ]P .Denote the existence of a probabilistic timed forward simulation fromM1 toM2 byM1 vFSt M2.Proposition 12.3.1 vFSt is preserved by the parallel composition operator.Proof. Let M1 vFSt M2, and let R be a probabilistic timed forward simulation from M1 toM2. Let R0 be a relation between states(M1)�states(M3) and Probs(states(M2)�states(M3)),de�ned as follows:(s1; s3) R0 P i� P = P2 
D(s3) for some P2 such that s1 R P2.The proof that R0 satis�es Condition 1 and that Condition 2 is satis�ed for each discretetransition of M1kM2 is essentially the proof of Proposition 8.5.1. Thus we need to show onlythat Condition 2 is satis�ed by time-passage transitions.Let (s1; s3) R0 P2 
 D(s3), and let (s1; s3) d�! (s01; s03), where s1 d�! s01, and s3 d�! s03.From the de�nition of a probabilistic timed forward simulation, for each s 2 
2 there existsa move s2 d; Ps of M2, and there exists a probability space P 02 of Probs(Probs(states(M2))),such thatXs2
2 P2[s]Ps = XP2
02 P 02[P ]P ; (12.1)and D(s01) vR P 02: (12.2)Moreover, from the de�nition of a probabilistic timed automaton, there is a trajectory !3 fors3 d�! s03.For each s 2 
2, let Os be a generator for s d; Ps. De�ne a new generator O0s as follows:for each �nite execution fragment � of M2kM3 starting in (s; s3),258



1. if Os(�dM2) = (s0;P), where (s0;P) = Pi pi(s0; ai;Pi), each (s0; ai;Pi) is a transitionof M2, and �dM3 is consistent with !3, i.e., for each pre�x �0 of �, lstate(�0)dM3 =!3(ltime(�0)), then letting s003 denote lstate(�dM3),O0s(�) =Xi pi((s0; s003); ai;Pi 
P 0i);where P 0i = D(s003) if ai is a discrete action, and P 0i = D(!3(ltime(�) + ai)) if ai is atime-passage action.2. otherwise, O0s(�) = D(�).The move generated by each O0s is (s; s3) d; Ps 
 D(s03). In fact, an execution fragment �of M2kM3 is terminal for O0s i� �dM2 is terminal for Os and lstate(�dM3) = s03, and thus
O0s = 
s � D(s03). Moreover, for each � 2 
O0s , PO0s� = POs�dM2 .Denote Ps
D(s03) by P(s;s3). Then, for each (s; s3) 2 
2
D(s3), we have identi�ed a move(s; s3) a; P(s;s3). These are the spaces of Condition 2.a in the de�nition of a probabilistic timedforward simulation.From this point the proof proceeds exactly in the same way as the proof of Proposition 8.5.1.No modi�cation of the text is necessary.12.4 The Execution Correspondence Theorem: Timed Ver-sionThe execution correspondence theorem of Chapter 8 extends easily to the timed framework. Inthis section we de�ne the notion of a timed execution correspondence structure, show the timedversion of the execution correspondence theorem, and, as a consequence, show that probabilistictimed forward simulations are transitive.The timed execution correspondence theorem is stated in terms of the probabilistic execu-tions of a probabilistic timed automaton; however, it is easy to see that the same result can beextended to probabilistic timed executions: the execution correspondence theorem talks aboutcountably many states of a probabilistic timed execution; all the other points can be describedby arbitrary trajectories.12.4.1 Timed Execution Correspondence StructureThe de�nition of a fringe for a probabilistic timed execution is the same as the de�nition of afringe for a probabilistic execution. For the de�nition of fringe(H; i) the only di�erence is inthe way the length of a state of H is measured, and thus the de�nition given for probabilisticautomata is still valid.Let R be a probabilistic timed forward simulation fromM1 toM2. A timed execution corre-spondence structure via R is a tuple (H1; H2; m; S), where H1 is a probabilistic execution ofM1,H2 is a probabilistic execution ofM2,m is a mapping from natural numbers to fringes ofM2, andS is a mapping from natural numbers to probability distributions of Probs(Probs(states(H2))),such that 259



