
A Compositional Trace-Based Semantics forProbabilistic Automata ?Roberto SegalaMIT Laboratory for Computer ScienceCambridge, MA 02139Abstract. We extend the trace semantics for labeled transition systems to a ran-domized model of concurrent computation. The main objective is to obtain a com-positional semantics. The role of a trace in the randomized model is played by aprobability distribution over traces, called a trace distribution. We show that thepreorder based on trace distribution inclusion is not a precongruence, and we buildan elementary context, called the principal context , that is su�ciently powerful tocharacterize the coarsest precongruence that is contained in the trace distributionpreorder. Finally, we introduce a notion of a probabilistic forward simulation and weprove that it is sound for the trace distribution precongruence. An important char-acteristic of probabilistic forward simulations is that they relate states to probabilitydistributions over states.1 IntroductionThe growing interest in randomized algorithms for the solutions of problems in distributedcomputation [2, 3] has created a need for formal models where randomized distributed sys-tems can be analyzed. The formal models should be able to deal at least with random-ization, which is used to describe the choices of a system that are due to some randomdraws, and nondeterminism, which is the basic mathematical tool to express the unpre-dictable behavior of an external environment and the unpredictable relative speeds of twoor more systems. Several formal models for randomized concurrent systems were studiedin the past [5,7, 8, 10, 13, 19{23], and among those, the models of [8, 19, 20, 22] distinguishbetween probability and nondeterminism.Our long term goal is to build a model that extends Labeled Transition Systems [16],that has a strong mathematical foundation, and that can be used for the actual veri�cationof systems. The choice of labeled transition systems is due to their successful application tomodel concurrency. In [20] we have extended the labeled transition systems model to accountfor randomization and we have extended the classical simulation and bisimulation relationsto it; in [14,17] we have shown how the model of [20] can be used for the actual analysis ofrandomized distributed systems. The main objects of [20] are called probabilistic automata,and they di�er from ordinary labeled transition systems in that a transition leads to aprobability distribution over states rather than to a single state. Probabilistic automata arean extension of the probabilistic automata of Rabin [18] where the occurrence of an actioncan lead to several probability distributions over states. Choosing a transition represents thenondeterministic behavior of a probabilistic automaton; choosing a state to reach within atransition represents the probabilistic behavior of a probabilistic automaton.? Supported by NSF grant CCR-92-25124, by DARPA contract N00014-92-J-4033, and by AFOSR-ONR contract F49620-94-1-0199.

In this paper we show how it is possible to de�ne a compositional semantics for proba-bilistic automata that relies on some form of traces rather than simulation relations; then,we show how the simulation method of [15] extends to the new framework. The problemis not simple since trace-based semantics are known to be linear, i.e., to be independentof the branching structure of a system, while in the probabilistic framework the branchingstructure of a system can be used to create dependencies between events in the contextof a parallel composition. In other words, a trace semantics that is su�ciently expressiveto capture part of the probabilistic behavior of a system must be sensitive to part of thebranching structure of a system in order to be compositional. The problem, then, is to seehow sensitive such a relation should be.We de�ne a simple and natural trace-based semantics for probabilistic automata, wherethe main objects to be observed are probability distributions over traces, called trace dis-tributions. Then, we de�ne a preorder on probabilistic automata, called trace distributionpreorder , which is based on trace distribution inclusion. Our trace distributions are a conser-vative extension of the traces of ordinary labeled transition systems (called automata), andthe trace distribution preorder is a conservative extension of the trace inclusion preorder ofordinary automata. We observe that the trace distribution preorder is not a precongruence,and thus, following standard arguments, we de�ne the trace distribution precongruence asthe coarsest precongruence that is contained in the trace distribution preorder.Our �rst main theorem is that the trace distribution precongruence can be characterizedin an alternative and more intuitive way. Namely, we show that there is a context, which wecall the principal context , that is su�cient to distinguish every pair of probabilistic automatathat are not in the trace distribution precongruence relation. As a consequence, the tracedistribution precongruence can be characterized as inclusion of principal trace distributions,where a principal trace distribution of a probabilistic automaton is a trace distribution ofthe probabilistic automaton in parallel with the principal context.We extend the simulation method of [15] by studying a new relation for probabilisticautomata in the style of the forward simulations of [15]. The new relation, which is calledprobabilistic forward simulation, is coarser than the relations of [20] and relates states toprobability distributions over states. Probabilistic forward simulations allow us to simulate aprobabilistic transition like rolling a dice with eight faces by ipping three fair coins one afterthe other; this is not possible with the simulation relations of [20]. Our second main theoremis that probabilistic forward simulations are sound for the trace distribution precongruence.We believe that our methodology can be applied to the study of other semantics based onabstract observations. In particular, in further work we plan to extend the failure semanticsof [4] to the probabilistic framework, and possibly to study a related theory of testing.The rest of the paper is organized as follows. Section 2 gives some background on mea-sure theory; Section 3 introduces the probabilistic automata of [19, 20]; Section 4 introducesthe trace distributions and the trace distribution precongruence; Section 5 introduces theprincipal context and the alternative characterization of the trace distribution precongru-ence; Section 6 introduces our new simulation relations and shows their soundness for thetrace distribution precongruence; Section 7 gives some concluding remarks.2 PreliminariesA probability space is a triple (
;F ; P) where
 is a set, F is a collection of subsets of
that is closed under complement and countable union and such that
 2 F , and P is afunction from F to [0; 1] such that P [
] = 1 and such that for any collection fCigi of at

