Formal Aspects of Computing (1997) 3: 1-000
© 1997 BCS

A Comparison of Simulation Techniques
and Algebraic Techniques for Verifying
Concurrent Systems'

Nancy Lynch and Roberto Segala
MIT- Laboratory for Computer Science, 545 Technology Sq., Cambridhge, MA 02139, USA

Keywords: I/O automata; Process algebras; Simulation method; Verification

Abstract. Simulation-based assertional techniques and process algebraic tech-
niques are two of the major methods that have been proposed for the verification
of concurrent and distributed systems. It 1s shown how each of these techniques
can be applied to the task of verifying systems described as input/output au-
tomata; both safety and liveness properties are considered. A small but typical
circuit 1s verified in both of these ways, first using forward simulations, an exe-
cution correspondence lemma, and a simple fairness argument, and second using
deductions within the process algebra DIOA for I/O automata. An extended
evaluation and comparison of the two methods is given.

1. Introduction

Simulation-based assertional techniques and process algebraic techniques are two
of the major methods that have been proposed for the verification of concurrent
and distributed systems. Although the two methods are used for the same task,
the proofs that are carried out in the two styles seem to be quite different. Indeed,
the two methods have been developed by largely disjoint research communities,
using different semantic models. The literature contains many examples of proofs
using the two methods: some typical examples of simulation proofs appear in
[LyT87, SLL93a, SLL93b], while examples of algebraic proofs appear in [Bae90,
Jos92, OrP92].

1 Supported by NSF grant CCR-89-15206, by DARPA contracts N00014-89-J-1988 and
N00014-92-J-4033, and by ONR contract N00014-91-J-1046.
Correspondence and offprint requests to: Nancy Lynch and Roberto Segala

2 Nancy Lynch and Roberto Segala

In this paper, we unify, evaluate and compare the simulation-based and pro-
cess algebraic verification techniques in terms of the Input/Output automaton
(I/0 automaton) model of Lynch and Tuttle [LyT87]. This framework has been
used extensively for the verification of complex algorithms and pieces of dis-
tributed systems [WLL88, LaS92, LyP92, SLL93b], and has already been given
a process algebraic characterization [Vaa9l, Seg92, DnS92]. We show how each
of these techniques can be applied to the common task of verifying both safety
and liveness properties of systems described as I/O automata. We then use each
technique to verify a small but typical delay insensitive circuit taken from [Jos92]:
a Muller C element [MuB59] implemented in terms of a majority element and
a wire. Both the implementation and the specification are described as I/O au-
tomata, and the verification consists of showing that the fair preorder relation
(i.e., fair trace inclusion) holds between the implementation and the specification
automata.

The two proofs proceed very differently. First, the simulation proof uses a
forward simulation [LyV91] from the implementation to the specification, then
invokes an execution correspondence lemma [GSSL93] to obtain a correspon-
dence between executions of the implementation and the specification. Then a
simple argument about fairness i1s made, based on the correspondence between
executions; this fairness argument uses the convenient notion of a forcing condi-
tion for an I/O automaton fairness class. The fairness argument could easily be
formalized using a temporal logic of states and actions [Sta84, SLLI3b], although
we do not do this in this paper.

The algebraic proof uses deductions within the process algebra DIOA [Seg92]
for /O automata. This process algebra contains a collection of axioms (i.e.,
sound proof rules) asserting that the quiescent preorder relation holds for a pair
of I/O automata. The quiescent preorder is defined in [Vaa9l] and consists of
trace inclusion and quiescent trace inclusion. It is an approximation, based on
finite traces only, of the fair preorder. The reason for the use of the quiescent
preorder rather than the fair preorder is that quiescence fits nicely into a process
algebraic theory containing recursion whereas fairness does not. We state condi-
tions (proved in [Seg93]) giving some circumstances under which the quiescent
preorder 1s equivalent to the fair preorder. Since these circumstances hold in
our example, the DIOA deductions that prove quiescent trace inclusion are also
sufficient to prove the needed fair trace inclusion.

We emphasize that our two proofs are constructed to prove exactly the same
theorem. To make this clear we first give a “neutral” description of the verifica-
tion problem in terms of I/O automata. Then we describe and verify the same
problem in terms of an assertional representation of I/O automata and in terms
of DIOA expressions, using simulation and algebraic techniques, respectively.
We show formally that the two proofs are both solving the problem given in
the “neutral” description. This last step is essential in order to ensure sure that,
although we are using different formalisms, we are actually solving the same
problem.

We then give an extended comparison of the two verification methods, based
on our experiences in carrying out this research and on our other experiences
with related examples. Our comparisons consider the correspondence between
the two methods, their ability to model fairness, the style of their representation
of system components, their suitability for mechanization, and the byproducts
yielded by the proofs.

The rest of the paper is organized as follows. Section 2 contains a brief de-

Comparison of Simulation Algebraic Techniques for Verification 3

scription of the I/O automaton model. Section 3 contains a formal statement of
the circuit problem to be solved, i.e., showing that the fair preorder relation holds
between a particular implementation and a Muller C element specification. Sec-
tion 4 contains the verification using the simulation method. Section 5 contains
the verification using process algebra. Section 6 contains an extended comparison
between the two methods; Section 7 contains some additional conclusions.

2. The Input/Output Automaton Model

We begin with a brief review of the I/O automaton model, which will be used as
the basis of the rest of the work in this paper. For a complete account, we refer
the reader to [LyT87].

Definition 2.1. Given an alphabet A, let A* be the set of finite length sequences
made of elements of A and let A“ be the set of infinite length sequences made
of elements of A. Finally, let A* U A“ be denoted by A™.

Definition 2.2. An I/0 automaton A consists of five components:

o a set states(A) of states.

e a nonempty set start(A) C states(A) of start states.

e an action signature sig(A) = (in(A), out(A), int(A)) where in(A), out(A) and
int(A) are disjoint sets of input, output and internal actions, respectively. We
denote with ext(A) the set in(A)Uout(A) of external actions, and by local(A)
the set out(A)Uint(A) of locally controlled actions. We denote by acts(A) the
set ext(A) Uint(A) of actions. We call (in(A), out(A),#) the external action
signature of A.

e a transition relation steps(A) C states(A) x acts(A) x states(A) with the
property that for each state ¢ and each input action a there is a step from ¢
with action a. We say that A is input enabled.

o A partition part(A) of local(A).

A transition (¢, a,q’) € steps(A) is also denoted by ¢ — ¢’. We extend the
notion of transition to finite sequences of symbols by saying that

¢ =g i3y, g 90 =4, gn = ¢, and go = g1 - 5 g,
Similarly, for infinite sequences, we write

qaﬂg“iﬁ’g((]l) qiﬂhngﬂy..

€N

Two derived transition relations, abstracting from internal computations, are
a . 5148
¢ = ¢ iff 3, socinera) 1 — ¢,

a .
g = q iff 3, cinmay 1 = ¢
The last two transition relations can be extended to finite and infinite sequences

of actions in the same way as for steps(A).

Definition 2.3. An ezecution fragment of an I/O automaton A is a (finite or
infinite) sequence of alternate states and actions starting with a state and, if the
execution fragment is finite, ending in a state

4 Nancy Lynch and Roberto Segala

Q= qoa1q1a2q2 - -

where each (g;,ai41,¢i+1) € steps(4). We denote by frag*(A), frag®(A) and
frag(A) the sets of finite, infinite and all execution fragments of A, respectively.
An execution is an execution fragment whose first state is a start state. We denote
by exec*(A), exec”(A) and exec(A) the sets of finite, infinite and all execution of
A, respectively.

The trace of an execution fragment « of an I/O automaton A, denoted by
traces(a), or just trace(o) when A is clear, is the list obtained by projecting o
onto the set of external actions of A, i.e., trace(a) = afext(A).? We say that
3 is a trace of an I/O automaton A if there exists an execution o of A with
trace(or) = . We denote by traces*(A), traces*(A) and traces(A) the sets of
finite, infinite and all traces of A, respectively.

A key feature of the I/O automaton model is that the behavior of /O automata
is observed through their fair executions, i.e., those executions in which each
“subcomponent” which is continuously willing to perform some of its locally
controlled actions will eventually do so.

Definition 2.4. A fair execution fragment of an 1/O automaton A is an execu-
tion fragment o € frag(A) such that for all X € part(A)

o If « is finite then no action of X is enabled from the final state of «.

e If o is infinite then either actions from X appear infinitely often in « or states
from which no action of X is enabled appear infinitely often in «.

A fair ezecution is a fair execution fragment whose first state is a start state. A
fair trace is the trace of a fair execution. We denote the set of fair traces of an

I/O automaton A by ftraces(A).

Now we can define the usual preorder relation for I/O automata.

Definition 2.5. Given two I/O automata A and B with the same external ac-
tion signature, the fair preorder is defined as

ACp Biff ftraces(A) C ftraces(B).

The fair preorder is the relation that is used to model implementation in the
I/O automaton model. Since input enabling ensures that any implementation
must accept any external stimulus at any time, this preorder ensures that the
implementation must contain a “rich” set of traces — enough to describe responses
to any possible input pattern. Fairness ensures that the correctness of a solution
is judged only on the basis of those behaviors in which the system is actually
given the chance to make progress. Note that this preorder ensures that the
implementation must provide output whenever the specification must do so.

Three main operators are defined on 1/O automata: hiding, renaming and
parallel composition.

Definition 2.6. Given an I/O automaton A = (@, Qo, S,t, P) and a set of ac-
tions I such that I Nin(A4) = @, we define Hide;(A) to be the I/O automaton
(@, Qu, S’ t, P) where S differs from S in that

2 Our definition of trace coincides with the usual definition of behavior for I/O automata. We
have changed the terminology in the interests of consistency with the usual notation of process
algebra.

Comparison of Simulation Algebraic Techniques for Verification 5

o out(Hider(A)) = out(A)\I, and

o int(Hider(A)) = int(A) U (acts(A) N 1).
The hiding operator transforms external actions into internal ones, i.e.; it hides
some locally controlled actions from the external environment. The only differ-

ence between the original and the resulting I/O automaton is in the signature.
The executions stay the same, but the traces change.

Definition 2.7. An injective mapping f is applicable to an /O automaton A if
acts(A) C dom(f). Given an I/O automaton A = (Q, Qq, S, ¢, P) and a mapping
f applicable to it, we define f(A) to be (@, Qo, S, t’, P') where S’,t' and P’ are
defined as follows

o in(S) = f(in(A)), out(S) = flout(A)), int(S) = f(int(A)),

o t ={(q, f(a),q") : (q,a,q") € steps(A)}, and

o P ={(f(a), f(a")): (a,a’) € part(A)}.
Thus, the renaming operator simply renames actions of its operand. For the
parallel composition we need a notion of compatibility for action signatures.
Definition 2.8.

