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Probabilisti Simulations for ProbabilistiProesses �Roberto Segala and Nany LynhMIT Laboratory for Computer SieneCambridge, MA 02139Abstrat. Several probabilisti simulation relations for probabilisti systems arede�ned and evaluated aording to two riteria: ompositionality and preserva-tion of \interesting" properties. Here, the interesting properties of a system areidenti�ed with those that are expressible in an untimed version of the Timed Prob-abilisti onurrent Computation Tree Logi (TPCTL) of Hansson. The de�nitionsare made, and the evaluations arried out, in terms of a general labeled transitionsystem model for onurrent probabilisti omputation. The results over weak sim-ulations, whih abstrat from internal omputation, as well as strong simulations,whih do not. 1. IntrodutionRandomization has been shown to be a useful tool for the solution of prob-lems in distributed systems [2, 3, 15℄. In order to support reasoning aboutprobabilisti distributed systems, many researhers have reently foused onthe study of models and methods for the analysis of suh systems [4, 6, 8, 26,29, 30℄. The general approah that is taken is to extend to the probabilistisetting those models and methods that have already proved suessful fornon-probabilisti distributed systems.In the non-probabilisti setting, labeled transition systems have beomewell aepted as a basis for formal spei�ation and veri�ation of onur-rent and distributed systems. (See, e.g., [21, 22℄.) A transition system isan abstrat mahine that represents either an implementation (i.e., a phys-ial devie or software system), or a spei�ation (i.e., a desription of therequired properties of an implementation). In order to extend labeled tran-sition systems to the probabilisti setting, the main addition that is neededis some mehanism for representing probabilisti hoies as well as nonde-terministi hoies [8, 26, 30℄.In the non-probabilisti setting, there are two prinipal methods that areused for analyzing labeled transition systems: temporal logi (e.g. [25℄),� Supported by NSF grant CCR-89-15206, and CCR-92-25124, by ARPA ontratsN00014-89-J-1988 and N00014-92-J-4033, and by ONR ontrat N00014-91-J-1046.Reeived July 1997.



2 SEGALA AND LYNCHwhih is used to establish that a system satis�es ertain properties, andequivalene or preorder relations (e.g., [9, 21, 22, 24℄), whih are used to es-tablish that one system \implements" another, aording to some notion ofimplementation. Eah equivalene or preorder preserves some of the proper-ties of a system, and thus the use of a relation as a notion of implementationmeans that we are interested only in the properties that suh a relation pre-serves.Among the equivalenes and preorders that have proved most useful arethe lass of simulation relations, whih establish step-by-step orrespon-denes between two systems. Bisimulation relations are two-diretional re-lations that have proved fundamental in the proess algebrai setting. Uni-diretional simulations, suh as re�nement mappings and forward simula-tions, have turned out to be quite suessful in formal veri�ation of non-probabilisti distributed systems [12, 20, 21℄. Thus, it is highly desirable toextend the use of simulations to the probabilisti setting.In this paper, we de�ne several extensions of the lassial bisimulation andsimulation relations (both in their strong and weak versions), to the proba-bilisti setting. There are many possible extensions that ould be made; it isimportant to evaluate the various possibilities aording to objetive rite-ria. We use two riteria: ompositionality and preservation of \interesting"properties. The �rst requirement, ompositionality, is widely aepted sineit forms the basis of many modular veri�ation tehniques.To make sense of the seond requirement, it is neessary to be spei�about what is meant by an \interesting" property. Here, we identify theinteresting properties of a system with those that are expressible in an un-timed version (PCTL) of the Timed Probabilisti onurrent ComputationTree Logi (TPCTL) of Hansson [8℄; as disussed in [8℄, this logi is suf-�iently powerful to represent most of the properties of pratial interest.Thus, our seond evaluation riterion is based on the types of PCTL for-mulas that a relation preserves. For the weak relations, i.e., the ones thatabstrat from internal omputation, we use a new version of PCTL, alledWPCTL, whih abstrats from internal omputation as well.We de�ne and evaluate our simulation relations in terms of a new generallabeled transition system model for onurrent probabilisti omputation,whih borrows ideas from [8, 30℄. The model distinguishes between prob-abilisti and nondeterministi hoies but, unlike the Conurrent MarkovChains of [8, 30℄, does not distinguish between probabilisti and nondeter-ministi states. A probabilisti automaton is a labeled transition systemwhose transition relation is a set of pairs (s;P), where P is a disrete prob-ability distribution over (ation, state) pairs and a speial symbol Æ, rep-resenting deadlok. If the distribution P is only over pairs with the sameation, then a transition is alled simple and an be denoted by s a�! P 0,where P 0 is a disrete probability distribution over states. The separationbetween nondeterministi and probabilisti behavior is ahieved by meansof adversaries (or shedulers), that, similar to [8, 26, 30℄, hoose a next tran-sition to shedule based on the past history of the automaton. In our ase,



PROBABILISTIC SIMULATIONS 3di�erently from [8, 26, 30℄, we allow an adversary to hoose the next transi-tion randomly. Indeed, an external environment that provides some inputessentially behaves like a randomized adversary.Our �rst major result is that randomized adversaries do not hange thedistinguishing power of PCTL and WPCTL. Intuitively, the main reasonfor this result is that PCTL and WPCTL are onerned with probabilitybounds rather than exat probabilities.We then rede�ne the strong bisimulation relation of [16℄ in terms of ourmodel, and also de�ne a strong simulation relation that generalizes the sim-ulation relation of [13℄, strengthening it a bit so that some liveness is pre-served. We show that strong simulation preserves PCTL formulas withoutnegation and existential quanti�ation. Next, we generalize the strong rela-tions by making them insensitive to probabilisti ombination of transitions,i.e., by allowing probabilisti ombination of several transitions in order tosimulate a single transition. The motivation for this generalization is thatthe ombination of transitions orresponds to the ability of an adversary tohoose the next transition probabilistially. Our seond main result is thatthe new relations, alled strong probabilisti bisimulation and strong proba-bilisti simulation, are still ompositional and preserve PCTL formulas andPCTL formulas without negation and existential quanti�ation, respetively.Similar to the strong ase, we de�ne new relations that abstrat frominternal omputation and we show that they preserve WPCTL. However,the straightforward generalization of the strong probabilisti relations, al-though ompositional, does not guarantee that WPCTL is preserved. Forthis reason we introdue two other relations, alled branhing probabilis-ti bisimulation and branhing probabilisti simulation, whih impose newrestritions similar to those of branhing bisimulation [7℄. Our third main re-sult is that branhing probabilisti bisimulation and branhing probabilistisimulation are ompositional and preserve WPCTL formulas and WPCTLformulas without negation and existential quanti�ation, respetively, up toa ondition about divergenes.The rest of the paper is organized as follows. Setion 2 de�nes the standardautomata of non-probabilisti systems; Setion 3 introdues our probabilistimodel; Setion 4 introdues PCTL, de�nes its semantis in terms of ourmodel, and shows that the distinguishing power of PCTL does not hange byusing randomized adversaries; Setions 5, 6 and 7 study the strong and weakrelations on our probabilisti model, and show how they preserve PCTLformulas; Setion 8 ontains some onluding remarks and further work.2. AutomataAn automaton A onsists of four omponents: a set states(A) of states,a nonempty set start(A) � states(A) of start states, an ation signaturesig(A) = (ext(A); int(A)) where ext(A) and int(A) are disjoint sets of ex-