most countably many pairwise disjoint elements of F , P [[iCi] = Pi P [Ci]. The set
 iscalled the sample space, F is called the �-�eld , and P is called the probability measure.A probability space (
;F ; P) is discrete if F = 2
 and for each C �
, P [C] =Px2C P [fxg]. Given a set X, denote by Probs(X) the set of discrete probability distributionswhose sample space is a subset of X and such that the probability of each element is not 0.The Dirac distribution over an element x, denoted by D(x), is the probability space witha unique element x. The uniform distribution over a collection of elements fx1; : : : ; xng,denoted by U(x1; : : : ; xn), is the probability space that assign probability 1=n to each xi.Throughout the paper we denote a probability space (
;F ; P) by P. As a notationalconvention, if P is decorated with indices and primes, then the same indices and primescarry to its elements. Thus, P0i denotes (
0i;F 0i; P 0i).The product P1
P2 of two discrete probability spaces P1, P2 is the discrete probabilityspace (
1 �
2; 2
1�
2 ; P), where P [(x1; x2)] = P1[x1]P2[x2] for each (x1; x2) 2
1 �
2.A function f :
 !
0 is said to be a measurable function from (
;F) to (
0;F 0) if foreach set C of F 0 the inverse image of C, denoted by f�1(C), is an element of F . Let P bea probability measure on (
;F), and let P 0 be de�ned on F 0 as follows: for each element Cof F 0, P 0(C) = P (f�1(C)). Then P 0 is a probability measure on (
0;F 0). The measure P 0is called the measure induced by f , and is denoted by f(P). If P is a discrete probabilityspace and f is a function de�ned on
, then f can be extended to P by de�ning f(P) to bethe discrete probability space (f(
); 2f(
); f(P)).3 Probabilistic AutomataIn this section we introduce the probabilistic automata of [19], which appear also in [20]with a slightly di�erent terminology. We start with an informal overview of the model.A labeled transition system, also called an automaton, is a state machine with labeledtransitions. Each transition leaves from a state and leads to the occurrence of a label, alsocalled an action, and to a state. A probabilistic automaton is like an ordinary automatonexcept that each transition leads to an action and to a probability distribution over states.Resolving the nondeterminism in an automaton leads to a linear chain of states inter-leaved with actions, called an execution or a computation; resolving the nondeterminism in aprobabilistic automaton leads to a Markov chain structure since each transition leads prob-abilistically to more than one state. Such a structure is called a probabilistic execution. Aprobabilistic execution can be visualized as a probabilistic automaton that enables at mostone transition from each state (a fully probabilistic automaton). Due to the complex struc-ture of a probabilistic execution, it is convenient to view it as a special case of a probabilisticautomaton; in this way the analysis of a probabilistic execution is simpli�ed.However, nondeterminism could be resolved also using randomization: a scheduler for nprocesses running in parallel could choose the next process to schedule by rolling an n-sidedice; similarly, if some actions model the input of an external environment, the environmentcould provide the input at random or could provide no input with some non-zero probability.Thus, in a probabilistic execution the transition that leaves from a state may lead to aprobability distribution over both actions and states and also over deadlock (no input). Thisnew kind of transition is not part of our informal de�nition of a probabilistic automaton;yet, it is still convenient to view a probabilistic execution as a probabilistic automaton.Thus, our de�nition of a probabilistic automaton allows for a transition to lead to prob-ability distributions over actions and states and over a symbol � that models deadlock;however, except for the handling of probabilistic executions, we concentrate on simple prob-abilistic automata, which allow only probabilistic choices over states within a transition.

3.1 Probabilistic AutomataDe�nition1. A probabilistic automaton M consists of four components:1. a set states(M) of states,2. a nonempty set start(M) � states(M) of start states,3. an action signature sig(M) = (ext(M); int(M)) where ext(M) and int(M) are disjointsets of external and internal actions, respectively,4. a transition relation trans(M) � states(M)�Probs((acts(M)�states(M))[f�g), whereacts(M) denotes the set ext(M) [int(M) of actions.A probabilistic automaton M is simple if for each transition (s;P) of trans(M) there is anaction a such that
 � fag � states(M). In such a case a transition can be representedalternatively as (s; a;P 0), where P 0 2 Probs(states(M)), and is called a simple transition.A probabilistic automaton is fully probabilistic if it has a unique start state and fromeach state there is at most one transition enabled. utAn ordinary automaton is a special case of a probabilistic automaton where each transitionleads to a Dirac distribution; the generative model of probabilistic processes of [7] is aspecial case of a fully probabilistic automaton; simple probabilistic automata are partiallycaptured by the reactive model of [7] in the sense that the reactive model assumes someform of nondeterminism between di�erent actions. However, the reactive model does notallow nondeterministic choices between transitions involving the same action. By restrictingsimple probabilistic automata to have �nitely many states, we obtain objects with a structuresimilar to that of the Concurrent Labeled Markov Chains of [8]; however, in our model wedo not need to distinguish between nondeterministic and probabilistic states. In our modelnondeterminism is obtained by means of the structure of the transition relation. This allowsus to retain most of the traditional notation that is used for automata.3.2 Executions and Probabilistic ExecutionsWe now move to the notion of an execution, which is the result of resolving both thenondeterministic and the probabilistic choices in a probabilistic automaton; it correspondsto the notion of an execution for ordinary automata. We introduce also a notion of anextended execution, which we use later to study the probabilistic behavior of a probabilisticautomaton.De�nition2. An execution fragment � of a probabilistic automaton M is a (�nite or in�-nite) sequence of alternating states and actions starting with a state and, if the executionfragment is �nite, ending in a state, � = s0a1s1a2s2 � � �, where for each i there exists aprobability space P such that (si;P) 2 trans(M) and (ai+1; si+1) 2
. Denote by fstate(�)the �rst state of �, and, if � is �nite, denote by lstate(�) the last state of �. Denote byfrag�(M) and frag(M) the sets of �nite and all execution fragments of M , respectively. Anexecution is an execution fragment whose �rst state is a start state. Denote by exec�(M)and exec(M) the sets of �nite and all executions of M , respectively.An extended execution (fragment) of M is either an execution (fragment) of M , or asequence � = s0a1s1 � � �ansn� such that s0a1s1 � � �ansn is an execution (fragment) of M .A �nite execution fragment �1 = s0a1s1 � � �ansn of M and an extended execution frag-ment �2 = snan+1sn+1 � � � ofM can be concatenated . In this case the concatenation, written�1 a �2, is the extended execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An extended ex-ecution fragment �1 of M is a pre�x of an extended execution fragment �2 of M , written�1 � �2, if either �1 = �2 or �1 is �nite and there exists an extended execution fragment�01 of M such that �2 = �1 a �01. ut

