
Quiescence, Fairness, Testing, and
Implementation

(Extended abstract)

the Notion of

Roberto Segala*

MIT Laboratory for Computer Science
Cambridge, MA 02139

Abs t rac t . Two different formalisms for concurrency are compared and
are shown to have common foundations. The Input/Output automaton
model and the theory of testing are analyzed in the framework of transi-
tion systems. The relationship between the fair and quiescent preorders
of I/O automata is investigated and the two preorders are shown to co-
incide on a large class of automata. I/O automata are encoded into the
theory of testing and the reversed MUST preorder is shown to be equiva-
lent to the quiescent preorder for strongly convergent, finitely branching
automata up to encoding. Conversely, a theory of testing is defined di-
rectly on I/O automata, and the new reversed MUST preorder is shown
to coincide with the quiescent preorder on strongly convergent, finitely
branching automata. Finally, some considerations are given on the issue
of divergence, and on other existing theories with an I/O distinction.

1 Introduction
Several theories of concurrency deal with the idea of implementation. Among
them, one of the most accepted theories is connected with the failure preorder
of [1,8] and with the theory of testing of [3, 7], which are closely related each
other [4]. Other theories deal with receptive systems [6, 9, 11], where there is a
clear separation between the events under the control of the external environ-
ment of a given object and those events under the control of the object itself.
Receptive theories are widely used in practise because they express ideas that
are very close to our general intuition and they allow us to express very gen-
eral liveness properties naturally. However, receptive theories are not sufficiently
general, since they do not allow the specification of non-receptive objects at a
sufficiently high level of abstraction.

In this paper we investigate how and when receptive theories can be viewed
as a special case of a general, non-receptive theory. The formalisms we use for
our analysis are the theory of testing [7] and the Inpu t /Outpu t automaton model
[11], which has been widely used for the verification of complex distributed al-
gorithms [10, 18]. At the end we also consider other two receptive models that
are closely related to the models used in our analysis.

* Supported by NSF grant CCR-89-15206, by DARPA contracts N00014-89-J-1988
and N00014-92-J-4033, and by ONR contract N00014-91-J-1046.

325

The main intuition at the base of the testing preorders is that objects are
compared based on their interactions with an external environment, therefore
they are compared based on the success or failure of experiments the external
environment performs on them. An experiment E MAY succeed on an object
O if there is a sequence of possible interactions between E and O for which
E is successful; an experiment E MUST succeed on an object O if all possible
interactions between E and O lead to the success of E. Two preorders can then
be defined over objects: the MAY preorder, which orders objects by the sets of
experiments that may succeed, and the MUST preorder, which orders objects
by the sets of experiments that must succeed. In [3] it is shown that the MUST

preorder coincides with the reversed failure preorder of CSP [8] on objects that
can never diverge. The failure preorder is used as an implementation relation
within the CSP community [1,2] and the intuitive idea at the base of its use
is that an implementation has to be more deterministic than its specification.
Therefore, the result of [3] also suggests a possible use of the MUST preorder as
an implementation relation.

In the I/O automaton model, each object is associated with an explicit inter-
face consisting of input, output and internal event names (actions). Input actions
are always enabled and the occurrence of output actions cannot be blocked by
the external environment. In other words, each object has to be receptive [6] on
its inputs and each action is the output action of at most one object. The notion
of implementation of I/O automata is expressed through fair trace inclusion,
where a fair trace of an automaton .4 is a sequence of actions (possibly infi-
nite) in which each subcomponent of .4 that is continuously willing to perform
some output or internal actions will eventually do so. Trivial implementations
are avoided by input enabling, since each implementation must accept its exter-
nal stimuli, and by fairness, since whenever a specification must perform some
output actions the implementation must do the same.

The main criticism against the I/O automaton model is that it is too restric-
tive: conditions like input enabling and actions under the control of at most one
component do not allow the specification of several devices at a sufficiently high
level of abstraction. A classical example is that of a buffer blocking its inputs
whenever it is full. Moreover, since fair traces are not closed under limit, fix-
point reasoning is not possible in general within I /O automata, while fixpoint
reasoning is one of the key features of the algebraic theory of processes based on
testing preorders. On the other hand fairness allows us to capture some liveness
properties that are not captured in general by the testing preorders and that are
important for the verification of several distributed systems [10, 11, 18].

