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Abstract. We study compositionality issues for the analysis of randomized

distributed algorithms. We identify three forms of compositionality that we

call process compositionality, property compositionality, and feature compo-

sitionality. Process and property compositionality are widely known in the

literature, while feature compositionality, although used extensively, does not

appear to be emphasized as much. We show how feature compositionality is

important for the analysis of randomized systems.

1 Introduction

It is widely recognized that compositionality is an essential feature to enable the
scalability of a formal method. That is, it appears to be practically unfeasible to
analyze large systems without being able to decompose them into several subcom-
ponents that can be analyzed separately. Compositionality has received considerable
attention in the literature; this volume contains several references to the related re-
sults. In this paper we study compositionality issues for concurrent systems that
contain probability. More speci�cally, we focus on the analysis of randomized dis-
tributed algorithms. We present our study based on the probabilistic model of [38]
and on a non-trivial case study [33] where the randomized consensus algorithm of
Aspnes and Herlihy [2] is analyzed.

The study of randomization within concurrent systems is particularly compli-
cated due to the interaction of nondeterminism, a typical feature of the theory of
concurrency, and probability, the result of a random choice. The di�culty of random-
ization is well known in the literature since we can �nd claims like \intuition often
fails to grasp the full intricacy of the algorithm" [31], or \proofs of correctness for
probabilistic distributed systems are extremely slippery" [24]. The claims above are
further supported by the recent discovery of some problems on known randomized
algorithms (e.g., [36, 21, 1]).

In our study of randomized algorithms we have identi�ed three forms of compo-
sitionality that we think are important.

{ Compositionality of processes.

This is the typical use of the term \compositionality". That is, we study the
properties of a system by subdividing it into several components, studying the

W.-P. de Roever, H. Langmaack, and A. Pnueli (Eds.): COMPOS’97, LNCS 1536, pp. 515-540
Ó Springer-Verlag Berlin Heidelberg 1998



properties of each component separately, and then combining the properties of
the subcomponents to yield the �nal result. The properties of the components
are su�ciently abstract to hide most of the low level details of the components.

{ Compositionality of properties.

Rather than decomposing a system into several subcomponents, we decompose
a property into several simpler properties. Several logics for reasoning about
concurrent systems use this form of compositionality.

{ Compositionality of features.

A model for a concurrent system usually includes several paradigms that interfere
with each other, e.g., real-time, continuous behavior, probability. The picture is
complicated further by the presence of nondeterminism. Rather than studying
the system as a whole, we study each paradigm (feature) separately and then
combine the results. In this way it is possible to study each feature using its own
tools. Being able to separate features simpli�es considerably the analysis of an
algorithm and reduces the chances of error. In this paper we use coin lemmas to
separate probability from nondeterminism.

We start by introducing a formal model for the description of randomized dis-
tributed algorithms [38]. To enable feature compositionality the model is an exten-
sion of Labeled Transition Systems (LTSs) [20], since there is an extensive literature
on the analysis of LTSs that can be adapted to the probabilistic case. In our exten-
sion of LTSs we use the synchronization mechanism of CSP [18], where processes
synchronize on common actions and evolve independently on others. Our choice of
the CSP synchronization style derives from the fact that it allows us to model easily
distributed algorithms. We call our probabilistic LTSs Probabilistic Automata. Some
important properties of probabilistic automata are the following.

{ An ordinary LTS is a special case of a probabilistic automaton.
{ The main properties that enable compositional reasoning, e.g., projections of
executions, are preserved.

Once probabilistic automata are de�ned, we introduce a generic notion of a com-

plexity measure and the related notion of expected complexity of an algorithm. We
show how it is possible to lift a property of complexity measures to a property of
expected complexities as an example of feature compositionality.

We introduce progress statements [25, 38], a probabilistic generalization of the
leadsto operator of UNITY [6], to illustrate how a complex property can be de-
composed into simpler properties (property compositionality) and to illustrate a
technique to derive expected complexity bounds for an algorithm (feature composi-
tionality).

Finally, we introduce coin lemmas [25, 38] to illustrate our main technique to
separate probability from nondeterminism. Coin lemmas are a formal expression of
the intuition that a randomized algorithm behaves correctly whenever some speci�c
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random draws give some speci�c results. Coin lemmas provide us with a technique
to reduce the analysis of a randomized system to the analysis of an ordinary LTS.

As our main running example we use a large case study [33] where the random-
ized consensus algorithm of Aspnes and Herlihy [2] is shown to terminate within
polynomial time. The algorithm of Aspnes and Herlihy is particularly interesting
for its high non-triviality. Its nondeterministic behavior is very complicate, and its
probabilistic behavior is based on the theory of Random Walks [13]. In this case
study all the forms of compositionality that we introduce are used.

The rest of the paper is organized as follows. Section 2 introduces the model
[38] that we use for the analysis of randomized distributed algorithms; Section 3
introduces complexity measures [38, 32] and shows how to study the expected com-
plexity of an algorithm; Section 4 introduces progress statements [38, 25, 32] for
the study of the partial progress of an algorithm; Section 5 describes the algorithm
of Aspnes and Herlihy, our running example; Section 6 shows how progress state-
ments and projections can be used to reason compositionally about an algorithm;
Section 7 describes the main probabilistic component of the algorithm of Aspnes
and Herlihy, and Section 8 shows how to use coin lemmas to reason composition-
ally about the probabilistic behavior of an algorithm; Section 9 gives a hint on how
to use re�nements [27] to reason about randomized algorithms; Section 10 analyzes
the time complexity of the algorithm of Aspnes and Herlihy and gives examples of
how to reason compositionally using complexity measures; �nally, Section 11 gives
references to related work, and Section 12 gives some concluding remarks.

2 Probabilistic Automata

In this section we introduce probabilistic automata by enriching the probabilistic
automata of [38] with an input/output distinction. The input/output distinction is
useful to de�ne some meaningful fairness conditions; however, the properties that
we describe are valid even without such distinction.

2.1 Probability Spaces

A probability space P is a triplet (
;F ; P ) where 
 is a set, F is a collection of
subsets of 
 that is closed under complement and countable union and such that

 2 F , also called a �-�eld , and P is a function from F to [0; 1] such that P [
] = 1
and such that for any collection fCigi of at most countably many pairwise disjoint
elements of F , P [[iCi] =

P
iP [Ci].

A probability space (
;F ; P ) is discrete if F = 2
 and for each C � 
,
P [C] =

P
x2C P [fxg]. For any arbitrary set X, let Probs(X) denote the set of

discrete probability spaces (
;F ; P ) where 
 � X, and such that all the elements
of 
 have a non-zero probability.
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2.2 Probabilistic Automata

An I/O automaton A consists of �ve components:

{ a set States(A) of states;
{ a non-empty set Start(A) � States(A) of start states;
{ an action signature Sig(A) = (in(A); out(A); int(A)), where in(A); out(A) and

int(A) are disjoint sets of input, output, and internal actions, respectively;
{ a transition relation Trans(A) � States(A) � Actions(A) � States(A); where

Actions(A) denotes the set in(A) [ out(A) [ int(A), such that for each state
s of States(A) and each input action a of in(A) there is a state s0 such that
(s; a; s0) 2 Trans(A);

{ a task partition Tasks(A), which is an equivalence relation on int(A) [ out(A)
that has at most countably many equivalence classes. The elements of Trans(A)
are called transitions, and A is said to be input enabled . An equivalence class of
Tasks(A) is called a task of A.

