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Abstract. Several probabilistic simulation relations for probabilistic systems are
defined and evaluated according to two criteria: compositionality and preserva-
tion of “interesting” properties. Here, the interesting properties of a system are
identified with those that are expressible in an untimed version of the Timed
Probabilistic concurrent Computation Tree Logic (TPCTL) of Hansson. The def-
initions are made, and the evaluations carried out, in terms of a general labeled
transition system model for concurrent probabilistic computation. The results
cover weak simulations, which abstract from internal computation, as well as
strong simulations, which do not.

1 Introduction

Randomization has been shown to be a useful tool for the solution of problems in dis-
tributed systems [1,2,12]. In order to support reasoning about probabilistic distributed
systems, many researchers have recently focused on the study of models and methods
for the analysis of such systems [3,5,7,19-21]. The general approach that is taken is to
extend to the probabilistic setting those models and methods that have already proved
successful for non-probabilistic distributed systems.

In the non-probabilistic setting, labeled transition systems have become well accepted
as a basis for formal specification and verification of concurrent and distributed systems.
(See, e.g., [16,17].) A transition system is an abstract machine that represents either
an implementation (i.e., a physical device or software system), or a specification (i.e., a
description of the required properties of an implementation). In order to extend labeled
transition systems to the probabilistic setting, the main addition that is needed is some
mechanism for representing probabilistic choices as well as nondeterministic choices [7,
19,21].

In the non-probabilistic setting, there are two principal methods that are used for
analyzing labeled transition systems: temporal logic (e.g. [18]), which is used to establish
that a system satisfies certain properties, and equivalence or preorder relations (e.g.,
[8,16,17]), which are used to establish that one system “implements” another, according
to some notion of implementation. Each equivalence or preorder preserves some of the
properties of a system, and thus the use of a relation as a notion of implementation
means that we are interested only in the properties that such a relation preserves.

Among the equivalences and preorders that have proved most useful are the class of
simulation relations, which establish step-by-step correspondences between two systems.
Bisimulation relations are two-directional relations that have proved fundamental in the
process algebraic setting. Unidirectional simulations, such as refinement mappings and
forward simulations, have turned out to be quite successful in formal verification of non-
probabilistic distributed systems [10, 15, 16]. Thus, it is highly desirable to extend the
use of simulations to the probabilistic setting.
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In this paper, we define several extensions of the classical bisimulation and simu-
lation relations (both in their strong and weak versions), to the probabilistic setting.
There are many possible extensions that could be made; it is important to evaluate the
various possibilities according to objective criteria. We use two criteria: compositionality
and preservation of “interesting” properties. The first requirement, compositionality, is
widely accepted since it forms the basis of many modular verification techniques.

To make sense of the second requirement, it 1s necessary to be specific about what
is meant by an “interesting” property. Here, we identify the interesting properties of
a system with those that are expressible in an untimed version (PCTL) of the Timed
Probabilistic concurrent Computation Tree Logic (TPCTL) of Hansson [7]; as discussed
in [7], this logic is sufficiently powerful to represent most of the properties of practical
interest. Thus, our second evaluation criterion is based on the types of PCTL formulas
that a relation preserves. For the weak relations, 1.e., the ones that abstract from internal
computation, we use a new version of PCTL, called WPCTL, which abstracts from
internal computation as well.

We define and evaluate our simulation relations in terms of a new general labeled
transition system model for concurrent probabilistic computation, which borrows ideas
from [7,21]. The model distinguishes between probabilistic and nondeterministic choices
but, unlike the Concurrent Markov Chains of [7,21], does not distinguish between prob-
abilistic and nondeterministic states. A probabilistic automaton is a labeled transition
system whose transition relation is a set of pairs (s, (£2,F, P)), where (£2,F,P) is a
discrete? probability distribution over (action,state) pairs and a special symbol &, repre-
senting deadlock. If 4 1s not an element of {2 and all the pairs of {2 have the same action,
then a step is called simple and can be denoted by s = (£, F’, P'), where (£, F', P")
is a discrete probability distribution over states. The separation between nondeterminis-
tic and probabilistic behavior is achieved by means of adversaries (or schedulers), that,
similar to [7,19,21], choose a next step to schedule based on the past history of the
automaton. In our case, differently from [7,19,21], we allow an adversary to choose the
next step randomly. Indeed, an external environment that provides some input essen-
tially behaves like a randomized adversary.

Our first major result is that randomized adversaries do not change the distinguishing
power of PCTL and WPCTL. Intuitively, the main reason for this result is that PCTL
and WPCTL are concerned with probability bounds rather than exact probabilities.

We then redefine the sirong bisimulation relation of [7,13] in terms of our model,
and also define a strong simulation relation that generalizes the simulation relation of
[11], strengthening it a bit so that some liveness is preserved. We show that strong simu-
lation preserves PCTL formulas without negation and existential quantification, and we
show that the kernel of strong simulation preserves PCTL formulas without existential
quantification. Next, we generalize the strong relations by making them insensitive to
probabilistic combination of steps, 1.e., by allowing probabilistic combination of several
transitions in order to simulate a single transition. The motivation for this generaliza-
tion is that the combination of transitions corresponds to the ability of an adversary
to choose the next step probabilistically. Our second main result is that the new rela-
tions, called strong probabilistic bistmulation and strong probabilistic stmulation, are still
compositional and preserve PCTL formulas and PCTL formulas without negation and
existential quantification, respectively.

