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Chapter 1
Introdution
One of the most important researh ativities in the area of distributed systems isthe development of mathematial tools for the formal modeling and veri�ation ofdistributed algorithms. This mathematial mahinery should permit a preise spei-�ation of allowable behaviors exhibited by a system, as well as appliable methodsfor determining the orretness of implementations. One suh proposed tool is theInput/Output Automaton model [7℄, I/O automaton for short, whih is a labeled tran-sition system that allows for modular onstrution of onurrent systems from smalleromponents. This model has been inuential in the distributed systems researh om-munity, and muh of the work in the Theory of Distributed Systems (TDS) grouphas the formalism of I/O automata at its ore.1.1 Theoretial foundationIn this setion I present a brief summary of the prinipal de�nitions on whih the IOAToolkit is founded. All of these de�nitions have been taken almost verbatim from thetextbook Distributed Algorithms by Nany A. Lynh [7℄. The desription below isterse, and the reader is referred to this textbook for a more detailed disussion of thede�nitions and their motivations.
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1.1.1 I/O AutomataA signature S is a triple onsisting of three disjoint sets of ations:� in(S), the input ations,� out(S), the output ations,� int(S), the internal ations.In terms of these omponents we also de�ne:� loal(S) := out(S) [ in(S), the loally ontrolled ations,� ats(S) := in(S) [ inter(S) [ out , all the ations.An input/output automaton A (I/O automaton for short) onsists of �ve ompo-nents:� sig(A), a signature,� states(A), a (not neessarily �nite) set of states,� start(A) � states(A), a nonempty set, known as the start or initial states of A.� a set trans(A) � states(A)� ats(sig(A))� states(A) of transitions of A, withthe property that for every state s and every input ation � there exists atransition (s; �; s0) 2 trans(A).� tasks(A), a partition loal(sig(A)) into at most ountably many lasses.1.1.2 Exeutions and traesAn exeution fragment of an I/O automatonA is either a �nite sequene s0; �1; s1; : : : ; sr,or an in�nite sequene s0; �1; s1; : : : ; �r; sr; : : :, of alternating states and ations of Asuh that (sk; �k+1; sk+1) is a transition of A for eah k � 0. If s0 is a start stateof A, then the exeution fragment is alled an exeution. A state of A is said to bereahable if it is the �nal state of a �nite exeution of A. The trae of an exeution12



fragment �, denoted by trae(�), is the subsequene of � onsisting of all externalations, and it represents the externally-observed behavior of A during the exeutionof �.1.1.3 Simulation RelationsA forward simulation relation (or just simulation relation) from automaton A toautomaton B is a binary relation f � states(A)� states(B) suh that:1. If s 2 start(A), then f(s) \ start(B) 6= 0.2. If s is a reahable state of A, u 2 f(s) is a reahable state of B, and (s; �; s0) 2trans(A), then there is an exeution fragment � of B starting with u and endingwith some u0 2 f(s0), suh that trae(�) = trae(�),where f(s) stands for fu : (s; u) 2 fg. Simulation relations are an important tool inthe study of distributed systems, and their relevane stems from the following:Theorem. If there is a simulation relation from A to B, then traes(A) � traes(B).In other words, the existene of the simulation relation shows that A imple-ments B. Not every trae inlusion an be proved using forward simulation rela-tions. For this reason, there exist further variants of this de�nition; see Lynh andVaandrager [8℄ for a number of them. In this doument, I will only onsider forwardsimulation relations.1.2 The IOA Toolkit and its motivationAlong with the abstrat mathematial tools, it is highly desirable to have as a oun-terpart to the theory a set of software tools to aid with the proesses of analysis andimplementation of algorithms. An ongoing projet at the TDS group is the reationof the IOA Toolkit, a suite of software tools that address these onerns. My ownwork forms part of this toolkit. 13



At the ore of the IOA Toolkit is the programming language IOA, whih loselyshadows I/O automata in notation and semantis. The language is desribed in [3℄,[4℄. IOA inherits several properties from the I/O automaton model that make it anunusual programming language; for example, rather than having an expliit ow ofontrol, exeutions are spei�ed through ations, whih may be enabled or disabledaording to the urrent state. Multiple ations may be enabled at a given pointin time, and hene this programming language is nondeterministi. Moreover, thelanguage permits the manipulation of mathematial objets of unbounded size, afeature that ontributes to its lak of orthodoxy. Needless to say, these propertiesraise diÆult implementation issues. The motivation for these design hoies is adesire to develop systems starting with the strong foundation of the I/O automatonmodel. Thus, rather than imposing limitations on the omputational model beauseof implementation onerns, the approah is to enfore a high degree of loseness toan a-priori model, hene making the language simple, general, and easy to reasonabout. The extra generality has the tradeo� of making the implementation of sometools more involved. IOA has been spei�ed as an appliation of the Larh SharedLanguage (LSL) [5℄, whih allows the IOA toolkit to tap into the rih theorem-provingsystem Larh.Throughout this doument, I will assume some familiarity with the ontent of theIOA User and Referene Manual [3℄.1.3 The IOA simulatorAnna E. Chefter designed and implemented an IOA tool, alled the IOA Simulator [1℄.The simulator, given an IOA automaton spei�ation, performs a software simulationof an exeution of the I/O automaton that it represents. This tool is potentially auseful aid during the design of a system using IOA, sine it allows the designer to seethe algorithm in ation. One of the diÆulties in designing a simulator for IOA isresolving the nondeterminism present in this language, in order to selet an exeutionto simulate among all the possible ones. 14



My Master of Engineering thesis projet onsists of the following:� Improving the design of the simulator and the mehanisms for resolution ofnondeterminism.� Extending the simulator so that it allows invariant heking. This is a simpleaddition one the simulator exists, sine it only entails evaluating eah of the in-variants of an automaton after eah step. See Chapters 2 and 3 for a desriptionof my design regarding this and the previous item.� Extending the simulator to allow paired simulation: given a simulation relationbetween two automata, and a proposed step orrespondene, use an exeutionof the low-level automaton to indue an exeution of the high-level automatonusing the step orrespondene, while heking the validity of the simulationrelation. This is the main part of my projet. See Chapter 4 for more motivationon this problem and the way in whih I addressed it.� Developing a software environment that failitates the implementation of futureextensions of the simulator, and future tools in the IOA Toolkit. An introdu-tion to the use of this software environment is given in Chapter 6.1.4 Notes on terminologyI would like to larify several points regarding the terminology that is used in the restof the doument1. Some I/O automaton-related words are used with slightly di�erent meanings,depending on whether they refer to the abstrat I/O automaton model or tosyntati elements of an automaton spei�ation written in IOA. For instane,an IOA transition blok typially de�nes a family of transitions of the automatonthat is being modeled, one for eah value of its atual parameters and for eahvalue of the expliit hoies that may our in its e�et program. A similarremark is true for automaton ations and their parameters.15



2. Throughout this doument, the word \simulation" an refer to one of two dif-ferent notions: on one hand, it means the at of using a software program toexeute one or more I/O automata desribed in IOA; on the other, it refers to amathematial simulation relation between two abstrat I/O automata. It is usu-ally lear from the ontext whih of these two meanings is intended; otherwise,I have used the term \paired simulation" to refer to the software simulation ofmathematial simulation relations (and hene the title of this thesis).3. A large part of the disussion on resolution of nondeterminism pertains to thehoose keyword in IOA. Aording to the formal grammar, expliit hoies us-ing this keyword are lassed as \value" nonterminals, but I want to avoid theambiguity between the expliit hoie as a syntati element and the value ofthe hoie in a partiular exeution, and hene I avoid the expression \hoosevalue". An alternative expression ould be \hoose term", but that is inau-rate sine the hoose keyword is not valid in every ontext that a term is valid.As a ompromise, I have settled for the expression \hoose statement": whilenot a statement itself, an expliit hoie an only appear as the right-hand sideof an assignment, whih is a statement.4. In the ontext of resolution of nondeterminism, I have made use of Larh odewhih is syntatially orret, but whose semantis, as interpreted by the sim-ulator, do not onform to the semantis of Larh traits; in partiular, the im-plementation uses a pseudo-random number generator, while Larh semantisditate a deterministi implementation. This was done for onveniene only,sine the mehanism for speifying Larh traits was very lose to what wasneeded to speify the signatures of ertain nondeterministi operators used bythe simulator. I will refer to items de�ned in this way as pseudotraits, to em-phasize the ontrast with genuine Larh traits. It is plausible to eventually addan extension to IOA to allow a form of this syntax to be used by the simulator.Refer to Setion 2.5 for the spei�s.
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Chapter 2
Resolution of nondeterminism
One of the entral goals of the IOA language is that of high expressivity for math-ematial modeling of distributed systems. As part of this goal, IOA inorporates afamily of nondeterministi onstruts. In order to simulate an automaton, a parti-ular exeution must be hosen, and perhaps the main problem to be solved in thisrespet is to design a satisfatory mehanism for the resolution of nondeterminism.In this hapter I outline some desirable harateristis of suh a mehanism, and theway in whih I propose to ahieve some of them. I will use the abbreviation NDR1to refer to resolution of nondeterminism.2.1 The problemThere are several of soures of nondeterminism in the IOA language; for instane:� an automaton an have multiple enabled ations in a given state,� a given enabled ation an have multiple transition de�nitions assoiated withit,� a given transition de�nition an take arbitrary atual parameter values, as longas they satisfy its where lause, and,1nondeterminism resolution 17



� a transition de�nition an ontain one or more hoose statements, eah of whihmay evaluate to an arbitrary value that satis�es the onstraint in the wherelause.From the point of view of an IOA automaton spei�ation, the soures of nonde-terminism an be all regarded together as a blak box that an yield both transitionsto be sheduled and values to be assigned to hoose statements in transitions. Thusthe problem of resolution of nondeterminism an be regarded as that of providingan algorithmi means of obtaining these values and transitions as the need for themarises during the simulation of an automaton. To make the simulator a useful tool,it is desirable to make this mehanism:� Broad. It should provide several ways to resolve nondeterminism, eah suitedto di�erent situations and appliations. For instane, it should allow hoiesand transitions to be resolved as deterministi funtions of the automaton'sstate, or using a pseudo-random number generator, or by querying the user, orany ombination of these.� Extensible. It should be suÆiently open-ended that future developers andadvaned users an tailor it to spei� needs without too muh e�ort. Forinstane, if a new datatype implementation is added to the simulator, it shouldbe possible to add useful NDR mehanisms to go with it.� Usable. It should be reasonably easy to use, and it should not plae umber-some demands upon the user. It is my opinion that this is the most importantof the three points: resolution of nondeterminism is an absolute neessity fornontrivial uses of the simulator, and it would be unfortunate that a lak ofattention to usability onsiderations should disourage its use.2.2 A previous approah to NDRAnna E. Chefter designed an NDR mehanism for IOA automaton spei�ations [1℄.The essentials of her approah are as follows: for eah automaton to be simulated18



there must exist a determinator spei�ation. To handle hoose nondeterminism, thedeterminator provides for eah hoose statement in the automaton a �nite set fromwhih its values are to be drawn. The simulator then uses these values to resolve thehoie, seleting them uniformly at random. To handle transition nondeterminism,the determinator ontains what amounts to a sequential program. This program ispresented as a series of if/then statements, whih speify the transitions to shed-ule. Thus it allows the spei�ation of behavior like: \if any automaton [in someomposition℄ has more than �fty messages in its bu�er, then give it priority to takea step" [1℄. Additionally, determinators provide a way to generate pseudo-randomnumbers and query the user for values to be used as parameters to transitions. Be-sides serving as an NDR mehanism, Chefter's determinator also has the ability toannotate sheduled transitions with simulated timing and \weight" information.2.3 Motivation for a new approahMy own approah to NDR has several similarities with Anna E. Chefter's method. Forexample, the mehanism for resolution of automaton transitions is also presented as asequential program that an, among other things, use if/then rules to yield transitionsas a funtion of the automaton's state. However, the determinator framework, asdesribed in [1℄, has some drawbaks, whih I sought to address:1. In determinators, hoies an only be resolved using a pseudo-random num-ber generator. Thus this mehanism is restritive, sine the value of a hoosestatement may be onsistently orrelated with, say, a state variable of the au-tomaton, and this might be a useful ase to simulate. A seond problem is thatthe set of admissible values for a given hoose statement may vary during anexeution, whih is a situation not addressed by this mehanism.2. A determinator spei�ation has the advantage of being neatly separated fromthe automaton itself. In partiular, this property yields the bene�t that nohanges to the IOA grammar itself are neessary in order to implement them.19