A probabilistic I/O automaton M di�ers from an I/O automaton in its transition
relation. That is, Trans(M ) � States(M ) � Actions(M ) � Probs(States(M )). In
the rest of the paper we refer to (probabilistic) I/O automata as (probabilistic)
automata. Observe that an automaton is a special case of a probabilistic automaton.

Probabilistic automata are partially captured by the reactive model of [16] in the
sense that the reactive model assumes some form of nondeterminism between dif-
ferent actions. However, the reactive model does not allow nondeterministic choices
between transitions involving the same action. By restricting simple probabilistic
automata to have �nitely many states, we obtain objects with a structure similar
to that of the Concurrent Labeled Markov Chains of [17]; however, in our model
we do not need to distinguish between nondeterministic and probabilistic states. In
our model nondeterminism is obtained by means of the structure of the transition
relation. This allows us to retain most of the traditional notation that is used for
automata.

2.3 Executions

A state s of M is said to enable a transition if there is a transition (s; a;P) in
Trans(M ). An action a is said to be enabled from a state s of M if s enables a
transition with action a.

An execution fragment of M is a sequence � of alternating states and actions of
M starting with a state, and, if � is �nite ending with a state, � = s0a1s1a2s2:::, such
that for each i � 0 there exists a transition (si; ai+1;P) of M such that si+1 2 
.
Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the last
state of �. An execution is an execution fragment whose �rst state is a start state.

An execution fragment � is said to be fair i� the following conditions hold for
every task T of M :
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1. if � is �nite then no action from T is enabled in lstate(�);
2. if � is in�nite, then either actions from T occur in�nitely many times in �, or

� contains in�nitely many occurrences of states from which no action from T is
enabled.

A state s of M is reachable if there exists a �nite execution of M that ends in s.
A �nite execution fragment �1 = s0a1s1 � � �ansn of M and an execution fragment
�2 = snan+1sn+1 � � � of M can be concatenated . The concatenation, written �1

a�2,
is the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of
M is a pre�x of an execution fragment �2 of M , written �1 � �2, i� either �1 = �2
or �1 is �nite and there exists an execution fragment �01 ofM such that �2 = �1

a�01.

2.4 Probabilistic Executions

An execution fragment of M is the result of resolving both the probabilistic and
the nondeterministic choices ofM . If only the nondeterministic choices are resolved,
then we obtain a structure similar to a cycle-free Markov chain, which we call a
probabilistic execution fragment of M . From the point of view of the study of algo-
rithms, the nondeterminism is resolved by an adversary that chooses a transition to
schedule based on the past history of the system. A probabilistic execution is the
result of the action of some adversary. A probabilistic execution can be thought of as
the result of unfolding the transition relation of a probabilistic automaton and then
choosing one transition for each state of the unfolding. It has a structure similar
to the structure of a probabilistic automaton, where the states are �nite execution
fragments of M .

Formally, a probabilistic execution fragment H of a probabilistic automaton M

consists of four components.

{ a set of states States(H) � frag�(M ); let q range over the states of H;
{ a signature Sig(H) = Sig(M );
{ a singleton set Start(H) � States(M );
{ a transition relation Trans(H) � States(H)�Probs ((Actions(H)�States (H))[
f�g) such that for each transition (q;P) of H there is a family of transitions of
M f(lstate(q); ai;Pi)gi�0 and a family of probabilities fpigi�0 satisfying the
following properties:

P
i�0 pi � 1, P [�] = 1�

P
i�0 pi, and for each action a and

state s, P [(a; qas)] =
P

ijai=a
piPi[s].

Furthermore, each state of H is reachable, where reachability is de�ned analogously
to the notion of reachability for probabilistic automata after de�ning an execution
of a probabilistic execution fragment in the obvious way. A probabilistic execution

H of a probabilistic automatonM is a probabilistic execution fragment of M whose
start state is a state of Start(M ).

A probabilistic execution is like a probabilistic automaton, except that within a
transition it is possible to choose probabilistically over actions as well. Furthermore,
a transition may contain a special symbol �, which corresponds to not scheduling any
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transition. In particular, it is possible that from a state q a transition is scheduled
only with some probability p < 1. In such a case the probability of � is 1� p.

It is possible to de�ne a probability space PH = (
H ;FH; PH) associated withH.
In particular 
H is a set of execution fragments ofM (the limit closure of the states
of H), FH is the smallest �-�eld that contains the set of cones Cq, consisting of those
elements of 
H having q as a pre�x (let q denote a state of H), and the probability
measure PH is the unique extension of the probability measure de�ned on cones as
follows: PH [Cq] is the product of the probabilities of each transition of H leading to
q. Standard measure theory guarantees that PH is well de�ned. Furthermore, PH
is su�ciently rich to describe properties like single or multiple occurrences of an
action, reachability properties, fairness properties. See [38] for more details.

An event E of H is an element of FH . An event E is called �nitely satis�able if
it can be expressed as a union of cones. We have chosen the term �nitely satis�able
since it is possible to determine that an execution � is in E by looking at a �nite
pre�x of �. A �nitely satis�able event can be represented by a set � of incomparable
states ofH. The event denoted by � is [q2�Cq. We abuse notation by writing PH [�]
for PH [[q2�Cq]. We call a set of incomparable states of H a cut of H, and we say
that a cut � is full if PH [�] = 1.

An important event of PH is the set of fair executions of 
H . We de�ne a
probabilistic execution fragment H to be fair if the set of fair execution fragments
has probability 1 in PH .

2.5 Parallel Composition

Probabilistic automata can be composed in parallel. Due to the reactive structure of
probabilistic automata, the de�nition of parallel composition is simple. The states
of the composition are the cross product of the states of the components. The com-
posed probabilistic automata synchronize on their common actions and evolve in-
dependently on the others. Whenever a synchronization occurs, the state that is
reached is obtained by choosing a state independently for each of the probabilistic
automata involved.

Formally, two probabilistic automata M1 and M2 are compatible i� int(M1) \
acts(M2) = ; and acts(M1) \ int(M2) = ;. The parallel composition of two com-
patible probabilistic automataM1 and M2, denoted by M1 kM2, is the probabilistic
automaton M such that

1. States(M ) = States(M1)� States(M2).
2. Start(M ) = Start(M1)� Start(M2).
3. in(M ) = (in(M1) [ in(M2))� (out(M1) [ out (M2),

int(M ) = int(M1) [ int(M2),
out(M ) = out(M1) [ out(M2),

4. ((s1; s2); a;P) 2 Trans(M ) i� P = P1 
P2 where
(a) if a 2 Actions(M1) then (s1; a;P1) 2 Trans(M1), else P1 = U(s1), and
(b) if a 2 Actions(M2) then (s2; a;P2) 2 Trans(M2), else P2 = U(s2),
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where U(s) denotes a probability distribution over a single state s.

In a parallel composition the notion of projection is one of the main tools to
support compositional reasoning. A projection of an execution fragment � onto a
component within a parallel composition is the contribution of the component to
obtain �. Formally, let M be M1 kM2, the parallel composition of M1 and M2, and
let � be an execution fragment ofM . The projection of � ontoMi, denoted by �dMi,
is the sequence obtained from � by replacing each state with its ith component and
by removing all actions that are not actions ofMi together with their following state.
It is the case that �dMi is an execution fragment of Mi [26].

