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2 Nancy Lynch and Roberto SegalaIn this paper, we unify, evaluate and compare the simulation-based and pro-cess algebraic veri�cation techniques in terms of the Input/Output automaton(I/O automaton) model of Lynch and Tuttle [LyT87]. This framework has beenused extensively for the veri�cation of complex algorithms and pieces of dis-tributed systems [WLL88, LaS92, LyP92, SLL93b], and has already been givena process algebraic characterization [Vaa91, Seg92, DnS92]. We show how eachof these techniques can be applied to the common task of verifying both safetyand liveness properties of systems described as I/O automata. We then use eachtechnique to verify a small but typical delay insensitive circuit taken from [Jos92]:a Muller C element [MuB59] implemented in terms of a majority element anda wire. Both the implementation and the speci�cation are described as I/O au-tomata, and the veri�cation consists of showing that the fair preorder relation(i.e., fair trace inclusion) holds between the implementation and the speci�cationautomata.The two proofs proceed very di�erently. First, the simulation proof uses aforward simulation [LyV91] from the implementation to the speci�cation, theninvokes an execution correspondence lemma [GSSL93] to obtain a correspon-dence between executions of the implementation and the speci�cation. Then asimple argument about fairness is made, based on the correspondence betweenexecutions; this fairness argument uses the convenient notion of a forcing condi-tion for an I/O automaton fairness class. The fairness argument could easily beformalized using a temporal logic of states and actions [Sta84, SLL93b], althoughwe do not do this in this paper.The algebraic proof uses deductions within the process algebra DIOA [Seg92]for I/O automata. This process algebra contains a collection of axioms (i.e.,sound proof rules) asserting that the quiescent preorder relation holds for a pairof I/O automata. The quiescent preorder is de�ned in [Vaa91] and consists oftrace inclusion and quiescent trace inclusion. It is an approximation, based on�nite traces only, of the fair preorder. The reason for the use of the quiescentpreorder rather than the fair preorder is that quiescence �ts nicely into a processalgebraic theory containing recursion whereas fairness does not. We state condi-tions (proved in [Seg93]) giving some circumstances under which the quiescentpreorder is equivalent to the fair preorder. Since these circumstances hold inour example, the DIOA deductions that prove quiescent trace inclusion are alsosu�cient to prove the needed fair trace inclusion.We emphasize that our two proofs are constructed to prove exactly the sametheorem. To make this clear we �rst give a \neutral" description of the veri�ca-tion problem in terms of I/O automata. Then we describe and verify the sameproblem in terms of an assertional representation of I/O automata and in termsof DIOA expressions, using simulation and algebraic techniques, respectively.We show formally that the two proofs are both solving the problem given inthe \neutral" description. This last step is essential in order to ensure sure that,although we are using di�erent formalisms, we are actually solving the sameproblem.We then give an extended comparison of the two veri�cation methods, basedon our experiences in carrying out this research and on our other experienceswith related examples. Our comparisons consider the correspondence betweenthe two methods, their ability to model fairness, the style of their representationof system components, their suitability for mechanization, and the byproductsyielded by the proofs.The rest of the paper is organized as follows. Section 2 contains a brief de-



Comparison of Simulation Algebraic Techniques for Veri�cation 3scription of the I/O automaton model. Section 3 contains a formal statement ofthe circuit problem to be solved, i.e., showing that the fair preorder relation holdsbetween a particular implementation and a Muller C element speci�cation. Sec-tion 4 contains the veri�cation using the simulation method. Section 5 containsthe veri�cation using process algebra. Section 6 contains an extended comparisonbetween the two methods; Section 7 contains some additional conclusions.2. The Input/Output Automaton ModelWe begin with a brief review of the I/O automaton model, which will be used asthe basis of the rest of the work in this paper. For a complete account, we referthe reader to [LyT87].De�nition 2.1. Given an alphabetA, letA� be the set of �nite length sequencesmade of elements of A and let A! be the set of in�nite length sequences madeof elements of A. Finally, let A� [A! be denoted by A1.De�nition 2.2. An I/O automaton A consists of �ve components:� a set states(A) of states.� a nonempty set start(A) � states(A) of start states.� an action signature sig(A) = (in(A); out(A); int(A)) where in(A); out(A) andint(A) are disjoint sets of input, output and internal actions, respectively. Wedenote with ext(A) the set in(A)[out(A) of external actions, and by local(A)the set out(A)[int(A) of locally controlled actions. We denote by acts(A) theset ext(A) [ int(A) of actions. We call (in(A); out(A); ;) the external actionsignature of A.� a transition relation steps(A) � states(A) � acts(A) � states(A) with theproperty that for each state q and each input action a there is a step from qwith action a. We say that A is input enabled.� A partition part(A) of local(A).A transition (q; a; q0) 2 steps(A) is also denoted by q a�! q0. We extend thenotion of transition to �nite sequences of symbols by saying thatq a1���an�! q0 i� 9q0;:::;qn q0 = q, qn = q0, and q0 a1�! q1 a2�! � � � an�! qn.Similarly, for in�nite sequences, we writeq a1a2����! i� 9(qi)i2N q a1�! q1 a2�! q2 a3�! � � �Two derived transition relations, abstracting from internal computations, areq a=) q0 i� 9s1;s22int�(A) q s1as2�! q0;q a=)� q0 i� 9s12int�(A) q s1a�! q0:The last two transition relations can be extended to �nite and in�nite sequencesof actions in the same way as for steps(A).De�nition 2.3. An execution fragment of an I/O automaton A is a (�nite orin�nite) sequence of alternate states and actions starting with a state and, if theexecution fragment is �nite, ending in a state



4 Nancy Lynch and Roberto Segala� = q0a1q1a2q2 � � �where each (qi; ai+1; qi+1) 2 steps(A). We denote by frag�(A); frag!(A) andfrag(A) the sets of �nite, in�nite and all execution fragments of A, respectively.An execution is an execution fragment whose �rst state is a start state. We denoteby exec�(A); exec!(A) and exec(A) the sets of �nite, in�nite and all execution ofA, respectively.The trace of an execution fragment � of an I/O automaton A, denoted bytraceA(�), or just trace(�) when A is clear, is the list obtained by projecting �onto the set of external actions of A, i.e., trace(�) = �dext(A).2 We say that� is a trace of an I/O automaton A if there exists an execution � of A withtrace(�) = �. We denote by traces�(A); traces!(A) and traces(A) the sets of�nite, in�nite and all traces of A, respectively.A key feature of the I/O automaton model is that the behavior of I/O automatais observed through their fair executions, i.e., those executions in which each\subcomponent" which is continuously willing to perform some of its locallycontrolled actions will eventually do so.De�nition 2.4. A fair execution fragment of an I/O automaton A is an execu-tion fragment � 2 frag(A) such that for all X 2 part(A)� If � is �nite then no action of X is enabled from the �nal state of �.� If � is in�nite then either actions fromX appear in�nitely often in � or statesfrom which no action of X is enabled appear in�nitely often in �.A fair execution is a fair execution fragment whose �rst state is a start state. Afair trace is the trace of a fair execution. We denote the set of fair traces of anI/O automaton A by ftraces(A).Now we can de�ne the usual preorder relation for I/O automata.De�nition 2.5. Given two I/O automata A and B with the same external ac-tion signature, the fair preorder is de�ned asA vF B i� ftraces(A) � ftraces(B):The fair preorder is the relation that is used to model implementation in theI/O automaton model. Since input enabling ensures that any implementationmust accept any external stimulus at any time, this preorder ensures that theimplementationmust contain a \rich" set of traces { enough to describe responsesto any possible input pattern. Fairness ensures that the correctness of a solutionis judged only on the basis of those behaviors in which the system is actuallygiven the chance to make progress. Note that this preorder ensures that theimplementation must provide output whenever the speci�cation must do so.Three main operators are de�ned on I/O automata: hiding, renaming andparallel composition.De�nition 2.6. Given an I/O automaton A = (Q;Q0; S; t; P ) and a set of ac-tions I such that I \ in(A) = ;, we de�ne HideI(A) to be the I/O automaton(Q;Q0; S0; t; P ) where S0 di�ers from S in that2 Our de�nition of trace coincides with the usual de�nition of behavior for I/O automata. Wehave changed the terminology in the interests of consistency with the usual notation of processalgebra.