1. A set of action signatures {S; : i € I} are strongly compatibleiff for all i, j € I,
i F 7,
(a) out(S;) Nout(S;) =0, and
(b) int(S;) Nacts(S;) = 0.

2. A set of I/O automata {A; : ¢ € I'} are strongly compatible iff their action

signatures are strongly compatible.

Definition 2.9. The parallel composition [[;.; A; of strongly compatible 1/0
automata {A; : i € I'} is defined to be the I/O automaton A with
L. states(A) = [[,;¢ states(A;),
2. start(A) = Hie[start(A;),
3. sig(A) = [Lier sig(ai),
where the composition S = J[;.; Si of strongly compatible action signatures
{S; : 1 € I} is defined by
(a) in(S) = U, in(Si) — Usep out(5),
(b) out(S) = UiEI out(S;),
(¢) int(S) = Uies int(5),
4. part(A) = Uiejpart(Ai),

5. steps(A) = { ((¢:)ier, @, (¢))ier) : Vi € Ta & acts(A;) implies ¢; = ¢},
and a € acts(A;) implies (¢;, a, ¢}) € steps(A;)}

3. The Problem

In this section, we define the problem that we are going to solve using both
the simulation and algebraic methods. This problem is that of verifying the
correctness of a particular circuit implementation. We begin with an informal
description, then present the formal version in several pieces.

6 Nancy Lynch and Roberto Segala

[

Fig. 1. The Muller C element

C

Fig. 2. A majority element and a wire implementing a Muller C element

3.1. Informal Description

The example consists of a simple delay insensitive circuit, taken from [Jos92],
called the Muller C element [MuB59]. Tts interface is shown in Figure 1. A Muller
C element has two input ports a,b and one output port ¢. Once it is in its initial
state with all input and output voltage levels low, a Muller C element waits
for both its inputs to reach the high voltage level for then raising its output
voltage level. Tt then waits for both its inputs to reach the low voltage level
for then reaching again its initial state. In our specification no changes on the
input ports are allowed whenever the voltage level of an output port has to
change. Real implementations may exhibit unexpected behaviors (such as the
glitch phenomenon) in such cases. For the above reason we do not specify the
behavior of any element whenever an output voltage level has to change and an
input occurs.

A Muller C element can be implemented by a majority element and a were
as shown in Figure 2. A majority element is a device with three input ports and
one output port. The voltage level of its output port is that of the majority of
its input ports. For the majority element we allow the change of level of an input
port even if the output port has to change level. The required condition is that
the new input does not affect the ports that have to change voltage level.

A wire 1s simply a device with one input and one output. It waits for a change
of level on its input port for then changing the voltage level of its output port.

Comparison of Simulation Algebraic Techniques for Verification 7

Our problem is to verify that a Muller C element can really be implemented
by a majority element and a wire.

3.2. Formal Description
3.2.1. Actions as Voltage Level Transitions

In our formalization we use actions to model changes of voltage level (either from
low to high or from high to low) at a port. The observation of an action does
not give any information whether the voltage transition is from high to low or
vice versa. Qur use of actions is a consequence of the fact that the elements of
the problem we are analyzing can be described simply in terms of voltage level
transitions.

3.2.2. Specifications of the Elements

The specification S of an element is a tuple (@, Qo, S, T, P) consisting of a set of
states @), a set of start states (Jy, an interface S consisting of three disjoint sets
of input, output and internal actions respectively, a transition table 7', and a
partition of the locally controlled actions P. The transition table gives, for each
state and action, the future state, or not specified (NS), or not enabled (NE). The
entry not specified is reserved for input actions and stands for “the environment
1s not supposed to provide input at this point”; the entry not enabled is reserved
for local actions and stands for “this action cannot occur at this point”.

The specification style outlined above does not define 1/O automata directly;
however, it allows specifications that are very close to the informal specifica-
tions of Section 3. Later in this section we define formally how to interpret the
specifications below as I/O automata. The Muller C element, the wire and the
majority element specifications are denoted by Cn, Wx and My, respectively.
Here, N stands for “neutral” in the sense that these specifications are not bi-
ased toward either of the representation methods or verification techniques we
introduce later. We start with the formal specification of a Muller C element.

Specification 3.1. A Muller C element C is defined as follows.

S =({a,b},{c},0)
Q={0,{a}, {b},{a,b}}
Qo = {0}

P={{e}}

The transition relation is defined by the following table:

a b ¢
0l {a} {6} | NE

{a} 0 {a,b} | NE
10} || {a, b} 0 NE
{a,b} | NS NS 0

It is easy to check that the above specification corresponds to the informal one
given in Section 3. Starting from a state (} where the voltage level of each port
is the same (say low), the occurrence of an input action would cause the system

8 Nancy Lynch and Roberto Segala

to move to a new state in which the new voltage level of the given input port is
considered. When the voltage level of both the input ports is different from the
voltage level of the output port (state {a,b}) the output action ¢ is enabled and
no input is allowed to occur.

Specification 3.2. A wire Wy is defined as follows.

S = ({m}’ {C}’ 0)
Q= {\,m}

Qo = {A}

P ={{c}t}

The transition relation is defined by the following table:

m c
Al m | NE
ml[NS| A

Specification 3.3. A majority element My is defined as follows.

S = ({a,b,c}, {m},0)
Q= 9ia,b,c}

Qo = {0}

P ={{m}}

The transition relation is defined by the following table:

a b m

0 {a} {b} {c} NE
{a} 0 fa,b} | {a,c} | NE
{0} || {a, b} 0 {b,c} | NE
fep || {a,cr | {b,c} b | NE
{a,b} NS NS {a,b,e} | {c}
{a,c} NS {a,b,c} NS {b}
{b,c} || {a,b,c} NS NS {a}
fa,bch || {bc} | {ac} | {ab} | 0

3.2.8. From Specifications to I/O Aulomala

The formal specifications of Section 3.2.2 are not I/O automata since their tran-
sition relations are not input enabled. In particular it is necessary to define
carefully the meaning of the two special symbols NE and NS. The meaning of
NE is trivial: if T'(¢,a) = NE for a state ¢ and an output action a, then no
transition with action a occurs from state ¢. If T((¢,a) = NS for a state ¢ and
an input action a, then, since an I/O automaton is input enabled, a transition
from ¢ with action a must be defined. Intuitively we do not wish to constrain the
behavior of any implementation in the presence of an unspecified input. In other
words we want any implementation to be correct independently of the behaviors
it exhibits in the presence of some input that is not specified in the specifica-
tion. Since the implementation relation of /O automata is the fair preorder, the
above intuition is captured by introducing a new special state €2, and, whenever

T(q,a) = NS, by introducing a transition g —%5 Q. The transition relation on

Comparison of Simulation Algebraic Techniques for Verification 9

Q has to be defined in such a way that, given any sequence of actions 3, 1t is
possible to find a fair execution fragment o whose first state is © and such that
trace(o) = .

Definition 3.4. Given a specification § = (Q, Qu, (in, out,int), T, P) the /0
automaton A = A(S) is defined as

o states(A) = QU {Q}.
o start(A) = Qo.
o sig(A) = (in,out,int U {7, | p € P}).
o (q,a,q") € steps(A) iff
- T(q,a) = ¢ or
- T(g,a) =NS and ¢ =Q or
—g=q=Q

o part(A) = {pU{n}|pe€ P}

The following proposition states that everything is possible whenever €2 is reached,
i.e., any choice of implementation is correct whenever the specification reaches
state €2.

Proposition 3.5. Given a specification § and given any (possibly infinite) se-
quence 3 of external actions of &, there exists a fair execution fragment « of
A(S) whose first state is and such that trace(o) = 3.

Proof. The execution fragment « interleaves the actions of § with one internal
action from each class of part(A(S)). If 3 is finite then « fairly loops forever
on the internal actions from each class of part(A(S)) after § is completed. By
construction we know that each class has at least one internal action. Moreover
Q has a self loop with each action. [

Now we can state the problem formally: verify that

Hide y (A(M) [| AWN)) Er A(Cr).

4. A Verification using Simulation

In this section we carry out the verification of Section 3.2 using simulation-based
assertional techniques. We begin by presenting the relevant theory, then give
variants of the specifications of Section 3.2 that are better suited for carrying
out a simulation proof, and finally carry out the steps of the proof.

4.1. The Theory

In order to prove that an I/O automaton A implements another I/O automaton
B, it is necessary to prove that each fair trace of A is also a fair trace of B. Our
strategy for doing this is to obtain a strong correspondence between each execu-
tion of A and some execution of B; one way of obtaining such a correspondence
is by using a forward simulation. Then, the proof of fair trace inclusion can be
carried out in terms of the correspondence between executions.

In the fairness proof, it is notationally advantageous to use a generalization

10 Nancy Lynch and Roberto Segala

of 1/O automata known as forcing I/0O automata; this generalization does not
increase the expressive power of the model, but does allow more concise repre-
sentations.

Below, we define forward simulations, state the Execution Correspondence
Lemma, and give the needed definitions and results for forcing I/O automata.

4.1.1. Forward Simulations and the Execution Correspondence Lemma

The notion of forward simulation that we use is taken from the comprehensive
paper by Lynch and Vaandrager [LyV91].

Definition 4.1. A forward simulation from an I/O automaton A to an I/0
automaton B is a relation f over states(A) and states(B) that satisfies:

1. If ¢ € start(A) then flg] N start(B) £ 0.

2. If ¢ =5 ¢ and p € f[q], then there exists a state p’ € f[¢'] such that
alext(B) ,
=""p.
The usual conclusion that is drawn from the existence of a forward simulation
1s trace 1nclusion:

Lemma 4.2. Given two I/O automata A, B, if there is a forward simulation
from A to B, then traces(A) C traces(B).

However, since we would like to base our proof of fair trace inclusion on
our proof of trace inclusion, it is useful to have a stronger consequence of the
existence of a forward simulation. This lemma is proved in [GSSL93].3

Lemma 4.3. Let f be a forward simulation from an I/O automaton A to an
I/O automaton B. Then, for each execution o = ggayqiaszqs--- of A there is an
execution o’ = ¢}b1¢)bagh - - - of B and a total monotone nondecreasing mapping

c:{0,...,]o|} = {0,...,|&|} such that

1. ¢(0) =0,

2. q’c(i) € f(g) for all 0 < ¢ < |e],

3. be(iypr - beqyny[ext(B) = ajy1[ext(A) for all 0 < i < |af, and
4. for all ¢} there exists an 7 such that c(i) > j.