4 SEGALA AND LYNCHternal and internal ations, respetively, and a transition relation trans(A) �states(A)�ats(A)�states(A), where ats(A) denotes the set ext(A)[int(A)of ations. Thus, an automaton is a state mahine with labeled transitions.Its ation signature desribes the interfae with the external environmentby speifying whih ations model events that are visible from the externalenvironment and whih ones model internal events.An exeution fragment � of an automaton A is a (�nite or in�nite) se-quene of alternating states and ations starting with a state and, if theexeution fragment is �nite, ending in a state, � = s0a1s1a2s2 � � �, whereeah (si; ai+1; si+1) is a transition of A. Denote by fstate(�) the �rst stateof � and, if � is �nite, denote by lstate(�) the last state of �. Further-more, denote by frag�(A) and frag(A) the sets of �nite and all exeutionfragments of A, respetively. An exeution is an exeution fragment whose�rst state is a start state. Denote by exe�(A) and exe(A) the sets of �niteand all exeutions of A, respetively. A state s of A is reahable if thereexists a �nite exeution of A that ends in s. A �nite exeution fragment�1 = s0a1s1 � � � ansn of A and an exeution fragment �2 = snan+1sn+1 � � �of A an be onatenated . In this ase the onatenation, written �1a�2, isthe exeution fragment s0a1s1 � � � ansnan+1sn+1 � � �. An exeution fragment�1 of A is a pre�x of an exeution fragment �2 of A, written �1 � �2, ifeither �1 = �2 or �1 is �nite and there exists an exeution fragment �01 ofA suh that �2 = �1a�01.3. The Basi Probabilisti Model3.1 Probability SpaesMost of our de�nitions rely on the notion of a probability spae, whih isused to denote whih events an be observed and what are their probabilities.A probability spae is a triplet (
;F ; P ) where 
 is a set, F is a olletionof subsets of 
 that is losed under omplement and ountable union andsuh that 
 2 F , and P is a funtion from F to [0; 1℄ suh that P [
℄ = 1and for any olletion fCigi of at most ountably many pairwise disjointelements of F , P [[iCi℄ =Pi P [Ci℄.The set 
 is alled the sample spae and ontains the objets that wewant to analyze. For example 
 = [0; 1℄. The set F is alled the �-algebraand ontains the subsets of 
 that we an measure, also alled events. Forexample F an be the set of measurable sets of [0; 1℄ aording to Lebesgue.Finally, P is alled the probability measure and is a funtion that assoiates ameasure with eah element of F . For example, P an assoiate eah elementof F with its Lebesgue measure.A probability spae (
;F ; P ) is disrete if F = 2
 and for eah C � 
,P [C℄ = Px2C P [fxg℄. It is immediate to verify that for every disrete



PROBABILISTIC SIMULATIONS 5probability spae there are at most ountably many points with a non-zeroprobability measure. Given a set X, we denote by Probs(X) the set ofdisrete probability spaes (
;F ; P ) whose sample spae 
 is a subset of X.The Dira distribution over an element x, denoted by D(x), is the proba-bility spae with a unique element x.Throughout the paper we denote a probability spae (
;F ; P ) by P. Asa notational onvention, if P is deorated with indies and primes, then thesame indies and primes arry to its elements. Thus, P 0i denotes (
0i;F 0i ; P 0i ).The produt of two disrete probability spaes (
1;F1; P1) and (
2;F2; P2),denoted by (
1;F1; P1)
(
2;F2; P2), is the disrete probability spae (
1�
2; 2
1�
2 ; P ), where P [(x1; x2)℄ = P1[x1℄P2[x2℄ for eah (x1; x2) 2 
1�
2.In other words, the produt of two disrete probability spaes P1;P2 is anew probability spae that desribes the operation of piking an element atrandom from P1 and P2 independently.3.2 Probabilisti AutomataDefinition 1. A probabilisti automaton M onsists of four omponents:a set states(M) of states, a nonempty set start(M) � states(M) of startstates, an ation signature sig(M) = (ext(M); int(M)) where ext(M) andint(M) are disjoint sets of external and internal ations, respetively, and atransition relationtrans(M) � states(M)� Probs((ats(M)� states(M)) [ fÆg);where ats(M) denotes the set ext(M) [ int(M) of ations.A probabilisti automaton M is simple if for eah transition (s;P) oftrans(M) there is an ation a of ats(M) suh that 
 � fag�states(M). Insuh a ase a transition an be represented alternatively as (s; a;P 0) whereP 0 2 Probs(states(M)), and it is alled a simple transition with ation a.A probabilisti automaton is fully probabilisti if it has a unique start stateand from eah state there is at most one transition enabled. 2Thus a probabilisti automaton di�ers from an automaton in that the ationand the next state of a given transition are hosen probabilistially. Thesymbol Æ that an appear in the sample spae of eah transition representsthose situations where a system deadloks. Thus, for example, it is possiblethat from a state s a probabilisti automaton performs some ation withprobability p and deadloks with probability 1� p.A simple probabilisti automaton does not allow any kind of probabilistihoie on ations. One a transition is hosen, then the next ation isdetermined and the next state is given by a random distribution.A fully probabilisti automaton is a probabilisti automaton without non-determinism; at eah point only one transition an be hosen.