Comparison of Simulation Algebraic Techniques for Veri�cation 5� out(HideI(A)) = out(A)nI, and� int(HideI(A)) = int(A) [ (acts(A) \ I).The hiding operator transforms external actions into internal ones, i.e., it hidessome locally controlled actions from the external environment. The only di�er-ence between the original and the resulting I/O automaton is in the signature.The executions stay the same, but the traces change.De�nition 2.7. An injective mapping f is applicable to an I/O automaton A ifacts(A) � dom(f). Given an I/O automaton A = (Q;Q0; S; t; P ) and a mappingf applicable to it, we de�ne f(A) to be (Q;Q0; S0; t0; P 0) where S0; t0 and P 0 arede�ned as follows� in(S) = f(in(A)), out(S) = f(out(A)), int(S) = f(int(A)),� t = f(q; f(a); q0) : (q; a; q0) 2 steps(A)g, and� P = f(f(a); f(a0)) : (a; a0) 2 part(A)g.Thus, the renaming operator simply renames actions of its operand. For theparallel composition we need a notion of compatibility for action signatures.De�nition 2.8.1. A set of action signatures fSi : i 2 Ig are strongly compatible i� for all i; j 2 I,i 6= j,(a) out(Si) \ out(Sj) = ;, and(b) int(Si) \ acts(Sj) = ;.2. A set of I/O automata fAi : i 2 Ig are strongly compatible i� their actionsignatures are strongly compatible.De�nition 2.9. The parallel composition Qi2I Ai of strongly compatible I/Oautomata fAi : i 2 Ig is de�ned to be the I/O automaton A with1. states(A) = Qi2I states(Ai),2. start(A) = Qi2I start(Ai),3. sig(A) = Qi2I sig(ai),where the composition S = Qi2I Si of strongly compatible action signaturesfSi : i 2 Ig is de�ned by(a) in(S) = Si2I in(Si) �Si2I out(Si),(b) out(S) = Si2I out(Si),(c) int(S) = Si2I int(Si),4. part(A) = Si2I part(Ai),5. steps(A) = f ((qi)i2I ; a; (q0i)i2I) : 8i 2 Ia 62 acts(Ai) implies qi = q0i;and a 2 acts(Ai) implies (qi; a; q0i) 2 steps(Ai)g3. The ProblemIn this section, we de�ne the problem that we are going to solve using boththe simulation and algebraic methods. This problem is that of verifying thecorrectness of a particular circuit implementation. We begin with an informaldescription, then present the formal version in several pieces.
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Fig. 2. A majority element and a wire implementing a Muller C element3.1. Informal DescriptionThe example consists of a simple delay insensitive circuit, taken from [Jos92],called theMuller C element [MuB59]. Its interface is shown in Figure 1. A MullerC element has two input ports a; b and one output port c. Once it is in its initialstate with all input and output voltage levels low, a Muller C element waitsfor both its inputs to reach the high voltage level for then raising its outputvoltage level. It then waits for both its inputs to reach the low voltage levelfor then reaching again its initial state. In our speci�cation no changes on theinput ports are allowed whenever the voltage level of an output port has tochange. Real implementations may exhibit unexpected behaviors (such as theglitch phenomenon) in such cases. For the above reason we do not specify thebehavior of any element whenever an output voltage level has to change and aninput occurs.A Muller C element can be implemented by a majority element and a wireas shown in Figure 2. A majority element is a device with three input ports andone output port. The voltage level of its output port is that of the majority ofits input ports. For the majority element we allow the change of level of an inputport even if the output port has to change level. The required condition is thatthe new input does not a�ect the ports that have to change voltage level.A wire is simply a device with one input and one output. It waits for a changeof level on its input port for then changing the voltage level of its output port.



Comparison of Simulation Algebraic Techniques for Veri�cation 7Our problem is to verify that a Muller C element can really be implementedby a majority element and a wire.3.2. Formal Description3.2.1. Actions as Voltage Level TransitionsIn our formalization we use actions to model changes of voltage level (either fromlow to high or from high to low) at a port. The observation of an action doesnot give any information whether the voltage transition is from high to low orvice versa. Our use of actions is a consequence of the fact that the elements ofthe problem we are analyzing can be described simply in terms of voltage leveltransitions.3.2.2. Speci�cations of the ElementsThe speci�cation S of an element is a tuple (Q;Q0; S; T; P ) consisting of a set ofstates Q, a set of start states Q0, an interface S consisting of three disjoint setsof input, output and internal actions respectively, a transition table T , and apartition of the locally controlled actions P . The transition table gives, for eachstate and action, the future state, or not speci�ed (NS), or not enabled (NE). Theentry not speci�ed is reserved for input actions and stands for \the environmentis not supposed to provide input at this point"; the entry not enabled is reservedfor local actions and stands for \this action cannot occur at this point".The speci�cation style outlined above does not de�ne I/O automata directly;however, it allows speci�cations that are very close to the informal speci�ca-tions of Section 3. Later in this section we de�ne formally how to interpret thespeci�cations below as I/O automata. The Muller C element, the wire and themajority element speci�cations are denoted by CN , WN and MN , respectively.Here, N stands for \neutral" in the sense that these speci�cations are not bi-ased toward either of the representation methods or veri�cation techniques weintroduce later. We start with the formal speci�cation of a Muller C element.Speci�cation 3.1. A Muller C element CN is de�ned as follows.S = (fa; bg; fcg; ;)Q = f;; fag; fbg;fa; bggQ0 = f;gP = ffcggThe transition relation is de�ned by the following table:a b c; fag fbg NEfag ; fa; bg NEfbg fa; bg ; NEfa; bg NS NS ;It is easy to check that the above speci�cation corresponds to the informal onegiven in Section 3. Starting from a state ; where the voltage level of each portis the same (say low), the occurrence of an input action would cause the system



8 Nancy Lynch and Roberto Segalato move to a new state in which the new voltage level of the given input port isconsidered. When the voltage level of both the input ports is di�erent from thevoltage level of the output port (state fa; bg) the output action c is enabled andno input is allowed to occur.Speci�cation 3.2. A wire WN is de�ned as follows.S = (fmg; fcg; ;)Q = f�;mgQ0 = f�gP = ffcggThe transition relation is de�ned by the following table:m c� m NEm NS �Speci�cation 3.3. A majority element MN is de�ned as follows.S = (fa; b; cg; fmg; ;)Q = 2fa;b;cgQ0 = f;gP = ffmggThe transition relation is de�ned by the following table:a b c m; fag fbg fcg NEfag ; fa; bg fa; cg NEfbg fa; bg ; fb; cg NEfcg fa; cg fb; cg ; NEfa; bg NS NS fa; b; cg fcgfa; cg NS fa; b; cg NS fbgfb; cg fa; b; cg NS NS fagfa; b; cg fb; cg fa; cg fa; bg ;3.2.3. From Speci�cations to I/O AutomataThe formal speci�cations of Section 3.2.2 are not I/O automata since their tran-sition relations are not input enabled. In particular it is necessary to de�necarefully the meaning of the two special symbols NE and NS. The meaning ofNE is trivial: if T (q; a) = NE for a state q and an output action a, then notransition with action a occurs from state q. If T (q; a) = NS for a state q andan input action a, then, since an I/O automaton is input enabled, a transitionfrom q with action a must be de�ned. Intuitively we do not wish to constrain thebehavior of any implementation in the presence of an unspeci�ed input. In otherwords we want any implementation to be correct independently of the behaviorsit exhibits in the presence of some input that is not speci�ed in the speci�ca-tion. Since the implementation relation of I/O automata is the fair preorder, theabove intuition is captured by introducing a new special state 
, and, wheneverT (q; a) = NS, by introducing a transition q a�! 
. The transition relation on
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 has to be de�ned in such a way that, given any sequence of actions �, it ispossible to �nd a fair execution fragment � whose �rst state is 
 and such thattrace(�) = �.De�nition 3.4. Given a speci�cation S = (Q;Q0; (in; out; int); T; P ) the I/Oautomaton A = A(S) is de�ned as� states(A) = Q [ f
g.� start(A) = Q0.� sig(A) = (in; out; int[ f�p j p 2 Pg).� (q; a; q0) 2 steps(A) i�{ T (q; a) = q0 or{ T (q; a) = NS and q0 = 
 or{ q = q0 = 
.� part(A) = fp [ f�pg j p 2 Pg.The following proposition states that everything is possible whenever 
 is reached,i.e., any choice of implementation is correct whenever the speci�cation reachesstate 
.Proposition 3.5. Given a speci�cation S and given any (possibly in�nite) se-quence � of external actions of S, there exists a fair execution fragment � ofA(S) whose �rst state is 
 and such that trace(�) = �.Proof. The execution fragment � interleaves the actions of � with one internalaction from each class of part(A(S)). If � is �nite then � fairly loops foreveron the internal actions from each class of part(A(S)) after � is completed. Byconstruction we know that each class has at least one internal action. Moreover
 has a self loop with each action.Now we can state the problem formally: verify thatHidefmg(A(MN ) k A(WN )) vF A(CN ):4. A Veri�cation using SimulationIn this section we carry out the veri�cation of Section 3.2 using simulation-basedassertional techniques. We begin by presenting the relevant theory, then givevariants of the speci�cations of Section 3.2 that are better suited for carryingout a simulation proof, and �nally carry out the steps of the proof.4.1. The TheoryIn order to prove that an I/O automaton A implements another I/O automatonB, it is necessary to prove that each fair trace of A is also a fair trace of B. Ourstrategy for doing this is to obtain a strong correspondence between each execu-tion of A and some execution of B; one way of obtaining such a correspondenceis by using a forward simulation. Then, the proof of fair trace inclusion can becarried out in terms of the correspondence between executions.In the fairness proof, it is notationally advantageous to use a generalization



10 Nancy Lynch and Roberto Segalaof I/O automata known as forcing I/O automata; this generalization does notincrease the expressive power of the model, but does allow more concise repre-sentations.Below, we de�ne forward simulations, state the Execution CorrespondenceLemma, and give the needed de�nitions and results for forcing I/O automata.4.1.1. Forward Simulations and the Execution Correspondence LemmaThe notion of forward simulation that we use is taken from the comprehensivepaper by Lynch and Vaandrager [LyV91].De�nition 4.1. A forward simulation from an I/O automaton A to an I/Oautomaton B is a relation f over states(A) and states(B) that satis�es:1. If q 2 start(A) then f [q] \ start(B) 6= ;.2. If q a�! q0 and p 2 f [q], then there exists a state p0 2 f [q0] such thatp adext(B)=) p0.The usual conclusion that is drawn from the existence of a forward simulationis trace inclusion:Lemma 4.2. Given two I/O automata A;B, if there is a forward simulationfrom A to B, then traces(A) � traces(B).However, since we would like to base our proof of fair trace inclusion onour proof of trace inclusion, it is useful to have a stronger consequence of theexistence of a forward simulation. This lemma is proved in [GSSL93].3Lemma 4.3. Let f be a forward simulation from an I/O automaton A to anI/O automaton B. Then, for each execution � = q0a1q1a2q2 � � � of A there is anexecution �0 = q00b1q01b2q02 � � � of B and a total monotone nondecreasing mappingc : f0; : : : ; j�jg ! f0; : : : ; j�0jg such that1. c(0) = 0,2. q0c(i) 2 f(qi) for all 0 � i � j�j,3. bc(i)+1 � � � bc(i+1)dext(B) = ai+1dext(A) for all 0 � i � j�j, and4. for all q0j there exists an i such that c(i) � j.If the forward simulation is well chosen, then Proposition 4.3 can be used asthe basis for a proof of fair trace inclusion as follows. For each fair execution � ofA, �rst produce a corresponding execution �0 of B. Then show that the fairnessof � implies the fairness of any corresponding execution of B. This is the generalstrategy that is followed in our proof.4.1.2. Forcing I/O AutomataIn carrying out the proof of fairness, it turns out to be notationally convenientto use a slight generalization of I/O automata that we call forcing I/O automata[SLL93b]. The generalization consists of associating a set of states, called a forc-ing set , with each class of part(A). Forcing I/O automata are no more expressive3 In [GSSL93], it is also shown that a similar lemmaholds for other types of simulation relationssuch as backward simulations.