The notion of projection can be extended to probabilistic executions (cf. Sec-
tion 4.3 of [38]). Here we do not present the formal de�nition of projection; rather,
we describe the properties of projections that are needed for our analysis, and we re-
fer the reader to [38] for a more detailed description. Given a probabilistic execution
fragmentH ofM , it is possible to de�ne an object HdMi, which is a probabilistic ex-
ecution fragment of Mi that informally represents the contribution of Mi to H. The
states of HdMi are the projections onto Mi of the states of H. The most important
fact is that the probability space associated with HdMi is the image space under

projection (cf. Proposition 1) of the probability space associated with H. This prop-
erty allows us to prove probabilistic properties ofH based on probabilistic properties
of HdMi (process compositionality).

Proposition1 [33]. Let M be M1 k M2, and let H be a probabilistic execution

fragment of M . Let i 2 f1; 2g. Then 
HdMi
= f�dMi j � 2 
Hg, and for each

� 2 FHdMi
, PHdMi

[�] = PH [f� 2 
H j �dMi 2 �g]. ut

3 Complexity Measures

A complexity function is a function from execution fragments of M to <�0. A com-

plexity measure is a complexity function � such that, for each pair �1 and �2 of
execution fragments that can be concatenated, max (�(�1); �(�2)) � �(�1

a �2) �
�(�1) + �(�2).

Informally, a complexity measure is a function that determines the complexity
of an execution fragment, where by complexity of an execution fragment we mean
something proportional to the amount of work that is neessary to carry out the
related operations. A complexity measure satis�es two natural requirements: the
complexity of two tasks performed sequentially should not exceed the complexity of
performing the two tasks separately and should be at least as large as the complexity
of the more complex task; it should not be possible to accomplish more by working
less. Examples of complexity measures are the total number of operations performed
in a protocol, and the number of operations of some speci�c type performed in a
protocol.

Consider a probabilistic execution fragment H of M and a �nitely satis�able
event � of FH . The elements of � represent the points where the property denoted
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by � is satis�ed. Let � be a complexity function. Then it is possible to de�ne the
expected complexity � to reach � in H as

E�[H;�]
4

=
nP

q2� �(q)PH [Cq] if PH [�] = 1
1 otherwise.

The expected complexity E�[H;�] expresses the average amount of work necessary
before satisfying the property expressed by �. If the probability of � is not 1, then
the average work could be potentially in�nite.

Below we present three compositionality results for complexity measures. Propo-
sition 2 is an instance of feture compositionality, Proposition 3 is an instance of
property compositionality, and Proposition 4 is an instance of process composition-
ality. We give an informal explanation of each result.

If several complexity measures are related by a linear inequality, then their ex-
pected values over a full cut are related by the same linear inequality. This result
follows from the observation that the function that expresses the complexity of the
elements of a full cut is a random variable [13].

Proposition2. Let � be a full cut of a probabilistic execution fragment H. Let

�; �1; �2 be complexity functions, and c1; c2 two constants such that, for each � 2 �,

�(�) � c1�1(�) + c2�2(�). Then E�[H;�]� c1E�1 [H;�] + c2E�2 [H;�]. ut

Suppose that within a computation it is possible to identify several phases, each
one with its own complexity, and suppose that the complexity associated with each
phase remains 0 until the phase starts. Suppose that the expected complexity of
each phase is bounded by some constant c. If we know that the expected number
of phases that start is bounded by k, then the expected complexity of the system is
bounded by ck. In the statement below �i denotes the complexity associated with
phase i and � denotes the number of phases that have started.

Proposition3. Let M be a probabilistic automaton. Let �1; �2; �3; : : : be a count-

able collection of complexity functions for M , and let �0 be a complexity function

de�ned as �0(�) =
P

i�0 �i(�). Let c be a constant, and suppose that for each fair

probabilistic execution fragment H of M , each full cut � of H, and each i > 0,
E�i [H;�] � c.

Let H be a probabilistic fair execution fragment of M , and let � be a complexity

measure for M . For each i > 0, let �i be the set of minimal states q of H such that

�(q) � i. Suppose that for each q 2 �i, �i(q) = 0, and that for each state q of H

and each i > �(q), �i(q) = 0.

Then, for each full cut � of H, E�0 [H;�] � cE�[H;�]. ut

Finally, to verify properties modularly it is useful to derive complexity properties
of complex systems based on complexity properties of their components. Proposi-
tion 4 below is an example of how to lift an expected complexity bound from a
component to the whole composition.
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Proposition4. LetM be M1kM2, and let i 2 f1; 2g. Let � be a complexity function

for M , and let �i be a complexity function for Mi. Suppose that for each �nite

execution fragment � of M , �(�) = �i(�dMi). Let c be a constant. Suppose that for

each probabilistic execution fragment H of Mi and each full cut � of H, E�i [H;�]�
c. Then, for each probabilistic execution fragment H of M and each full cut � of H,

E�[H;�] � c. ut

4 Progress Statements

A progress statement is a predicate that can be used to state reachability properties.
It is a probabilistic extension of the leadsto operator of UNITY [6]. The notation
for a progress statement is

U
��c
�!
p
U 0;

where U and U 0 are sets of states, p is a probability, � is a complexity measure, and
c is non-negative real number. It states that, no matter how the nondeterminism
is resolved, the probability of reaching a state of U 0 from a state of U within �-
complexity c is at least p. In this paper we require fairness for the resolution of
nondeterminism; however, the results that we describe below hold also for more
general schemas of resolution of the nondeterminism [38].

Given a probabilistic execution fragment H of a probabilistic automaton M ,
let eU 0;�(c)(H) denote the set of executions � of 
H with a pre�x �0 such that

�(�0) � c and lstate(�0) 2 U 0. We say that the predicate U
��c
�!
p
U 0 is true for M i�

for each fair probabilistic execution fragment H of M that starts from a state of U ,
PH [eU 0;�(c)(H)] � p.

Progress statements can be decomposed into simpler statements to be proved
separately. Some examples of decompositions are provided by the proposition below.

Proposition5. Let M be a probabilistic automaton, U;U 0; U 00; U 000 � States(M ),
and � be a complexity measure. Then,

1. if U
��c
�!
p

U 0 and U 0
��c0

�!
p0

U 00, then U
��c+c0

�!
pp0

U 00;

2. if U
��c
�!
p

U 0, then U [ U 00
��c
�!
p

U 0 [ U 00;

3. if U
��c
�!
p

U 0 and U 00
��c0

�!
p0

U 000, then U [ U 00
��max(c;c0)

�!
min(p;p0)

