Paired Simulation of I/O Automata
by
J. Antonio Ramirez-Robredo

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Master of Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2000
(© J. Antonio Ramirez-Robredo 2000. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to
grant others the right to do so.

Author ..
Department of Electrical Engineering and Computer Science
August 30, 2000

Certified Dy

Nancy A. Lynch
NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by ...

Arthur C. Smith
Chairman, Department Committee on Graduate Students

Paired Simulation of I/O Automata
by

J. Antonio Ramirez-Robredo

Submitted to the Department of Electrical Engineering and Computer Science
on August 30, 2000, in partial fulfillment of the
requirements for the degree of
Master of Electrical Engineering and Computer Science

Abstract

An important principle that permeates theoretical work in distributed systems is that
of successive refinement. This principle encourages the algorithm designer to start
with a high-level description of the system, and to successively refine it down to lower-
level implementations. For this purpose, it is common to relate two automata using
a forward simulation relation, which is a mathematical relation between the states of
the automata. Given the importance of this technique, it is desirable to have software
tools to work with simulation relations.

In this thesis, I describe my design of a new simulator for the IOA language with
the capability of simulating pairs of automata together, which are claimed to be
related by a given simulation relation. This simulator is able to verify if the proposed
simulation relation holds in a particular execution of the low-level automaton, given
a step correspondence between the automata. The work to accomplish this goal
included designing language extensions to IOA for specifying the step correspondence
(in addition to the simulation relation) between the automata, as well as a new
approach for resolving single-automaton nondeterminism.

I have provided documentation on the software implementation of the simulator
and necessary support modules so that future work on the IOA toolkit (be it work
on the simulator or on other tools) can be done using this software environment as a
foundation.

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

Acknowledgments

My advisor, Prof. Nancy Lynch, gave me expert direction in all aspects of the project, and
she helped me make this thesis into a much better document than I could have done on my
OWIL.

The work of Dr. Stephen Garland on Larch and the IOA Frontend was a vital prerequisite
to this thesis, and I also wish to thank him for useful conversations and insightful feedback
on my ideas.

This extended simulator could not exist without Anna E. Chefter’s prior work, which served
as an admirable starting point and as an encouraging assurance that the goal was within
reach.

Joshua A. Tauber and Michael J. Tsai gave me a vote of confidence by using the internal
representation code in their own projects, and they made very useful comments. Man-
dana Vaziri was generous in sharing her experience with me, and I had very valuable con-
versations with her. Undergraduate researchers Laura G. Dean, Christine A. Karlovich,
Christopher H. Luhrs, and Ezra Y. Rosen wrote interesting IOA examples which served as
inspiration for work on the simulator, and as useful indicators of future simulator projects.
Laura G. Dean also read drafts of my thesis and pointed out numerous mistakes. More
broadly, I am thankful to the members of the Theory of Distributed Systems group, who
have been most encouraging.

Finally, the quality of my experience at MIT would have been greatly diminished without
the loving support from my family and the encouragement and companionship from my
friends. It is thanks to them that I was able to maintain my wits and finish this work.

Para mis padres.

Contents

1 Introduction
1.1 Theoretical foundation L.
1.1.1 I/O Automata.
1.1.2 Executions and traces
1.1.3 Simulation Relations
1.2 The IOA Toolkit and its motivation
1.3 The IOA simulator

1.4 Notes on terminology

2 Resolution of nondeterminism

2.1 Theproblem
2.2 A previous approach to NDR
2.3 Motivation for a new approach
2.4 Overview of the proposed NDR mechanism
2.5 Other NDR features,
2.6 Futurework

2.6.1 Per-sort choose NDR programs

2.6.2 Per-predicate choose NDR programs

2.6.3 Per-task schedule NDR programs

2.6.4 Articulating simulability conditions

3 Single-automaton simulation

3.1 Limitations of the simulator

3.2 The simulator algorithm
3.3 Invariant checking oL
3.4 Futurework

3.4.1 Simulating explicit compositions

3.4.2 Graphical user interface

Paired simulation

4.1 A language for encoding step correspondences

4.2 An illustrative example of paired simulation

4.3 'The paired simulator algorithm

4.4 Example 1: mutual simulation of simple communication channels

4.5 Example 2: The Peterson mutual exclusion algorithm

4.6 Future worko
4.6.1 Improving the step correspondence language
4.6.2 Interfacing with a computer-assisted theorem prover

4.6.3 Adding syntax for providing a complete proof

Grammar changes for simulator-related IOA extensions

5.1 Labeling of transition definitions

5.2 Labeling of transition definitions

5.3 Labeling of invariants L L

5.4 Resolution of nondeterminism
5.4.1 Syntax for NDR programs
5.4.2 Syntax extensions to automaton and choose

5.5 Paired simulation

The software environment

6.1 Review of the IOA Toolkit architecture
6.2 'The internal representation: design basics
6.3 Theparser
6.4 Adding simulator datatypes oL

42
43
46
48
50
%)
63
63
64
64

65
65
66
66
67
67
68
69

6.4.1 The BasicImplRegistry: an overview

6.5 Specializing the internal representation

6.6 Modifying the simulator user interface

List of Listings

2-2
2-3
2-4
2-5

3-1

3-2

3-3

4-2

4-3
4-4

4-5

4-6
4-7

6-1

List of listings 8
Chooser.ioa v i v i e 22
Chooser.ioa, with NDR 22
Simulator output on Chooser automaton.. 24
NonDet.1sl 25
Chooser.ioa v o v i 26
Undecided.ioa Lo 27
Algorithm for single automaton simulation 36
ManyChoices.ioa 37
Fibonacci.ioa o 38
Simulator output with invariant checking on Fibonacci.ioa. 38

Greeters.ioa: A simple simulation relation with step correspondence. 47

Paired simulator output on Greeters.ioa. 47
Algorithm for paired simulation 48
Channels.ioa o e ol

Paired simulator output on Channels.ioa (Channel2 implementing

Channell). 52
Paired simulator output on Channels.ioa (Channell implementing

Channel2). 53
MutEx.ioa: A mutual exclusion service with implementation o7
Paired simulator output on MutEx.ioa 60
Paired simulator output on buggy version of MutEx.ioa 63
Example usage of the ILParser. 74

6-2 The SortImpl interface. 75
6-3 The OpImpl interface. 76
6-4 'The Entity interface. Lo 76
6-5 The ImplRegistry interface. 76
6-6 The public interface of the BasicImplRegistryclass. 78
6-7 The BasicSortPreImpl abstract class. 82
6-8 'The BasicOpPreImpl abstract class. 83
6-9 The SimEvent interface. oo 88
6-10 The SimListener interface. 88

List of Figures

4-1 Syntax of step correspondence. 45
4-2 fire statements in proof blocks. Lo 45
6-1 Internal representation: interface hierarchy. 73
6-2 Conventions for names of operators in implementation packages. . . . 80

10

Chapter 1

Introduction

One of the most important research activities in the area of distributed systems is
the development of mathematical tools for the formal modeling and verification of
distributed algorithms. This mathematical machinery should permit a precise speci-
fication of allowable behaviors exhibited by a system, as well as applicable methods
for determining the correctness of implementations. One such proposed tool is the
Input/Output Automaton model [7], I/O automaton for short, which is a labeled tran-
sition system that allows for modular construction of concurrent systems from smaller
components. This model has been influential in the distributed systems research com-
munity, and much of the work in the Theory of Distributed Systems (TDS) group

has the formalism of I/O automata at its core.

1.1 Theoretical foundation

In this section I present a brief summary of the principal definitions on which the IOA
Toolkit is founded. All of these definitions have been taken almost verbatim from the
textbook Distributed Algorithms by Nancy A. Lynch [7]. The description below is
terse, and the reader is referred to this textbook for a more detailed discussion of the

definitions and their motivations.

11

1.1.1 I/O Automata

A signature S is a triple consisting of three disjoint sets of actions:
e in(S), the input actions,
e out(S), the output actions,
e int(S), the internal actions.
In terms of these components we also define:
e local(S) := out(S) Uin(S), the locally controlled actions,
e acts(S) :=in(S) U inter(S) U out, all the actions.

An input/output automaton A (I/O automaton for short) consists of five compo-

nents:
e sig(A), a signature,
e states(A), a (not necessarily finite) set of states,
e start(A) C states(A), a nonempty set, known as the start or initial states of A.

e a set trans(A) C states(A) X acts(sig(A)) x states(A) of transitions of A, with
the property that for every state s and every input action 7 there exists a

transition (s, ,s’) € trans(A).

e tasks(A), a partition local(sig(A)) into at most countably many classes.

1.1.2 Executions and traces

An ezxecution fragment of an I/O automaton A is either a finite sequence s, 1, s1, .. ., S,
or an infinite sequence sy, 7y, S1, ..., 7T, Sp, - . ., Of alternating states and actions of A
such that (sg, ki1, Skr1) is a transition of A for each k£ > 0. If sy is a start state
of A, then the execution fragment is called an execution. A state of A is said to be

reachable if it is the final state of a finite execution of A. The trace of an execution

12

fragment «, denoted by trace(a), is the subsequence of a consisting of all external
actions, and it represents the externally-observed behavior of A during the execution

of a.

1.1.3 Simulation Relations

A forward simulation relation (or just simulation relation) from automaton A to

automaton B is a binary relation f C states(A) x states(B) such that:
1. If s € start(A), then f(s) N start(B) # 0.

2. If s is a reachable state of A, u € f(s) is a reachable state of B, and (s, 7, s’) €
trans(A), then there is an execution fragment « of B starting with u and ending

with some u' € f(s'), such that trace(«) = trace(rw),

where f(s) stands for {u: (s,u) € f}. Simulation relations are an important tool in

the study of distributed systems, and their relevance stems from the following:
Theorem. If there is a simulation relation from A to B, then traces(A) C traces(B).

In other words, the existence of the simulation relation shows that A imple-
ments B. Not every trace inclusion can be proved using forward simulation rela-
tions. For this reason, there exist further variants of this definition; see Lynch and
Vaandrager [8] for a number of them. In this document, I will only consider forward

simulation relations.

1.2 The IOA Toolkit and its motivation

Along with the abstract mathematical tools, it is highly desirable to have as a coun-
terpart to the theory a set of software tools to aid with the processes of analysis and
implementation of algorithms. An ongoing project at the TDS group is the creation
of the IOA Toolkit, a suite of software tools that address these concerns. My own

work forms part of this toolkit.

13

At the core of the IOA Toolkit is the programming language IOA, which closely
shadows I/O automata in notation and semantics. The language is described in [3],
[4]. IOA inherits several properties from the I/O automaton model that make it an
unusual programming language; for example, rather than having an explicit flow of
control, executions are specified through actions, which may be enabled or disabled
according to the current state. Multiple actions may be enabled at a given point
in time, and hence this programming language is nondeterministic. Moreover, the
language permits the manipulation of mathematical objects of unbounded size, a
feature that contributes to its lack of orthodoxy. Needless to say, these properties
raise difficult implementation issues. The motivation for these design choices is a
desire to develop systems starting with the strong foundation of the I/O automaton
model. Thus, rather than imposing limitations on the computational model because
of implementation concerns, the approach is to enforce a high degree of closeness to
an a-priori model, hence making the language simple, general, and easy to reason
about. The extra generality has the tradeoff of making the implementation of some
tools more involved. TOA has been specified as an application of the Larch Shared
Language (LSL) [5], which allows the IOA toolkit to tap into the rich theorem-proving
system Larch.

Throughout this document, I will assume some familiarity with the content of the

IOA User and Reference Manual [3].

1.3 The IOA simulator

Anna E. Chefter designed and implemented an [OA tool, called the IOA Simulator [1].
The simulator, given an [OA automaton specification, performs a software simulation
of an execution of the I/O automaton that it represents. This tool is potentially a
useful aid during the design of a system using IOA, since it allows the designer to see
the algorithm in action. One of the difficulties in designing a simulator for IOA is
resolving the nondeterminism present in this language, in order to select an execution

to simulate among all the possible ones.

14

My Master of Engineering thesis project consists of the following:

e Improving the design of the simulator and the mechanisms for resolution of

nondeterminism.

e Extending the simulator so that it allows invariant checking. This is a simple
addition once the simulator exists, since it only entails evaluating each of the in-
variants of an automaton after each step. See Chapters 2 and 3 for a description

of my design regarding this and the previous item.

e Extending the simulator to allow paired simulation: given a simulation relation
between two automata, and a proposed step correspondence, use an execution
of the low-level automaton to induce an execution of the high-level automaton
using the step correspondence, while checking the validity of the simulation
relation. This is the main part of my project. See Chapter 4 for more motivation

on this problem and the way in which I addressed it.

e Developing a software environment that facilitates the implementation of future
extensions of the simulator, and future tools in the IOA Toolkit. An introduc-

tion to the use of this software environment is given in Chapter 6.

1.4 Notes on terminology

I would like to clarify several points regarding the terminology that is used in the rest

of the document

1. Some I/O automaton-related words are used with slightly different meanings,
depending on whether they refer to the abstract I/O automaton model or to
syntactic elements of an automaton specification written in IOA. For instance,
an IOA transition block typically defines a family of transitions of the automaton
that is being modeled, one for each value of its actual parameters and for each
value of the explicit choices that may occur in its effect program. A similar

remark is true for automaton actions and their parameters.

15

2. Throughout this document, the word “simulation” can refer to one of two dif-
ferent notions: on one hand, it means the act of using a software program to
execute one or more /O automata described in IOA; on the other, it refers to a
mathematical simulation relation between two abstract I/O automata. It is usu-
ally clear from the context which of these two meanings is intended; otherwise,
I have used the term “paired simulation” to refer to the software simulation of

mathematical simulation relations (and hence the title of this thesis).

3. A large part of the discussion on resolution of nondeterminism pertains to the
choose keyword in IOA. According to the formal grammar, explicit choices us-
ing this keyword are classed as “value” nonterminals, but I want to avoid the
ambiguity between the explicit choice as a syntactic element and the value of
the choice in a particular execution, and hence I avoid the expression “choose
value”. An alternative expression could be “choose term”, but that is inaccu-
rate since the choose keyword is not valid in every context that a term is valid.
As a compromise, I have settled for the expression “choose statement”: while
not a statement itself, an explicit choice can only appear as the right-hand side

of an assignment, which is a statement.

4. In the context of resolution of nondeterminism, I have made use of Larch code
which is syntactically correct, but whose semantics, as interpreted by the sim-
ulator, do not conform to the semantics of Larch traits; in particular, the im-
plementation uses a pseudo-random number generator, while Larch semantics
dictate a deterministic implementation. This was done for convenience only,
since the mechanism for specifying Larch traits was very close to what was
needed to specify the signatures of certain nondeterministic operators used by
the simulator. I will refer to items defined in this way as pseudotraits, to em-
phasize the contrast with genuine Larch traits. It is plausible to eventually add
an extension to IOA to allow a form of this syntax to be used by the simulator.

Refer to Section 2.5 for the specifics.

16

Chapter 2

Resolution of nondeterminism

One of the central goals of the IOA language is that of high expressivity for math-
ematical modeling of distributed systems. As part of this goal, IOA incorporates a
family of nondeterministic constructs. In order to simulate an automaton, a partic-
ular execution must be chosen, and perhaps the main problem to be solved in this
respect is to design a satisfactory mechanism for the resolution of nondeterminism.
In this chapter I outline some desirable characteristics of such a mechanism, and the
way in which I propose to achieve some of them. I will use the abbreviation NDR!

to refer to resolution of nondeterminism.

2.1 The problem

There are several of sources of nondeterminism in the IOA language; for instance:
e an automaton can have multiple enabled actions in a given state,

e a given enabled action can have multiple transition definitions associated with

it,

e a given transition definition can take arbitrary actual parameter values, as long

as they satisfy its where clause, and,

'nondeterminism resolution

17

e a transition definition can contain one or more choose statements, each of which
may evaluate to an arbitrary value that satisfies the constraint in the where

clause.