6 SEGALA AND LYNCHAn ordinary automaton is a speial ase of a probabilisti automaton whereeah transition leads to a Dira distribution; the generative model of prob-abilisti proesses of [6℄ is a speial ase of a fully probabilisti automaton;simple probabilisti automata are partially aptured by the reative modelof [6℄ in the sense that the reative model assumes some form of nonde-terminism between di�erent ations. However, the reative model does notallow nondeterministi hoies between transitions involving the same a-tion. By restriting simple probabilisti automata to have �nitely manystates, we obtain objets with a struture similar to that of the ConurrentLabeled Markov Chains of [8℄; however, in our model we do not need todistinguish between nondeterministi and probabilisti states. In our modelnondeterminism is obtained by means of the struture of the transition re-lation. This allows us to retain most of the traditional notation that is usedfor automata.Definition 2. An exeution fragment � of a probabilisti automaton Mis a (�nite or in�nite) sequene of alternating states and ations startingwith a state and, if the exeution fragment is �nite, ending in a state,� = s0a1s1a2s2 � � �, where for eah i there exists a probability spae Psuh that (si;P) 2 trans(M) and (ai+1; si+1) 2 
. Denote by frag�(M) andfrag(M) the sets of �nite and all exeutions fragments of M , respetively.An exeution is an exeution fragment whose �rst state is a start state. De-note by exe�(M) and exe(M) the sets of �nite and all exeutions of M ,respetively.An extended exeution (fragment) of M is either an exeution fragmentof M , or a sequene � = s0a1s1 � � � ansnÆ suh that s0a1s1 � � � ansn is anexeution (fragment) of M . 2Even though we have de�ned exeutions for a probabilisti automaton, forthe study of the probabilisti behavior of a probabilisti automaton, somemore detailed struture is needed. Suh a struture, whih we all a proba-bilisti exeution, is introdued in Setion 3.3.The next de�nition shows how it is possible to ombine several transi-tions of a probabilisti automaton into a new one. Informally, a ombinedtransition leaving from a state s is obtained by hoosing a transition thatleaves from s probabilistially, and then behaving aording to the transitionhosen. Combined transitions play a fundamental role for the de�nition ofprobabilisti adversaries and the de�nition of our probabilisti simulations.Definition 3. Given a probabilisti automaton M , a �nite or ountableset fPigi of probability distributions of Probs((ats(M)�states(M))[fÆg),and a weight pi > 0 for eah i suh thatPi pi � 1, the ombinationPi piPiof the distributions fPigi is the probability spae P suh thatÆ 
 = � [i
i if Pi pi = 1[i
i [ fÆg if Pi pi < 1



PROBABILISTIC SIMULATIONS 7Æ F = 2
Æ for eah (a; s) 2 
, P [(a; s)℄ =Pfij(a;s)2
ig piPi[(a; s)℄Æ if Æ 2 
, then P [Æ℄ = (1�Pi pi) +PfijÆ2
ig piPi[Æ℄.A pair (s;P) is a ombined transition of M if there exists a �nite or ount-able family of transitions f(s;Pi)gi and a set of positive weights fpigi withPi pi � 1, suh that P =Pi piPi. Denote by trans(M) the set of ombinedtransitions of M . 2For notational onveniene we write s a�! P whenever there is a simpletransition (s; a;P) in M , and we write s a�!C P whenever there is a simpleombined transition (s; a;P) in M . We write s a�! whenever there exists aprobability spae P suh that s a�! P.We now turn to the parallel omposition operator, whih is de�ned inthe CSP style [11℄, i.e., by synhronizing two automata on their ommonations. As outlined in [8℄, it is not lear how to de�ne a parallel ompositionoperator for general probabilisti automata that extends the CSP operator ofordinary automata; thus, we only de�ne it for simple probabilisti automata.Definition 4. Two simple probabilisti automata M1 and M2 are ompat-ible if(1) int(M1) \ ats(M2) = ;, and(2) int(M2) \ ats(M1) = ;.The parallel omposition M1kM2 of ompatible simple probabilisti au-tomata M1 and M2 is the simple probabilisti automaton M suh that(1) states(M) = states(M1)� states(M2)(2) start(M) = start(M1)� start(M2)(3) ext(M) = ext(M1) [ ext(M2)(4) int(M) = int(M1) [ int(M2)(5) ((s1; s2); a;P) 2 trans(M) i� P = P1 
P2, suh that(a) if a 2 ats(M1) then (s1; a;P1) 2 trans(M1), else P1 = D(s1),and(b) if a 2 ats(M2) then (s2; a;P2) 2 trans(M2), else P2 = D(s2). 2Our analysis in this paper will fous on simple probabilisti automata, andwe use general probabilisti automata only for the analysis of probabilistishedulers. Several systems an be desribed as simple probabilisti au-tomata. A probabilisti Turing Mahine where we assume that eah ellof the random tape is instantiated when it is read for the �rst time is asimple probabilisti automaton with a unique ation, say � , whose statesare the instantaneous desriptions of the given mahine; an algorithm thatat some point an ip a oin or roll a die an be represented as a simpleprobabilisti automaton where the ipping and rolling operations are sim-ple transitions. If the outome of a oin ip or die roll a�ets the external



8 SEGALA AND LYNCHbehavior of the automaton, then the ip and roll ations an be followedby simple transitions whose ations represent the outome of the randomhoie. We emphasize that if we introdue an input/output distintion asin [20℄, then it is possible to ompose general probabilisti automata underthe onditions that their input ations appear only in simple transitions. Asimilar observation appears in [31℄.3.3 Shedulers and AdversariesSeveral papers in the literature use shedulers, sometimes viewed as ad-versarial entities, to resolve the nondeterminism in probabilisti systems[5, 8, 17, 30℄. An adversary (or sheduler) is an objet that shedules thenext transition based on the past history of a probabilisti automaton. Thenext transition an be hosen probabilistially.Definition 5. An adversary for a probabilisti automaton M is a funtionA taking a �nite exeution fragment � of M and returning a ombinedtransition of M that leaves from lstate(�). Formally, A : frag�(M) !trans(M) suh that if A(�) = (s;P), then s = lstate(�). An adversaryis deterministi if on input � it returns either transitions of M or the pair(lstate(�);D(Æ)), i.e., the next transition is hosen deterministially. Denotethe set of adversaries for a probabilisti automaton M by Advs(M). 2Observe that Æ an appear in the ombined transitions hosen by an adver-sary. Suh an option is useful when the ations enabled from some stateare meant to model input from the external environment and the adversaryplays the role of an environment that is not providing any input.Definition 6. An adversary shema for a probabilisti automaton M , de-noted by Advs , is a subset of Advs(M). If Advs is a proper subset ofAdvs(M) then Advs is a restrited adversary shema, otherwise Advs isa full adversary shema. 2Adversary shemas are used to redue the power of a lass of adversaries.Note, for example, that the set of deterministi adversaries is an example ofa restrited adversary shema whenever M is not fully probabilisti. Otherexamples of restrited adversary shemas are sets of adversaries that basetheir hoies only on partial knowledge of the past history. We refer thereader to [1, 19℄ for examples of analysis of distributed algorithms based onrestrited adversary shemas.In this paper, in order to guarantee some minimal liveness, we impose adi�erent restrition on our adversaries. Spei�ally, we denote by Padvs(M)the adversary shema where eah adversary an hoose Æ with a non-zeroprobability on input � i� there is no transition enabled inM from lstate(�),



