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In this paper, we de�ne several extensions of the classical bisimulation and simu-lation relations (both in their strong and weak versions), to the probabilistic setting.There are many possible extensions that could be made; it is important to evaluate thevarious possibilities according to objective criteria. We use two criteria: compositionalityand preservation of \interesting" properties. The �rst requirement, compositionality, iswidely accepted since it forms the basis of many modular veri�cation techniques.To make sense of the second requirement, it is necessary to be speci�c about whatis meant by an \interesting" property. Here, we identify the interesting properties ofa system with those that are expressible in an untimed version (PCTL) of the TimedProbabilistic concurrent Computation Tree Logic (TPCTL) of Hansson [7]; as discussedin [7], this logic is su�ciently powerful to represent most of the properties of practicalinterest. Thus, our second evaluation criterion is based on the types of PCTL formulasthat a relation preserves. For the weak relations, i.e., the ones that abstract from internalcomputation, we use a new version of PCTL, called WPCTL, which abstracts frominternal computation as well.We de�ne and evaluate our simulation relations in terms of a new general labeledtransition system model for concurrent probabilistic computation, which borrows ideasfrom [7, 21]. The model distinguishes between probabilistic and nondeterministic choicesbut, unlike the Concurrent Markov Chains of [7, 21], does not distinguish between prob-abilistic and nondeterministic states. A probabilistic automaton is a labeled transitionsystem whose transition relation is a set of pairs (s; (
;F ; P )), where (
;F ; P ) is adiscrete2 probability distribution over (action,state) pairs and a special symbol �, repre-senting deadlock. If � is not an element of 
 and all the pairs of 
 have the same action,then a step is called simple and can be denoted by s a�! (
0;F 0; P 0), where (
0;F 0; P 0)is a discrete probability distribution over states. The separation between nondeterminis-tic and probabilistic behavior is achieved by means of adversaries (or schedulers), that,similar to [7, 19, 21], choose a next step to schedule based on the past history of theautomaton. In our case, di�erently from [7, 19, 21], we allow an adversary to choose thenext step randomly. Indeed, an external environment that provides some input essen-tially behaves like a randomized adversary.Our �rst major result is that randomized adversaries do not change the distinguishingpower of PCTL and WPCTL. Intuitively, the main reason for this result is that PCTLand WPCTL are concerned with probability bounds rather than exact probabilities.We then rede�ne the strong bisimulation relation of [7, 13] in terms of our model,and also de�ne a strong simulation relation that generalizes the simulation relation of[11], strengthening it a bit so that some liveness is preserved. We show that strong simu-lation preserves PCTL formulas without negation and existential quanti�cation, and weshow that the kernel of strong simulation preserves PCTL formulas without existentialquanti�cation. Next, we generalize the strong relations by making them insensitive toprobabilistic combination of steps, i.e., by allowing probabilistic combination of severaltransitions in order to simulate a single transition. The motivation for this generaliza-tion is that the combination of transitions corresponds to the ability of an adversaryto choose the next step probabilistically. Our second main result is that the new rela-tions, called strong probabilistic bisimulation and strong probabilistic simulation, are stillcompositional and preserve PCTL formulas and PCTL formulas without negation andexistential quanti�cation, respectively.Similar to the strong case, we de�ne new relations that abstract from internal compu-tation and we show that they preserve WPCTL. However, the straightforward generaliza-tion of the strong probabilistic relations, although compositional, does not guarantee that2 Discreteness is needed because of measurability issues.



WPCTL is preserved. For this reason we introduce other two relations, called branch-ing probabilistic bisimulation and branching probabilistic simulation, which impose newrestrictions similar to those of branching bisimulation [6]. Our third main result is thatbranching probabilistic bisimulation and branching probabilistic simulation are composi-tional and preserve PCTL formulas and PCTL formulas without negation and existentialquanti�cation, respectively, up to a condition about divergences.We conclude with a discussion about some related work in [11]. In particular we showhow the idea of re�nement of [11] applies to our framework. We de�ne a re�nementpreorder in the style of [11] for each simulation relation of this paper, and, surprisingly,we show that none of the new re�nements is compositional. However, the counterexamplethat we present gives some insight for possible solutions to the problem.The rest of the paper is organized as follows. Section 2 de�nes the standard automataof non-probabilistic systems; Section 3 introduces our probabilistic model; Section 4 in-troduces PCTL, de�nes its semantics in terms of our model, and shows that the distin-guishing power of PCTL does not change by using randomized adversaries; Sections 5and 6 study the strong and weak relations, respectively, on our probabilistic model, andshow how they preserve PCTL formulas; Section 7 contains some concluding remarksconcerning the re�nement-based preorders of [11] and further