From the point of view of an IOA automaton specification, the sources of nonde-
terminism can be all regarded together as a black box that can yield both transitions
to be scheduled and values to be assigned to choose statements in transitions. Thus
the problem of resolution of nondeterminism can be regarded as that of providing
an algorithmic means of obtaining these values and transitions as the need for them
arises during the simulation of an automaton. To make the simulator a useful tool,

it is desirable to make this mechanism:

e Broad. 1t should provide several ways to resolve nondeterminism, each suited
to different situations and applications. For instance, it should allow choices
and transitions to be resolved as deterministic functions of the automaton’s
state, or using a pseudo-random number generator, or by querying the user, or

any combination of these.

e Futensible. It should be sufficiently open-ended that future developers and
advanced users can tailor it to specific needs without too much effort. For
instance, if a new datatype implementation is added to the simulator, it should

be possible to add useful NDR mechanisms to go with it.

e Usable. It should be reasonably easy to use, and it should not place cumber-
some demands upon the user. It is my opinion that this is the most important
of the three points: resolution of nondeterminism is an absolute necessity for
nontrivial uses of the simulator, and it would be unfortunate that a lack of

attention to usability considerations should discourage its use.

2.2 A previous approach to NDR

Anna E. Chefter designed an NDR mechanism for IOA automaton specifications [1].

The essentials of her approach are as follows: for each automaton to be simulated

18

there must exist a determinator specification. To handle choose nondeterminism, the
determinator provides for each choose statement in the automaton a finite set from
which its values are to be drawn. The simulator then uses these values to resolve the
choice, selecting them uniformly at random. To handle transition nondeterminism,
the determinator contains what amounts to a sequential program. This program is
presented as a series of if/then statements, which specify the transitions to sched-
ule. Thus it allows the specification of behavior like: “if any automaton [in some
composition| has more than fifty messages in its buffer, then give it priority to take
a step” [1]. Additionally, determinators provide a way to generate pseudo-random
numbers and query the user for values to be used as parameters to transitions. Be-
sides serving as an NDR mechanism, Chefter’s determinator also has the ability to

annotate scheduled transitions with simulated timing and “weight” information.

2.3 Motivation for a new approach

My own approach to NDR has several similarities with Anna E. Chefter’s method. For
example, the mechanism for resolution of automaton transitions is also presented as a
sequential program that can, among other things, use if/then rules to yield transitions
as a function of the automaton’s state. However, the determinator framework, as

described in [1], has some drawbacks, which I sought to address:

1. In determinators, choices can only be resolved using a pseudo-random num-
ber generator. Thus this mechanism is restrictive, since the value of a choose
statement may be consistently correlated with, say, a state variable of the au-
tomaton, and this might be a useful case to simulate. A second problem is that
the set of admissible values for a given choose statement may vary during an

execution, which is a situation not addressed by this mechanism.

2. A determinator specification has the advantage of being neatly separated from
the automaton itself. In particular, this property yields the benefit that no

changes to the IOA grammar itself are necessary in order to implement them.

19

Unfortunately, it also has the side effect of requiring each choose statement in
the automaton to have a unique name for its dummy variable, so that it can
be unambiguously referenced in the determinator. This is undesirable, since
it requires the designer to enforce this global uniqueness of names, which can

become a source of errors.

3. When there are multiple transition definitions with the same signature, it is
necessary to distinguish among them in some way when referring to them. De-
terminators accomplish this by using the sequential position of the transition
definitions in the automaton. For instance, the determinator can distinguish
between “output myAction:[1]” and “output myAction:[2]”, if there are two tran-
sition definitions for the same output action with name “myAction”. While this
does the job, there is the the possibility of modifying the automaton by altering
the order of the transitions, inadvertently changing the meaning of the deter-
minator. This reliance of the determinator semantics on the syntactic specifics
of the automaton can make it easy for the user to make mistakes, since local-
ized changes with no semantic effects on the automaton (e.g., reordering the

transitions) can modify the semantics of the determinator.

4. The schemes for user interaction and random number generation are fixed as
part of the determinator syntax. For example, there is no method to produce
pseudo-random reals between 0 and 1, and, more importantly, there is no way

to add such a method without modifying the determinator grammar itself.
The ways in which I address these points are as follows:

1. My proposed NDR, scheme allows arbitrary rules for determining each choose
statement. These rules are described as sequential programs which can make

decisions based on the evaluation of arbitrary IOA terms.

2. My proposal requires the programmer to augment the automaton specification
itself with NDR-related information. Namely, it requires a schedule block for

resolving automaton transitions, and a det block for resolving the values of each

20

choose statement. Thus, it needs additions to the IOA grammar itself. However,
since the NDR information is syntactically local to the explicit choices, no global

unique-naming constraint is necessary.>

. In order to address the problem of disambiguation among transition definitions
with the same signature, my proposal adds syntax to IOA for explicitly naming
the transition definitions themselves. For example, now an automaton can
have two transition definitions output myAction case A and output myAction
case B. The token after the new case keyword can be an arbitrary identifier
or a numeral, and it is used in the schedule and det blocks to refer to specific
transition definitions. In this way, a permutation of the transition definitions
does not affect the assignment of the case names, leaving the semantics of the

schedule block intact.

. The schedule and det blocks can evaluate arbitrary IOA terms to decide which
transitions to schedule, or which values to yield for a choice. In addition, they
can evaluate operators whose implementations perform pseudo-random number
generation, or user prompting, to yield a result. This has the advantage that
the NDR mechanism can be extended in essentially the same way that new

datatypes are added to the simulator, as described in Chapter 6.

2.4 Overview of the proposed NDR mechanism

Generally speaking, my approach to NDR is to assign a program, called an NDR

program, to each source of nondeterminism in an automaton. Each such program

is capable of providing values that resolve a choice, or transitions to be scheduled,

depending on the context. Thus there is an NDR program corresponding to every

choose statement in an automaton, and an NDR program for scheduling the actions of

the automaton. In this section I will illustrate the operation of the NDR mechanism

2Contrast this with the situation in paired simulation, in Chapter 4, in which uniqueness of
dummy variable names is required in the specification-level automaton in a simulation relation.

21

using simple examples. Refer to Chapter 3 for a more detailed and general description
of the interpretation of NDR programs by the simulator.

Listing 2-1: Chooser.ioa

automaton Chooser
signature
output actionl, action2(n:Int)
states
chosen: Int % initially arbitrary
transitions
output actionl
eff chosen := choose x where 1 <= x /\ x <= 30
output action2(n)
pre n = chosen

Listing 2-2: Chooser.ioa, with NDR

automaton Chooser

signature
output actionl, action2(n:Int)
states
chosen: Int
transitions
output actionl
eff chosen := choose x where 1 <= x /\ x <= 30
det do
yield 1; yield 2; yield 3
od

output action2(n)
pre n = chosen
schedule do
while true do
fire output actionl;
fire output action2(chosen)
od
od

Consider the IOA code in Listing 2-1. It is an artificial example that exhibits
nondeterminism both from choices and from transitions. It contains a transition
which is always enabled and whose effect nondeterministically chooses a value to
assign to the single state variable. A second transition definition has a parameter,
and it is enabled only when the state variable equals its parameters. This specification
can be augmented with NDR, programs to resolve its nondeterminism, for example,
as shown in Listing 2-2. This example contains the basic features of my approach.

Notice these crucial points:

e The NDR program in the schedule block uses the fire statement to schedule
transitions of the automaton, hence “firing” them. This statement allows the
specification of the type of action (input, output, external) and its parameters,

which may in turn depend on the values of state variables of the automaton.

22

Similarly, the NDR program associated with the choose statement uses the yield

statement to specify the values of the choice.

e The NDR program associated with the choose statement has three successive
yield statements. The semantics are as follows: when the simulator encounters
the choose statement, it will start executing the NDR program until it en-
counters a yield statement. At this point, it will use the value provided by the
statement as the value of the choose statement, and it will remember the current
statement of the NDR program. The next time it encounters the same choose
statement, the simulator will not start its NDR program from the beginning;
rather, it will resume executing it where it left off. Thus, in the example in List-
ing 2-2, the choice will be resolved successively to 1, 2, and 3. Similarly, in the
schedule block, the simulator will remember where it left off after a transition

was fired and resume from there the next time it schedules a transition.?

e Moreover, in the case of choose statements, there is an implicit infinite loop
surrounding the statements of the NDR program. Because of this, the choose
statement in the example resolves to the values 1, 2, 3, 1, 2, 3, etc. This
convention is not used in the case of the schedule block in the automaton, but

the same effect can be obtained by explicitly writing an infinite loop, as shown.

There is a rationale for these design choices. I expect it to be common for a given
choose statement to be resolved in the same way each time it is encountered:
say, by invoking the same pseudo-random number generator, by prompting the
user in the same manner, or by computing the same deterministic function. This
is reflected in the NDR program as an infinite loop around a statement, which
would be impractical for users to specify manually if this is indeed a common
case. This is not a desirable convention in the schedule block: many automata do
not have infinite executions, and for them, one must be able to express schedules

that eventually stop producing transitions and halt. An implicit infinite loop

3The semantics of yield and fire statements were inspired by the iterator construct in the pro-
gramming language CLU. [6]

23

would disallow this.

e The simulator requires the NDR programs to only fire transitions that are en-
abled, and yield choice values that make the corresponding where clause true. If
the simulator encounters a situation where either of these conditions does not

hold, it will issue an error message and halt the simulation.

Listing 2-3 shows the output of the simulator on this automaton. The simulator
takes as command line parameters the number of transitions to simulate, the name
of the automaton to simulate, and the name of a file containing the intermediate

language form of the IOA specification. For every step taken by the automaton (in-

Listing 2-3: Simulator output on Chooser automaton.

% java ioa.simulator.shell.SimShell 5 Chooser Chooser.il
[[[[begin initialization [[[[

EVENT: initialized simulator
%hh% Modified state variables:

chosen --> 0
111] end initialization 1]11]
[[L[[begin step 1 [LLL

EVENT: transition: output actionl in automaton Chooser
%%h%h Modified state variables:

chosen --> 1
1111 end step 1 1111
[LL[vegin step 2 [[L[

EVENT: transition: output action2(1) in automaton Chooser
%%%% No modified state variables
1111 end step 2 1111
[[L[begin step 3 [[LL

EVENT: transition: output actionl in automaton Chooser
%hh% Modified state variables:

chosen --> 2
1117 end step 3 1111
[[L[begin step 4 [LLL

EVENT: transition: output action2(2) in automaton Chooser
%#hh% No modified state variables
1111 end step 4 1111
[[L[begin step 5 [LLL

EVENT: transition: output actionl in automaton Chooser
%%h%h Modified state variables:

chosen --> 3
1111 end step 5 1111

No errors

cluding the initialization step), the simulator reports the transition that was executed,

and the state variables that changed.

24

2.5 Other NDR features

There are a few important aspects of the NDR mechanism that are not illustrated by

this example:

1. A schedule NDR program can fire input actions. This is provided for conve-
nience, since otherwise it would be necessary to compose the automaton with an
environment automaton in order to provide a full schedule. Once a satisfactory
mechanism for simulation of compositions is in place, this feature might not be

as important.

2. It is sometimes desirable to resolve choices and schedule transitions using pseudo-
randomness or user input as information. This issue can be addressed by pro-
viding extra operators that evaluate as random number generators and user
prompters. One way to do this is to use a pseudotrait! such as the one in
Listing 2-4.

Listing 2-4: NonDet.1sl

NonDet: trait
introduces
randomNat: Nat, Nat -> Nat
% uniformly random natural number in given range
queryNat: Nat, Nat -> Nat
% query user for natural number in given range
randomInt: Int, Int -> Int
% uniformly random integer in given range
queryInt: Int, Int -> Int
% query user for integer in given range
randomBool: -> Bool
% random boolean (each value with probability 0.5)

Each of these operators is either currently implemented by the simulator, or is
easy to implement with the current software support. Using them, an alternative

way of resolving the nondeterminism of Chooser is as follows:

4T would like to emphasize that LSL traits are meant to model deterministic mathematical oper-
ators, and that therefore this is not an orthodox use of Larch. For example, a zero-ary operator in
an LSL trait represents a constant, and does not admit implementations that evaluate differently at
different times. Because of this, the NonDet “trait” is not meant to be used in a general IOA context
(e.g., inside an effect block); rather, it was introduced to be used only in NDR programs. This turns
out to be a convenient and flexible way to incorporate these capabilities. For example, users of the
simulator can extend the NDR capabilities in the same way that they can add implementations of
specialized operators, as described in Chapter 6. I use the term “pseudotrait” to refer to this and
other objects that are syntactically like LSL traits, but whose implementations by the simulator do
not conform to LSL semantics. A possible future expansion would be to expand the syntax of IOA
to allow declarations similar to the NonDet pseudotrait without abusing the semantics of LSL.

25

Listing 2-5: Chooser.ioa

uses NonDet

automaton Chooser

signature
output actionl, action2(n:Int)
states
chosen: Int
transitions
output actionl
eff chosen := choose x where 1 <= x /\ x <= 30
det do
yield randomInt(1,30)
od

output action2(n)
pre n = chosen
schedule do
while true do
fire output actionl;
if randomBool then fire output action2(chosen) fi
od
od

In a similar way, user prompting can be used instead of randomness.

3. There are circumstances in which it would be tedious to write a complete sched-
ule by hand, and in which the simulator by itself can find an appropriate transi-
tion to schedule. The mechanism supports the statement fire with no arguments.
When the simulator encounters a statement of this kind in an NDR context, it

will:

(a) examine in turn each locally-controlled transition definition of the automa-
ton among those whose actual parameters are constants. For each of them,

evaluate the precondition to see if it is enabled, and,

(b) among those that are enabled, choose one uniformly at random and fire it

in the usual way.

4. In TIOA, multiple transition definitions can share the same action type, name
and actual parameter sorts. In this scenario, the form of the fire statement
shown in Listing 2-2 would be ambiguous. This problem is solved by using
the case keyword in the transition definition to specify a name; it can be used,
for example, as in Listing 2-6. The case name of the transition is local to
the primitive automaton in which it is defined, and it can be a number or an
alphanumeric identifier. Using the case identifier, the NDR program in the

schedule block can distinguish between the two transitions.

26

Listing 2-6: Undecided.ioa

automaton Undecided
signature
output hello
states
b: Bool
transitions
output hello case 1
eff b := true
output hello case 2
eff b := false
schedule do
while true do
fire output hello case 1 ;
fire output hello case 2
od
od

2.6 Future work

The above-described syntax for resolution of nondeterminism, while flexible, might be
regarded as requiring too much work for its use. For example, it demands that the user
provide an NDR program associated with each choose statement in an automaton,
which could result in repetitive code fragments scattered over the automaton’s code,
or in a schedule block that is too complex. Here I present some possible future
additions to the current NDR syntax that would help remedy this to some extent.
None of the extensions discussed here have been implemented, and the following

chapters are independent of this section.

2.6.1 Per-sort choose NDR programs

One natural extension of the choice resolution syntax is the ability to specify a default
NDR program associated to a given sort. This kind of feature would require a small
effort to implement. One approach is to use syntactic sugar,” making code like the

following:

SStrictly speaking, this transformation would not be “syntactic” sugar, since its implementation
requires static semantic information on the types of choose variables.

27

automaton A

signature

internal doThing
states

x,y @ Int
transitions

internal doThing

eff x := choose ;
y := choose det do yield 3; yield 4 od

choosing

for w:Int do yield randomInt(-100,100) od

stand for:

automaton A
signature
internal doThing
states
x,y @ Int
transitions
internal doThing
eff x := choose det do yield randomInt(-100,100) od ;
y := choose det do yield 3; yield 4 od

Thus, the choosing block would specify default NDR programs for sorts used in the
automaton; these programs could be overridden by NDR programs explicitly provided
in choose statements. Another possibility is to allow a global choosing block, besides
per-automaton ones. A mechanism of this style would perhaps go a long way towards
avoiding the repetitive NDR specification of many common cases. An adequate de-
velopment of this idea would include a specification of the semantics in the case that

some of the choose statements have where clauses.

2.6.2 Per-predicate choose NDR programs

In a given choose construct, of the general form

choose x where P(x),

28

it could be advantageous to associate a default NDR program not with the sort of
the choose statement, but with the predicate P. For example, many common integer-
valued choose statements have where predicates that restrict the range of the chosen
value to some fixed finite set S of numbers, such as an interval. It is redundant, given
a collection of choose statements restricted in this way, to specify NDR programs for
each of them, if all that is wanted is to choose, say, a random element of S each time
the choice is encountered. With the current mechanism, reasonable programs can

result in repetitive NDR-augmented IOA code such as the following:®

automaton A
transitions

eff yl := choose x where 0 < x A x < 20
yield randomInt(0,20) ;
y2 := choose x where 10 < x A x < 30
yield randomInt(10,30) ;
y3 := choose x where -6 < x A x < 28
yield randomInt(-6,28) ;
y4 := choose x where -20 < x A x < 20
yield randomInt(-20,20)

Each NDR program is essentially a repetition of the where clause, and it amounts
to giving the simulator a license to select the value of the choose randomly from
the corresponding interval. A way to avoid this repetition is to develop a language

extension similar to the following:

automaton A
transitions

eff yl := choose x where 0 < x A x <20 ;
y2 := choose x where 10 < x A x < 30 ;
y3 := choose x where -6 < x A x < 28 ;

6This example also illustrates some syntactic sugar currently supported by the syntax: the con-
struct “choose. .. yield t” is equivalent to “choose. .. det do yield ¢t od”. See Chapter 5 for the detailed
grammar.