1. For each i, m(i) � m(i+ 1);2. For each state q2 of H2, limi!1Pq2
ijq2�q Pi[q] = PH [Cq];3. Let q1 R (
;F ; P ) i� for each q 2 
, t-trace(q) = t-trace(q1), and either(a) q1 does not end in �, each state of 
 does not end in �, and lstate(q1) R lstate(P),or(b) q1 and each state of 
 end in � and lstate(�-strip(q1)) R lstate(�-strip(P)).Then, for each i � 0, m(i) =PP2
S(i) PS(i)[P ]P , and fringe(H1; i) vR S(i).4. Let, for each i � 0, each q1 2 fringe(H1; i), and each q2 2 states(H2), Wi(q1; q2) 4=PP wi(q1;P)P [q2]. If Wi(q1; q02) = 0 for each pre�x or extension q02 of q2, then, for eachextension q01 of q1 such that q01 2 fringe(H1; i+ 1), and each pre�x or extension q02 of q2,Wi+1(q01; q02) = 0.12.4.2 The Main TheoremTheorem 12.4.1 Let M1 vFS M2 via the probabilistic timed forward simulation R, and letH1 be a probabilistic execution of M1. Then there exists a probabilistic execution H2 of M2, amapping m from natural numbers to fringes of M2, and a mapping S from natural numbers toprobability distributions of Probs(Probs(states(H2))), such that (H1; H2; m; S) is an executioncorrespondence structure via R.Proof. The proof has exactly the same structure as the proof of Theorem 8.6.1. Note that theonly di�erence between this theorem and Theorem 8.6.1 is in Condition 3, where we use timedtraces rather than traces.12.4.3 Transitivity of Probabilistic Timed Forward SimulationsThe timed execution correspondence theorem can be used to show that probabilistic timedforward simulations are transitive, i.e., if M1 vFSt M2 and M2 vFSt M3, then M1 vFSt M3.The proof of this result follows the same lines as the corresponding proof in the untimed case(cf. Section 8.6.4), where combined transitions are replaced by moves and traces are replacedby timed traces. We leave the details of the proof to the reader.12.5 Soundness for Timed Trace DistributionsAs for the untimed model, the timed execution correspondence theorem can be used to showthat probabilistic timed forward simulations are sound for the timed trace distribution precon-gruence. Since vFSt is a precongruence, it is enough to show that vFSt is sound for the timedtrace distribution preorder.Proposition 12.5.1 If M1 vFSt M2, then M1 vDt M2.260



Proof. Let M1 vFSt M2, and let H1 be a probabilistic execution of M1 that leads to a timedtrace distribution D1. From Lemma 12.4.1, there exists a probabilistic execution H2 of M2that corresponds to H1 via some mappings m;S. We show that H2 leads to a timed tracedistribution D2 that is equivalent to D1.Consider a cone C� of D1. The cone C� can be expressed as a union of cones of PH1 , andthus its measure can be expressed aslimi!1 Xq12fringe(H1;i)j��t-trace(q1)PH1 [Cq1]: (12.3)Consider a cone C� of D2. The cone C� can be expressed as a union of cones of PH2 , and thusits measure can be expressed aslimi!1 Xq22m(i)j��t-trace(q2)Pm(i)[q2]: (12.4)The reason for Expression (12.4) is that at the limit each cone expressing the occurrence of �is captured completely.Thus, it is su�cient to show that for each �nite � and each i,Xq12fringe(H1;i)j��t-trace(q1)PH1 [Cq1] = Xq22m(i)j��t-trace(q2)Pm(i)[q]: (12.5)From this point the proof proceeds exactly as the proof of Proposition 8.7.1.