If the forward simulation is well chosen, then Proposition 4.3 can be used as
the basis for a proof of fair trace inclusion as follows. For each fair execution o of
A, first produce a corresponding execution o’ of B. Then show that the fairness
of a implies the fairness of any corresponding execution of B. This is the general
strategy that is followed in our proof.

4.1.2. Forcing I/O Automata

In carrying out the proof of fairness, it turns out to be notationally convenient
to use a slight generalization of I/O automata that we call forcing I/O automata
[SLL93b]. The generalization consists of associating a set of states, called a fore-
ing set, with each class of part(A). Forcing I/O automata are no more expressive

3 In [GSSL93], it is also shown that a similar lemma holds for other types of simulation relations
such as backward simulations.

Comparison of Simulation Algebraic Techniques for Verification 11

than ordinary I/O automata in terms of the sets of fair traces they can represent;
they are useful, however, because sometimes they admit more concise represen-
tations.

Definition 4.4. A forcing I/O automaton A is an 1/O automaton with the
following additional structure:

o a function force(A) associating a set of states with each partition of part(A)
such that, for each partition p € part(A) and each state ¢ € force(A)(p), there
exists an action from p which is enabled from ¢. The set force(A)(p) is called
the forcing set of p. It 1s a subset of the states enabling some action from p.
The set of states enabling some action from p is denoted by enabling(p).

The notion of fair execution for forcing I/0 automata differs from that of ordi-
nary I/O automata in that fairness is now expressed only with respect to states
in the forcing set of each class p of local actions.

Definition 4.5. A fair execution fragment of a forcing I/O automaton A is an
execution fragment o € frag(A) such that for all X € part(A)

e If « is finite then the final state of a is not in the forcing set of X.

e If o is infinite then either actions from X appear infinitely often in « or states
not in the forcing set of X appear infinitely often in «.

A fair execution is a fair execution fragment whose first state is a start state.

The following proposition says that forcing I/O automata do not add any new
expressive power to the I/O automaton model; moreover, it gives a particular
transformation from forcing I/O automata to I/O automata.

Proposition 4.6. Given a forcing I/O automaton A, consider an I/O automa-

ton F(A) where

o states(F(A)) = states(A)
o start(F(A)) = start(A)
o sig(F(A)) = (in(A), out(A),int(A) U {r, | p € part(4)})
o steps(F(A)) = steps(A)U{(q, 7, q) | p € part(A4), ¢ € (enabling(p)\ force(p))}
o part(F(A)) = {pU{n} | p € part(A)}
Then ftraces(A) = ftraces(F(A)).

Proof. Let 3 be a fair trace of A and let o be a fair execution of A such that
trace(«r) = /. Build an execution o' of F(A) from « in the following way: at each
state of a add a self loop with all the 7, actions that are enabled; if « is finite,
loop forever on the final state of o by performing all the enabled 7, actions in
a Round-Robin way. Note that trace(a’) = (3, so it is enough to show that o
is a fair execution of F(A). Suppose that o' is not fair for F(A). If o’ is finite
then there exists a class p of A with an enabled action from the last state of o
and such that 7, is not enabled from the last state of o’. Also, « is finite and
its last state enables an action from p. By definition of F the last state of « is
in the forcing set of p, therefore « is not a fair execution of A4; a contradiction.
Suppose that o is infinite and that there is a class p of A and a suffix o’ of o’
such that actions from p U {Tp} are contmuously enabled but never performed
in o''. By definition of o, 7, is never enabled in o'/, hence actions from p are
always enabled and never performed in o”. By deﬁnltlon of F, all the states of

12 Nancy Lynch and Roberto Segala

a’" are in the forcing set of p, hence there exists a suffix of a where actions from
p are always enabled and never performed and whose states are all in the forcing
set of p, 1.e., a is not fair; again a contradiction.

Conversely, let 3 be a fair trace of F(A) and let a be a fair execution of F(A)
such that trace(a) = 3. Build an execution o' of A by removing from « all the
transitions with actions of the form 7,. Note that trace(a’) = £, so it is enough
to show that o' is a fair execution of A. If « is finite, then the last state of o does
not enable any action from any class p, hence also the last state of o’ does not
enable any action from any class p, and o’ is fair. If « is infinite and o’ is finite,
then, by definition of o’ and F, the last state of ' is not in the forcing set of any
class p, hence o’ is fair. If « is infinite and o' is infinite, then, for each class p,
there are three possible cases. If states not enabling actions from pU{7,} appear
infinitely often in «, then states not enabling actions from p appear infinitely
often in o’; if actions from p appear infinitely often in «, then actions from p
appear infinitely often in o/; if actions from p U {7,} appear infinitely often in
a but actions from p appear finitely many times in «, then, by definition of F,
states not in the forcing set of p appear infinitely often in o’. In all of the above
cases the conditions for o’ to be fair are satisfied, therefore o' is a fair execution

of A. O

The standard operators of I/O automata can be easily extended to forcing 1/0
automata. The only nontrivial extension 1s that of the parallel operator, where
the forcing set of each class has to be modified to take into account the states of
the other forcing I/O automata. Consider for example a forcing I/O automaton
A composed in parallel with a forcing I/O automaton B and let ¢ be in the
forcing set of some class p of A. Whenever A reaches state ¢ in the composition
A || B, we want the global state of A || B to be in the forcing set of p. Therefore
all states of {¢} x states(B) have to be in the new forcing set of p.

Definition 4.7. The parallel composition Hie[A; of strongly compatible forc-
ing I/O automata {A; : 7 € I}, denoted by A, is the composition of their ordi-
nary part augmented with new forcing sets as follows: for each class p € part(p;),

force(A)(p) = force(A;)(p) x Hie[\j A
Proposition 4.8. Given two forcing I/O automata A, B,

1. F(Hider(A)) and Hider(F(A)) are the same I/O automaton;
2. F(A||l B) and F(A) || F(B) are the same I/O automaton.

Proof. The first statement is trivial since the hiding operator changes only the
signature of an I/O automaton and the result of F does not depend on which
actions of an I/O automaton are internal and which ones are external. For the
second statement we verify that the two involved I/O automata are the same
one by verifying each component separately.

states(F(A || B)) states(A || B)
states(A) x states(B)
states(F(A)) x states(F(B))

states(F(A) || F(B))

start(A || B)

start(A) x start(B)
start(F(A)) x start(F(B))
start(F(A) || F(B))

start(F(A || B))

Comparison of Simulation Algebraic Techniques for Verification 13
out(F(A ||l B)) out(A || B) = out(A) U out(B)

out(F(A)) Uout(F(B))

out(F(A) || F(B))

n(FANB) = in(A] B)
(in(4) U in(B)\out(4 || B
(in(F(A)) Uin

in(F(A) || F(B))

>
E
=
D
=1
5
=
i
E

nt(F(Al B)) int(A || B)U{r, | p € part(A || B)}
int(A)Uint(B)U{r, | p € part(A) U part(B)}
(int(A) U {m, | p € part(A)})U

(int(B) U {7, | p € part(B)})

int(F(A)) Uint(F(B))

int(F(A) || (B))

part(F(A|l B)) {pUAm} | p € part(A]| B)}

{pU{m} | p € part(A) U part(B)}
{pu{n}|p€part(A)} U{pU{n} |p € part(B)}
part(F(A)) U part(F(B))

part(F(A) || 7(B))

The argument for steps is more complicated. Let ((¢a,qB), a, (¢4, %)) €
steps(F(A || B)). If a is not an action of the form 7,, then ((¢a,¢g), @, (¢4, 9%)) €
steps(A || B). From the definition of the parallel composition operator and from
the fact that steps(C) C steps(F(C)) for each forcing I/O automaton C, it
is immediate do derive that ((ga,qr),a, (¢4, %)) € steps(F(A) || F(B)). If a
is of the form 7,, then suppose without loss of generality that p € part(A).
Then (qa,qp) € enabling(p)\ force(p) in A || B, and, by definition of parallel
composition for forcing I/0 automata, ¢, € enabling(p)\ force(p) in A. By def-
inition of F, (qa,a,qy) € steps(F(A)). By definition of parallel composition,
(04,48), @ (1, 4y)) & steps(F(A) || F(B)).

Conversely, let ((g4,98),a,(¢y,) € steps(F(A) || F(B)). If a is not an
action of the form 7,, then a direct analysis of the definition of the parallel
composition operator shows that ((¢a,q¢n), a, (¢, %)) € steps(F(A || B)). It
a is of the form 7,, then suppose without loss of generality that p € part(A).
By definition of F, ¢, € enabling(p)\ force(p) in A. By definition of parallel
composition for forcing I/O automata, (¢4, ¢p) € enabling(p)\force()in A || B.
By definition of F, ((¢4,4B),a, (¢4, 4%)) € steps(F(A || B)).

4.2. Specification of the Components

In Section 3.2 we described the system components using a “neutral” formalism
that is not biased toward either verification method. Each of the two methods,
however, has its own characteristic language for describing system components.
In this section, we represent each element of Section 3.2 using a variant of the
precondition-effect language of [LyT87] that is suitable for describing forcing I/0
automata. We also relate the new specifications to the neutral ones.

14 Nancy Lynch and Roberto Segala

In our precondition-effect language a forcing I/O automaton is described by
means of its action signature, its states, its initial states, its transition relation,
and 1ts classes with forcing sets. The transition relation is specified by means
of the preconditions for the execution of each action and the effect each action
produces on the state. The precondition of an action gives the set of states from
which it is enabled or from which it is expected; the effect gives the next state.
If an input action occurs when its precondition is not satisfied, then the system
moves to a special state 2. The state £ implicitly has a transition to itself for
each action and it does not appear in the forcing set of any class of local actions.

Note that this representation can be more concise than the neutral represen-
tation, because states need not all be listed explicitly. Rather, they are described
in terms of values of a collection of state variables.

In order to simplify the notation we introduce an operator ¢ on sets corre-
sponding to the symmetric difference operator. Note that the transition relations
of the forcing I/O automata we introduce below differ from those of Section 3.2
only in the definition of state €2. As a consequence, the specifications of this
section and those of Section 3.2 denote I/O automata with the same set of fair
traces. In fact, the connection between the I/O automata is much closer than
this; we give a formal statement of the connection after the specifications.

Specification 4.9. A Muller C element Cp is defined as follows.