Similar to the strong case, we define new relations that abstract from internal compu-
tation and we show that they preserve WPCTL. However, the straightforward generaliza-
tion of the strong probabilistic relations, although compositional, does not guarantee that

2 Discreteness is needed because of measurability issues.



WPCTL is preserved. For this reason we introduce other two relations, called branch-
g probabilistic bisimulation and branching probabilistic simulation, which impose new
restrictions similar to those of branching bisimulation [6]. Our third main result is that
branching probabilistic bisimulation and branching probabilistic simulation are composi-
tional and preserve PCTL formulas and PCTL formulas without negation and existential
quantification, respectively, up to a condition about divergences.

We conclude with a discussion about some related work in [11]. In particular we show
how the idea of refinement of [11] applies to our framework. We define a refinement
preorder in the style of [11] for each simulation relation of this paper, and, surprisingly,
we show that none of the new refinements is compositional. However, the counterexample
that we present gives some insight for possible solutions to the problem.

The rest of the paper is organized as follows. Section 2 defines the standard automata
of non-probabilistic systems; Section 3 introduces our probabilistic model; Section 4 in-
troduces PCTL, defines its semantics in terms of our model, and shows that the distin-
guishing power of PCTL does not change by using randomized adversaries; Sections b
and 6 study the strong and weak relations, respectively, on our probabilistic model, and
show how they preserve PCTL formulas; Section 7 contains some concluding remarks
concerning the refinement-based preorders of [11] and further work.

2 Automata

An automaton A consists of four components: a set states(A) of states, a nonempty
set start(A) C states(A) of start states, an action signature sig(A) = (ext(A4), int(A))
where ext(A) and int(A4) are disjoint sets of external and internal actions, respectively,
and a transition relation steps(A) C states(A) x acts(A) x states(A), where acts(A)
denotes the set ext(A) U int(A) of actions. Thus, an automaton is a state machine with
labeled steps (also called transitions). Its action signature describes the interface with
the external environment by specifying which actions model events that are visible from
the external environment and which ones model internal events.

An execution fragment « of an automaton A is a (finite or infinite) sequence of
alternating states and actions starting with a state and, if the execution fragment is
finite, ending in a state, & = spaisiaszss -+, where each (s;,a;41,841) € steps(4).
Denote by fstate(«) the first state of ov and, if «v is finite, denote by Istate(«) the last state
of . Furthermore, denote by frag”(A) and frag(A) the sets of finite and all execution
fragments of A, respectively. An ezecution is an execution fragment whose first state
is a start state. Denote by exec*(A) and exec(A) the sets of finite and all execution of
A, respectively. A state s of A is reachable if there exists a finite execution that ends
in s. A finite execution fragment ay = sga181 -+ -ans, of A and an execution fragment
a9 = SpUpy15n41 - of A can be concatenated. In this case the concatenation, written
a1~aa, is the execution fragment spa181 -« anSpny15n41 - - -~ An execution fragment
aq of A is a prefiz of an execution fragment as of A, written a; < as, if either ay = a9
or «a is finite and there exists an execution fragment o} of A such that as = a1~

3 The Basic Probabilistic Model

3.1 Probabilistic Automata

Definition1. A probability space is a triplet (£2, F, P) where (2 is a set, F is a collection
of subsets of {2 that is closed under complement and countable union and such that



2 € F, and P is a function from F to [0, 1] such that P[£2] = 1 and for any collection
{C;}; of at most countably many pairwise disjoint elements of F, P[U;C;] = >, P[C].

A probability space (£2, F, P) is discrete® if F = 2 and for each C C 2, P[C] =
> wec PHz}]. It is immediate to verify that for every discrete probability space there
are at most countably many points with a positive probability measure.

The Dirac distribution over an element #, denoted by D(z), is the probability space
with a unique element .

The product of two discrete probability spaces (£21, F1, P1) and (22, F3, P2), denoted
by (§21, F1, P1) @ (§22, Fa, Py), is the discrete probability space (£2; x £25,2%1%%2 p)
where P[(z1,%2)] = Pi[x1]Pa[x2] for each (x1,22) € £21 X §25. O

Definition2. A probabilistic automaton M is an automaton whose transition relation
steps(M) is a subset of states(M) x Probs((acts(M ) x states(M))U{é}), where Probs(X)
is the set of discrete probability spaces (§2, F, P) where £2 C X.

A probabilistic automaton M is simple if for each step (s, (£2,F, P)) € steps(M)
there is an action a € acts(M) such that £2 C {a} x states(M). In such a case a step
can alternatively be represented as (s, a, (£2, F, P)) where (£2, F, P) € Probs(states(M)),
and it is called a simple step with action a.

A probabilistic automaton is fully probabilistic if it has a unique start state and from
each state there is at most one step enabled. a

Thus a probabilistic automaton differs from an automaton in that the action and the next
state of a given transition are chosen probabilistically. The symbol é that can appear in
the sample space of each transition represents those situations where a system deadlocks.
Thus, for example, it is possible that from a state s a probabilistic automaton performs
some action with probability p and deadlocks with probability 1 — p.

A simple probabilistic automaton does not allow any kind of probabilistic choice on
actions. Once a step is chosen, then the next action is determined and the next state is
given by a random distribution. Several systems in practice can be described as simple
probabilistic automata; indeed our analysis will focus on simple probabilistic automata
and we will use general probabilistic automata only for the analysis of probabilistic
schedulers.

A fully probabilistic automaton is a probabilistic automaton without nondetermin-
ism; at each point only one step can be chosen..