As we said already, an execution is the result of resolving both the nondeterministic and theprobabilistic choices in a probabilistic automaton. The result of the resolution of nondeter-ministic choices only is a fully probabilistic automaton, called a probabilistic execution, whichis the entity that replaces the executions of ordinary automata. Informally, since in ordinaryautomata there is no probability left once the nondeterminism is resolved, the executionsand probabilistic executions of an ordinary automaton describe the same objects. Beforegiving the formal de�nition of a probabilistic execution, we introduce combined transitions,which allow us to express the ability to resolve the nondeterminism using probability. In-formally, a combined transition leaving from a state s is obtained by choosing a transitionthat leaves from s probabilistically, and then behaving according to the transition chosen.Among the choices it is possible not to schedule any transition. This possibility is expressedby the term (1�Pi pi) in the probability of � in the de�nition below.De�nition3. Given a probabilistic automaton M , a �nite or countable set fPigi of prob-ability distributions of Probs((acts(M) � states(M)) [f�g), and a weight pi > 0 for each isuch that Pi pi � 1, the combinationPi piPi of the distributions fPigi is the probabilityspace P such that{
 = �[i
i if Pi pi = 1[i
i [f�g if Pi pi < 1{ F = 2
{ for each (a; s) 2
, P [(a; s)] =Pij(a;s)2
i piPi[(a; s)]{ if � 2
, then P [�] = (1�Pi pi) +Pij�2
i piPi[�].A pair (s;P) is a combined transition of M if there exists a �nite or countable family oftransitions f(s;Pi)gi and a set of positive weights fpigi with Pi pi � 1, such that P =Pi piPi. Denote (s;P) by Pi pi(s;Pi). utWe are now ready to de�ne a probabilistic execution. A technical detail is that in order toname the states of a probabilistic execution, those states are represented by �nite execu-tion fragments of a probabilistic automaton. A probabilistic execution can be seen as theresult of unfolding the transition relation of a probabilistic automaton and then choosingprobabilistically a transition from each state.De�nition4. Let � be a �nite execution fragment of a probabilistic automatonM . De�ne afunction �a that applied to a pair (a; s) returns (a; �as), and applied to � returns �. Recallfrom the last paragraph of Section 2 that the function �a can be extended to discreteprobability spaces.A probabilistic execution fragment of a probabilistic automatonM , is a fully probabilisticautomaton, denoted by H, such that1. states(H) � frag�(M). Let q range over states of probabilistic executions.2. for each transition tr = (q;P) of H there is a combined transition tr 0 = (lstate(q);P 0)of M , called the corresponding combined transition, such that P = q a P 0.3. each state of H is reachable and enables one transition, where a state q ofH is reachableif there is an execution of H whose last state is q.A probabilistic execution is a probabilistic execution fragment whose start state is a startstate of M . Denote by prfrag(M) the set of probabilistic execution fragments of M , and byprexec(M) the set of probabilistic executions of M . Also, denote by qH0 the start state of ageneric probabilistic execution fragment H, and for each transition (q;P) of H, denote thepair (q;P) by trHq , and denote P by PHq . ut