Comparison of Simulation Algebraic Techniques for Veri�cation 11than ordinary I/O automata in terms of the sets of fair traces they can represent;they are useful, however, because sometimes they admit more concise represen-tations.De�nition 4.4. A forcing I/O automaton A is an I/O automaton with thefollowing additional structure:� a function force(A) associating a set of states with each partition of part(A)such that, for each partition p 2 part(A) and each state q 2 force(A)(p), thereexists an action from p which is enabled from q. The set force(A)(p) is calledthe forcing set of p. It is a subset of the states enabling some action from p.The set of states enabling some action from p is denoted by enabling(p).The notion of fair execution for forcing I/O automata di�ers from that of ordi-nary I/O automata in that fairness is now expressed only with respect to statesin the forcing set of each class p of local actions.De�nition 4.5. A fair execution fragment of a forcing I/O automaton A is anexecution fragment � 2 frag(A) such that for all X 2 part(A)� If � is �nite then the �nal state of � is not in the forcing set of X.� If � is in�nite then either actions fromX appear in�nitely often in � or statesnot in the forcing set of X appear in�nitely often in �.A fair execution is a fair execution fragment whose �rst state is a start state.The following proposition says that forcing I/O automata do not add any newexpressive power to the I/O automaton model; moreover, it gives a particulartransformation from forcing I/O automata to I/O automata.Proposition 4.6. Given a forcing I/O automaton A, consider an I/O automa-ton F(A) where� states(F(A)) = states(A)� start(F(A)) = start(A)� sig(F(A)) = (in(A); out(A); int(A) [ f�p j p 2 part(A)g)� steps(F(A)) = steps(A)[f(q; �p; q) j p 2 part(A); q 2 (enabling(p)n force(p))g� part(F(A)) = fp [ f�pg j p 2 part(A)gThen ftraces(A) = ftraces(F(A)).Proof. Let � be a fair trace of A and let � be a fair execution of A such thattrace(�) = �. Build an execution �0 of F(A) from � in the following way: at eachstate of � add a self loop with all the �p actions that are enabled; if � is �nite,loop forever on the �nal state of � by performing all the enabled �p actions ina Round-Robin way. Note that trace(�0) = �, so it is enough to show that �0is a fair execution of F(A). Suppose that �0 is not fair for F(A). If �0 is �nitethen there exists a class p of A with an enabled action from the last state of �0and such that �p is not enabled from the last state of �0. Also, � is �nite andits last state enables an action from p. By de�nition of F the last state of � isin the forcing set of p, therefore � is not a fair execution of A; a contradiction.Suppose that �0 is in�nite and that there is a class p of A and a su�x �00 of �0such that actions from p [ f�pg are continuously enabled but never performedin �00. By de�nition of �0, �p is never enabled in �00, hence actions from p arealways enabled and never performed in �00. By de�nition of F , all the states of



12 Nancy Lynch and Roberto Segala�00 are in the forcing set of p, hence there exists a su�x of � where actions fromp are always enabled and never performed and whose states are all in the forcingset of p, i.e., � is not fair; again a contradiction.Conversely, let � be a fair trace of F(A) and let � be a fair execution of F(A)such that trace(�) = �. Build an execution �0 of A by removing from � all thetransitions with actions of the form �p. Note that trace(�0) = �, so it is enoughto show that �0 is a fair execution of A. If � is �nite, then the last state of � doesnot enable any action from any class p, hence also the last state of �0 does notenable any action from any class p, and �0 is fair. If � is in�nite and �0 is �nite,then, by de�nition of �0 and F , the last state of �0 is not in the forcing set of anyclass p, hence �0 is fair. If � is in�nite and �0 is in�nite, then, for each class p,there are three possible cases. If states not enabling actions from p[f�pg appearin�nitely often in �, then states not enabling actions from p appear in�nitelyoften in �0; if actions from p appear in�nitely often in �, then actions from pappear in�nitely often in �0; if actions from p [ f�pg appear in�nitely often in� but actions from p appear �nitely many times in �, then, by de�nition of F ,states not in the forcing set of p appear in�nitely often in �0. In all of the abovecases the conditions for �0 to be fair are satis�ed, therefore �0 is a fair executionof A.The standard operators of I/O automata can be easily extended to forcing I/Oautomata. The only nontrivial extension is that of the parallel operator, wherethe forcing set of each class has to be modi�ed to take into account the states ofthe other forcing I/O automata. Consider for example a forcing I/O automatonA composed in parallel with a forcing I/O automaton B and let q be in theforcing set of some class p of A. Whenever A reaches state q in the compositionA k B, we want the global state of A k B to be in the forcing set of p. Thereforeall states of fqg � states(B) have to be in the new forcing set of p.De�nition 4.7. The parallel composition Qi2I Ai of strongly compatible forc-ing I/O automata fAi : i 2 Ig, denoted by A, is the composition of their ordi-nary part augmented with new forcing sets as follows: for each class p 2 part(pj),force(A)(p) = force(Aj)(p) �Qi2Inj Ai.Proposition 4.8. Given two forcing I/O automata A;B,1. F(HideI(A)) and HideI(F(A)) are the same I/O automaton;2. F(A k B) and F(A) k F(B) are the same I/O automaton.Proof. The �rst statement is trivial since the hiding operator changes only thesignature of an I/O automaton and the result of F does not depend on whichactions of an I/O automaton are internal and which ones are external. For thesecond statement we verify that the two involved I/O automata are the sameone by verifying each component separately.states(F(A k B)) = states(A k B)= states(A) � states(B)= states(F(A)) � states(F(B))= states(F(A) k F(B))start(F(A k B)) = start(A k B)= start(A)� start(B)= start(F(A)) � start(F(B))= start(F(A) k F(B))



Comparison of Simulation Algebraic Techniques for Veri�cation 13out(F(A k B)) = out(A k B) = out(A) [ out(B)= out(F(A)) [ out(F(B))= out(F(A) k F(B))in(F(A k B)) = in(A k B)= (in(A) [ in(B))nout(A k B)= (in(F(A)) [ in(F(B)))nout(F(A) k F(B))= in(F(A) k F(B))int(F(A k B)) = int(A k B) [ f�p j p 2 part(A k B)g= int(A) [ int(B) [ f�p j p 2 part(A) [ part(B)g= (int(A) [ f�p j p 2 part(A)g)[(int(B) [ f�p j p 2 part(B)g)= int(F(A)) [ int(F(B))= int(F(A) k F(B))part(F(A k B)) = fp [ f�pg j p 2 part(A k B)g= fp [ f�pg j p 2 part(A) [ part(B)g= fp [ f�pg j p 2 part(A)g [ fp[ f�pg j p 2 part(B)g= part(F(A)) [ part(F(B))= part(F(A) k F(B))The argument for steps is more complicated. Let ((qA; qB); a; (q0A; q0B)) 2steps(F(A k B)). If a is not an action of the form �p, then ((qA; qB); a; (q0A; q0B)) 2steps(A k B). From the de�nition of the parallel composition operator and fromthe fact that steps(C) � steps(F(C)) for each forcing I/O automaton C, itis immediate do derive that ((qA; qB); a; (q0A; q0B)) 2 steps(F(A) k F(B)). If ais of the form �p, then suppose without loss of generality that p 2 part(A).Then (qA; qB) 2 enabling(p)n force(p) in A k B, and, by de�nition of parallelcomposition for forcing I/O automata, qa 2 enabling(p)n force(p) in A. By def-inition of F , (qA; a; q0A) 2 steps(F(A)). By de�nition of parallel composition,((qA; qB); a; (q0A; q0B)) 2 steps(F(A) k F(B)).Conversely, let ((qA; qB); a; (q0A; q0B)) 2 steps(F(A) k F(B)). If a is not anaction of the form �p, then a direct analysis of the de�nition of the parallelcomposition operator shows that ((qA; qB); a; (q0A; q0B)) 2 steps(F(A k B)). Ifa is of the form �p, then suppose without loss of generality that p 2 part(A).By de�nition of F , qa 2 enabling(p)n force(p) in A. By de�nition of parallelcomposition for forcing I/O automata, (qA; qB) 2 enabling(p)n force(p) in A k B.By de�nition of F , ((qA; qB); a; (q0A; q0B)) 2 steps(F(A k B)).4.2. Speci�cation of the ComponentsIn Section 3.2 we described the system components using a \neutral" formalismthat is not biased toward either veri�cation method. Each of the two methods,however, has its own characteristic language for describing system components.In this section, we represent each element of Section 3.2 using a variant of theprecondition-e�ect language of [LyT87] that is suitable for describing forcing I/Oautomata. We also relate the new speci�cations to the neutral ones.