U 0 [ U 000. ut

Progress statements can also be used to derive upper bounds on the expected
complexity to reach a set of states. Denote by U ) UunlessU 0 the predicate that
is true for M i� for every execution fragment sas0 of M , s 2 U �U 0 ) s0 2 U [U 0.
Informally,U ) UunlessU 0 means that, once a state from U is reached, M remains
in U unless U 0 is reached. For each probabilistic execution fragment H of M , let
�U 0(H) denote the set of minimal states of H where a state from U 0 is reached. The
following theorem provides a way of computing the expected � for reaching U 0.
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Proposition6 [38]. Let M be a probabilistic automaton and � be a complexity

measure for M . Suppose that for each execution fragment of M of the form sas0,

�(sas0) � 1, that is, each transition of M increases � by at most 1. Let U and U 0 be

sets of states of M . Let H be a probabilistic execution fragment of M that starts from

a state of U , and suppose that for each state q of H such that lstate(q) 2 U � U 0

some transition is scheduled with probability 1. Suppose also that U
��c
�!
p

U 0 and

U ) UunlessU 0. Then, E�[H;�U 0(H)] � (c + 1)=p. ut

5 Example: The Algorithm of Aspnes and Herlihy

The algorithm of Aspnes and Herlihy [2] is a randomized algorithm that solves the
consensus problem within expected polynomial time. The problem consists of letting
n processes agree on some value in the set f0; 1g so that the properties of validity,
agreement, and wait-free termination are satis�ed. Validity states that the value
chosen by each process should be a value that was proposed in the past by some
process; agreement states that no two processes choose di�erent values; wait-free
termination states that all non-failed processes eventually decide. Processes may
fail by stopping, and the interaction between processes is asynchronous. In other
words, it is not possible to distinguish between a slow process and a failed process.
It is shown in [14] that there is no algorithm that can solve the consensus problem.
Aspnes and Herlihy have shown that by relaxing the wait-free termination property
so that the probability of termination is 1 the consensus problem can be solved
within expected polynomial time.

The algorithm of Aspnes and Herlihy proceeds in rounds. Every process main-
tains a variable with two �elds, value and round , that contain the process' current
preferred value (0; 1 or ?) and current round (a non-negative integer), respectively.
We say that a process is at round r if its round �eld is equal to r. The variables
(value ; round) are multiple-reader single-writer. Each process starts with its round
�eld initialized to 0 and its value �eld initialized to ?.

After receiving the initial value to agree on, each process i executes the following
loop. It �rst reads the (value; round) variables of all other processes in its local
memory. We say that process i is a leader if according to its readings its own round
is greater than or equal to the rounds of all other processes. We also say that a
process i observed that another process j is a leader if according to i's readings the
round of j is greater than or equal to the rounds of all other processes. If process i at
round r discovers that it is a leader, and that according to its readings all processes
that are at rounds r and r�1 have the same value as i, then i breaks out of the loop
and decides on its value. Otherwise, if all processes that i observed to be leaders
have the same value v , then i sets its value to v, increments its round and proceeds
to the next iteration of the loop. In the remaining case, (leaders that i observed do
not agree), i sets its value to ? and scans again the other processes. If once again
the leaders observed by i do not agree, then i determines its new preferred value for
the next round by invoking a coin 
ipping protocol. There is a separate coin 
ipping
protocol for each round.
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We represent the main part of the algorithm as an automaton AP (Agreement
Protocol) and the coin 
ipping protocols as probabilistic automata CF r (Coin Flip-
per), one for each round r (cf. Figure 1). The coin 
ipper receives and handles

1init(v)

decide

n

1

n

1
1

init(v)

1CF

CF

start-flip(r)

start-flip(r) r

AP

deciden

return-flip(r)

return-flip(r)

1

n

n

Fig. 1. The decomposition of the algorithm of Aspnes and Herlihy.

requests from each process. We say that a request from a process i is received on
port i, and we say that a port i is non-failing if process i does not fail. With this de-
composition we can analyze several properties just on AP using ordinary techniques
for non-probabilistic systems. Indeed, in this section we deal with AP only, and we
leave the coin 
ippers unspeci�ed.

The formal de�nition of AP is given in Table 1 using the precondition/e�ect
notation that is typical of I/O automata [26]. Beside the shared variables value(i)
and round(i), each process has a program counter pc, two arrays values and rounds

containing the scans of the other processes, a set variable obs saying what processes
have been observed, a variable start holding the initial preferred value, and two
variables decided , and stopped stating whether the process has decided or failed. We
explain some of the relevant predicates: obs-leader(j) is true if i observes that j is a
leader; obs-agree(r; v) is true if the observations of all the processes whose round is
at least r agree on v; obs-leader-agree(v) is true if i observes that the leaders agree
on a value v; obs-leader-value is the value of one of the leaders observed by i. We
say that a process is active if it is attempting to agree on a value. An active process
becomes inactive either by deciding a value or by failing.

6 Compositionality Using Projections and Progress

Statements

The validity and agreement properties of the algorithm of Aspnes and Herlihy do
not depend on any probabilistic assumption. These are safety properties and can be
studied solely on AP by means of ordinary invariants. Informally, the invariant for
validity states that no process will ever prefer a value di�erent from its initial value
if all processes have the same initial value, while the invariant for agreement states
that if a process i that is at round r is \about to decide" on some value v, then every
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Actions and transitions of process i.

input init(v)i
E�: start  v

output start(v)i
Pre: pc = init ^ start = v 6= ?
E�: value(i) v

round(i) 1

obs ;
pc  read1

output read1(k)i
Pre: pc = read1

k =2 obs

E�: values[k] value(k)

rounds[k] round(k)

obs obs [ fkg
if obs = f1; : : : ; ng then pc  check1

output check1i
Pre: pc = check1

E�: if 9v2f0;1gobs-agree(rounds[i]� 1; v)^
obs-leader(i) then

pc  decide

elseif 9v2f0;1gobs-leader-agree(v) then
value(i) obs-leader-value

round(i) rounds[i] + 1

obs ;
pc  read1

else

value(i) ?
obs ;
pc  read2

output decide(v)i
Pre: pc = decide ^ values[i] = v

E�: decided  true

pc  nil

output read2(k)i
Pre: pc = read2

k =2 obs

E�: values[k] value(k)

rounds[k] round(k)

obs obs [ fkg
if obs = f1; : : : ; ng then
pc  check2

output check2i
Pre: pc = check2

E�: if 9v2f0;1gobs-leader-agree(v) then
value(i) obs-leader-value

round(i) rounds[i] + 1

obs ;
pc  read1

else

pc  
ip

output start-
ip(r)i
Pre: pc = 
ip

round(i) = r

E�: pc  wait

input return-
ip(v; r)i
E�: if pc = wait ^ round(i) = r then

value(i) v

round(i) rounds[i] + 1

obs ;
pc  read1

input stopi
E�: stopped  true

pc  nil

Tasks: The locally controlled actions of process i form a single task.

Table 1. The actions and transition relation of AP.
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process that is at round r or higher has its value equal to v. Since the veri�cation
of validity and agreement is reduced to the analysis of ordinary nondeterministic
systems, it is not our interest here to pursue such direction and we refer the reader
to [33] for further details.

For the wait-free termination property we prove that the algorithms terminates
within an expected constant number of rounds and we relate later the round com-
plexity to the time complexity. That is, we prove the following.

Theorem7. The algorithm of Aspnes and Herlihy terminates within a constant

expected number of rounds. ut

We use progress statements to derive our result. De�ne the following sets of states.

R the set of reachable states of AH such that there is an active process;
D the set of reachable states of AH such that there is no active process.

Let �MaxRound be a complexity measure that counts the number of new rounds
visited within an execution fragment, i.e., �MaxRound(�) = lstate(�):max-round �

fstate(�):rmax, where s:max-round denotes the highest round number of the pro-
cesses in state s. Our objective is to show that the progress statement

R
�MaxRound�3
�!
p

D (1)

is valid for a number p that is independent of n, the number of precesses. Then, using
Proposition 6, we can derive from (1) that a state of D is reached within expected
4=p rounds, that is, within a constant expected number of rounds. Note that fairness
implies that from every state of R�D the probability of scheduling a transition is
1, thus satisfying the condition for the applicability of Proposition 6.