The generative model of probabilistic processes of [5] is a special case of a fully prob-
abilistic automaton; simple probabilistic automata are partially captured by the reactive
model of [5] in the sense that the reactive model assumes some form of nondeterminism
between different actions. However, the reactive model does not allow nondeterministic
choices between steps involving the same action. By restricting simple probabilistic au-
tomata to have finitely many states, we obtain objects with a structure similar to that
of the Concurrent Labeled Markov Chains of [7]; however, in our model we do not need
to distinguish between nondeterministic and probabilistic states. In our model nonde-
terminism is obtained by means of the structure of the transition relation. This allows
us to retain most of the traditional notation that is used for automata.

Definition3. Given a probabilistic automaton M, its nondeterministic reduction N (M)
is the automaton A obtained from M by transforming each transition (s, (£2, F, P)) into
the set of transitions (s, a, s’) where (a,s’) € £2. In other words N'(M) is obtained from
M by transforming all the probabilistic behavior into nondeterministic behavior. a

3 If we accept the Axiom of Choice, then the requirement F = 2% is sufficient.



The execution fragments and executions of a probabilistic automaton M are the exe-
cution fragments and executions of its nondeterministic reduction A (M ). However, for
the study of the probabilistic behavior of a probabilistic automaton, some more de-
tailed structure is needed. Such a structure, which we call an ezecution automaton, is
introduced in Section 3.2.

The next definition shows how it is possible to combine several steps of a probabilistic
automaton into a new one. It plays a fundamental role for the definition of probabilistic
adversaries and the definition of our probabilistic simulations.

Definition4. Given a probabilistic automaton M, a finite or countable set {(§2;, F;, P;)};
of probability distributions of Probs((acts(M) x states(M))U{é}), and a positive weight
pi for each i such that >, p; <1, the combination >, pi(£2;, F;, P;) of the distributions
{(£2;, F;, P;)} is the probability space (§2, F, P) such that

0= U; §2; if Zz’pi:l
T Ui U étif Zipi <1
- F=27

— for each (a,s) € 2, P[(a,s)] =37, )eq, pilil(a, s)]
if 6 € §2, then P[6] = (1 =3, pi) + 2 scp, P Pil6].

A pair (s, (2, F, P)) is a combined step of M if there exists a finite or countable family
of steps {(s, (£2;, Fi, P;))}: and a set of positive weights {p; }; with >, p; < 1, such that
(82, F,P)=>,pi(§4, Fs, Py) O

For notational convenience we write s — (2, F, P) whenever there is a simple step
(5,a,(2,F,P))in M, and we write s ——p (§2,F, P) whenever there is a simple com-
bined step (s,a,(§2,F, P)) in M. We extend the arrow notation to weak arrows (==
and ==p) to state that (£2, F, P) is reached through a sequence of steps, some of which
are internal. Formally, s = (2, F, P) (s ==p (£2, F, P)) iff there exists a (combined)
step (s, (§2, F', P")) such that (£2,F,P) = Z(b,s')enf P(b, s")(2b,51), Fro,s1y, Po,sry),
where, for each (b,s") € §2', if b = a then s’ = (24,1, Fo,s7), P,sn) (8 =P
(203,51, Fn,s1), Pv,s7))), and if b # a then b is internal and s’ = (20,51), Fo,s1y5 Po,s1))
(s ==p (203,51y, F,s), Py,s1y))- The relation = (==p) differs from == (==p) in that
it is also possible not to move from s, i.e., it is possible that s = D(s) (s =p D(s)).

We now turn to the parallel composition operator for simple probabilistic automata,
which is defined in the CSP style [9]. As outlined in [7], the definition of a parallel
composition operator for general probabilistic automata is problematic. We will address
the issue of a general parallel composition operator in further work.

Definition 5. Two simple probabilistic automata M7, Ms are compatible if

1. int(My) N acts(My) , and
M,y

=0
2. int(Ma2) N acts(My) = 0.

The parallel composition M || Mz of compatible simple probabilistic automata My, M
is the simple probabilistic automaton M such that

states(M) = states(My) x states(Ma)
start(M) = start(My) x start(Ma)
ext(M) = ext(My) U ext(Ma)

int(M) = int(My) U int(Ms)

I



5. ((s1,82),a,(82,F, P)) € steps(M) ift (2, F,P)= ({21, F1, P1) ® ({22, Fa, P2), where
® denotes the product of probability spaces, such that
(a) if a € acts(My) then (s1,a, (21, F1, P1)) € steps(My), else (1, F1, P1) = D(s1),
and
(b) if a € acts(Msz) then (s2, a, (£22, Fa, P2)) € steps(Ma), else (£22, Fa, P2) = D(s2).
O

3.2 Schedulers and Adversaries

Several papers in the literature use schedulers, sometimes viewed as adversarial entities,
to resolve the nondeterminism in probabilistic systems [4,7,14,21]. An adversary is
an object that schedules the next step based on the past history of a probabilistic
automaton.

Definition6. An adversary for a probabilistic automaton M is a function A taking a
finite execution fragment o of M and returning a probability distribution over L and a
subset of the steps enabled from Istate(«). Formally, A : frag®(M) — Probs(steps(M)U
{L}), such that if A(e) = (£2,F, P) and (s, (2, F', P")) € 2, then s = Istate(a). An
adversary 1s deterministic if it returns only Dirac distributions, 1.e., the next step is
chosen deterministically. Denote the set of adversaries and deterministic adversaries for
a probabilistic automaton M by Advs(M) and DAdvs(M ), respectively. a

The symbol L in Definition 6 1s used to express the fact that an adversary is allowed
not to schedule anyone at any point. Such an option is useful when some specific actions
are meant to model input from the external environment.