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Chapter 13Conclusion13.1 Have we Met the Challenge?We have developed a model for the description of randomized distributed real-time systems, andwe have investigated how the new model can be used for the analysis of algorithms. The mainidea behind the model is to extend labeled transition systems to account for randomization insuch a way that probabilistic behavior and nondeterministic behavior are clearly distinct.We have shown how commonly used informal statements can be formulated in the newformalism, and we have shown how such statements can be proved to be correct in a formaland rigorous way. In particular, we have developed veri�cation techniques that resemble thecommon ways in which randomized algorithms are analyzed. The main improvement is thatnow we have a collection of results that allow us to determine when a speci�c argument can beused safely. Furthermore, we have shown how to derive upper bounds to the complexity of arandomized distributed algorithm using an ordinary time complexity measure as well as moreabstract complexity measures like \number of rounds in an asynchronous computation".Finally, we have extended several veri�cation techniques that are commonly used within thelabeled transition system model. We have extended the trace semantics of labeled transitionsystems and several of the existing simulation relations for labeled transition systems. Inparticular, all our preorder relations are compositional and the simulation relations are soundfor the trace-based semantics. Although we have not presented any example of veri�cationusing simulations, except for two toy examples based on coin ips, we are con�dent that in thefuture the method based on simulations will become of practical relevance as it happened forordinary automata.Therefore, we can claim that we have met the challenge given by randomization at leastpartially. Surely we understand much more of the problem than before. The fact that we havebeen able to prove new results about randomized algorithms is a positive sign. In particular,Aggarwal [Agg94] used successfully the technique presented in this thesis for the veri�cation ofthe randomized self-stabilizing algorithm of Aggarwal and Kutten [AK93], which is not trivialat all; during the veri�cation process Aggarwal discovered also a subtle bug in the originalprotocol. In the measure in which the power of a proof method is evaluated based on the bugsthat such method helps to discover, our methodology has achieved something. Indeed we havediscovered another bug on one existing algorithm, and the main issue is that we did not haveto work much to discover such a bug; essentially it was su�cient to try to reformulate the proof263



of correctness in our framework.13.2 The Challenge ContinuesAlthough we have improved considerably our understanding of randomization in distributedcomputation, what we have discovered looks like the tip of the iceberg. We have addressedseveral problems, and in solving them we have addressed more the basic methodology ratherthan an extensive analysis of all the possible solutions. Therefore, there are several directions forfurther research that can be pursued. Here we suggest some of the most important directions.13.2.1 Discrete versus Continuous DistributionsThroughout this thesis we have assumed that the probability distributions associated with thetransitions of a probabilistic automaton are discrete. Although such assumption is su�cientlygeneral for the study of several randomized algorithms, several other real-time systems are betterdescribed by using continuous distributions. Examples involve algorithms for transmission ofdata along a common wire, scheduling algorithms for massively parallel machines, and queuingsystems. Moreover, continuous distributions would be more suitable for the study of randomizedhybrid systems.The extension of the theory to continuous distributions involves nontrivial measure theoret-ical problems. In particular it is not the case any more that any union of cones is measurable;thus, not even the event that expresses the occurrence of an action or the reachability of astate is measurable in general. The events with probability 0 need a more careful treatmentwithin the model with continuous distributions. It is likely that some restrictions must beimposed to the model to ensure that some minimal set of events is measurable. Examples ofrestricted models with continuous distributions are the automata of Alur, Courcuobetis andDill [ACD91a, ACD91b], where the time that elapses between two transitions is governed byan exponential distribution or by a distribution which is non zero in a �nite collection of closedintervals, and the models of [GHR93, Hil93, BDG94], where the time between the occurrenceof two actions is assumed to be distributed exponentially. Exponential distributions occur inseveral real systems and are