A first step toward the study of the relationship between the process algebraic
and the I /O automata based approaches is in [17], where the impact of input
enabling on the operators of a generic process algebra is analyzed. The analysis
of [17] includes the definition of several preorder relations that gradually ap-
proximate the fair preorder. Among these is the quiescent preorder, which is the
reduction of the fair preorder to the finitary behavior of a system. A quiescent
trace is a sequence of actions leading a system to a state from which only input

326

actions are enabled. In [15] the quiescent preorder is studied within a process
algebraic theory of I/O automata and a fixpoint theorem is put forward. In [15]
there is also an attempt at using the quiescent preorder as an implementation
relation; however some counterexamples in [15] show that the quiescent preorder
does not provide an intuitively reasonable notion of implementation in general.
Thus, some restrictions are necessary.

In this paper we first study the relationship between the fair and the quiescent
preorders, and present a large class of automata for which they coincide. We then
show that the quiescent preorder of I/O automata is closely related to the theory
of testing when dealing with strongly convergent transition systems. We first
encode I/O automata as transition systems, making explicit the ideas that are
embedded within the Input/Output structure; then, we show that for strongly
convergent and finitely branching systems the encodings of I/O automata related
by the quiescent preorder are similarly related by the reversed MUST preorder.
As a corollary it is possible to identify a class of I/O automata for which the fair
preorder coincides with the notion of implementation of the CSP community.

We also show that it is possible to define a theory of testing similar to that of
[7] directly on I/O automata. Once again, the main theorem is that for strongly
convergent and finitely branching I/O automata the quiescent preorder coincides
with the reversed MUST preorder.

Finally, we consider two other well known formalisms with an Input/Output
distinction: the Receptive Process Theory of Mark Josephs [9], which is used
for the specification and verification of delay-insensitive circuits, and the Com-
plete Trace Structures of David Dill [6] which are used for the specification and
verification of speed-independent circuits. Both of these formalisms are closely
related to I/O automata and to the theory of testing.

The results of this work accomplish three goals at the same time: 1) they
show how different theories for the notion of implementation which are based on
independent intuitions lead to similar conclusions; 2) they show why, as in prac-
tise, it is often possible to avoid dealing explicitly with fairness when specifying
systems: the fairness part is already captured by the implementation relations;
3) they show a possible method for eliminating the input enabling constraint
of I/O automata by embedding them into a more general framework. Unfortu-
nately the price to pay is the absence of a fully general notion of fairness. Further
investigation is necessary in this direction.

The rest of the paper is organized as follows. Section 2 introduces transition
systems, I/O automata, and the theory of testing. Section 3 studies the rela-
tionship between the quiescent and the fair preorders. Section 4 encodes I/O
automata into a general, non input enabled, framework and studies the rela-
tionship between the quiescent preorder and testing theory. Section 5 defines a
theory of testing directly on I/O automata and shows the equivalence of the
quiescent and the reversed MUST preorders. Section 6 addresses the problem of
divergent transition systems. Section 7 relates Receptive Process Theory and
Complete Trace Structures to I/O automata and the theory of testing. Section
8 presents some concluding remarks.

327

2 Prel iminaries

2.1 Transition Systems

A transition system T consists of four components: a set states(T) of states; a
nonempty set start(T) C_ states(T) of start states; an action signature sig(T) =
(ezt(T), int(T)) where ext(T) and int(T) are disjoint sets of external and inter-
nal actions, respectively; a transition relation steps(T) C_ states(T) • acts(T) •
states(T), where acts(T) denotes the set ezt(T) U int(T) of actions.

A transition (q, a, q') E steps(T) is also written as q - ~ q'. We extend the
notion of transition to finite sequences of actions by taking the transitive closure
of steps(T). Two derived transition relations, abstracting from internal compu-

tations, are q =~ q' iff B, l,s2eint.(T)q slas2 sla q,. ql, and q =:~ q' iff 3saeint*(T) q
Given a state q E states(T) we denote by enabled(q) the set {a : q .~, q' for some

q'} of enabled actions from q, and we denote by wenabled(q) the set {a : q =g~ q'
for some q'} of enabled actions from q up to internal transitions.

An execution fragment of a transition system T is a finite or infinite sequence
of alternating states and actions a = qoaoqlalq2"" starting with a state and,
if the execution fragment is finite, ending in a state, where each (qi, hi, qi+l) E
steps(T). An execution is an execution fragment starting with a start state.

The external trace of an execution fragment c~ of a transition system T,
written etraceT(a), or just etrace(a) when T is clear, is the list obtained by
projecting a on to the set of external actions of T, i.e., efface(a) = a [ezt(T).
We say that ~ is a trace of a transition system T if there exists an execution a
of T with etrace(c~) = ft. We denote by etraces*(T) and etraces(T) the sets of
finite and all traces of T, respectively.