work.2 AutomataAn automaton A consists of four components: a set states(A) of states, a nonemptyset start(A) � states(A) of start states, an action signature sig(A) = (ext(A); int(A))where ext(A) and int(A) are disjoint sets of external and internal actions, respectively,and a transition relation steps(A) � states(A) � acts(A) � states(A), where acts(A)denotes the set ext(A) [ int(A) of actions. Thus, an automaton is a state machine withlabeled steps (also called transitions). Its action signature describes the interface withthe external environment by specifying which actions model events that are visible fromthe external environment and which ones model internal events.An execution fragment � of an automaton A is a (�nite or in�nite) sequence ofalternating states and actions starting with a state and, if the execution fragment is�nite, ending in a state, � = s0a1s1a2s2 � � �, where each (si; ai+1; si+1) 2 steps(A).Denote by fstate(�) the �rst state of � and, if � is �nite, denote by lstate(�) the last stateof �. Furthermore, denote by frag�(A) and frag(A) the sets of �nite and all executionfragments of A, respectively. An execution is an execution fragment whose �rst stateis a start state. Denote by exec�(A) and exec(A) the sets of �nite and all execution ofA, respectively. A state s of A is reachable if there exists a �nite execution that endsin s. A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment�2 = snan+1sn+1 � � � of A can be concatenated . In this case the concatenation, written�1a�2, is the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment�1 of A is a pre�x of an execution fragment �2 of A, written �1 � �2, if either �1 = �2or �1 is �nite and there exists an execution fragment �01 of A such that �2 = �1a�01.3 The Basic Probabilistic Model3.1 Probabilistic AutomataDe�nition1. A probability space is a triplet (
;F ; P ) where 
 is a set, F is a collectionof subsets of 
 that is closed under complement and countable union and such that




 2 F , and P is a function from F to [0; 1] such that P [
] = 1 and for any collectionfCigi of at most countably many pairwise disjoint elements of F , P [[iCi] =Pi P [Ci].A probability space (
;F ; P ) is discrete3 if F = 2
 and for each C � 
, P [C] =Px2C P [fxg]. It is immediate to verify that for every discrete probability space thereare at most countably many points with a positive probability measure.The Dirac distribution over an element x, denoted by D(x), is the probability spacewith a unique element x.The product of two discrete probability spaces (
1;F1; P1) and (
2;F2; P2), denotedby (
1;F1; P1) 
 (
2;F2; P2), is the discrete probability space (
1 � 
2; 2
1�
2 ; P ),where P [(x1; x2)] = P1[x1]P2[x2] for each (x1; x2) 2 
1 �
2. utDe�nition2. A probabilistic automaton M is an automaton whose transition relationsteps(M ) is a subset of states(M )�Probs((acts(M )�states(M ))[f�g), where Probs(X)is the set of discrete probability spaces (
;F ; P ) where 
 � X.A probabilistic automaton M is simple if for each step (s; (
;F ; P )) 2 steps(M )there is an action a 2 acts(M ) such that 
 � fag � states(M ). In such a case a stepcan alternatively be represented as (s; a; (
;F ; P )) where (
;F ; P ) 2 Probs(states(M )),and it is called a simple step with action a.A probabilistic automaton is fully probabilistic if it has a unique start state and fromeach state there is at most one step enabled. utThus a probabilistic automaton di�ers from an automaton in that the action and the nextstate of a given transition are chosen probabilistically. The symbol � that can appear inthe sample space of each transition represents those situations where a system deadlocks.Thus, for example, it is possible that from a state s a probabilistic automaton performssome action with probability p and deadlocks with probability 1� p.A simple probabilistic automaton does not allow any kind of probabilistic choice onactions. Once a step is chosen, then the next action is determined and the next state isgiven by a random distribution. Several systems in practice can be described as simpleprobabilistic automata; indeed our analysis will focus on simple probabilistic automataand we will use general probabilistic automata only for the analysis of probabilisticschedulers.A fully probabilistic automaton is a probabilistic automaton without nondetermin-ism; at each point only one step can be chosen..The generative model of probabilistic processes of [5] is a special case of a fully prob-abilistic automaton; simple probabilistic automata are partially captured by the reactivemodel of [5] in the sense that the reactive model assumes some form of nondeterminismbetween di�erent actions. However, the reactive model does not allow nondeterministicchoices between steps involving the same action. By restricting simple probabilistic au-tomata to have �nitely many states, we obtain objects with a structure similar to thatof the Concurrent Labeled Markov Chains of [7]; however, in our model we do not needto distinguish between nondeterministic and probabilistic states. In our model nonde-terminism is obtained by means of the structure of the transition relation. This allowsus to retain most of the traditional notation that is used for automata.De�nition3. Given a probabilistic automatonM , its nondeterministic reduction N (M )is the automaton A obtained fromM by transforming each transition (s; (
;F ; P )) intothe set of transitions (s; a; s0) where (a; s0) 2 
. In other words N (M ) is obtained fromM by transforming all the probabilistic behavior into nondeterministic behavior. ut3 If we accept the Axiom of Choice, then the requirement F = 2
 is su�cient.