S =({a,b},{c},0)

Q =A{0, {a}, {b},{a, b}, 2}

Qo = {0} .

P = {{c}} where {c} has forcing set {{a,b}}

Transitions:
Action a
Precondition: ¢ # {a,b}
Effect: g = q®{a}
Action b
Precondition: ¢ # {a,b}
Effect: g = qd{b}
Action ¢
Precondition: ¢ = {a,b}
Effect: ¢ =10

Specification 4.10. A majority element Mp is defined as follows.

S =({a,b,c},{m},0)

Q= ola,b,e})

Qo = {0}

P = {{m}} where {m} has forcing set {{a, b}, {a,c}, {b,c},{a,b,c}}

Transitions:

Action a
Precondition: ¢ ¢ {{a,b},{a,c}}
Effect: g = q®{a}

Comparison of Simulation Algebraic Techniques for Verification 15

Action b

Precondition: ¢ ¢ {{a,b},{b,c}}

Effect: g = qd{b}
Action ¢

Precondition: ¢ ¢ {{a,c},{b,c}}

Effect: g = q®{c}
Action m

Precondition: |¢| > 2

Effect: q :={a,b,ct\q

Specification 4.11. A wire Wpg is defined as follows.

S =({m},{c},0)

Q= {A,m,Q}
Qo = {A}
P = {{c}} where {c} has forcing set {{m}}
Transitions:
Action m
Precondition: ¢ = A
Effect: g =m
Action ¢
Precondition: ¢ = m
Effect: g =X

Proposition 4.12.

1. A(Cy) and F(Cr) denote the same I/O automaton.
2. A(My) and F(Mp) denote the same I/O automaton.
3. A(Wx) and F(Wr) denote the same I/O automaton.

Proof. The proof is a simple analysis of the definitions. We argue a bit more
about the first statement and leave the other two to the reader. The states of
A(Cn) and F(Cp) are the same since the states of C'r are those of Cy plus
and A adds a new state Q to the states of Cy. Similarly, the start states are the
same in A(Cy) and F(CF). The partitions of the locally-controlled actions are
the same since both C'y and Cr have a unique class and both A and F add a
new internal action 7, to each class p. Similarly, the action signatures of the two
I/O automata are the same. The transition relations of the two I/O automata
are the same since the preconditions of the actions of C'r identify those cells of
the transition table of Cy that do not contain NS or NE, the effects of each
action coincide in Cy and Cp, all the states of C'r but €2 are in the forcing set of
the unique partition of part(Cr), and A deals with unspecified inputs by moving
to Q. O

4.3. The Verification

We finally prove that a Muller C element is implemented by a majority element
and a wire. We first prove a proposition expressing this claim for forcing 1/0

16 Nancy Lynch and Roberto Segala

automata. At the end of this subsection, we show how to derive the precise claim
of Section 3.2.

Proposition 4.13. sze{m}(MF || Wr) Cr C'F, il.e., a Muller C element can
be implemented by a majority element and a wire.

Proof. We define a mapping from the implementation to the specification and
show that it is a forward simulation. Then we use the Execution Correspondence
Lemma to obtain corresponding executions and use this correspondence to prove
fair trace inclusion.

More precisely, the mapping f to use is the following:

A) = {0}

BA) = {{a}, Q)

BA) = {{b}, Q)
a,b},\) > {{a, b}, Q)

c},m) = {{a,5},2)

ther pairs — {w}

We first prove that the above relation is a forward simulation. The condition
on the initial states is immediate to verify since the initial state (, A) is mapped
to the initial state (). For the transition relation we proceed by cases analysis on
action names.

Action a: We distinguish the following cases:

e If a occurs from (2, \) where = € {0, {a}, {b}} then (x,\) == (2@ {a},)
and * - x @ {a}.
e If a occurs from ({a, b}, A) then ({a,b},) = (2, A). Moreover {a,b} -+
Q and Q -5 Q.
e If @ occurs from ({c}, m) then ({c}, m) - (Q, m). Moreover {a,b} - Q
and Q = Q.
o If a occurs from any state (z,A) where © ¢ {0,{a}, {b},{a,b}} then
(x,\) == (2, \) and =’ ¢ {0, {a}, {b}, {a,b}}. Moreover Q — Q.
e If @ occurs from any state (x,m) where x # {c} then (x,m) == (', m)
and Q - Q. Note that, since for z = {a, ¢} we have #’ = {c}, we need Q
in the mapping for ({c}, m).
Action b: This case is the same as the case for action a.
Action ¢: This action is enabled only from states of the form (x,m) and

yields a new state (2, \). If x = {c} then #’ = 0 and {a,b} — (. In all other
cases x’' can be anything but). This is the case for which we need to map

({a}, A), ({6}, A) and ({a, b}, A) to €.

Action m: This action is enabled from each state (z, A) and (z, m) with |z| <
2. If the starting state is (z, m) then the final state is (2/, Q). Moreover both
starting and final states are mapped to €. If the starting state is (x, A) with
x # {a,b} then the final state is (z’, m) and both starting and final states are

mapped to Q. If the starting state is ({a, b}, A) then ({a,b},A) == ({c},m)
and both starting and final states are mapped to {a,b} and Q

The existence of the above forward simulation allows us to conclude that each

Comparison of Simulation Algebraic Techniques for Verification 17

trace of Hidegp,\ (Mp || Wr) is a trace of C'r. We now use the same simulation to
argue that each fair trace of Hidey,,,(Mp || WF) is a fair trace of Cp. Consider
a generic fair execution o of Hidey,,;(Mp || Wr). By the Execution Correspon-
dence Lemma, there is an execution o’ of Cp corresponding to « through the
mapping f. It is sufficient to argue that o’ is fair to conclude.

Suppose that a’ is not a fair execution of Cr. The only way the fairness for
Cr can be violated is for the states in o’ to be {a, b} for some point on without ¢
ever occurring. (In fact {a, b} is the only state in the forcing set for {c}.) Then in
«, the correspondence says that the states are all either (ab, ¢) or (¢, m) from that
point on. If there is any occurrence of a (¢, m) state, then the fairness condition
for Wy says that eventually ¢ occurs in a, so also in a’, a contradiction. So the
state must be (ab, ¢) forever. But then the fairness condition for Mp says that
eventually m occurs, changing the state to (¢, m), again a contradiction. [

Note that the fairness part of the proof above is done somewhat less formally
than the simulation part; the fairness part can be formalized using a temporal
logic of states and actions [Sta84, SLL93b].

Now we can give the main result:

Theorem 4.14. Hidey,,y (A(My) || A(Wn)) Cr A(CN).

F(CF). From Proposition 4.8 we derive Hide(,,} (F(Mp) || F(WFr)) Cr F(CF).
From Proposition 4.12 we obtain Hide,,(A(Mn) || A(WnN)) Cr A(Cy). O

Proof. From Propositions 4.13 and 4.6 we derive F(Hidey,,)(Mr || Wr)) Cr

5. A Verification using Process Algebras

In this section we carry out the verification of Section 3.2 using process algebra.
Again, we begin by presenting the relevant theory, then give new specifications,
and finally carry out the steps of the proof.

5.1. The Theory

As before, our job is to prove a fair trace inclusion relationship between two I/0
automata. In general, process algebra is not well suited for proving results about
fairness, because fairness does not fit nicely into the theory of a process algebra
containing recursion. However, process algebra can be used to reason about an
approximation to fairness known as quiescence, and under certain circumstances,
this may be enough.

Below, we define quiescence and relate it to fairness. We then define DIOA
(“Demonic I/O Automata”), a process algebra for proving quiescent trace inclu-
sion relationships between 1/0 automata. *

* The adjective “demonic” is used suggestively in [Seg92] to emphasize the fact that demonic
I/O automata behave catastrophically in the presence of unexpected inputs. It is in contrast
with the approach of [Vaa91] which is called “angelic” in [Seg92].

18 Nancy Lynch and Roberto Segala
5.1.1. From the Quiescent Preorder to the Fair Preorder

Definition 5.1. A quiescent execution of an I/0O automaton A is a finite fair
execution of A. A quiescent trace is the trace of a quiescent execution. We denote
the set of quiescent traces of an I/O automaton A by gtraces(A).

Definition 5.2. Given two I/O automata A and B with the same external ac-
tion signature, the quiescent preorder is defined as

ACq B iff traces*(A) C traces*(B) and gtraces(A) C gtraces(B).

The quiescent preorder was first introduced in [Vaa9l] and is an attempt at
approximating the fair preorder by looking only at the finite executions of an
I/0O automaton. As pointed out through some examples in [Seg92], the quiescent
preorder is not an intuitively reasonable notion of implementation in general,;
however, [Seg93] gives some sufficient conditions for the quiescent preorder to
coincide with the fair preorder. Below we present some of the results of [Seg93].
We start with some definitions.

Definition 5.3. An I/O automaton A is quiescent detectable if each finite fair
trace of A is also a quiescent trace of A.

Quiescence detectability requires each divergence to be detected through a qui-
escent trace. The fair preorder, in fact, does not distinguish between divergence
and quiescence, while the quiescent preorder does.

Definition 5.4. AnI/O automaton A is guiescent continuous if the limit of any
chain of quiescent traces of A is a fair trace of A.

The quiescent preorder deals only with finite executions, while the fair preorder
also considers infinite ones. A condition for the two preorders to coincide is that
the information about infinite executions be captured by the information on the
finite ones. To guarantee the above fact we also need finite internal nondeter-
minism.

Definition 5.5. AnI/0 automaton A has finite internal nondeterminism (FIN)
. h . .
if VhEacts*(A){q | EquEstart(A)QO - Q} is finite.

The above definition of FIN is weaker than the definition given in [LyV91]. The
definition of [LyV91] requires, for every trace h, the set of reachable states with
h to be finite. In our definition we only require a smaller set to be finite, 1.e., the
set of states reachable through h with its last external transition.

Definition 5.6. An I/O automaton A is inpul quiescent detectable if each infi-
nite fair trace of A with finitely many output actions has infinitely many prefixes
that are quiescent for A.

An infinite fair trace made of input actions only can be obtained from an execu-
tion containing infinitely many internal transitions. The quiescent preorder, on
the other hand, can detect only quiescent states.

Theorem 5.7. Given two I/O automata A, As with the same external action
signature such that part(A;) = {local(A1)} and part(As) = {local(A2)}, if Ay
is quiescent detectable and input quiescent detectable, and As is fair continuous
and has FIN, then

Comparison of Simulation Algebraic Techniques for Verification 19

A1 EQ A2 implies A1 EF Az.
If A5 is quiescent detectable then
A1 EF A2 implies A1 EQ Tz.