Two transition systems T1, T2 are compatible if int(T1)Nacts(T2) = acts(T1)N
int(T2) = 0. The parallel composition 711172 of two compatible transition sys-
tems T1,T2 is the transition system T such that states(T) = states(T1) x
states(T2), start(T) = start(T1) x start(T2), sig(T) = (ezt(T1)Uezt(T2), int(T1)U
int(T2)), and ((ql,q~),a, (q'x,q'2)) E steps(T)if f either 1) (ql, a,q'l) E steps(T1)
and (q2, a,q~2) e steps(T2), or 2) (ql,a, ql) E steps(T1), a ~ acts(T2) and q2 = q~,
or 3) (q2, a, q'~) E steps(T2), a q~ acts(T1) and ql = q~. In other words, T1 and T2
synchronize on their common actions and evolve independently on the others.

2.2 I / O A u t o m a t a

An I /O automaton A is a transition system with the following extra structure:
a parti t ion of ezt(A), (in(A), out(A)), consisting of input and output actions,
respectively; a parti t ion part(A) of local(A) = out(A) U int(A). The transition
relation steps(A) has the property that for each state q and each input action a
there is a step from q with action a; we then say that ,4 is input enabled.

An execution c~ of an automaton A is quiescent if it is finite and its final
state is quiescent, i.e., its final state does not enable any action from local(A).
An execution ~ is fair if either it is quiescent, or it is infinite and for each class

328

p E part(,4), either actions from p appear infinitely often in a or states from
which no action ofp is enabled appear infinitely often in c~. A quiescent trace of
.4 is the external trace of a quiescent execution of A. A fair ~race of .4 is the
external trace of a fair execution of ,4. The set of quiescent and fair traces of an
automaton ,4 are denoted by qtraces(,4) and ftraces(,4), respectively.

Based on external, quiescent, and fair traces, three preorder relations can be
defined between automata with the same external signature. The external trace
preorder is defined as

,41 E~ `42 iff etraces('41) C etraces(,42)

and bases its observations on the sequences of external actions that an automaton
may perform; the quiescent preorder [17] is defined as

"41 _EQ ,42 iff'41 E~ `42 and qtraces('41) C qtraces('42)

and considers also those sequences of actions leading an automaton to a quiescent
state; the fair preorder [11] is defined as

"41 EF `42 iff flraces('41) C ftraces(,42)

and considers those sequences of actions generable from executions in which
each subcomponent of the automaton that is continuously willing to perform
some local action is eventually allowed to proceed. The subcomponents of an
automaton ,4 are identified through the partition part(,4) of its locally controlled
actions.

The quiescent preorder is slightly complicate since it is based on external
and quiescent trace inclusions. It is an approximation of the fair preorder that
is based on finite executions only. External trace inclusion is needed to deal
correctly with automata that output forever.

The fair preorder is used to express the basic notion of implementation for I/O
automata: ,41 implements ,42 iff.4t EF `42. Input enabling guarantees that each
implementation accepts all external stimuli, while fairness guarantees that each
implementation provides some output whenever the specification must provide
some output. Mark Tuttle [11] writes: "The requirement that input be constantly
enabled ensures that our solutions are able to respond to all patterns of input.
The use of fairness ensures that the correctness of a solution will be judged only
by those behaviors in .which the system is actually given the chance to make
progress." Note that the above justifications are rather intuitive, however in this
paper we validate them by relating the fair and quiescent preorders to the theory
of testing.

2.3 The T h e o r y of Test ing

A different method for comparing transition systems is based on the observation
of the interactions between a transition system and an external experimenter
[3,5, 7]. An experimenter for a transition system T is a transition system E,

329

compatible with T, whose external actions are those of T plus an action w,
cMled the success action. An experiment x is an execution of TIlE which is
infinite or ends in a deadlocked state (complete execution). An experiment x is
successful if w is enabled in at least one state of x. We say that T MAY E if there
is a successful experiment of TILE. We say that T MUST E if each experiment of
TIlE is successful. Two preorder relations can be defined.

l . T1 EMAY T2 iff VE T1 MAY E implies T2 MAY E
2. T1 ~MUST T2 iff V E T1 MUST E implies T2 MUST E

The MAY and MUST preorders can be characterized differently without re-
ferring to a notion of external experimenter [3]. In particular the MAY preorder
coincides with the external trace preorder; for the MUST preorder we need some
definitions.

Given a transition system T and given a state q E states(T), we write q 1" if
q has an infinite internal computation q ~1 ql ~2 q2 ~ "'" where each ri is
an internal action. We write q I if q has no infinite internal computation. If q
we say that q is convergent and if q T we say it is divergent. The above notion
can be relativized to sequences of actions by defining q~e if q l , and q~as if q l
and q ~ q' implies q~ I s. We write q ~ if q J. s for each s E ext* (T) and we write
T ~ if q~ for each q E start(T). If T ~ we say that T is strongly convergent. In
other words, T ~ means that no divergent state will be reached for any sequence
of actions s.