Definition7. An adversary schema for a probabilistic automaton M, denoted by Advs,
is a subset of Advs(M). If Advs is a proper subset of Advs(M) then Advs is a restricted
adversary schema, otherwise Advs is a full adversary schema. a

Adversary schemas are used to reduce the power of a class of adversaries. Note, for
example, that the set of deterministic adversaries DAdvs(M ) is an example of a restricted
adversary schema whenever M is not fully probabilistic. Throughout the rest of this
paper we denote by Probabilistic(M) the adversary schema where each adversary can
choose L on input « iff there is no step enabled in M from Istate(«), and we denote by
Deterministic(M) the set of deterministic adversaries of Probabilistic(M).

The next step is to define what it means for a probabilistic automaton to run under
the control of an adversary. Namely, suppose that M has already performed some exe-
cution fragment « and that an adversary A starts resolving the nondeterminism at that
point. The result of the interaction between M and A is a fully probabilistic automaton,
called an execution automaton, where at each point the only step enabled is the step due
to the choice of A. A similar construction appears in [21]. Unfortunately, the definition
of an execution automaton is not simple since each state contains the past history of M.

Definition8. An ezeculion automaton H of a probabilistic automaton M is a fully
probabilistic automaton such that

1. states(H) C frag* (M).

2. for each step (e, (£2, F, P)) of H there is a combined step (Istate(a), (£2/, F', P")) of
M, called the corresponding combined step, such that £ = {(a, s)|(a, vas) € 2},
F' =27 and P'[(a,s)] = P[(a,aas)] for each (a,s) € 2. If ¢ = Istate(e), then
denote (£2,F, P) by (£2,, F4, Py).



3. each state of I is reachable, i.e., for each o € states(H) there exists an execution of
N (H) leading to state c. O

Now we can define formally what it means for a probabilistic automaton M to run under
the control of an adversary A.

Definition9. Given a probabilistic automaton M, an adversary A € Advs(M), and an
execution fragment « € frag™ (M), the execution H(M, A, o) of M under adversary A
with starting fragment « is the execution automaton of M whose start state is @ and such
that for each state ¢ there is a step (¢, (2, F, P)) € steps(H(M, A, «)) iff A(g) # D(L)
and the corresponding combined step of (¢, (£2,F, P)) is obtained from A(q). a

3.3 Events

We define a probability space (25, Fir, Prr) for each execution automaton H, so that it
is possible to analyze the probabilistic behavior of an automaton once the nondetermin-
ism is removed. The sample space 2 is the set of maximal executions of H, where a
maximal execution of H is either infinite or finite and not extendible. Specific kinds of
not extendible executions are finite executions « whose last state enables a step where §
has a positive probability. Those executions are denoted by «é. Note that an execution
of H can be uniquely denoted by the corresponding execution fragment of M. Thus, to
ease the notation, we define an operator a7 that takes an execution fragment of M and
gives back the corresponding execution of H, and «| that takes an execution of H and
gives back the corresponding execution fragment of M.

For each finite execution « of H, possibly extended with 8, let R, the rectangle with
prefix «, be the set {/ € 25 | @ < @'}, and let Ry be the class of rectangles for H. The
probability pgr(Ry) of the rectangle R, is the product of the probabilities associated with
each edge that generates o in H. This is well defined since the steps of H are described
by discrete probability distributions. Formally, if « = qoa1q1 - - - ¢n_1a, ¢, where each ¢;
is an execution fragment of M, then pp(Ra) = Pul(ar, ¢1)] - Py, [(an, q0)]. If o =

A

0141 - gn—-10nqnb, then pp(Ro) = Ppllar,q1)] - Py . [(@n, ¢n)] Py, [6]. Standard
measure theory results assert that there is a unique measure g that extends ppg to
the g-algebra o(R ) generated by Ry. Fp is then obtained from ¢(Rp) by extending
each event with any set of executions taken from O-probability rectangles, and Py is
obtained by extending pg to Fg in the obvious way. With this definition it is possible
to show that any union of rectangles (even uncountable) is measurable. In fact, at most
countably many rectangles have a positive measure.

In our analysis of probabilistic automata we are not interested in events for single
execution automata. Whenever we want to express a property, we want to express it
relative to any execution automaton. This is the purpose of event schemas.

Definition10. An event schema e for a probabilistic automaton M is a function that
assoclates an event of Fgy with each execution automaton H of M. ad

4 Probabilistic Computation Tree Logic

In this section we present the logic that is used for our analysis, and we give it a se-
mantics based on our model. It is a simplification of the Timed Probabilistic concurrent
Computation Tree Logic (TPCTL) of [7], where we do not consider time issues. Then, we
show that randomized adversaries do not change the distinguishing power of the logic.



Consider a set of actions ranged over by a. The syntax of PCTL formulas is defined
as follows:

fomal=flANLITAf | fL BEUsp fo |l fr AUsp fo | fL EUsp fo | L AUsp fo

Informally, the atomic formula a means that action a is the only one that can occur
during the first step of a probabilistic automaton; the formula JAf means that f is
valid for a probabilistic automaton M after making the first transition invisible; the
formula fi EU», f> means that there exists an adversary such that the probability of
f2 eventually holding and f; holding till f2 holds is at least p; the formula f; AU, fo
means that the same property as above is valid for each adversary. For the formal
semantics of PCTL we need two auxiliary operators on probabilistic automata.

Let M be a probabilistic automaton, a an action of M, and s a state of M. Then
M](a, s)]is a probabilistic automaton obtained from M by adding a new state s, adding a
new step (s, a, D(s)), and making s’ into the unique start state. In other words M|(a, s)]
forces M to start with action a and then reach state s.