PROBABILISTIC SIMULATIONS 9and we denote byDadvs(M) the set of deterministi adversaries of Padvs(M).In other words, our adversaries must shedule something whenever some-thing an be sheduled.We next de�ne what it means for a probabilisti automaton to run underthe ontrol of an adversary. Namely, suppose that M has already performedsome �nite exeution fragment � and that an adversary A starts resolvingthe nondeterminism at that point. The result of the interation betweenM and A is a fully probabilisti automaton, alled a probabilisti exeution,where at eah point the only transition enabled is the transition due to thehoie of A. A similar onstrution appears in [30℄. Unfortunately, thede�nition of a probabilisti exeution is not simple sine eah state ontainsthe past history of M .Definition 7. A probabilisti exeution fragment H of a probabilisti au-tomaton M is a fully probabilisti automaton suh that(1) states(H) � frag�(M).(2) for eah transition (�;P) of H there exists a ombined transition(lstate(�);P 0) of M , alled the orresponding ombined transition,suh that
0 = f(a; s)j(a; �as) 2 
g [ (fÆg \ 
); andP 0[(a; s)℄ = P [(a; �as)℄for eah (a; s) 2 
0. If q = lstate(�), then denote P by PHq and denote(�;P) by trHq .(3) eah state of H is reahable and enables one transition.A probabilisti exeution of M is a probabilisti exeution fragment of Mwhose start state is a start state of M . 2Condition (1) says that the states of a probabilisti exeution H ontainthe past history of M ; Condition (2) ensures that the transitions of H arederived from transitions of M by inluding the history in the new statesthat are reahed; Condition (3) is just tehnial to eliminate useless statesand to handle Æ uniformly. Observe that a state q may enable a transition(q;D(Æ)).Now we an de�ne formally what it means for a probabilisti automatonM to run under the ontrol of an adversary A.Definition 8. Given a probabilisti automaton M , an adversary A for M ,and a �nite exeution fragment � of M , the exeution H(M;A; �) of Munder adversary A with starting fragment � is the unique probabilisti exe-ution fragment of M whose start state is � and suh that for eah state q,if (q;P) 2 trans(H(M;A; �)), then the orresponding ombined transitionof (q;P) is A(q). 2



10 SEGALA AND LYNCH3.4 EventsWe de�ne a probability spae (
H ;FH ; PH) for eah probabilisti exeutionfragment H, so that it is possible to analyze the probabilisti behavior ofa probabilisti automaton one the nondeterminism is removed. This on-strution is slightly di�erent from the onstrution presented in [28℄.First of all, we observe that there is a strong orrespondene between theextended exeution fragments of a probabilisti automaton and the extendedexeutions of one of its probabilisti exeution fragments. We express thisorrespondene by means of an operator �"qH0 that takes an extended exe-ution fragment of M and gives bak the orresponding extended exeutionof H, and �# that takes an extended exeution of H and gives bak theorresponding extended exeution fragment of M .Then, the sample spae 
H an be de�ned as the set of extended exe-utions of M that orrespond to omplete extended exeution fragmentsof H, where an extended exeution � of H is omplete i� it is either in-�nite or � = �0Æ and Æ 2 
Hlstate(�0). For eah �nite extended exeu-tion fragment � of M , let C�, the one with pre�x �, be the set f�0 2
H j � � �0g, and let CH be the lass of ones for H. The probability�H(C�) of the one C� is the produt of the probabilities assoiated witheah edge that generates � in H. Formally, let q0 be the start state of H,and let s0 be lstate(q0). If � = q0as0a1s1 � � � sn�1ansn, then �H(C�) 4=PHq0 [(a1; q1)℄ � � �PHqn�1 [(an; qn)℄, where eah qi is q0as0a1s1 � � � aisi, and if � =q0as0a1q1 � � � qn�1anqnÆ, then �H(C�) 4= PHq0 [(a1; q1)℄ � � �PHqn�1 [(an; qn)℄PHqn [Æ℄,where eah qi is de�ned as before. In [27℄ it is shown that there is a uniquemeasure ��H that extends �H to the �-�eld �(CH) generated by CH , i.e.,the smallest �-�eld that ontains CH . FH is then obtained from �(CH)by extending eah event with any set of extended exeutions taken from 0-probability ones, and PH is obtained by extending ��H to FH in the obviousway. With this de�nition it is possible to show that any union of ones (evenunountable) is measurable. In fat, at most ountably many ones have anon-zero measure.Examples of events are the ourrene of a spei� �nite exeution �, whihis C�, and the ourrene of a spei� ation a, whih an be representedas the union of ones C� suh that ation a ours in �.In our analysis of probabilisti automata we are not interested in events forspei� probabilisti exeutions. Whenever we want to express a property,we want to express it relative to any probabilisti exeution. This is thepurpose of event shemas.Definition 9. An event shema e for a probabilisti automaton M is afuntion that assoiates an event of FH with eah probabilisti exeutionfragment H of M . 2An example of an event shema is the funtion that assoiates with eah