Given a transition system T, a set of states Q c states(T), a sequence of
actions s E ext*(T), and a set of external actions A, we define Q after s =

I $ UqeQ{q E states(T)lq ~ q'} and we say that QMUSTA if[, for each q E Q and
each q' such that q ~ q', wenabled(q') N A r 0.

P r o p o s i t i o n l . Given two finitely branching transilion systems T1,T2 with the
same exlernal alphabet, 7"1 ~MUST T2 i ~ for each s E ext(T1)*, fiT1 ~ s then
1) T2 ~ s and 2) / o r each finite A C ext(T1), 7"1 after s MUST A implies T2 after
S MUST A. []

3 Q u i e s c e n t a n d F a i r P r e o r d e r s

The fair preorder is the only preorder relation among those we consider which
respects the infinite behavior of a system. It is the basic notion of implementation
for I /O automata. Unfortunately sets of fair traces, ordered by subset, are not
closed under limit.

Example 1. Consider the transition system T

a,b a,b

where a is an input action, b is an output action, and q0 is a start state. It is
easy to observe that each finite sequence a n is a quiescent (and thus fair) trace

330

of T since it is enough to loop on q0 and then move to ql. The infinite sequence
a ~, however, is not a fair trace of T since in any execution action b is enabled in
all states but (at most) one.

As a consequence of the above observation, standard fixpoint reasoning and
the use of finite objects for the description of infinite ones are not possible in
general when dealing with fairness.

The quiescent preorder is a simplification of the fair preorder that is based
only on the finitary behavior of a transition system. It allows fixpoint reasoning.
In [15] it is shown that the quiescent preorder does not coincide with the fair
preorder and does not express an intuitively reasonable notion of implementa-
tion in general. The rest of this section shows how the two preorders differ and
provides some sufficient conditions for them to coincide. We only consider I /O
au tomata without subcomponents (no partitioning of the locally controlled ac-
tions). These automata are called automata with a trivial fairness partition in
[14]. In our examples we also assume to have an internal action r .

Example 2. The transition systems

" .
T1- I b

r �9 �9

are equivalent according to the quiescent preorder if we consider a and b as
output actions. However, T1 and Tu are not equivalent according to the fair
preorder since a is a fair trace of T1 but not a fair trace of T2. In other words,
T1 is not an implementation of T2 according to I /O automata.

The problem outlined in Example 2 is that the quiescent preorder cannot
detect the possibility of refusing some output due to a divergence. A sufficient
restriction to avoid it is to ensure that all divergences can be detected through
a quiescent trace. Formally we give the following

D e f i n i t i o n 2 . An I /O automaton .4 is quiescent detectable if each finite fair
trace o f .4 is also a quiescent trace of .4.

Example 3. Consider the transition system T of Example 1, and consider a new
transition system T ~ with one state and a unique self-loop transition with action
a. If a is an input action and b is an output action, then it is easy to see that
T ~ CQ T. However, T ~ ~F T since a • is not a fair trace of T.

The problem presented in Example 3 is due to the non closure of quiescent
traces under limit. It can be solved by requiring the limit of any chain of quiescent
traces to be fair.

D e f i n i t i o n 3. An I /O automaton A is quiescent continuous if the limit of any
chain of quiescent traces of `4 is a fair trace of .A.

331

Quiescent continuity is a strong requirement, however Proposition 7 gives
sufficiently general conditions for an automaton to be quiescent continuous.

Example 4. Let a be an input action and b an output action. The transition
systems

are equivalent according to the quiescent preorder since they have the same
external traces and their quiescent traces are all traces containing at least a b
action. The trace a ~, however, is a fair trace of T1 but not a fair trace of T2.

The problem with Example 4 is that in T1 it is possible not to execute a
continuously enabled output action by letting T1 advance internally, whereas in
T2 the output action must be executed. The quiescent preorder can identify an
infinite fair execution that reaches a quiescent state infinitely many times or
contains infinitely many output actions; however, it cannot identify an infinite
fair execution that reaches finitely many quiescent states (0 in our example) and
contains finitely many output actions (0 in our example).

Def in i t ion4. An I/O automaton A is input quiescen~ detectable if each infinite
fair trace of ,4 with finitely many output actions has infinitely many prefixes
that are quiescent for ,4.

Input quiescent detectability is a very restrictive requirement and it is com-
plex to verify. An example of a non input quiescent detectable device is an
unbounded buffer which performs some internal update after receiving some in-
put. An infinite fair execution leading to an infinite trace with input actions
only can be obtained by interleaving each input action with the internal update,
however, if the buffer enables some output whenever it is not empty, no finite
sequence of input actions is a quiescent trace. Note that in Example 4 fairness is
expressing something different than the intuition that each subcomponent of a
system is given fair turns to proceed. In other words this is an example in which
the basic intuition of fairness for I/O automata is lost.