Let M be a probabilistic automaton. Then Af is obtained from M by adding a
duplicate of each start state, by making the duplicate states into the new start states,
and, for each step s —— (§2,F, P) of M, by adding a step s’ —— (2, F, P) from the
duplicate s’ of s, where 7 is an internal action that cannot occur in any PCTL formula.
In other words ]\_j makes sure that the first step of M is invisible.

Let M be a probabilistic automaton, and let o be an execution of M. Let I denote
either > or >. Then we define the satisfaction relations M | f and « =3 ¢ as follows

MEa iff each step leaving from a start state is a simple step with action a,

M —f iff not M [ f,

M':fl/\fZ iﬁM':flandM':fz,

abEym LU [ iff there exists n > 0 such that o = spaysy -+ - apsp~o/,
Ml(an, sn)] |E fa, and for each i,1 < i< n, M[(a;, s;)] E fi1,

MEJAF  ifME T,

M = fi EUgp fo iff there exists an adversary A and a start state so such that
Prlesvp,(H)] dp, where H = H(M, A, sq), and ep, 75, (H) is
the set of executions o' of 2 such that o'| |Ear f1 U fo,

M = fi AU, fo iff for each adversary A and each start state s,
Prlesvp,(H)] dp, where H = H(M, A, sq), and ep, 75, (H) is
the set of executions o' of 2y such that o'| |Ear f1 U fo.

Note that for each execution automaton H the set ez, 77, (H) can be expressed as a union
of rectangles, and thus it is an element of Fpy. This guarantees that the semantics of
PCTL is well defined. In the definition above we did not mention explicitly what kind of
adversaries to consider for the validity of a formula. In [7] the adversaries are assumed to
be deterministic. However, the semantics does not change by adding randomization to
the adversaries. The intuitive justification of this claim is that if we are just interested in
upper and lower bounds to the probability of some event to happen, then any probabilis-
tic combination of events stays within the bounds. Moreover, deterministic adversaries
are sufficient to observe the bounds.

Theorem 11. For each probabilistic automaton M and each PCTL formula f, M = f
relative to Deterministic(M) iff M = f relative to Probabilistic(M).



Proof sketch. The proof is by induction on the structure of the formula f, and most of
it is simple routine checking. Two critical points are the following: if M |= fi EUg, fo
relative to randomized adversaries, then we need to make sure that there exists at least
a deterministic adversary that can be used to satisfy fi EUgp fo; if M = fi AUg, fo
relative to deterministic adversaries, then we need to make sure that no probabilistic
adversary would lead to a violation of f{ AUg, f2. In both cases the idea is to convert a
probabilistic adversary A for a probabilistic automaton M into a deterministic one such
that the probability of ef, 7, is increased (first case) or decreased (second case). O

We now show how to change the syntax and semantics of PCTL to abstract away from
internal computation. The new logic is denoted by WPCTL. The syntax of WPCTL is
the same as that of PCTL with the additional requirement that no internal action can
occur in a formula. For the semantics of WPCTL, there are three main changes.

MEa iff each weak step leaving from a start state is labeled with action a,
a =y fi U foiff there exists n > 0 such that o = spajsy -+ -a,s,~a,

ay is external, M[(an, sn)] E f2, and for each 4,1 <i < n,

if a; is external, then M[(a;, s;)] E f1,

MEJAf  iff MEf,

where ]\7 hides the first external steps of M, i.e., 1t is obtained from M by duplicating
all its states (and then removing the non-reachable ones at the end), by making the
duplicates of the old start states into the new start states, by reproducing all the internal
transitions in the duplicated states, and, for each external step (s, a,(£2,F,P)) of M,
by adding an internal step (s', 7, (§2, F, P)) from the duplicate s’ of s, where 7 is a new
internal action. Note that the satisfaction relation for an execution is defined solely in
terms of its external steps.

Theorem 12. For each probabilistic automaton M and each WPCTL formula f, M | f
relative to Deterministic(M) iff M = f relative to Probabilistic(M).

5 Strong Relations

In this section we analyze relations that are sensitive to internal computation. We formal-
ize the bisimulations of [7] (strong bisimulation) and the simulations of [11, 13] (strong
simulation) in our model, and we show that the kernel of strong simulation, which is
coarser than strong bisimulation, preserves PCTL formulas that do not contain £U5,.
We then introduce other two coarser relations that allow probabilistic combination of
steps and continue to preserve PCTL formulas without £/ 5, . For convenience, through-
out the rest of this paper we assume that no pair of probabilistic automata has any state
in common.

Definition13. Let R be an equivalence relation over a set X. Two probability spaces
(21, F1, P1) and (£29, Fa, P3) of Probs(X) are R-equivalent, written (£21,F1, P1) =r
(025, Fa, Pa), iff for each [x1]r € £21/R there exists an [z3]r € £22/R such that 1 R zo,
for each [#2]r € £22/R there exists an [z1]g € £21/R such that z2 R x1, and for each
[21]r € 21/R, [x2]r € £22/R such that @1 R 22, 310 afer1e 12 = 2venonpeayn el
In other words (§21,F1, P1) and (£22, Fa, P3) are R-equivalent if they assign the same
probability measure to each equivalence class of R. O



Definition14. A strong bisimulation between two simple probabilistic automata My, M»
is an equivalence relation R over states(My) U states(Ms) such that

1. each start state of M7 is related to at least one start state of M5, and vice versa;
2. for each s; R ss and each step s BN (1, F1, Py) of either My, M, there exists a
step S9 L (Qz,fz,Pz) of either Ml, M2 such that (Ql,fl,Pl) =R (Qz,fz,Pz).