14 Nancy Lynch and Roberto SegalaIn our precondition-e�ect language a forcing I/O automaton is described bymeans of its action signature, its states, its initial states, its transition relation,and its classes with forcing sets. The transition relation is speci�ed by meansof the preconditions for the execution of each action and the e�ect each actionproduces on the state. The precondition of an action gives the set of states fromwhich it is enabled or from which it is expected; the e�ect gives the next state.If an input action occurs when its precondition is not satis�ed, then the systemmoves to a special state 
. The state 
 implicitly has a transition to itself foreach action and it does not appear in the forcing set of any class of local actions.Note that this representation can be more concise than the neutral represen-tation, because states need not all be listed explicitly. Rather, they are describedin terms of values of a collection of state variables.In order to simplify the notation we introduce an operator � on sets corre-sponding to the symmetric di�erence operator. Note that the transition relationsof the forcing I/O automata we introduce below di�er from those of Section 3.2only in the de�nition of state 
. As a consequence, the speci�cations of thissection and those of Section 3.2 denote I/O automata with the same set of fairtraces. In fact, the connection between the I/O automata is much closer thanthis; we give a formal statement of the connection after the speci�cations.Speci�cation 4.9. A Muller C element CF is de�ned as follows.S = (fa; bg; fcg; ;)Q = f;; fag; fbg;fa; bg;
gQ0 = f;gP = ffcgg where fcg has forcing set ffa; bggTransitions:Action aPrecondition: q 6= fa; bgE�ect: q0 := q � fagAction bPrecondition: q 6= fa; bgE�ect: q0 := q � fbgAction cPrecondition: q = fa; bgE�ect: q0 := ;Speci�cation 4.10. A majority element MF is de�ned as follows.S = (fa; b; cg; fmg; ;)Q = 2fa;b;cg [ f
gQ0 = f;gP = ffmgg where fmg has forcing set ffa; bg; fa; cg; fb; cg;fa; b; cggTransitions:Action aPrecondition: q 62 ffa; bg; fa; cggE�ect: q0 := q � fag



Comparison of Simulation Algebraic Techniques for Veri�cation 15Action bPrecondition: q 62 ffa; bg; fb; cggE�ect: q0 := q � fbgAction cPrecondition: q 62 ffa; cg; fb; cggE�ect: q0 := q � fcgAction mPrecondition: jqj � 2E�ect: q0 := fa; b; cgnqSpeci�cation 4.11. A wire WF is de�ned as follows.S = (fmg; fcg; ;)Q = f�;m;
gQ0 = f�gP = ffcgg where fcg has forcing set ffmggTransitions:Action mPrecondition: q = �E�ect: q0 := mAction cPrecondition: q = mE�ect: q0 := �Proposition 4.12.1. A(CN ) and F(CF ) denote the same I/O automaton.2. A(MN ) and F(MF ) denote the same I/O automaton.3. A(WN ) and F(WF ) denote the same I/O automaton.Proof. The proof is a simple analysis of the de�nitions. We argue a bit moreabout the �rst statement and leave the other two to the reader. The states ofA(CN ) and F(CF ) are the same since the states of CF are those of CN plus 
and A adds a new state 
 to the states of CN . Similarly, the start states are thesame in A(CN ) and F(CF ). The partitions of the locally-controlled actions arethe same since both CN and CF have a unique class and both A and F add anew internal action �p to each class p. Similarly, the action signatures of the twoI/O automata are the same. The transition relations of the two I/O automataare the same since the preconditions of the actions of CF identify those cells ofthe transition table of CN that do not contain NS or NE, the e�ects of eachaction coincide in CN and CF , all the states of CF but 
 are in the forcing set ofthe unique partition of part(CF ), and A deals with unspeci�ed inputs by movingto 
.4.3. The Veri�cationWe �nally prove that a Muller C element is implemented by a majority elementand a wire. We �rst prove a proposition expressing this claim for forcing I/O



16 Nancy Lynch and Roberto Segalaautomata. At the end of this subsection, we show how to derive the precise claimof Section 3.2.Proposition 4.13. Hidefmg(MF k WF ) vF CF , i.e., a Muller C element canbe implemented by a majority element and a wire.Proof. We de�ne a mapping from the implementation to the speci�cation andshow that it is a forward simulation. Then we use the Execution CorrespondenceLemma to obtain corresponding executions and use this correspondence to provefair trace inclusion.More precisely, the mapping f to use is the following:(;; �) 7! f;g(fag; �) 7! ffag;
g(fbg; �) 7! ffbg;
g(fa; bg; �) 7! ffa; bg;
g(fcg;m) 7! ffa; bg;
gall other pairs 7! f!gWe �rst prove that the above relation is a forward simulation. The conditionon the initial states is immediate to verify since the initial state (;; �) is mappedto the initial state ;. For the transition relation we proceed by cases analysis onaction names.Action a: We distinguish the following cases:� If a occurs from (x; �) where x 2 f;; fag; fbgg then (x; �) a�! (x�fag; �)and x a�! x� fag.� If a occurs from (fa; bg; �) then (fa; bg; �) a�! (
; �). Moreover fa; bg a�!
 and 
 a�! 
.� If a occurs from (fcg;m) then (fcg;m) a�! (
;m). Moreover fa; bg a�! 
and 
 a�! 
.� If a occurs from any state (x; �) where x =2 f;; fag; fbg; fa; bgg then(x; �) a�! (x0; �) and x0 =2 f;; fag; fbg; fa; bgg. Moreover 
 a�! 
.� If a occurs from any state (x;m) where x 6= fcg then (x;m) a�! (x0;m)and 
 a�! 
. Note that, since for x = fa; cg we have x0 = fcg, we need 
in the mapping for (fcg;m).Action b: This case is the same as the case for action a.Action c: This action is enabled only from states of the form (x;m) andyields a new state (x0; �). If x = fcg then x0 = ; and fa; bg c�! ;. In all othercases x0 can be anything but ;. This is the case for which we need to map(fag; �), (fbg; �) and (fa; bg; �) to 
.Actionm: This action is enabled from each state (x; �) and (x;m) with jxj �2. If the starting state is (x;m) then the �nal state is (x0;
). Moreover bothstarting and �nal states are mapped to 
. If the starting state is (x; �) withx 6= fa; bg then the �nal state is (x0;m) and both starting and �nal states aremapped to 
. If the starting state is (fa; bg; �) then (fa; bg; �) m�! (fcg;m)and both starting and �nal states are mapped to fa; bg and 
.The existence of the above forward simulation allows us to conclude that each



Comparison of Simulation Algebraic Techniques for Veri�cation 17trace ofHidefmg(MF kWF ) is a trace of CF . We now use the same simulation toargue that each fair trace of Hidefmg(MF kWF ) is a fair trace of CF . Considera generic fair execution � of Hidefmg(MF kWF ). By the Execution Correspon-dence Lemma, there is an execution �0 of CF corresponding to � through themapping f . It is su�cient to argue that �0 is fair to conclude.Suppose that �0 is not a fair execution of CF . The only way the fairness forCF can be violated is for the states in �0 to be fa; bg for some point on without cever occurring. (In fact fa; bg is the only state in the forcing set for fcg.) Then in�, the correspondence says that the states are all either (ab; �) or (c;m) from thatpoint on. If there is any occurrence of a (c;m) state, then the fairness conditionfor WF says that eventually c occurs in �, so also in �0, a contradiction. So thestate must be (ab; �) forever. But then the fairness condition for MF says thateventually m occurs, changing the state to (c;m), again a contradiction.Note that the fairness part of the proof above is done somewhat less formallythan the simulation part; the fairness part can be formalized using a temporallogic of states and actions [Sta84, SLL93b].Now we can give the main result:Theorem 4.14. Hidefmg(A(MN ) k A(WN )) vF A(CN ).Proof. From Propositions 4.13 and 4.6 we derive F(Hidefmg(MF k WF )) vFF(CF ). From Proposition 4.8 we derive Hidefmg(F(MF ) k F(WF )) vF F(CF ).From Proposition 4.12 we obtain Hidefmg(A(MN ) k A(WN )) vF A(CN ).5. A Veri�cation using Process AlgebrasIn this section we carry out the veri�cation of Section 3.2 using process algebra.Again, we begin by presenting the relevant theory, then give new speci�cations,and �nally carry out the steps of the proof.5.1. The TheoryAs before, our job is to prove a fair trace inclusion relationship between two I/Oautomata. In general, process algebra is not well suited for proving results aboutfairness, because fairness does not �t nicely into the theory of a process algebracontaining recursion. However, process algebra can be used to reason about anapproximation to fairness known as quiescence, and under certain circumstances,this may be enough.Below, we de�ne quiescence and relate it to fairness. We then de�ne DIOA(\Demonic I/O Automata"), a process algebra for proving quiescent trace inclu-sion relationships between I/O automata. 44 The adjective \demonic" is used suggestively in [Seg92] to emphasize the fact that demonicI/O automata behave catastrophically in the presence of unexpected inputs. It is in contrastwith the approach of [Vaa91] which is called \angelic" in [Seg92].