Quiescent detectability and FIN are generally met by practical systems. Note,
in fact, that systems without any infinite internal computation are quiescent
detectable. Also quiescent continuity is generally true. In [Seg93] it is shown
that, if an I/O automaton has FIN and is input deterministic (for each state ¢

and each input action a there exists a unique state ¢’ such that g = q'), then
it is quiescent continuous. It is not clear yet to us how general input quiescent
detectability 1s.

Theorem 5.7 shows how the quiescent preorder can capture the fair preorder
of some I/O automata with a single class of locally controlled actions. This is
not the case for general I/O automata. However, there are cases in which the
quiescent preorder is sufficient for concluding fair trace inclusion in the presence
of multiple classes. When an I/O automaton has more than one class of locally
controlled actions, the quiescent preorder is not of great help in deriving the
fair preorder. The following proposition is of help whenever the specification
automaton has a single class and the implementation automaton has multiple
classes.

Proposition 5.8. Let A be an I/O automaton. If for each transition ¢ =
of steps(A) where a is an input action and each class # of part(A), an action of
z is enabled from ¢’ if an action of # is enabled from ¢ (i.e., input actions do not
disable any class of part(A)) then ftraces(A) C ftraces(A’) where A’ differs
from A only in that part(A") = {local(A)}.

If an I/O automaton A with multiple classes implements an I/O automaton
B with a single class, and if the involved automata satisfy the conditions of
Theorem 5.7, then the proposition above gives a sufficient condition for deriving
the full fair preorder from the quiescent preorder. In fact, from A’ Cg B, where
A’ is the 1/O automaton A with a single class, we derive A’ Cp B, and, from
Proposition 5.8, we derive A Cp B. Examples of systems satisfying the condition
of Proposition 5 8 are the monotone I/O automata of [Sta90], which can model
a large class of dataflow networks, and the semi-modular, speed-independent
circuits of [MuBb59]. Our problem is based on delay insensitive circuits.

5.1.2. The Calculus of Demonic 1I/0 Automata

The calculus of Demonic I/O Automata (DIOA) is a process algebra for I/0
automata [Seg92]. Each I/O automaton is an expressmn which is obtained by
applying operators to basic automata. Each expression is sorted and each sort
represents an external action signature. Each DIOA expression has a unique
internal action 7. Multiple internal actions, in fact, are used within I/O automata
for expressing fairness with respect to different internal tasks; however, DIOA
does not deal with fairness. In this paper we present a slightly modified version
of DIOA in which we consider multiple internal actions. Each sort represents a
full action signature with multiple internal actions. Our modification does not
change the algebraic properties of DIOA (the axioms do not change), but it
makes it easier to relate DIOA proofs to simulation proofs. We assume that the
sort of each DIOA expression contains at least one internal action and we use 7

20 Nancy Lynch and Roberto Segala

Table 1. The signature of DIOA

Name Op. Domain Range Restrictions
quiescent nilg A S
omega Qg A S
prefixing a.g S S a € ext(S)
ichoice Bs S, S S
echoice I—|—§ S, S S 1,J Cin(S)
parallel sills, S1.52 S3 mnt(S1) Nacts(S2) = acts(S1) Nint(S2) = 0
out(S1) Nout(S2) =0
out(S3) = out(S1) U out(S2)
n(S3) = (in(S1) Uin(S2))\out(Ss)
int(53) = mt(Sl) U Znt(SQ)
hiding TIS S S’ I Cout(S), S = (in(S), out(S)\I,int(S) U I)
renaming pg S S’ for each injective p : acts(S) — acts(S’)
S = (p(in($)), (out(5)), p(int(5))
process Xs A S Xs € Xs

to denote a generic internal action. This assumption is necessary to model some
of the operators.

Table 1 contains all the operators of DIOA; note that the sort of an expression
is computable. Table 2 contains the operational semantics of DIOA in terms of
transition systems. The operators of DIOA recall the standard operators of CCS
[Mil89]; however they are different in the sense that they also guarantee input
enabling by moving an automaton to the state 2 whenever some unexpected
input is provided. The expression nil models a quiescent automaton that moves
to 2 for any input. The prefixing operator allows the specification of an automa-
ton which first performs a specific action a. The internal choice operator models
nondeterministic choice independently of the external environment. Particularly
unfamiliar to the process algebraic community is the external choice operator,
which is parameterized by two sets of input actions. The two parameters describe
which arguments of the operator deal with different input actions. Consider the
expression exp = a.e¢ 43+ 0. f. The subexpression a.e describes the behavior
of exp in the presence of input action a while the subexpression b. f describes the
behavior of exp in the presence of input action b. The parameters are necessary
since a . e also reacts to input b although that reaction is not desired. How-
ever, the meaning of an expression like a.e + b . f is intuitively clear. Although
this intuition is not expressible for general DIOA expressions, Table 3 defines a
function si(e) (Specified Inputs) which is capturing our intuitive idea for DIOA
expressions of the kind a1 .e; + -+ 4+ ay . e,. Function si allows us to define
an unparameterized choice operator by writing e + f for e g(¢)+sis) f, where
function si is defined in Table 3. The interested reader is referred to [Seg92] for
a more detailed description of s¢ and its generalization to all DIOA expressions.
Recursion is obtained by means of process variables and a declaration mapping
E, which associates a guarded expression of sort S with each process variable of
sort 5. An expression is guarded if each process variable occurs within the scope
of some prefixing operator.

Comparison of Simulation Algebraic Techniques for Verification 21

Table 2. The transition rules for DIOA. 7 is any internal action.

nil nilg — Qg Ya € in(S)
ome; Qs = Qg a € ext(S) ome; Qs > nilg
b .
pre; a.ge—¢ pres a.ge — Qg Vb € in(S)\{a}
. T . T
1Ch1 €1 @S €y — €1 1Ch2 €1 @S €y — €2
€1 — ¢ €2 — ¢!
. 1 . . 2 .
ichj 7; Ya € in(S) ichy 7(12 Ya € in(S)
e1 Dses — € e1 Pg e — €
a !
€] — 61
ech; —_— Ya € I Uout(S)
e1 I—|—§ e — ei
ey — ¢/
2
echy _Z Ya € J Uout(S)
e1 I—|—§ ey — eé
ech; e1 145 e - Qs Ya € in(S)\(TUJ)
€1 — e er — e
1 2
echy — 1 echy, = 2
e1 1+5 e2 — e 1+ ez e11+5 €2 — €} 1+5 €}
a ' a '
e— e e— ¢
tau, = - rho @
1 pla
77 (e) — 77 (e’) psle) =— ps(e’)
a ' a !
eg — €} ey — €}
par; r— -
€1 51”52 €2 — & 51”52 €y
61 — ¢!
1
pars - 1 a € acts(S1)\ext(S2)
€1 5lls, €2 — €1 5 ls, €2
ey — ¢/
2
pars 2 a € acts(S2)\ext(S1)
e1 5 llsy e2 — €1 5, lls, €
e 2 e def
rec —_— if X =
X — ef
Table 3. Definition of s7 and so for DIOA.
si(nid) =0 so(nil) =0

Q) =10
si(a.e) ={a} Nnin(e)
) N sie2)

si(er 7+ e2) = (I Nsi(er)) U

si(
i(
si(e1 @ e) = sifes
i(
i(

si(X) = si(B(X))

(J Nsi(e2))

so(e1 7+ e2) = so(e1) U so(ez)

22 Nancy Lynch and Roberto Segala

Given a DIOA expression, there is a natural way of associating an I/O au-
tomaton with it. We arbitrarily choose not to partition its locally controlled
actions. In this way Theorem 5.7 applies directly.

Definition 5.9. Given a DIOA expression e of sort S, the associated I/O au-
tomaton D(e) is defined as

states(D(e)) = {e’ | 3t € acts(S)*, e LN e'}

o start(D(e)) = {e}

o sig(D(e)) = (in(S), out(S), int(S))

o steps(D(e)) = {(¢',a,e") | ¢’ € states(D(e)), e = "'}
o part(D(e)) = {local(S)}

For notational convenience we refer to in(.S), out(S), int(S), acts(S) and local(S)
by in(e), out(e), int(e), acts(e) and local(e), respectively.

Proposition 5.10. Given two DIOA expressions e, f,
1. D(r1(e)) and Hider(D(e)) are isomorphic I/O automata under the isomor-
phism & : states(D(7y(e))) — states(Hide;(D(e))) such that h(rr(e')) = €';

2. D(e || f) and D(e) || D(f) are almost isomorphic I/O automata uder the
isomorphism h : states(D(e || f)) — states((e) || D(f)) such that h(e’ ||
) = (¢, f"). The only difference is in that part(D(e || f)) = {local(e) U

local(f)} and part(D(e) || D(f)) = {local(e), local(f)}.

Proof. We give the proof for the hiding operator. The proof for the parallel
composition operator is similar and is left to the reader.

states(Hider(D(e))) states(D(e))
{e' | A € acts(e)*, e LA
{h(rr(e")) | 3t € acts(ri(e)), T1(e) N r1(e’)

{h(ri(e")) | T1(€’) € states(D(7i(e)))}
h(states(D(71(e))))

start(D(e))

h({rr(e)})

@_/_/

start(Hider(D(e)))

sig(Hider(D(e)))

).

steps(Hider(D(e))) = steps(D(e))
{(¢/,a,¢") |

{(h(rr(e")), a, h(rr(e
(e)Estates((e
{(h(rr(e)) hiry(e”
) e

(rele'), @, (!