Unfortunately, it also has the side e�et of requiring eah hoose statement inthe automaton to have a unique name for its dummy variable, so that it anbe unambiguously referened in the determinator. This is undesirable, sineit requires the designer to enfore this global uniqueness of names, whih anbeome a soure of errors.3. When there are multiple transition de�nitions with the same signature, it isneessary to distinguish among them in some way when referring to them. De-terminators aomplish this by using the sequential position of the transitionde�nitions in the automaton. For instane, the determinator an distinguishbetween \output myAtion:[1℄" and \output myAtion:[2℄", if there are two tran-sition de�nitions for the same output ation with name \myAtion". While thisdoes the job, there is the the possibility of modifying the automaton by alteringthe order of the transitions, inadvertently hanging the meaning of the deter-minator. This reliane of the determinator semantis on the syntati spei�sof the automaton an make it easy for the user to make mistakes, sine loal-ized hanges with no semanti e�ets on the automaton (e.g., reordering thetransitions) an modify the semantis of the determinator.4. The shemes for user interation and random number generation are �xed aspart of the determinator syntax. For example, there is no method to produepseudo-random reals between 0 and 1, and, more importantly, there is no wayto add suh a method without modifying the determinator grammar itself.The ways in whih I address these points are as follows:1. My proposed NDR sheme allows arbitrary rules for determining eah hoosestatement. These rules are desribed as sequential programs whih an makedeisions based on the evaluation of arbitrary IOA terms.2. My proposal requires the programmer to augment the automaton spei�ationitself with NDR-related information. Namely, it requires a shedule blok forresolving automaton transitions, and a det blok for resolving the values of eah20



hoose statement. Thus, it needs additions to the IOA grammar itself. However,sine the NDR information is syntatially loal to the expliit hoies, no globalunique-naming onstraint is neessary.23. In order to address the problem of disambiguation among transition de�nitionswith the same signature, my proposal adds syntax to IOA for expliitly namingthe transition de�nitions themselves. For example, now an automaton anhave two transition de�nitions output myAtion ase A and output myAtionase B. The token after the new ase keyword an be an arbitrary identi�eror a numeral, and it is used in the shedule and det bloks to refer to spei�transition de�nitions. In this way, a permutation of the transition de�nitionsdoes not a�et the assignment of the ase names, leaving the semantis of theshedule blok intat.4. The shedule and det bloks an evaluate arbitrary IOA terms to deide whihtransitions to shedule, or whih values to yield for a hoie. In addition, theyan evaluate operators whose implementations perform pseudo-random numbergeneration, or user prompting, to yield a result. This has the advantage thatthe NDR mehanism an be extended in essentially the same way that newdatatypes are added to the simulator, as desribed in Chapter 6.2.4 Overview of the proposed NDR mehanismGenerally speaking, my approah to NDR is to assign a program, alled an NDRprogram, to eah soure of nondeterminism in an automaton. Eah suh programis apable of providing values that resolve a hoie, or transitions to be sheduled,depending on the ontext. Thus there is an NDR program orresponding to everyhoose statement in an automaton, and an NDR program for sheduling the ations ofthe automaton. In this setion I will illustrate the operation of the NDR mehanism2Contrast this with the situation in paired simulation, in Chapter 4, in whih uniqueness ofdummy variable names is required in the spei�ation-level automaton in a simulation relation.21



using simple examples. Refer to Chapter 3 for a more detailed and general desriptionof the interpretation of NDR programs by the simulator.Listing 2-1: Chooser.ioaautomaton Choosersignatureoutput ation1, ation2(n:Int)stateshosen: Int % initially arbitrarytransitionsoutput ation1eff hosen := hoose x where 1 <= x /\ x <= 30output ation2(n)pre n = hosen Listing 2-2: Chooser.ioa, with NDRautomaton Choosersignatureoutput ation1, ation2(n:Int)stateshosen: Inttransitionsoutput ation1eff hosen := hoose x where 1 <= x /\ x <= 30det doyield 1; yield 2; yield 3odoutput ation2(n)pre n = hosenshedule dowhile true dofire output ation1;fire output ation2(hosen)ododConsider the IOA ode in Listing 2-1. It is an arti�ial example that exhibitsnondeterminism both from hoies and from transitions. It ontains a transitionwhih is always enabled and whose e�et nondeterministially hooses a value toassign to the single state variable. A seond transition de�nition has a parameter,and it is enabled only when the state variable equals its parameters. This spei�ationan be augmented with NDR programs to resolve its nondeterminism, for example,as shown in Listing 2-2. This example ontains the basi features of my approah.Notie these ruial points:� The NDR program in the shedule blok uses the �re statement to sheduletransitions of the automaton, hene \�ring" them. This statement allows thespei�ation of the type of ation (input, output, external) and its parameters,whih may in turn depend on the values of state variables of the automaton.22



Similarly, the NDR program assoiated with the hoose statement uses the yieldstatement to speify the values of the hoie.� The NDR program assoiated with the hoose statement has three suessiveyield statements. The semantis are as follows: when the simulator enountersthe hoose statement, it will start exeuting the NDR program until it en-ounters a yield statement. At this point, it will use the value provided by thestatement as the value of the hoose statement, and it will remember the urrentstatement of the NDR program. The next time it enounters the same hoosestatement, the simulator will not start its NDR program from the beginning;rather, it will resume exeuting it where it left o�. Thus, in the example in List-ing 2-2, the hoie will be resolved suessively to 1, 2, and 3. Similarly, in theshedule blok, the simulator will remember where it left o� after a transitionwas �red and resume from there the next time it shedules a transition.3� Moreover, in the ase of hoose statements, there is an impliit in�nite loopsurrounding the statements of the NDR program. Beause of this, the hoosestatement in the example resolves to the values 1, 2, 3, 1, 2, 3, et. Thisonvention is not used in the ase of the shedule blok in the automaton, butthe same e�et an be obtained by expliitly writing an in�nite loop, as shown.There is a rationale for these design hoies. I expet it to be ommon for a givenhoose statement to be resolved in the same way eah time it is enountered:say, by invoking the same pseudo-random number generator, by prompting theuser in the same manner, or by omputing the same deterministi funtion. Thisis reeted in the NDR program as an in�nite loop around a statement, whihwould be impratial for users to speify manually if this is indeed a ommonase. This is not a desirable onvention in the shedule blok: many automata donot have in�nite exeutions, and for them, one must be able to express shedulesthat eventually stop produing transitions and halt. An impliit in�nite loop3The semantis of yield and �re statements were inspired by the iterator onstrut in the pro-gramming language CLU. [6℄ 23



would disallow this.� The simulator requires the NDR programs to only �re transitions that are en-abled, and yield hoie values that make the orresponding where lause true. Ifthe simulator enounters a situation where either of these onditions does nothold, it will issue an error message and halt the simulation.Listing 2-3 shows the output of the simulator on this automaton. The simulatortakes as ommand line parameters the number of transitions to simulate, the nameof the automaton to simulate, and the name of a �le ontaining the intermediatelanguage form of the IOA spei�ation. For every step taken by the automaton (in-Listing 2-3: Simulator output on Chooser automaton.% java ioa.simulator.shell.SimShell 5 Chooser Chooser.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables:hosen --> 0℄℄℄℄ end initialization ℄℄℄℄[[[[ begin step 1 [[[[EVENT: transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 1℄℄℄℄ end step 1 ℄℄℄℄[[[[ begin step 2 [[[[EVENT: transition: output ation2(1) in automaton Chooser%%%% No modified state variables℄℄℄℄ end step 2 ℄℄℄℄[[[[ begin step 3 [[[[EVENT: transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 2℄℄℄℄ end step 3 ℄℄℄℄[[[[ begin step 4 [[[[EVENT: transition: output ation2(2) in automaton Chooser%%%% No modified state variables℄℄℄℄ end step 4 ℄℄℄℄[[[[ begin step 5 [[[[EVENT: transition: output ation1 in automaton Chooser%%%% Modified state variables:hosen --> 3℄℄℄℄ end step 5 ℄℄℄℄No errors%
luding the initialization step), the simulator reports the transition that was exeuted,and the state variables that hanged. 24



2.5 Other NDR featuresThere are a few important aspets of the NDR mehanism that are not illustrated bythis example:1. A shedule NDR program an �re input ations. This is provided for onve-niene, sine otherwise it would be neessary to ompose the automaton with anenvironment automaton in order to provide a full shedule. One a satisfatorymehanism for simulation of ompositions is in plae, this feature might not beas important.2. It is sometimes desirable to resolve hoies and shedule transitions using pseudo-randomness or user input as information. This issue an be addressed by pro-viding extra operators that evaluate as random number generators and userprompters. One way to do this is to use a pseudotrait4 suh as the one inListing 2-4. Listing 2-4: NonDet.lslNonDet: traitintroduesrandomNat: Nat, Nat -> Nat% uniformly random natural number in given rangequeryNat: Nat, Nat -> Nat% query user for natural number in given rangerandomInt: Int, Int -> Int% uniformly random integer in given rangequeryInt: Int, Int -> Int% query user for integer in given rangerandomBool: -> Bool% random boolean (eah value with probability 0.5)Eah of these operators is either urrently implemented by the simulator, or iseasy to implement with the urrent software support. Using them, an alternativeway of resolving the nondeterminism of Chooser is as follows:4I would like to emphasize that LSL traits are meant to model deterministi mathematial oper-ators, and that therefore this is not an orthodox use of Larh. For example, a zero-ary operator inan LSL trait represents a onstant, and does not admit implementations that evaluate di�erently atdi�erent times. Beause of this, the NonDet \trait" is not meant to be used in a general IOA ontext(e.g., inside an e�et blok); rather, it was introdued to be used only in NDR programs. This turnsout to be a onvenient and exible way to inorporate these apabilities. For example, users of thesimulator an extend the NDR apabilities in the same way that they an add implementations ofspeialized operators, as desribed in Chapter 6. I use the term \pseudotrait" to refer to this andother objets that are syntatially like LSL traits, but whose implementations by the simulator donot onform to LSL semantis. A possible future expansion would be to expand the syntax of IOAto allow delarations similar to the NonDet pseudotrait without abusing the semantis of LSL.25



Listing 2-5: Chooser.ioauses NonDetautomaton Choosersignatureoutput ation1, ation2(n:Int)stateshosen: Inttransitionsoutput ation1eff hosen := hoose x where 1 <= x /\ x <= 30det doyield randomInt(1,30)odoutput ation2(n)pre n = hosenshedule dowhile true dofire output ation1;if randomBool then fire output ation2(hosen) fiodod In a similar way, user prompting an be used instead of randomness.3. There are irumstanes in whih it would be tedious to write a omplete shed-ule by hand, and in whih the simulator by itself an �nd an appropriate transi-tion to shedule. The mehanism supports the statement �re with no arguments.When the simulator enounters a statement of this kind in an NDR ontext, itwill:(a) examine in turn eah loally-ontrolled transition de�nition of the automa-ton among those whose atual parameters are onstants. For eah of them,evaluate the preondition to see if it is enabled, and,(b) among those that are enabled, hoose one uniformly at random and �re itin the usual way.4. In IOA, multiple transition de�nitions an share the same ation type, nameand atual parameter sorts. In this senario, the form of the �re statementshown in Listing 2-2 would be ambiguous. This problem is solved by usingthe ase keyword in the transition de�nition to speify a name; it an be used,for example, as in Listing 2-6. The ase name of the transition is loal tothe primitive automaton in whih it is de�ned, and it an be a number or analphanumeri identi�er. Using the ase identi�er, the NDR program in theshedule blok an distinguish between the two transitions.26



Listing 2-6: Undeided.ioaautomaton Undeidedsignatureoutput hellostatesb: Booltransitionsoutput hello ase 1eff b := trueoutput hello ase 2eff b := falseshedule dowhile true dofire output hello ase 1 ;fire output hello ase 2odod
2.6 Future workThe above-desribed syntax for resolution of nondeterminism, while exible, might beregarded as requiring too muh work for its use. For example, it demands that the userprovide an NDR program assoiated with eah hoose statement in an automaton,whih ould result in repetitive ode fragments sattered over the automaton's ode,or in a shedule blok that is too omplex. Here I present some possible futureadditions to the urrent NDR syntax that would help remedy this to some extent.None of the extensions disussed here have been implemented, and the followinghapters are independent of this setion.2.6.1 Per-sort hoose NDR programsOne natural extension of the hoie resolution syntax is the ability to speify a defaultNDR program assoiated to a given sort. This kind of feature would require a smalle�ort to implement. One approah is to use syntati sugar,5 making ode like thefollowing:5Stritly speaking, this transformation would not be \syntati" sugar, sine its implementationrequires stati semanti information on the types of hoose variables.
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automaton Asignatureinternal doThingstatesx,y : Inttransitionsinternal doThinge� x := hoose ;y := hoose det do yield 3; yield 4 odhoosingfor w:Int do yield randomInt(-100,100) odstand for:automaton Asignatureinternal doThingstatesx,y : Inttransitionsinternal doThinge� x := hoose det do yield randomInt(-100,100) od ;y := hoose det do yield 3; yield 4 odThus, the hoosing blok would speify default NDR programs for sorts used in theautomaton; these programs ould be overridden by NDR programs expliitly providedin hoose statements. Another possibility is to allow a global hoosing blok, besidesper-automaton ones. A mehanism of this style would perhaps go a long way towardsavoiding the repetitive NDR spei�ation of many ommon ases. An adequate de-velopment of this idea would inlude a spei�ation of the semantis in the ase thatsome of the hoose statements have where lauses.2.6.2 Per-prediate hoose NDR programsIn a given hoose onstrut, of the general formhoose x where P (x),
28