The execution fragments and executions of a probabilistic automaton M are the exe-cution fragments and executions of its nondeterministic reduction N (M ). However, forthe study of the probabilistic behavior of a probabilistic automaton, some more de-tailed structure is needed. Such a structure, which we call an execution automaton, isintroduced in Section 3.2.The next de�nition shows how it is possible to combine several steps of a probabilisticautomaton into a new one. It plays a fundamental role for the de�nition of probabilisticadversaries and the de�nition of our probabilistic simulations.De�nition4. Given a probabilistic automatonM , a �nite or countable set f(
i;Fi; Pi)giof probability distributions of Probs((acts(M )�states(M ))[f�g), and a positive weightpi for each i such that Pi pi � 1, the combinationPi pi(
i;Fi; Pi) of the distributionsf(
i;Fi; Pi)g is the probability space (
;F ; P ) such that{ 
 = �[i
i if Pi pi = 1[i
i [ f�g if Pi pi < 1{ F = 2
{ for each (a; s) 2 
, P [(a; s)] =P(a;s)2
i piPi[(a; s)]{ if � 2 
, then P [�] = (1�Pi pi) +P�2
i piPi[�].A pair (s; (
;F ; P )) is a combined step of M if there exists a �nite or countable familyof steps f(s; (
i;Fi; Pi))gi and a set of positive weights fpigi withPi pi � 1, such that(
;F ; P ) =Pi pi(
i;Fi; Pi) utFor notational convenience we write s a�! (
;F ; P ) whenever there is a simple step(s; a; (
;F ; P )) in M , and we write s a�!P (
;F ; P ) whenever there is a simple com-bined step (s; a; (
;F ; P )) in M . We extend the arrow notation to weak arrows ( a=)and a=)P) to state that (
;F ; P ) is reached through a sequence of steps, some of whichare internal. Formally, s a=) (
;F ; P ) (s a=)P (
;F ; P )) i� there exists a (combined)step (s; (
0;F 0; P 0)) such that (
;F ; P ) = P(b;s0)2
0 P 0[(b; s0)](
(b;s0);F(b;s0); P(b;s0)),where, for each (b; s0) 2 
0, if b = a then s0 =) (
(b;s0);F(b;s0); P(b;s0)) (s0 =)P(
(b;s0);F(b;s0); P(b;s0))), and if b 6= a then b is internal and s0 a=) (
(b;s0);F(b;s0); P(b;s0))(s0 a=)P (
(b;s0);F(b;s0); P(b;s0))). The relation =) (=)P) di�ers from a=) ( a=)P) in thatit is also possible not to move from s, i.e., it is possible that s =) D(s) (s =)P D(s)).We now turn to the parallel composition operator for simple probabilistic automata,which is de�ned in the CSP style [9]. As outlined in [7], the de�nition of a parallelcomposition operator for general probabilistic automata is problematic. We will addressthe issue of a general parallel composition operator in further work.De�nition5. Two simple probabilistic automataM1;M2 are compatible if1. int(M1) \ acts(M2) = ;, and2. int(M2) \ acts(M1) = ;.The parallel composition M1kM2 of compatible simple probabilistic automataM1;M2is the simple probabilistic automatonM such that1. states(M ) = states(M1)� states(M2)2. start(M ) = start(M1)� start(M2)3. ext(M ) = ext(M1) [ ext(M2)4. int(M ) = int(M1) [ int(M2)



5. ((s1; s2); a; (
;F ; P )) 2 steps(M ) i� (
;F ; P ) = (
1;F1; P1) 
 (
2;F2; P2), where
 denotes the product of probability spaces, such that(a) if a 2 acts(M1) then (s1; a; (
1;F1; P1)) 2 steps(M1), else (
1;F1; P1) = D(s1),and(b) if a 2 acts(M2) then (s2; a; (
2;F2; P2)) 2 steps(M2), else (
2;F2; P2) = D(s2).ut3.2 Schedulers and AdversariesSeveral papers in the literature use schedulers, sometimes viewed as adversarial entities,to resolve the nondeterminism in probabilistic systems [4, 7, 14, 21]. An adversary isan object that schedules the next step based on the past history of a probabilisticautomaton.De�nition6. An adversary for a probabilistic automaton M is a function A taking a�nite execution fragment � of M and returning a probability distribution over ? and asubset of the steps enabled from lstate(�). Formally,A : frag�(M )! Probs(steps(M )[f?g), such that if A(�) = (
;F ; P ) and (s; (
0;F 0; P 0)) 2 
, then s = lstate(�). Anadversary is deterministic if it returns only Dirac distributions, i.e., the next step ischosen deterministically. Denote the set of adversaries and deterministic adversaries fora probabilistic automatonM by Advs(M ) and DAdvs(M ), respectively. utThe symbol ? in De�nition 6 is used to express the fact that an adversary is allowednot to schedule anyone at any point. Such an option is useful when some speci�c actionsare meant to model input from the external environment.De�nition7. An adversary schema for a probabilistic automatonM , denoted by Advs ,is a subset of Advs(M ). If Advs is a proper subset of Advs(M ) then Advs is a restrictedadversary schema, otherwise Advs is a full adversary schema. utAdversary schemas are used to reduce the power of a class of adversaries. Note, forexample, that the set of deterministic adversaries DAdvs(M ) is an example of a restrictedadversary schema whenever M is not fully probabilistic. Throughout the rest of thispaper we denote by Probabilistic(M ) the adversary schema where each adversary canchoose ? on input � i� there is no step enabled in M from lstate(�), and we denote byDeterministic(M ) the set of deterministic adversaries of Probabilistic(M ).The next step is to de�ne what it means for a probabilistic automaton to run underthe control of an adversary. Namely, suppose that M has already performed some exe-cution fragment � and that an adversary A starts resolving the nondeterminism at thatpoint. The result of the interaction between M and A is a fully probabilistic automaton,called an execution automaton, where at each point the only step enabled is the step dueto the choice of A. A similar construction appears in [21]. Unfortunately, the de�nitionof an execution automaton is not simple since each state contains the past history of M .De�nition8. An execution automaton H of a probabilistic automaton M is a fullyprobabilistic automaton such that1. states(H) � frag�(M ).2. for each step (�; (
;F ; P )) of H there is a combined step (lstate(�); (
0;F 0; P 0)) ofM , called the corresponding combined step, such that 
0 = f(a; s)j(a; �as) 2 
g,F 0 = 2
0 , and P 0[(a; s)] = P [(a; �as)] for each (a; s) 2 
0. If q = lstate(�), thendenote (
;F ; P ) by (
q;Fq; Pq).