PROBABILISTIC SIMULATIONS 11probabilisti exeution fragment H the event of performing a spei� ationa. 4. Probabilisti Computation Tree LogiIn this setion we present the logi that is used for our analysis, and wegive it a semantis based on our model. It is a simpli�ation of the TimedProbabilisti onurrent Computation Tree Logi (TPCTL) of [8℄, where,unlike in [8℄, we do not onsider time issues. Then, we show that randomizedadversaries do not hange the distinguishing power of the logi.Consider a set of ations ranged over by a. The syntax of PCTL formulasis de�ned as follows:f ::= a j :f j f1 ^ f2 j JAff1 EU�p f2 j f1 AU�p f2 j f1 EU>p f2 j f1 AU>p f2Informally, the atomi formula a means that ation a is the only one thatan our during the �rst transition of a probabilisti automaton and thatation a must indeed our; the formula JAf means that f is valid for aprobabilisti automaton M after making the �rst transition invisible; theformula f1 EU�p f2 means that there exists an adversary suh that theprobability of f2 eventually holding and f1 holding till f2 holds is at leastp; the formula f1 AU�p f2 means that the same property as above is validfor eah adversary. For example, the property that under any shedulingpoliy ation a ours eventually with probability at least 1=2 is expressedby the formula true AU�1=2 a, where true an be expressed by the formula:(a^:a). For the formal semantis of PCTL we need two auxiliary operatorson probabilisti automata.Let M be a probabilisti automaton, a an ation of M , and s a state ofM . ThenM [(a; s)℄ is a probabilisti automaton obtained fromM by addinga new state s0, adding a new transition (s0; a;D(s)), and making s0 into theunique start state. In other words M [(a; s)℄ fores M to start with ation aand then reah state s.Let M be a probabilisti automaton. Then !M is obtained from M byadding a dupliate of eah start state, by making the dupliate states intothe new start states, and, for eah transition s a�! P ofM where s is a startstate, by adding a transition s0 ��! P from the dupliate s0 of s, where � isan internal ation that annot our in any PCTL formula. In other words!M makes sure that the �rst transition of M is invisible.Let M be a probabilisti automaton, and let � be an extended exeutionof M . Let w denote either � or >. Let an exeution � of M be ompletei� either it is in�nite or it is �nite and no transition is enabled in M fromlstate(�). Then we de�ne the satisfation relations M j= f and � j=M g asfollows



12 SEGALA AND LYNCHM j= a i� eah omplete exeution of Mstarts with ation a,M j= :f i� not M j= f ,M j= f1 ^ f2 i� M j= f1 and M j= f2,� j=M f1 U f2 i� there is n > 0 suh that � = s0a1s1 � � � ansna�0,for eah i; 1 � i < n, M [(ai; si)℄ j= f1,and M [(an; sn)℄ j= f2,M j= JAf i� !M j= f ,M j= f1 EUwp f2 i� there exists an adversary A and a start state s0suh that PH [ef1Uf2(H)℄ w p,where H = H(M;A; s0), and ef1Uf2(H) is the set ofelements �0 of 
H suh that �0 j=M f1 U f2,M j= f1 AUwp f2 i� for eah adversary A and eah start state s0,PH [ef1Uf2(H)℄ w p,where H = H(M;A; s0), and ef1Uf2(H) is the set ofelements �0 of 
H suh that �0 j=M f1 U f2.Note that for eah probabilisti exeution H the set ef1Uf2(H) an be ex-pressed as a union of ones, and thus it is an element of FH . This guaranteesthat the semantis of PCTL is well de�ned.In the de�nition above we did not mention expliitly what kind of ad-versaries to onsider for the validity of a formula. In [8℄ the adversariesare assumed to be deterministi. However, the semantis does not hangeby adding randomization to the adversaries. The intuitive justi�ation ofthis laim is that if we are just interested in upper and lower bounds tothe probability of some event, then any probabilisti ombination of eventsstays within the bounds. Moreover, deterministi adversaries are suÆientto observe the bounds.Theorem 1. For eah probabilisti automaton M and eah PCTL formulaf , M j= f relative to Dadvs(M) i� M j= f relative to Padvs(M).Proof sketh. The proof is by indution on the struture of the formulaf , and most of it is simple routine heking. Two ritial points are thefollowing: if M j= f1 EUwp f2 relative to randomized adversaries, thenwe need to make sure that there exists at least a deterministi adversarythat an be used to satisfy f1 EUwp f2; if M j= f1 AUwp f2 relative todeterministi adversaries, then we need to make sure that no probabilistiadversary would lead to a violation of f1 AUwp f2. In both ases the ideais to onvert a probabilisti adversary A for a probabilisti automaton Minto a deterministi one suh that the probability of ef1Uf2 is inreased (�rstase) or dereased (seond ase). The onversion is shown in [27℄. 2We now show how to hange the syntax and semantis of PCTL to ab-strat from internal omputation. The new logi is denoted by WPCTL.



PROBABILISTIC SIMULATIONS 13The syntax of WPCTL is the same as that of PCTL with the additional re-quirement that no internal ation an our in a formula. For the semantisof WPCTL, there are three main hanges.M j= a i� eah omplete extended exeution of M has at leastone external ation, and its �rst external ation is a,� j=M f1 U f2 i� there exists n > 0 suh that � = s0a1s1 � � � ansna�0,an is external, M [(an; sn)℄ j= f2, and foreah i; 1 � i < n, if ai is external, then M [(ai; si)℄ j= f1,M j= JAf i� )M j= f ,where )M hides the �rst external transitions of M , i.e., it is obtained fromM by dupliating all its states (and then removing the non-reahable onesat the end), by making the dupliates of the old start states into the newstart states, by reproduing all the internal transitions in the dupliatedstates, and, for eah external transition (s; a;P) ofM , by adding an internaltransition (s0; �;P) from the dupliate s0 of s, where � is a new internalation. Note that the satisfation relation for an exeution is de�ned solelyin terms of its external transitions.Theorem 2. For eah probabilisti automaton M and eah WPCTL for-mula f , M j= f relative to Dadvs(M) i� M j= f relative to Padvs(M).5. Strong RelationsIn this setion we analyze relations that are sensitive to internal ompu-tation. We formalize in our model the bisimulations of [16℄ (strong bisim-ulation) following the lines of [8℄, and the simulations of [13, 16℄ (strongsimulation); then, we show that strong bisimulation preserves PCTL andthat strong simulation preserves PCTL formulas that do not ontain nega-tion and EUwp. We then introdue two other oarser relations that allowprobabilisti ombination of transitions and ontinue to preserve PCTL for-mulas and PCTL formulas without negation and EUwp, respetively. Foronveniene, throughout the rest of this paper we assume that no pair ofprobabilisti automata has any state in ommon.Definition 10. Let R be an equivalene relation over a set X. Two prob-ability spaes (
1;F1; P1) and (
2;F2; P2) of Probs(X) are R-equivalent,written (
1;F1; P1) �R (
2;F2; P2), i� for every lass C of X= R,Xx2
1\C P1[x℄ = Xx2
2\C P2[x℄:In other words (
1;F1; P1) and (
2;F2; P2) are R-equivalent if they assignthe same probability measure to eah equivalene lass of R. 2