The advantage of using the progress statement (1) is that we are left with a
property that can be veri�ed by analyzing a �nite number of rounds. However,
the analysis of Statement (1) is still too complex. The informal argument to prove
Statement (1) argues that either a decision is reached, or eventually some process
moves to a new fresh round. Once a new round is reached, we know that no coin
has been 
ipped yet at that round. Furthermore, if all the coins 
ipped at the new
round give the same result, then a decision is reached within two other rounds. In
order to re
ect the informal argument, we decompose Statement (1) into two parts
(property compositionality) and use Proposition 5 to combine them. For v 2 f0; 1g,
de�ne the following set of states.

Fv the set of states of R where there exists a round r and a process l such that
round (l) = r, value(l) = v, obsl = ;, and for all processes j 6= l, round(j) < r.

Then,

R
�MaxRound�1
�!
1

F0 [ F1 [D (2)
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and

Fv
�MaxRound�2
�!
p

D: (3)

In order to show the validity of Statement (2) and (3) we identify two properties
of AP and two properties of CF that can be composed together to yield the �nal
result (process compositionality). The properties of AP are the following:

D1 If AH is in a state s of R and all invocations to the coin 
ippers on non-failing
ports get a response, then a state from F0[F1[D is reached within one round.

D2 If AH is in a state s of Fv, all invocations to the coin 
ippers on non-failing
ports get a response, and all invocations to CF s:max-round get only response v,
then a state from D is reached within two rounds.

The properties of each CF r are the following.

C1 For each fair probabilistic execution fragment of CF r that starts with a reachable
state of CF r, the probability that each invocation on a non-failing port gets a
response is 1.

C2 For each fair probabilistic execution of CF r, and each value v 2 f0; 1g, the
probability that all invocations on a non-failing port get response v is at least p,
0 < p � 1.

Properties D1 and D2 are properties of an ordinary nondeterministic system and
can be analyzed by means of existing techniques (invariants and liveness arguments).
Therefore, we do not deal with their analysis in this paper. Properties C1 and C2

are properties of the coin 
ippers. Their proofs involve the analysis of a random walk
[13] and are postponed to the following sections. We emphasize that, by decomposing
the system into AP and CF , the main probabilistic analysis of the algorithm is done
on the coin 
ippers only.

Our �nal objective for this section is to show how properties D1, D2, C1, and
C2 can be composed to yield Statements (2) and (3). To this purpose we use the
results about the projections of a probabilistic execution (cf. Proposition 1).

Proposition8. Assuming that properties C1 and D1 are valid, Statement (2) is

valid.

Proof. Let H be a probabilistic execution fragment of AH that starts from a state
of R. Let � be the set of executions of 
H where each invocation to any coin

ipper on a non-failing port gets a response. By the de�nition of projection, the
executions of �dAP satisfy the premise of D1, and thus in each execution of � a
state from F1 [ F0 [ D is reached within one round. Thus, it is su�cient to show
that PH [�] = 1. Let, for each i � 1, �i be the set of executions of 
H where each
invocation to CF i on a non-failing port gets a response. Then � = \i�1�i. Observe
that, by de�nition, �i is the inverse image under projection of the set of executions
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of 
HdCF i
where each invocation on a non-failing port gets a response. From C1,

for each i, PHdCF i
[�idCF i] = 1, and thus, by Proposition 1, PH [�i] = 1. Therefore,

PH [�] = 1 since, from probability theory, any countable intersection of probability
1 events has probability 1.

Proposition9. Assuming that properties D1, D2, C1 and C2 are valid, State-

ment (3) is valid.

Proof. Let H be a probabilistic execution fragment of AH that starts from a state
s0 of Fv, and let r = s0:max-round . Let � be the set of executions of 
H where
each invocation to any coin 
ipper on a non-failing port gets a response and where
each response of CF r has value v. By the de�nition of projection, the executions of
�dAP satisfy the premise of D2, and thus, by D2, in each execution of � a state
from D is reached within two rounds. Thus, it is su�cient to show that PH [�] � p.
Let, for each i � 1, �i be the set of executions of 
H where each invocation to CF i

on a non-failing port gets a response. Furthermore, let �0

r be the set of executions
of 
H where no response of CF r has value �v. Then, � = (\i�1�i) \ �

0

r. Observe
that, by de�nition, �i is the inverse image under projection of the set of executions
of 
HdCF i

where each invocation on a non-failing port gets a response, and �0

r

is the inverse image under projection of the set of executions of 
HdCFr
where

each response has value v. From C1, for each i, PHdCF i
[�idCF i] = 1, and thus,

by Proposition 1, PH [�i] = 1. Since s0 2 Fv and r = s0:max-round , HdCF r is a
probabilistic execution of CF r (the start state of HdCF r is a start state of CF r),
and thus property C2 can be applied. FromC2, PHdCF r

[�0

rdCF r] � p, and thus, by
Proposition 1, PH [�

0

r] � p. Therefore, PH [�] � p since any countable intersection of
probability 1 events has probability 1 and the intersection of a probability 1 event
with an event with probability p has probability at least p.

7 Example: a Coin Flipping Protocol

The algorithm of Aspnes and Herlihy relies on a coin 
ipper that satis�es the prop-
erties C1 and C2 mentioned earlier. The algorithm for the coin 
ipper is given in
terms of n processes that interact through a centralized multiple-write single-read
counter. Each of the n processes works as follows: once a request for a 
ip is received,
it reads the value of the counter to check whether it is beyond one of the barriers Kn

or �Kn, where K is a �xed constant. If the counter is above Kn, then the process
returns value 1; if the counter is below �Kn, then the process returns 0; otherwise,
the process �rst 
ips a fair coin to decide whether to increment or decrement the
value of the counter, and then starts again.

If after each coin 
ip we look at the di�erence between the heads and tails
obtained so far, we observe that this number increases/decreases with probability
1=2 at each step. This process is called a random walk. By looking at the structure
of the coin 
ipping protocol, we observe that the value of the shared counter may
di�er by at most n from the current value of the di�erence between heads and tails.
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Therefore, as soon as the di�erence between heads and tails goes beyond one of the
barriers �(K + 1)n, all the processes return a value. From random walk theory this
property holds with probability 1. Furthermore, if the barrier (K + 1)n is reached
before the barrier �(K � 1)n, then all the processes return 1. From random walk
theory this property holds with probability (K � 1)=2K, our p in property C2. A
symmetric argument holds for the case where all processes return 0.

So far we have argued informally that the coin 
ipping protocol works correctly
since it behaves like a randomwalk. However, how can we be sure that there is really a
random walk going on in the algorithm? Is there any way that the nondeterminism
can a�ect the randomized process we have identi�ed? For example, how can we
guarantee that the scheduler cannot prevent a process from 
ipping whenever one
of the barriers �Kn is too close? Indeed, the scheduler can prevent processes from

ipping; fortunately, this situation occurs only if all the processes that are 
ipping
fail. The main problem here is that the above argument did not appear in our
informal analysis, and the absence of such an argument could be the source of errors
in general (cf. [36] for an example).

Our approach to this problem is to provide general theorems that separate the
probabilistic argument (properties of the random walk) from the nondeterministic
argument (how the scheduler can a�ect the random walk), so that each problem can
be analyzed in its own �eld. We call such results coin lemmas [38, 25, 32], which are
an instance of feature compositionality.