it ould be advantageous to assoiate a default NDR program not with the sort ofthe hoose statement, but with the prediate P . For example, many ommon integer-valued hoose statements have where prediates that restrit the range of the hosenvalue to some �xed �nite set S of numbers, suh as an interval. It is redundant, givena olletion of hoose statements restrited in this way, to speify NDR programs foreah of them, if all that is wanted is to hoose, say, a random element of S eah timethe hoie is enountered. With the urrent mehanism, reasonable programs anresult in repetitive NDR-augmented IOA ode suh as the following:6automaton A...transitions...e� y1 := hoose x where 0 � x ^ x � 20yield randomInt(0,20) ;y2 := hoose x where 10 � x ^ x � 30yield randomInt(10,30) ;y3 := hoose x where -6 � x ^ x � 28yield randomInt(-6,28) ;y4 := hoose x where -20 � x ^ x � 20yield randomInt(-20,20)Eah NDR program is essentially a repetition of the where lause, and it amountsto giving the simulator a liense to selet the value of the hoose randomly fromthe orresponding interval. A way to avoid this repetition is to develop a languageextension similar to the following:automaton A...transitions...e� y1 := hoose x where 0 � x ^ x � 20 ;y2 := hoose x where 10 � x ^ x � 30 ;y3 := hoose x where -6 � x ^ x � 28 ;6This example also illustrates some syntati sugar urrently supported by the syntax: the on-strut \hoose: : : yield t" is equivalent to \hoose: : : det do yield t od". See Chapter 5 for the detailedgrammar. 29



y4 := hoose x where -20 � x ^ x � 20 ;...hoosingfor q:Int where p:Int � q ^ q � r:Intdo yield randomInt(p,r) odThe hoosing blok would assoiate NDR programs to families of prediates, spei�edin the form of patterns, whih an appear as where lauses. An implementation of thisfeature is likely to require typed pattern mathing, and perhaps to plae restritionson the types of prediates P that are aeptable in this mehanism. I believe this is apromising extension, sine it would result in the power to develop an \NDR library"of useful where prediates in hoies (e.g., real and integer intervals, �nite sets, primes,et.) with a variety of methods to resolve their nondeterminism, and the user wouldonly have to selet the NDR method from this library. It would be plausible to makethe feature desribed in Setion 2.6.1 a speial ase of this mehanism.2.6.3 Per-task shedule NDR programsA natural extension to the shedule blok is to allow a separate NDR program foreah task of the automaton. This raises the questions of how to alloate exeutionsteps among the provided programs, and what to do in the ase when some of thetasks are parameterized.2.6.4 Artiulating simulability onditionsIt would be useful to de�ne a suitable set of syntatially-spei�ed \simulability on-ditions" for IOA automaton spei�ations. These onditions should be narrow enoughsuh that an automaton that satis�es them an be exeuted with few user-spei�edNDR deorations, or none at all; they should also be broad enough that writing IOAspei�ations satisfying the onditions is not diÆult, and possible for many interest-ing ases. This is learly an open-ended problem. In this setion, I will disuss a fewpossible simulability onditions, in dereasing order of restritiveness.30



1. Disallow logial quanti�ers, hoose and for statements, and disallow automatathat have ations with formal parameters. This permits an easy algorithmfor simulation: iterate through the transition de�nitions, and for eah of themevaluate the orresponding preondition; this an be done easily due to theabsene of quanti�ers. Choose a transition (perhaps randomly) among thosewhose preondition evaluates to true, and exeute it.2. As in 1, but allow formal parameters in ations, as long as they only appearas onstant values in transition de�nitions. For example, a transition de�ni-tion headed by \output at(1,false)" is allowed, but not one headed by \outputat(n:Int, b:Bool)". This is essentially the same as 1, and it makes the automatoneasy to simulate for the same reasons.3. As in 2, but allow arbitrary formal parameters in ations, as long as transitionde�nitions are restrited to the form:ationType ationName(var1 : sort1; var 2 : sort2; : : : ; varn : sortn)pre var1 = term1 ^var2 = term2 ^...varn = termn ^restPrede� . . .where� eah term i is an IOA term whih depends only on the state variables ofthe automaton, and not on any of the variables var i, and� restPred is an IOA prediate (without quanti�ers).This has the result that at most one value of the variables satis�es the pre-ondition in a given state. In this way, the simulator an, for eah transition,evaluate eah termi and verify whether restPred holds after the var i have beensubstituted by the results of evaluating the termi.31



4. As in 3, but relax the restrition on the form of transitions as follows:ationType ationName(var1 : sort1; var 2 : sort2; : : : ; varn : sortn)pre term 01 = term1 ^term 02 = term2 ^...term 0n = termn ^restPrede� . . .where� eah term 0i is of the form opi(var i; ti;1; : : : ; ti;ri), opi is an operator, and theti;j are terms involving only the state variables of the automaton,� eah term i is an IOA term involving only the state variables of the au-tomaton, and,� restPred is an IOA prediate (without quanti�ers).This sort of automaton would be simulable, provided that the sheme for op-erator implementations presented in Chapter 6 is extended to allow ertainoperators to implement a searh operation. Given values ai;j and  of the ap-propriate sorts, this operation would yield a value bi, if one exists, suh thatopi(bi; ai;1; : : : ; ai;ri) = . This operation might not be implemented (or it mightbe impossible to implement eÆiently) for all operators, and only those forwhih it is implemented would be allowed in this ontext.The simulator ould then, for eah transition, evaluate eah term i, invoke theappropriate searh operation on the implementation of operator opi, and ifthe searh operation is valid for all i, evaluate the prediate restPred aftersubstituting eah of the results of the searh operations into their orrespondingvar i. Subsequently, the simulator an then selet a transition de�nition withparameters among those for whih this test is suessful.It is lear that further relaxations of these simulability onditions are oneivable,espeially in the presene of the searh operation. For example, this operation would32



allow the evaluation of a lass of existential quanti�ers. I have the impression thatrestrition 3, along with versions of the NDR extensions proposed in the preedingparagraphs, would go a long way towards making the simulator easy to use.It would be useful to investigate simulability onditions that are preserved byAnna E. Chefter's omposer algorithm ([1℄; see also remarks in Setion 3.4.1). Asatisfatory simulability ondition that is preserved by the omposer algorithm wouldgreatly expand the sope of the simulator, sine it would redue the amount of ne-essary user exposure to the output of the omposer, whih is possibly more diÆultto understand.
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Chapter 3
Single-automaton simulation
In this hapter I desribe how the simulator is designed, both regarding the IOAlanguage support that it requires, and the algorithm that it follows to simulate anautomaton. Additionally, I present examples of how the simulator is used. I do nottreat details suh as the management of operator and sort implementations. For moreinformation regarding this and other software-related issues of the simulator, refer toChapter 6.3.1 Limitations of the simulatorThe urrent implementation of the simulator has the following limitations:1. No existential or universal quanti�ers are permitted anywhere in the IOA au-tomaton to be simulated. Often, the e�et of an existential quanti�er an beahieved using a suitably onstrained hoose statement, as desribed in [1℄,thereby reduing the problem of evaluating suh quanti�ers to the problem ofnondeterminism resolution for hoose statements. Evaluating universal quanti-�ers would require an essentially di�erent mehanism.2. There are restritions on the atual parameters in transition de�nitions: eahof them must be either a pure variable, or a term that ontains no variables,so that it evaluates to a onstant. Again, as explained in [1℄, this is not a34



real restrition, sine expression parameters an be replaed by variables thatare suitably onstrained by the where lause of the transition. It would not bediÆult to modify the urrent implementation to remove this onstraint, butsome orresponding hanges to the NDR mehanisms would be neessary. I didnot investigate this possibility.3. No for loops are permitted anywhere in the automaton to be simulated. The IOAfor onstrut is very powerful and nondeterministi. There is no straightforwardway to redue its exeution to the problem of hoose determination, and itprobably requires speialized language extensions and support from the typeimplementations. Additionally, the presene of hoose statements inside thebody of a for loop would raise serious questions regarding determination.4. The simulator only supports primitive automaton spei�ations. Chefter's the-sis [1℄ desribes a transformation algorithm (the omposer) whih takes an IOAautomaton omposition spei�ation as an input, and results in an IOA spei�-ation of a primitive automaton that is equivalent to it. This kind of algorithm,if implemented, would be usable with this simulator, assuming that the user iswilling to provide the neessary NDR programs for the output of the omposer.See Setion 3.4.1 for further disussion on this approah to simulating ompositeautomata.3.2 The simulator algorithmA good way to understand how the simulator interprets the NDR programs is througha desription of the algorithm that it follows. Page 36 ontains a pseudo-ode de-sription of this algorithm. It is organized in three proedures. The main one isSimulate(A), where A is the primitive automaton spei�ation to be simulated. Thisproedure in turn uses two auxiliary ones, also presented in the �gure. The algorithmdoes not desribe the details of evaluating IOA programs or terms and fouses on theNDR mehanisms. Evaluating a term requires every operator in the term to have a35



simulator implementation; refer to Chapter 6 for the details on mathing operatorsand sorts with their implementations.NotationA:ndr The shedule NDR program for automaton spei�ation A.A:p A program ounter for A:ndr .Its value an be a statement in A:ndr or null .A:invs The list of invariants of A.A:simpleTrans The set of transition de�nitions in A with onstant atual parameters.t:pre The preondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�et program for a transition de�nition t.:ndr The hoie NDR program for a hoose statement .:p A program ounter for :ndr .Its value an be a statement in :ndr or null .:var The dummy variable in a hoose statement .:where The where term in a hoose statement .trans(A; t; n; ) The transition de�nition of type t, name n and aselabel  in automaton A.eval (t) The result of evaluating a term t.? Simulate(A):[ A: IOA primitive automaton ℄initialize a program ounter :p for eah hoose statement  in Ainitialize a program ounter A:p for the shedule blok of Awhile A:p 6= null doall ExeuteShed(A,A:p)advane A:p to the next statement in A:ndr ❚? ExeuteShed(A; s):[ A: IOA primitive automatons: statement in A:ndr ℄if s is not a �re statement thenexeute s (s is an assignment, a onditional, or a while onstrut;the semantis for these types of statements are the obvious ones)else if s = \�re ationType ationName(ationAtuals) ase " thenlet t := trans(A; ationType ; ationName ; )assign ationAtuals to the formal parameter variables of tif eval (t:pre) = true and eval (t:where) = true thenexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalChoie()elsehalt with an errorfor eah t 2 A:invs suh that eval (t) = false doissue an invariant failure warningelse if s = \�re" thenlet S = ft 2 A:simpleTrans j eval (t:pre) = truegif S 6= ; thenhoose t 2 S uniformly at randomexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalChoie() ❚36



? EvalChoie():[ : hoie statement ℄forever doif :p is not a yield statement thenexeute :p (:p is an assignment, a onditional, or a while onstrut)advane :p to the next statement in :ndrelse if :p is of the form \yield t", where t is a term thenlet v = eval(t)assign v to :varif eval (:where) 6= false thenadvane :p to the next statement in :ndrexit EvalChoieelsehalt with an error ❚The proedure Simulate initializes a program ounter for eah NDR program in theautomaton, inluding the shedule blok and eah hoose statement. This means thatthe algorithm keeps a separate NDR program ounter for eah hoose statement; thisdoes not neessarily translate to keeping a separate program ounter for eah atualhoie in the abstrat automaton that is being simulated. For example, onsider thefollowing ode: Listing 3-1: ManyChoies.ioauses NonDetautomaton ManyChoiessignatureinternal doThing(n:Int)statesm: Inttransitionsinternal doThing(n)eff m := hoose det do yield 1; yield 2 odshedule do while true dofire internal doThing(randomInt(1,100))od odThe hoose statement in the transition for doThing atually represents an in�ni-tude of hoies, one for eah value of the parameter n for doThing. A single programounter is kept for all of them, and one must bear this in mind when designing NDRprograms. In this ase, the onsequene is that this hoose statement is always re-solved alternatively to 1 and 2, regardless of the parameter of the transition. Analternative arhiteture is possible in this respet: the simulator ould dynamiallyalloate a new NDR program ounter for eah new set of parameter values that it37



enounters for the transition, keeping all the alloated program ounters in a tablekeyed by the parameter values. This raises onerns of memory eÆieny, but is aninteresting possibility.3.3 Invariant hekingListing 3-2: Fibonai.ioaautomaton Fibonaisignatureinternal omputestatesa:Int := 1,b:Int := 0,:Int := 1transitionsinternal omputeeff a := b ;b :=  ; := a + b% true invariant:invariant A of Fibonai:a + b = % false invariant:invariant B of Fibonai:a - b = 