14 SEGALA AND LYNCHDefinition 11. A strong bisimulation between two simple probabilisti au-tomataM1 andM2 is an equivalene relationR over states(M1)[states(M2)suh that(1) eah start state of M1 is related to at least one start state of M2, andvie versa;(2) for eah s1 R s2 and eah transition s1 a�! P1 of either M1, M2, thereexists a transition s2 a�! P2 of either M1, M2 suh that P1 �R P2.We write M1 ' M2 whenever ats(M1) = ats(M2) and there is a strongbisimulation between M1 and M2. 2Condition 2 of De�nition 11 is stated in [16℄ in a di�erent but equivalentway, i.e., for eah equivalene lass [x℄ of R, the probabilities of reahing[x℄ from s1 and s2 are the same. Strong bisimulation oinides with thestrong bisimulation of [22, 24℄ whenever the involved probabilisti automatarepresent ordinary automata.The next de�nition is used to introdue strong simulations. A similarde�nition appears in [13℄. Informally, (
1;F1; P1) vR (
2;F2; P2) meansthat there is a way to split the probabilities of the states of 
1 between thestates of 
2 and vie versa, expressed by a funtion w, so that the relationR is preserved. In other words the left probability spae an be embeddedinto the right one up to R.Definition 12. Let R� X � Y be a relation between two set X;Y , andlet (
1;F1; P1) and (
2;F2; P2) be two probability spaes of Probs(X) andProbs(Y ), respetively. Then (
1;F1; P1) and (
2;F2; P2) are in relationvR, written (
1;F1; P1) vR (
2;F2; P2), i� there exists a funtion w :X � Y ! [0; 1℄ suh that(1) for eah x 2 X, Py2Y w(x; y) = P1[x℄,(2) for eah y 2 Y , Px2X w(x; y) = P2[y℄,(3) for eah (x; y) 2 X � Y , if w(x; y) > 0 then x R y.The funtion w is alled a weight funtion. 2Definition 13. A strong simulation between two simple probabilisti au-tomata M1 and M2 is a relation R� states(M1)� states(M2) suh that(1) eah start state of M1 is related to at least one start state of M2;(2) for eah s1 R s2 and eah transition s1 a�! P1 of M1, there exists atransition s2 a�! P2 of M2 suh that P1 vR P2.(3) for eah s1 R s2, if s2 a�!, then s1 a�!.



PROBABILISTIC SIMULATIONS 15We write M1 vSS M2 whenever ats(M1) = ats(M2) and there is a strongsimulation between M1 and M2. The kernel of strong simulation is denotedby �SS. 2If we do not inlude Condition 3 in the de�nition of a strong simulation,then we obtain a relation that extends the strong simulation relation ofordinary automata. Here we add Condition 3 to guarantee some minimumliveness requirements, thus extending the 2/3-bisimulation relation of [16℄.Condition 3 is fundamental for the preservation of PCTL formulas; howeverit an be relaxed by requiring s1 to enable some transition whenever s2enables some transition.Proposition 1. ' and vSS are ompositional. That is, for eah M1 andM2 suh that ats(M1) = ats(M2), and for eah M3 ompatible with bothM1 and M2, if M1 'M2, then M1kM3 'M2kM3, and if M1 vSS M2, thenM1kM3 vSS M2kM3. 2Lemma 1. Let X;Y be two disjoint sets, R be an equivalene relation onX [ Y , and let P1 and P2 be probability spaes of Probs(X) and Probs(Y ),respetively, suh that P1 �R P2. Then P1 vR0 P2, where R0=R \X � Y .Lemma 1 an be used to prove diretly that bisimulation is �ner than simu-lation. The same observation applies to all the other pairs of relations thatwe de�ne in this paper.Theorem 3. Let M1 and M2 be two simple probabilisti automata, and letf be a PCTL formula.(1) If M1 'M2, then M1 j= f i� M2 j= f .(2) If M1 vSS M2 and f does not ontain any ourrene of : and EUwp,then M2 j= f implies M1 j= f .Proof sketh. The proofs are by indution on the struture of f , wherethe nontrivial step is the analysis of f1 AUwp f2 and f1 EUwp f2. In the�rst ase it is enough to show that for eah probabilisti exeution H1 ofM1 obtainable from some adversary there exists a probabilisti exeutionH2 of M2, obtainable from some adversary, suh that PH2 [ef1Uf2(H2)℄ �PH1 [ef1Uf2(H1)℄. In the seond ase we need to make sure that PH2 [ef1Uf2(H2)℄ =PH1 [ef1Uf2(H1)℄.The probabilisti exeution H2 is built by reproduing the struture of H1via R. We also need to ensure that H2 is obtainable from some adversary,and for this part we need Condition 3 of De�nition 13. Indeed, if Æ oursin a transition enabled from a state q of H2, then there is some state q0 ofH1 that orresponds to q via R and that ontains Æ in the transition that itenables. Then, lstate(q0) does not enable any transition in M2, whih, using
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Fig. 1: Strong simulations do not preserve EUwp.
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M1 M2Fig. 2: Probabilisti ombination of transitions is useful.Condition 3, means that lstate(q) does not enable any transition in M2. Wedo not need to show that H2 an be generated by a deterministi adversary(indeed this is false in general) beause of Theorem 1. The orrespondenebetween H1 and H2 is alled an exeution orrespondene struture and it isshown to exist in [27℄. One an exeution orrespondene struture is built,it is easy to show that PH2 [ef1Uf2(H2)℄ � PH1 [ef1Uf2(H1)℄ if R is a strongsimulation, and that PH2 [ef1Uf2(H2)℄ = PH1 [ef1Uf2(H1)℄ if R is a strongbisimulation. 2Example 1. PCTL formulas with ourrenes of EUwp are not preservedin general by �SS. Consider the two simple probabilisti automata of Fig-ure 1. The two probabilisti automata are strong simulation equivalent bymathing eah si with s0i and by mathing s2; s6; s7; s10 to s01; s03; s04; s08, re-spetively. However, the right probabilisti automaton satis�es true AU�1(a^ (true EU�1=2 )), whereas the left probabilisti automaton does not. 2Example 2. Consider the two probabilisti automata of Figure 2, wheres0; s00 are the start states, s1; s01 enable some transition with ation b, ands2; s02 enable some transition with ation . The di�erene between the leftand right probabilisti automata is that the right probabilisti automatonenables an additional transition whih is obtained by ombining the two