Example 1. Two examples of probabilistic executions appear in Figure 1. In particular, theprobabilistic execution denoted by H is a probabilistic execution of the probabilistic au-tomaton denoted by M . For notational convenience, in the representation of a probabilisticexecution H we do not write explicitly the full names of the states of H since the full namesare derivable from the position of each state in the diagram; moreover, whenever a state qenables the transition (q;D(�)) we do not draw any arc leaving from the state of the diagramthat represents q. utThere is a strong correspondence between the extended execution fragments of a probabilisticautomaton and the extended executions of one of its probabilistic execution fragments. Weexpress this correspondence by means of an operator �# that takes an extended executionof H and gives back the corresponding extended execution fragment of M , and an operator�"qH0 that takes an extended execution fragment of M and gives back the correspondingextended execution of H if it exists.3.3 EventsWe now de�ne a probability space (
H ;FH ; PH) for a probabilistic execution fragment H,so that it is possible to analyze the probabilistic behavior of a probabilistic automaton oncethe nondeterminism is resolved. The sample space
H is the set of extended executions ofMthat represent complete extended execution fragments of H, where an extended execution �of H is complete i� it is either in�nite or � = �0� and � 2
Hlstate(�0). For each �nite extendedexecution fragment � of M , let C�, the cone with pre�x �, be the set f�0 2
H j � � �0g,and let CH be the class of cones for H. The probability �H (C�) of the cone C� is theproduct of the probabilities associated with each edge that generates � in H. Formally,if � = qH0 a1s1 � � � sn�1ansn, then �H (C�) 4= PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)], where eachqi is de�ned to be qH0 a1s1 � � �aisi, and if � = qH0 a1q1 � � �qn�1anqn�, then �H(C�) 4=PHq0 [(a1; q1)] � � �PHqn�1 [(an; qn)]PHqn [�], where each qi is de�ned to be qH0 a1s1 � � �aisi. In [19] itis shown that there is a unique measure ��H that extends �H to the �-�eld �(CH) generatedby CH , i.e., the smallest �-�eld that contains CH . Then, FH is �(CH) and PH is ��H . Withthis de�nition it is possible to show that any union of cones is measurable.3.4 Pre�xOne of our objectives in the de�nition of the probabilistic model is that the standard notionsde�ned on ordinary automata carry over to the probabilistic framework. One of this conceptsis the notion of a pre�x for ordinary executions. Here we just claim that it is possible to givea meaningful de�nition of a pre�x for probabilistic executions.De�nition5. A probabilistic execution fragment H is a pre�x of a probabilistic executionfragment H0, denoted by H � H0, i� H and H0 have the same start state, and for each stateq of H, PH [Cq] � PH0 [Cq]. utIt is easy to verify that this de�nition of pre�x coincides with the de�nition of pre�x forordinary executions when probability is absent. The reader is referred to [19] for a completejusti�cation of De�nition 5.3.5 Parallel CompositionWe now turn to the parallel composition operator, which is de�ned in the CSP style [9], i.e.,by synchronizing two probabilistic automata on their common actions. As outlined in [8], it

is not clear how to de�ne a parallel composition operator for general probabilistic automatathat extends the CSP synchronization style; thus, we de�ne it only for simple probabilisticautomata, and we concentrate on simple probabilistic automata for the rest of this paper.We use general probabilistic automata only for the analysis of probabilistic executions. Thereader is referred to [19] for more details.De�nition6. Two simple probabilistic automata M1 and M2 are said to be compatible ifint(M1) \ acts(M2) = ;, and int(M2) \ acts(M1) = ;.The parallel composition M1kM2 of two compatible simple probabilistic automata M1and M2 is the simple probabilistic automaton M such that states(M) = states(M1) �states(M2), start(M) = start(M1) � start(M2), ext(M) = ext(M1) [ext(M2), int(M) =int(M1)[int(M2), and the transition relation satis�es the following: ((s1; s2); a;P) 2 trans(M)i� P = P1
 P2, such that1. if a 2 acts(M1) then (s1; a;P1) 2 trans(M1), else P1 = D(s1), and2. if a 2 acts(M2) then (s2; a;P2) 2 trans(M2), else P2 = D(s2). utRemark. Another point in favor of these de�nitions is that it is possible to de�ne the pro-jection HdMi, i = 1; 2, of a probabilistic execution H of M1kM2 onto one of its componentsMi. The de�nition is non-trivial and the interested reader is referred to [19]. ut3.6 Notation for TransitionsWe conclude this section with some notation for transitions. We write s a�! P wheneverthere is a simple transition (s; a;P) inM , and we write s a�!C P whenever there is a simplecombined transition (s; a;P) in M .Similar to the non-probabilistic case, we extend the arrow notation to weak arrows (a=)C)to state that P is reached through a sequence of combined transitions of M , some of whichare internal. The main di�erence from the non-probabilistic case is that in our frameworkthe transitions involved form a tree rather that a linear chain. Formally, s a=)C P, where ais either an external action or the empty sequence and P is a probability distribution overstates, i� there is a probabilistic execution fragment H such that1. the start state of H is s;2. PH [f�� j �� 2
Hg] = 1, i.e., the probability of termination in H is 1;3. for each �� 2
H , trace(�) = a, where trace(�) is the ordered sequence of externalactions that occur in �;4. P = lstate(�-strip(PH)), where �-strip(PH) is the probability space P 0 such that
0 =f� j �� 2
Hg, and for each � 2
0, P 0[�] = PH [C��];Example 2. The left side of Figure 1 represents a weak transition with action a that leads tostate s1 with probability 5=12 and to state s2 with probability 7=12. The action � representsany internal action. From the formal de�nition of a weak transition, a tree that representsa weak transition may have an in�nite branching structure, i.e., it may have transitionsthat lead to countably many states, and may have some in�nite paths; however, each treerepresenting a weak transition has the property that in�nite paths occur with probability 0.The right side of Figure 1 represents a weak transition of a probabilistic automaton withcycles in its transition relation. Speci�cally, H represents the weak transition s0 =) P,where P [s0] = 1=8 and P [s1] = 7=8. If we extend H inde�nitely on its right, then we obtaina new probabilistic execution fragment that represents the weak transition s0 =) D(s1).Observe that the new probabilistic execution fragment has an in�nite path that occurswith probability 0. Furthermore, observe that there is no other way to reach state s1 withprobability 1. ut

s1

s1

s2

s2

s2

1/2

1/2

τ

τ

τ’

’ ’

’