8 Compositionality Using Coin Lemmas

A useful technique to prove the validity of a probabilistic property for a probabilistic
automaton M is the following [32]:

1. choose a set of random draws that may occur within a probabilistic execution
of M , and choose some of the possible outcomes;

2. show that, no matter how the nondeterminism is resolved, the chosen random
draws give the chosen outcomes with some minimum probability p;

3. show that whenever the chosen random draws give the chosen outcome, a state
from U 0 is reached within c units of complexity �.

The �rst two steps can be carried out using the so-called coin lemmas [25, 32, 38],
which provide rules to map a stochastic process onto a probabilistic execution and
lower bounds on the probability of the mapped events based on the properties of the
given stochastic process; the third step concerns non-probabilistic properties and can
be carried out by means of any known technique for non-probabilistic systems. Coin
lemmas are essentially a way of reducing the analysis of a probabilistic property to
the analysis of an ordinary nondeterministic property. We refer the reader to [38]
for several examples of coin lemmas. Here we illustrate a coin lemma for symmetric
random walks.
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8.1 A Coin Lemma for Random Walks

Roughly speaking, a random walk is a process that describes the moves of a par-
ticle on the real line, where at each time the particle moves in one direction with
probability p and in the opposite direction with probability (1 � p). In this section
we present a coin lemma for symmetric random walks. That is, we present a rule
for choosing events within a probabilistic execution fragment that are guaranteed to
have properties similar to the properties of random walks where p = 1=2. A more
general result is given in [33].

Let M be a probabilistic automaton and let Acts = f
ip1; : : : ;
ipng be a subset
of Actions(M ). Let S = f(U h

1 ;U
t
1); (U

h
2 ;U

t
2); : : : ; (U

h
n ;U

t
n)g be a set of pairs where

for each i; 1 � i � n, U h
i ;U

t
i are disjoint subsets of States(M ) such that for every

transition (s;
ipi;P) with an action 
ipi, 
 � U h
i [ U t

i , and P [U h
i ] = P [U t

i ] =
1=2. The actions from Acts represent coin 
ips, and the sets of states U h

i and U t
i

represent the two possible outcomes. Given a �nite execution fragment � of M , let
Di� Acts;S(�) denote the di�erence between the heads and the tails that occur in
H. Let z; B, and T be natural numbers, and let B < T . The value of z denotes the
starting point of the particle, while B and T denote barriers in the real line. For
each �nite execution fragment �, let z + Di� (�) denote the position of the particle
after the occurrence of �. For each probabilistic execution fragment H of M , let
Top[B; T; z](H) be the set of executions � of
H such that either the particle reaches
the top barrier T before the bottom barrier B, or the total number of \
ips" is �nite
and the particle reaches neither barrier. De�ne the symmetric event Bot[B; T; z](H),
which is the same as Top except that the bottom barrier B should be reached before
the top barrier T . Finally, de�ne the event Either[B; T; z](H) as Top[B; T; z](H)[
Bot[B; T; z](H), which excludes those executions ofM where in�nitely many \
ips"
occur and the particle reaches neither barrier.

Proposition10. Let H be a probabilistic execution fragment of M , and let B �

z � T . Then

1. PH [Top[B; T; z](H)] � (z � B)=(T �B).

2. PH [Bot[B; T; z](H)] � (T � z)=(T � B).

3. PH [Either[B; T; z](H)] = 1. ut

Therefore, we know lower bounds on the probability of the events expressed by
Top, Bot, and Either, which are closely connected with our informal argument of
correctness for the coin 
ipping protocol. Note that the events contain executions
where �nitely many coins are 
ipped and no barrier is reached. During the analysis
of the events (with no probability involved) these executions appear, and therefore
we are forced to analyze the case where the scheduler prevents the protocol from
reaching one of the barriers.

We conclude with a result about the expected complexity of a random walk. Let
�Acts(�) be the complexity measure that counts the number of actions from Acts
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that occur in �. De�ne �Acts;B;T;z to be the truncation of �Acts at the point where
one of the barriers B and T is reached. Then we can prove an upper bound on the
number of expected 
ip actions that occur before reaching one of the barriers.

Proposition11. Let H be a probabilistic execution fragment of M , and let � be a

full cut of H. Let B � z � T . Then, E�Acts;B;T;z [H;�]� �z2 + (B + T )z �BT . ut

8.2 Analysis of the Coin Flipping Protocol

We build a coin 
ipping protocol that satis�es C1 andC2 with p = (K�1)=2K. The
protocol is based on random walks. We de�ne the protocol by letting a probabilistic
automaton DCN r (Distributed CoiN) interact with a non-probabilistic counter CT r

(CounTer), that is, CF r = DCN r kCT r. In this Section, DCN r is distributed while
CT r is composed of n processes that receive requests from DCN r and read/update
a single shared variable. In Section 9 we discuss how to decentralize CT r. Since the
protocols for DCN r and CTr are the same for any round r, we drop the subscript
r from our notation. In DCN each process 
ips a fair coin to decide whether to
increment or decrement the shared counter. Then the process reads the current
value of the shared counter by invoking CT , and if the value read is beyond the
barrier �Kn (+Kn), where K is a �xed constant, then the process returns 0 (1).
The speci�cation of CT states that an increment or decrement operation always
completes unless the corresponding process fails, while a read operation is guaranteed
to complete only if increments and decrements eventually cease.

For the analysis of the coin 
ipping protocol we start with part 3. Let Acts be
f
ip1; : : : ;
ipng, and let S be f(U i

1;U
d
1 ); (U

i
2;U

d
2 ); : : : ; (U

i
n;U

d
n )g, where U i

j is the

set of states of CF where process j has just 
ipped inc (fpcj = inc), and U d
j is the

set of states of CF where process j has just 
ipped dec (fpcj = dec). Given a �nite
execution fragment � of CF , let �inc(�) be the number of coin 
ips in � that give
inc, and let �dec(�) be the number of coin 
ips in � that give dec.

Lemma12. Let � be a fair execution of CF, such that � 2 Either[�(K+1)n; (K+
1)n; 0](H) for some probabilistic execution H of CF . Then in � each invocation on

a non-failing port gets a response. ut

Lemma13. Let � be a fair execution of CF, such that � 2 Top[�(K � 1)n; (K +
1)n; 0](H) for some probabilistic execution H of CF . Then in � every invocation on

a non-failing port gets response 1. ut

The proofs of Lemmas 12 and 13 follow from simple invariant properties and do not
involve probability. The main idea is that the value of the shared counter remains
beyond Kn (�Kn) once the barrier (K + 1)n (�(K +1)n) is reached. A symmetric
argument is valid for Bottom[�(K � 1)n; (K + 1)n; 0](H).

At this point properties C1 and C2 can be proved by simple applications of the
coin lemma for random walks.
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Proposition14. The coin 
ipper CF satis�es C1. That is, for each fair probabilis-

tic execution fragment of CF that starts with a reachable state of CF , with probability

1 each invocation on a non-failing port gets an answer.