3. each state of H is reachable, i.e., for each � 2 states(H) there exists an execution ofN (H) leading to state �. utNow we can de�ne formally what it means for a probabilistic automatonM to run underthe control of an adversary A.De�nition9. Given a probabilistic automatonM , an adversary A 2 Advs(M ), and anexecution fragment � 2 frag�(M ), the execution H(M;A; �) of M under adversary Awith starting fragment� is the execution automaton ofM whose start state is � and suchthat for each state q there is a step (q; (
;F ; P )) 2 steps(H(M;A; �)) i� A(q) 6= D(?)and the corresponding combined step of (q; (
;F ; P )) is obtained from A(q). ut3.3 EventsWe de�ne a probability space (
H ;FH ; PH) for each execution automaton H, so that itis possible to analyze the probabilistic behavior of an automaton once the nondetermin-ism is removed. The sample space 
H is the set of maximal executions of H, where amaximal execution of H is either in�nite or �nite and not extendible. Speci�c kinds ofnot extendible executions are �nite executions � whose last state enables a step where �has a positive probability. Those executions are denoted by ��. Note that an executionof H can be uniquely denoted by the corresponding execution fragment of M . Thus, toease the notation, we de�ne an operator �" that takes an execution fragment of M andgives back the corresponding execution of H, and �# that takes an execution of H andgives back the corresponding execution fragment of M .For each �nite execution � of H, possibly extended with �, let R�, the rectangle withpre�x �, be the set f�0 2 
H j � � �0g, and let RH be the class of rectangles for H. Theprobability �H (R�) of the rectangle R� is the product of the probabilities associated witheach edge that generates � in H. This is well de�ned since the steps of H are describedby discrete probability distributions. Formally, if � = q0a1q1 � � � qn�1anqn, where each qiis an execution fragment of M , then �H (R�) 4= Pq0 [(a1; q1)] � � �Pqn�1 [(an; qn)]. If � =q0a1q1 � � �qn�1anqn�, then �H(R�) 4= Pq0 [(a1; q1)] � � �Pqn�1 [(an; qn)]Pqn [�]. Standardmeasure theory results assert that there is a unique measure ��H that extends �H tothe �-algebra �(RH ) generated by RH . FH is then obtained from �(RH ) by extendingeach event with any set of executions taken from 0-probability rectangles, and PH isobtained by extending ��H to FH in the obvious way. With this de�nition it is possibleto show that any union of rectangles (even uncountable) is measurable. In fact, at mostcountably many rectangles have a positive measure.In our analysis of probabilistic automata we are not interested in events for singleexecution automata. Whenever we want to express a property, we want to express itrelative to any execution automaton. This is the purpose of event schemas.De�nition10. An event schema e for a probabilistic automaton M is a function thatassociates an event of FH with each execution automaton H of M . ut4 Probabilistic Computation Tree LogicIn this section we present the logic that is used for our analysis, and we give it a se-mantics based on our model. It is a simpli�cation of the Timed Probabilistic concurrentComputation Tree Logic (TPCTL) of [7], where we do not consider time issues. Then, weshow that randomized adversaries do not change the distinguishing power of the logic.



Consider a set of actions ranged over by a. The syntax of PCTL formulas is de�nedas follows:f ::= a j :f j f1 ^ f2 j J Af j f1 EU�p f2 j f1 AU�p f2 j f1 EU>p f2 j f1 AU>p f2Informally, the atomic formula a means that action a is the only one that can occurduring the �rst step of a probabilistic automaton; the formula JAf means that f isvalid for a probabilistic automaton M after making the �rst transition invisible; theformula f1 EU�p f2 means that there exists an adversary such that the probability off2 eventually holding and f1 holding till f2 holds is at least p; the formula f1 AU�p f2means that the same property as above is valid for each adversary. For the formalsemantics of PCTL we need two auxiliary operators on probabilistic automata.Let M be a probabilistic automaton, a an action of M , and s a state of M . ThenM [(a; s)] is a probabilistic automaton obtained fromM by adding a new state s0, adding anew step (s0; a;D(s)), and making s0 into the unique start state. In other wordsM [(a; s)]forces M to start with action a and then reach state s.Let M be a probabilistic automaton. Then !M is obtained from M by adding aduplicate of each start state, by making the duplicate states into the new start states,and, for each step s a�! (
;F ; P ) of M , by adding a step s0 ��! (
;F ; P ) from theduplicate s0 of s, where � is an internal action that cannot occur in any PCTL formula.In other words !M makes sure that the �rst step of M is invisible.Let M be a probabilistic automaton, and let � be an execution of M . Let w denoteeither � or >. Then we de�ne the satisfaction relations M j= f and � j=M g as followsM j= a i� each step leaving from a start state is a simple step with action a,M j= :f i� not M j= f ,M j= f1 ^ f2 i� M j= f1 and M j= f2,� j=M f1 U f2 i� there exists n > 0 such that � = s0a1s1 � � �ansna�0,M [(an; sn)] j= f2, and for each i; 1 � i < n, M [(ai; si)] j= f1,M j= JAf i� !M j= f ,M j= f1 EUwp f2 i� there exists an adversary A and a start state s0 such thatPH [ef1Uf2(H)] w p, where H = H(M;A; s0), and ef1Uf2(H) isthe set of executions �0 of 
H such that �0# j=M f1 U f2,M j= f1 AUwp f2 i� for each adversary A and each start state s0,PH [ef1Uf2(H)] w p, where H = H(M;A; s0), and ef1Uf2(H) isthe set of executions �0 of 
H such that �0# j=M f1 U f2.Note that for each execution automatonH the set ef1Uf2(H) can be expressed as a unionof rectangles, and thus it is an element of FH . This guarantees that the semantics ofPCTL is well de�ned. In the de�nition above we did not mention explicitly what kind ofadversaries to consider for the validity of a formula. In [7] the adversaries are assumed tobe deterministic. However, the semantics does not change by adding randomization tothe adversaries. The intuitive justi�cation of this claim is that if we are just interested inupper and lower bounds to the probability of some event to happen, then any probabilis-tic combination of events stays within the bounds. Moreover, deterministic adversariesare su�cient to observe the bounds.Theorem11. For each probabilistic automaton M and each PCTL formula f , M j= frelative to Deterministic(M ) i� M j= f relative to Probabilistic(M ).