PROBABILISTIC SIMULATIONS 17transitions of the left probabilisti automaton. Thus, the two probabilistiautomata satisfy the same PCTL formulas; however, there is no simula-tion from the right probabilisti automaton to the left one sine the middletransition annot be reprodued. 2Example 2 suggests two oarser relations where it is possible to ombineseveral transitions into a unique one. Note that the only di�erene betweenthe new preorders and the old ones is the use of a�!C (ombined transitions)instead of a�! (regular transitions) in Condition 2.Definition 14. A strong probabilisti bisimulation between two simple prob-abilisti automataM1 andM2 is an equivalene relationR over states(M1)[states(M2) suh that(1) eah start state of M1 is related to at least one start state of M2, andvie versa;(2) for eah s1 R s2 and eah transition s1 a�! P1 of eitherM1, M2, thereexists a ombined transition s2 a�!C P2 of either M1, M2 suh thatP1 �R P2.We write M1 'P M2 whenever ats(M1) = ats(M2) and there is a strongprobabilisti bisimulation between M1 and M2. 2Definition 15. A strong probabilisti simulation between two simple prob-abilisti automataM1 andM2 is a relationR� states(M1)�states(M2) suhthat(1) eah start state of M1 is related to at least one start state of M2;(2) for eah s1 R s2 and eah transition s1 a�! (
1;F1; P1) of M1, thereexists a ombined transition s2 a�!C (
2;F2; P2) of M2 suh that(
1;F1; P1) vR (
2;F2; P2).(3) for eah s1 R s2, if s2 a�!, then s1 a�!.We write M1 vSPS M2 whenever ats(M1) = ats(M2) and there is a strongprobabilisti simulation between M1 and M2. The kernel of strong proba-bilisti simulation is denoted by �SPS. 2Proposition 2. 'P and vSPS are ompositional. 2Theorem 4. Let M1 and M2 be two simple probabilisti automata, and letf be a PCTL formula.(1) If M1 'P M2, then M1 j= f i� M2 j= f .



18 SEGALA AND LYNCH(2) If M1 vSPS M2 and f does not ontain any ourrene of : and EUwp,then M2 j= f implies M1 j= f . 2Even strong probabilisti bisimulations and strong probabilisti simulationsare a generalization of the strong bisimulation and simulation relations ofordinary automata. In fat, if a transition of M1 leading to a Dira dis-tribution an be simulated by a ombined transition of M2, then the sametransition ofM1 an be simulated by a non-ombined transition ofM2, whihleads to a Dira distribution if we are dealing with ordinary automata.Remark 1. Strong probabilisti simulations provide us with a simple wayto represent the losed interval spei�ation systems of [13℄. A probabilistispei�ation system of [13℄ is a state mahine where eah state is assoi-ated with a set of probability distributions over the next state. The set ofprobability distributions for a state s is spei�ed by assoiating eah states0 with a set of probabilities that an be used from s. In our framework aspei�ation struture an be represented as a probabilisti automaton that,from eah state, enables one transition for eah one of the probability distri-butions over the next states that are allowed. A probabilisti proess systemis a \fully probabilisti" (in our terms) probabilisti spei�ation system. Aprobabilisti proess system P is said to satisfy a probabilisti spei�ationsystem S if there exists a strong simulation from P to S.A losed interval spei�ation system is a spei�ation system whose setof probability distributions is desribed by means of a lower bound and anupper bound, for eah pair (s; s0), on the probability of reahing s0 from s.Thus, the set of probability distributions that are allowed from any stateform a polytope. By using our strong probabilisti simulation as satisfationrelation, it is possible to represent eah polytope by means of its orners only.Any point within the polytope is given by a ombination of the orners. 26. Weak TransitionsThe relations of Setion 5 do not abstrat from internal omputation, whilein pratie a notion of implementation should ignore the internal transitionsof a system as muh as possible. In order to do so, we extend our arrownotation in a way similar to the non-probabilisti ase [22℄. We de�ne theweak arrows a=) and a=)C to state that a probability distribution overstates P is reahed through a sequene of transitions of M , some of whihare internal. The main di�erene from the non-probabilisti ase is that inour framework the transitions involved form a tree rather than a linear hain.Formally, s a=) P, where a is either an external ation or the empty sequeneand P is a probability distribution over states, i� there is a probabilistiexeution fragment H suh that(1) the start state of H is s;
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Hg℄ = 1, i.e., the probability of termination in H is 1;(3) for eah �Æ 2 
H , trae(�) = a;(4) 
 = flstate(�) j �Æ 2 
Hg, and for eah element s0 of 
, P [s0℄ =P�Æ2
H jlstate(�)=s0 PH [C�Æ ℄;(5) for eah state q of H, either trHq is the pair (lstate(q);D(Æ)), or thetransition that orresponds to trHq is a transition of M .A weak ombined transition, s a=)C P, is de�ned as a weak transition bydropping Condition 5.Example 3. The diagram of Figure 3 represents graphially a weak transi-tion with ation a that leads to state s1 with probability 5=12 and to states2 with probability 7=12. We do not represent the states as �nite exeu-tion fragments sine their position in the diagram gives enough information.Similarly, we do not represent Æ expliitly. The ation � represents any in-ternal ation. From the formal de�nition of a weak transition, a tree thatrepresents a weak transition may have an in�nite branhing struture, i.e.,it may have transitions that lead to ountably many states, and may havesome in�nite paths; however, eah tree representing a weak transition hasthe property that in�nite paths our with probability 0. This de�nition ofa weak transition is more general than the de�nition given in [28℄, where itis required that no in�nite path appear in a weak transition.Figure 4 represents a weak transition of a probabilisti automaton with y-les in its transition relation. Spei�ally, H represents the weak transitions0 =) P, where P [s0℄ = 1=8 and P [s1℄ = 7=8. If we extend H inde�nitelyon its right, then we obtain a new probabilisti exeution fragment thatrepresents the weak transition s0 =) D(s1). Observe that the new proba-bilisti exeution fragment has an in�nite path that ours with probability0. Furthermore, observe that there is no other way to reah state s1 withprobability 1. 2
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7. Weak RelationsIn this setion we study the weak versions of the relations of Setion 5, andwe show how they relate to WPCTL. We introdue only the probabilistiversion of eah relation, sine the others an be derived subsequently in astraightforward way. We start by presenting the natural extension of theprobabilisti relations of Setion 5; then, in order to preserve WPCTL, weintrodue a branhing version of the new relations using the basi idea ofbranhing bisimulation [7℄.Weak probabilisti bisimulations and weak probabilisti simulations anbe de�ned in a straightforward manner by hanging Condition 2 of De�-nitions 14 and 15 so that eah transition s1 a�! P1 of a probabilisti au-tomaton an be simulated by a weak ombined transition s2 adext(M2)=)C P2 ofthe other probabilisti automaton, and by using weak transitions in Condi-tion 3. Even in this ase, with the opportune arguments about Condition 3,the weak probabilisti relations are an extension of the orresponding rela-tions for ordinary automata. However, although the two weak relations areompositional, WPCTL formulas are not preserved by weak bisimulationsand weak simulations. The key problem is that weakly bisimilar exeutionsdo not satisfy the same formulas. Consider the diagram below.s0 R�
// s1 af1 // s2 �

// s3 �
// s4Rs00 a? // s01Sine s01 and s2 are not neessarily related, it is not possible to dedueM [(a; s01)℄ j= f1 from M [(a; s2)℄ j= f1. To solve the problem we need tomake sure that s01 and s2 are related, and thus we introdue the branhingversions of our weak relations.Definition 16. A branhing probabilisti bisimulation between two sim-ple probabilisti automata M1 and M2 is an equivalene relation R overstates(M1) [ states(M2) suh that



PROBABILISTIC SIMULATIONS 21(1) eah start state of M1 is related to at least one start state of M2, andvie versa;(2) for eah s1 R s2 and eah transition s1 a�! P1 of eitherM1, M2, thereexists a weak ombined transition s2 adext(M2)=)C P2 of either M1, M2suh that P1 �R P2 and s2 adext(M2)=)C P2 satis�es the branhing ondi-tion, i.e., there is a probabilisti exeution fragment H that representss2 adext(M2)=)C P2 suh that for eah extended exeution �Æ of 
H andeah ourrene of a state s in �, either(a) s1 R s, a 2 ext(M2) implies that a has not ourred yet, andeah state s0 preeding s in � satis�es s1 R s0, or(b) a 2 ext(M2) implies that a has ourred, and for eah s01 2 
1suh that s01 R lstate(�), s01 R s.We write M1 'P M2 whenever ext(M1) = ext(M2) and there is a branhingprobabilisti bisimulation between M1 and M2. 2Another way to state the branhing ondition is the following: there isa probabilisti exeution fragment H that represents s2 adext(M2)=)C P2 suhthat, viewing H as a tree, all the the states of the tree that our beforeation a are related to s1, and whenever a state s02 of 
2 is related to somestate s01 of 
1, then all the states in the path from s2 to s02 that our afteration a are related to s01 as well. In other words, eah omplete path in thetree satis�es the branhing ondition of [7℄.Definition 17. A branhing probabilisti simulation between two simpleprobabilisti automata M1 andM2 is a relationR� states(M1)�states(M2)suh that(1) eah start state of M1 is related to at least one start state of M2;(2) for eah s1 R s2 and eah transition s1 a�! (
1;F1; P1) of M1, thereexists a weak ombined transition s2 adext(M2)=)C (
2;F2; P2) of M2 suhthat (
1;F1; P1) vR (
2;F2; P2), and s2 adext(M2)=)C (
2;F2; P2) satis�esthe branhing ondition.(3) for eah s1 R s2, if s2 a=), then s1 a=).We write M1 vBPS M2 whenever ext(M1) = ext(M2) and there is a branh-ing probabilisti simulation between M1 and M2. The kernel of branhingprobabilisti simulation is denoted by �BPS. 2Proposition 3. 'P and vBPS are ompositional. 2To show that WPCTL formulas are preserved by the di�erent simulationrelations, we need to guarantee that a probabilisti automaton is free from



22 SEGALA AND LYNCHdivergenes with probability 1. The de�nition below allows for a probabilis-ti automaton to exhibit in�nite internal omputation, but it requires thatsuh a behavior an happen only with probability 0.Definition 18. A probabilisti automaton M is probabilistially onver-gent if for eah probabilisti exeution H of M and eah state q of H, theprobability of diverging (performing in�nitely many internal ations and noexternal ations) from q is 0, i.e., PH [�q℄ = 0, where �q is the set of in�-nite exeutions of H that pass through state q and that do not ontain anyexternal ation after passing through state q. Note that �q is measurablesine it is the omplement of a union of ones. 2Theorem 5. Let M1 and M2 be two probabilistially onvergent, simpleprobabilisti automata, and f be a WPCTL formula.(1) If M1 'P M2, then M1 j= f i� M2 j= f .(2) If M1 vBPS M2 and f does not ontain any ourrene of : and EUwp,then M2 j= f implies M1 j= f .Proof sketh. Similar to the proof of Proposition 3. Here the onstrutionof H2 is muh more ompliated than in the proof of Proposition 3 due tothe fat that we need to ombine several weak transitions. Moreover, weneed to show that the branhing requirement guarantees the preservation ofproperties between bisimilar exeutions. 28. Conluding RemarksWe have extended some of the lassial simulation relations to a new prob-abilisti model that distinguishes naturally between probabilisti and non-deterministi hoie and that allows us to represent naturally randomizedand/or restrited forms of sheduling poliies. Our method of analysis isbased on ompositionality issues and preservation of PCTL and WPCTLformulas. Throughout the presentation we have shown how our relationsare a onservative extension of the orresponding relations de�ned on ordi-nary automata. We have observed that the distinguishing power of PCTLdoes not hange if we allow randomization in the shedulers. Based on that,we have introdued a new olletion of relations whose main idea is that aprobabilisti automaton may ombine some of its transitions probabilisti-ally in order to simulate another probabilisti automaton.In [27℄ this work is pursued further by extending the trae semantis ofordinary automata to the probabilisti framework. The key issue is ompo-sitionality, whih is not trivial to ahieve. We show that all the simulationrelations of this paper are sound for the trae semantis, and we introdueother oarser simulation relations that apture the trae semantis better.
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