easy to model due to their memoryless structure. However, otherdistributions should be studied.13.2.2 Simpli�ed ModelsWithin the context of ordinary automata Lynch and Tuttle [LT87] have developed a model ofI/O automata. The model enforces a distinction between Input actions and Output actionswithin an automaton, and requires that input actions are enabled from every state. Further-more, in a parallel composition context each action is required to be the output or internalaction of at most one process, i.e., each action is under the control of at most one process.Based on the Input/Output distinction Lynch and Tuttle can introduce fairness in the modelin a natural way, and in particular they can use the trace semantics as a meaningful notion ofimplementation. In general the trace semantics is not meaningful as a notion of implementationsince, for example, it is not sensitive to deadlock. The advantage of the use of traces is thattraces are easy to deal with. 264
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1/6 1/3 1/2Figure 13-1: Synchronization for probabilistic I/O automata.For this reason, it makes sense to study a theory of probabilistic I/O automata as anextension of the model of [LT87] and as a restriction of our model. An interesting point of amodel with I/O distinction is that it is possible to relax the requirement that all the transitionsof a probabilistic I/O automaton are simple. In particular, only the transitions with inputactions need to be simple, while all the others can be general. The parallel composition can bede�ned easily since a non-simple transition synchronizes only with simple transitions. Figure 13-1 gives an example of synchronization between a transition with three output actions a; b; c andtwo transitions of an I/O automaton with just two input actions a; b. A similar observationwas made also by Wu, Stark and Smolka in [WSS94].A restricted timed model with I/O distinction is introduced by Merrit, Modugno and Tuttle[MMT91]. In particular timing constraints can be described only by giving upper and lowerbounds to the time it takes for a process to perform the next transition whenever it is readyto do so. MMT automata turned out to be su�cient for the modeling of several distributedsystems, and in particular, due to their simple structure, made the analysis simpler than byusing the full automaton model. Once again, a study of the probabilistic version of the MMTmodel would be useful. The proofs that we have illustrated in Chapter 12 could be carried outin the probabilistic MMT model as well.Finally, the analysis of a system can be simpli�ed by studying time-deterministic probabilis-tic timed automata, i.e., probabilistic timed automata such that from each state s and each timed there is at most one state reachable from s in time d. In fact, if a system is time-deterministic,then the end points of a time-passage transition determine completely the trajectory that isspanned. Therefore, trajectories could be removed also from the direct analysis of randomizedtimed algorithms. It turns out that most of the times an algorithm can be described as atime-deterministic probabilistic automaton. Probabilistic MMT automata are an example oftime-deterministic probabilistic automata.13.2.3 Beyond Simple Probabilistic AutomataThe study of parallel composition and of the simulation relations of this thesis is done withinthe context of simple probabilistic automata. The main problem is that we did not �nd anyreasonable de�nition of parallel composition for general probabilistic automata that is consistentwith our synchronization style. We have just observed that in the presence of an Input/Outputdistinction it is possible to relax the simplicity condition and yet obtain a meaningful notionof parallel composition. It would be interesting to investigate other mechanisms that give ameaning to general probabilistic automata and yet work as we expect in the simple case.265



13.2.4 Completeness of the Simulation MethodWe have provided several simulation and bisimulation relations for probabilistic automata andprobabilistic timed automata, and we have shown that they are sound for the trace distributionprecongruence and the timed trace distribution precongruence, respectively. However, we havenot shown any completeness result for probabilistic forward simulations and probabilistic for-ward timed simulations. In [LV93a, LV95] it is shown that forward simulations together withanother kind of simulations called backward simulations are sound and complete for the tracepreorder. Are probabilistic forward simulations complete for the trace distribution preorder?If not, is there an equivalent of backward simulations that can lead to completeness?13.2.5 Testing Probabilistic AutomataWe have presented the trace distribution semantics as an example of a semantics based onabstract observations. Another widely known semantics for ordinary