29

y4 := choose x where -20 < x A x < 20;

choosing
for g:Int where p:Int < g A q < r:nt
do yield randomInt(p,r) od

The choosing block would associate NDR programs to families of predicates, specified
in the form of patterns, which can appear as where clauses. An implementation of this
feature is likely to require typed pattern matching, and perhaps to place restrictions
on the types of predicates P that are acceptable in this mechanism. I believe this is a
promising extension, since it would result in the power to develop an “NDR library”
of useful where predicates in choices (e.g., real and integer intervals, finite sets, primes,
etc.) with a variety of methods to resolve their nondeterminism, and the user would
only have to select the NDR method from this library. It would be plausible to make

the feature described in Section 2.6.1 a special case of this mechanism.

2.6.3 Per-task schedule NDR programs

A natural extension to the schedule block is to allow a separate NDR, program for
each task of the automaton. This raises the questions of how to allocate execution
steps among the provided programs, and what to do in the case when some of the

tasks are parameterized.

2.6.4 Articulating simulability conditions

It would be useful to define a suitable set of syntactically-specified “simulability con-
ditions” for IOA automaton specifications. These conditions should be narrow enough
such that an automaton that satisfies them can be executed with few user-specified
NDR decorations, or none at all; they should also be broad enough that writing IOA
specifications satisfying the conditions is not difficult, and possible for many interest-
ing cases. This is clearly an open-ended problem. In this section, I will discuss a few

possible simulability conditions, in decreasing order of restrictiveness.

30

1. Disallow logical quantifiers, choose and for statements, and disallow automata
that have actions with formal parameters. This permits an easy algorithm
for simulation: iterate through the transition definitions, and for each of them
evaluate the corresponding precondition; this can be done easily due to the
absence of quantifiers. Choose a transition (perhaps randomly) among those

whose precondition evaluates to true, and execute it.

2. As in 1, but allow formal parameters in actions, as long as they only appear
as constant values in transition definitions. For example, a transition defini-
tion headed by “output act(1,false)” is allowed, but not one headed by “output
act(n:Int, b:Bool)”. This is essentially the same as 1, and it makes the automaton

easy to simulate for the same reasons.

3. As in 2, but allow arbitrary formal parameters in actions, as long as transition

definitions are restricted to the form:

actionType actionName(vary : sorty,varg : sorty, ..., vary, : sorty,)
pre vary =termi A
vary = termso N

var, = termy N\
restPred
eff ...

where
e cach term; is an IOA term which depends only on the state variables of
the automaton, and not on any of the variables var;, and
e restPred is an IOA predicate (without quantifiers).
This has the result that at most one value of the variables satisfies the pre-
condition in a given state. In this way, the simulator can, for each transition,

evaluate each term; and verify whether restPred holds after the var; have been

substituted by the results of evaluating the term;.

31

4. As in 3, but relax the restriction on the form of transitions as follows:

actionType actionName(vary : sorty,varg : sorty, ..., var, : sorty,)
pre term| =term; A
terml, = terma A

term), = term, A
restPred
eff ...

where

e each term) is of the form op,;(var;,t;1,...,tir,), op; is an operator, and the

ti; are terms involving only the state variables of the automaton,

e cach term; is an IOA term involving only the state variables of the au-

tomaton, and,

e restPred is an IOA predicate (without quantifiers).

This sort of automaton would be simulable, provided that the scheme for op-
erator implementations presented in Chapter 6 is extended to allow certain
operators to implement a search operation. Given values a;; and c of the ap-
propriate sorts, this operation would yield a value b;, if one exists, such that
op;(bi, ai1,...,a;,,) = c. This operation might not be implemented (or it might
be impossible to implement efficiently) for all operators, and only those for

which it is implemented would be allowed in this context.

The simulator could then, for each transition, evaluate each term,;, invoke the
appropriate search operation on the implementation of operator op;, and if
the search operation is valid for all 7, evaluate the predicate restPred after
substituting each of the results of the search operations into their corresponding
var;. Subsequently, the simulator can then select a transition definition with

parameters among those for which this test is successful.

It is clear that further relaxations of these simulability conditions are conceivable,

especially in the presence of the search operation. For example, this operation would

32

allow the evaluation of a class of existential quantifiers. I have the impression that
restriction 3, along with versions of the NDR extensions proposed in the preceding
paragraphs, would go a long way towards making the simulator easy to use.

It would be useful to investigate simulability conditions that are preserved by
Anna E. Chefter’s composer algorithm ([1]; see also remarks in Section 3.4.1). A
satisfactory simulability condition that is preserved by the composer algorithm would
greatly expand the scope of the simulator, since it would reduce the amount of nec-
essary user exposure to the output of the composer, which is possibly more difficult

to understand.

33

Chapter 3

Single-automaton simulation

In this chapter I describe how the simulator is designed, both regarding the I0OA
language support that it requires, and the algorithm that it follows to simulate an
automaton. Additionally, I present examples of how the simulator is used. I do not
treat details such as the management of operator and sort implementations. For more
information regarding this and other software-related issues of the simulator, refer to

Chapter 6.

3.1 Limitations of the simulator

The current implementation of the simulator has the following limitations:

1. No existential or universal quantifiers are permitted anywhere in the IOA au-
tomaton to be simulated. Often, the effect of an existential quantifier can be
achieved using a suitably constrained choose statement, as described in [1],
thereby reducing the problem of evaluating such quantifiers to the problem of
nondeterminism resolution for choose statements. Evaluating universal quanti-

fiers would require an essentially different mechanism.

2. There are restrictions on the actual parameters in transition definitions: each
of them must be either a pure variable, or a term that contains no variables,

so that it evaluates to a constant. Again, as explained in [1], this is not a

34

real restriction, since expression parameters can be replaced by variables that
are suitably constrained by the where clause of the transition. It would not be
difficult to modify the current implementation to remove this constraint, but
some corresponding changes to the NDR mechanisms would be necessary. I did

not investigate this possibility.

. No for loops are permitted anywhere in the automaton to be simulated. The IOA
for construct is very powerful and nondeterministic. There is no straightforward
way to reduce its execution to the problem of choose determination, and it
probably requires specialized language extensions and support from the type
implementations. Additionally, the presence of choose statements inside the

body of a for loop would raise serious questions regarding determination.

. The simulator only supports primitive automaton specifications. Chefter’s the-
sis [1] describes a transformation algorithm (the composer) which takes an IOA
automaton composition specification as an input, and results in an IOA specifi-
cation of a primitive automaton that is equivalent to it. This kind of algorithm,
if implemented, would be usable with this simulator, assuming that the user is
willing to provide the necessary NDR programs for the output of the composer.
See Section 3.4.1 for further discussion on this approach to simulating composite

automata.

3.2 The simulator algorithm

A good way to understand how the simulator interprets the NDR programs is through

a description of the algorithm that it follows. Page 36 contains a pseudo-code de-

scription of this algorithm. It is organized in three procedures. The main one is

SmmuLaTE(A), where A is the primitive automaton specification to be simulated. This

procedure in turn uses two auxiliary ones, also presented in the figure. The algorithm

does not describe the details of evaluating I[OA programs or terms and focuses on the

NDR mechanisms. Evaluating a term requires every operator in the term to have a

35

simulator implementation; refer to Chapter 6 for the details on matching operators

and sorts with their implementations.

Notation
A.ndr The schedule NDR program for automaton specification A.
A.pc A program counter for A.ndr.
Its value can be a statement in A.ndr or null.
A.invs The list of invariants of A.
A.simpleTrans The set of transition definitions in A with constant actual parameters.
t.pre The precondition term for a transition definition ¢.
t.where The where term for a transition definition ¢.
t.eff The effect program for a transition definition ¢.
c.ndr The choice NDR program for a choose statement c.
c.pc A program counter for c.ndr.
Its value can be a statement in c.ndr or null.
c.var The dummy variable in a choose statement c.
c.where The where term in a choose statement c.

trans(A,t,n,c¢) The transition definition of type ¢, name n and case
label ¢ in automaton A.
eval (t) The result of evaluating a term ¢.

* SIMULATE(A):
[A: IOA primitive automaton |
initialize a program counter c.pc for each choose statement ¢ in A
initialize a program counter A.pc for the schedule block of A
while A.pc # null do
call EXECUTESCHED(A,A.pc)
advance A.pc to the next statement in A.ndr o

* EXECUTESCHED(A4, s):
[A: IOA primitive automaton
s: statement in A.ndr]
if s is not a fire statement then
execute s (s is an assignment, a conditional, or a while construct;
the semantics for these types of statements are the obvious ones)
else if s = “fire actionType actionName(actionActuals) case ¢’ then
let ¢ := trans(A, actionType, actionName, c)
assign actionActuals to the formal parameter variables of ¢
if eval(t.pre) = true and eval(t.where) = true then
execute the statements in t.eff following IOA semantics;
when a choose statement ¢ needs to be evaluated, call EVALCHOICE(c)
else
halt with an error
for each ¢ € A.invs such that eval(t) = false do
issue an invariant failure warning
else if s = "fire” then
let S = {t € A.simpleTrans| eval(t.pre) = true}
if S# 0 then
choose ¢t € S uniformly at random
execute the statements in t.¢ff following IOA semantics;
when a choose statement ¢ needs to be evaluated, call EVALCHOICE(c) ©

36

* EVALCHOICE(c):
[¢ choice statement |
forever do
if c.pc is not a yield statement then
execute c.pc (c.pc is an assignment, a conditional, or a while construct)
advance c.pc to the next statement in c.ndr
else if c.pc is of the form “yield ¢, where ¢ is a term then
let v = eval(t)
assign v to c.var
if eval(c.where) # false then
advance c.pc to the next statement in c.ndr
exit EVALCHOICE
else
halt with an error ©

The procedure SimuLATE initializes a program counter for each NDR program in the
automaton, including the schedule block and each choose statement. This means that
the algorithm keeps a separate NDR program counter for each choose statement; this
does not necessarily translate to keeping a separate program counter for each actual
choice in the abstract automaton that is being simulated. For example, consider the
following code:

Listing 3-1: ManyChoices.ioa

uses NonDet
automaton ManyChoices
signature
internal doThing(n:Int)
states
m: Int
transitions
internal doThing(n)
eff m := choose det do yield 1; yield 2 od
schedule do while true do
fire internal doThing(randomInt(1,100))
od od

The choose statement in the transition for doThing actually represents an infini-
tude of choices, one for each value of the parameter n for doThing. A single program
counter is kept for all of them, and one must bear this in mind when designing NDR
programs. In this case, the consequence is that this choose statement is always re-
solved alternatively to 1 and 2, regardless of the parameter of the transition. An
alternative architecture is possible in this respect: the simulator could dynamically

allocate a new NDR program counter for each new set of parameter values that it

37

encounters for the transition, keeping all the allocated program counters in a table

keyed by the parameter values. This raises concerns of memory efficiency, but is an

interesting possibility.

3.3 Invariant checking

The simulator has the capability of checking

— Listing 3-2: Fibonacci.ioa — whether the invariants of an automaton, stated

automaton Fibonacci
signature
internal compute
states
a:Int := 1,
b:Int := 0,
c:Int :=1
transitions
internal compute
eff a :=b ;
b :=c ;
c:=a+b

% true invariant:

invariant A of Fibonacci:

a+b=c

% false invariant:

invariant B of Fibonacci:

a-b=c

using IOA syntax, hold throughout an execution.
This is done simply by evaluating each of the in-
variants found in the IOA specification after each
transition is executing, and issuing a warning mes-
sage if any of them fail.

The code in Figure 3-2 is an IOA specification
of an automaton, along with two proposed invari-
ants of its state and suitable NDR programs.! Fig-

ure 3-3 presents the corresponding output of the

simulator; this output shows that one of the invariants did not hold on this particular

execution.

Listing 3-3: Simulator output with invariant checking on Fibonacci.ioa.

% java ioa.simulator.shell.SimShell 5 Fibonacci Fibonacci.il

[[[[begin initialization [[[[

EVENT: initialized simulator

%h%%h Modified state variables:

c —->1
b -->0
a -->1

111] end initialization 1111
[[L[begin step 1 [LLL

EVENT: transition: internal compute in automaton Fibonacci

EVENT: invariant B failed
%h%%h Modified state variables:

c ——>1
b-->1
a -->0

1111 end step 1 1111
[[L[begin step 2 [LLL

EVENT: transition: internal compute in automaton Fibonacci

EVENT: invariant B failed

!This IOA specification gives names to the invariants, using a syntax that is not part of IOA
as described in [3]. See Chapter 5 for a description of this extension. It was added merely for the
convenience of allowing the simulator to refer to invariants by name.

38

%h%%h Modified state variables:

c --> 2
b -->1
a-->1

1111 end step 2 1111

[LLL begin step 3 [LLL
EVENT: transition: internal compute in automaton Fibonacci
EVENT: invariant B failed

%%kt Modified state variables:

c -->3
b -->2
a -->1

1111 end step 3 1111

[[L[begin step 4 [LLL
EVENT: transition: internal compute in automaton Fibonacci
EVENT: invariant B failed

%hhh Modified state variables:

c —->5
b -->3
a --> 2

1111 end step 4 1111

[[[[begin step 5 [[LL
EVENT: transition: internal compute in automaton Fibonacci
EVENT: invariant B failed

%hhh Modified state variables:

c -->38
b -->5
a --> 3

1111 end step 5 1111

No errors

3.4 Future work

In this section I present areas in which the NDR mechanism described above is not

entirely adequate, and outline possible directions of future improvement.

3.4.1 Simulating explicit compositions

Currently, the simulator cannot handle composite automata directly. As suggested

above, it is possible to do the following:

1. Using an implementation of Chefter’s composer transformation, turn an explicit

IOA composition of automata into an IOA primitive automaton specification.

2. After applying the composer, manually edit its output to augment it with the

NDR programs that are requisite for simulation by this implementation.

39

While this approach would certainly work, it raises some usability considerations.
For one, it is reasonable that users of the simulator will want to specify the nondeter-
minism resolution directly in the vocabulary of an explicit composition. Running it
through the composer results in an equivalent automaton that, however, is likely to be
more complex than the original input. Moreover, the composer will introduce extra
variables and transitions that might obscure the function of the original automaton,
making the task of specifying the NDR programs more difficult. I would like to stress
the importance of usability: simulating an I/O automaton is not conceptually a hard
problem, and it would be a mistake to make a simulator that is unnecessarily difficult
to use. In this light, I think that an interesting direction of future research is to
extend the simulator so that it can deal directly with (perhaps restricted) explicit

compositions.

3.4.2 Graphical user interface

Graphical user environments have become the norm for complex software that requires
user interaction. The simulator could benefit greatly from a well-designed graphical

interface. For example, it could be possible to:

1. Graphically represent the state of the automata being simulated.
2. Use dialog boxes to query the user when necessary for NDR purposes.

3. Allow the user to change the NDR parameters of the automata in between

simulations, without manually going back to the source and front-end.

4. Allow the user to select which invariants should be checked and which should

be ignored.

The simulator’s software design already has some mechanisms that should be useful
for a graphical user interface implementor; for example, it allows “listeners” to be
registered. A listener is a Java object which is notified whenever an event occurs
in the simulator. For example, the failure of an invariant and the execution of a

transition are some of the events that can be handled in this way. A listener could, in

40

particular, use the event notification to update the graphical display in response to
particular types of events. This event/listener architecture could be further refined
to allow a given listener to receive only a particular subset of the events. Refer to

Chapter 6 for more information.

41

Chapter 4

Paired simulation

In the study of distributed systems, it is common for complex systems to be analyzed
through successive refinements: in the presence of an abstract specification A, one
would like to show that another specification B is an implementation of A. If A and

B are [/O automata, this is modeled by the statement that
traces(B) C traces(A).