Comparison of Simulation Algebraic Techniques for Verification 23

Table 4. Some axioms for the quiescent preorder of DIOA.
Ecr e+ fCge if Quict(f), si(e) CIand si(e)nJ =10

I r7(a.e)=ga.1(e) ifagl

I T](e ot+x f) =qQ T](e) o+ T](f) if 80(6)0[: so(f)ﬁ[:]
I, T](i.e) =qQ T](e) if 82’(6) =0

part(Hider(D(e))) = part(D(e))

{local(e)}
{local(T7(e))}

= part(D(71(e)))

O

The implementation relation for DIOA is the quiescent preorder, which is a weak
congruence for all the operators but the unparameterized 4. A weak congruence
is a relation that is preserved under legal contexts, i.e., 2 R y implies C[z] R C[y]
if C[-]is a legal context for both « and y. Table 4 contains some axioms for the
quiescent preorder over DIOA. The axioms we present are just some of those
of [Seg92]; however, they are sufficient for our examples. They are sound in the
sense that they state true properties of the I/O automata associated with the
expressions. Axiom Ecy uses a function Quiet(f) which is true only if f is a
quiescent expression, i.e., D(f) enables only input actions in its start state. The
function Quiet(f) depends only on the syntax of f and the declaration mapping
E.If E is computable or f is guarded, then Quiet(f) is computable. Ec; models
the idea that, whenever a specification e does not say anything about some input
actions, any choice of implementation f in the presence of those actions is correct.
Axiom I3 allows us to move external actions out of the hiding operator. Axiom I
uses a function so in its side condition. Function so (Specified Outputs) is defined
in Table 3 and gives those output actions of its argument that can be performed
up to internal transitions. The side condition for Axiom I is necessary since
an external choice context is not resolved with internal actions (see transition
rules echy 5). Axiom I ; allows us to eliminate initial internal computation from
I/O automata whenever no input is expected (si(e) = @). Two other important
axioms deal with the parallel operator and with recursion. The expansion axiom
permits to unfold a parallel expression into a nondeterministic sequential one; the
recursive substitutivity rule states conditions for which a set of equations have
unique fixpoint, and gives a method for proving that a process is implementing
the fixpoint of a set of equations. In Section 5 the recursive substitutivity rule
plays a fundamental role.

Proposition 5.11. The following axiom is sound for the quiescent preorder.

E; Let e = ey || e2 || -+ - || en where each ¢; is of the form Z]' a;j .e;j. For each
action a € ext(e) let

B { {eij lai; = a} if a € acts(e;)

ei} otherwise

Let out(a) be the index j such that @ is an output action of j (0 otherwise)
and let

B o= {] ' if out(a) # 0 and EZ““‘” =0
“ Al N i€ELV(E,=0Af; =Q)} otherwise

24 Nancy Lynch and Roberto Segala

Then e EQ ZaEext(e)(ZfeEa le)

Theorem 5.12. Let ¥ & E(X) be a set of equations {F; = >oilay - Xip)h
and let P be a set of DIOA expressions. If P Cg E[P/X] then P Cq X.

5.2. Specification of the Components

In this section we specify the components of Section 3.2 using DIOA expressions.
In this way we can use the DIOA axioms for the actual verification. The new
specifications will explicitly consider only specified input actions at each state.
The demonic approach guarantees the existence of a transition to 2 for each
non-specified input action. The I/O automata of this section differ from those
of Section 3.2 in the definition of 2. Since DIOA deals with finite and quiescent
traces only, we need any fair trace of D(£2) to be a quiescent trace of D(2), i.e.,
we need D(2) to be quiescent detectable. Quiescent detectability is obtained

through the transition Q — nil. Note that each sequence of external actions is
a fair trace of D(£2); moreover the I/O automata we specify in this section and
those of Section 3.2 differ only in the transitions for state €. As a consequence
the specifications of this section and those of Section 3.2 denote the same objects
in the sense that the corresponding I/O automata exhibit the same fair traces.
A formal equivalence statement will be given after the specifications.

Specification 5.13. A Muller C element is specified as follows:

c T 4o +0.04
def

c, ¥ 4.c+4b.04
cy E oa.cu+b.C
Cu def c.C

where a, b are input actions and ¢ is an output action.

The DIOA specification of a Muller C element is represented by the process
variable C'. In order to be consistent with the specifications of the previous
sections the process variable name should be Cp, however, we decided to drop
the parameter D to avoid confusion with the parameters of the other process
variables. The subscripts in the process variables represent the input ports that
have changed voltage level. When both the inputs have changed (state Cgp) the
output voltage level is changed. Note that in state Cy; no inputs are accepted.
The underspecification of the Muller C element in such cases is implicit in the
structure of DIOA. Note that D(C') has FIN and is input deterministic.

Specification 5.14. A majority element is specified by the following equations

M = a.M,+b. My+c.M,

M, “ 4 M4b My+c. M,

My % m. M. +c. My,

Mae ¥ m. M+a. My+b. Mo, +c. Mgy

where a,b, ¢ are input actions and m is an output action. The equations for

Comparison of Simulation Algebraic Techniques for Verification 25

My, M., M. and M. are similar to the equations above and can be easily de-
rived.

The process variable M represents the majority element where the voltage levels
of its input ports are the same as the voltage level of its output port. The process
variables containing subscripts represent the majority element where only the
voltage levels of the input ports not appearing as subscripts are the same as the
voltage level of the output port. Note that the equation for M, specifies that
no inputs causing a variation in the output voltage level can occur when the
output voltage level already has to change. If such inputs occur then the system
implicitly moves to €.

Specification 5.15. A wire is specified by the following equation:

Wd:efm.c.W

where m is an input action and ¢ is an output action.
Proposition 5.16. A(Cx) =r D(C). A(My) =r D(M). A(Wx) =p D(W).

Proof. We prove a stronger equivalence statement, namely that the involved 1/0
automata are isomorphic if we do not consider states {2 and nl. By observing
that Proposition 3.5 holds also for I/O automata associated with DIOA expres-
sions (move to nil whenever it is possible) we complete the proof. We give the
isomorphism for the Muller C element; the isomorphisms for the other elements
are given in a similar way and are left to the reader. The isomorphism that we
use for the Muller C element is h : states(A(Cy)) — D(C) such that h(d) = C,
h({a}) = Cq, h({b}) = C}, and h({a,b}) = Cgu. Tt is easy to check that h
preserves the transitions of A(Cy) and D(C) if we do not consider transitions
leaving from € and transitions from/to nil. [

5.3. The Verification

We now formally prove that a Muller C element can be implemented using a
majority element and a wire. The implementation relation that we use 1s the
quiescent preorder; however it is easy to verify that all the specified elements
satisfy the hypothesis of Theorem 5.7 and Proposition 5.8, therefore we can
conclude fair trace inclusion from quiescent trace inclusion. We first prove the
statement concerning the quiescent preorder, the DIOA verification; then we
show how the formal statement of Section 3.2 is derived.

Proposition 5.17. 7,3 (M || W) Cq C, ie., a Muller C element C' can be
implemented using a majority element and a wire.

Proof. We show that 7y,,3(M || W) Cq C. For doing that we consider a family

of processes I, I, I, [45 where [def Tim} (M || W) and show that they satisfy
the equations of C' with Cq. It is then enough to use the recursive substitutivity
axiom to conclude.

By applying the expansion axiom and the hiding axioms we obtain

26 Nancy Lynch and Roberto Segala
I =q mmy(M[IW)
=¢ mmla. Ma+b.My+c. M)||[(m.c.W))
=0 Tmpla. (Ma||[(m.c. W))+b.(M]|(m.c. W)))
=q Timy(a. (Ma||W)+b. (Mp|[W))
=q Tmpla. (My|[W)) + 7y (b (M| W)
=@ a- Ty (Mal|[W) + b 7y (Ms|[W)
=qQ a A+ b T

where the second step is obtained by expanding M||W, the third step follows
from Axiom Es, the fourth step follows by substituting W for E (W), the fifth
step follows from Axiom I, the sixth step follows from Axiom I3, and the seventh
step follows by defining

Lo 7y (My||W) and

Iy = iy (M| 7).
With the same method we have

Ia EQ T{m}(MaHW)
=q . T} (M|IW) +b . mpny (May||W)
=Q a.l+b. 1y
and
I =@ mm}(My|[W)
=Q a.T{m}(MabHW)—I—b.T{m}(MHW)
EQ aIab+bI

where we define

Loy E Ty (Ma||[W)

We now proceed with the analysis of I,;. Step by step comments are below.

Iab

=Q T{m}(Mas||W)

=Q Tim}(a (W) +b (W) 4+ m . (M.||c. W))

Cq mimy(m . (Melle. W)

= T{m}(m a. (Mgelle . W)+ b. (Myelle. W)+ c. (M||W)))
Co mimy(m . c. (M[|[W))

=q C;{m}(MHW)

The first step follows the lines of the previous derivations by expanding pro-
cess variables; applying the expansion theorem, and reconverting untouched ex-
panded expressions to their corresponding process variable; the second step is
an application of Axiom Ec; where inputs @ and b are eliminated. According to
the specification of Cy 3, in fact, no input should occur before output ¢ occurs.
The expression on the second line specifies an implementation choice in the pres-
ence of inputs @ and b while the expression on the third line does not specify
any implementation choice. The third step is similar to the first one while the
fourth step consists of successive applications of the hiding axioms. Action m is
eliminated through Axiom I;; and action ¢ is brought outside the scope of the
hiding operator through Axiom I5. The last step is a direct consequence of the
definition of 1.

We can now apply the recursive substitutivity axiom and conclude 74,1 (M ||

Comparison of Simulation Algebraic Techniques for Verification 27

W) Eq C. The fair trace inclusion follows from Theorem 5.7 and Proposition 5.8.
All the involved I/O automata, in fact, are quiescent detectable, quiescent con-
tinuous, input quiescent detectable and have FIN. Moreover no input action
disables any output action. [

Theorem 5.18. Hidey,,y (A(My) || A(Wn)) Cr A(CN).

Proof. From Proposition 5.17, the soundness of the DIOA proof system, and The-
orem 5.7, we derive D(7y,1 (M||W)) Cr DP(C). From Proposition 5.10 we derive
Hide,,y (D(M||W)) Cr D(C). From Proposition 5.10 and Proposition 5.8 we
have D(M)||D(W) Cp D(M||W), therefore we derive Hide ,,y (D(M)||D(W)) Cr
D(C'). Finally, from Proposition 5.16 we derive Hide) (A(My)||A(WnN)) Cr
A(Cxy). O

6. Comparison of the Algebraic and the Simulation
Techniques

In this section, we compare the simulation and algebraic proof techniques for
their usefulness in carrying out verifications of the sort outlined in this paper.
The first thing to note is that both of the outlined proofs were fairly easy to carry
out, once the machinery described in the “theory” sections had been developed.
Naturally, people more familiar with one style of proof or the other will find it
somewhat easier to use, but we did not find any appreciable difference for this
example. The interesting question is whether both methods will scale equally well
to a wide range of more complex examples. Here we think there are important
differences and similarities, which we have tried to identify below.

6.1. Correspondence between the Proof Methods

There is a strong similarity between our reasoning in the simulation proof and in
the algebraic proof. It seems that the recursive substitutivity rule is used in this
example somewhat as an algebraic version of the notion of forward simulation.
That is, we consider the process variables of the set of equations comprising the
specification as representing states of the specification. Then we consider the
processes that we substitute for the process variables as representing states of
the implementation that are related to the process variables for which they are
substituted.