The simulator has the apability of hekingwhether the invariants of an automaton, statedusing IOA syntax, hold throughout an exeution.This is done simply by evaluating eah of the in-variants found in the IOA spei�ation after eahtransition is exeuting, and issuing a warning mes-sage if any of them fail.The ode in Figure 3-2 is an IOA spei�ationof an automaton, along with two proposed invari-ants of its state and suitable NDR programs.1 Fig-ure 3-3 presents the orresponding output of thesimulator; this output shows that one of the invariants did not hold on this partiularexeution. Listing 3-3: Simulator output with invariant heking on Fibonai.ioa.% java ioa.simulator.shell.SimShell 5 Fibonai Fibonai.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables: --> 1b --> 0a --> 1℄℄℄℄ end initialization ℄℄℄℄[[[[ begin step 1 [[[[EVENT: transition: internal ompute in automaton FibonaiEVENT: invariant B failed%%%% Modified state variables: --> 1b --> 1a --> 0℄℄℄℄ end step 1 ℄℄℄℄[[[[ begin step 2 [[[[EVENT: transition: internal ompute in automaton FibonaiEVENT: invariant B failed1This IOA spei�ation gives names to the invariants, using a syntax that is not part of IOAas desribed in [3℄. See Chapter 5 for a desription of this extension. It was added merely for theonveniene of allowing the simulator to refer to invariants by name.38



%%%% Modified state variables: --> 2b --> 1a --> 1℄℄℄℄ end step 2 ℄℄℄℄[[[[ begin step 3 [[[[EVENT: transition: internal ompute in automaton FibonaiEVENT: invariant B failed%%%% Modified state variables: --> 3b --> 2a --> 1℄℄℄℄ end step 3 ℄℄℄℄[[[[ begin step 4 [[[[EVENT: transition: internal ompute in automaton FibonaiEVENT: invariant B failed%%%% Modified state variables: --> 5b --> 3a --> 2℄℄℄℄ end step 4 ℄℄℄℄[[[[ begin step 5 [[[[EVENT: transition: internal ompute in automaton FibonaiEVENT: invariant B failed%%%% Modified state variables: --> 8b --> 5a --> 3℄℄℄℄ end step 5 ℄℄℄℄No errors%
3.4 Future workIn this setion I present areas in whih the NDR mehanism desribed above is notentirely adequate, and outline possible diretions of future improvement.3.4.1 Simulating expliit ompositionsCurrently, the simulator annot handle omposite automata diretly. As suggestedabove, it is possible to do the following:1. Using an implementation of Chefter's omposer transformation, turn an expliitIOA omposition of automata into an IOA primitive automaton spei�ation.2. After applying the omposer, manually edit its output to augment it with theNDR programs that are requisite for simulation by this implementation.39



While this approah would ertainly work, it raises some usability onsiderations.For one, it is reasonable that users of the simulator will want to speify the nondeter-minism resolution diretly in the voabulary of an expliit omposition. Running itthrough the omposer results in an equivalent automaton that, however, is likely to bemore omplex than the original input. Moreover, the omposer will introdue extravariables and transitions that might obsure the funtion of the original automaton,making the task of speifying the NDR programs more diÆult. I would like to stressthe importane of usability: simulating an I/O automaton is not oneptually a hardproblem, and it would be a mistake to make a simulator that is unneessarily diÆultto use. In this light, I think that an interesting diretion of future researh is toextend the simulator so that it an deal diretly with (perhaps restrited) expliitompositions.3.4.2 Graphial user interfaeGraphial user environments have beome the norm for omplex software that requiresuser interation. The simulator ould bene�t greatly from a well-designed graphialinterfae. For example, it ould be possible to:1. Graphially represent the state of the automata being simulated.2. Use dialog boxes to query the user when neessary for NDR purposes.3. Allow the user to hange the NDR parameters of the automata in betweensimulations, without manually going bak to the soure and front-end.4. Allow the user to selet whih invariants should be heked and whih shouldbe ignored.The simulator's software design already has some mehanisms that should be usefulfor a graphial user interfae implementor; for example, it allows \listeners" to beregistered. A listener is a Java objet whih is noti�ed whenever an event oursin the simulator. For example, the failure of an invariant and the exeution of atransition are some of the events that an be handled in this way. A listener ould, in40



partiular, use the event noti�ation to update the graphial display in response topartiular types of events. This event/listener arhiteture ould be further re�nedto allow a given listener to reeive only a partiular subset of the events. Refer toChapter 6 for more information.
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Chapter 4
Paired simulation
In the study of distributed systems, it is ommon for omplex systems to be analyzedthrough suessive re�nements: in the presene of an abstrat spei�ation A, onewould like to show that another spei�ation B is an implementation of A. If A andB are I/O automata, this is modeled by the statement thattraes(B) � traes(A):To prove a statement of this form, it is almost inevitable to use an argument byindution over the length of an exeution ofB. This indutive reasoning on automatonexeutions has been abstrated, yielding the method of simulation relations. Usingthis method, one seeks to onstrut a simulation relation f from B to A, as desribedin Setion 1.1.3.The IOA language inludes syntax for asserting simulation relations between au-tomaton spei�ations. One of the goals of IOA is to provide software tools to assistin the analysis of I/O automata. For example, given a proposed simulation relationf from B to A, it would be useful to test its validity when restrited to a partiularexeution of B. As in the ase of invariants, a single exeution in whih f is observednot to hold would suÆe to show that f is invalid. While ontinued veri�ation off in di�erent exeutions of B does not prove the orretness of f , it does provideempirial evidene that f may be true, before the user spending the neessary e�ort42



to prove its orretness.In this hapter, I desribe how the simulator desribed in Chapter 3 was extendedto allow simulation of a pair of automata related by a mathematial simulation rela-tion. The entral problem here is this: the simulation relation itself, being merely aprediate that relates the states of two automata, is not suÆient to speify how eahstep in the implementation automaton orresponds to a sequene of steps in the spe-i�ation automaton. In general, there might be multiple step orrespondenes thatrealize a given valid simulation relation between automata, and even if there is onlyone, it an be diÆult to �nd it. From this point of view, the problem of derivinga spei�ation-level exeution from an implementation-level exeution is analogousto that of deriving a deterministi exeution of a single automaton from a spei�a-tion that allows nondeterminism. Not surprisingly, the problem of programmatiallyspeifying a step orrespondene admits a similar solution.Related work Jonsson, Pnueli, and Rump [9℄ de�ne a new tehnique for provingtrae inlusions between abstrat transition systems. The method onsists in de�ninga transduer, whih takes as input an exeution of the implementation-level systemand outputs a orresponding exeution of the spei�ation-level system. They provea soundness theorem for this method, whih states, in essene, that the existene of aorret transduer between the systems implies trae inlusion. While the transduersused in [9℄ are mathematial onstruts, this idea suggests doing software simulationof a pair of automata while verifying a step orrespondene.4.1 A language for enoding step orrespondenesA step orrespondene needs to speify, for a given low-level transition, a high-levelexeution fragment suh that the simulation relation holds between the respetive�nal states of the transition and the exeution fragment. Thus, a step orrespon-dene an be seen as a \attempted proof" of the simulation relation, missing onlythe reasoning that shows that the simulation relation is preserved. To speify the43



proposed proof of a simulation relation, I extended the urrent syntax of the forwardsimulation IOA onstrut to inlude a new setion alled proof,1 for speifying the steporrespondene. This setion ontains one entry for eah possible transition de�ni-tion in the low-level automaton, and eah entry enodes an algorithm for produinga high-level exeution fragment, using a program similar to the NDR programs usedin automaton shedule bloks. In addition to these entries, the proof setion also on-tains an initialization blok, whih spei�es how to set the variables of the high-levelautomaton given the initial state of the low-level automaton, and an optional statessetion that delares auxiliary variables used by the step orrespondene.Figure 4-1 shows the general high-level struture of a simulation proof enodedusing this language. Note that this syntax extends the syntax for forward simulationrelations in IOA. Some of the setions in the proof blok have a more exible syntaxthan is depited here, and some an be omitted; refer to Chapter 5 for the detailedgrammar. The states blok introdues auxiliary variables used in the proof, and theirinitial values. The initially blok spei�es how to initialize the state variables of thespei�ation automaton as a funtion of the implementation automaton's initial state,so as to satisfy the simulation relation.Eah proofEntry i is either the keyword ignore or a proof program, surrounded by doand od delimiters, aording to the grammar rules for SimProofProgram as detailedin Chapter 5. Suh a program is essentially an NDR program, of the form allowedin an automaton's shedule blok, exept that the �re statements must now provideadditional information to resolve the hoose statements of the spei�ation automa-ton. If a proof program is present, the simulator will exeute it from beginning toend to produe a high-level exeution fragment for that ase, using the �re statementsto shedule transitions in the spei�ation automaton. A proof entry equal to ignoreis equivalent to a proof program with no statements, and it is used to represent an1It was Dr. Stephen Garland who suggested alling the step orrespondene a \proof", andmaking it a new part of the simulation relation de�nition; my original idea was to append theorrespondene to the low-level automaton, whih would not have been as lean a solution. It isplausible to further extend this syntax to inlude a omplete proof, in a form suitable for automatedproof veri�ation. 44



forward simulationfrom autImpl to autSpe :simPrediateproofstatesauxVar1 : sort1,auxVar2 : sort2,...auxVarm : sortminitiallyv1 := term1;v2 := term2;...vn := termnfor atType1 atName1(atFormals 1)ase aseId1proofEntry 1for atType2 atName2(atFormals 2)ase aseId2proofEntry 2...for atTypep atNamep(atFormals p)ase aseIdpproofEntry p Figure 4-1: Syntax of step orrespondene.
�re ationType ationName(ationAtuals)ase aseIdusing term1 for v1,term2 for v2,...termk for vk Figure 4-2: �re statements in proof bloks.
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empty high-level exeution fragment.The �re statements allowed in proof programs have the struture depited inFigure 4-2. This general �re statement has the meaning: \shedule the transitionof type ationType, name ationName with atual parameters ationAtuals, usingthe values of the terms term1; : : : ; termn to resolve the hoose statements in thetransition's e�et having dummy variables v1; : : : ; vn". If present, the aseId label isused to disambiguate between transition de�nitions with the same signature.This design imposes a onstraint not present in the single-automaton ase: it mustbe required that, for a given transition de�nition in the spei�ation automaton, thehoie statements in it have dummy variable names whih are distint. While ingeneral it is undesirable to plae unique-naming onstraints for loal dummy variables,I justify this design deision by arguing that, in the ase or paired simulation, theseare not just dummy variables, but serve also as natural names for the hoies in ahigh-level transition. An alternative design would be to add syntax for expliitlynaming the hoie statements.4.2 An illustrative example of paired simulationListing 4-1 ontains a simple IOA spei�ation ontaining a simulation relation witheverything neessary for it to be exeuted. The automaton GreeterSpe is a spei�a-tion for automata that produe the output ation hello any number, perhaps in�nite,of times. The automaton FiniteGreeter is a speialization of this automaton that onlyprodues a �nite (but arbitrary) number of hello outputs. FiniteGreeter has exatlyone hoie point, whih ours in its initialization of the maxGreets variable. To beable to simulate it, I provided an NDR program for it, onsisting of the program thatyields a random integer in the range 1 : : : 100 as the value of the hoie.2 A point tonotie here is that the hoose statement in GreeterSpe's transition de�nition has adummy variable even though it does not have a where lause onstraining it; this is2Note that the semantis of FiniteChooser allow it to output any �nite number of hello ations;the addition of the yield does not hange these semantis: it merely modi�es the behavior of thesimulator, in this ase by having it hoose a random number in that partiular range.46



neessary if the simulation proof is to refer to it by name. This is another neessaryIOA grammar hange for paired simulation, and is desribed in Chapter 5.Listing 4-1: Greeters.ioa: A simple simulation relation with step orrespondene.uses NonDetautomaton GreeterSpesignatureoutput hellostatesstillGoing: Bool := hoosetransitionsoutput hellopre stillGoingeff stillGoing := hoose sgautomaton FiniteGreetersignatureoutput hellostatesmaxGreets: Int := hoose yield randomInt(1,5),ount: Int := 0transitionsoutput hellopre ount < maxGreetseff ount := ount + 1forward simulation from FiniteGreeter to GreeterSpe :GreeterSpe.stillGoing <=>(FiniteGreeter.ount < FiniteGreeter.maxGreets)proofinitiallystillGoing := (FiniteGreeter.ount < FiniteGreeter.maxGreets)for output hello dofire output hellousing (FiniteGreeter.ount < FiniteGreeter.maxGreets) for sgodListing 4-2 is the output of the paired simulator on this IOA spei�ation. As inthe ase of non-paired simulation, it outputs the transitions taken and state variablesmodi�ed for every step of the implementation automaton. In addition, it outputs thetransitions of the spei�ation automaton indued by eah implementation step. Foreah transition taken in either automaton, the simulator outputs the variables thatwere hanged by the transition's e�et. The absene of simulator error messages in theoutput indiates that the simulation relation was veri�ed to hold, in this partiularrun, with this proposed step orrespondene.Listing 4-2: Paired simulator output on Greeters.ioa.% java ioa.simulator.shell.PairedShell 5 FiniteGreeter GreeterSpe Greeters.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:ount --> 0maxGreets --> 2%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ end initialization ℄℄℄℄[[[[ begin implementation step 1 [[[[ 47