Proof sketch. The proof is by induction on the structure of the formula f , and most ofit is simple routine checking. Two critical points are the following: if M j= f1 EUwp f2relative to randomized adversaries, then we need to make sure that there exists at leasta deterministic adversary that can be used to satisfy f1 EUwp f2; if M j= f1 AUwp f2relative to deterministic adversaries, then we need to make sure that no probabilisticadversary would lead to a violation of f1 AUwp f2. In both cases the idea is to convert aprobabilistic adversary A for a probabilistic automatonM into a deterministic one suchthat the probability of ef1Uf2 is increased (�rst case) or decreased (second case). utWe now show how to change the syntax and semantics of PCTL to abstract away frominternal computation. The new logic is denoted by WPCTL. The syntax of WPCTL isthe same as that of PCTL with the additional requirement that no internal action canoccur in a formula. For the semantics of WPCTL, there are three main changes.M j= a i� each weak step leaving from a start state is labeled with action a,� j=M f1 U f2 i� there exists n > 0 such that � = s0a1s1 � � �ansna�0,an is external, M [(an; sn)] j= f2, and for each i; 1 � i < n,if ai is external, then M [(ai; si)] j= f1,M j= JAf i� )M j= f ,where )M hides the �rst external steps of M , i.e., it is obtained from M by duplicatingall its states (and then removing the non-reachable ones at the end), by making theduplicates of the old start states into the new start states, by reproducing all the internaltransitions in the duplicated states, and, for each external step (s; a; (
;F ; P )) of M ,by adding an internal step (s0; �; (
;F ; P )) from the duplicate s0 of s, where � is a newinternal action. Note that the satisfaction relation for an execution is de�ned solely interms of its external steps.Theorem12. For each probabilistic automaton M and each WPCTL formula f , M j= frelative to Deterministic(M ) i� M j= f relative to Probabilistic(M ). ut5 Strong RelationsIn this section we analyze relations that are sensitive to internal computation.We formal-ize the bisimulations of [7] (strong bisimulation) and the simulations of [11, 13] (strongsimulation) in our model, and we show that the kernel of strong simulation, which iscoarser than strong bisimulation, preserves PCTL formulas that do not contain EUwp.We then introduce other two coarser relations that allow probabilistic combination ofsteps and continue to preserve PCTL formulas without EUwp. For convenience, through-out the rest of this paper we assume that no pair of probabilistic automata has any statein common.De�nition13. Let R be an equivalence relation over a set X. Two probability spaces(
1;F1; P1) and (
2;F2; P2) of Probs(X) are R-equivalent, written (
1;F1; P1) �R(
2;F2; P2), i� for each [x1]R 2 
1=R there exists an [x2]R 2 
2=R such that x1 R x2,for each [x2]R 2 
2=R there exists an [x1]R 2 
1=R such that x2 R x1, and for each[x1]R 2 
1=R, [x2]R 2 
2=R such that x1 R x2,Px2
1\[x1 ]R P [x] =Px2
2\[x2 ]R P [x].In other words (
1;F1; P1) and (
2;F2; P2) are R-equivalent if they assign the sameprobability measure to each equivalence class of R. ut



De�nition14. A strong bisimulation between two simple probabilistic automataM1;M2is an equivalence relation R over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of either M1, M2, there exists astep s2 a�! (
2;F2; P2) of either M1, M2 such that (
1;F1; P1) �R (
2;F2; P2).We write M1 ' M2 whenever acts(M1) = acts(M2) and there is a strong bisimulationbetween M1 and M2. utCondition 2 of De�nition 14 is stated in [7, 13] in a di�erent but equivalent way, i.e.,for each equivalence class [x] of R, the probabilities of reaching [x] from s1 and s2 arethe same. The next de�nition is used to introduce strong simulations. It appears in asimilar form in [11]. Informally, (
1;F1; P1) vR (
2;F2; P2) means that there is a wayto split the probabilities of the states of 
1 between the states of 
2 and vice versa,expressed by a weight function w, so that the relation R is preserved. In other wordsthe left probability space can be embedded into the right one up to R.De�nition15. Let R� X � Y be a relation between two set X;Y , and let (
1;F1; P1)and (
2;F2; P2) be two probability spaces of Probs(X) and Probs(Y ), respectively. Then(
1;F1; P1) and (
2;F2; P2) are in relation vR, written (
1;F1; P1) vR (
2;F2; P2),i� there exists a weight function w : X � Y ! [0; 1] such that1. for each x 2 X, Py2Y w(x; y) = P1[x],2. for each y 2 Y , Px2X w(x; y) = P2[y],3. for each (x; y) 2 X � Y , if w(x; y) > 0 then x R y. utDe�nition16. A strong simulation between two simple probabilistic automataM1;M2is a relation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of M1, there exists a step s2 a�!(