This leads to the question of whether the simulation and algebraic methods
we have used might be equivalent in general; however, it turns out that they are
incomparable.

Let a, b, c be output actions and consider the processes

Xdéfa.b.X—l—a.c.X

VEa . (b.Y +c.Y).
It is easy to prove that Y Cg a.b.Y +a.c.Y by using the axioms of [Seg92] and
the recursive substitutivity rule; however there is no forward simulation from
the transition system associated with Y and that associated with X. State Y,
in fact, would be mapped to X. State b .Y + ¢. Y, instead, should be mapped

28 Nancy Lynch and Roberto Segala

to either 6. X or ¢. X or both since Y can move with a only to those states.
Unfortunately each of the choices above gives problems on the next transition.

The difference between the systems X and Y arises when the decision about
whether to perform b or ¢ is made: X decides before Y. A forward simulation
between two processes A and B exists only if B does not decide before A. Y can
be proved to implement X by using a different simulation technique based on a
notion of backward simulation [LyV91]. However, there are also examples that
can be proved using DIOA deductions but not by backward simulations. One
example 18

Xy e x4b.2 z¥. x

vEa 2402 27cy
where a,b and ¢ are output actions. It is easy to show algebraically that Y and
7' satisfy the equations for X and Z; however, there is no backward simulation
from Y to X.

There are also cases in which there is a forward simulation between two
processes but quiescent trace inclusion cannot be proved using DIOA, because
the recursive substitutivity rule cannot be applied. Consider, for example, the
processes

Xdéfa.X and X; défa.XH_l

for an infinite set of process variables X; : ¢ € N. The mapping that maps
each X; into X 1is trivially a forward simulation from Xy to X; however, since
none of the given equations relates some X; to X; with j < i, we cannot prove
that X < a. X, so the recursive substitutivity rule does not apply. The above
mapping is also a backward simulation from Xy to X, therefore also backward
simulation 1s incomparable with DIOA deduction.

All the examples above also work for the simple trace preorder. The reader
is referred to [DnS92] for its axiomatization.

6.2. Treatment of Fairness

In the given example, a separate argument about fairness is made in the sim-
ulation proof, whereas no such argument is needed in the algebraic proof. In
the given algebraic proof, fair trace inclusion is a consequence of quiescent trace
inclusion, and the deductions within DIOA are strong enough to prove quiescent
trace inclusion. However, the algebraic framework, as it stands, does not provide
a fully general model for proving fair trace inclusion: the connection between
the quiescent and fair preorders holds only under some special conditions. We
argued in Section 5.1.1 that the properties of quiescent detectability, finite inter-
nal nondeterminism and quiescent continuity seem to be sufficiently general for
representing physical systems; on the other hand we do not have a clear idea yet
about the generality of input quiescent detectability. An example of a non-input
quiescent detectable device is an infinite buffer which performs some internal up-
date after receiving some input. An infinite fair execution leading to an infinite
trace with input actions only can be obtained by interleaving each input with
the internal update; however, if the buffer enables some output whenever it is
not empty, no finite sequence of input actions is a quiescent trace.

Comparison of Simulation Algebraic Techniques for Verification 29

For systems in which these properties fail, it is still unclear how to use the
algebraic approach to reason about fair trace inclusion. It is worth remarking
that all the DIOA axioms presented in [Seg92] except for the recursive substilu-
tivity rule are sound for the fair preorder as well as the quiescent preorder. (The
recursive substitutivity rule is sound for all I/O automata satisfying the condi-
tions of Theorem 5.7.) So if we deal with non-recursive definitions, the axioms for
DIOA provide a method for directly proving fair trace inclusion. However, this
is of limited use since almost any nontrivial I/O automaton contains loops that
have to be specified using recursion. Even our small example cannot be specified
without using recursion.

In ACP [BaW90] there is another approach to fairness by means of a rule
called Koomen’s Fair Abstraction Rule (KFAR). The basic idea for KFAR is that
fairness issues can be reformulated in terms of divergences. Thus, a particular
infinite execution can be avoided by making all of its actions internal. However,
we think this approach is unwieldy; for example the requirement that each one of
two independent automata provides some output (an external action) infinitely
often requires a conspicuous amount of encoding, making a specification difficult
to read.

It 1s also unlikely that a result similar to the Execution Correspondence
Lemma could be used together with an algebraic proof. Even by axiomatizing
a different preorder relation such as “existence of a forward simulation”, an
algebraic proof would prove the existence of a simulation without exhibiting it.
The fairness part of our simulation proof, on the other hand, 1s strongly based on
the actual forward simulation from the implementation to the specification. The
simple knowledge that a forward simulation exists is not sufficient. It is possible
that new techniques, perhaps based on the structure of an algebraic proof, could
be developed, but this remains to be done.

The generality of our approach to fairness in the simulation proof also re-
mains to be considered; however, in this case there is already good evidence that
this approach works well in practice [LaS92, SLLI3b]. The approach based on
the Execution Correspondence Lemma provides a convenient way to base a fair-
ness proof on a simulation proof; it may be that there are some fairness proofs
that are inherently unable to be split in this way, but we do not know of any
such examples. The use of forcing conditions provides a useful generalization of
the usual I/O automaton fairness notion, but it seems likely to us that further
generalizations will be required in order to describe some realistic liveness re-
quirements. What those extensions might be, and whether they will work well
in conjunction with the Execution Correspondence Lemma, remain to be seen.

Note that the arguments of this subsection hold only for fairness sensitive
semantics such as the semantics of I/O automata. If the semantics is based on
relations like bisimulation [Mil89] or testing [DnH84, Hen88], then the problems
of this subsection disappear.

6.3. Representation of Automata

The two different proof methods typically use very different ways of representing
automata, each best suited for carrying out the corresponding type of proof. In
order to give a fair comparison between the two methods, we began with a neutral
representation, which is basically just a state-transition table that enumerates

30 Nancy Lynch and Roberto Segala

the results of all transitions performed in all states. We then gave two other
representation methods, and asserted their equivalence with the neutral method.

The precondition-effect language represents an automaton in an action-based
way. That is, the information associated with each action is given in one place;
this information consists of the set of enabling states and the allowed transitions
for that action. In terms of the neutral representation, we can think of this
language as presenting the automaton by columns.

On the other hand, DIOA represents an automaton in a state-based way.
That 1s, the information associated with each state is given in one expression;
this information consists of a list of the enabled transitions from that state. We
can think of this language as presenting the neutral automaton by rows.

In our small example, the state-based method gives a more elegant and con-
cise representation of the circuits than the action-based method, but this will not
be true in general. The choice of which representation is better will vary among
different automata, depending upon whether the automaton table is most eas-
ily described by columns or by rows. Our experience shows that, for complex
systems, the action-based description is usually the better one [SLL93b].

There is one main reason for this. The states of a complex automaton can
usually be described in terms of a small number of state variables or data objects,
which permits a description to be parameterized by the values of those objects.
A typical complex automaton exhibits locality of activity: each action typically
involves only a small portion of the state, i.e., its occurrence depends on the
values of a small number of data objects, and its results affect only a small
number of objects. This locality leads to concise descriptions for each action,
but it is unclear how a state-based description might take advantage of it. Note
that parallel decomposition cannot be used in general to describe this kind of
locality.

Although the action-based representation method generally works better than
the state-based one, there 1s complete freedom in the choice of the representation
style for an I/O automaton whenever a simulation proof technique is used, i.e.,
it is always possible to use a description language like the state-based one in con-
junction with assertional reasoning. On the other hand the description language
for DIOA 1s strictly determined by the algebra itself, so there is apparently no
way to use an action-based representation method in process algebras. Moreover,
the pure DIOA calculus does not provide tools to deal with structured states.

A standard technique to deal with structured states within process algebras
makes use of parameterized process variables [Hoa85, Mil89, Bae90]. For exam-
ple, a counter can be represented by a process variable X parameterized over a
natural number n in the following way:

Xo d:ef up . X1

X, def down . X1 +up.Xpp1 1fn>0.
Such a technique is generally used when the size of a system is large [Bae90,
OrP92] since a specification would become unreadable otherwise. Our example,

although small, makes use of parameters. It is also possible to add standard
programming languages constructs and define a new equation of the form

X, & up . Xpt1 + (if n > 0 then down . X,_1).

By means of the above ideas it i1s possible to directly encode an action-

Comparison of Simulation Algebraic Techniques for Verification 31

based represented automaton A into DIOA. The encoding consists of one process
variable X parameterized over states(A). The equation for X is then of the form

if precondition(ay) then effect(ay) else
if precondition(az) then effect(as) else- -

Unfortunately, the more structure we add to the algebraic notation, the more
complicated it is to apply the DIOA axioms to carry out a proof. Also, the re-
cursive substitutivity rule requires one to find a set of processes that satisfy a
given set of inequations. When states are parameterized, finding those processes
is often tantamount to finding a simulation relation between states of the im-
plementation and states of the specification, which is consistent with the initial
observation of Section 6.1. In this case, the task of applying the axioms becomes
the equivalent of proving that a given simulation is a forward simulation. For ex-
ample, consider the counter we specified before and consider an implementation
as follows:

def
Yio = up . Y1
Y. < Jown . Yo-14+up. Yo ifn>10.
The recursive substitutivity rule requires us to show that each Y; satisfies the
equation for X;_19. The association h : Y; — X;_10 is a sort of simulation, and
the algebraic proof shows its correctness.

6.4. Mechanization

The process of carrying out either a simulation proof or an algebraic proof can
be long and tedious, and therefore error-prone; when the involved automata are
large. A simulation proof typically involves a case analysis based on actions; each
case involves logical deduction based on descriptions of the state transitions in
both the implementation and specification automata and on a description of the
forward (or other kind of) simulation relation. An algebraic proof involves a series
of deductions using the algebraic axioms. In both cases, it should be possible to
check the correctness of the deduction steps using an automatic prover. However,
we would also like some help from an automatic prover in actually carrying out
these tedious steps.

An automatic prover can help in the production of a simulation proof, but we
do not expect that the proof process will be completely automatic since the prob-
lem 1s undecidable in general. In addition to descriptions of the two automata,
the writer of such a proof will have to provide a description of the simulation
relation and possibly some invariances. Once this information is provided, an
automatic prover can be used to help in filling in enough details to verify that
the simulation is correct. As described in [SGG193], the Larch prover has been
used successfully for this purpose. Also the theorem prover Isabelle was used for
the same purpose in [Nip89], and the proof assistant Coq (Calculus of Inductive
Constructions) was used in [HSV94]. The work on mechanical simulation-based
verifications is still under development, and [HSV94, Nip89, SGGT93] are just
the first attempts at solving the problem.