We write My ~ My whenever acts(M;) = acts(Mz) and there is a strong bisimulation
between My and M. ad

Condition 2 of Definition 14 is stated in [7,13] in a different but equivalent way, i.e.,
for each equivalence class [z] of R, the probabilities of reaching [#] from s; and s, are
the same. The next definition is used to introduce strong simulations. It appears in a
similar form in [11]. Informally, (£21, F1, P1) Er (£22, F2, P2) means that there is a way
to split the probabilities of the states of £2; between the states of {29 and vice versa,
expressed by a weight function w, so that the relation R is preserved. In other words
the left probability space can be embedded into the right one up to R.

Definition15. Let RC X x Y be a relation between two set X, Y, and let (£21, Fy, P1)
and (22, Fa, P2) be two probability spaces of Probs(X) and Probs(Y'), respectively. Then
(1, F1, P1) and (§22, Fq, P2) are in relation Cr, written (£21,F1, P1) Cr (£22, Fa, Pa),
iff there exists a weight function w : X x Y — [0, 1] such that

1. for each x € X, Zer w(z,y) = P[],
2. foreach y €Y, " cx w(z,y) = Paly],
3. for each (z,y) € X x Y, if w(z,y) > 0 then z R y. O

Definition16. A strong simulation between two simple probabilistic automata My, Ms
is a relation RC states(My) x states(Ms) such that

1. each start state of M7 is related to at least one start state of Ms;
2. for each s1 R s3 and each step sy BN (1, F1, Py) of My, there exists a step ss LN
(Qz,fz, Pz) Of M2 SUCh that (Ql,fl, Pl) ER (Qz,fz, Pz)

. a a
3. for each s1 R sg, if s5 —, then s —.

We write My Egg M2 whenever acts(M;) = acts(Ms) and there is a strong simulation
between M7 and Ms. The kernel of strong simulation is denoted by =gg. ad

The third requirement in the definition of a strong simulation is used to guarantee
some minimum liveness requirements. It is fundamental for the preservation of PCTL
formulas; however it can be relaxed by requiring s; to enable some step whenever s,
enables some step.

Propositionl7. ~ and Cgs are compositional That s, for each My, M such that
acts(My) = acts(Mz), and for each Mz compatible with both My and Ma, if My ~ Mo,
then M1||M3 ~ M2||M3, and ZfM1 ESS Mz, then M1||M3 ESS M2||M3 O

Lemmal8. Let XY be two disjoint sets, R be an equivalence relation on X UY,
and let (20, F1, P1) and (£22, Fa, P2) be probability spaces of Probs(X) and Probs(Y),
respectively, such that ({1, F1, P1) =r ({22, Fa, P2). Then (£, F1, P1) CErs (22, Fa, Pa),
where R'=R NX x Y. O

Lemma 18 can be used to prove directly that bisimulation is finer than simulation. The
same observation applies to all the other pairs of relations that we define in this paper.



Theorem 19. Let My and My be two simple probabilistic automata, and let f be a PCTL
formula.

1. IfMl ~ Mz, then M1 ': f ZﬁMz ': f

2. If My Css Mo and f does not contain any occurrence of ~ and EUzp, then My |= f
implies My = f.

3. If My =ss Mo and f does not contain any occurrence of EUgyp, then My = f iff
Ms E f.

Proof sketch. The proofs are by induction on the structure of f, where the nontrivial
step is the analysis of fi AUg, f2. In this case it is enough to show that for each ex-
ecution automaton H; of M; there exists an execution automaton Ho of Ms such that
Pr,lesvs,(H2)] < Pr,les,up,(H1)]. The execution automaton Ho is built by reproduc-
ing the structure of H; via R. We also need to ensure that Hs is obtainable from some
adversary, and for this part we need Condition 3 of Definition 16. We do not need to
show that M5 can be generated by a deterministic adversary (indeed this is false in gen-
eral) because of Theorem 11. O

Erample 1. PCTL formulas with occurrences of KU 5, are not preserved in general by
=gg. Consider the two simple probabilistic automata below.

s
S0 0
/ \ al
/
s1 S2 51
b X bl X b b
/
3/4 3/4 3/4
S5 1/4 s¢ 3/ Ss7 S8 /1" 59 5’5 1/4 5/6 / 5/7
c c
S10 S11 S12 ; ’
S10 S11

The two automata are strong simulation equivalent by matching each s; with s; and
by matching ss, ss, sg, 512 to s/, s, sk, s\, respectively. However, the right automaton
satisfies true AUy (a A (true EUsq/5 ¢)), whereas the left automaton does not. O

FEzample 2. Consider the two probabilistic automata

/ a / a /
s s s
11/2 0 17471
a a
s a s a s
11/2 0 173 1 / \
4 g sh 172 a a 3/1 sh
S92 1/2 2/3 §2
ReIE s/8%
5 S

where sq, s, are the start states, sq, s] enable some step with action b, and s, 5 enable
some step with action ¢. The difference between the left and right automata is that
the right automaton enables an additional step which is obtained by combining the two
steps of the left automaton. Thus, the two automata satisfy the same PCTL formulas;
however, there is no simulation from the right automaton to the left one since the middle
step cannot be reproduced. a



Example 2 suggests two coarser relations where it is possible to combine several steps
into a unique one. Note that the only difference between the new preorders and the old
ones is the use of —~p (combined steps) instead of —— (regular steps) in Condition 2.