To prove a statement of this form, it is almost inevitable to use an argument by
induction over the length of an execution of B. This inductive reasoning on automaton
executions has been abstracted, yielding the method of simulation relations. Using
this method, one seeks to construct a simulation relation f from B to A, as described
in Section 1.1.3.

The IOA language includes syntax for asserting simulation relations between au-
tomaton specifications. One of the goals of IOA is to provide software tools to assist
in the analysis of I/O automata. For example, given a proposed simulation relation
f from B to A, it would be useful to test its validity when restricted to a particular
execution of B. As in the case of invariants, a single execution in which f is observed
not to hold would suffice to show that f is invalid. While continued verification of
f in different executions of B does not prove the correctness of f, it does provide

empirical evidence that f may be true, before the user spending the necessary effort

42

to prove its correctness.

In this chapter, I describe how the simulator described in Chapter 3 was extended
to allow simulation of a pair of automata related by a mathematical simulation rela-
tion. The central problem here is this: the simulation relation itself, being merely a
predicate that relates the states of two automata, is not sufficient to specify how each
step in the implementation automaton corresponds to a sequence of steps in the spec-
ification automaton. In general, there might be multiple step correspondences that
realize a given valid simulation relation between automata, and even if there is only
one, it can be difficult to find it. From this point of view, the problem of deriving
a specification-level execution from an implementation-level execution is analogous
to that of deriving a deterministic execution of a single automaton from a specifica-
tion that allows nondeterminism. Not surprisingly, the problem of programmatically

specifying a step correspondence admits a similar solution.

Related work Jonsson, Pnueli, and Rump [9] define a new technique for proving
trace inclusions between abstract transition systems. The method consists in defining
a transducer, which takes as input an execution of the implementation-level system
and outputs a corresponding execution of the specification-level system. They prove
a soundness theorem for this method, which states, in essence, that the existence of a
correct transducer between the systems implies trace inclusion. While the transducers
used in [9] are mathematical constructs, this idea suggests doing software simulation

of a pair of automata while verifying a step correspondence.

4.1 A language for encoding step correspondences

A step correspondence needs to specify, for a given low-level transition, a high-level
execution fragment such that the simulation relation holds between the respective
final states of the transition and the execution fragment. Thus, a step correspon-
dence can be seen as a “attempted proof” of the simulation relation, missing only

the reasoning that shows that the simulation relation is preserved. To specify the

43

proposed proof of a simulation relation, I extended the current syntax of the forward
simulation IOA construct to include a new section called proof,! for specifying the step
correspondence. This section contains one entry for each possible transition defini-
tion in the low-level automaton, and each entry encodes an algorithm for producing
a high-level execution fragment, using a program similar to the NDR programs used
in automaton schedule blocks. In addition to these entries, the proof section also con-
tains an initialization block, which specifies how to set the variables of the high-level
automaton given the initial state of the low-level automaton, and an optional states
section that declares auxiliary variables used by the step correspondence.

Figure 4-1 shows the general high-level structure of a simulation proof encoded
using this language. Note that this syntax extends the syntax for forward simulation
relations in IOA. Some of the sections in the proof block have a more flexible syntax
than is depicted here, and some can be omitted; refer to Chapter 5 for the detailed
grammar. The states block introduces auxiliary variables used in the proof, and their
initial values. The initially block specifies how to initialize the state variables of the
specification automaton as a function of the implementation automaton’s initial state,
so as to satisfy the simulation relation.

Each proofEntry, is either the keyword ignore or a proof program, surrounded by do
and od delimiters, according to the grammar rules for SimProofProgram as detailed
in Chapter 5. Such a program is essentially an NDR program, of the form allowed
in an automaton’s schedule block, except that the fire statements must now provide
additional information to resolve the choose statements of the specification automa-
ton. If a proof program is present, the simulator will execute it from beginning to
end to produce a high-level execution fragment for that case, using the fire statements
to schedule transitions in the specification automaton. A proof entry equal to ignore

is equivalent to a proof program with no statements, and it is used to represent an

Tt was Dr. Stephen Garland who suggested calling the step correspondence a “proof”, and
making it a new part of the simulation relation definition; my original idea was to append the
correspondence to the low-level automaton, which would not have been as clean a solution. It is
plausible to further extend this syntax to include a complete proof, in a form suitable for automated
proof verification.

44

forward simulation
from autImpl to autSpec :
simPredicate
proof
states
auzVary . sortq,
auxVarg . sorto,

auzVar,, : sorty,

initially
v1 = termy;
vy = termy;
vy = termy,

for actType, actName;(actFormalsy)
case caseld;
proofEntry,
for actTypey actNamey(actFormalss)
case caselds
proofEntry,

for actType, actName,(actFormals,)
case caseld,
proofEntry,

Figure 4-1: Syntax of step correspondence.

fire actionType actionName (actionActuals)
case caseld
using term; for vy,
termy for vy,

term,, for vy

Figure 4-2: fire statements in proof blocks.

45

empty high-level execution fragment.

The fire statements allowed in proof programs have the structure depicted in
Figure 4-2. This general fire statement has the meaning: “schedule the transition
of type actionType, name actionName with actual parameters actionActuals, using
the values of the terms termq,...,term, to resolve the choose statements in the
transition’s effect having dummy variables vy, ..., v,”. If present, the caseld label is
used to disambiguate between transition definitions with the same signature.

This design imposes a constraint not present in the single-automaton case: it must
be required that, for a given transition definition in the specification automaton, the
choice statements in it have dummy variable names which are distinct. While in
general it is undesirable to place unique-naming constraints for local dummy variables,
[justify this design decision by arguing that, in the case or paired simulation, these
are not just dummy variables, but serve also as natural names for the choices in a
high-level transition. An alternative design would be to add syntax for explicitly

naming the choice statements.

4.2 An illustrative example of paired simulation

Listing 4-1 contains a simple IOA specification containing a simulation relation with
everything necessary for it to be executed. The automaton GreeterSpec is a specifica-
tion for automata that produce the output action hello any number, perhaps infinite,
of times. The automaton FiniteGreeter is a specialization of this automaton that only
produces a finite (but arbitrary) number of hello outputs. FiniteGreeter has exactly
one choice point, which occurs in its initialization of the maxGreets variable. To be
able to simulate it, I provided an NDR program for it, consisting of the program that
yields a random integer in the range 1...100 as the value of the choice.? A point to
notice here is that the choose statement in GreeterSpec’s transition definition has a

dummy variable even though it does not have a where clause constraining it; this is

ZNote that the semantics of FiniteChooser allow it to output any finite number of hello actions;
the addition of the yield does not change these semantics: it merely modifies the behavior of the
simulator, in this case by having it choose a random number in that particular range.

46

necessary if the simulation proof is to refer to it by name. This is another necessary
[IOA grammar change for paired simulation, and is described in Chapter 5.

Listing 4-1: Greeters.ioa: A simple simulation relation with step correspondence.

uses NonDet

automaton GreeterSpec
signature
output hello
states
stillGoing: Bool := choose
transitions
output hello
pre stillGoing
eff stillGoing := choose sg

automaton FiniteGreeter
signature
output hello
states
maxGreets: Int := choose yield randomInt(1,5),
count: Int := 0
transitions
output hello
pre count < maxGreets
eff count := count + 1

forward simulation from FiniteGreeter to GreeterSpec :
GreeterSpec.stillGoing <=>
(FiniteGreeter.count < FiniteGreeter.maxGreets)
proof
initially
stillGoing := (FiniteGreeter.count < FiniteGreeter.maxGreets)
for output hello do
fire output hello
using (FiniteGreeter.count < FiniteGreeter.maxGreets) for sg
od

Listing 4-2 is the output of the paired simulator on this IOA specification. As in
the case of non-paired simulation, it outputs the transitions taken and state variables
modified for every step of the implementation automaton. In addition, it outputs the
transitions of the specification automaton induced by each implementation step. For
each transition taken in either automaton, the simulator outputs the variables that
were changed by the transition’s effect. The absence of simulator error messages in the
output indicates that the simulation relation was verified to hold, in this particular

run, with this proposed step correspondence.

Listing 4-2: Paired simulator output on Greeters. ioa.

% java ioa.simulator.shell.PairedShell 5 FiniteGreeter GreeterSpec Greeters.il
[[[[begin initialization [[[[
EVENT: initialized simulator
%hht Modified state variables for impl automaton:
count --> 0
maxGreets --> 2
%hhh Modified state variables for spec automaton:
stillGoing --> true
111] end initialization 1111
[[[[begin implementation step 1 [[[[

47

Executed impl transition: transition: output hello in automaton FiniteGreeter
%hhh Modified state variables for impl automaton:

count --> 1

Executed spec transition: transition: output hello in automaton GreeterSpec using true for sg
%%kt Modified state variables for spec automaton:

stillGoing --> true

1111 end implementation step 1]1]11]
[[[[begin implementation step 2 [[[[

Executed impl transition: transition: output hello in automaton FiniteGreeter
%#hht Modified state variables for impl automaton:

count --> 2

Executed spec transition: transition: output hello in automaton GreeterSpec using false for sg
%hhh Modified state variables for spec automaton:
stillGoing --> false
1111 end implementation step 2 111]
[[[[begin implementation step 3 [[L[
EVENT: execution ended
1111 end implementation step 3 1111

>>>> No errors

)

4.3 The paired simulator algorithm

As I did in Chapter 3 for the single-automaton case, here I present pseudocode for

the paired simulator. The pseudocode is organized into several procedures, of which

SimuLATEPAIR is the main one.

Notation

R.proof
R.impl
R.spec

t.pre
t.where

t.eff

c.var
c.where

trans(A,t,n,c)
eval (t)
proofProg(R, t)

The proof block in simualtion relation R
The implementation-level automaton in simulation relation R
The specification-level automaton in R

The precondition term for a transition definition ¢.
The where term for a transition definition ¢.
The effect program for a transition definition t.

The dummy variable in a choose statement c.
The where term in a choose statement c.

The transition definition of type ¢, name n and case label ¢ in automaton A
The result of evaluating a term t.

The proof program corresponding to ¢ in R.proof.

t must be a transition of R.impl

* SIMULATEPAIR(R):

[R: IOA simulation relation]

let A:= R.impl, B :

call INITIALIZE(R)

= R.spec, p := R.proof

simulate A as described in Chapter 3, except that:
for each transition ¢ executed in A
call EXECCORRESPONDING(R,t) ©

48

* INITIALIZE(R):

[R: IOA simulation relation |
let A:= R.impl, B := R.spec, p := R.proof
initialize the state of A (using its NDR mechanism if necessary)
initialize the auxiliary variables in the states block of p
initialize the state of B according to the initially block of p
call CHECKSIMREL(R) ©

* EXECCORRESPONDING(R, t):
[R: IOA simulation relation
t. a transition of R.impl |
let p := proofProg(R,t)
let ¢ be an empty sequence of transitions
for each statement s in p do
if s is not a fire statement then
execute s (s is an assignment, a conditional, or a while construct)
else
let t' := trans(S.spec, actionType, actionName, caseld)
call EXECSPECEFFECT(R, s,t')
append t' to /
call CHECKSIMREL(R)
if trace(l) # trace(t) then
halt with an error ©

* EXECSPECEFFECT(R, s, t):
[R: IOA simulation relation
s: a fire statement of the form given in Figure 4-2
t: the transition of R.spec corresponding to s |
assign actionActuals to the formal parameters of ¢
if eval(t.pre) = true and eval(t.where) = true then
execute the statements in t.eff following IOA semantics;
when a choose statement ¢ needs to be evaluated, call EVALSPECCHOICE(R, s, t, ¢)
else
halt with an error ©

* EVALSPECCHOICE(R, s,t, ¢)
[R: IOA simulation relation
s: a fire statement of the form given in Figure 4-2
t: the transition of R.spec corresponding to s
¢: a choose statement in t.eff |
let r := eval(term;), where v; is the name of c.var
assign r to c.var
if eval(c.where) = false then
halt with an error ¢

* CHECKSIMREL(R)
[R: IOA simulation relation |
if eval(R.pred) = false then
halt with an error ¢

The procedure SimMuLATEPAIR invokes the algorithm for single-automaton execution

described in Chapter 3, except that it calls procedure ExecCorrespoNDING for every

49

low-level transition ¢ that is scheduled. The procedure ExecCorresponpING follows
the proof program associated with ¢ in the proof block of the simulation relation,
executing each of the high-level transitions determined by fire statements. In addition,
ExecCorREsPONDING verifies that the induced high-level transitions have the same
trace as t, and calls CueckSIMREL to determine if the simulation relation holds at the
end of the step. The procedure ExecSpecErrecT, called by ExecCorrespoNDING for
each high-level transition, executes the effect program of the transition as in the single-
automaton case, except that procedure EvarSpecCroick is called for every explicit
choice. The latter procedure evaluates a choose statement using the value provided in
the using part of the fire statement that determined the high-level transition, provided
that it satisfies the where predicate.

Notice that the low-level step is taken in full before its corresponding proof entry
is examined, and the prior state of the low-level automaton is not recorded. This
means that the proof program can only refer to the low-level state after the low-level
step has taken place. Nevertheless, it is easy to modify an implementation automaton
to make it keep track of relevant parts of its old state, or of the choices it makes.
In this way, the proof can refer to this information, and the language can be very
expressive. A possibility for future expansion is to extend the syntax so that it can
refer explicitly to the state before and after the low-level step, and to the choices

taken during the step.

4.4 Example 1: mutual simulation of simple com-
munication channels

This example is drawn from [7], in which a version of it is used to illustrate basic
ideas about simulation proofs.® Listing 4-3 is an IOA specification of two channel
automata, together with two simulation relations between them, one in each direction.

Both automata have the same external signature, with an input action send(n:Nat)

3In the textbook, the automaton corresponding to Channel2 is modeled as a composition of two
copies of automata similar to Channell.

20

and an output action receive(n:Nat). The parameters to these transitions represent
messages. Automaton Channell uses a sequence with a first-in, first-out discipline
to hold messages “in transit” in the channel. Automaton Channel2 uses two queues,
and has an additional internal action transfer(n:Nat) to move messages from the first
queue to the second. This code includes schedule blocks for both automata, and
proof blocks for both simulation relations. The schedule NDR programs use pseudo-
random numbers to generate the various actions. Both simulations simply state that
the concatenation of the queues of Channel2 equals the queue in Channell, and the
step correspondences are, as expected, straightforward. Listing 4-4 shows the output
of the paired simulator on the simulation from Channel2 to Channell, and Listing 4-5
shows the output on the opposite simulation.