2;F2; P2) of M2 such that (
1;F1; P1) vR (
2;F2; P2).3. for each s1 R s2, if s2 a�!, then s1 a�!.We write M1 vSS M2 whenever acts(M1) = acts(M2) and there is a strong simulationbetween M1 and M2. The kernel of strong simulation is denoted by �SS. utThe third requirement in the de�nition of a strong simulation is used to guaranteesome minimum liveness requirements. It is fundamental for the preservation of PCTLformulas; however it can be relaxed by requiring s1 to enable some step whenever s2enables some step.Proposition17. ' and vSS are compositional That is, for each M1;M2 such thatacts(M1) = acts(M2), and for each M3 compatible with both M1 and M2, if M1 ' M2,then M1kM3 ' M2kM3, and if M1 vSS M2, then M1kM3 vSS M2kM3. utLemma18. Let X;Y be two disjoint sets, R be an equivalence relation on X [ Y ,and let (
1;F1; P1) and (
2;F2; P2) be probability spaces of Probs(X) and Probs(Y ),respectively, such that (
1;F1; P1) �R (
2;F2; P2). Then (
1;F1; P1) vR0 (
2;F2; P2),where R0=R \X � Y . utLemma 18 can be used to prove directly that bisimulation is �ner than simulation. Thesame observation applies to all the other pairs of relations that we de�ne in this paper.



Theorem19. LetM1 and M2 be two simple probabilistic automata, and let f be a PCTLformula.1. If M1 'M2, then M1 j= f i� M2 j= f .2. If M1 vSS M2 and f does not contain any occurrence of : and EUwp, then M2 j= fimplies M1 j= f .3. If M1 �SS M2 and f does not contain any occurrence of EUwp, then M1 j= f i�M2 j= f .Proof sketch. The proofs are by induction on the structure of f , where the nontrivialstep is the analysis of f1 AUwp f2. In this case it is enough to show that for each ex-ecution automaton H1 of M1 there exists an execution automaton H2 of M2 such thatPH2 [ef1Uf2 (H2)] � PH1 [ef1Uf2(H1)]. The execution automaton H2 is built by reproduc-ing the structure of H1 via R. We also need to ensure that H2 is obtainable from someadversary, and for this part we need Condition 3 of De�nition 16. We do not need toshow that H2 can be generated by a deterministic adversary (indeed this is false in gen-eral) because of Theorem 11. utExample 1. PCTL formulas with occurrences of EUwp are not preserved in general by�SS. Consider the two simple probabilistic automata below.s0s1 s2s5 s6 s7 s8 s9s10 s11 s12a}}{{{{{{ aEEEEEE ""b1=4vvmmmmmmmmmmmmmb3=4~~|||||| bCCCCCC!! b 1=4�� b3=4CCCCCC!!c �� c �� c �� s00s01s05 s06 s07s010 s011a ��b1=4wwooooooooooooob3=4 ������� b@@@@@@��c �� c ��The two automata are strong simulation equivalent by matching each si with s0i andby matching s2; s8; s9; s12 to s01; s05; s06; s010, respectively. However, the right automatonsatis�es true AU�1 (a ^ (true EU�1=2 c)), whereas the left automaton does not. utExample 2. Consider the two probabilistic automatas1 s0 s1s2 s2a1=2oo a 1=3//a1=2wwoooooooooooo a 2=3OOOOOOOOOOOO'' s01 s00 s01s02 s02s01 s02a1=2oo a 1=4//a1=2wwooooooooooooo a 3=4OOOOOOOOOOOOO''a3=8 ��������������� a5=8/////////////��where s0; s00 are the start states, s1; s01 enable some step with action b, and s2; s02 enablesome step with action c. The di�erence between the left and right automata is thatthe right automaton enables an additional step which is obtained by combining the twosteps of the left automaton. Thus, the two automata satisfy the same PCTL formulas;however, there is no simulation from the right automaton to the left one since the middlestep cannot be reproduced. ut



Example 2 suggests two coarser relations where it is possible to combine several stepsinto a unique one. Note that the only di�erence between the new preorders and the oldones is the use of a�!P (combined steps) instead of a�! (regular steps) in Condition 2.De�nition20. A strong probabilistic bisimulation between two simple probabilistic au-tomata M1;M2 is an equivalence relation R over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of either M1, M2, there existsa combined step s2 a�!P (
2;F2; P2) of either M1, M2 such that (
1;F1; P1) �R(
2;F2; P2).We write M1 'P M2 whenever acts(M1) = acts(M2) and there is a strong probabilisticbisimulation between M1 and M2. utDe�nition21. A strong probabilistic simulation between two simple probabilistic au-tomata M1;M2 is a relation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of M1, there exists a combinedstep s2 a�!P (
2;F2; P2) of M2 such that (
1;F1; P1) vR (