Proof. Let H be a fair probabilistic execution fragment of CF that starts with a
reachable state s of CF , and let � be a �nite execution ofCF such that lstate(�) = s.
Let z = �inc(�)��dec(�). If �

0 is an execution of the event Either[�(K+1)n; (K+
1)n; z](H), then � a �0 is an execution of Either[�(K � 1)n; (K + 1)n; 0](H0) for
some fair probabilistic execution H0 of CF , and by Lemma 12, every invocation to
CF in � a �0 gets a response, and therefore every invocation to CF in �0 gets a
response. By Theorem 10, PH [Either[�(K + 1)n; (K + 1)n; z](H)] = 1.

Proposition15. The coin 
ipper CF satis�es C2 with p = (K + 1)=2K. That is,

�xed v 2 f0; 1g, for each fair probabilistic execution of CF , with probability at least

(K � 1)=2K each invocation to CF on a non-failing port returns value v.

Proof. Assume that v = 1; the case for v = 0 is symmetric. Let H be a fair prob-
abilistic execution of CF . If � is an execution of Top[�(K � 1)n; (K + 1)n; 0](H),
then, by Lemma 13, every invocation to CF in � gets response 1. By Theorem 10,
PH [Top[�(K � 1)n; (K + 1)n; 0](H)] � (K � 1)=2K.

9 Compositionality Using Re�nements

A well known compositional veri�cation technique for ordinary automata is based
on the notions of forward/backward simulation [27] and bisimulation [29]. These
notions can be extended to probabilistic automata as well [22, 39]. The simulation
method is sound for the notion of trace inclusion [27], which can also be used as a
notion of implementation. The same is true for probabilistic automata [37, 38], and
the algorithm of Aspnes and Herlihy provides again a signi�cative example of how
probabilistic simulation relations enable compositional reasoning.

In order for the algorithmof Aspnes and Herlihy to be really wait-free, the counter
CT must be distributed among all the processes of a system. The distributed imple-
mentation of CT , which we denote by DCT (Distributed CounTer), is presented in
[2]. We are not interested in the details of the implementation here since there is no
probability involved. It is possible to verify that DCT implements CT by exhibit-
ing a re�nement mapping [27] from DCT to CT . This part of the proof is simple
and does not involve probability. Then we use the fact that an ordinary re�nement
is a special case of a probabilistic re�nement, and the fact that the existence of
re�nements is preserved by parallel composition to lift to the whole algorithm the
re�nement from DCT to CT , thus showing that DCT can replace CT in AH .

We emphasize that in the analysis above there is no probability involved. The
decomposition of the coin 
ipping protocol into two parts, the processes that do 
ip
coins and the shared counter, allows us to use probabilistic arguments only in those
places where probability is really involved.
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10 Time Analysis by Lifting Complexity Measures

In this section we derive an upper bound on the time to reach D once all processes
have some minimum speed. We achieve this result by studying the expected number
of inc and dec events (increments and decrements of the shared counter) that occur
within the coin 
ippers and then converting the new expected bound into a time
bound. This is done by studying several properties that express relationships between
di�erent complexity measures, and then lifting the results to expectations, again an
example of feature compositionality. Again we omit all the details that do not rely
on probability and we refer the interested reader to [33].

We change slightly our formal model to handle time. Speci�cally, we add a com-
ponent :now to the states of all our probabilistic I/O automata, and we add the set
of positive real numbers to the input actions of all our probabilistic I/O automata.
The :now component is a nonnegative real number and describes the current time
of an automaton. At the beginning (i.e., in the start states) the current time is 0,
and thus the :now component is 0. The occurrence of an action d, where d is a
positive real number, increments the :now component by d and leaves the rest of the
state unchanged. Thus, the occurrence of an action d models the fact that d time
units are elapsing. The amount of time elapsed since the beginning of an execution
is recorded in the :now component. Since time-passage actions must synchronize in
a parallel composition context, parallel composition ensures that the :now compo-
nents of the components are always equal. Thus, we can abuse notation and talk
about the :now component of the composition of two automata while we refer to
the :now component of one of the components. We de�ne a new complexity measure
�t(�) as the di�erence between the :now components of the last and �rst states of
�. Informally, �t measures the time that elapses during an execution. We say that
an execution fragment � of a probabilistic automaton M is well-timed if each task
does not remain enabled for more than one time unit without being performed.

We give some preliminary de�nitions. Let, for each r > 0, DCF r (Distributed
Coin Flipper) denote DCN r kDCT r . Let DAH (Distributed Aspnes-Herlihy) denote
AP k(kr�1DCF r). For an execution fragment � of DCF r or of DAH , let �
ip;r(�) be
the number of 
ip events of DCF r that occur in �, and let �id;r(�) be the number
of inc and dec events of DCF r that occur in �. For each execution fragment � of
DAH let �id(�) be the number of inc and dec events that occur in �.

We start with some non-probabilistic properties about the new complexity mea-
sures. The �rst result, Lemma 16, provides a linear upper bound on the time it takes
for DAH to span a given number of rounds and to 
ip a given number of coins under
the assumption of well-timedness. The next two results state basic properties of the
coin 
ipping protocols. That is, once a barrier �(K + 1)n is reached, there are at
most n other 
ip events, and within any execution fragment of DCF r the di�erence
between the inc; dec events and the 
ip events is at most n.

Lemma16. Let � be a well-timed execution fragment of DAH, and suppose that

all the states of �, with the possible exception of lstate(�) are active, that is, are

states of R. Let R = fstate(�):max-round. Then, �t(�) � d1n
2(�MaxRound(�) +

R) + d2n�id(�) + d3n
2 for some constants d1; d2, and d3. ut
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Lemma17. Let � = �1
a �2 be a �nite execution of DCF r, and suppose that

jDi� Acts;S(�1)j � (K + 1)n. Then �
ip;r(�2) � n. ut

Lemma18. Let � be a �nite execution fragment of DCF r. Then,

�id;r(�) � �
ip;r(�) + n. ut

We now deal with probabilistic properties. First, based on our results on ran-
dom walks and on Lemma 17, we show in Lemma 19 an upper bound on the ex-
pected number of coin 
ips performed by a coin 
ipper. Then, in Lemma 20 we
use Lemma 18 and our results about linear combinations of complexity measures to
derive an upper bound on the expected number of increment and decrement oper-
ations performed by a coin 
ipper, and we use our compositionality result about
complexity measures to show that the bound is preserved by parallel composition.
Finally, in Lemma 21 we use our result about phases of computations to combine
Theorem 7 with Lemma 20 and derive an upper bound on the expected number of
inc and dec events performed by the algorithm.

Lemma19. Let H be a probabilistic execution fragment of DCF r that starts from a

reachable state, and let � be a full cut of H. Then E�
ip;r [H;�] � (K+1)2n2+n. ut

Proof. Let s be the start state of H, and let � be a �nite execution of DCF r with
s = lstate(�). Let z = �inc(�) � �dec(�). If jzj � (K + 1)n, then, by Lemma 17,
for each q 2 �, �
ip;r(q) � n, and thus E�
ip;r [H;�] � n. If jzj < (K + 1)n,
then, by Proposition 11, E�Acts;�(K+1)n;(K+1)n;z

[H;�] � �z2 + (K + 1)2n2 � (K +

1)2n2, that is, the event denoted by � is satis�ed within expected (K + 1)2n2 
ip

events, truncating the count whenever an absorbing barrier �(K + 1)n is reached.
Once an absorbing barrier is reached, by Lemma 17 there are at most n other 
ip
events. Thus, for each state q of H, �
ip;r(q) � �Acts;�(K+1)n;(K+1)n;z(q) + n. By
Proposition 2, E�
ip;r [H;�]� (K + 1)2n2 + n.