Exeuted impl transition: transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 1Exeuted spe transition: transition: output hello in automaton GreeterSpe using true for sg%%%% Modified state variables for spe automaton:stillGoing --> true℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[ begin implementation step 2 [[[[Exeuted impl transition: transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:ount --> 2Exeuted spe transition: transition: output hello in automaton GreeterSpe using false for sg%%%% Modified state variables for spe automaton:stillGoing --> false℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[ begin implementation step 3 [[[[EVENT: exeution ended℄℄℄℄ end implementation step 3 ℄℄℄℄>>>> No errors%
4.3 The paired simulator algorithmAs I did in Chapter 3 for the single-automaton ase, here I present pseudoode forthe paired simulator. The pseudoode is organized into several proedures, of whihSimulatePair is the main one. NotationR:proof The proof blok in simualtion relation RR:impl The implementation-level automaton in simulation relation RR:spe The spei�ation-level automaton in Rt:pre The preondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�et program for a transition de�nition t.:var The dummy variable in a hoose statement .:where The where term in a hoose statement .trans(A; t; n; ) The transition de�nition of type t, name n and ase label  in automaton Aeval (t) The result of evaluating a term t.proofProg(R; t) The proof program orresponding to t in R:proof .t must be a transition of R:impl? SimulatePair(R):[ R: IOA simulation relation ℄let A := R:impl , B := R:spe, p := R:proofall Initialize(R)simulate A as desribed in Chapter 3, exept that:for eah transition t exeuted in Aall ExeCorresponding(R,t) ❚ 48



? Initialize(R):[ R: IOA simulation relation ℄let A := R:impl , B := R:spe, p := R:proofinitialize the state of A (using its NDR mehanism if neessary)initialize the auxiliary variables in the states blok of pinitialize the state of B aording to the initially blok of pall ChekSimRel(R) ❚? ExeCorresponding(R; t):[ R: IOA simulation relationt: a transition of R:impl ℄let p := proofProg (R; t)let ` be an empty sequene of transitionsfor eah statement s in p doif s is not a �re statement thenexeute s (s is an assignment, a onditional, or a while onstrut)elselet t0 := trans(S:spe; ationType ; ationName ; aseId )all ExeSpeEffet(R; s; t0)append t0 to `all ChekSimRel(R)if trae(`) 6= trae(t) thenhalt with an error ❚? ExeSpeEffet(R; s; t):[ R: IOA simulation relations: a �re statement of the form given in Figure 4-2t: the transition of R:spe orresponding to s ℄assign ationAtuals to the formal parameters of tif eval (t:pre) = true and eval (t:where) = true thenexeute the statements in t:e� following IOA semantis;when a hoose statement  needs to be evaluated, all EvalSpeChoie(R; s; t; )elsehalt with an error ❚? EvalSpeChoie(R; s; t; )[ R: IOA simulation relations: a �re statement of the form given in Figure 4-2t: the transition of R:spe orresponding to s: a hoose statement in t:e� ℄let r := eval (termi ), where vi is the name of :varassign r to :varif eval (:where) = false thenhalt with an error ❚? ChekSimRel(R)[ R: IOA simulation relation ℄if eval (R:pred) = false thenhalt with an error ❚The proedure SimulatePair invokes the algorithm for single-automaton exeutiondesribed in Chapter 3, exept that it alls proedure ExeCorresponding for every49



low-level transition t that is sheduled. The proedure ExeCorresponding followsthe proof program assoiated with t in the proof blok of the simulation relation,exeuting eah of the high-level transitions determined by �re statements. In addition,ExeCorresponding veri�es that the indued high-level transitions have the sametrae as t, and alls ChekSimRel to determine if the simulation relation holds at theend of the step. The proedure ExeSpeEffet, alled by ExeCorresponding foreah high-level transition, exeutes the e�et program of the transition as in the single-automaton ase, exept that proedure EvalSpeChoie is alled for every expliithoie. The latter proedure evaluates a hoose statement using the value provided inthe using part of the �re statement that determined the high-level transition, providedthat it satis�es the where prediate.Notie that the low-level step is taken in full before its orresponding proof entryis examined, and the prior state of the low-level automaton is not reorded. Thismeans that the proof program an only refer to the low-level state after the low-levelstep has taken plae. Nevertheless, it is easy to modify an implementation automatonto make it keep trak of relevant parts of its old state, or of the hoies it makes.In this way, the proof an refer to this information, and the language an be veryexpressive. A possibility for future expansion is to extend the syntax so that it anrefer expliitly to the state before and after the low-level step, and to the hoiestaken during the step.4.4 Example 1: mutual simulation of simple om-muniation hannelsThis example is drawn from [7℄, in whih a version of it is used to illustrate basiideas about simulation proofs.3 Listing 4-3 is an IOA spei�ation of two hannelautomata, together with two simulation relations between them, one in eah diretion.Both automata have the same external signature, with an input ation send(n:Nat)3In the textbook, the automaton orresponding to Channel2 is modeled as a omposition of twoopies of automata similar to Channel1. 50



and an output ation reeive(n:Nat). The parameters to these transitions representmessages. Automaton Channel1 uses a sequene with a �rst-in, �rst-out disiplineto hold messages \in transit" in the hannel. Automaton Channel2 uses two queues,and has an additional internal ation transfer(n:Nat) to move messages from the �rstqueue to the seond. This ode inludes shedule bloks for both automata, andproof bloks for both simulation relations. The shedule NDR programs use pseudo-random numbers to generate the various ations. Both simulations simply state thatthe onatenation of the queues of Channel2 equals the queue in Channel1, and thestep orrespondenes are, as expeted, straightforward. Listing 4-4 shows the outputof the paired simulator on the simulation from Channel2 to Channel1, and Listing 4-5shows the output on the opposite simulation.Listing 4-3: Channels.ioauses NonDetautomaton Channel1signatureinput send(n:Nat)output reeive(n:Nat)statesqueue: Seq[Nat℄ := {}transitionsinput send(n:Nat)eff queue := n -| queueoutput reeive(n:Nat)pre len(queue) ~= 0 /\last(queue) = neff queue := init(queue)sheduledo while true doif randomBool thenfire input send(randomNat(1,100))fi ;if randomBool /\ len(queue) ~= 0 thenfire output reeive(last(queue))fiod odautomaton Channel2signatureinput send(n:Nat)output reeive(n:Nat)internal transfer(n:Nat)statesqueue1: Seq[Nat℄ := {},queue2: Seq[Nat℄ := {}transitionsinput send(n:Nat)eff queue1 := n -| queue1internal transfer(n:Nat)pre len(queue1) ~= 0 /\last(queue1) = neff queue2 := n -| queue2;queue1 := init(queue1)output reeive(n:Nat)pre len(queue2) ~= 0 /\last(queue2) = neff queue2 := init(queue2)shedule 51



do while true doif randomBool thenfire input send(randomNat(1,100))fi ;if randomBool /\ len(queue1) ~= 0 thenfire internal transfer(last(queue1))fi ;if randomBool /\ len(queue2) ~= 0 thenfire output reeive(last(queue2))fiod odforward simulation from Channel2 to Channel1 :Channel1.queue = Channel2.queue1 || Channel2.queue2proofinitiallyqueue := Channel2.queue1 || Channel2.queue2for input send(n:Nat) dofire input send(n)odfor output reeive(n:Nat) dofire output reeive(n)odfor internal transfer(n:Nat)ignoreforward simulation from Channel1 to Channel2 :Channel1.queue = Channel2.queue1 || Channel2.queue2proofinitiallyqueue1 := Channel1.queue;queue2 := {}for input send(n:Nat) dofire input send(n)odfor output reeive(n:Nat) dofire internal transfer(n);fire output reeive(n)odListing 4-4: Paired simulator output on Channels.ioa (Channel2 implementing Channel1).% java ioa.simulator.shell.PairedShell 10 Channel2 Channel1 Channels-proof.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:queue2 --> [℄queue1 --> [℄%%%% Modified state variables for spe automaton:queue --> [℄℄℄℄℄ end initialization ℄℄℄℄[[[[ begin implementation step 1 [[[[Exeuted impl transition: transition: input send(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [3℄Exeuted spe transition: transition: input send(3) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [3℄℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[ begin implementation step 2 [[[[Exeuted impl transition: transition: input send(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [90, 3℄Exeuted spe transition: transition: input send(90) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [90, 3℄℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[ begin implementation step 3 [[[[Exeuted impl transition: transition: internal transfer(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [3℄queue1 --> [90℄℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[ begin implementation step 4 [[[[ 52



Exeuted impl transition: transition: input send(56) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [56, 90℄Exeuted spe transition: transition: input send(56) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [56, 90, 3℄℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[ begin implementation step 5 [[[[Exeuted impl transition: transition: internal transfer(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [90, 3℄queue1 --> [56℄℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[ begin implementation step 6 [[[[Exeuted impl transition: transition: output reeive(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [90℄Exeuted spe transition: transition: output reeive(3) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [56, 90℄℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[ begin implementation step 7 [[[[Exeuted impl transition: transition: internal transfer(56) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [56, 90℄queue1 --> [℄℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[ begin implementation step 8 [[[[Exeuted impl transition: transition: output reeive(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [56℄Exeuted spe transition: transition: output reeive(90) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [56℄℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[ begin implementation step 9 [[[[Exeuted impl transition: transition: input send(39) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [39℄Exeuted spe transition: transition: input send(39) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [39, 56℄℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[ begin implementation step 10 [[[[Exeuted impl transition: transition: input send(66) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [66, 39℄Exeuted spe transition: transition: input send(66) in automaton Channel1%%%% Modified state variables for spe automaton:queue --> [66, 39, 56℄℄℄℄℄ end implementation step 10 ℄℄℄℄>>>> No errors% Listing 4-5: Paired simulator output on Channels.ioa (Channel1 implementing Channel2).% java ioa.simulator.shell.PairedShell 10 Channel1 Channel2 Channels-proof.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:queue --> [℄%%%% Modified state variables for spe automaton:queue2 --> [℄queue1 --> [℄℄℄℄℄ end initialization ℄℄℄℄[[[[ begin implementation step 1 [[[[Exeuted impl transition: transition: input send(11) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [11℄Exeuted spe transition: transition: input send(11) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [11℄℄℄℄℄ end implementation step 1 ℄℄℄℄ 53



[[[[ begin implementation step 2 [[[[Exeuted impl transition: transition: output reeive(11) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [℄Exeuted spe transition: transition: internal transfer(11) in automaton Channel2%%%% Modified state variables for spe automaton:queue2 --> [11℄queue1 --> [℄Exeuted spe transition: transition: output reeive(11) in automaton Channel2%%%% Modified state variables for spe automaton:queue2 --> [℄queue1 --> [℄℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[ begin implementation step 3 [[[[Exeuted impl transition: transition: input send(92) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [92℄Exeuted spe transition: transition: input send(92) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [92℄℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[ begin implementation step 4 [[[[Exeuted impl transition: transition: input send(87) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [87, 92℄Exeuted spe transition: transition: input send(87) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [87, 92℄℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[ begin implementation step 5 [[[[Exeuted impl transition: transition: input send(44) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [44, 87, 92℄Exeuted spe transition: transition: input send(44) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [44, 87, 92℄℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[ begin implementation step 6 [[[[Exeuted impl transition: transition: output reeive(92) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [44, 87℄Exeuted spe transition: transition: internal transfer(92) in automaton Channel2%%%% Modified state variables for spe automaton:queue2 --> [92℄queue1 --> [44, 87℄Exeuted spe transition: transition: output reeive(92) in automaton Channel2%%%% Modified state variables for spe automaton:queue2 --> [℄queue1 --> [44, 87℄℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[ begin implementation step 7 [[[[Exeuted impl transition: transition: input send(60) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [60, 44, 87℄Exeuted spe transition: transition: input send(60) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [60, 44, 87℄℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[ begin implementation step 8 [[[[Exeuted impl transition: transition: input send(38) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [38, 60, 44, 87℄Exeuted spe transition: transition: input send(38) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [38, 60, 44, 87℄℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[ begin implementation step 9 [[[[Exeuted impl transition: transition: output reeive(87) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [38, 60, 44℄Exeuted spe transition: transition: internal transfer(87) in automaton Channel2%%%% Modified state variables for spe automaton:queue2 --> [87℄queue1 --> [38, 60, 44℄Exeuted spe transition: transition: output reeive(87) in automaton Channel254