2;F2; P2).3. for each s1 R s2, if s2 a�!, then s1 a�!.We writeM1 vSPS M2 whenever acts(M1) = acts(M2) and there is a strong probabilisticsimulation between M1 and M2. The kernel of strong probabilistic simulation is denotedby �SPS. utProposition22. 'P and vSPS are compositional. utTheorem23. LetM1 and M2 be two simple probabilistic automata, and let f be a PCTLformula.1. If M1 'P M2, then M1 j= f i� M2 j= f .2. IfM1 vSPS M2 and f does not contain any occurrence of : and EUwp, then M2 j= fimplies M1 j= f .3. If M1 �SPS M2 and f does not contain any occurrence of EUwp, then M1 j= f i�M2 j= f . utRemark. Our strong probabilistic simulations provides us with a simple way to representthe closed interval speci�cation systems of [11]. A probabilistic speci�cation system of [11]is a state machine where each state is associated with a set of probability distributionsover the next state. The set of probability distributions for a state s is speci�ed byassociating each other state s0 with a set of probabilities that can be used from s. In ourframework a speci�cation structure can be represented as a probabilistic automaton that,from each state, enables one step for each valid probability distribution over the nextstates. A probabilistic process system is a \fully probabilistic" (in our terms) probabilisticspeci�cation system. A probabilistic process system P is said to satisfy a probabilisticspeci�cation system S if there exists a strong simulation from P to S.A closed interval speci�cation system is a speci�cation system whose set of probabilitydistributions are described by means of a lower bound and an upper bound, for each pair(s; s0), on the probability of reaching s0 from s. Thus, the set of probability distributionsthat are allowed from any state form a polytope. By using our strong probabilisticsimulation as satisfaction relation, it is possible to represent each polytope by means ofits corners only. Any point within the polytope is then given by a combination of thecorners. ut



6 Weak RelationsThe relations of Section 5 do not abstract from internal computation, whereas in practicea notion of implementation should ignore the internal steps of a system as much aspossible. In this section we study the weak versions of the relations of Section 5, and weshow how they relate to WPCTL. We introduce only the probabilistic version of eachrelation, since the others can be derived subsequently in a straightforward way. We startby presenting the natural extension of the probabilistic relations of Section 5; then, inorder to preserve WPCTL, we introduce a branching version of the new relations usingthe basic idea of branching bisimulation [6].Weak probabilistic bisimulations and weak probabilistic simulations can be de�nedin a straightforward manner by changing Condition 2 of De�nitions 20 and 21 so thateach step s1 a�! (
1;F1; P1) of an automaton can be simulated by a weak combined steps2 adext(M2)=)P (
2;F2; P2) of the other automaton, and by using weak steps in Condition 3.However, although the two weak relations are compositional, WPCTL formulas are notpreserved by weak bisimulations and weak simulations. The key problem is that weaklybisimilar executions do not satisfy the same formulas. Consider the diagram below.s0 s1 s2 s3 s4s00 s01R� � � � � � � � � � � � �� // af1 // � // � //R� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �a? //Since s01 and s2 are not necessarily related, it is not possible to deduce M [(a; s01)] j= f1from M [(a; s2)] j= f1. To solve the problem we need to make sure that s01 and s2 arerelated, and thus we introduce the branching versions of our weak relations.De�nition24. A branching probabilistic bisimulation between two simple probabilisticautomata M1;M2 is an equivalence relation R over states(M1) [ states(M2) such that1. each start state of M1 is related to at least one start state of M2, and vice versa;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of either M1, M2, there ex-ists a weak combined step s2 adext(M2)=)P (
2;F2; P2) of either M1, M2 such that(
1;F1; P1) �R (
2;F2; P2) and s2 adext(M2)=)P (
2;F2; P2) satis�es the branchingcondition, i.e., for each path � in the step s2 adext(M2)=)P (
2;F2; P2), and each states that occurs in �, either s1 R s, adext (M2) has not occurred yet, and each states0 preceding s in � satis�es s1 R s0, or for each s01 2 
1 such that s01 R lstate(�),s01 R s.We writeM1 'P M2 whenever ext (M1) = ext(M2) and there is a branching probabilisticbisimulation between M1 and M2. utLet a be an external action. Informally, the weak step s2 adext(M2)=)P (
2;F2; P2) in De�ni-tion 24 is obtained by concatenating several combined steps of M2. Such a combinationcan be visualized as a tree of combined steps. The branching condition says that all thestates of the tree that occur before action a are related to s1, and that whenever a states02 of 
2 is related to some state s01 of 
1, then all the states in the path from s1 to s02that occur after action a are related to s01 as well. In other words, each maximal path inthe tree satis�es the branching condition of [6].