18 Nancy Lynch and Roberto Segala5.1.1. From the Quiescent Preorder to the Fair PreorderDe�nition 5.1. A quiescent execution of an I/O automaton A is a �nite fairexecution of A. A quiescent trace is the trace of a quiescent execution. We denotethe set of quiescent traces of an I/O automaton A by qtraces(A).De�nition 5.2. Given two I/O automata A and B with the same external ac-tion signature, the quiescent preorder is de�ned asA vQ B i� traces�(A) � traces�(B) and qtraces(A) � qtraces(B):The quiescent preorder was �rst introduced in [Vaa91] and is an attempt atapproximating the fair preorder by looking only at the �nite executions of anI/O automaton. As pointed out through some examples in [Seg92], the quiescentpreorder is not an intuitively reasonable notion of implementation in general;however, [Seg93] gives some su�cient conditions for the quiescent preorder tocoincide with the fair preorder. Below we present some of the results of [Seg93].We start with some de�nitions.De�nition 5.3. An I/O automaton A is quiescent detectable if each �nite fairtrace of A is also a quiescent trace of A.Quiescence detectability requires each divergence to be detected through a qui-escent trace. The fair preorder, in fact, does not distinguish between divergenceand quiescence, while the quiescent preorder does.De�nition 5.4. An I/O automatonA is quiescent continuous if the limit of anychain of quiescent traces of A is a fair trace of A.The quiescent preorder deals only with �nite executions, while the fair preorderalso considers in�nite ones. A condition for the two preorders to coincide is thatthe information about in�nite executions be captured by the information on the�nite ones. To guarantee the above fact we also need �nite internal nondeter-minism.De�nition 5.5. An I/O automatonA has �nite internal nondeterminism (FIN)if 8h2acts�(A)fq j 9q02start(A)q0 h=)� qg is �nite.The above de�nition of FIN is weaker than the de�nition given in [LyV91]. Thede�nition of [LyV91] requires, for every trace h, the set of reachable states withh to be �nite. In our de�nition we only require a smaller set to be �nite, i.e., theset of states reachable through h with its last external transition.De�nition 5.6. An I/O automaton A is input quiescent detectable if each in�-nite fair trace of A with �nitely many output actions has in�nitely many pre�xesthat are quiescent for A.An in�nite fair trace made of input actions only can be obtained from an execu-tion containing in�nitely many internal transitions. The quiescent preorder, onthe other hand, can detect only quiescent states.Theorem 5.7. Given two I/O automata A1; A2 with the same external actionsignature such that part(A1) = flocal(A1)g and part(A2) = flocal(A2)g, if A1is quiescent detectable and input quiescent detectable, and A2 is fair continuousand has FIN, then



Comparison of Simulation Algebraic Techniques for Veri�cation 19A1 vQ A2 implies A1 vF A2:If A2 is quiescent detectable thenA1 vF A2 implies A1 vQ T2:Quiescent detectability and FIN are generally met by practical systems. Note,in fact, that systems without any in�nite internal computation are quiescentdetectable. Also quiescent continuity is generally true. In [Seg93] it is shownthat, if an I/O automaton has FIN and is input deterministic (for each state qand each input action a there exists a unique state q0 such that q a=)� q0), thenit is quiescent continuous. It is not clear yet to us how general input quiescentdetectability is.Theorem 5.7 shows how the quiescent preorder can capture the fair preorderof some I/O automata with a single class of locally controlled actions. This isnot the case for general I/O automata. However, there are cases in which thequiescent preorder is su�cient for concluding fair trace inclusion in the presenceof multiple classes. When an I/O automaton has more than one class of locallycontrolled actions, the quiescent preorder is not of great help in deriving thefair preorder. The following proposition is of help whenever the speci�cationautomaton has a single class and the implementation automaton has multipleclasses.Proposition 5.8. Let A be an I/O automaton. If for each transition q a�! q0of steps(A) where a is an input action and each class x of part(A), an action ofx is enabled from q0 if an action of x is enabled from q (i.e., input actions do notdisable any class of part(A)), then ftraces(A) � ftraces(A0) where A0 di�ersfrom A only in that part(A0) = flocal(A)g.If an I/O automaton A with multiple classes implements an I/O automatonB with a single class, and if the involved automata satisfy the conditions ofTheorem 5.7, then the proposition above gives a su�cient condition for derivingthe full fair preorder from the quiescent preorder. In fact, from A0 vQ B, whereA0 is the I/O automaton A with a single class, we derive A0 vF B, and, fromProposition 5.8, we derive A vF B. Examples of systems satisfying the conditionof Proposition 5.8 are the monotone I/O automata of [Sta90], which can modela large class of data
ow networks, and the semi-modular, speed-independentcircuits of [MuB59]. Our problem is based on delay insensitive circuits.5.1.2. The Calculus of Demonic I/O AutomataThe calculus of Demonic I/O Automata (DIOA) is a process algebra for I/Oautomata [Seg92]. Each I/O automaton is an expression which is obtained byapplying operators to basic automata. Each expression is sorted and each sortrepresents an external action signature. Each DIOA expression has a uniqueinternal action � . Multiple internal actions, in fact, are used within I/O automatafor expressing fairness with respect to di�erent internal tasks; however, DIOAdoes not deal with fairness. In this paper we present a slightly modi�ed versionof DIOA in which we consider multiple internal actions. Each sort represents afull action signature with multiple internal actions. Our modi�cation does notchange the algebraic properties of DIOA (the axioms do not change), but itmakes it easier to relate DIOA proofs to simulation proofs. We assume that thesort of each DIOA expression contains at least one internal action and we use �



20 Nancy Lynch and Roberto SegalaTable 1. The signature of DIOAName Op. Domain Range Restrictionsquiescent nilS � Somega 
S � Spre�xing a:S S S a 2 ext(S)ichoice �S S; S Sechoice I+SJ S; S S I; J � in(S)parallel S1kS2 S1; S2 S3 int(S1)\ acts(S2) = acts(S1) \ int(S2) = ;out(S1)\ out(S2) = ;out(S3) = out(S1) [ out(S2)in(S3) = (in(S1) [ in(S2))nout(S3)int(S3) = int(S1) [ int(S2)hiding �SI S S0 I � out(S); S0 = (in(S); out(S)nI; int(S) [ I)renaming �S S S0 for each injective � : acts(S) �! acts(S0)S0 = (�(in(S)); �(out(S)); �(int(S)))process XS � S XS 2 XSto denote a generic internal action. This assumption is necessary to model someof the operators.Table 1 contains all the operators of DIOA; note that the sort of an expressionis computable. Table 2 contains the operational semantics of DIOA in terms oftransition systems. The operators of DIOA recall the standard operators of CCS[Mil89]; however they are di�erent in the sense that they also guarantee inputenabling by moving an automaton to the state 
 whenever some unexpectedinput is provided. The expression nil models a quiescent automaton that movesto 
 for any input. The pre�xing operator allows the speci�cation of an automa-ton which �rst performs a speci�c action a. The internal choice operator modelsnondeterministic choice independently of the external environment. Particularlyunfamiliar to the process algebraic community is the external choice operator,which is parameterized by two sets of input actions. The two parameters describewhich arguments of the operator deal with di�erent input actions. Consider theexpression exp = a : e fag+fbg b : f . The subexpression a : e describes the behaviorof exp in the presence of input action a while the subexpression b:f describes thebehavior of exp in the presence of input action b. The parameters are necessarysince a : e also reacts to input b although that reaction is not desired. How-ever, the meaning of an expression like a : e + b : f is intuitively clear. Althoughthis intuition is not expressible for general DIOA expressions, Table 3 de�nes afunction si(e) (Speci�ed Inputs) which is capturing our intuitive idea for DIOAexpressions of the kind a1 : e1 + � � � + an : en. Function si allows us to de�nean unparameterized choice operator by writing e + f for e si(e)+si(f) f , wherefunction si is de�ned in Table 3. The interested reader is referred to [Seg92] fora more detailed description of si and its generalization to all DIOA expressions.Recursion is obtained by means of process variables and a declaration mappingE, which associates a guarded expression of sort S with each process variable ofsort S. An expression is guarded if each process variable occurs within the scopeof some pre�xing operator.



Comparison of Simulation Algebraic Techniques for Veri�cation 21Table 2. The transition rules for DIOA. � is any internal action.nil nilS a�! 
S 8a 2 in(S)ome1 
S a�! 
S a 2 ext(S) ome2 
S ��! nilSpre1 a :S e a�! e pre2 a :S e b�! 
S 8b 2 in(S)nfagich1 e1 �S e2 ��! e1 ich2 e1 �S e2 ��! e2ich3 e1 a�! e01e1 �S e2 a�! e01 8a 2 in(S) ich4 e2 a�! e02e1 �S e2 a�! e02 8a 2 in(S)ech1 e1 a�! e01e1 I+SJ e2 a�! e01 8a 2 I [ out(S)ech2 e2 a�! e02e1 I+SJ e2 a�! e02 8a 2 J [ out(S)ech3 e1 I+SJ e2 a�! 
S 8a 2 in(S)n(I [ J)ech4 e1 ��! e01e1 I+SJ e2 ��! e01 I+SJ e2 ech5 e2 ��! e02e1 I+SJ e2 ��! e01 I+SJ e02tau1 e a�! e0�SI (e) a�! �SI (e0) rho e a�! e0�S(e) �(a)�! �S(e0)par1 e1 a�! e01 e2 a�! e02e1 S1kS2 e2 a�! e01 S1kS2 e02par2 e1 a�! e01e1 S1kS2 e2 a�! e01 S1kS2 e2 a 2 acts(S1)next(S2)par3 e2 a�! e02e1 S1kS2 e2 a�! e1 S1kS2 e02 a 2 acts(S2)next(S1)rec e a�! e0X a�! e0 if X def= eTable 3. De�nition of si and so for DIOA.si(nil) = ; so(nil) = ;si(
) = ; so(
) = out(
)si(a : e) = fag \ in(e) so(a : e) = fag \ out(e)si(e1 � e2) = si(e1) \ si(e2) so(e1 � e2) = so(e1) [ so(e2)si(e1 I+J e2) = (I \ si(e1))[ (J \ si(e2)) so(e1 I+J e2) = so(e1) [ so(e2)si(X) = si(E(X)) so(X) = so(E(X))