%%%% Modified state variables for spe automaton:queue2 --> [℄queue1 --> [38, 60, 44℄℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[ begin implementation step 10 [[[[Exeuted impl transition: transition: input send(84) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [84, 38, 60, 44℄Exeuted spe transition: transition: input send(84) in automaton Channel2%%%% Modified state variables for spe automaton:queue1 --> [84, 38, 60, 44℄℄℄℄℄ end implementation step 10 ℄℄℄℄>>>> No errors%
4.5 Example 2: The Peterson mutual exlusion al-gorithmListing 4-6 is an IOA soure �le ontaining several elements:� Automaton MutEx is an abstrat IOA spei�ation for a two-proess mutualexlusion servie. This automaton supports requests for a ritial setion fromtwo users, in the form of input ations try i, i = 0; 1. The automaton grantsthe ritial setion to user i by exeuting output ation rit i. When user iis �nished with the ritial setion, it signals so with input ation exit i, afterwhih the servie eventually responds with output ation rem i. This responsesignals that the orresponding user has entered its remainder region, and maymake another request for the ritial setion.The servie spei�ation guarantees mutual exlusion; that is, it guaranteesthat the two proesses will not be granted the ritial setion at the same time.This is stated in the form of an invariant for the MutEx automaton. However,this guarantee holds only provided that eah user has a well-formed interationwith the servie. This means that the trae of the exeution, restrited to useri, has the form (try i, rit i, exit i, rem i, try i, : : :). In other words, a user willonly request the ritial setion if it is in the remainder setion, and it will only55



request to exit the ritial setion if it is already in it. Refer to [7℄ for more onthe terminology of mutual exlusion.� Automaton Peterson2PMutEx is an implementation of two-proess mutual exlu-sion that uses shared variables. This is the Peterson algorithm, and the readeris referred to [7℄ for a orretness proof. The IOA form of this algorithm is takenalmost diretly from [7℄, where it is presented both in a traditional sequentialstyle and as an I/O automaton in preondition-e�et style. The automaton alsohas a shedule blok, whih produes only well-formed exeutions. Listing 4-6also inludes an invariant for Peterson2PMutEx, asserting mutual exlusion.� A forward simulation relation from Peterson2PMutEx toMutEx is inluded, alongwith a step orrespondene in the form of a proof blok. Both the simulationrelation and the step orrespondene are quite simple. The simulation relationsimply states that the region of eah user is the same for the spei�ation and theimplementation. The step orrespondene ignores most low-level transitions,exept those that ause a region hange for a user. The latter invoke the ationin the spei�ation automaton that produes the same region hange.This �le inludes everything neessary to perform paired simulation between au-tomata Peterson2PMutEx and MutEx, and the output of this is shown in Listing 4-7.One of the intended uses of the paired simulator is the possibility of detetingwhen a proposed simulation relation does not hold. As an example of this type ofuse, I altered automaton Peterson2PMutEx by introduing a bug. I hanged the e�etof internal transition setag 0 to set variable ag 0 to 0 instead of 1. With thismodi�ation in plae, I started the paired simulator for 400 steps. With luk, thebug would be found in the exeution randomly hosen by the shedule blok, and thesimulator would halt with an error. This did indeed happen, and the result is shownin Listing 4-8 (only the relevant parts of the output are shown).
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Listing 4-6: MutEx.ioa: A mutual exlusion servie with implementationuses NonDet% --------------------------------------------------------------------% Automaton MutEx abstrats mutual exlusion for two% agents sharing a resoure. It assumes well-formedness% of the inputs.type region = enumeration of try, rit, exit, remautomaton MutExsignatureinput try_0, try_1 % Agent requests ritial regionoutput rit_0, rit_1 % Servie grants ritial regioninput exit_0, exit_1 % Agent exits ritial regionoutput rem_0, rem_1 % Agent may enter remainder regionstatesreg_0: region := rem,reg_1: region := remtransitionsinput try_0eff reg_0 := tryoutput rit_0pre reg_0 = try /\ reg_1 ~= riteff reg_0 := ritinput exit_0eff reg_0 := exitoutput rem_0pre reg_0 = exiteff reg_0 := reminput try_1eff reg_1 := tryoutput rit_1pre reg_1 = try /\ reg_0 ~= riteff reg_1 := ritinput exit_1eff reg_1 := exitoutput rem_1pre reg_1 = exiteff reg_1 := reminvariant A of MutEx :~(reg_0 = rit /\ reg_1 = rit) % asserts mutual exlusion% --------------------------------------------------------------------% Automaton Peterson2PMutEx implements the Peterson two proess mutual% exlusion algorithm. It ontains a shedule blok for simulation,% whih also shedules input ations.type pVal = enumeration of rem, setflag, setturn, hekflag, hekturn,leavetry, rit, reset, leaveexitautomaton Peterson2PMutExsignatureinput try_0, try_1 % Agent requests ritial regionoutput rit_0, rit_1 % Servie grants ritial regioninput exit_0, exit_1 % Agent exits ritial regionoutput rem_0, rem_1 % Agent may enter remainder regioninternal setflag_0, setflag_1internal setturn_0, setturn_1internal hekflag_0, hekflag_1internal hekturn_0, hekturn_1internal reset_0, reset_1statesturn: Int := 0, % Takes values in {0,1} onlyflag_0: Int := 0, % Writable by task 0 onlyflag_1: Int := 0, % Writable by task 1 onlyp_0: pVal := rem, % Writable/readable by task 0 onlyp_1: pVal := rem, % Writable/readable by task 1 onlyreg_0: region := rem,reg_1: region := remtransitionsinput try_0eff p_0 := setflag ; reg_0 := tryinternal setflag_0 57



pre p_0 = setflageff flag_0 := 1 ;p_0 := setturninternal setturn_0pre p_0 = setturneff turn := 0 ;p_0 := hekflaginternal hekflag_0pre p_0 = hekflageff if flag_1 = 0 thenp_0 := leavetryelsep_0 := hekturnfiinternal hekturn_0pre p_0 = hekturneff if turn ~= 0 thenp_0 := leavetryelsep_0 := hekflagfioutput rit_0pre p_0 = leavetryeff p_0 := rit ; reg_0 := ritinput exit_0eff p_0 := reset ; reg_0 := exitinternal reset_0pre p_0 = reseteff flag_0 := 0 ;p_0 := leaveexitoutput rem_0pre p_0 = leaveexiteff p_0 := rem ; reg_0 := reminput try_1eff p_1 := setflag ; reg_1 := tryinternal setflag_1pre p_1 = setflageff flag_1 := 1 ;p_1 := setturninternal setturn_1pre p_1 = setturneff turn := 1 ;p_1 := hekflaginternal hekflag_1pre p_1 = hekflageff if flag_0 = 0 thenp_1 := leavetryelsep_1 := hekturnfiinternal hekturn_1pre p_1 = hekturneff if turn ~= 1 thenp_1 := leavetryelsep_1 := hekflagfioutput rit_1pre p_1 = leavetryeff p_1 := rit ; reg_1 := ritinput exit_1eff p_1 := reset ; reg_1 := exitinternal reset_1pre p_1 = reseteff flag_1 := 0 ;p_1 := leaveexitoutput rem_1pre p_1 = leaveexiteff p_1 := rem ; reg_1 := remshedulestatesdie: Natdo while true dodie := randomNat(1,7) ;if die = 1 then 58



if reg_0 = rem thenfire input try_0elseif reg_0 = rit thenfire input exit_0fielseif die = 2 thenif reg_1 = rem thenfire input try_1elseif reg_1 = rit thenfire input exit_1fielsefire % (fire any enabled loally-ontrolled transition)fiod odinvariant B of Peterson2PMutEx :~(reg_0 = rit /\ reg_1 = rit) % asserts mutual exlusionforward simulationfrom Peterson2PMutExto MutEx : MutEx.reg_0 = Peterson2PMutEx.reg_0 /\MutEx.reg_1 = Peterson2PMutEx.reg_1proofinitiallyreg_0 := Peterson2PMutEx.reg_0 ;reg_1 := Peterson2PMutEx.reg_1for input try_0 dofire input try_0odfor internal setflag_0ignorefor internal setturn_0ignorefor internal hekflag_0ignorefor internal hekturn_0ignorefor output rit_0 dofire output rit_0odfor input exit_0 dofire input exit_0odfor internal reset_0ignorefor output rem_0 dofire output rem_0odfor input try_1 dofire input try_1odfor internal setflag_1ignorefor internal setturn_1ignorefor internal hekflag_1ignorefor internal hekturn_1ignorefor output rit_1 dofire output rit_1odfor input exit_1 dofire input exit_1odfor internal reset_1ignorefor output rem_1 dofire output rem_1od
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Listing 4-7: Paired simulator output on MutEx.ioa% java ioa.simulator.shell.PairedShell 30 Peterson2PMutEx MutEx MutEx.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:reg_1 --> remreg_0 --> remp_1 --> remp_0 --> remflag_1 --> 0flag_0 --> 0turn --> 0%%%% Modified state variables for spe automaton:reg_1 --> remreg_0 --> rem℄℄℄℄ end initialization ℄℄℄℄[[[[ begin implementation step 1 [[[[Exeuted impl transition: input try_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> tryp_1 --> setflagExeuted spe transition: input try_1 in automaton MutEx%%%% Modified state variables for spe automaton:reg_1 --> try℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[ begin implementation step 2 [[[[Exeuted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp_0 --> setflagExeuted spe transition: input try_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> try℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[ begin implementation step 3 [[[[Exeuted impl transition: internal setflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> setturnflag_1 --> 1℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[ begin implementation step 4 [[[[Exeuted impl transition: internal setflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> setturnflag_0 --> 1℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[ begin implementation step 5 [[[[Exeuted impl transition: internal setturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> hekflagturn --> 1℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[ begin implementation step 6 [[[[Exeuted impl transition: internal hekflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> hekturn℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[ begin implementation step 7 [[[[Exeuted impl transition: internal setturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflagturn --> 0℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[ begin implementation step 8 [[[[Exeuted impl transition: internal hekturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> leavetry℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[ begin implementation step 9 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekturn℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[ begin implementation step 10 [[[[Exeuted impl transition: output rit_1 in automaton Peterson2PMutEx60



%%%% Modified state variables for impl automaton:reg_1 --> ritp_1 --> ritExeuted spe transition: output rit_1 in automaton MutEx%%%% Modified state variables for spe automaton:reg_1 --> rit℄℄℄℄ end implementation step 10 ℄℄℄℄[[[[ begin implementation step 11 [[[[Exeuted impl transition: internal hekturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflag℄℄℄℄ end implementation step 11 ℄℄℄℄[[[[ begin implementation step 12 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekturn℄℄℄℄ end implementation step 12 ℄℄℄℄[[[[ begin implementation step 13 [[[[Exeuted impl transition: internal hekturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflag℄℄℄℄ end implementation step 13 ℄℄℄℄[[[[ begin implementation step 14 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekturn℄℄℄℄ end implementation step 14 ℄℄℄℄[[[[ begin implementation step 15 [[[[Exeuted impl transition: internal hekturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflag℄℄℄℄ end implementation step 15 ℄℄℄℄[[[[ begin implementation step 16 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekturn℄℄℄℄ end implementation step 16 ℄℄℄℄[[[[ begin implementation step 17 [[[[Exeuted impl transition: internal hekturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflag℄℄℄℄ end implementation step 17 ℄℄℄℄[[[[ begin implementation step 18 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekturn℄℄℄℄ end implementation step 18 ℄℄℄℄[[[[ begin implementation step 19 [[[[Exeuted impl transition: internal hekturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflag℄℄℄℄ end implementation step 19 ℄℄℄℄[[[[ begin implementation step 20 [[[[Exeuted impl transition: input exit_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> exitp_1 --> resetExeuted spe transition: input exit_1 in automaton MutEx%%%% Modified state variables for spe automaton:reg_1 --> exit℄℄℄℄ end implementation step 20 ℄℄℄℄[[[[ begin implementation step 21 [[[[Exeuted impl transition: internal reset_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> leaveexitflag_1 --> 0℄℄℄℄ end implementation step 21 ℄℄℄℄[[[[ begin implementation step 22 [[[[Exeuted impl transition: output rem_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> remp_1 --> remExeuted spe transition: output rem_1 in automaton MutEx%%%% Modified state variables for spe automaton:reg_1 --> rem 61