Definition20. A strong probabilistic bisimulation between two simple probabilistic au-
tomata My, M5 is an equivalence relation R over states(M;) U states(Mz) such that

1. each start state of M7 is related to at least one start state of M5, and vice versa;

2. for each s; R ss and each step s BN (1, F1, Py) of either My, Ms, there exists
a combined step sy ——p (025, F3, Pa) of either My, My such that (£21,Fy, P1) =z
(92, fz, Pz)

We write My ~p M whenever acts(My) = acts(Mz) and there is a strong probabilistic
bisimulation between M; and M. ad

Definition21. A strong probabilistic simulation between two simple probabilistic au-
tomata My, M5 is a relation RC states(M;) x states(Ms) such that

1. each start state of M7 is related to at least one start state of Ms;
2. for each s; R so and each step s = (1, F1, P1) of My, there exists a combined
step S9 i}P (Qz,fz, Pz) Of M2 SUCh that (Ql,fl, Pl) ER (Qz,fz, Pz)

. a a
3. for each s1 R sq, if s5 —, then s —.

We write My Cgps Ma whenever acts(My) = acts(Ms) and there is a strong probabilistic
simulation between M; and Ms. The kernel of strong probabilistic simulation is denoted
by =sps. O

Proposition22. ~p and Cgpg are compositional. ad

Theorem 23. Let My and My be two simple probabilistic automata, and let f be a PCTL
formula.

1. IfMl ~p Mz, then M1 ': f ZﬁMz ': f

2. If My Csps Mo and f does not contain any occurrence of - and EUg,, then My |= f
implies My = f.

3. If My =sps Mo and f does not contain any occurrence of EUzp, then My |= f iff
My f. u

Remark. Our strong probabilistic simulations provides us with a simple way to represent
the closed interval specification systems of [L1]. A probabilistic specification system of [11]
is a state machine where each state is associated with a set of probability distributions
over the next state. The set of probability distributions for a state s 1s specified by
associating each other state s’ with a set of probabilities that can be used from s. In our
framework a specification structure can be represented as a probabilistic automaton that,
from each state, enables one step for each valid probability distribution over the next
states. A probabilistic process system is a “fully probabilistic” (in our terms) probabilistic
specification system. A probabilistic process system P is said to satisfy a probabilistic
specification system S if there exists a strong simulation from P to 5.

A closed interval specification system is a specification system whose set of probability
distributions are described by means of a lower bound and an upper bound, for each pair
(s, "), on the probability of reaching s’ from s. Thus, the set of probability distributions
that are allowed from any state form a polytope. By using our strong probabilistic
simulation as satisfaction relation, it is possible to represent each polytope by means of
its corners only. Any point within the polytope is then given by a combination of the
corners. a



6 Weak Relations

The relations of Section 5 do not abstract from internal computation, whereas in practice
a notion of implementation should ignore the internal steps of a system as much as
possible. In this section we study the weak versions of the relations of Section 5, and we
show how they relate to WPCTL. We introduce only the probabilistic version of each
relation, since the others can be derived subsequently in a straightforward way. We start
by presenting the natural extension of the probabilistic relations of Section 5; then, in
order to preserve WPCTL, we introduce a branching version of the new relations using
the basic idea of branching bisimulation [6].

Weak probabilistic bisimulations and weak probabilistic simulations can be defined
in a straightforward manner by changing Condition 2 of Definitions 20 and 21 so that

each step s; —— (£, F1, P1) of an automaton can be simulated by a weak combined step

o . . ..
afe_ﬁéP,Q) (£25, F3, P2) of the other automaton, and by using weak steps in Condition 3.

However, although the two weak relations are compositional, WPCTL formulas are not
preserved by weak bisimulations and weak simulations. The key problem is that weakly
bisimilar executions do not satisfy the same formulas. Consider the diagram below.

T a

J1

T T

S0 S1 S2 S3 - 54

/ a AR
So T %

Since s and ss are not necessarily related, it is not possible to deduce M{(a,s})] E fi
from M[(a,s2)] = fi. To solve the problem we need to make sure that s} and sy are
related, and thus we introduce the branching versions of our weak relations.

Definition24. A branching probabilistic bisimulation between two simple probabilistic
automata My, Ms is an equivalence relation R over states(My) U states(Mz) such that

1. each start state of M7 is related to at least one start state of M5, and vice versa;
2. for each s; R s and each step s; — (1, F1, Py) of either My, Ms, there ex-

ists a weak combined step s afe:“%” (025, F3, P2) of either My, My such that
(1, F1, P) =r (22, F3, P2) and s2 arggpm) (£25, F3, P2) satisfies the branching

- . . M
condition, i.e., for each path « in the step s afe_itép” (£25, F2, P2), and each state

s that occurs in «, either s; R s, a[ext(Ms) has not occurred yet, and each state
s’ preceding s in « satisfies s; R s, or for each s| € £2; such that s§ R Istate(a),

iR s.

We write My ~p M, whenever ext(My) = ext(Ms) and there is a branching probabilistic
bisimulation between M; and M. ad
. alext(Ms) . .
Let a be an external action. Informally, the weak step sa =—p " (£22, Fz, P2) in Defini-
tion 24 is obtained by concatenating several combined steps of Ms. Such a combination
can be visualized as a tree of combined steps. The branching condition says that all the
states of the tree that occur before action a are related to s1, and that whenever a state
sh of £2, is related to some state s] of £21, then all the states in the path from s; to s}
that occur after action a are related to s} as well. In other words, each maximal path in
the tree satisfies the branching condition of [6].