’

ss τ

1/2

1/2

a

a
τ

τ
2/3

1/3

1

2 5

4

3

s

s

s

s

s
a

a
1/2

1/2

0sM:
1/2

s
τ

τ
1/2

1

1/2

1/2

s

s

τ

τ

1

0 1/2

1/2

s

s

τ

τ

1

00s
1/2

s
τ

0

1/2

s
τ

1

H:Fig. 1. Weak transitions (also probabilistic executions).4 Trace Distribution PrecongruenceThe objective of this section is to extend the trace semantics to the probabilistic frameworkand to de�ne a corresponding trace-based preorder. The problem is that a trace semantics islinear, i.e., it does not depend on the branching structure of a system, while in probabilisticautomata the branching structure is important. Thus, the question is the following: underthe condition that we want a trace semantics that describes the probabilistic behavior of aprobabilistic automaton, how much of the branching structure of a probabilistic automatondo we have to know? We address the question above by de�ning a reasonable and naturaltrace semantics and by characterizing the minimum precongruence contained in it.De�nition7. Let H be a probabilistic execution fragment of a probabilistic automatonM .For each extended execution fragment � of M , let trace(�) denote the ordered sequence ofexternal actions of M that appear in �.Let f be a function from
H to
 = ext(M)� [ext (M)! that assigns to each executionof
H its trace. The trace distribution of H, denoted by tdistr(H), is the probability space(
;F ; P) where F is the �-�eld generated by the cones C�, where � is an element of ext(M)�,and P = f(PH). The fact that f is measurable follows from standard arguments. Denote ageneric trace distribution by D. A trace distribution of a probabilistic automaton M is thetrace distribution of one of the probabilistic executions of M . utGiven two probabilistic executions H1 and H2, it is possible to check whether tdistr(H1) =tdistr(H2) just by verifying that Ptdistr(H1)[C�] = Ptdistr(H2)[C�] for each �nite sequence ofactions �. This follows from standard measure theory arguments. In [12] Jou and Smolkastudy a probabilistic trace semantics for generative processes; our rule above to determinewhether two probabilistic executions have the same trace distribution coincides with thetrace equivalence of [12] (a probabilistic execution is essentially a generative process).Example 3. The reader may wonder why we have not de�ned
 to be trace(
H). This is toavoid to distinguish two trace distribution just because they have di�erent sample spaces.Figure 2 illustrates the idea. The two probabilistic automata of Figure 2 have the same tracedistributions; however, the left probabilistic automaton has a probabilistic execution wherethe trace a1 occurs with probability 0, while the right probabilistic automaton does not.Thus, by de�ning the sample space of tdistr(H) to be trace(
H), the two probabilistic au-tomata of Figure 2 would be distinct. In Section 6 we de�ne several simulation relations for

s0 s11/2

a

a1/2
s0

s2

s3

s1 1

2

3

τ

τ

τ

1/2

1/4

1/8

a

a

a

a

a a

2

3 3

s

s

s

s

s s

’’

’’ ’’’

’

’

’Fig. 2. Trace distribution equivalent probabilistic automata.probabilistic automata and we show that they are sound for the trace distribution precon-gruence; such results would not be true with the alternative de�nition of
. utIt is easy to see that trace distributions extend the traces of ordinary automata: the tracedistribution of a linear probabilistic execution fragment is a Dirac distribution. It is easyas well to see that pre�x and action restriction extend to the probabilistic framework, thusenforcing our de�nition of a trace distribution. A trace distribution D is a pre�x of a tracedistribution D0, denoted by D � D0, i� for each �nite trace �, PD[C�] � PD0 [C�]. Thus, twotrace distributions are equal i� each one is a pre�x of the other.Lemma8. Let H1 and H2 be two probabilistic execution fragments of a probabilistic au-tomaton M . If H1 � H2, then tdistr(H1) � tdistr(H2). utLet � be a trace, and let V be a set of actions. Then � � V denotes the ordered sequence ofactions from V that appear in �. Let D = (
;F ; P) be a trace distribution. The restriction ofD to V , denoted by D � V , is the probability space (
0;F 0; P 0) where
0 = f� � V j � 2
g,F 0 is the �-�eld generated by the sets of cones C�0 such that �0 � � for some � 2
0, andP 0 is the inverse image of P under the function that restricts traces to V .Lemma9. Let D be a trace distribution of M1kM2. Then, D � ext(Mi), i = 1; 2, is a tracedistribution of Mi. utDe�nition10. Let M1;M2 be two probabilistic automata with the same external actions.The trace distribution preorder is de�ned as follows.M1 vD M2 i� tdistrs(M1) � tdistrs(M2): utThe trace distribution preorder is a direct extension of the trace preorder of ordinary au-tomata; however, it is not a precongruence. Consider the two probabilistic automata M1and M2 of Figure 3. It is easy to see that M1 and M2 have the same trace distributions.Consider now the context C of Figure 3. Figure 4 shows a probabilistic execution of M2kCwhere there is a total correlation between the occurrence of actions d and f and of actionse and g. Such a correlation cannot be obtained fromM1kC, since the choice between f andg must be resolved before knowing what action among d and e is chosen probabilistically.Thus, M1kC and M2kC do not have the same trace distributions. This leads us to thefollowing de�nition.De�nition11. Let M1;M2 be two probabilistic automata with the same external actions.The trace distribution precongruence, denoted by vDC , is the coarsest precongruence thatis contained in the trace distribution preorder. ut