22 Nancy Lynch and Roberto SegalaGiven a DIOA expression, there is a natural way of associating an I/O au-tomaton with it. We arbitrarily choose not to partition its locally controlledactions. In this way Theorem 5.7 applies directly.De�nition 5.9. Given a DIOA expression e of sort S, the associated I/O au-tomaton D(e) is de�ned as� states(D(e)) = fe0 j 9t 2 acts(S)�; e t�! e0g� start(D(e)) = feg� sig(D(e)) = (in(S); out(S); int(S))� steps(D(e)) = f(e0; a; e00) j e0 2 states(D(e)); e0 a�! e00g� part(D(e)) = flocal(S)gFor notational convenience we refer to in(S), out(S), int(S), acts(S) and local(S)by in(e), out(e), int(e), acts(e) and local(e), respectively.Proposition 5.10. Given two DIOA expressions e; f ,1. D(�I(e)) and HideI(D(e)) are isomorphic I/O automata under the isomor-phism h : states(D(�I (e)))! states(HideI(D(e))) such that h(�I (e0)) = e0;2. D(e k f) and D(e) k D(f) are almost isomorphic I/O automata uder theisomorphism h : states(D(e k f)) ! states(D(e) k D(f)) such that h(e0 kf 0) = (e0; f 0). The only di�erence is in that part(D(e k f)) = flocal(e) [local(f)g and part(D(e) k D(f)) = flocal(e); local(f)g.Proof. We give the proof for the hiding operator. The proof for the parallelcomposition operator is similar and is left to the reader.states(HideI(D(e))) = states(D(e))= fe0 j 9t 2 acts(e)�; e t�! e0g= fh(�I(e0)) j 9t 2 acts(�I(e)); �I (e) t�! �I(e0)= fh(�I(e0)) j �I(e0) 2 states(D(�I (e)))g= h(states(D(�I (e))))start(HideI(D(e))) = start(D(e))= feg= h(f�I(e)g)= h(start(D(�I (e))))sig(HideI(D(e))) = (in(D(e)); out(D(e))nI; int(D(e)) [ I)= (in(e); out(e)nI; int(e) [ I)= (in(�I (e)); out(�I(e)); int(�I (e)))= (in(D(�I (e))); out(D(�I (e))); int(D(�I (e))))steps(HideI(D(e))) = steps(D(e))= f(e0; a; e00) j e0 2 states(D(e)); e0 a�! e00g= f(h(�I(e0)); a; h(�I(e00))) j�I(e0) 2 states(�I (e)); �I(e0) a�! �I(e00)g= f(h(�I(e0)); a; h(�I(e00))) j(�I(e0); a; �I(e00)) 2 steps(D(�I(e)))g



Comparison of Simulation Algebraic Techniques for Veri�cation 23Table 4. Some axioms for the quiescent preorder of DIOA.Ec7 e I+J f vQ e if Quiet(f), si(e) � I and si(e) \ J = ;I3 �I(a : e) �Q a : �I(e) if a 62 II4 �I(e H+K f) �Q �I(e) H+K �I(f) if so(e)\ I = so(f)\ I = ;I11 �I(i : e) �Q �I(e) if si(e) = ;part(HideI(D(e))) = part(D(e))= flocal(e)g= flocal(�I(e))g= part(D(�I(e)))The implementation relation for DIOA is the quiescent preorder, which is a weakcongruence for all the operators but the unparameterized +. A weak congruenceis a relation that is preserved under legal contexts, i.e., xR y implies C[x]RC[y]if C[�] is a legal context for both x and y. Table 4 contains some axioms for thequiescent preorder over DIOA. The axioms we present are just some of thoseof [Seg92]; however, they are su�cient for our examples. They are sound in thesense that they state true properties of the I/O automata associated with theexpressions. Axiom Ec7 uses a function Quiet(f) which is true only if f is aquiescent expression, i.e., D(f) enables only input actions in its start state. Thefunction Quiet(f) depends only on the syntax of f and the declaration mappingE. If E is computable or f is guarded, then Quiet(f) is computable. Ec7 modelsthe idea that, whenever a speci�cation e does not say anything about some inputactions, any choice of implementation f in the presence of those actions is correct.Axiom I3 allows us to move external actions out of the hiding operator. Axiom I4uses a function so in its side condition. Function so (Speci�ed Outputs) is de�nedin Table 3 and gives those output actions of its argument that can be performedup to internal transitions. The side condition for Axiom I4 is necessary sincean external choice context is not resolved with internal actions (see transitionrules ech4;5). Axiom I11 allows us to eliminate initial internal computation fromI/O automata whenever no input is expected (si(e) = ;). Two other importantaxioms deal with the parallel operator and with recursion. The expansion axiompermits to unfold a parallel expression into a nondeterministic sequential one; therecursive substitutivity rule states conditions for which a set of equations haveunique �xpoint, and gives a method for proving that a process is implementingthe �xpoint of a set of equations. In Section 5 the recursive substitutivity ruleplays a fundamental role.Proposition 5.11. The following axiom is sound for the quiescent preorder.E2 Let e � e1 k e2 k � � � k en where each ei is of the formPj ai j : ei j . For eachaction a 2 ext(e) letEia = � fei j j ai j = ag if a 2 acts(ei)feig otherwiseLet out(a) be the index j such that a is an output action of j (0 otherwise)and letEa = � ; if out(a) 6= 0 and Eout(a)a = ;ff1 k � � � k fn : fi 2 Eia _ (Eia = ; ^ fi � 
)g otherwise



24 Nancy Lynch and Roberto SegalaThen e �Q Pa2ext(e)(Pf2Ea a:f).Theorem 5.12. Let ~X def= ~E( ~X) be a set of equations fEi def= Pj(aj : Xij )g,and let ~P be a set of DIOA expressions. If ~P vQ ~E[ ~P= ~X] then ~P vQ ~X .5.2. Speci�cation of the ComponentsIn this section we specify the components of Section 3.2 using DIOA expressions.In this way we can use the DIOA axioms for the actual veri�cation. The newspeci�cations will explicitly consider only speci�ed input actions at each state.The demonic approach guarantees the existence of a transition to 
 for eachnon-speci�ed input action. The I/O automata of this section di�er from thoseof Section 3.2 in the de�nition of 
. Since DIOA deals with �nite and quiescenttraces only, we need any fair trace of D(
) to be a quiescent trace of D(
), i.e.,we need D(
) to be quiescent detectable. Quiescent detectability is obtainedthrough the transition 
 ��! nil. Note that each sequence of external actions isa fair trace of D(
); moreover the I/O automata we specify in this section andthose of Section 3.2 di�er only in the transitions for state 
. As a consequencethe speci�cations of this section and those of Section 3.2 denote the same objectsin the sense that the corresponding I/O automata exhibit the same fair traces.A formal equivalence statement will be given after the speci�cations.Speci�cation 5.13. A Muller C element is speci�ed as follows:C def= a : Ca + b : CbCa def= a : C + b : CabCb def= a : Cab + b : CCab def= c : Cwhere a; b are input actions and c is an output action.The DIOA speci�cation of a Muller C element is represented by the processvariable C. In order to be consistent with the speci�cations of the previoussections the process variable name should be CD, however, we decided to dropthe parameter D to avoid confusion with the parameters of the other processvariables. The subscripts in the process variables represent the input ports thathave changed voltage level. When both the inputs have changed (state Cab) theoutput voltage level is changed. Note that in state Cab no inputs are accepted.The underspeci�cation of the Muller C element in such cases is implicit in thestructure of DIOA. Note that D(C) has FIN and is input deterministic.Speci�cation 5.14. A majority element is speci�ed by the following equationsM def= a :Ma + b :Mb + c : McMa def= a :M + b : Mab + c :MacMab def= m :Mc + c : MabcMabc def= m :M + a :Mbc + b : Mac + c : Mabwhere a; b; c are input actions and m is an output action. The equations for



Comparison of Simulation Algebraic Techniques for Veri�cation 25Mb;Mc;Mac and Mbc are similar to the equations above and can be easily de-rived.The process variableM represents the majority element where the voltage levelsof its input ports are the same as the voltage level of its output port. The processvariables containing subscripts represent the majority element where only thevoltage levels of the input ports not appearing as subscripts are the same as thevoltage level of the output port. Note that the equation for Mab speci�es thatno inputs causing a variation in the output voltage level can occur when theoutput voltage level already has to change. If such inputs occur then the systemimplicitly moves to 
.Speci�cation 5.15. A wire is speci�ed by the following equation:W def= m : c :Wwhere m is an input action and c is an output action.Proposition 5.16. A(CN ) �F D(C). A(MN ) �F D(M ). A(WN ) �F D(W ).Proof. We prove a stronger equivalence statement, namely that the involved I/Oautomata are isomorphic if we do not consider states 
 and nil. By observingthat Proposition 3.5 holds also for I/O automata associated with DIOA expres-sions (move to nil whenever it is possible) we complete the proof. We give theisomorphism for the Muller C element; the isomorphisms for the other elementsare given in a similar way and are left to the reader. The isomorphism that weuse for the Muller C element is h : states(A(CN ))! D(C) such that h(;) = C,h(fag) = Ca, h(fbg) = Cb, and h(fa; bg) = Cab. It is easy to check that hpreserves the transitions of A(CN ) and D(C) if we do not consider transitionsleaving from 
 and transitions from/to nil.5.3. The Veri�cationWe now formally prove that a Muller C element can be implemented using amajority element and a wire. The implementation relation that we use is thequiescent preorder; however it is easy to verify that all the speci�ed elementssatisfy the hypothesis of Theorem 5.7 and Proposition 5.8, therefore we canconclude fair trace inclusion from quiescent trace inclusion. We �rst prove thestatement concerning the quiescent preorder, the DIOA veri�cation; then weshow how the formal statement of Section 3.2 is derived.Proposition 5.17. �fmg(M k W ) vQ C, i.e., a Muller C element C can beimplemented using a majority element and a wire.Proof. We show that �fmg(M k W ) vQ C. For doing that we consider a familyof processes I; Ia; Ib; Iab where I def= �fmg(M k W ) and show that they satisfythe equations of C with vQ. It is then enough to use the recursive substitutivityaxiom to conclude.By applying the expansion axiom and the hiding axioms we obtain