℄℄℄℄ end implementation step 22 ℄℄℄℄[[[[ begin implementation step 23 [[[[Exeuted impl transition: internal hekflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> leavetry℄℄℄℄ end implementation step 23 ℄℄℄℄[[[[ begin implementation step 24 [[[[Exeuted impl transition: output rit_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> ritp_0 --> ritExeuted spe transition: output rit_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> rit℄℄℄℄ end implementation step 24 ℄℄℄℄[[[[ begin implementation step 25 [[[[Exeuted impl transition: input exit_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> exitp_0 --> resetExeuted spe transition: input exit_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> exit℄℄℄℄ end implementation step 25 ℄℄℄℄[[[[ begin implementation step 26 [[[[Exeuted impl transition: internal reset_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> leaveexitflag_0 --> 0℄℄℄℄ end implementation step 26 ℄℄℄℄[[[[ begin implementation step 27 [[[[Exeuted impl transition: output rem_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> remp_0 --> remExeuted spe transition: output rem_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> rem℄℄℄℄ end implementation step 27 ℄℄℄℄[[[[ begin implementation step 28 [[[[Exeuted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp_0 --> setflagExeuted spe transition: input try_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> try℄℄℄℄ end implementation step 28 ℄℄℄℄[[[[ begin implementation step 29 [[[[Exeuted impl transition: internal setflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> setturnflag_0 --> 1℄℄℄℄ end implementation step 29 ℄℄℄℄[[[[ begin implementation step 30 [[[[Exeuted impl transition: internal setturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_0 --> hekflagturn --> 0℄℄℄℄ end implementation step 30 ℄℄℄℄>>>> No errors
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Listing 4-8: Paired simulator output on buggy version of MutEx.ioa% java ioa.simulator.shell.PairedShell 400 Peterson2PMutEx MutEx BrokenMutEx.il[[[[ begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:reg_1 --> remreg_0 --> remp_1 --> remp_0 --> remflag_1 --> 0flag_0 --> 0turn --> 0%%%% Modified state variables for spe automaton:reg_1 --> remreg_0 --> rem℄℄℄℄ end initialization ℄℄℄℄[[[[ begin implementation step 1 [[[[Exeuted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp_0 --> setflagExeuted spe transition: input try_0 in automaton MutEx%%%% Modified state variables for spe automaton:reg_0 --> try℄℄℄℄ end implementation step 1 ℄℄℄℄[... et ...℄[[[[ begin implementation step 34 [[[[Exeuted impl transition: internal setturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> hekflagturn --> 1℄℄℄℄ end implementation step 34 ℄℄℄℄[[[[ begin implementation step 35 [[[[Exeuted impl transition: internal hekflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p_1 --> leavetry℄℄℄℄ end implementation step 35 ℄℄℄℄[[[[ begin implementation step 36 [[[[Exeuted impl transition: output rit_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> ritp_1 --> ritEVENT: invariant B failed**** EVENT: attempted to shedule invalid transition: output rit_1 in automaton MutEx;reason: preondition fails**** [This event is an error; halting℄**** EVENT: FAILED simulation relation from Peterson2PMutEx to MutEx**** [This event is an error; halting℄℄℄℄℄ end implementation step 36 ℄℄℄℄>>>> Some errors oured during simulation4.6 Future workThere are many diretions in whih this tool an be extended. Below are somesuggestions for possible future projets.4.6.1 Improving the step orrespondene languageThe language desribed in this hapter is already substantially exible, and it might beargued that together with auxiliary automaton state variables and auxiliary variables63



in the step orrespondene, it allows one to express most of what is usually expressedin simulation proofs. However, to make easier to use, it might be desirable to haveexpliit syntax for:� referring to state variable values both before and after the low-level transition,and,� referring to the atual value to whih an expliit hoie was resolved in thelow-level automaton.Neither of these two additions should be hard to implement. For example, prior andposterior values of variables ould be distinguished with a prime deoration on variablenames. Referenes to low-level expliit hoie values ould be done using anotherunique-naming-per-transition onvention, this time in the low-level automaton.4.6.2 Interfaing with a omputer-assisted theorem proverThe paired simulator may provide ounterexample exeutions where the proposed steporrespondene does not hold, but it will never ompletely ertify the proof, even if itprovides empirial evidene of its orretness after multiple simulations. However, aversion of this language ould be used as an interfae between the simulation relationstated in IOA and a theorem prover: the proof program an be used to drive thetheorem prover in the major overall steps of the proof, reduing the amount of routinework that the user has to do.4.6.3 Adding syntax for providing a omplete proofAs it stands, the proof blok is not a really a proof, sine it is missing the reason-ing that shows that eah high-level exeution fragment produed by a for blok inthe proof preserves the simulation relation, assuming the relation held true in theimmediately preeding state. An interesting projet would be to add syntax thatwould allow the inlusion of this reasoning, in a form suitable for automated proofveri�ation. 64



Chapter 5
Grammar hanges forsimulator-related IOA extensions
In this hapter I present grammars for the additions to IOA used by the simulator.I only present those parts of the IOA grammar that were modi�ed; the reader anrefer to [3℄ for the rest of the IOA grammar, and for the grammar syntax onventionsused here.5.1 Labeling of transition de�nitionsAs explained in Chapter 3, my approah to resolution of nondeterminism requires away to refer to a transition de�nition in a primitive automaton. In general, it is notenough for this to speify the name and parameters of the transition: it is possiblefor two transitions with idential signature and where lause to be enabled in thesame state. This addition to the IOA syntax remedies the situation by providing anexpliit naming mehanism:Original:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?Modi�ed:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?65



transCase?transCase ::= 'ase' idOrNumeral
5.2 Labeling of transition de�nitionsAs explained in Chapter 3, my approah to resolution of nondeterminism requires away to refer to a transition de�nition in a primitive automaton. In general, it is notenough for this to speify the name and parameters of the transition: it is possiblefor two transitions with idential signature and where lause to be enabled in thesame state. This addition to the IOA syntax remedies the situation by providing anexpliit naming mehanism:Original:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?Modi�ed:transition ::= ationHead hooseFormals? preondition? effet?ationHead ::= ationType ationName (ationAtuals where?)?transCase?transCase ::= 'ase' idOrNumeral
5.3 Labeling of invariantsIt is onvenient for invariants to have a name, so that the simulator an refer to thespei� invariant in ase it fails. This was aomplished with the following grammarhange, whih allows any numeral or identi�er to be given as the name for an invariant.Original:invariant ::= 'invariant' 'of' automatonName ':' prediateModi�ed:invariant ::= 'invariant' idOrNumeral? 'of' automatonName ':' prediate
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5.4 Resolution of nondeterminismThis modi�ation de�nes a way for the programmer to speify how the nondetermin-ism in an automaton is to be resolved by the simulator. The modi�ation has twoparts:1. Addition of a syntax for sequential programs that speify the values to hooseor the transitions to shedule (\NDR programs").2. Extensions to the existing syntax for automaton and hoose that inorporatethese sequential programs.The semantis for these hanges are explained in Chapter 3.5.4.1 Syntax for NDR programsThis grammar is very similar to the existing program grammar in IOA, exept that itpermits the new �re and yield statements, used by the NDR mehanisms to sheduleautomaton ations and determine values of hoies, as well as the while statement,whih provides a looping onstrut with simple deterministi semantis. Note that,for a given ontext in whih an NDRProgram is aepted, only one of the two statements�re and yield is permissible. Also, assignments whose right-hand sides are hooses arenot permitted, sine the NDR program must be deterministi to be any use. Theseonstraints are enfored during the stati heking phase of the front-end.NDRProgram ::= NDRStatement;*NDRStatement ::= assignmentj NDRConditionalj NDRWhilej NDRFirej NDRYieldNDRConditional ::= 'if' prediate 'then' NDRProgram('elseif' prediate 'then' NDRProgram)*('else' NDRProgram)? 'fi'NDRWhile ::= 'while' prediate 'do' NDRProgram 'od'NDRFire ::= 'fire' ationType ationName ationAtuals? transCase?j 'fire'NDRYield ::= 'yield' term 67



5.4.2 Syntax extensions to automaton and hooseThese extensions might appear more wordy than neessary. For instane, it wouldbe possible to avoid the do...od braketing of NDRPrograms. The reason I deidedfor this slightly long-winded syntax is the possibility that, in the future, additionallanguage support mehanisms for nondeterminism resolution might be designed, andthis syntax allows the head keyword (i.e., shedule or det) to still be used by thesepotential syntax extensions.Extension to primitive automaton syntaxThis extension is straightforward: it simply provides a plae to speify the sheduleof a primitive automaton.Original:simpleBody ::= 'signature' formalAtionList+ states transitions tasks?Modi�ed:simpleBody ::= 'signature' formalAtionList+ states transitions tasks?shedule?shedule ::= 'shedule' states? 'do' NDRProgram 'od'Extension to hoose syntaxThis extension is also mostly straightforward. Besides providing a plae to hold theNDRProgram, however, it does two additional things: �rst, it spei�es a shorthandnotation for a (presumably) ommon form of hoie determination, and seond, itallows for a hoose statement to speify a variable name without a onstraining whereprediate. This is neessary for paired simulation, sine the names of the hosen valuesin the spei�ation automaton are still neessary to arry out the step orrespondene,even in the absene of a where prediate.Original:hoie ::= 'hoose' (variable 'where' prediate)?Modi�ed:hoie ::= 'hoose' (variable ('where' prediate)?)? hoieNDR?hoieNDR ::= 'det' 'do' NDRProgram 'od'j NDRYield 68



5.5 Paired simulationIn addition to the mathematial statement of a simulation relation between automata,the simulator also needs a step orrespondene between the automata whih realizesthe simulation relation. Hene, it was neessary to develop a language for speifyingthese orrespondenes. See Chapter 4 for the semantis of this language, and forjusti�ation of the approah and terminology.I augmented the syntax of IOA forward simulations to permit the spei�ation of a\proof", whih embodies the step orrespondene. This proof spei�es, for eah tran-sition that the implementation automaton might take, a way to produe a sequeneof transitions for the spei�ation automaton. These are the additions:Original:simulation ::= ('forward' j 'bakward') 'simulation' 'from'automatonName 'to' automatonName ':' prediateModi�ed:simulation ::= ('forward' j 'bakward') 'simulation' 'from'automatonName 'to' automatonName ':' prediatesimProof?simProof ::= 'proof' states? ('initially' (variable ':=' term);+)?simProofEntry+simProofEntry ::= 'for' ationType ationNameationFormals? transCase?(('do' simProofProgram 'od') j 'ignore')simProofProgram ::= simProofStatement;+simProofStatement::= assignmentj simProofConditionalj simProofWhilej simProofFiresimProofConditional::= 'if' prediate 'then' simProofProgram('elseif' prediate 'then' simProofProgram)*('else' simProofProgram)? 'fi'simProofWhile ::= 'while' prediate 'do' simProofProgram 'od'simProofFire ::= 'fire' ationType ationNameationAtuals? transCase?('using' ( term 'for' variable ),+)?Again, some front-end stati heking is neessary, sine this type of simulationproof only makes sense for forward simulations.69



Chapter 6
The software environment
In this hapter I provide doumentation for the Java interfaes and lasses usedin the implementation of the simulator and related software support. This is withthe hope that future work an be done using this software environment as a basis.Through this hapter, mentions of the \IOA Toolkit distribution" refer to a softwarepakage (inluding soure and Java exeutables) to be eventually made available bythe Theory of Distributed Systems group, ontaining all of the IOA Toolkit and itsdoumentation. The distribution is the best soure of up-to-date and omprehensivedoumentation on the toolkit.6.1 Review of the IOA Toolkit arhitetureThe IOA Toolkit is divided into a front-end and a bak-end. The front-end, in gen-eral, takes IOA and LSL spei�ations as input, and, after heking syntax and statisemantis, outputs an equivalent spei�ation written in an intermediate language.Elements present in the intermediate language are meant to orrespond rather di-retly with internal representations of IOA onepts that are designed to be usedby IOA tools; this language is also intended to be easy to parse while still beinghuman-readable with some e�ort. The urrent intermediate language is based onS-expressions and is very similar to the one desribed in [1℄, exept for some modi-�ations that make it more manageable in some ases. I will not present a detailed70



grammar of the intermediate language, sine for most purposes the existing parserand internal representation an be used without having to understand it. Moreover,the intermediate syntax is likely to evolve in response to the insight that has beengained while developing IOA tools.Tehnially speaking, eah IOA tool is in itself a separate bak-end, whih takesas input the intermediate form of an IOA spei�ation and does some tool-spei�work with it. However, there is ommon support for the IOA tools in the form ofan intermediate language parser and an internal representation of IOA elements, inthe form of a Java lass hierarhy. Both the parser and the internal representationhierarhy were designed to be highly exible and reusable by IOA tools; see Setion 6.5for more details.Sine understanding the arhiteture of the front-end will not typially be ne-essary for extending the simulator or the IOA Toolkit, the following setions onlydesribe the internal representation, the intermediate language parser, and the meansof extending the simulator.6.2 The internal representation: design basisThe goal of the internal representation is to speify and implement a set of objetinterfaes to be used by IOA tools. There is meant to be an interfae, and a or-responding implementation, for eah element that may appear as part of an IOAspei�ation, suh as automata, ations, terms, programs, and invariants.In designing the internal representation of IOA elements, it was important tokeep in mind that partiular IOA tools are likely to need speialized support fromthe objets they use. For example, a ode generator is likely to require methods toompile automaton objets, while the simulator employs methods to evaluate termobjets. Moreover, it is desirable to have shared software support: for example, itwould be highly impratial to need a speialized intermediate language parser foreah separate IOA tool due to minor intermediate language modi�ations. These twogoals are somewhat oniting, sine the parser will need to reate objets, whih will71



in turn have to use partiular implementations of the interfaes. The solution to hastwo parts:1. The elements of the internal representation are spei�ed not with Java lasses(abstrat or otherwise), but with Java interfaes. These interfaes are in theJava pakage ioa.il, and their hierarhy is rooted at the interfae ioa.il..ILElement.2. The parser and other tool-independent support modules do not diretly on-strut objets implementing these interfaes; rather, they use a globally-availablefatory objet, whih is a sublass of the ILFatory abstrat lass and has meth-ods for onstruting objets for eah of the leaves in the interfae inheritanehierarhy. Thus, for example, it has methods named newPrimitiveAutomatonand newSimulationRelation. This allows implementors of IOA tools to re-plae the global ILFatory with their own speializations of it, whih may havedomain-spei� knowledge. Furthermore, a speialized ILFatory an reognizespeialized IOA statements.1There is a set of basi implementations of these interfaes, along with an implementa-tion of ILFatory (the BasiILFatory) whih onstruts instanes in this set. Thesebasi implementations, as well as the BasiILFatory, are easy to sublass in order toadd tool-spei� behavior. The use of a fatory objet is desribed, for example, in [2℄,under the name \abstrat fatory pattern". See setion 6.5 for onrete informationon reating speialized fatories.See Figure 6-1 for the inheritane tree of the interfae hierarhy used in the internalrepresentation. For details on the interfaes, refer to the IOA Toolkit distribution,whih ontains the most up-to-date software and doumentation.1For example, this is how the simulator-spei� statements yield, while, and �re were implemented.
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Figure 6-1: Internal representation: interfae hierarhy.6.3 The parserThe parsing of IOA spei�ations from the intermediate language is done by theinstanes of the ILParser lass. Listing 6-1 shows an example of usage of the ILParser.This ode sample performs the following ations, whih are representative of thegeneral usage:1. It installs a new ILFatory, whih may onstrut speialized implementationsof the ILElement interfaes. This step is optional, and the BasiILFatory isused by default.2. It reates an objet of lass java.io.Reader, whih is the Java lass used torepresent streams of text. In this ase, the Reader omes from a spei� named�le, but the origin is not spei�ed.3. It reates an ILParser, using the Reader as parameter for the onstrutor.73