s0

s2s1

s3 s4

s5 s6

b b

a a

f g

s5 s6

s0

s3 s4

s1

a

b b

f g

3c 4c

1c 2c

0c

c c

d e

M2M1 C

1/2 1/2

Fig. 3. The trace distribution preorder is not a precongruence.
a

1/2

1/2
c

c

s0 c0),(),(s c01

),(s c1 1

),(s c1 2
b

b

),(s c24

),(s c13),(s c3 3

),(s c4 4

),(s c35

),(s c46

f

g

d

eFig. 4. A probabilistic execution of M2kC.The trace distribution precongruence preserves properties that resemble the safety propertiesof ordinary automata [1]. One example of such a property is the following.\After some �nite trace � has occurred, the probability that some action a occurs isnot greater than p."The property above means that in every trace distribution of a probabilistic automaton Mthe probability of the traces where action a occurs after �, conditional on the occurrence�, is not greater than p. Suppose that M1 vDC M2, and suppose by contradiction that M2satis�es the property above, while M1 does not. Then there is a trace distribution of M1where the probability of a after � conditional to � is greater than p. Since M1 vDC M2,there is a trace distribution of M2 where the probability of a after � conditional to � isgreater than p. This contradicts the hypothesis that M2 satis�es the property above.5 The Principal ContextIn this section we give an alternative characterization of the trace distribution precongruencethat is easier to manipulate and that gives us an idea of the role of the branching structureof a probabilistic automaton. We de�ne the principal context , denoted by CP , and we showthat there exists a context C that can distinguish two probabilistic automata M1 and M2i� the principal context distinguishes M1 and M2.The principal context is a probabilistic automaton with a unique state and three self-looptransitions labeled with actions that do not appear in any other probabilistic automaton.Two self-loop transitions are deterministic (Dirac) and are labeled with action left andright , respectively; the third self-loop transition is probabilistic, where one edge leads to theoccurrence of action pleft with probability 1=2 and the other edge leads to the occurrence

c 0

left

pleft 1/2 1/2 pright

rightFig. 5. The principal context.of action pright with probability 1=2 (see Figure 5). The principal context is not a simpleprobabilistic automaton; however, since it does not have any action in common with anyother probabilistic automaton, the parallel composition operator can be extended trivially:no synchronization is allowed. The main theorem is the following.Theorem12. M1 vDC M2 i� M1kCP vD M2kCP . utAs a corollary we obtain an alternative characterization of the trace distribution precongru-ence. Let a principal trace distribution of a probabilistic automatonM be a trace distributionof MkCP , and denote by ptdistrs(M) the set tdistrs(MkCP).Corollary 13. M1 vDC M2 i� ext (M1) = ext(M2) and ptdistrs(M1) � ptdistrs(M2). utWe give a high level sketch of the proof of Theorem 12, which appears in [19]. The proofis structured in several steps where a generic distinguishing context C is transformed intoa simpler distinguishing context C 0 till the point where the principal context is obtained.This shows the \if" part of the theorem. To show the \only if" part the principal contextis transformed into a simple probabilistic automaton. The transformation steps are thefollowing.1. Ensure that C does not have any action in common with M1 and M2;2. Ensure that C does not have any cycles in its transition relation;3. Ensure that the branching structure of C is at most countable;4. Ensure that the branching structure of C is at most binary;5. Ensure that the probabilistic transitions of C lead to binary and uniform distributions;6. Ensure that each action of C is external and appears exactly in one edge of the transitionrelation of C;7. Ensure that each state of C enables two deterministic transitions and one probabilistictransition with a uniform binary distribution;8. Rename all the actions of the context of 7 according to the action names of the principalcontext and then collapse all the states of the new context into a unique state, leadingto the principal context.We give an example of the �rst transformation. Let C be a distinguishing context for M1and M2. Build C0 as follows: for each each action a in common with M1 and M2, replace awith two new actions a1; a2, and replace each transition (c; a;P) of C with two transitions(c; a1; c0) and (c0; a2;P), where c0 denotes a new state that is used only for the transition(c; a;P). Denote c0 by c(c;a;P).Let D be a trace distribution ofM1kC that is not a trace distribution ofM2kC. Considera probabilistic execution H1 of M1kC such that tdistr(H1) = D, and consider the scheduler

that leads toH1. Apply toM1kC 0 the same scheduler with the followingmodi�cation: when-ever a transition ((s1; c); a;P1
 P) is scheduled in M1kC, schedule ((s1; c); a1;D((s1; c0))),where c0 is c(c;a;P), followed by ((s1; c0); a;P1
 D(c0)), and, for each s01 2
1, followed by((s01; c0); a2;D(s01)
P). Denote the resulting probabilistic execution by H01 and the resultingtrace distribution by D0. Then, we prove that D0 � acts(M1kC) = D.Suppose by contradiction that it is possible to obtain D0 from M2kC 0, and let H 02 be aprobabilistic execution ofM2kC0 such that tdistr(H 02) = D0. Then, we show that it is possibleto build a probabilistic execution H2 of M2kC such that tdistr(H2) = D. The constructionof H2 is not simple since we need to handle all the internal actions of M2 that occur in H02between each pair of actions of the form a1; a2.6 Probabilistic Forward SimulationsThe second main result of this paper is that the simulation method of [15] extends to theprobabilistic framework. Thus, the trace distribution precongruence relation can be veri�edby de�ning a relation between the states of two probabilistic automata and checking somesimple local conditions. This is one of the major veri�cation methods for ordinary automata.We start with the coarsest simulation relation of [20], and we show that it distinguishestoo much. Then, we introduce our probabilistic forward simulation relations and we showtheir soundness for the trace distribution precongruence.A weak probabilistic simulation between two simple probabilistic automata M1 and M2is a relation R� states(M1) � states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each pair of states s1 R s2 and each transition s1 a�! P1 of M1, there exists a weakcombined transition s2 a�ext(M2)=)C P2 of M2 such that P1 vR P2,where vR is the lifting of R to probability spaces [10, 20]. That is, P1 vR P2 i� there existsa function w :
1 �
2 ! [0; 1] such that1. for each s1 2
1, Ps22
2 w(s1; s2) = P1[s1],2. for each s2 2
2, Ps12
1 w(s1; s2) = P2[s2],3. for each (s1; s2) 2
1 �
2, if w(s1; s2) > 0 then s1 R s2.The idea behind the de�nition of vR is that each state of
1 must be represented by somestates of
2, and similarly, each state of
2 must represent one or more states of
1.Example 4. Weak probabilistic simulations are sound for the trace distribution precongru-ence (cf. Theorem 16); however, they are too strong.Consider the two probabilistic automata of Figure 6. The probabilistic automaton M2,which chooses internally one element out of four with probability 1=4 each, is implementedby the probabilistic automaton M1, which ips two fair coins to make the same choice(by \implement" we mean vD). However, the �rst transition of M1 cannot be simulatedby M2 since the probabilistic choice of M2 is not resolved completely yet in M1. Thissituation suggests a new preorder relation where a state ofM1 can be related to a probabilitydistribution over states of M2. The informal idea behind a relation s1 R P2 is that s1represents an intermediate stage of M1 in reaching the distribution P2. For example, inFigure 6 state s1 would be related to a uniform distribution P over states s03 and s04 (P =U(s03; s04)), meaning that s1 is an intermediate stage of M1 in reaching the distribution P.It is also possible to create examples where the relationship between s and P does notmean simply that s is an intermediate stage ofM1 in reaching the distribution P, but rather