Listing 4-3: Channels.ioa

uses NonDet

automaton Channell
signature
input send(n:Nat)
output receive(n:Nat)

states
queue: Seq[Nat] := {}
transitions
input send(n:Nat)
eff queue := n -| queue

output receive(n:Nat)
pre len(queue) "= 0 /\
last(queue) = n
eff queue := init(queue)
schedule
do while true do
if randomBool then
fire input send(randomNat(1,100))
fi ;
if randomBool /\ len(queue) "= 0 then
fire output receive(last(queue))
fi
od od

automaton Channel2
signature
input send(n:Nat)
output receive(n:Nat)
internal transfer(n:Nat)
states

queuel: Seq[Nat] := {7},
queue2: Seq[Nat] := {}
transitions
input send(n:Nat)
eff queuel :=n -| queuel

internal transfer(n:Nat)
pre len(queuel) "= 0 /\

last(queuel) = n
eff queue2 := n -| queue2;
queuel := init(queuel)

output receive(n:Nat)
pre len(queue2) "= 0 /\
last(queue2) = n
eff queue2 := init(queue2)
schedule

ol

do while true do
if randomBool then
fire input send(randomNat(1,100))
fi ;
if randomBool /\ len(queuel) ~= 0 then
fire internal transfer(last(queuel))
fi ;
if randomBool /\ len(queue2) "= 0 then
fire output receive(last(queue2))
fi
od od

forward simulation from Channel2 to Channell
Channell.queue = Channel2.queuel || Channel2.queue2
proof
initially
queue := Channel2.queuel || Channel2.queue2
for input send(n:Nat) do
fire input send(n)
od
for output receive(n:Nat) do
fire output receive(n)
od
for internal transfer(m:Nat)
ignore

forward simulation from Channell to Channel2
Channell.queue = Channel2.queuel || Channel2.queue2

proof
initially
queuel := Channell.queue;
queue2 := {}

for input send(n:Nat) do
fire input send(n)

od

for output receive(n:Nat) do
fire internal transfer(n);
fire output receive(n)

od

— Listing 4-4: Paired simulator output on Channels.ioa (Channel2 implementing Channell). —

% java ioa.simulator.shell.PairedShell 10 Channel2 Channell Channels-proof.il
[[[[begin initialization [[[[

EVENT: initialized simulator
%hht Modified state variables for impl automaton:

queue2 --> []

queuel --> []
%hhh Modified state variables for spec automaton:

queue --> []
1111 end initialization 1111
[[[[begin implementation step 1 [[[[

Executed impl transition: transition: input send(3) in automaton Channel2
%hht Modified state variables for impl automaton:

queuel --> [3]

Executed spec transition: transition: input send(3) in automaton Channell
%hhh Modified state variables for spec automaton:

queue --> [3]
111] end implementation step 1 1111
[[[[begin implementation step 2 [[[[

Executed impl transition: transition: input send(90) in automaton Channel2
%hht Modified state variables for impl automaton:

queuel --> [90, 3]

Executed spec transition: transition: input send(90) in automaton Channell
%hhh Modified state variables for spec automaton:

queue --> [90, 3]
1111 end implementation step 2 111]
[[[[begin implementation step 3 [[L[

Executed impl transition: transition: internal transfer(3) in automaton Channel2
%#hht Modified state variables for impl automaton:

queue2 --> [3]

queuel --> [90]
111] end implementation step 3 111]
[[[[begin implementation step 4 [[[[

22

Executed impl transition: transition: input send(56) in automaton Channel2
%hhh Modified state variables for impl automaton:

queuel --> [56, 90]

Executed spec transition: transition: input send(56) in automaton Channell
%%kt Modified state variables for spec automaton:

queue --> [56, 90, 3]
111] end implementation step 4]1]1]1]
[[[[begin implementation step 5 [[[[

Executed impl transition: transition: internal transfer(90) in automaton Channel2
%%kt Modified state variables for impl automaton:

queue2 --> [90, 3]

queuel --> [56]
1111 end implementation step 5 111]
[[[[begin implementation step 6 [[LL

Executed impl transition: transition: output receive(3) in automaton Channel2
%%kt Modified state variables for impl automaton:

queue2 --> [90]

Executed spec transition: transition: output receive(3) in automaton Channell
%hhh Modified state variables for spec automaton:

queue --> [56, 90]
111] end implementation step 6 1111
[[[[begin implementation step 7 [[LL

Executed impl transition: transition: internal transfer(56) in automaton Channel2
%hht Modified state variables for impl automaton:

queue2 --> [56, 90]

queuel --> []
1111 end implementation step 7 111]
[[[[begin implementation step 8 [[LL

Executed impl transition: transition: output receive(90) in automaton Channel2
%hht Modified state variables for impl automaton:

queue2 --> [56]

Executed spec transition: transition: output receive(90) in automaton Channell
%hh%h Modified state variables for spec automaton:

queue --> [56]
111] end implementation step 8 1111
[[[[begin implementation step 9 [[L[

Executed impl transition: transition: input send(39) in automaton Channel2
%#hht Modified state variables for impl automaton:

queuel --> [39]

Executed spec transition: transition: input send(39) in automaton Channell
%hhk Modified state variables for spec automaton:

queue --> [39, 56]
111] end implementation step 9 1111
[[[[begin implementation step 10 [[[[

Executed impl transition: transition: input send(66) in automaton Channel2
%#hht Modified state variables for impl automaton:

queuel --> [66, 39]

Executed spec transition: transition: input send(66) in automaton Channell
%hhh Modified state variables for spec automaton:

queue --> [66, 39, 56]
111] end implementation step 10 1111
>>>> No errors

%

— Listing 4-5: Paired simulator output on Channels.ioa (Channell implementing Channel2). —

% java ioa.simulator.shell.PairedShell 10 Channell Channel2 Channels-proof.il
[[[[begin initialization [[[[

EVENT: initialized simulator
%hhh Modified state variables for impl automaton:

queue --> []
%hhh Modified state variables for spec automaton:

queue2 --> []

queuel --> []
111] end initialization 1]11]
[[[[begin implementation step 1 [[[[

Executed impl transition: transition: input send(11) in automaton Channell
%hhh Modified state variables for impl automaton:

queue --> [11]

Executed spec transition: transition: input send(11) in automaton Channel2
%%kt Modified state variables for spec automaton:

queuel --> [11]
1111 end implementation step 1]1]11]

93

[CCC
Whhh

Tt

Whhh
1111
[CCC
Whhh

Wt

1111
[CCC

Whhh

Wt

1111
CCCC

Whhh

Tt

1111
CCCC

Whhh

Wt

Wt
1111
CCCC
Tt

Whhh

1111
CCCC

Wt

Whhh

1111
[CCC

Whhh

Tt

begin implementation step 2 [[[[

Executed impl transition: transition: output receive(1l) in automaton Channell
Modified state variables for impl automaton:

queue --> []

Executed spec transition: transition: internal transfer(11l) in automaton Channel2
Modified state variables for spec automaton:

queue2 --> [11]

queuel --> []

Executed spec transition: transition: output receive(1l) in automaton Channel2
Modified state variables for spec automaton:

queue2 --> []

queuel --> []

end implementation step 2 1111

begin implementation step 3 [[[[

Executed impl transition: transition: input send(92) in automaton Channell
Modified state variables for impl automaton:

queue --> [92]

Executed spec transition: transition: input send(92) in automaton Channel2
Modified state variables for spec automaton:

queuel --> [92]

end implementation step 3 1111

begin implementation step 4 [[[[

Executed impl transition: transition: input send(87) in automaton Channell
Modified state variables for impl automaton:

queue --> [87, 92]

Executed spec transition: transition: input send(87) in automaton Channel2
Modified state variables for spec automaton:

queuel --> [87, 92]

end implementation step 4 1111

begin implementation step 5 [[[[

Executed impl transition: transition: input send(44) in automaton Channell
Modified state variables for impl automaton:

queue --> [44, 87, 92]

Executed spec transition: transition: input send(44) in automaton Channel2
Modified state variables for spec automaton:

queuel --> [44, 87, 92]

end implementation step 5 1111

begin implementation step 6 [[[[

Executed impl transition: transition: output receive(92) in automaton Channell
Modified state variables for impl automaton:

queue --> [44, 87]

Executed spec transition: transition: internal transfer(92) in automaton Channel2
Modified state variables for spec automaton:

queue2 --> [92]

queuel --> [44, 87]

Executed spec transition: transition: output receive(92) in automaton Channel2
Modified state variables for spec automaton:

queue2 --> []

queuel --> [44, 87]

end implementation step 6 1111

begin implementation step 7 [[[L

Executed impl transition: transition: input send(60) in automaton Channell
Modified state variables for impl automaton:

queue --> [60, 44, 87]

Executed spec transition: transition: input send(60) in automaton Channel2
Modified state variables for spec automaton:

queuel --> [60, 44, 87]

end implementation step 7 1111

begin implementation step 8 [[[[

Executed impl transition: transition: input send(38) in automaton Channell
Modified state variables for impl automaton:

queue --> [38, 60, 44, 87]

Executed spec transition: transition: input send(38) in automaton Channel2
Modified state variables for spec automaton:

queuel --> [38, 60, 44, 87]

end implementation step 8 1111

begin implementation step 9 [[[[

Executed impl transition: transition: output receive(87) in automaton Channell
Modified state variables for impl automaton:

queue --> [38, 60, 44]

Executed spec transition: transition: internal transfer(87) in automaton Channel2
Modified state variables for spec automaton:

queue2 --> [87]

queuel --> [38, 60, 44]

Executed spec transition: transition: output receive(87) in automaton Channel2

o4

%%kt Modified state variables for spec automaton:
queue2 --> []
queuel --> [38, 60, 44]
1111 end implementation step 9 111]
[[[[begin implementation step 10 [[[[
Executed impl transition: transition: input send(84) in automaton Channell
%%kt Modified state variables for impl automaton:
queue --> [84, 38, 60, 44]
Executed spec transition: transition: input send(84) in automaton Channel2
%#hht Modified state variables for spec automaton:
queuel --> [84, 38, 60, 44]
1111 end implementation step 10 1111
>>>> No errors

)

4.5 Example 2: The Peterson mutual exclusion al-
gorithm

Listing 4-6 is an IOA source file containing several elements:

e Automaton MutEx is an abstract IOA specification for a two-process mutual
exclusion service. This automaton supports requests for a critical section from
two users, in the form of input actions try_¢, ¢ = 0,1. The automaton grants
the critical section to user ¢ by executing output action crits. When user ¢
is finished with the critical section, it signals so with input action exit_i, after
which the service eventually responds with output action rem_i. This response
signals that the corresponding user has entered its remainder region, and may

make another request for the critical section.

The service specification guarantees mutual exclusion; that is, it guarantees
that the two processes will not be granted the critical section at the same time.
This is stated in the form of an invariant for the MutEx automaton. However,
this guarantee holds only provided that each user has a well-formed interaction
with the service. This means that the trace of the execution, restricted to user
i, has the form (try_i, crit_i, exit i, rem_i, try_i, ...). In other words, a user will

only request the critical section if it is in the remainder section, and it will only

95

request to exit the critical section if it is already in it. Refer to [7] for more on

the terminology of mutual exclusion.

e Automaton Peterson2PMutEx is an implementation of two-process mutual exclu-
sion that uses shared variables. This is the Peterson algorithm, and the reader
is referred to [7] for a correctness proof. The IOA form of this algorithm is taken
almost directly from [7], where it is presented both in a traditional sequential
style and as an [/O automaton in precondition-effect style. The automaton also
has a schedule block, which produces only well-formed executions. Listing 4-6

also includes an invariant for Peterson2PMutEx, asserting mutual exclusion.

e A forward simulation relation from Peterson2PMutEx to MutEx is included, along
with a step correspondence in the form of a proof block. Both the simulation
relation and the step correspondence are quite simple. The simulation relation
simply states that the region of each user is the same for the specification and the
implementation. The step correspondence ignores most low-level transitions,
except those that cause a region change for a user. The latter invoke the action

in the specification automaton that produces the same region change.

This file includes everything necessary to perform paired simulation between au-
tomata Peterson2PMutEx and MutEx, and the output of this is shown in Listing 4-7.

One of the intended uses of the paired simulator is the possibility of detecting
when a proposed simulation relation does not hold. As an example of this type of
use, [altered automaton Peterson2PMutEx by introducing a bug. I changed the effect
of internal transition setflag 0 to set variable flag_ 0 to O instead of 1. With this
modification in place, I started the paired simulator for 400 steps. With luck, the
bug would be found in the execution randomly chosen by the schedule block, and the
simulator would halt with an error. This did indeed happen, and the result is shown

in Listing 4-8 (only the relevant parts of the output are shown).

o6

Listing 4-6: MutEx.ioa: A mutual exclusion service with implementation

uses NonDet

o
/A
% Automaton MutEx abstracts mutual exclusion for two

% agents sharing a resource. It assumes well-formedness

% of the inputs.

type region = enumeration of try, crit, exit, rem

automaton MutEx
signature

input try_0, try_1
output crit_0, crit_1
input exit_0, exit_1
output rem_0, rem_1

% Agent requests critical region

% Service grants critical region

% Agent exits critical region

% Agent may enter remainder region

states

reg_0: region := rem,
reg_l: region := rem
transitions
input try_0
eff reg 0 := try

output crit_0

pre reg_0 = try /\ reg_1 "= crit
eff reg 0 := crit
input exit_0
eff reg 0 := exit
output rem_0
pre reg_0 = exit
eff reg 0 := rem
input try_1
eff reg_ 1 := try
output crit_1
pre reg_1 = try /\ reg_0 "= crit
eff reg_1 := crit
input exit_1
eff reg_1 := exit
output rem_1
pre reg_l = exit
eff reg_ 1 := rem

invariant A of MutEx

“(reg_0 = crit /\ reg_1 = crit) % asserts mutual exclusion
A
% Automaton Peterson2PMutEx implements the Peterson two process mutual
% exclusion algorithm. It contains a schedule block for simulation,

% which also schedules input actions.

type pcVal = enumeration of rem, setflag, setturn, checkflag, checkturn,
leavetry, crit, reset, leaveexit

automaton Peterson2PMutEx

signature
input try_0, try_1 % Agent requests critical region
output crit_0, crit_1 % Service grants critical region
input exit_0, exit_1 % Agent exits critical region
output rem_0, rem_1 % Agent may enter remainder region
internal setflag_ 0, setflag_1
internal setturn_0, setturn_1
internal checkflag 0, checkflag_1
internal checkturn_0, checkturn_1
internal reset_0, reset_1

states
turn: Int := 0, % Takes values in {0,1} only
flag _0: Int := 0, % Writable by task O only
flag_1: Int := 0, % Writable by task 1 only
pc_0: pcVal := rem, % Writable/readable by task O only
pc_1: pcVal := rem, % Writable/readable by task 1 only
reg_0: region := rem,
reg_1: region := rem

transitions
input try_0

eff pc_0 := setflag ; reg 0 := try

internal setflag_0

57

pre pc_0 = setflag
eff flag 0 :=1 ;
pc_0 := setturn
internal setturn_0
pre pc_0 = setturn
eff turn := 0 ;
pc_0 := checkflag
internal checkflag 0
pre pc_0 = checkflag
eff if flag_1 = O then
pc_0 := leavetry
else
pc_0 := checkturn
fi
internal checkturn_0
pre pc_0 = checkturn
eff if turn "= 0 then
pc_0 := leavetry
else
pc_0
fi
output crit_0
pre pc_0 = leavetry

checkflag

eff pc_0 := crit ; reg 0 := crit
input exit_0
eff pc_0 := reset ; reg 0 := exit

internal reset_0
pre pc_0 = reset
eff flag 0 := 0 ;
pc_0 := leaveexit
output rem_0
pre pc_0 = leaveexit
eff pc_0 := rem ; reg 0 := rem
input try_1
eff pc_1 := setflag ; reg_l := try
internal setflag_1
pre pc_1l = setflag
eff flag 1 :=1 ;
pc_1l := setturn
internal setturn_1
pre pc_l1 = setturn
eff turn 1;
pc_1 checkflag
internal checkflag_ 1
pre pc_1l = checkflag
eff if flag 0 = O then
pc_1l := leavetry
else
pc_1 := checkturn
fi
internal checkturn_1
pre pc_1 = checkturn
eff if turn "= 1 then
pc_1 := leavetry
else
pc_1
fi
output crit_1
pre pc_1 = leavetry

checkflag

eff pc_1 := crit ; reg_1 := crit
input exit_1
eff pc_1 := reset ; reg_l := exit

internal reset_1
pre pc_1 = reset
eff flag_ 1 := 0 ;
pc_1 := leaveexit
output rem_1
pre pc_1 = leaveexit
eff pc_1 := rem ; reg_ 1 := rem
schedule
states
die: Nat
do while true do
die := randomNat(1,7) ;
if die = 1 then

od

invari
“(re

forwar

if reg_ 0 = rem then
fire input try_0
elseif reg 0 = crit then
fire input exit_0

fi
elseif die = 2 then
if reg_1 = rem then
fire input try_1
elseif reg_l1 = crit then
fire input exit_1
fi
else
fire %
fi
od

ant B of Peterson2PMutEx
g_0 = crit /\ reg_1 = crit)

d simulation

from Peterson2PMutEx

to M

proo

in

fo

od
fo

fo

fo

fo

fo

od
fo

od
fo

fo

od
fo

od
fo

fo

fo

fo

fo

od
fo

od

utEx

: MutEx.reg_0
MutEx.reg_1 =
£
itially
reg_0 :=
reg_l :=
r input try_0 do
fire input try_O

r internal
ignore
r internal
ignore
r internal
ignore
r internal
ignore
r output crit_0 do
fire output crit_0

setflag_0
setturn_0
checkflag 0

checkturn_0

r input exit_O do
fire input exit_0

r internal reset_0
ignore

r output rem_O do
fire output rem_0

r input try_1 do
fire input try_1

r internal
ignore
r internal
ignore
r internal
ignore
r internal
ignore
r output crit_1 do
fire output crit_1

setflag_1
setturn_1
checkflag_1

checkturn_1

r input exit_1 do
fire input exit_1

for internal reset_1

ignore

for output rem_1 do
fire output rem_1

od

(fire any enabled locally-controlled transition)