automata is the failuresemantics of Brookes, Hoare and Roscoe [BHR84], which in turn is connected to the testingpreorders of De Nicola and Hennessy [DH84]. Similarly to the trace distribution semantics,it should be possible to extend the failure semantics to the probabilistic framework and �nda su�ciently powerful context to distinguish probabilistic automata that are not in the corre-sponding precongruence relation. Possibly, a related theory of testing in the style of [DH84]should be de�ned. It is very likely that the new testing preorders will be similar to thoseof Yi and Larsen [YL92]. Other theories of testing for probabilistic automata are studied in[Chr90b, Chr90a, CSZ92, YCDS94] and are explained in Section 2.2.13.2.6 Liveness in Probabilistic AutomataIn the extension of the notion of an execution of an automaton we have obtained a parallelismbetween the theory of ordinary automata and the theory of probabilistic automata. In thisparallelism also the notion of liveness has found its place, although we have not addressed theissue in this thesis. In ongoing research we have given a simple de�nition of a live probabilisticautomaton as a pair (M;L) where L is an arbitrary subset of the probabilistic executions ofM ,and we have shown that the live trace distribution precongruence can be de�ned easily and canbe characterized by a live principal context , which is essentially the principal context pairedwith the set of its probabilistic executions. However, lot of work remains to be done within thetheory of liveness.First of all it would be useful to study how the de�nition of safety and liveness propertiesof Alpern and Schneider [AS85] extends to the probabilistic framework and what consequencessuch extension has. Furthermore, the use of the live trace preorder within ordinary automatamakes sense as a notion of implementation in the presence of I/O distinction and of a propertycalled receptiveness or environment-freedom [Dil88, AL93, GSSL94]. It would be useful tostudy the theory of receptiveness of [Dil88, AL93] and of environment-freedom of [GSSL94]in the context of randomization. In this case, di�erently from [GSSL94], the environment isexpressed by a function rather than by a sequence of actions. However, non-trivial problemsarise in imposing restrictions to the behavior of the environment.266



13.2.7 Temporal Logics for Probabilistic SystemsIn the chapters on direct analysis we have identi�ed a collection of probabilistic statementsthat are useful for the analysis of algorithms. However, there are several other statements thatcan be of interest. It would be desirable to �nd a probabilistic temporal logic that expressesas many properties as possible. The probabilistic modal logic of [LS89] is a direct extension ofthe modal logic of Hennessy and Milner [HM85] for reactive processes, but it is not su�cientlypowerful to deal with nondeterminism; similarly, the extended probabilistic logic of [LS92] is notsu�ciently powerful. The Probabilistic Computation Tree Logic of [HJ89, Han94] captures morethe consequences of the interplay between probability and nondeterminism; in [SL94] PCTL isgeneralized also to probabilistic systems with internal actions (WPCTL). However, there arestill properties that are useful and do not seem to be expressible in WPCTL. Speci�cally, wedo not know how to express a property of the kind \after something has happened, no matterwhere I am, something else will happen with probability at least p". Is there something missingin WPCTL? What would be a more appropriate temporal logic?Another issue is the relationship between the simulation method and temporal logic. Thatis, if a probabilistic automaton implements another probabilistic automaton according to someimplementation relation (e.g., trace distribution precongruence, probabilistic simulation, proba-bilistic forward simulation, etc.), what can we say about the implementation? What propertiesof the speci�cation are satis�ed by the implementation? More generally, given a probabilis-tic temporal logic and a preorder relation, what fragment of the logic is preserved by thepreorder relation? Somehow it is implicit that whenever we use some preorder relation as anotion of implementation we are interested only in the properties that are preserved by suchrelation; however, we need to know what are those properties. In [SL95] we have stated thatweak probabilistic simulation preserve a large fragment of WPCTL and that weak probabilisticbisimulations preserve WPCTL. The results of [SL95] can be proved easily given the results ofthis thesis. However, more work in this direction is necessary. In particular, some completenessresults would be useful.13.2.8 More Algorithms to VerifyIn this thesis we have illustrated our direct veri�cation technique by proving the correctnessof the randomized dining philosophers algorithm of Lehmann and Rabin [LR81] and of therandomized agreement protocol