A last needed condition concerns the branching structure of a transition
system. It provides a sufficient condition for characterizing infinite external traces
through finite ones by guaranteeing continuity for external traces.

Def in i t ion5 . A transition system T has finite internal nondeterrninism (FIN)
if for each h E ext* (T) there are only finitely many states q in T such that

h
q0 =:~ q for some qo E start(T).

Note the use of ==~ in Definition 5. A transition system with FIN might
reach infinitely many states with a trace h; however, the set of states reachable
with the last external transition of any given trace h is finite. For this reason our
definition of FIN is weaker than that of [12]. Note also that FIN is weaker than

332

finitely branching when a transition systems is strongly convergent. In general
infinitely branching transition systems are considered to be ill-formed. However,
they can be used to model the possibility of receiving infinitely many different
inputs. What FIN says is that, after a specific input is chosen, only finitely many
possibilities are given.

T h e o r e m 6. Consider two Ii/0 automata A1, A2 with the trivial fair partition.

- I fAx is quiescent detectable and input quiescent detectable, and A2 is qui-
escent continuous and has FIN, then At C Q A9 implies A t C F A2.

- I fA~ is quiescent detectable then A1 C_r A2 implies A t C_Q Ag. []

The proof of Theorem 6 is a simple cases analysis. In order to better under-
stand quiescent continuity, the next proposition gives a sufficient condition.

P ropos i t ion 7. Given a transition system T, i f T has FIN and, for each state q,
each input action a, and each ql, q2 E {q'lq ~" q'}, qtraces(qt) "-" qtraces(q2),
then T is quiescent continuous. []

The above condition seems very unnatural, however it captures some inter-
esting cases that generally hold for specifications. One specific case is when for
each state q and each input action a the set {q'lq ~ q'} contains exactly one
element. In this case we say that the automaton is weakly input deterministic.
A subcase of weak input determinism is input determinism, when for each state
q and each input action a the set {q'[q ~ q'} contains exactly one element.

We conclude this section with a result about general I/O automata.

a

Propos i t ion8 . Let A be an I /O automaton. If for each input transition q
q' of steps(A) and each class x of part(A), an action of x is enabled from q'
whenever an action of x is enabled from q (i.e. input actions do not disable any
class of part(A)), then flraces(A) C flraces(A') where A' differ from A only in
that part(A') = {local(A)}. []

If an automaton A is implementing a specification S with a trivial fairness
partition, and if the involved automata satisfy the conditions of Theorem 6, then
the above proposition is giving a sufficient condition for deriving the full fair
preorder from the quiescent preorder. In fact, from A' C_O S we derive A' C F S,
and, from Proposition 8, we derive A ___F ,3. Examples of systems satisfying the
condition of Proposition 8 are the monotone automata for dataflow networks of
[16] and the semi-modular, speed independent circuits of [13].

4 F r o m I / O A u t o m a t a t o T e s t i n g

The main intuition behind I/O automata is that input actions are under the
control of the external environment while output actions are under the control
of the system. In other words, nondeterministic choice between input actions is
intended to be an external choice, while nondeterministic choice between output

333

actions is intended to be an internal choice. The following definition formalizes
the above idea by providing an encoding of input enabled transition systems
onto transition systems that are meant to represent the same object in the more
general, non input enabled, framework. We assume the existence of at least one
internal action r .

D e f i n i t i o n 9 . Given an I /O automaton ,4, the interface free automaton associ-
ated with ,4 is defined as 9r(,4) = (Q, start(,4), (ext(,4), int(,4)), steps) where

1. Q = states(,4) u {qq~lq a q, E steps(,4), a E local(,4)} where for each pair
q, q' E states(A) and each a E local(A) the expression qq'a denotes a new
state not occurring in states(A),

2. steps = {q ~> qq'[q E states(,4),qq" E Q}o
{qq'a a q'lqq'a eQ}u
{qq~ b q"lq b q,, e steps(,4),qq~ E Q,,b�9 in(,4)}U

{q b, q' e steps(,4)lb ~ in(,4), q is quiescent in .4}

At each state q an automaton decides which local action to perform by inter-
nally moving to a new state from which only the selected local action is enabled.
The new state also enables all input actions since only the external environment
can decide which input to provide.