% asserts mutual exclusion

Peterson2PMutEx.reg_0 /\
Peterson2PMutEx.reg_1

Peterson2PMutEx.reg_0 ;
Peterson2PMutEx.reg_1

29

Listing 4-7: Paired simulator output on MutEx.ioa

% java ioa.simulator.shell.PairedShell 30 Peterson2PMutEx MutEx MutEx.il

[CCC
Tt

Tt
1111
[CCC
Wt

Whhh

1111
CCCC

Tt

Tt

1111
CCCC

Whhh
1111
CCCC
Whhh
1111
[CCC
Whhh
1111
[CCC
Whhh

1111
LCCC

Tt
1111
CCCC
Tt

1111
[CCC

VYN

1111
CCCC

begin initialization [[[[

EVENT: initialized simulator

Modified state variables for impl automaton:
reg_1 --> rem

reg_0 --> rem

pc_1 --> rem

pc_0 --> rem

flag_ 1 --> 0
flag 0 --> 0
turn --> 0

Modified state variables for spec automaton:

reg_1 --> rem

reg_0 --> rem

end initialization]]]]

begin implementation step 1 [[[[

Executed impl transition: input try_1 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_1 --> try

pc-1 --> setflag

Executed spec transition: input try_1 in automaton MutEx

Modified state variables for spec automaton:

reg_1l --> try

end implementation step 1 1111

begin implementation step 2 [[[[

Executed impl transition: input try_0 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_0 --> try

pc_0 --> setflag

Executed spec transition: input try_0 in automaton MutEx

Modified state variables for spec automaton:

reg_0 --> try

end implementation step 2 1111

begin implementation step 3 [[[[

Executed impl transition: internal setflag_l in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_l --> setturn

flag 1 --> 1

end implementation step 3 1111

begin implementation step 4 [[[[

Executed impl transition: internal setflag_ O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> setturn

flag 0 --> 1

end implementation step 4 1111

begin implementation step 5 [[[[

Executed impl transition: internal setturn_l in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc-1 --> checkflag

turn --> 1

end implementation step 5 1111

begin implementation step 6 [[[[

Executed impl transition: internal checkflag_l in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_1l --> checkturn

end implementation step 6 1111

begin implementation step 7 [[[[

Executed impl transition: internal setturn_0 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> checkflag

turn --> 0

end implementation step 7 1111

begin implementation step 8 [[[[

Executed impl transition: internal checkturn_1 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_1 --> leavetry

end implementation step 8 1111

begin implementation step 9 [[[[

Executed impl transition: internal checkflag_O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> checkturn

end implementation step 9 1111

begin implementation step 10 [[LL

Executed impl transition: output crit_1 in automaton Peterson2PMutEx

60

Whhh

Whhh

1111
[CCC

Whhh

1111
CCCC

Tt

1111
CCCC

Whhh

1111
CCCC

Tt

1111
[CCC

Whhh

1111
CCCC

Tt

1111
[CCC

Whhh

1111
LCCC

Tt

1111
[CCC

Whhh

1111
LCCC

Ththts

Ththts

1111
[CCC

VYN
1111
[CCC
YYYYA

Ththts

Modified state variables for impl automaton:
reg_1l --> crit
pc_1 --> crit

Executed spec transition: output crit_1 in automaton MutEx

Modified state variables for spec automaton:
reg_l --> crit

end implementation step 10 1111

begin implementation step 11 [[[L

Executed impl transition: internal checkturn_O in
Modified state variables for impl automaton:

pc_0 --> checkflag

end implementation step 11]1]]1]

begin implementation step 12 [[[L

Executed impl transition: internal checkflag 0O in
Modified state variables for impl automaton:

pc_0 --> checkturn

end implementation step 12 1]1]

begin implementation step 13 [[[[

Executed impl transition: internal checkturn_O in
Modified state variables for impl automaton:

pc_0 --> checkflag

end implementation step 13 1111

begin implementation step 14 [[[L

Executed impl transition: internal checkflag O in
Modified state variables for impl automaton:

pc_0 --> checkturn

end implementation step 14 1]1]

begin implementation step 15 [[[[

Executed impl transition: internal checkturn_O in
Modified state variables for impl automaton:

pc_0 --> checkflag

end implementation step 15 1111

begin implementation step 16 [[[L

Executed impl transition: internal checkflag 0O in
Modified state variables for impl automaton:

pc_0 --> checkturn

end implementation step 16 1]1]

begin implementation step 17 [[[[

Executed impl transition: internal checkturn_O in
Modified state variables for impl automaton:

pc_0 --> checkflag

end implementation step 17 1111

begin implementation step 18 [[[L

Executed impl transition: internal checkflag 0O in
Modified state variables for impl automaton:

pc_0 --> checkturn

end implementation step 18 1]1]

begin implementation step 19 [[[[

Executed impl transition: internal checkturn_O in
Modified state variables for impl automaton:

pc_0 --> checkflag

end implementation step 19 1111

begin implementation step 20 [[[L

automaton

automaton

automaton

automaton

automaton

automaton

automaton

automaton

automaton

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Peterson2PMutEx

Executed impl transition: input exit_1 in automaton Peterson2PMutEx

Modified state variables for impl automaton:
reg_1 --> exit
pc_1l --> reset

Executed spec transition: input exit_1 in automaton MutEx

Modified state variables for spec automaton:
reg_1 --> exit

end implementation step 20 1]1]

begin implementation step 21 [[[[

Executed impl transition: internal reset_1 in automaton Peterson2PMutEx

Modified state variables for impl automaton:
pc_1l --> leaveexit

flag_ 1 --> 0

end implementation step 21 1]1]

begin implementation step 22 [[[[

Executed impl transition: output rem_1 in automaton Peterson2PMutEx

Modified state variables for impl automaton:
reg_1 --> rem
pc_l --> rem

Executed spec transition: output rem_1 in automaton MutEx

Modified state variables for spec automaton:
reg_1 --> rem

61

1111
LCCC

Tt

1111
CCCC

Tt

Tt

1111
CCCC

Whhh

Whhh

1111
CCCC

Tt
1111
LCCC
Tt

Tt

1111
CCCC

VYN

VYN

1111
LCCC

Ththts
1111
LCCC
Ththts

1111
>>>>

end implementation step 22]1]]1]

begin implementation step 23 [[[L

Executed impl transition: internal checkflag O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> leavetry

end implementation step 23 1]1]

begin implementation step 24 [[[[

Executed impl transition: output crit_0O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_0 --> crit

pc_0 --> crit

Executed spec transition: output crit_0 in automaton MutEx

Modified state variables for spec automaton:

reg_0 --> crit

end implementation step 24 1]1]

begin implementation step 25 [[[[

Executed impl transition: input exit_O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_0 --> exit

pc_0 --> reset

Executed spec transition: input exit_O in automaton MutEx

Modified state variables for spec automaton:

reg_0 --> exit

end implementation step 25 1111

begin implementation step 26 [[[L

Executed impl transition: internal reset_0O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> leaveexit

flag 0 --> 0

end implementation step 26 1111

begin implementation step 27 [[[L

Executed impl transition: output rem_O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_0 --> rem

pc_0 --> rem

Executed spec transition: output rem_O in automaton MutEx

Modified state variables for spec automaton:

reg_0 --> rem

end implementation step 27 1]11]

begin implementation step 28 [[[[

Executed impl transition: input try_0 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

reg_0 --> try

pc_0 --> setflag

Executed spec transition: input try_0 in automaton MutEx

Modified state variables for spec automaton:

reg_0 --> try

end implementation step 28 1111

begin implementation step 29 [[[L

Executed impl transition: internal setflag O in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> setturn

flag 0 --> 1

end implementation step 29 1111

begin implementation step 30 [[LL

Executed impl transition: internal setturn_0 in automaton Peterson2PMutEx
Modified state variables for impl automaton:

pc_0 --> checkflag

turn --> 0

end implementation step 30 1111

No errors

62

Listing 4-8: Paired simulator output on buggy version of MutEx.ioa

% java ioa.simulator.shell.PairedShell 400 Peterson2PMutEx MutEx BrokenMutEx.il
[[[[begin initialization [[[[

EVENT: initialized simulator
%hhh Modified state variables for impl automaton:

reg_1 --> rem

reg_0 --> rem

pc_1 --> rem

pc_0 --> rem

flag_ 1 --> 0
flag 0 --> 0
turn --> 0

%hhh Modified state variables for spec automaton:

reg_1 --> rem

reg_0 --> rem
111] end initialization 1]11]
[[[[begin implementation step 1 [[[[

Executed impl transition: input try_0 in automaton Peterson2PMutEx
%hh% Modified state variables for impl automaton:

reg_0 --> try

pc_0 --> setflag

Executed spec transition: input try_0 in automaton MutEx
%hht Modified state variables for spec automaton:

reg_0 --> try
1111 end implementation step 1]1]1]

[... etc ...]

[[[[begin implementation step 34 [[[[
Executed impl transition: internal setturn_l in automaton Peterson2PMutEx
%#hht Modified state variables for impl automaton:
pc-1 --> checkflag
turn --> 1
1111 end implementation step 34 1111
[[[[begin implementation step 35 [[[[
Executed impl transition: internal checkflag_l in automaton Peterson2PMutEx
%hht Modified state variables for impl automaton:
pc_1l --> leavetry
1111 end implementation step 35 1111
[[[[begin implementation step 36 [[LL
Executed impl transition: output crit_1 in automaton Peterson2PMutEx
%hhk Modified state variables for impl automaton:
reg_1 --> crit
pc_l --> crit
EVENT: invariant B failed
**xx EVENT: attempted to schedule invalid transition: output crit_1 in automaton MutEx;
reason: precondition fails

*okkk [This event is an error; halting]
*%%% EVENT: FAILED simulation relation from Peterson2PMutEx to MutEx
*ok kK [This event is an error; halting]

1111 end implementation step 36 1111
>>>> Some errors occured during simulation

4.6 Future work

There are many directions in which this tool can be extended. Below are some

suggestions for possible future projects.

4.6.1 Improving the step correspondence language

The language described in this chapter is already substantially flexible, and it might be

argued that together with auxiliary automaton state variables and auxiliary variables

63

in the step correspondence, it allows one to express most of what is usually expressed
in simulation proofs. However, to make easier to use, it might be desirable to have

explicit syntax for:

e referring to state variable values both before and after the low-level transition,

and,

e referring to the actual value to which an explicit choice was resolved in the

low-level automaton.

Neither of these two additions should be hard to implement. For example, prior and
posterior values of variables could be distinguished with a prime decoration on variable
names. References to low-level explicit choice values could be done using another

unique-naming-per-transition convention, this time in the low-level automaton.

4.6.2 Interfacing with a computer-assisted theorem prover

The paired simulator may provide counterexample executions where the proposed step
correspondence does not hold, but it will never completely certify the proof, even if it
provides empirical evidence of its correctness after multiple simulations. However, a
version of this language could be used as an interface between the simulation relation
stated in IOA and a theorem prover: the proof program can be used to drive the
theorem prover in the major overall steps of the proof, reducing the amount of routine

work that the user has to do.

4.6.3 Adding syntax for providing a complete proof

As it stands, the proof block is not a really a proof, since it is missing the reason-
ing that shows that each high-level execution fragment produced by a for block in
the proof preserves the simulation relation, assuming the relation held true in the
immediately preceding state. An interesting project would be to add syntax that
would allow the inclusion of this reasoning, in a form suitable for automated proof

verification.

64

Chapter 5

Grammar changes for

simulator-related I0OA extensions

In this chapter I present grammars for the additions to IOA used by the simulator.
I only present those parts of the IOA grammar that were modified; the reader can
refer to [3] for the rest of the IOA grammar, and for the grammar syntax conventions

used here.

5.1 Labeling of transition definitions

As explained in Chapter 3, my approach to resolution of nondeterminism requires a
way to refer to a transition definition in a primitive automaton. In general, it is not
enough for this to specify the name and parameters of the transition: it is possible
for two transitions with identical signature and where clause to be enabled in the
same state. This addition to the IOA syntax remedies the situation by providing an

explicit naming mechanism:

Original:

transition = actionHead chooseFormals? precondition? effect?
actionHead := actionType actionName (actionActuals where?)?
Modified:

transition = actionHead chooseFormals? precondition? effect?
actionHead := actionType actionName (actionActuals where?)?

65

transCase?
transCase = ’case’ idOrNumeral

5.2 Labeling of transition definitions

As explained in Chapter 3, my approach to resolution of nondeterminism requires a
way to refer to a transition definition in a primitive automaton. In general, it is not
enough for this to specify the name and parameters of the transition: it is possible
for two transitions with identical signature and where clause to be enabled in the
same state. This addition to the IOA syntax remedies the situation by providing an

explicit naming mechanism:

Original:

transition ;= actionHead chooseFormals? precondition? effect?

actionHead m= actionType actionName (actionActuals where?)?

Modified:

transition = actionHead chooseFormals? precondition? effect?

actionHead = actionType actionName (actionActuals where?)?
transCase?

transCase = ’case’ id0rNumeral

5.3 Labeling of invariants

It is convenient for invariants to have a name, so that the simulator can refer to the
specific invariant in case it fails. This was accomplished with the following grammar

change, which allows any numeral or identifier to be given as the name for an invariant.

Original:

invariant ;= ’invariant’ ’of’ automatonName ’:’ predicate

Modified:

invariant = ’invariant’ idOrNumeral? ’of’ automatonName ’:’ predicate

66

5.4 Resolution of nondeterminism

This modification defines a way for the programmer to specify how the nondetermin-
ism in an automaton is to be resolved by the simulator. The modification has two

parts:

1. Addition of a syntax for sequential programs that specify the values to choose

or the transitions to schedule (“NDR programs”).

2. Extensions to the existing syntax for automaton and choose that incorporate

these sequential programs.

The semantics for these changes are explained in Chapter 3.

5.4.1 Syntax for NDR programs

This grammar is very similar to the existing program grammar in IOA, except that it
permits the new fire and yield statements, used by the NDR mechanisms to schedule
automaton actions and determine values of choices, as well as the while statement,
which provides a looping construct with simple deterministic semantics. Note that,
for a given context in which an NDRProgram is accepted, only one of the two statements
fire and yield is permissible. Also, assignments whose right-hand sides are chooses are
not permitted, since the NDR program must be deterministic to be any use. These

constraints are enforced during the static checking phase of the front-end.

NDRProgram = NDRStatement;*
NDRStatement '’= assignment
| NDRConditional
| NDRWhile
| NDRFire
| NDRYield
NDRConditional := ’if’ predicate ’then’ NDRProgram
(’elseif’ predicate ’then’ NDRProgram)*
(’else’ NDRProgram)? ’fi’

NDRWhile = ’while’ predicate ’do’ NDRProgram ’od’

NDRFire = ’fire’ actionType actionName actionActuals? transCase?
| "fire’

NDRYield n= ’yield’ term

67

5.4.2 Syntax extensions to automaton and choose

These extensions might appear more wordy than necessary. For instance, it would
be possible to avoid the do...od bracketing of NDRPrograms. The reason I decided
for this slightly long-winded syntax is the possibility that, in the future, additional
language support mechanisms for nondeterminism resolution might be designed, and
this syntax allows the head keyword (i.e., schedule or det) to still be used by these

potential syntax extensions.

Extension to primitive automaton syntax

This extension is straightforward: it simply provides a place to specify the schedule

of a primitive automaton.

Original:

simpleBody ii= ’signature’ formalActionList+ states transitions tasks?

Modified:

simpleBody ii= ’signature’ formalActionList+ states transitions tasks?
schedule?

schedule ::= ’schedule’ states? ’do’ NDRProgram ’od’

Extension to choose syntax

This extension is also mostly straightforward. Besides providing a place to hold the
NDRProgram, however, it does two additional things: first, it specifies a shorthand
notation for a (presumably) common form of choice determination, and second, it
allows for a choose statement to specify a variable name without a constraining where
predicate. This is necessary for paired simulation, since the names of the chosen values
in the specification automaton are still necessary to carry out the step correspondence,

even in the absence of a where predicate.

Original:

choice = ’choose’ (variable ’where’ predicate)?

Modified:

choice = ’choose’ (variable (’where’ predicate)?)? choiceNDR?
choiceNDR = ’det’ ’do’ NDRProgram ’od’

| NDRYield

68

5.5 Paired simulation

In addition to the mathematical statement of a simulation relation between automata,
the simulator also needs a step correspondence between the automata which realizes
the simulation relation. Hence, it was necessary to develop a language for specifying
these correspondences. See Chapter 4 for the semantics of this language, and for
justification of the approach and terminology.