of Ben-Or [BO83]. In [Agg94] Aggarwal uses our model to verifythe correctness of the self-stabilizing minimum weight spanning tree randomized algorithm ofAggarwal and Kutten [AK93]. However, the technique should be tested against many otheralgorithms. We are currently investigating the agreement protocol of Aspnes and Herlihy [AH90]and the randomized mutual exclusion algorithm of Pnueli and Zuck [PZ86]. Based on the littleexperience that we have gained, we can say that the model provides us with a systematic wayof analyzing those algorithms, and in particular it provides us with a simple methodology toidentify the critical points of an algorithm.It is very likely that new coin lemmas need to be developed together with other techniquesfor the actual computation of the probability of an event. A technique that needs furtherdevelopment is the partition technique of Section 6.7. The analysis of other algorithms shouldmake clear what other techniques are necessary. Also, playing with the toy resource allocationprotocol of Chapter 5 can be very instructive. Although the protocol is simple, its analysis267



highlights several of the issues that arise in randomized distributed computation.It is also plausible, as it happened for non-probabilistic distributed algorithms, that somecomplex protocols can be veri�ed more easily by using the simulation method. Finding thosealgorithms would be an optimal way to test the hierarchical veri�cation method and possiblyto improve it.13.2.9 Automatic Veri�cation of Randomized SystemsFormal veri�cation usually involves two levels of analysis. First, an algorithm is analyzed ata high level by using the intuition that designers have of their own algorithm; then, a moredetailed veri�cation of the high level claims is carried out in order to guarantee correctness.The low level analysis is very tedious and involves checking a whole lot of uninteresting details.On the other hand, several times the low level analysis is the only way to discover aws in theintuitions about an algorithm.Fortunately, the low level analysis is amenable to automatic veri�cation, although the re-search in this area is still in progress. Model checking [EC82, CES83] is certainly a usefultechnique; in [SGG+93] it is shown how a theorem prover can be used to help in the veri�cationof a protocol using simulations; in [PS95] we have investigated how a randomized algorithmcan be veri�ed mechanically once the high level proof is formulated. However, there is still alot of work that needs to be done. It would be interesting to study how model checking andtheorem proving could be integrated to automatize part of the veri�cation of an algorithm.13.3 The Conclusion's ConclusionTo say what we have done in one sentence, we have provided a new way of reasoning aboutrandomized systems that integrates both the theoretical aspects of modeling and the basicrequirements for usage in practice. From the modeling point of view we have distinguished be-tween nondeterminism and probability explicitly and we have extended the main semantics thatare available within the labeled transition systems model; from the point of view of veri�cationwe have formalized some of the common informal arguments about randomized algorithms andwe have provided guidelines to determine whether an argument can be used safely. Further-more, we have provided a systematic way to analyze the complexity of randomized algorithms.All our results are compatible with previous work.As we have seen in the previous section, there are still many open problems in this area.Here we hope to have stimulated the curiosity of the reader to go much further. Needless tosay that for us (me) working on this project was a continuous discovery.
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Table of SymbolsWe list the symbols that are used in this thesis in the order they appear in the presentation.Each symbol is listed with a short description and a reference to the pages where it is �rstde�ned.
 Sample space. 33F �-�eld. 33�(C) �-�eld generated by a family of sets C. 33� Measure 33P Probability measure. 34E Event. 34completion() Completion of a measure. 34
 Product of �-�elds, of measures, and of discrete probability spaces. 35j Conditional of an event and of an event schema. 36j Conditional of a probabilistic execution fragment. 57P Probability space. 37D() Dirac distribution. 37U() Uniform distribution. 37Probs(C) Set of discrete probability spaces (
;F ; P ) with no 0-probabilityelements such that 
 � C. 37A Automaton. 37states() States of. 37start() Start states of. 37sig() Action signature of. 37ext() External actions of. 37int() Internal actions of. 37acts() Actions of. 37trans() Transitions of. 37a�! Transition with action a. 38=) Weak transition. 38� Execution (fragment). 39fstate() First state of. 39lstate() Last state of. 39frag() Execution fragments of. 39exec() Executions of. 39a Concatenation of executions. 39a Transition pre�xing operator. 52277