Lemma20. Let H be a probabilistic execution fragment of DAH that starts from a

reachable state, and let � be a full cut of H. Then E�id;r [H;�] � (K + 1)2n2 + 2n.
ut

Proof. By Lemma 18, for each execution fragment of� of CF r , �id;r(�) � �
ip;r(�)+
n. By Proposition 2, E�id;r [H;�]� E�
ip;r [H;�]+n. By Lemma 19, E�
ip;r [H;�]�
(K + 1)2n2 + n. Thus, E�id;r [H;�]� (K + 1)2n2 + 2n.

Lemma21. Let H be a probabilistic fair execution fragment of DAH with start state

s, and let R = s:max-round. Suppose that s is reachable. Let � denote the set of

minimal states of H where a state from D is reached. Then E�id [H;�] = O(Rn2).
ut

Proof. If R = 0, then � = fsg, and thus E�id [H;�] = 0 = O(Rn2). For the rest
of the proof assume that R > 0. Given a state q of H, we know that �id(q) =
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�id;1(q) + � � � + �id;R(q) + �0(q), where �0(q) =
P

r>0 �id;r+R(q). For each r > 0,
let �r be the set of minimal states q of H such that �MaxRound(q) � r. Then, for
each q 2 �r, �id;r+R(q) = 0, and for each state q of H and each r > �MaxRound(q),
�id;r+R(q) = 0 (CF r+R does not start until some process reaches round r+R). Fur-
thermore, by Lemma 20 and Proposition 4, there is a constant c = (K + 1)2n2+ 2n
such that for each probabilistic execution fragment H0 of M , each full cut �0 of H0,
and each i > 0,E�id;i [H

0; �0] � c. Therefore, we are in the conditions to apply Propo-
sition 3: each round is a phase, and the numbers of inc and dec events that occur
within each round are the complexity measures for their corresponding round. Func-
tion �MaxRound is the measure of how many phases are started. By Proposition 3,
E�0 [H;�] � cE�MaxRound

[H;�]. By Theorem 7,E�MaxRound
[H;�] is bound by a constant

(independent of n). Therefore, E�0 [H;�] = O(n2). Finally, since for each i;H, and
�, E�id;i [H;�] = O(n2), by Proposition 2, E�id [H;�] = O(Rn2)+O(n2) = O(Rn2).

The main result is just a pasting together of the results obtained so far. An immediate
consequence on the algorithm of Aspnes and Herlihy is that, if we know that some
initialized process does not fail and that the maximum round is 1, then a decision
is reached within expected cubic time.

Theorem22. Let H be a probabilistic fair, well-timed execution fragment of DAH

with a reachable start state s, and let R = s:max-round. Let � denote the set of

minimal states of H where a state from D is reached. Then E�t[H;�] = O(Rn3).

Proof. By Lemma 16 and Proposition 2,E�t [H;�]� d1n
2E�MaxRound

[H;�]+d1n
2R+

d2nE�id [H;�]+d3n
2. Thus, by Theorem 7 and Lemma 21, E�t [H;�] = O(Rn3). ut

11 Related Work

There is an extensive literature on the description and analysis of randomized sys-
tems. Objects with the same structure as probabilistic automata were introduced
already by Rabin [34], even though with di�erent motivations and objectives.

From the modeling point of view there are several results in process algebras
[23, 15, 42, 3, 44, 8, 7, 9, 45, 10, 46, 17, 40], where algebras like CCS [28], CSP [18],
and ACP [5] are enriched with probability. Most of the algebras above do not deal
with nondeterminism and can be classi�ed into reactive, generative, and strati�ed

according to [16]. Our probabilistic automata are an extension of the reactive model
of [16], while our probabilistic executions are an example of a generative process.
The algebras of [17, 45] do include nondeterminism. The algebra of [45] is used to
study a theory of testing for probabilistic systems; the algebra of [17] is based on
the alternating model of [43] and is used mainly to illustrate a new model checking
algorithm for probabilistic systems. In the alternating model there is a strict alter-
nation between states that enable only nondeterministic transitions and states that
enable a single probabilistic transitions. In our model we avoid the alternation, thus
obtaining a structure which is closer to ordinary automata.
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Other techniques for the analysis of randomized algorithms are studied in [30,
31, 35, 47, 12, 41]. Most of the work concentrates on properties that hold with
probability 1 and that can be veri�ed simply by looking at the topology of a system.
In [30] a notion of extreme fairness is introduced, later generalized in [47] under the
name of �-fairness. The set of �-fair executions of a system have probability 1; thus,
the correctness of a system can be veri�ed just by looking at its �-fair executions.
The problem with the study of properties that hold with probability 1 is that it is
not easy to study the expected complexity of a system.

In [41] a reasoning in the style of weak preconditions is extended to probabilistic
systems using objects called predicate transformers. The method, though, seems to
be applicable only to small systems. It would be useful to investigate how methods
like those of [41] can be integrated with our way of reasoning about systems. In
[12] a di�erent approach to the analysis of a randomized algorithm is presented.
An algorithm is viewed as a game between a player called scheduler, which tries
to degrade performance, and a player called luck, which �xes the outcome of some
coins trying to improve performance. We say that luck has a winning strategy with k
moves if luck can make the algorithm work against any scheduler by �xing the value
of at most k coins. In such case it is possible to show that the algorithm works with
probability at least 1=2k. This approach can be seen as an instance of coin lemmas,
where the game is the rule to map the process of 
ipping k coins onto a probabilistic
execution.

12 Concluding Remarks

We have shown how di�erent forms of compositionality can be included into a model
for randomized distributed computation and can be used for the analysis of nontriv-
ial randomized distributed algorithms. We have identi�ed three forms of composi-
tionality: process compositionality, property compositionality, and feature composi-
tionality. Process and property compositionality are just two new names for forms
of compositionality that are widely known in the literature; feature compositional-
ity, although typically used in mathematics, is a form of compositionality that is not
usually considered as compositionality.We have shown how feature compositionality
plays a crucial role in simplifying the analysis of a randomized system.

An obvious question is whether we have been lucky in our case study and whether
the main idea of separating probability from nondeterminism really works. Although
we cannot claim that it is always possible to obtain a clean separation between
probability and nondeterminism, our experience with the analysis of randomized
algorithms [25, 32, 1, 38] gives us a reasonable con�dence that a separation can be
obtained. The original choice of studying the algorithm of Aspnes and Herlihy [33]
was guided mainly by the idea of looking for an algorithm where such separation
appeared to be di�cult to achieve. Of course, the main problem in the analysis of a
system is to understand how to decompose the system, which is still nontrivial.

Another question concerns the generality of the model. In the interaction between
two systems we always assume that the probabilistic choices of each component
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are independent. In other words, it is not possible for a process to condition the
probability distribution associated with the transitions of another process (our model
is not generative). This restriction limits considerably the �eld of application of
our theory. We understand that such limitations exist, and it would be desirable
to overcome them. Unfortunately, we do not know of any way of extending the
CSP synchronization style to a model that is not reactive, and on the other hand
we �nd such synchronization mechanism very useful for the analysis of distributed
algorithms.

Acknowledgments. I would like to thank the organizers of COMPOS'97 for invit-
ing me to the symposium and for the wonderful exchange environment they have
provided.
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