It seems unlikely that an automatic prover will be of much help in defining
the simulation relation in a simulation proof. In small cases, essentially when
there are finitely many states as in our example, a model-checking approach

32 Nancy Lynch and Roberto Segala

might be helpful. The task of defining the simulation relation by hand will often
not be easy; its difficulty is comparable to that of defining an invariant assertion.
However, usually the designer of a system has enough intuitions about the design
to be able to define a relation that is almost correct, and this can be used as a
starting point for constructing the correct relation.

In the process algebraic proof given in this paper the axioms that have to be
applied during each step are partially determined by the equations defining the
specification automaton. OQur proof steps were essentially repeated applications
of the expansion axiom followed by some simplifications based on the given spec-
ification. This heuristic is generally applicable when dealing with (finite state)
circuit descriptions. It is also applied in [Jos92, Seg92, OrP92] and in several
of the examples of [Bae90]. In these cases, algebraic manipulators like those of
[MaV91, Lin91] can be used. However, when the problem becomes large or is de-
scribed by an infinite state machine, the remarks at the end of Section 6.3 show
that some form of simulation has to be defined even for an algebraic proof; there-
fore, the difficulties involved in the mechanization of simulation and algebraic
proofs are comparable. A case study in [GrP93], which is an algebraic verifi-
cation of the same protocol as [HSV94] using Coq, shows, in our opinion, how
deriving a process algebraic proof for a large system is tantamount to finding
a simulation relation. Yet, in [HSV94] the authors relate their work to [GrP93]
by commenting that “whether one prefers process algebra or the I/O automata
model appears to be a matter of taste”.

6.5. Additional Benefits Obtained from the Proof

Experience with large simulation-based verifications [WLL88, LyP92, SLL93b]
has shown that the formal description of the simulation relation in a simulation
proof constitutes an important piece of documentation of the key ideas of the im-
plementation, in much the same way that an invariant assertion does; invariants
and simulations typically express the key intuitions that make the implementa-
tion work. Similarly, due to the remarks at the end of Section 6.3, an algebraic
proof can embed some form of mapping which can be used as a documentation.

Because of the Execution Correspondence Lemma, a simulation-based proof
provides a correspondence between executions rather than just trace inclusion.
This correspondence enables us, for example, to base proofs of fairness on proofs
of ordinary trace inclusion. A process algebraic proof, on the other hand, proves
only the properties for which the axioms are certified to be sound. In our example
we were able to prove liveness because the quiescent preorder coincides with the
fair preorder under some particular conditions; however, if those conditions are
not met, or if we need to prove other properties (e.g., based on forcing sets) the
algebraic proof provides no help.

In our experience simulation proofs are flexible in the sense that a given
proof can usually be modified fairly easily in order to verify new properties of
an implementation. A typical verification task, for example the one in [SLLI3b],
involves the definition of specification and implementation automata and the
proof that the implementation meets the specification. During the proof some
errors might be discovered and the involved automata might need to be modi-
fied. Also, after the proof is completed, the specification and/or implementation
automata might be slightly modified in order to make them cleaner and more
general. The simulation relation and the correctness proof might then have to be

Comparison of Simulation Algebraic Techniques for Verification 33

correspondingly modified. In general the structure of the simulation proof seems
to provide us with a lot of guidance in carrying out such modifications, since
its general structure is usually preserved. To the extent that an algebraic proof
embeds a simulation proof, the same advantages for modifiability would accrue.

7. Conclusion

Using a simple example based on delay insensitive circuits, we have compared
two widely used verification techniques for concurrent and distributed systems.
The assertional methods based on I/O automata have been successfully used for
the verification of very complex systems [LyT87, WLL88, LyP92, SLLI3b] while
the algebraic techniques of process algebras [Mil89] have generally been used for
relatively small examples [Bae90, Jos92].

We have verified the correctness of the implementation of a Muller C element
taken from [Jos92] both in the assertional framework and in the process algebraic
framework. The algebraic proof is based on DIOA [Seg92], a process algebra for
I/O automata.

The example we have used 1s one of the typical examples of the process
algebraic community; therefore, it should not be surprising that the process
algebraic analysis looks shorter than the simulation-based one. Starting from the
presented example, however, our discussion has shown that scaling simulation
and algebraic proofs to more complex systems leads to comparable verification
processes, both in terms of verification steps and difficulty.

Although we have emphasized verification in this paper, 1t is important to
remember that verification is not the only purpose, nor even the main purpose,
of process algebra. Rather, process algebra is intended to provide compositional
semantics for programs. Of course, one important use for such a semantics is to
provide a basis for carrying out formal correctness proofs for systems. Since one
of the most practical verification methods is simulation, it is important that an
algebraic semantics be designed with a view toward compatibility with simulation
proofs. Given a program that is supposed to implement a given specification, a
process algebraic characterization of the semantic model can be used to compute
compositionally the semantics of the given program; then a simulation-based
technique can be used to prove the correctness of the implementation. Perhaps,
we could also add an intermediate step where algebraic techniques are used to
simplify a system before starting with the assertional part of the correctness
proof.

Acknowledgments. We thank Rocco De Nicola, Alan Fekete, John Guttag,
Jorgen Sogaard-Andersen, Frits Vaandrager and Jeannette Wing for very useful
comments and criticism on previous versions of this paper. We also thank one of
the anonymous referees for suggestions in the comparison section.

References

[Bae90] J.C.M. Baeten. Applications of Process Algebra. Cambridge Tracts in Theoretical
Computer Science 17, Cambridge University Press, 1990.

[BaW90] J.C.M. Baeten and W.P Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18, Cambridge University Press, 1990.

34

[DnH84]

[DnS92]

[GSSLY3]

[GrP93]

[Henss)]
[Hoa8s5]
[HSV94]
[Jos92]
[Lin91]
[LyP92]

[LasS91]
[LaS92]

[LyT87]

[LyVo1]

[MuB59]

[Milg9]
[MaVo1]

[Nip89]

[OrP92]
[Seg92]

[Seg93]

[SGG193]

[SLL93a]

Nancy Lynch and Roberto Segala

R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83-133, 1984.

R. De Nicola and R. Segala. A process algebraic view of I/O automata. Technical
Report SI-92/05, Dipartimento di Scienze dell’Informazione, Universita degli studi
di Roma La Sapienza, September 1992.

R. Gawlick, R. Segala, J.F. Sggaard-Andersen, and N. Lynch. Liveness in timed
and untimed systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for
Computer Science, November 1993.

J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large
data packets. A case study in computer checked verification. Technical Report
100, Logic Group Preprint Series, Utrecht University, 1993.

M. Hennessy. Algebraic Theory of Processes. MIT Press, Cambridge, Mas-
sachusetts, 1988.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs, 1985.

L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof-checking a data link
protocol. Technical Report CS-R9420, Programming Research Group, University
of Amsterdam, 1994.

M.B. Josephs. Receptive process theory. Acta Informatica, 29:17-31, 1992.

H. Lin. PAM: A Process Algebra Manipulator. In Larsen and Skou [LaS91], pages
136-146.

N. Lynch and B. Patt-Shamir. Distributed Algorithms. Fall 1992 Lecture Notes
for 6.852. MIT/LCS/RSS 16, MIT Laboratory for Computer Science, 1992.
K.G. Larsen and A. Skou, editors. Proceedings of the third international work-
shop on Computer Aided Verification, volume 575 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1-28, September 1992.

N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. In Proceedings of the 6% Annual ACM Symposium on Principles of
Distributed Computing, pages 137—151, Vancouver, Canada, August 1987. A full
version is available as MIT Technical Report MIT/LCS/TR-387.

N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-
based systems. In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg,
editors, Proceedings of the REX Workshop “Real-Time: Theory in Practice”, vol-
ume 600 of Lecture Notes in Computer Science, pages 397-446. Springer- Verlag,
1991.

D.E. Muller and W.S. Bartky. A theory of asynchronous circuits. Annals of the
Computation Laboratory of Harvard University. Volume XXIX: Proceedings of
an International Symposium on the Theory of Switching, Part I, pages 204-243,
1959.

R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

S. Mauw and G.J. Veltink. A proof assistant for PSF. In Larsen and Skou [LaS91],
pages 158-168.

T. Nipkow. Formal verification of data type refinement - theory and practice.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Proceedings of
the REX Workshop “Stepwise Refinement of Distributed Systems”, volume 430
of Lecture Notes in Computer Science, pages 561-591. Springer-Verlag, 1989.

F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal
Aspects of Computing, 4:497-593, 1992.

R. Segala. A process algebraic view of I/O automata. Technical Memo
MIT/LCS/TR-557, MIT Laboratory for Computer Science, Cambridge, MA
02139, October 1992.

R. Segala. Quiescence, fairness, testing and the notion of implementation. In
E. Best, editor, Proceedings CONCUR 93, Hildesheim, Germany, volume 715 of
Lecture Notes in Computer Science. Springer-Verlag, 1993.

J.F. Sggaard-Andersen, S.J. Garland, J.V. Guttag, N.A. Lynch, and
A. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis, editor,
Proceedings of the fifth international conference on Computer Aided Verification,
volume 697 of Lecture Notes in Computer Science. Springer-Verlag, 1993.

J.F. Sggaard-Andersen, B. Lampson, and N.A. Lynch. Correctness of at-most-

Comparison of Simulation Algebraic Techniques for Verification 35

[SLLY3b)]

[Stag4]

[Sta90]

[Vaa91]

[WLLSS]

once message delivery protocols. In FORTE 98 - Siwzth International Conference
on Formal Description Techniques, 1993.

J.F. Sggaard-Andersen, N.A. Lynch, and B.W. Lampson. Correctness of com-
munication protocols. a case study. Technical Report MIT/LCS/TR-589, MIT
Laboratory for Computer Science, November 1993.

E.W. Stark. Foundations of a theory of specification for Distributed Systems.
PhD thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, August 1984. Available as Technical Report
MIT/LCS/TR-342.

E.W. Stark. On the relations computable by a class of concurrent automata. In
Proceedings of the 1990 SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages, 1990.

F.W. Vaandrager. On the relationship between process algebra and Input/Output
automata. In Proceedings of the Sizth Annual Symposium on Logic in Computer
Science, 1991.

J.L. Welch, L. Lamport, and N. Lynch. A lattice-structured proof technique ap-
plied to a minimum spanning tree algorithm. Technical Report MIT/LCS/TM-
361, MIT Laboratory for Computer Science, June 1988.