26 Nancy Lynch and Roberto SegalaI �Q �fmg(MkW )�Q �fmg((a : Ma + b : Mb + c :Mc)k(m : c : W ))�Q �fmg(a : (Mak(m : c : W )) + b : (Mbk(m : c : W )))�Q �fmg(a : (MakW ) + b : (MbkW ))�Q �fmg(a : (MakW )) + �fmg(b : (MbkW ))�Q a : �fmg(MakW ) + b : �fmg(MbkW )�Q a : Ia + b : Ibwhere the second step is obtained by expanding MkW , the third step followsfrom Axiom E2, the fourth step follows by substituting W for E(W ), the �fthstep follows fromAxiom I4, the sixth step follows fromAxiom I3, and the seventhstep follows by de�ningIa def= �fmg(MakW ) andIb def= �fmg(MbkW ):With the same method we haveIa �Q �fmg(MakW )�Q a : �fmg(MkW ) + b : �fmg(MabkW )�Q a : I + b : Iaband Ib �Q �fmg(MbkW )�Q a : �fmg(MabkW ) + b : �fmg(MkW )�Q a : Iab + b : Iwhere we de�neIab def= �fmg(MabkW )We now proceed with the analysis of Iab. Step by step comments are below.Iab �Q �fmg(MabkW )�Q �fmg(a : (
kW ) + b : (
kW ) +m : (Mckc : W ))vQ �fmg(m : (Mckc : W ))�Q �fmg(m : (a : (Mackc : W ) + b : (Mbckc :W ) + c : (MkW )))vQ �fmg(m : c : (MkW ))�Q c : �fmg(MkW )�Q c : IThe �rst step follows the lines of the previous derivations by expanding pro-cess variables, applying the expansion theorem, and reconverting untouched ex-panded expressions to their corresponding process variable; the second step isan application of Axiom Ec7 where inputs a and b are eliminated. According tothe speci�cation of Ca;b, in fact, no input should occur before output c occurs.The expression on the second line speci�es an implementation choice in the pres-ence of inputs a and b while the expression on the third line does not specifyany implementation choice. The third step is similar to the �rst one while thefourth step consists of successive applications of the hiding axioms. Action m iseliminated through Axiom I11 and action c is brought outside the scope of thehiding operator through Axiom I3. The last step is a direct consequence of thede�nition of I.We can now apply the recursive substitutivity axiom and conclude �fmg(M k



Comparison of Simulation Algebraic Techniques for Veri�cation 27W ) vQ C. The fair trace inclusion follows fromTheorem 5.7 and Proposition 5.8.All the involved I/O automata, in fact, are quiescent detectable, quiescent con-tinuous, input quiescent detectable and have FIN. Moreover no input actiondisables any output action.Theorem 5.18. Hidefmg(A(MN ) k A(WN )) vF A(CN ).Proof. FromProposition 5.17, the soundness of the DIOA proof system, and The-orem 5.7, we derive D(�fmg(MkW )) vF D(C). From Proposition 5.10 we deriveHidefmg(D(MkW )) vF D(C). From Proposition 5.10 and Proposition 5.8 wehaveD(M )kD(W ) vF D(MkW ), therefore we derive Hidefmg(D(M )kD(W )) vFD(C). Finally, from Proposition 5.16 we derive Hidefmg(A(MN )kA(WN )) vFA(CN ).6. Comparison of the Algebraic and the SimulationTechniquesIn this section, we compare the simulation and algebraic proof techniques fortheir usefulness in carrying out veri�cations of the sort outlined in this paper.The �rst thing to note is that both of the outlined proofs were fairly easy to carryout, once the machinery described in the \theory" sections had been developed.Naturally, people more familiar with one style of proof or the other will �nd itsomewhat easier to use, but we did not �nd any appreciable di�erence for thisexample. The interesting question is whether both methods will scale equally wellto a wide range of more complex examples. Here we think there are importantdi�erences and similarities, which we have tried to identify below.6.1. Correspondence between the Proof MethodsThere is a strong similarity between our reasoning in the simulation proof and inthe algebraic proof. It seems that the recursive substitutivity rule is used in thisexample somewhat as an algebraic version of the notion of forward simulation.That is, we consider the process variables of the set of equations comprising thespeci�cation as representing states of the speci�cation. Then we consider theprocesses that we substitute for the process variables as representing states ofthe implementation that are related to the process variables for which they aresubstituted.This leads to the question of whether the simulation and algebraic methodswe have used might be equivalent in general; however, it turns out that they areincomparable.Let a; b; c be output actions and consider the processesX def= a : b : X + a : c : XY def= a : (b : Y + c : Y ):It is easy to prove that Y vQ a:b :Y +a:c :Y by using the axioms of [Seg92] andthe recursive substitutivity rule; however there is no forward simulation fromthe transition system associated with Y and that associated with X. State Y ,in fact, would be mapped to X. State b : Y + c : Y , instead, should be mapped



28 Nancy Lynch and Roberto Segalato either b : X or c : X or both since Y can move with a only to those states.Unfortunately each of the choices above gives problems on the next transition.The di�erence between the systems X and Y arises when the decision aboutwhether to perform b or c is made: X decides before Y . A forward simulationbetween two processes A and B exists only if B does not decide before A. Y canbe proved to implement X by using a di�erent simulation technique based on anotion of backward simulation [LyV91]. However, there are also examples thatcan be proved using DIOA deductions but not by backward simulations. Oneexample isX def= a : c : X + b : Z Z def= c : XY def= a : Z 0 + b : Z0 Z 0 def= c : Ywhere a; b and c are output actions. It is easy to show algebraically that Y andZ0 satisfy the equations for X and Z; however, there is no backward simulationfrom Y to X.There are also cases in which there is a forward simulation between twoprocesses but quiescent trace inclusion cannot be proved using DIOA, becausethe recursive substitutivity rule cannot be applied. Consider, for example, theprocessesX def= a : X and Xi def= a : Xi+1for an in�nite set of process variables Xi : i 2 N . The mapping that mapseach Xi into X is trivially a forward simulation from X0 to X; however, sincenone of the given equations relates some Xi to Xj with j � i, we cannot provethat X0 � a : X0, so the recursive substitutivity rule does not apply. The abovemapping is also a backward simulation from X0 to X, therefore also backwardsimulation is incomparable with DIOA deduction.All the examples above also work for the simple trace preorder. The readeris referred to [DnS92] for its axiomatization.6.2. Treatment of FairnessIn the given example, a separate argument about fairness is made in the sim-ulation proof, whereas no such argument is needed in the algebraic proof. Inthe given algebraic proof, fair trace inclusion is a consequence of quiescent traceinclusion, and the deductions within DIOA are strong enough to prove quiescenttrace inclusion. However, the algebraic framework, as it stands, does not providea fully general model for proving fair trace inclusion: the connection betweenthe quiescent and fair preorders holds only under some special conditions. Weargued in Section 5.1.1 that the properties of quiescent detectability, �nite inter-nal nondeterminism and quiescent continuity seem to be su�ciently general forrepresenting physical systems; on the other hand we do not have a clear idea yetabout the generality of input quiescent detectability. An example of a non-inputquiescent detectable device is an in�nite bu�er which performs some internal up-date after receiving some input. An in�nite fair execution leading to an in�nitetrace with input actions only can be obtained by interleaving each input withthe internal update; however, if the bu�er enables some output whenever it isnot empty, no �nite sequence of input actions is a quiescent trace.