Definition25. A branching probabilistic stmulation between two simple probabilistic
automata My, Ms is a relation RC states(M;) x states(Mz) such that

1. each start state of M7 is related to at least one start state of Ms;

2. for each sy R ss and each step s BN (1, F1, P1) of My, there exists a weak

combined step s5 afe:“%” (029, F3, Pa) of My such that (£21, F1, P1) Cr (£22, Fa, P2),

and s a[ggpwz) (£25, F3, Po) satisfies the branching condition.

3. for each s1 R s9, if s9 :a>, then s; = .

We write My Cpps Mz whenever ext(My) = ext(Ms) and there is a branching proba-
bilistic simulation between M7 and Ms. The kernel of branching probabilistic simulation
is denoted by =pps. ad

Proposition26. ~p and Cgps are compositional. ad

To show that a WPCTL formulas are preserved by the different simulation relations,; we
need to guarantee that a probabilistic automaton is free from divergences with probabil-
ity 1. The definition below allows a probabilistic automaton to exhibit infinite internal
computation, but it requires that such a behavior can happen only with probability 0.

Definition27. A probabilistic automaton M is probabilistically convergent if for each
execution automaton H of M and each state ¢ of H, the probability of diverging (per-
forming infinitely many internal actions and no external actions) from ¢ is 0, i.e.,
Py[@,] = 0, where O, is the set of infinite executions of H that pass through state
g and that do not contain any external action after passing through state ¢q. Note that
6, is measurable since it is the complement of a union of rectangles. O

Theorem 28. Let My and M- be two probabilistically convergent, simple probabilistic
automata, and f be a WPCTL formula.

1. IfMl ~p Mz, then M1 ': f ZﬁMz ': f

2. If My Cgps M> and f does not contain any occurrence of = and EU 3y, then My |= f
implies My = f.

3. If My =pps M and f does not contain any occurrence of EUgp, then My |= f iff
Ms E f.

Proof sketch. Similar to the proof of Proposition 19. Here the construction of Hy 1s much
more complicated than in the proof of Proposition 19 due to the fact that we need to
combine several weak steps. Moreover, we need to show that the branching requirement
guarantees the preservation of properties between bisimilar executions. a

7 Concluding Remarks

7.1 Summary

We have extended some of the classical simulation relations to a new probabilistic model
that distinguishes naturally between probabilistic and nondeterministic choice and that
allows us to represent naturally randomized and/or restricted forms of scheduling poli-
cies. Our method of analysis was based on compositionality issues and preservation of
PCTL and WPCTL formulas. We have observed that the distinguishing power of PCTL
does not change if we allow randomization in the schedulers. Based on that, we have
introduced a new set of relations whose main idea is that an automaton may combine
probabilistically some of its steps in order to simulate another automaton.



7.2 Refinement-Based Preorders

In [11] there is a notion of refinement between probabilistic specification systems stating
(up to a notion of image-finiteness that is not important here) that S refines S if each
probabilistic process system that satisfies S7, also satisfies S2. The notion of refinement
of [11] suggests a new set of preorders based on the relations of Sections 5 and 6. Namely,
given a preorder Cx, where X ranges over SS, SPS, WS, WPS, BS, BPS, we can define
a new preorder <x as

My <x M- iff for each fully probabilistic M3, if M3 Cx M; then M3 Cx Ms.

Note, for example, that by restricting ourselves to the non-probabilistic case, <gg reduces
to complete trace inclusion (including internal actions), while <wg and <pg reduce to
complete external trace inclusion. Moreover, by removing Condition 3 in the refinements
of Sections b and 6, <gg reduces to trace inclusion, while <wg and <pg reduce to external
trace inclusion. Thus, we do not expect these preorders to be very strong. Unfortunately,
none of the preorders above is compositional.

FEzample 3. Consider the three probabilistic automata

M,y My

GE ./ \. %. )
N N 0 Vi

Py P T T

where the Pj-branch performs an action d and reaches a state enabling a new action z
with probability 1/2, the Ps-branch performs an action d and reaches a state enabling a
new action u with probability 1/2, and the (P;+ P2)/2 branch is a combination of P, and
Ps. It is easy to see that My <x My and M, <x M; for any X since any combination
of steps of My can be obtained from Ms and vice versa; however, it 1s not the case that
Mi||M =x Ms||M. Consider the following execution automaton H of M;||M: perform
action a followed by action c; if state eq is reached then perform the left b in My, perform
d, k and possibly z, else, perform the right b in M;, perform d,[ and possibly u. Clearly
H satisfies M;||M; however, H does not satisfy Ms||M since in Ms||M there is no state
that corresponds to the state reached in H after the occurrence of action a. In other
words H correlates the occurrence of action k with action z, and the occurrence of action
[ with action u, whereas such a correlation is not possible in Ma||M. a

Based on Example 3 we may conclude that the preorders <x are not suitable for the
compositional analysis of probabilistic systems. In reality it is still possible to use similar
preorders if we make some additional assumptions. If we view a scheduler as an adversary,
then we can say that an adversary chooses the next step based on the past history of the
system. In Example 3 we have allowed the adversary to solve an internal choice of M;
based on an internal condition of M. However, our counterexample would not work if
the internal choices of each probabilistic automaton cannot be resolved by looking at the
internal structure of other automata. A similar assumption is common for cryptographic
systems.



7.3 Further Work

We are currently working on the definitions of adversary schemas that view other au-

tomata as black boxes, so that refinement-based preorders are compositional. Other

further work includes finding some good notion of external behavior for probabilistic

automata, studying applications of our results to the task of verifying probabilistic dis-

tributed systems, and extending our model and our results to handle real-time systems.
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