[augmented the syntax of IOA forward simulations to permit the specification of a
“proof”, which embodies the step correspondence. This proof specifies, for each tran-
sition that the implementation automaton might take, a way to produce a sequence

of transitions for the specification automaton. These are the additions:

Original:
simulation n= (’forward’ | ’backward’) ’simulation’ ’from’
automatonName ’to’ automatonName ’:’ predicate
Modified:
simulation n= (’forward’ | ’backward’) ’simulation’ ’from’
automatonName ’to’ automatonName ’:’ predicate
simProof?
simProof n= ’proof’ states? (’initially’ (variable ’:=’ term);+)7
simProofEntry+
simProofEntry = ’for’ actionType actionName
actionFormals? transCase?
((’do’ simProofProgram ’od’) | ’ignore’)
simProofProgram := simProofStatement;+
simProofStatement
= assignment
| simProofConditional
| simProofWhile
| simProofFire

simProofConditional

= ’if’ predicate ’then’ simProofProgram
(’elseif’ predicate ’then’ simProofProgram)*
(’else’ simProofProgram)? ’fi’
’while’ predicate ’do’ simProofProgram ’od’

simProofWhile
simProofFire = ’fire’ actionType actionName
actionActuals? transCase?
(’using’ (term ’for’ variable),+)7?

Again, some front-end static checking is necessary, since this type of simulation

proof only makes sense for forward simulations.

69

Chapter 6

The software environment

In this chapter I provide documentation for the Java interfaces and classes used
in the implementation of the simulator and related software support. This is with
the hope that future work can be done using this software environment as a basis.
Through this chapter, mentions of the “IOA Toolkit distribution” refer to a software
package (including source and Java executables) to be eventually made available by
the Theory of Distributed Systems group, containing all of the IOA Toolkit and its
documentation. The distribution is the best source of up-to-date and comprehensive

documentation on the toolkit.

6.1 Review of the IOA Toolkit architecture

The TIOA Toolkit is divided into a front-end and a back-end. The front-end, in gen-
eral, takes IOA and LSL specifications as input, and, after checking syntax and static
semantics, outputs an equivalent specification written in an intermediate language.
Elements present in the intermediate language are meant to correspond rather di-
rectly with internal representations of IOA concepts that are designed to be used
by IOA tools; this language is also intended to be easy to parse while still being
human-readable with some effort. The current intermediate language is based on
S-expressions and is very similar to the one described in [1], except for some modi-

fications that make it more manageable in some cases. I will not present a detailed

70

grammar of the intermediate language, since for most purposes the existing parser
and internal representation can be used without having to understand it. Moreover,
the intermediate syntax is likely to evolve in response to the insight that has been
gained while developing IOA tools.

Technically speaking, each IOA tool is in itself a separate back-end, which takes
as input the intermediate form of an IOA specification and does some tool-specific
work with it. However, there is common support for the IOA tools in the form of
an intermediate language parser and an internal representation of IOA elements, in
the form of a Java class hierarchy. Both the parser and the internal representation
hierarchy were designed to be highly flexible and reusable by IOA tools; see Section 6.5
for more details.

Since understanding the architecture of the front-end will not typically be nec-
essary for extending the simulator or the IOA Toolkit, the following sections only
describe the internal representation, the intermediate language parser, and the means

of extending the simulator.

6.2 The internal representation: design basics

The goal of the internal representation is to specify and implement a set of object
interfaces to be used by IOA tools. There is meant to be an interface, and a cor-
responding implementation, for each element that may appear as part of an IOA
specification, such as automata, actions, terms, programs, and invariants.

In designing the internal representation of IOA elements, it was important to
keep in mind that particular IOA tools are likely to need specialized support from
the objects they use. For example, a code generator is likely to require methods to
compile automaton objects, while the simulator employs methods to evaluate term
objects. Moreover, it is desirable to have shared software support: for example, it
would be highly impractical to need a specialized intermediate language parser for
each separate IOA tool due to minor intermediate language modifications. These two

goals are somewhat conflicting, since the parser will need to create objects, which will

71

in turn have to use particular implementations of the interfaces. The solution to has

two parts:

1. The elements of the internal representation are specified not with Java classes
(abstract or otherwise), but with Java interfaces. These interfaces are in the
Java package ioa.il, and their hierarchy is rooted at the interface ioa.il.

.JLElement.

2. The parser and other tool-independent support modules do not directly con-
struct objects implementing these interfaces; rather, they use a globally-available
factory object, which is a subclass of the ILFactory abstract class and has meth-
ods for constructing objects for each of the leaves in the interface inheritance
hierarchy. Thus, for example, it has methods named newPrimitiveAutomaton
and newSimulationRelation. This allows implementors of IOA tools to re-
place the global ILFactory with their own specializations of it, which may have
domain-specific knowledge. Furthermore, a specialized ILFactory can recognize

specialized IOA statements.’

There is a set of basic implementations of these interfaces, along with an implementa-
tion of ILFactory (the BasicILFactory) which constructs instances in this set. These
basic implementations, as well as the BasicILFactory, are easy to subclass in order to
add tool-specific behavior. The use of a factory object is described, for example, in [2],
under the name “abstract factory pattern”. See section 6.5 for concrete information
on creating specialized factories.

See Figure 6-1 for the inheritance tree of the interface hierarchy used in the internal
representation. For details on the interfaces, refer to the IOA Toolkit distribution,

which contains the most up-to-date software and documentation.

!For example, this is how the simulator-specific statements yield, while, and fire were implemented.

72

ILElement

 Statement

[Action Assignment
" ActionSet Conditional
I ActionTable Loop
[Automaton - StateTable

[CompositeAutomaton | SymbolTable

 HidingAutomaton - Task

~ PrimitiveAutomaton [Tramsition
[Binding ~ Value

" Operator |: Choice

[Sort Term

~ Variable I~ ApplicationTerm
- ForClause [LiteralTerm
~ Invariant ~ QuantifierTerm
- Program |: ExistsTerm
" Signature ForAllTerm
[SimulationRelation ~ ReferenceTerm
I Spec |: SortRefTerm
~ State VarRefTerm

Figure 6-1: Internal representation: interface hierarchy.
6.3 The parser

The parsing of IOA specifications from the intermediate language is done by the
instances of the ILParser class. Listing 6-1 shows an example of usage of the ILParser.
This code sample performs the following actions, which are representative of the

general usage:

1. It installs a new ILFactory, which may construct specialized implementations
of the ILElement interfaces. This step is optional, and the BasicILFactory is

used by default.

2. It creates an object of class java.io.Reader, which is the Java class used to
represent streams of text. In this case, the Reader comes from a specific named

file, but the origin is not specified.

3. It creates an ILParser, using the Reader as parameter for the constructor.

73

4. It invokes the method getSpec on the parser, which performs the actual pars-
ing and returns an object of the interface ioa.il.Spec, representing the IOA

specification contained in the Reader.

5. After this, the Spec object can be used according to its interface, documented
in the IOA Toolkit distribution. For instance, individual automata in the spec-

ification can be obtained from the Spec object.

Additionally, it is necessary to use Java exception handling in the case that errors
occur during parsing, in which case the getSpec method will throw an exception of
class ioa.il.ILParseException. The method getSpec is the only external functional-
ity available in the ILParser. However, the ILParser also allows extensive tool-specific
customization, allowing it to recognize specialized IOA statements and extensions to
intermediate language elements; see 6.5 for a description of these capabilities.

Listing 6-1: Example usage of the ILParser.

import ioa.il.* ;

import java.io.InputStreamReader ;
import java.io.FileInputStream ;
import java.io.File ;

/7 L]

public void useParser() {
try {
// 1. (Optional) Install a specialized ILFactory with domain-
// specific knowledge (by default, BasicILFactory will be used)
ILFactory.setInstance(new MyILFactory());

// 2. Create a Reader object (in this case, from a file)
InputStreamReader in =
(new InputStreamReader
(new FileInputStream
(new File("myFile.il"))));

// 3. Create an ILParser with this Reader
ILParser parser = new ILParser(in) ;

// 4. Parse the Spec object
Spec spec = parser.getSpec();

// 5. Use it (for instance, get an automaton object from it)
Automaton aut = spec.getAutomaton("myAutomaton");
} catch(ILParseException e) {
// 6. Handle parsing errors
System.out.println("panic!");

74

6.4 Adding simulator datatypes

Some applications of the simulator are likely to require support for datatypes be-
yond those in the current implementation. This section describes how to implement
new datatypes (IOA sorts and operators), and how to have the simulator use these
implementations.

Sort implementations are represented by objects implementing the interface ioa.
.simulator.SortImpl, shown in Listing 6-2. A SortImpl object has the necessary
knowledge to create new objects of a given sort, either from scratch, or from an
integer value, in the case of sorts that support numeric values. Note that, since
IOA is a functional language, this is by no means the only way to construct objects:
virtually every operator implementation has to create a new object to store the result
it returns, as mutation is not possible.

Similarly, operator implementations are represented by objects implementing the
interface ioa.simulator.OpImpl, in Listing 6-3. The OpImpl interface has a single
method, apply, which returns the result of evaluating the operator that is being
implemented on a given vector of operands. As noted above, this result will typically
be a newly created object.

Both 0pImpl and SortImpl handle objects implementing the interface ioa.simulator.
.Entity, shown in Listing 6-4. This is the interface for all the objects created during
the simulation of an automaton. Its methods are very generic; they are enough, how-
ever, since the type-specific operations are all performed by suitable OpImpl objects.
The name “entity” was chosen to clearly differentiate IOA-level objects from Java
Objects.

The simulator obtains implementations for sorts and operators by querying a
global implementation registry. This registry is an object of class ioa.simulator.
.ImplRegistry, and it contains methods that, given an operator or a sort, return a
corresponding implementation. This is an abstract class, and its interface is shown in
Listing 6-5. As shown, the registry method getImpl can return SortImpl and OpImpl

objects corresponding to Sort and Operator objects, respectively.

Listing 6-2: The SortImpl interface.

)

package ioa.simulator ;

public interface SortImpl {
/** This method constructs a new Entity of this sort, without
a specified initial value */
public Entity construct()
throws SimException ;

/** This method constructs a new Entity of this sort with the
specified integral initial value (to be implemented only by sorts
that accept literals */

public Entity comnstruct(int n)

throws SimException ;

Listing 6-3: The OpImpl interface.

package ioa.simulator ;
import java.util.Vector ;

[*x
* Interface for implementations of operators.
*/
public interface OpImpl {
/** Run the implementation code for applying the corresponding
* operator to the given vector of operands, and return the result
* x/
public Entity apply(Vector/*[Entityl*/ opands)
throws SimException ;

Listing 6-4: The Entity interface.

package ioa.simulator ;
import ioa.il.* ;

/** This interface represents an object in a simulation. Entities have
* a Sort, and are created either from scratch by SimSorts or as a
* result of evaluating SimOperators.
* Note: I chose "Entity" to avoid confusing these objects with java
* "objects". */
public interface Entity {
[**
* Returns the sort of this entity
*/
public Sort getSort() ;

/%%

* Returns a string representation of this entity
*/

public String toString() ;

/** Returns true if and only if this entity equals the given entity,
* in some sense depending on the particular entity. */
public boolean equals(Entity ent) ;

Listing 6-5: The ImplRegistry interface.

package ioa.simulator ;

import ioa.il.* ;
import java.util.Vector ;

/** This is an abstract class that represents a mapping from sorts and
* operators to sort and operator implementation (Sorts and Operators
* to SortImpls and OpImpls). In addition it provides static methods
* for setting and getting the unique global instance of the

76

* implementation registry. x/
public abstract class ImplRegistry {
private static ImplRegistry instance ;

public static ImplRegistry getInstance() { return instance ; }
public static void setInstance(ImplRegistry newInstance) { instance = newInstance ; }

[**
* Returns a SortImpl for the given Sort, or null if none is known.
*/
public abstract SortImpl getSortImpl(Sort sort)
throws SimException ;
[**
* Returns an OpImpl for the given Operator, or null if none is known.
*/
public abstract OpImpl getOpImpl (Operator operator)
throws SimException ;

}

6.4.1 The BasicImplRegistry: an overview

For typical applications, it will not be necessary to write an implementation of
ImplRegistry from scratch; the package ioa.simulator.impl contains the implemen-
tation BasicImplRegistry, which supports both simple sorts and parameterized sorts.
This is also the default implementation registry. In this section, I describe how to
add type implementations using the BasicImplRegistry and related classes.

See Listing 6-6 for the public interface of the BasicImplRegistry. Some of these
methods are inherited from the superclass ImplRegistry, others are used for con-
structing a new BasicImplRegistry, and the remaining ones are used for installing
new implementations in the registry.

When it is initialized, the BasicImplRegistry goes through a list of implementa-
tion packages, each of which is represented by a Java class (not a Java object). An
implementation package is meant to include sorts and operators that are logically

related. The package must have a static method, with the signature:
public static void install(BasicImplRegistry reg);

The BasicImplRegistry has a default list of implementation packages.? This list can

be overridden by calling the BasicImplRegistry constructor with a Java Enumeration

2At the time of this writing, this list contains implementation packages for the sorts: Bool,
Int, Nat, Array[A,B], and Seq[A]. In addition, the implementation package ioa.simulator.impl.
.NonDetImpl is installed by default, and it contains implementations of some of the operators for

7

of strings which are fully-qualified names of implementation packages. Alternatively,
the list can be overridden by setting the Java property ioa.simulator.impl.packages
to a colon-separated list of fully-qualified package names.

For each implementation package, the BasicImplRegistry calls the corresponding
install method, passing itself as the argument. This method, in turn, can call the
methods BasicImplRegistry installSortImpl, installOpImpl, installSortPreImpl,
and installOpPreImpl. The former two are used to install simple sorts and associated
operators, while the later two are used to handle parameterized sorts. The following

subsections explain the use of each of these methods.

Listing 6-6: The public interface of the BasicImplRegistry class.

package ioa.simulator.impl ;

import ioa.il.* ;
import ioa.simulator.* ;

public class BasicImplRegistry extends ImplRegistry {
// Methods inherited from ImplRegistry
public SortImpl getSortImpl(Sort _sort)
throws SimException ;
public OpImpl getOpImpl(Operator _op)
throws SimException ;

// Constructors

public BasicImplRegistry()
throws SimException ;

public BasicImplRegistry(Enumeration/*[Stringl*/ packages)
throws SimException ;

// Methods for installing implementations, from implementation package

// install methods.

public void installSortPreImpl(String name, boolean isLiteral, BasicSortPreImpl prelmpl) ;
public void installOpPreImpl(String name, BasicOpPreImpl prelmpl) ;

public void installSortImpl(String key, boolean isLiteral, BasicSortImpl impl) ;

public void installOpImpl(String key, BasicOpImpl impl) ;

// Auxiliary methods for installing implementations
public static String makeOpKey(String name,String range,String[] domain) ;
public static String makeOpKey(String name,String range) ;
public static String makeSortKey(String name) ;
s

Simple sorts: installSortImpl and installOpImpl

A simple sort is one that does not take other sorts as parameters. For example, the

built-in sorts Int and Nat are simple sorts. An implementation package installs a

randomness and user interaction in the Larch pseudotrait NonDet, as described in Chapter 3. (This
is an example of an implementation package that is not tied to a single IOA sort or sort constructor.)

78

simple sort by including a line of the form
reg.installSortImpl(reg.makeSortKey(sortName),

isLiteral,
sortImpl);

in its install method, where:
e reg is the BasicImplRegistry object passed to the install method,
e sortName is the name of the simple sort, given as a string,

e islLiteral is a boolean, which is true if this sort can be assigned values specified

as numerals in the IOA source?®, and

e sortImpl is an object of class BasicSortImpl, which is the sort implementation
itself. This class is an implementation of the SortImpl interface, with some
extra methods used internally by the BasicImplRegistry. It is often convenient

to provide this argument by anonymously subclassing BasicSortImpl.

For example, this is the code used to install the implementation of the built-in sort

Int:

reg.installSortImpl
(reg.makeSortKey ("Int"),
true,
new BasicSortImpl()

{
public Entity construct() { return new IntEntity() ; }
public Entity construct(int n) { return new IntEntity(n) ; }

B

An operator whose signature involves only simple sorts is installed with a line of
the form
reg.installOpImpl (reg.makeOpKey (opName,range,domain),
opImpl);

where:

e reg is the BasicImplRegistry object,

3This is likely to become obsolete, since the mechanism for handling literal values will probably
change to become more general.