s0

s1

s2

s6

s5

s4

s3 s

s

s

s

7

8

9

10

a

b

c

d

τ

τ

τ

τ

τ

τ

1/2

1/2

1/2

1/2

1/2

1/2

M1 M2

7

8

9

10

a

b

c

d

τ

τ

τ

τ

1/4

1/4

1/4

1/4

0

3

4

5

6

s

s

s

s

s

s

s

s

s

’

’

’

’ ’

’

’

’

’Fig. 6. Implementation of a probabilistic transition with several probabilistic transitions.
s0

s1

s2

s6

s5

s3

s4

τ

τ

τ

τ

τ

τ

τ

τ

s

s

s

s

s

s

s

s

7

8

9

10

11

12

13

14

s

sb

s

s

s

s

s

s

15

16

17

18

19

20

21

22

a

c

d

e

f

g

h

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

M2M1

τ

τ

τ

τ

1/4

1/4

1/4

1/4

l

m

l

l

l

m

m

m

0

3

4

5

6

1/2
1/2

1/2
1/2

1/2
1/2

1/2
1/2

s

s

s

s

s

7

8

9

10

11

12

13

14

b

15

16

17

18

19

20

21

22

a

c

d

e

f

g

h

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

τ

τ

1/2

1/2

1/2

1/2

1/2

1/2

l

l

m

m

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’Fig. 7. A more sophisticated implementation.that s is an intermediate stage in reaching a probability distribution that can be reachedfrom P. Consider the two probabilistic automata of Figure 7. Although not evident at themoment,M1 and M2 are in the trace distribution precongruence relation, i.e.,M1 vDC M2.Following the same idea as for the example of Figure 6, state s1 is related to U(s03; s04).However, s1 is not an intermediate stage of M1 in reaching U(s03; s04), since s1 enables atransition labeled with an external action l, while in M2 no external action occurs beforereaching U(s03; s04). Rather, from s03 and s04 there are two transitions labeled with l, and thusthe only way to simulate the transition s1 l�! U(s3; s4) from U(s03; s04) is to perform the twotransitions labeled with l, which lead to the distribution U(s07; s08; s09; s010). Now the questionis the following: in what sense does U(s07; s08; s09; s010) represent U(s3; s4)? The �rst observationis that s3 can be seen as an intermediate stage in reaching U(s07; s08), and that s4 can beseen as an intermediate stage in reaching U(s09; s010). Thus, s3 is related to U(s07; s08) and s4is related to U(s09; s010). The second observation is that U(s07; s08; s09; s010) can be expressedas 1=2U(s07; s08) + 1=2U(s09; s010). Thus, U(s07; s08; s09; s010) can be seen as a combination of twoprobability spaces, each one representing an element of U(s3; s4). This recalls the lifting ofa relation that we introduced at the beginning of this section. utDe�nition14. A probabilistic forward simulation between two simple probabilistic au-tomata M1 and M2 is a relation R� states(M1) � Probs(states(M2)) such that1. each start state of M1 is related to at least one Dirac distribution over a start state ofM2;