De�nition25. A branching probabilistic simulation between two simple probabilisticautomata M1;M2 is a relation R� states(M1)� states(M2) such that1. each start state of M1 is related to at least one start state of M2;2. for each s1 R s2 and each step s1 a�! (
1;F1; P1) of M1, there exists a weakcombined step s2 adext(M2)=)P (
2;F2; P2) ofM2 such that (
1;F1; P1) vR (
2;F2; P2),and s2 adext(M2)=)P (
2;F2; P2) satis�es the branching condition.3. for each s1 R s2, if s2 a=), then s1 a=).We write M1 vBPS M2 whenever ext(M1) = ext(M2) and there is a branching proba-bilistic simulation between M1 and M2. The kernel of branching probabilistic simulationis denoted by �BPS . utProposition26. 'P and vBPS are compositional. utTo show that a WPCTL formulas are preserved by the di�erent simulation relations, weneed to guarantee that a probabilistic automaton is free from divergences with probabil-ity 1. The de�nition below allows a probabilistic automaton to exhibit in�nite internalcomputation, but it requires that such a behavior can happen only with probability 0.De�nition27. A probabilistic automaton M is probabilistically convergent if for eachexecution automaton H of M and each state q of H, the probability of diverging (per-forming in�nitely many internal actions and no external actions) from q is 0, i.e.,PH [�q] = 0, where �q is the set of in�nite executions of H that pass through stateq and that do not contain any external action after passing through state q. Note that�q is measurable since it is the complement of a union of rectangles. utTheorem28. Let M1 and M2 be two probabilistically convergent, simple probabilisticautomata, and f be a WPCTL formula.1. If M1 'P M2, then M1 j= f i� M2 j= f .2. IfM1 vBPS M2 and f does not contain any occurrence of : and EUwp, then M2 j= fimplies M1 j= f .3. If M1 �BPS M2 and f does not contain any occurrence of EUwp, then M1 j= f i�M2 j= f .Proof sketch. Similar to the proof of Proposition 19. Here the construction of H2 is muchmore complicated than in the proof of Proposition 19 due to the fact that we need tocombine several weak steps. Moreover, we need to show that the branching requirementguarantees the preservation of properties between bisimilar executions. ut7 Concluding Remarks7.1 SummaryWe have extended some of the classical simulation relations to a new probabilistic modelthat distinguishes naturally between probabilistic and nondeterministic choice and thatallows us to represent naturally randomized and/or restricted forms of scheduling poli-cies. Our method of analysis was based on compositionality issues and preservation ofPCTL and WPCTL formulas. We have observed that the distinguishing power of PCTLdoes not change if we allow randomization in the schedulers. Based on that, we haveintroduced a new set of relations whose main idea is that an automaton may combineprobabilistically some of its steps in order to simulate another automaton.



7.2 Re�nement-Based PreordersIn [11] there is a notion of re�nement between probabilistic speci�cation systems stating(up to a notion of image-�niteness that is not important here) that S1 re�nes S2 if eachprobabilistic process system that satis�es S1, also satis�es S2. The notion of re�nementof [11] suggests a new set of preorders based on the relations of Sections 5 and 6. Namely,given a preorder vX, where X ranges over SS, SPS, WS, WPS, BS, BPS, we can de�nea new preorder �X asM1 �X M2 i� for each fully probabilistic M3; if M3 vX M1 then M3 vX M2:Note, for example, that by restricting ourselves to the non-probabilistic case, �SS reducesto complete trace inclusion (including internal actions), while �WS and �BS reduce tocomplete external trace inclusion. Moreover, by removing Condition 3 in the re�nementsof Sections 5 and 6,�SS reduces to trace inclusion, while�WS and�BS reduce to externaltrace inclusion. Thus, we do not expect these preorders to be very strong. Unfortunately,none of the preorders above is compositional.Example 3. Consider the three probabilistic automataM1��� �a ��b||yyyy bEEEE ""P1 �� P2 �� M2�� �� � � �avvmmmmmmmm aQQQQQQQQ((b@@@��b��~~~ b@@@��b��~~~P1 �� P1+P22 �� P1+P22 �� P2 �� M��0 �1� �c1=2||yyyy c1=2EEEE""k �� l ��where the P1-branch performs an action d and reaches a state enabling a new action zwith probability 1=2, the P2-branch performs an action d and reaches a state enabling anew action u with probability 1=2, and the (P1+P2)=2 branch is a combination of P1 andP2. It is easy to see that M1 �X M2 and M2 �X M1 for any X since any combinationof steps of M1 can be obtained from M2 and vice versa; however, it is not the case thatM1kM �X M2kM . Consider the following execution automaton H of M1kM : performaction a followed by action c; if state �0 is reached then perform the left b inM1, performd; k and possibly z, else, perform the right b in M1, perform d; l and possibly u. ClearlyH satis�es M1kM ; however, H does not satisfy M2kM since in M2kM there is no statethat corresponds to the state reached in H after the occurrence of action a. In otherwords H correlates the occurrence of action k with action z, and the occurrence of actionl with action u, whereas such a correlation is not possible in M2kM . utBased on Example 3 we may conclude that the preorders �X are not suitable for thecompositional analysis of probabilistic systems. In reality it is still possible to use similarpreorders if we make some additional assumptions. If we view a scheduler as an adversary,then we can say that an adversary chooses the next step based on the past history of thesystem. In Example 3 we have allowed the adversary to solve an internal choice of M1based on an internal condition of M . However, our counterexample would not work ifthe internal choices of each probabilistic automaton cannot be resolved by looking at theinternal structure of other automata. A similar assumption is common for cryptographicsystems.
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