79

"name" a plain operator (example: "succ")

"_name" a prefix operator (example: "__I'")
"name__" a postfix operator (example: "~__")
"__name__" an infix operator (example: "_+__")

(mixfix operators are specified similarly,
using __ as a placeholder for arguments)
"o<sel>field" a selection operator for a field (IOA syntax: a.field)

Operator symbols are encoded as described in [3]; for example, the symbol “€” is
encoded as \in, which is written as the Java string "\\in".

Figure 6-2: Conventions for names of operators in implementation packages.

e opName is the name of the operator, given as a string,
e domain is the name of the range sort, given as a string,
e range is a tuple of the names of the domain sorts, given as an array of strings,

e oplImpl is an object of class BasicOpImpl, which is an implementation of the
OpImpl interface. Again, this is conveniently provided using Java anonymous

subclassing.

The name of the operator must follow the conventions in Figure 6-2. As an example,

the following code installs the greater-than-or-equal operator for the built-in sort Int:

reg.installOpImpl
(reg.makeOpKey ("__>=__",
"Bool",
new String[] { "Int", "Int" }),

new BasicOpImpl()

{
public Entity apply(Vector/*[Entityl*/ opands)
{
IntEntity entl = (IntEntity) opands.elementAt(0) ;
IntEntity ent2 = (IntEntity) opands.elementAt(1l) ;
return BoolEntity.make(entl.n >= ent2.n) ;
}
3}

Parameterized operator and sort implementations

The 0OpImpl and SortImpl mechanisms described above are not sufficient to specify

implementations in full generality, for these reasons:

80

e [OA supports the notion of a sort constructor, which is essentially a family of
sorts parameterized by other sorts. For example, Seq is a sort constructor, since

Seq[A] is a sort representing a sequence of elements of any sort A.

e There are families of operators, all with the same name and number of parame-
ters, which have essentially the same implementation, but different signatures.
For example, the equality operator = takes two entities and determines if they
are equal. It should be possible to specify a single implementation for all equal-
ity operators, regardless of the sort of entity that it does comparisons between.
This is because the implementation can simply call the equals method in the
Entity interface, without knowing the details of the particular Entity imple-

mentation.

This problem is addressed by providing a preimplementation. A preimplemen-
tation is an object which provides implementations for sorts (or operators) in some
family. Given an IOA sort, in the form of a Sort object s, a sort preimplementation p
determines if s belongs to the family represented by p, and, if so, p returns an appro-
priate SortImpl object for s. Operator preimplementations have a similar behavior.
Sort and operator preimplementations are represented by the BasicSortPreImpl and
BasicOpPreImpl abstract classes, respectively. See Listings 6-7 and 6-8 for their defi-
nitions and documentation on their member functions.

There exist more concrete implementations of each of these abstract classes:

e The abstract classes MatchSortPreImpl and MatchOpPreImpl provide a means to

determine membership in the family by using an arbitrary boolean predicate.

e The abstract classes TemplateSortPreImpl and TemplateOpPreImpl are subclasses
of BasicSortPreImpl and BasicOpPrelImpl which can perform pattern matching.
An example sort pattern is Sort1[Sort2[p, ¢],p], where Sortl and Sort2 are names
of IOA sort constructors, and p, ¢ are variables which can match arbitrary IOA

sorts.

[will not provide the source for any of these two specializations, and instead will

show their usage through examples. Refer to the IOA Toolkit distribution for the

81

source. The Template preimplementation classes are the ones that are likely to be
used most extensively, due to their generality, and I will explain them to more depth

in the next paragraphs.

Listing 6-7: The BasicSortPreImpl abstract class.

package ioa.simulator.impl ;

import ioa.simulator.* ;

This class represents a family of sort implementations. The method
getSortImpl returns a SortImpl for a given Sort, provided that this
sort matches (belongs to) this family; otherwise, it returns null.

*
*
*
*
* Concrete subclasses of this class must provide an implementation
* for the construct method. There are two versions of this method.
* The first version supports a parameter data, of type Object, which
* provides implementation-dependent data generated during the

* matching process. The second version does not include this

* parameter, and is to be used by subclasses which ignore this data.
* x/
public abstract class BasicSortPreImpl {

[*x

* Given a sort which matches this preimplementation, construct

an Entity of this sort.
Default implementation defers to construct(SimSort)

*
*
*
* Q@param fullsort The sort being used, which matched this preimplementation
* Q@param data Implementation-specific data produced by the matching process
*/
public Entity construct(SimSort fullsort,Object data)
throws SimException

{
return construct(fullsort) ;

}

/%%
* Given a sort which matches this preimplementation and an integer,
* construct an Entity of this sort initialized to this integer (for
* sorts that support integer values). Default implementation
* defers to construct(SimSort,int)
*
* Q@param fullsort The sort being used, which matched this preimplementation
%

Oparam data Implementation-specific data produced by the matching process
* @param n The integer to use when constructing the Entity */

public Entity construct(SimSort fullsort, Object data, int n)

throws SimException

{
}

return construct(fullsort) ;

[*x
* Given a sort which matches this preimplementation, construct
* an Entity of this sort.
* (This method is used when match data is ignored).
*/
public Entity construct(SimSort fullsort)
throws SimException

{
}

throw new SimImplException("*** unimplemented construct called")

/%

* Given a sort which matches this preimplementation and an integer,
* construct an Entity of this sort initialized to this integer (for
* sorts that support integer values).

* (This method is used when match data is ignored).

*/

public Entity construct(SimSort fullsort, int n)
throws SimException

{

throw new SimImplException("construction from literal unsupported by sort") ;

82

VAL

* Returns a sort implementation for the given sort, if this PrelImpl
* can provide one. Returns null otherwise.

*/

public abstract SortImpl getImpl(SimSort fullsort) ;

// For chaining (used internally by the BasicImplRegistry)
BasicSortPreImpl next = null ;
BasicSortPreImpl last = null ;

Listing 6-8: The BasicOpPreImpl abstract class.

package ioa.simulator.impl ;
import ioa.simulator.* ;
import java.util.Vector ;

/%%

This class represents a family of operator implementations. The
method getOpImpl returns an OpImpl for a given Operator, provided
that this operator matches (belongs to) this family; otherwise, it
returns null.

*
*
*
*
*
* Concrete subclasses of this class must provide an
* implementation for the apply method, and optionally the assign
* method. There are two versions of each of these methods. The first
* version supports a parameter data, of type Object, which provides
* implementation-dependent data generated during the matching
* process. The second version does not include this parameter, and
* is to be used by subclasses which ignore this data.

*/
public abstract class BasicOpPreImpl {

[**

* Given an operator which matches this preimplementation, apply it

to the given vector of operands.
Default implementation defers to apply(SimOperator,Vector)

Oparam fullop The operator being applied, which matched this preimplementation
Oparam data Implementation-specific data produced by the matching process
Oparam opands The operands of the operator

LR R

*/

public Entity apply(SimOperator fullop,0Object data,Vector/*[Entityl*/ opands)
throws SimException

{
return apply(fullop,opands) ;

}

/%

Given an operator which matches this preimplementation, assign to
to it the given value, upon evaluation with given vector of
operands (if this operator supports assignment).

Default implementation defers to assign(SimOperator,Vector,Entity)
(This method is used when match data is ignored).

@param fullop The operator being assigned to, which matched this preimplementation
Oparam data Implementation-specific data produced by the matching process
* Qparam opands The operands of the operator */
public void assign(SimOperator fullop,0Object data, Vector/*[Entity]*/ opands,Entity value)
throws SimException
{

assign(fullop,opands,value) ;

* K K X X X X X

/%%
* Given an operator which matches this preimplementation, apply it
* to the given vector of operands.
* (This method is used when match data is ignored).
*/
public Entity apply(SimOperator fullop,Vector/*[Entityl*/ opands)

83

throws SimException
{
throw new SimImplException("*** unimplemented apply called")

}

[**
* Given an operator which matches this preimplementation, assign to
* to it the given value, upon evaluation with given vector of
* operands (if this operator supports assignment).
* (This method is used when match data is ignored).
*/
public void assign(SimOperator fullop,Vector/*[Entityl*/ opands,Entity value)
throws SimException
{
throw new SimImplException("*** unimplemented assign called")

}

[*x

* Returns an operator implementation for the given operator, if
* this PreImpl can provide one. Returns null otherwise.

*/

public abstract OpImpl getImpl(SimOperator fullop) ;

// For chaining (used internally by the BasicImplRegistry)
BasicOpPreImpl next = null ;
BasicOpPreImpl last = null ;

Templates A template is specified using an S-expression, given as a string param-
eter to the constructor of TemplateOpPreImpl or TemplateOpPreImpl. In the case or

sorts, the S-expression can be either:

e An S-expression of the form (name p; ...p,), n > 0, where name is a string and
the p; are sort templates. In this case, the template matches any sort obtained
by applying the sort constructor of name name to any sorts sy, ..., s, such that
s; matches p; for all i. (The case n = 0 matches only simple sorts, and in this

case the parentheses can be omitted.)

e An integer £ > 0, denoting a variable in the pattern. This matches any sort,

provided that each integer is matched to the same sort throughout the template.

For example, a sort template that matches sorts of the form Sortl{Sort2[p, ¢].p] is
("Sort1" ("Sort2" 0 1) 0). In the case of operators, the S-expression is of the form
(name (p; ...pn) Po), Where name is an operator name following the conventions

in Figure 6-2. It matches any operator with name name, whose range matches the

84

template py and its range sorts si,...,S; are such that s; matches p;. For example,

the pattern ("__=__" (0 0) ("Bool")) matches all the equality operators.*.

Installing operator preimplementations An implementation package installs
an operator preimplementation for a family of operators by including a line of the
form

reg.installOpPreImpl (name,prelmpl) ;

where name is the name of the operator, following the conventions in Figure 6-2,
preImpl is a preimplementation object and reg is the BasicImplRegistry. For exam-
ple, this is the code used to install the len operator for the sort constructor Seq[A]

// template: ("len" (("Seq" 0)) "Int")
reg.installOpPrelmpl
(lllenll ,
new TemplateOpPreImpl("(\"len\" ((\"Seq\" 0)) \"Int\")")
{
public Entity apply(SimOperator fullop, Vector/*[Entity]*/ opands)

SegEntity seq = (SeqEntity) opands.elementAt(0) ;
return IntEntity.make(seq.size()) ;
}
o

Installing sort preimplementations Sort implementations are installed using a
call of the form

reg.installSortPreImpl (name,isLiteral,prelmpl);

where name is the name of the sort, isLiteral is a boolean, and preImpl is the
corresponding preimplementation. An example is:

reg.installSortPreImpl
(llSeqll s
false, // isLiteral
new MatchSortPreImpl() {
public Entity construct(SimSort fullsort)
{ return new SeqEntity(fullsort) ; }
public boolean matches(SimSort fullsort)
{ return fullsort.getSubSorts().size() == 1 ; }
3}

#One must bear in mind that the S-expression is given as a Java string parameter, and hence
all the quotes and special characters inside the S-expression must be preceded by a backslash. For
example, the S-expression ("__=__" ("Bool") (0 0)), when encoded as a Java string, becomes

n (\II__=__\II (\llBool\ll) (0 O))ll

85

This example uses a MatchSortPreImpl, with a predicate that tests to see whether
there is exactly one subsort given to the sort constructor Seq.

To learn more about providing simulator implementations, I recommend exam-
ining the source of the implementation packages provided with the simulator. This

source will be included in the IOA Toolkit distribution.

6.5 Specializing the internal representation

The object oriented nature of Java allows the specialization of classes through sub-
classing, and this facility is the main tool for specializing the internal representation.
However, this still leaves the problem of how to instruct the ILParser to create spe-
cialized versions of ILElement objects, rather than objects with the default imple-
mentation. This can be done by defining a new subclass of ILFactory. This class
contains methods for creating each of the elements of the internal representation.
Once a specialized subclass of ILFactory is defined, it can be installed as the default
global ILFactory using the static method ILFactory.setInstance. The parser uses
the installed factory to create objects of the internal representation.

All of the internal representation interfaces that are leaves of the inheritance tree
in Figure 6-1 have a basic implementation. For every internal representation interface
named X, its basic implementation is the class ioa.il.BasicX. For most IOA tools,
it will be enough to specialize the Basic family. For example, if a particular tool
needs to have a special-purpose method called special in each Automaton object it

manipulates, it can accomplish this by:

1. Defining a subclass of BasicAutomaton, named, say, SpecialAutomaton. This

class will add the metod special.

2. Defining a subclass of BasicILFactory, which redefines the method newAutomaton

so that it creates objects of class SpecialAutomaton instead of BasicAutomaton.

3. Installing this new factory as the global factory, using ILFactory.setInstance.

86

4. Calling the parser to create an internal representation of an IOA intermediate

language file.

After the last step, the returned Spec object will contain only Automaton objects which
are actually of class SpecialAutomaton, and this hypothetical tool will be able to cast
them into SpecialAutomaton to access the method special.

The ILFactory mechanism can also be used to allow the ILParser to recognize
custom intermediate language statements. For more information on doing this, refer

to the documentation in the IOA Toolkit distribution.

6.6 Modifying the simulator user interface

[attempted to provide some mechanisms that would allow a good user interface for
the automaton to be implemented independently of the simulator itself. Towards this
goal, I defined interfaces for simulator events and listeners. Simulator events are Java
objects representing events that occur during a simulation of an automaton in an IOA
specification, and they implement the interface SimEvent (Lisiting 6-9). A simulator
listener is a Java object implementing the interface SimListener (Listing 6-10), which
contains methods that are called whenever a simulator event occurs. For example, a
transition taken in an automaton implements the SimEvent interface.

Since at the time of this writing there is only one (text-based) user interface for
the simulator, it is by no means clear whether this mechanism is general enough to
use as a basis for, say, a graphical user interface. For example, it could be necessary
to make the listeners be event-specific. However, the architecture of the simulator is

such that building on this event/listener scheme will probably not be difficult.

87

Listing 6-9: The SimEvent interface.

package ioa.simulator ;

/%%
* An event that may be broadcast by the simulator.
*/
public interface SimEvent {
/%%

* Returns true if this event is an error that should cause the
* simulation to halt.
*/

public boolean isError() ;

[*x

* Returns a string with a human-readable description of this
* simulator event.

*/
public String eventDescription() ;

}

Listing 6-10: The SimListener interface.

package ioa.simulator ;

[*x
* An object that may receive events broadcast by the simulator
*/
public interface SimListener {
[*x
* Handle the given event. Return false if simulator should not
* continue, true otherwise.
* Qexception SimException if an error occurs during handling */
public boolean handleSimEvent(SimEvent ev)
throws SimException ;

88

Bibliography

1]

2]

3]

(6]

Anna E. Chefter. A Simulator for the IOA Language. Master of Engineering and
Bachelor of Science in Computer Science and Engineering Thesis, Massachusetts

Institute of Technology, Cambridge, MA, May 1998.

Erich Gamma, et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, 1995.

Stephen J. Garland, Nancy A. Lynch and Mandana Vaziri. IOA: A Language
for Specifying, Programming and Validating Distributed Systems. User and Ref-
erence Manual. Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139, December 1997.

Stephen J. Garland and Nancy A. Lynch. Using I/O Automata for Developing
Distributed Systems. In Gary T. Leavens and Murali Sitaraman, editors, Founda-
tions of Component-Based Systems, pages 285-312, Cambridge University Press,
2000.

Larch: Languages and Tools for Formal Specification, John V. Guttag and James
J. Horning, editors, Springer-Verlag, 1993.

Barbara Liskov, et al. CLU Reference Manual, Technical Report MIT/LCS/TR-
225, MIT Laboratory for Computer Science, Cambridge, MA, October 1979.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, San
Mateo, CA, 1996.

89

(8] Nancy A. Lynch and Frits Vaandrager. Forward and backward simulations —
Part I: Untimed systems. Information and Computation, 121(2), pages 214-233,
September 1995.

9] Bengt Jonsson, Amir Pnueli and Camilla Rump. Proving refinement using trans-

duction. Distributed Computing (1999) 12: 129-149.

[10] Bill Joy, Guy Steele, James Gosling, Gilad Bracha. The Java Language Specifi-
cation, Second Edition. Addison-Wesley, 2000.

90