Example 5. The figure below shows an example of encoding.

q0 q0

Y
L_) L_) L_)

b b b

The left automaton .,4 is converted into the transition system T(,4). Actions
a and e are output actions, while b is an input action. From state q0 of .,4
there are two outgoing transitions labeled with an output action (q0 ~ ~ ql and
q0 ~ q3), therefore two new states ((q0ql)a, (q0q3)e) are introduced, and from
state q0 of :~'('4) there are two internal transitions to the new states. In doing so
the transition system ~'('4) internally decides which output action to perform.
From the new states there is the preselected outgoing output transition together
with all the outgoing input transitions of q0.

The transformation :T preserves the external and quiescent traces of an au-
tomaton .4, where a quiescent traces of]-'('4) is the external traces of an exe-
cutions of ~('4) that ends in a state enabling only the input actions of .4. Also,
although the encoding of an I /O automaton is not input enabled in general, a
weaker notion of input enabling is preserved. The key idea behind the new input
enabledness condition is that a system is weakly input enabled whenever it can-
not prevent the environment from providing input. The above condition is met
even if all input actions are enabled from any state up to internal transition.

334

P ro pos l t l on lO . For each I / 0 automaton ,4, 5(.4) is weakly in(,4)-enabled,
i.e., for each state q E states(~r('4)) and for each a E in(,4), q ::~. []

Note that, if we only consider the reachable states of T, the definition of
weak enabledness is equivalent to "T is A-enabled if for each h E ext*(T) and
for each a E A, T after h MUST a".

Our main theorem states the relationship between the quiescent and the
MUST preorders. Its proof strongly relies on the fact that the stable states of f (, 4)
enable at most one output action. Thus, the simple knowledge that 3-'(,4) after
S MUST A allows us to conclude very strong properties of A by only looking at
the external traces of ~('4).

T h e o r e m l l . Let A1,.A2 be strongly convergent, finitely branching I / 0 au-
tomata. Then `41 U_q `42 iff Y:('4~.) _~MUST *f*(`41)" []

5 A T h e o r y o f T e s t i n g f o r I / O A u t o m a t a

In Section 4 we have related the quiescent preorder of I/O automata to the the-
ory of testing by encoding I/O automata into general labeled transition systems.
However, we can reduce the power of an experimenter according to the interac-
tion schemas of I/O automata and define a theory of testing directly on input
enabled transition systems. In this section we show that also this approach leads
us to the quiescent preorder when dealing with strongly convergent and finitely
branching I/O automata.

An experimenter ~ for an I/O automaton .4 is an I/O automaton, compatible
with ,4, whose input actions are the output actions of .4 and whose output
actions are the input actions of .4 plus an action w, called the success action.
The experimenters for I/O automata are less powerful than those of Section 4
since an experimenter ,C can only control the input actions of an automaton `4.
We denote the new testing preorders with E~IAy and -----MUST"

The alternative characterization of the MUST preorder given in Proposition 1
is still valid, however the definition of Q MUST A has to take into account the
fact that an automaton is in full control of its output actions and does not have
any control on its input actions.

Def ini t ion 12. Given an I/O automaton `4, a set of states Q c states(,4) and
a set of external actions A, we say that Q MUST A iff either 1) A N in(,4) ~ 0 or
2) for each q E Q, wenabled(q) M out(,4) C A and, for each q' such that q ~ q',
wenabled(q') M A 7s O.

The first condition says that any automaton must perform its input actions;
the second condition says that any automaton internally decides wich one of its
possible output actions to perform.

T h e o r e m 1 3 . Let "41,'42 be strongly convergent, finitely branching I / 0 au-
tomata. Then .41 E Q `4~ iff.A2 J __EMUST "41. []

335

6 Divergent Transition Systems

All the preorders that we have shown to coincide on strongly convergent transi-
tion systems are incomparable when dealing with divergent transition systems.

The MUST preorder considers a divergent state as chaotic, therefore nothing
can be guaranteed to happen after a divergence has occurred. A purely divergent
transition system is the minimal element of the MUST preorder, hence any other
transition system is considered to be an implementation of it.

The fair preorder of I/O automata, instead, has some distinguishing power
even in the presence of divergences. For example within the I /O automata theory
it is possible to verify the correctness of a component which is running in parMlel
with a purely divergent one. As a consequence of the fair preorder, a purely
divergent transition system is equivalent to a deadlocked one.

The quiescent preorder does not represent any intuition when dealing with
divergent transition systems. It is just a finite approximation of the fair preorder
which does not seem to work properly in the presence of divergences. Its useful-
ness is due to the fact that it allows fixpoint reasoning and that it represents a
well known intuition when the involved transition systems satisfy the conditions
of Theorem 6.

It is difficult at this stage to say what is the best approach to divergent
transition systems. The approach of testing leads to a very neat theory while
the approach of I /O automata (fairness) leads to a notion that is very closed to
our intuition. On the other hand Example 4 has shown that the fairness of I /O
automata may not be appropriate to every situation. It is the scope of further
research to find a reasonable extension of the analyzed preorder relations to
divergent transition systems.