2. for each s R P 0, if s a�! P1, then(a) for each s0 2
0 there exists a probability space Ps0 such that s0 a�ext(M2)=)C Ps0 , and(b) there exists a probability space P 02 of Probs(Probs(states(M2))) satisfying P1 vR P 02,such that Ps02
0 P 0[s0]Ps0 =PP2
02 P 02[P]P.We write M1 vFS M2 whenever ext(M1) = ext(M2) and there is a forward simulation fromM1 to M2. utExample 5. The probabilistic forward simulation for the probabilistic automataM1 and M2of Figure 7 is the following: s0 is related to U(s00); each state si, i � 7, is related to D(s0i);each state si, 1 � i � 6, is related to U(s02i+1; s02i+2). It is an easy exercise to check thatthis relation is a probabilistic forward simulation. Observe also that there is no probabilisticforward simulation from M2 to M1. Informally, s03 cannot be simulated by M1, since theonly candidate state to be related to s01 is s1, and s1 does not contain all the informationcontained in s03. The formal way to see that there is no probabilistic forward simulation fromM2 to M1 is to observe that M2 and M1 are not in the trace distribution precongruencerelation and then use the fact that probabilistic forward simulations are sound for the tracedistribution precongruence relation (cf. Theorem 16). In M2kCP it is possible force actionleft to be scheduled exactly when M2 is in s03, and thus it is possible to create a correlationbetween action left and actions a and b; in M1kCP such a correlation cannot be createdsince action left must be scheduled before action l. utProposition15. vFS is a preorder and is preserved by parallel composition. utThe proof that vFS is preserved by the parallel composition operator is standard. The proofthat vFS is transitive is much more complicated and is based on a probabilistic version ofthe execution correspondence lemma of [6]. The complete proofs can be found in [19].Theorem16. Let M1 vFS M2. Then M1 vDC M2. utThe proof of Theorem 16, which appears in [19], is carried out in two steps. Let R be aprobabilistic forward simulation fromM1 to M2. Given a probabilistic execution H1 of M1,we build a probabilistic execution H2 of M2 that represents H1 via R. The structure thatdescribes how H2 represents H1 is called an execution correspondence structure. Then, weshow that if H2 represents H1, then H1 and H2 have the same trace distribution. Thus,M1 vFS M2 implies M1 vD M2. Since from Proposition 15 vFS is a precongruence, theproof of Theorem 16 is completed.7 Concluding RemarksWe have de�ned a trace-based semantics for probabilistic automata that is preserved bythe parallel composition operator, and we have extended the simulation method of [15]to the new framework. The main object of observation is a trace distribution, which is aprobability distribution over traces. The compositionality result is obtained by studying thetrace distributions of a system composed in parallel with an elementary context called theprincipal context. The new simulation relations have the interesting property that states arerelated to probability distributions over states.In further work we plan to investigate on completeness results concerning probabilisticforward simulations and the trace distribution precongruence. We also plan to to apply thesame methodology outlined in this paper to de�ne a failure-based semantics for probabilistic

automata. Finally, it is desirable to study further what can be done with general probabilisticautomata and how to extend the work of this paper to models that include real-time or hybridbehavior. A trace-based semantics for probabilistic timed automata is studied in [19].Acknowledgments. I would like to thank Nancy Lynch for useful discussion that lead tothe de�nition of probabilistic forward simulations.References1. B. Alpern and F.B. Schneider. De�ning liveness. Information Processing Letters, 21(4), 1985.2. J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory. Journal ofAlgorithms, 15(1):441{460, September 1990.3. M. Ben-Or. Another advantage of free choice: completely asynchronous agreement protocols.In Proceedings of the 2nd Annual ACM PODC, 1983.4. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential pro-cesses. Journal of the ACM, 31(3):560{599, 1984.5. I. Christo�. Testing Equivalences for Probabilistic Processes. PhD thesis, Department of Com-puter Science, Uppsala University, 1990.6. R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in timed and untimedsystems. In Proceedings 21th ICALP, Jerusalem, LNCS 820, 1994. A full version appears asMIT Technical Report number MIT/LCS/TR-587.7. R.J. van Glabbeek, S.A. Smolka, B. Ste�en, and C.M.N. Tofts. Reactive, generative, and strat-i�ed models of probabilistic processes. In Proceedings 5th Annual Symposium on Logic inComputer Science, Philadelphia, USA, pages 130{141. IEEE Computer Society Press, 1990.8. H. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 of Real-Time Safety Critical Systems. Elsevier, 1994.9. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.10. B. Jonsson and K.G. Larsen. Speci�cation and re�nement of probabilistic processes. In Pro-ceedings of the 6th IEEE Symposium on Logic in Computer Science, pages 266{277, July 1991.11. B. Jonsson and J. Parrow, editors. Proceedings of CONCUR 94, LNCS 836, 1994.12. C.C. Jou and S.A. Smolka. Equivalences, congruences, and complete axiomatizations for prob-abilistic processes. In Proceedings of CONCUR 90, LNCS 458, pages 367{383, 1990.13. K.G. Larsen and A. Skou. Compositional veri�cation of probabilistic processes. In Proceedingsof CONCUR 92 LNCS 630, pages 456{471, 1992.14. N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed algo-rithms. In Proceedings of the 13th Annual ACM PODC, pages 314{323, 1994.15. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations for timing-based systems.In J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozenberg, editors, Proceedings of theREX Workshop \Real-Time: Theory in Practice", LNCS 600, pages 397{446, 1991.16. G.D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,Computer science Department, Aarhus University, 1981.17. A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomized distributedalgorithms. In Proceedings of the 14th Annual ACM PODC, 1995.18. M.O. Rabin. Probabilistic automata. Information and Control, 6:230{245, 1963.19. R. Segala. Modeling and Veri�cation of Randomized Distributed Real-Time Systems. PhDthesis, MIT, Dept. of Electrical Engineering and Computer Science, 1995.20. R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes. In Jonssonand Parrow [11], pages 481{496.21. K. Seidel. Probabilistic communicating processes. Technical Report PRG-102, Ph.D. Thesis,Programming Research Group, Oxford University Computing Laboratory, 1992.22. M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs. In Pro-ceedings of 26th IEEE Symposium on Foundations of Computer Science, pages 327{338, 1985.23. S.H.Wu, S. Smolka, and E.W. Stark. Composition and behaviors of probabilistic I/O automata.In Jonsson and Parrow [11].