Comparison of Simulation Algebraic Techniques for Veri�cation 29For systems in which these properties fail, it is still unclear how to use thealgebraic approach to reason about fair trace inclusion. It is worth remarkingthat all the DIOA axioms presented in [Seg92] except for the recursive substitu-tivity rule are sound for the fair preorder as well as the quiescent preorder. (Therecursive substitutivity rule is sound for all I/O automata satisfying the condi-tions of Theorem 5.7.) So if we deal with non-recursive de�nitions, the axioms forDIOA provide a method for directly proving fair trace inclusion. However, thisis of limited use since almost any nontrivial I/O automaton contains loops thathave to be speci�ed using recursion. Even our small example cannot be speci�edwithout using recursion.In ACP [BaW90] there is another approach to fairness by means of a rulecalled Koomen's Fair Abstraction Rule (KFAR). The basic idea for KFAR is thatfairness issues can be reformulated in terms of divergences. Thus, a particularin�nite execution can be avoided by making all of its actions internal. However,we think this approach is unwieldy; for example the requirement that each one oftwo independent automata provides some output (an external action) in�nitelyoften requires a conspicuous amount of encoding, making a speci�cation di�cultto read.It is also unlikely that a result similar to the Execution CorrespondenceLemma could be used together with an algebraic proof. Even by axiomatizinga di�erent preorder relation such as \existence of a forward simulation", analgebraic proof would prove the existence of a simulation without exhibiting it.The fairness part of our simulation proof, on the other hand, is strongly based onthe actual forward simulation from the implementation to the speci�cation. Thesimple knowledge that a forward simulation exists is not su�cient. It is possiblethat new techniques, perhaps based on the structure of an algebraic proof, couldbe developed, but this remains to be done.The generality of our approach to fairness in the simulation proof also re-mains to be considered; however, in this case there is already good evidence thatthis approach works well in practice [LaS92, SLL93b]. The approach based onthe Execution Correspondence Lemma provides a convenient way to base a fair-ness proof on a simulation proof; it may be that there are some fairness proofsthat are inherently unable to be split in this way, but we do not know of anysuch examples. The use of forcing conditions provides a useful generalization ofthe usual I/O automaton fairness notion, but it seems likely to us that furthergeneralizations will be required in order to describe some realistic liveness re-quirements. What those extensions might be, and whether they will work wellin conjunction with the Execution Correspondence Lemma, remain to be seen.Note that the arguments of this subsection hold only for fairness sensitivesemantics such as the semantics of I/O automata. If the semantics is based onrelations like bisimulation [Mil89] or testing [DnH84, Hen88], then the problemsof this subsection disappear.6.3. Representation of AutomataThe two di�erent proof methods typically use very di�erent ways of representingautomata, each best suited for carrying out the corresponding type of proof. Inorder to give a fair comparison between the two methods, we began with a neutralrepresentation, which is basically just a state-transition table that enumerates



30 Nancy Lynch and Roberto Segalathe results of all transitions performed in all states. We then gave two otherrepresentation methods, and asserted their equivalence with the neutral method.The precondition-e�ect language represents an automaton in an action-basedway. That is, the information associated with each action is given in one place;this information consists of the set of enabling states and the allowed transitionsfor that action. In terms of the neutral representation, we can think of thislanguage as presenting the automaton by columns.On the other hand, DIOA represents an automaton in a state-based way.That is, the information associated with each state is given in one expression;this information consists of a list of the enabled transitions from that state. Wecan think of this language as presenting the neutral automaton by rows.In our small example, the state-based method gives a more elegant and con-cise representation of the circuits than the action-based method, but this will notbe true in general. The choice of which representation is better will vary amongdi�erent automata, depending upon whether the automaton table is most eas-ily described by columns or by rows. Our experience shows that, for complexsystems, the action-based description is usually the better one [SLL93b].There is one main reason for this. The states of a complex automaton canusually be described in terms of a small number of state variables or data objects,which permits a description to be parameterized by the values of those objects.A typical complex automaton exhibits locality of activity: each action typicallyinvolves only a small portion of the state, i.e., its occurrence depends on thevalues of a small number of data objects, and its results a�ect only a smallnumber of objects. This locality leads to concise descriptions for each action,but it is unclear how a state-based description might take advantage of it. Notethat parallel decomposition cannot be used in general to describe this kind oflocality.Although the action-based representation method generally works better thanthe state-based one, there is complete freedom in the choice of the representationstyle for an I/O automaton whenever a simulation proof technique is used, i.e.,it is always possible to use a description language like the state-based one in con-junction with assertional reasoning. On the other hand the description languagefor DIOA is strictly determined by the algebra itself, so there is apparently noway to use an action-based representation method in process algebras. Moreover,the pure DIOA calculus does not provide tools to deal with structured states.A standard technique to deal with structured states within process algebrasmakes use of parameterized process variables [Hoa85, Mil89, Bae90]. For exam-ple, a counter can be represented by a process variable X parameterized over anatural number n in the following way:X0 def= up : X1Xn def= down : Xn�1 + up : Xn+1 if n > 0:Such a technique is generally used when the size of a system is large [Bae90,OrP92] since a speci�cation would become unreadable otherwise. Our example,although small, makes use of parameters. It is also possible to add standardprogramming languages constructs and de�ne a new equation of the formXn def= up : Xn+1 + (if n > 0 then down : Xn�1):By means of the above ideas it is possible to directly encode an action-



Comparison of Simulation Algebraic Techniques for Veri�cation 31based represented automatonA into DIOA. The encoding consists of one processvariableX parameterized over states(A). The equation for X is then of the formif precondition(a1) then e�ect(a1) elseif precondition(a2) then e�ect(a2) else � � �Unfortunately, the more structure we add to the algebraic notation, the morecomplicated it is to apply the DIOA axioms to carry out a proof. Also, the re-cursive substitutivity rule requires one to �nd a set of processes that satisfy agiven set of inequations. When states are parameterized, �nding those processesis often tantamount to �nding a simulation relation between states of the im-plementation and states of the speci�cation, which is consistent with the initialobservation of Section 6.1. In this case, the task of applying the axioms becomesthe equivalent of proving that a given simulation is a forward simulation. For ex-ample, consider the counter we speci�ed before and consider an implementationas follows:Y10 def= up : Y11Yn def= down : Yn�1 + up : Yn+1 if n > 10:The recursive substitutivity rule requires us to show that each Yi satis�es theequation for Xi�10. The association h : Yi 7! Xi�10 is a sort of simulation, andthe algebraic proof shows its correctness.6.4. MechanizationThe process of carrying out either a simulation proof or an algebraic proof canbe long and tedious, and therefore error-prone, when the involved automata arelarge. A simulation proof typically involves a case analysis based on actions; eachcase involves logical deduction based on descriptions of the state transitions inboth the implementation and speci�cation automata and on a description of theforward (or other kind of) simulation relation. An algebraic proof involves a seriesof deductions using the algebraic axioms. In both cases, it should be possible tocheck the correctness of the deduction steps using an automatic prover. However,we would also like some help from an automatic prover in actually carrying outthese tedious steps.An automatic prover can help in the production of a simulation proof, but wedo not expect that the proof process will be completely automatic since the prob-lem is undecidable in general. In addition to descriptions of the two automata,the writer of such a proof will have to provide a description of the simulationrelation and possibly some invariances. Once this information is provided, anautomatic prover can be used to help in �lling in enough details to verify thatthe simulation is correct. As described in [SGG+93], the Larch prover has beenused successfully for this purpose. Also the theorem prover Isabelle was used forthe same purpose in [Nip89], and the proof assistant Coq (Calculus of InductiveConstructions) was used in [HSV94]. The work on mechanical simulation-basedveri�cations is still under development, and [HSV94, Nip89, SGG+93] are justthe �rst attempts at solving the problem.It seems unlikely that an automatic prover will be of much help in de�ningthe simulation relation in a simulation proof. In small cases, essentially whenthere are �nitely many states as in our example, a model-checking approach



32 Nancy Lynch and Roberto Segalamight be helpful. The task of de�ning the simulation relation by hand will oftennot be easy; its di�culty is comparable to that of de�ning an invariant assertion.However, usually the designer of a system has enough intuitions about the designto be able to de�ne a relation that is almost correct, and this can be used as astarting point for constructing the correct relation.In the process algebraic proof given in this paper the axioms that have to beapplied during each step are partially determined by the equations de�ning thespeci�cation automaton. Our proof steps were essentially repeated applicationsof the expansion axiom followed by some simpli�cations based on the given spec-i�cation. This heuristic is generally applicable when dealing with (�nite state)circuit descriptions. It is also applied in [Jos92, Seg92, OrP92] and in severalof the examples of [Bae90]. In these cases, algebraic manipulators like those of[MaV91, Lin91] can be used. However, when the problem becomes large or is de-scribed by an in�nite state machine, the remarks at the end of Section 6.3 showthat some form of simulation has to be de�ned even for an algebraic proof; there-fore, the di�culties involved in the mechanization of simulation and algebraicproofs are comparable. A case study in [GrP93], which is an algebraic veri�-cation of the same protocol as [HSV94] using Coq, shows, in our opinion, howderiving a process algebraic proof for a large system is tantamount to �ndinga simulation relation. Yet, in [HSV94] the authors relate their work to [GrP93]by commenting that \whether one prefers process algebra or the I/O automatamodel appears to be a matter of taste".6.5. Additional Bene�ts Obtained from the ProofExperience with large simulation-based veri�cations [WLL88, LyP92, SLL93b]has shown that the formal description of the simulation relation in a simulationproof constitutes an important piece of documentation of the key ideas of the im-plementation, in much the same way that an invariant assertion does; invariantsand simulations typically express the key intuitions that make the implementa-tion work. Similarly, due to the remarks at the end of Section 6.3, an algebraicproof can embed some form of mapping which can be used as a documentation.Because of the Execution Correspondence Lemma, a simulation-based proofprovides a correspondence between executions rather than just trace inclusion.This correspondence enables us, for example, to base proofs of fairness on proofsof ordinary trace inclusion. A process algebraic proof, on the other hand, provesonly the properties for which the axioms are certi�ed to be sound. In our examplewe were able to prove liveness because the quiescent preorder coincides with thefair preorder under some particular conditions; however, if those conditions arenot met, or if we need to prove other properties (e.g., based on forcing sets) thealgebraic proof provides no help.In our experience simulation proofs are 
exible in the sense that a givenproof can usually be modi�ed fairly easily in order to verify new properties ofan implementation. A typical veri�cation task, for example the one in [SLL93b],involves the de�nition of speci�cation and implementation automata and theproof that the implementation meets the speci�cation. During the proof someerrors might be discovered and the involved automata might need to be modi-�ed. Also, after the proof is completed, the speci�cation and/or implementationautomata might be slightly modi�ed in order to make them cleaner and moregeneral. The simulation relation and the correctness proof might then have to be
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