7 Other Theories with I/O Distinction

7.1 R e c e p t i v e P rocess T h e o r y

Receptive Process Theory (RPT) [9] is an algebraic theory of receptive (input
enabled) objects which is used for the description of delay insensitive circuits.
Each object has an interface consisting of input and output actions and is re-
ceptive on its inputs. As for I /O automata, two RPT objects can be composed
in parallel only if they do not have any common output actions.

The semantics of an RPT expression is denotationM and is given in terms of
"failures", however these failures are not those of [8]. The failures of [9] coincide
with the quiescent traces of [17] (see Section 2) if we assume that a system
performing infinitely many output actions without being provided with any input
has a chaotic behavior (it is divergent).

An RPT object is considered to be divergent if "it can output forever or if
it can become quiescent in infinitely many different ways". The reason for this
choice is to avoid an hiding operator to introduce new divergences. RPT does
not consider infinite sequences of output actions to be desirable.

336

Another reason for the choice of [9] about divergence of infinite output se-
quences, and probably the most important one, is that it gives a simple way of
handling systems that output forever. The quiescent preorder of [17], in fact, has
to consider quiescent and external traces at the same time in order to correctly
handle transition systems that can output forever.

7.2 C o m p l e t e Trace S t r u c t u r e s

I n his PhD thesis [6] David Dill introduces Complete Trace Structures for the
description of speed-independent circuits. Formally, a complete trace structure
is a quadruple (I, O, S, F) where I is a set of input actions, O is a set of output
actions, S and F are two sets of finite and infinite strings (traces) over I U O.
Both S and F have to be mixed regular sets, i.e., sets obtained from the union
of a regular and an w-regular language over I U O. In other words S and F are
languages accepted by finite state machines. The set S is called the success set
and represents those traces that are considered to be successful for the described
system; the set F is called the failure set and represents those traces that lead to
a failure of the described system. A failure is used to model unexpected behaviors
from the environment.

A complete trace structure has to be receptive, i.e., it has not to control its
inputs. Formally, receptiveness is defined by means of games between the system
and the environment. The environment is allowed to add any finite number
(possibly 0) of input actions at each move, while the system is allowed to add
at most one output action at each move. A strategy for the system is a function
giving an output action (or nothing) for each finite sequence of environment
moves. A strategy for the system is a winning strategy if it leads to a trace of
P = S U F for any behavior of the environment. A complete trace structure is
said to be receptive if, for each prefix x of a trace of P, there exists a winning
strategy for the system starting the game after x has occurred.

The parallel composition of two complete trace structures 7" = (I, O, S, F)
and 7"' = (I ' , O', S', F ') , denoted by 7117-', is a new complete trace structure
((IUI')\(OUO'), OUO', S' , F') where S" and F " are those traces that projected
on 1 IJ O give traces of S and F respectively, and projected on I + U O + give
traces of S' and F ' respectively. If F " = 0, we say that 7-117- + is failure free,
and this means that T + can safely interact with 7". We say that a complete trace
structure 7-1 conforms to a complete trace structure 7-~ (T1 _ 7-+) if each complete
trace structure 7-' that can safely interact with "T~ can also safely interact with
:T1. The relation --< is called conformation preordcr and expresses the notion of
implementation for complete trace structures.

The idea of a failure, which is not the same as the idea of [8], is the aspect
of complete trace structures that has no corresponding notion within the other
theories we are considering in this paper. In fact, I /O automata and Receptive
Process Theory are receptive in the sense that they always respond to input
stimuli. Unexpected inputs are modeled by moving to special trap states from
which any behavior is possible. By ignoring failures it is possible to show that
each finite state I /O automaton can be described as a failure free trace structure

337

and that each failure free trace structure can be described by an I /O automaton.
Moreover, the conformation preorder coincides with the fair preorder.

P r o p o s i t i o n l 4 . Given a finite state I /O automaton A, the tuple Ctrace(A) =
(in(A), out(A),flraces(A), 0) is a complete trace structure. []

P r o p o s i t i o n 15. Given a failure free trace structure 7- = (I, O, S, 0) there exists
an I /O automaton Autom(7-) with input actions I, output actions O, and such
that flraces(Autom(T)) = S. []

The proof of Proposition 14 is constructive and essentially transforms a fi-
nite state I /O automaton into a finite state machine with normal and Biichi
acceptance states. The proof of Proposition 15 is based on the results about
union-game realizable languages of [14] and builds an infinite state automaton
starting from a complete trace structure 7.. An open problem is to find a con-
struction giving a finite state I/O automaton from a complete trace structure or
at least show whether or not such a finite state automaton exists.