� Pre�x of. 39. Su�x operator. 39. Transition su�xing operator. 52� Trace. 40traces() Traces of. 40vT Trace preorder. 40k Parallel composition operator. 41M Probabilistic automaton. 46� Termination or deadlock symbol. 46ctrans() Combined transitions of. 48H Probabilistic execution (fragment). 49prfrag() Probabilistic execution fragments of. 49prexec() Probabilistic executions of. 49�# From an execution of a probabilistic execution fragment to an ex-ecution fragment of a probabilistic automaton. 51�"q0 From an execution fragment of a probabilistic automaton to anexecution of a probabilistic execution fragment. 51tr Transition. 51Ptr Probability space in the transition tr , i.e., tr = (s;Ptr) or, if tr issimple, tr = (s; a;Ptr). 51V Set of actions. 51U Set of states. 51trMs Transition leaving from state s in the fully probabilistic automatonM . 51PH Probability space associated with the probabilistic execution frag-ment H . 52C� Cone with pre�x �. 53a�!C Combined transition. 58a=)C Weak combined transition. 59O Generator of a weak transition. 60� Action restriction operator. 64d Projection operator. 65e Reverse of projection. 66Rename�() Renaming operator. 72HideI() Hiding operator. 73Advs() Adversaries for. 80prexec(M;A; �) Probabilistic execution fragment of M generated by adversary Awith starting condition �. 80e Event schema. 82Cones() Function that identi�es the points of satisfaction of a �nitely satis-�able event schema. 83�Cones Concatenation of two event schemas. 83PrAdvs ;�(e) R p Probabilistic statement. 84(�; F ) Oblivious relation. 92FIRST(: : :) Coin event: �rst occurrence of an action among many. 107278



OCC(i; : : :) Coin event: i-th occurrence of an action among many. 109GFIRST(S; E)() Coin event: �rst occurrence of an action among many with severaloutcomes. 122GCOIN (S; E)() General coin event. 125D Trace distribution. 138tdistr() Trace distribution of. 138tdistrs() Trace distributions of. 138itrace() Internal trace of. 139itdistr() Internal trace distribution of. 139itdistrs() Internal trace distributions of. 139vD Trace distribution preorder. 141vDC Trace distribution precongruence. 143CP Principal context, timed principal context. 145ptdistrs() Principal trace distributions of. 146vR Lifting of a relation to probability spaces. 168' Existence of a strong bisimulation. 169vSS Existence of a strong simulation. 169'P Existence of a strong probabilistic bisimulation. 171vSPS Existence of a strong probabilistic simulation. 171=P Existence of a weak probabilistic bisimulation. 172vWPS Existence of a weak probabilistic simulation. 172vFS Existence of a probabilistic forward simulation. 174vis() Visible actions of. 196! Trajectory. 197ltime() Last time of. 197t-frag() Timed execution fragments of. 199t-exec() Timed executions of. 199t-exec�() Extended timed executions of. 199te-frag() Time-enriched execution fragments of. 201te-prfrag() Probabilistic time-enriched execution fragments of. 202te-prexec() Probabilistic time-enriched executions of. 202sample() Function that applied to a probabilistic time-enriched executionH of a probabilistic timed automaton M returns a probabilisticexecution H 0 of M that samples H . 209t-sample() Function that applied to a probabilistic time-enriched executionfragment H of a probabilistic timed automaton M returns a prob-abilistic timed execution fragment H 0 of M that t-samples H . 211a; Move. 217EU;Advs [e] Worst expected time for success of the event schema e starting froma state of U under the action of an adversary from Advs. 227seq() Sequence of a timed sequence pair. 243tsp() Timed sequence pairs over some given set. 243t-trace() Timed trace of. 244t-tdistr() Timed trace distribution of. 246t-tdistrs() Timed trace distributions of. 247279



vDt Timed trace distribution preorder. 249vDCt Timed trace distribution precongruence. 249pt-tdistrs() Principal timed trace distributions of. 250'Pt Existence of a probabilistic timed bisimulation. 257vPt Existence of a probabilistic timed simulation. 258vFSt Existence of a probabilistic timed forward simulation. 258
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Indexabstract complexity, 238action, 37discrete, 196hiding operator, 73renaming operator, 72restriction, 139, 249signature, 37time-passage, 196visible, 196adversary, 19, 75, 79, 224deterministic, 79, 80, 224oblivious, 91schema, 80with partial on-line information, 79alternating model, 28automaton, 37fully probabilistic, 47probabilistic, 18, 46probabilistic Input/Output, 265probabilistic MMT, 265probabilistic semi-timed, 196probabilistic timed, 196simple probabilistic, 47timed, 195behavioral semantics, 135bisimulationprobabilistic timed, 257strong, 169strong probabilistic, 171weak probabilistic, 172coinevent, 103lemma, 103, 104coin lemma, 19compatibility, 41, 61compositionality, 136
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