P r o p o s i t i o n l 6 . Given two finite stale I /O automata AI ,A2 , ,41 C_F A2 iff
Ctrace(A1) ~ Ctrace(A2). Given two failure free complete trace structures 7.1, 7.2,
T1 ~ 7.2 iff Au tom(~) E_F Autom(T2). []

8 C o n c l u s i o n

We have analyzed the fair and quiescent preorders of I/O automata and the the-
ory of testing in the common framework of transition systems. The two theories,
although apparently different, are based on similar intuitions.

As a result of this paper we have given a class of I/O automata for which
the quiescent preorder is equivalent to a simple fair preorder not distinguishing
between the subcomponents of a system. We have also considered some cases in
which the quiescent preorder is equivalent to the standard fair preorder. Secondly
we have shown the relationship between the theory of I /O automata and that
of testing both by encoding the information contained in the interfaces of I /O
automata into general labeled transition systems and by defining testing pre-
orders directly on I/O automata. Our main result is that for strongly convergent
and input enabled transition systems the quiescent preorder of I /O automata
coincides with the reversed MUST preorder. Finally we have shown how other
two widely known theories of receptive systems [6, 9] relate to the above models.

We also have outlined some of the problems of divergences. It is not clear
yet what a divergence should really represent. The theory of testing deals with
divergences in a way similar to that of standard denotational semantics for se-
quential processes by considering a divergence as an absence of information; I /O
automata deal with divergences by identifying pure divergences with deadlocks.
This problem will be the argument of further research.

Acknowledgmen t s : I am grateful to Rocco De Nicola, Roberto Gorrieri, Alber
Meyer, Jergen Segaard-Andersen, Frits Vaandrager and David Wald for helpful
discussions.

338

References

1. S. Brookes, C. Hoare, and A. Roscoe. A theory of communicating sequential pro-
cesses. J. ACM, 31(3):560-599, 1984.

2. S. Brookes and A. Roscoe. An improved failures model for communicating pro-
cesses. In S. Brookes, A. Roscoe, and G. Winskel, editors, Seminar on Concur-
rency, LNCS 197, pages 281-305. Springer-Verlag, 1984.

3. R. De Nicola. Testing Equivalences and Fully Abstract Models for Communicating
Processes. PhD thesis, Department of Computer Science, University of Edinburgh,
1985.

4. R. De Nicola. Extensional equivalences for transition systems. Acta lnformatica,
24:211-237, 1987.

5. R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

6. D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1988.

7. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
8. C. ttoare. Communicating Sequential Processes. Prentice-I-IMl International, En-

glewood Cliffs, 1985.
9. M. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

10. B. Lampson, N. Lynch, and J. Sogaard-Andersen. Reliable at-most-once message
delivery protocols. Tech. report under preparation, Laboratory for Computer Sci-
ence, Massachusetts Institute Technology, 1993.

11. N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6 th Annual ACM Symposium on Principles of Distributed
Computing, pages 137-151, Vancouver, Canada, August 1987. A full version is
available as MIT Technical Report MIT/LCS/TR-387.

12. N. Lynch and F. Vaandrager. Forward and backward simulations for timing-based
systems. In J. de Bakker, C. Huizing, W. d. Roever, and G. Rozenberg, editors,
Proceedings of the REX Workshop "Real-Time: Theory in Practice", 600 of Lecture
Notes in Computer Science, pages 397-446. Springer-Verlag, 1991.

13. D. Muller and W. Bartky. A theory of asynchronous circuits. Annals of the Com-
putation Laboratory of Harvard University. Volume XXIX: Proceedings of an In-
ternational Symposium on the Theory of Switching, Part I, pages 204-243, 1959.

14. N. Reingold, D. Wand, and L. Zuck. Games I /O automata play. In W. Cleaveland,
editor, Proceedings CONCUR 9~, Stony Brook, NY, USA, volume 630 of Lecture
Notes in Computer Science, pages 325-339. Springer-Verlag, 1992.

15. R. Segala. A process algebraic view of I /O automata. Technical Report
MIT/LCS/TR-557, Laboratory for Computer Science, MIT, October 1992.

16. E. Stark. On the relations computable by a class of concurrent automata. In Pro-
ceedings of the 1990 SIGA CT-SIGPLA N Symposium on Principles of Programming
Languages, 1990.

17. F. Vaandrager. On the relationship between process algebra and input/output
automata. In Proceedings of the Sixth Annual Symposium on Logic in Computer
Science, 1991.

18. J. Welch, L. Lamport, and N. Lynch. A lattice-structured proof technique applied
to a minimum spanning tree algorithm. Technical Report MIT/LCS/TM-361,
Laboratory for Computer Science, MIT, June 1988.