4. It invokes the method getSpe on the parser, whih performs the atual pars-ing and returns an objet of the interfae ioa.il.Spe, representing the IOAspei�ation ontained in the Reader.5. After this, the Spe objet an be used aording to its interfae, doumentedin the IOA Toolkit distribution. For instane, individual automata in the spe-i�ation an be obtained from the Spe objet.Additionally, it is neessary to use Java exeption handling in the ase that errorsour during parsing, in whih ase the getSpe method will throw an exeption oflass ioa.il.ILParseExeption. The method getSpe is the only external funtional-ity available in the ILParser. However, the ILParser also allows extensive tool-spei�ustomization, allowing it to reognize speialized IOA statements and extensions tointermediate language elements; see 6.5 for a desription of these apabilities.Listing 6-1: Example usage of the ILParser.import ioa.il.* ;import java.io.InputStreamReader ;import java.io.FileInputStream ;import java.io.File ;// [...℄publi void useParser() {try {// 1. (Optional) Install a speialized ILFatory with domain-// speifi knowledge (by default, BasiILFatory will be used)ILFatory.setInstane(new MyILFatory());// 2. Create a Reader objet (in this ase, from a file)InputStreamReader in =(new InputStreamReader(new FileInputStream(new File("myFile.il"))));// 3. Create an ILParser with this ReaderILParser parser = new ILParser(in) ;// 4. Parse the Spe objetSpe spe = parser.getSpe();// 5. Use it (for instane, get an automaton objet from it)Automaton aut = spe.getAutomaton("myAutomaton");} ath(ILParseExeption e) {// 6. Handle parsing errorsSystem.out.println("pani!");}}
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6.4 Adding simulator datatypesSome appliations of the simulator are likely to require support for datatypes be-yond those in the urrent implementation. This setion desribes how to implementnew datatypes (IOA sorts and operators), and how to have the simulator use theseimplementations.Sort implementations are represented by objets implementing the interfae ioa..simulator.SortImpl, shown in Listing 6-2. A SortImpl objet has the neessaryknowledge to reate new objets of a given sort, either from srath, or from aninteger value, in the ase of sorts that support numeri values. Note that, sineIOA is a funtional language, this is by no means the only way to onstrut objets:virtually every operator implementation has to reate a new objet to store the resultit returns, as mutation is not possible.Similarly, operator implementations are represented by objets implementing theinterfae ioa.simulator.OpImpl, in Listing 6-3. The OpImpl interfae has a singlemethod, apply, whih returns the result of evaluating the operator that is beingimplemented on a given vetor of operands. As noted above, this result will typiallybe a newly reated objet.Both OpImpl and SortImpl handle objets implementing the interfae ioa.simulator..Entity, shown in Listing 6-4. This is the interfae for all the objets reated duringthe simulation of an automaton. Its methods are very generi; they are enough, how-ever, sine the type-spei� operations are all performed by suitable OpImpl objets.The name \entity" was hosen to learly di�erentiate IOA-level objets from JavaObjets.The simulator obtains implementations for sorts and operators by querying aglobal implementation registry. This registry is an objet of lass ioa.simulator..ImplRegistry, and it ontains methods that, given an operator or a sort, return aorresponding implementation. This is an abstrat lass, and its interfae is shown inListing 6-5. As shown, the registry method getImpl an return SortImpl and OpImplobjets orresponding to Sort and Operator objets, respetively.Listing 6-2: The SortImpl interfae.75



pakage ioa.simulator ;publi interfae SortImpl {/** This method onstruts a new Entity of this sort, withouta speified initial value */publi Entity onstrut()throws SimExeption ;/** This method onstruts a new Entity of this sort with thespeified integral initial value (to be implemented only by sortsthat aept literals */publi Entity onstrut(int n)throws SimExeption ;} Listing 6-3: The OpImpl interfae.pakage ioa.simulator ;import java.util.Vetor ;/*** Interfae for implementations of operators.*/publi interfae OpImpl {/** Run the implementation ode for applying the orresponding* operator to the given vetor of operands, and return the result* */publi Entity apply(Vetor/*[Entity℄*/ opands)throws SimExeption ;} Listing 6-4: The Entity interfae.pakage ioa.simulator ;import ioa.il.* ;/** This interfae represents an objet in a simulation. Entities have* a Sort, and are reated either from srath by SimSorts or as a* result of evaluating SimOperators.* Note: I hose "Entity" to avoid onfusing these objets with java* "objets". */publi interfae Entity {/*** Returns the sort of this entity*/publi Sort getSort() ;/*** Returns a string representation of this entity*/publi String toString() ;/** Returns true if and only if this entity equals the given entity,* in some sense depending on the partiular entity. */publi boolean equals(Entity ent) ;} Listing 6-5: The ImplRegistry interfae.pakage ioa.simulator ;import ioa.il.* ;import java.util.Vetor ;/** This is an abstrat lass that represents a mapping from sorts and* operators to sort and operator implementation (Sorts and Operators* to SortImpls and OpImpls). In addition it provides stati methods* for setting and getting the unique global instane of the76



* implementation registry. */publi abstrat lass ImplRegistry {private stati ImplRegistry instane ;publi stati ImplRegistry getInstane() { return instane ; }publi stati void setInstane(ImplRegistry newInstane) { instane = newInstane ; }/*** Returns a SortImpl for the given Sort, or null if none is known.*/publi abstrat SortImpl getSortImpl(Sort sort)throws SimExeption ;/*** Returns an OpImpl for the given Operator, or null if none is known.*/publi abstrat OpImpl getOpImpl (Operator operator)throws SimExeption ;}
6.4.1 The BasiImplRegistry: an overviewFor typial appliations, it will not be neessary to write an implementation ofImplRegistry from srath; the pakage ioa.simulator.impl ontains the implemen-tation BasiImplRegistry, whih supports both simple sorts and parameterized sorts.This is also the default implementation registry. In this setion, I desribe how toadd type implementations using the BasiImplRegistry and related lasses.See Listing 6-6 for the publi interfae of the BasiImplRegistry. Some of thesemethods are inherited from the superlass ImplRegistry, others are used for on-struting a new BasiImplRegistry, and the remaining ones are used for installingnew implementations in the registry.When it is initialized, the BasiImplRegistry goes through a list of implementa-tion pakages, eah of whih is represented by a Java lass (not a Java objet). Animplementation pakage is meant to inlude sorts and operators that are logiallyrelated. The pakage must have a stati method, with the signature:publi stati void install(BasiImplRegistry reg);The BasiImplRegistry has a default list of implementation pakages.2 This list anbe overridden by alling the BasiImplRegistry onstrutor with a Java Enumeration2At the time of this writing, this list ontains implementation pakages for the sorts: Bool,Int, Nat, Array[A,B℄, and Seq[A℄. In addition, the implementation pakage ioa.simulator.impl..NonDetImpl is installed by default, and it ontains implementations of some of the operators for77



of strings whih are fully-quali�ed names of implementation pakages. Alternatively,the list an be overridden by setting the Java property ioa.simulator.impl.pakagesto a olon-separated list of fully-quali�ed pakage names.For eah implementation pakage, the BasiImplRegistry alls the orrespondinginstall method, passing itself as the argument. This method, in turn, an all themethods BasiImplRegistry installSortImpl, installOpImpl, installSortPreImpl,and installOpPreImpl. The former two are used to install simple sorts and assoiatedoperators, while the later two are used to handle parameterized sorts. The followingsubsetions explain the use of eah of these methods.Listing 6-6: The publi interfae of the BasiImplRegistry lass.pakage ioa.simulator.impl ;import ioa.il.* ;import ioa.simulator.* ;publi lass BasiImplRegistry extends ImplRegistry {// Methods inherited from ImplRegistrypubli SortImpl getSortImpl(Sort _sort)throws SimExeption ;publi OpImpl getOpImpl(Operator _op)throws SimExeption ;// Construtorspubli BasiImplRegistry()throws SimExeption ;publi BasiImplRegistry(Enumeration/*[String℄*/ pakages)throws SimExeption ;// Methods for installing implementations, from implementation pakage// install methods.publi void installSortPreImpl(String name, boolean isLiteral, BasiSortPreImpl preImpl) ;publi void installOpPreImpl(String name, BasiOpPreImpl preImpl) ;publi void installSortImpl(String key, boolean isLiteral, BasiSortImpl impl) ;publi void installOpImpl(String key, BasiOpImpl impl) ;// Auxiliary methods for installing implementationspubli stati String makeOpKey(String name,String range,String[℄ domain) ;publi stati String makeOpKey(String name,String range) ;publi stati String makeSortKey(String name) ;} ;
Simple sorts: installSortImpl and installOpImplA simple sort is one that does not take other sorts as parameters. For example, thebuilt-in sorts Int and Nat are simple sorts. An implementation pakage installs arandomness and user interation in the Larh pseudotrait NonDet, as desribed in Chapter 3. (Thisis an example of an implementation pakage that is not tied to a single IOA sort or sort onstrutor.)78



simple sort by inluding a line of the formreg.installSortImpl(reg.makeSortKey(sortName),isLiteral,sortImpl);in its install method, where:� reg is the BasiImplRegistry objet passed to the install method,� sortName is the name of the simple sort, given as a string,� isLiteral is a boolean, whih is true if this sort an be assigned values spei�edas numerals in the IOA soure3, and� sortImpl is an objet of lass BasiSortImpl, whih is the sort implementationitself. This lass is an implementation of the SortImpl interfae, with someextra methods used internally by the BasiImplRegistry. It is often onvenientto provide this argument by anonymously sublassing BasiSortImpl.For example, this is the ode used to install the implementation of the built-in sortInt: reg.installSortImpl(reg.makeSortKey("Int"),true,new BasiSortImpl(){ publi Entity onstrut() { return new IntEntity() ; }publi Entity onstrut(int n) { return new IntEntity(n) ; }}) ;An operator whose signature involves only simple sorts is installed with a line ofthe formreg.installOpImpl(reg.makeOpKey(opName,range,domain),opImpl);where:� reg is the BasiImplRegistry objet,3This is likely to beome obsolete, sine the mehanism for handling literal values will probablyhange to beome more general. 79



"name" a plain operator (example: "su")" name" a pre�x operator (example: " !")"name " a post�x operator (example: "~ ")" name " an in�x operator (example: " + ")(mix�x operators are spei�ed similarly,using as a plaeholder for arguments)"�<sel>field" a seletion operator for a �eld (IOA syntax: a.�eld)Operator symbols are enoded as desribed in [3℄; for example, the symbol \2" isenoded as \in, whih is written as the Java string "\\in".Figure 6-2: Conventions for names of operators in implementation pakages.� opName is the name of the operator, given as a string,� domain is the name of the range sort, given as a string,� range is a tuple of the names of the domain sorts, given as an array of strings,� opImpl is an objet of lass BasiOpImpl, whih is an implementation of theOpImpl interfae. Again, this is onveniently provided using Java anonymoussublassing.The name of the operator must follow the onventions in Figure 6-2. As an example,the following ode installs the greater-than-or-equal operator for the built-in sort Int:reg.installOpImpl(reg.makeOpKey("__>=__","Bool",new String[℄ { "Int", "Int" }),new BasiOpImpl(){ publi Entity apply(Vetor/*[Entity℄*/ opands){ IntEntity ent1 = (IntEntity) opands.elementAt(0) ;IntEntity ent2 = (IntEntity) opands.elementAt(1) ;return BoolEntity.make(ent1.n >= ent2.n) ;}}) ;Parameterized operator and sort implementationsThe OpImpl and SortImpl mehanisms desribed above are not suÆient to speifyimplementations in full generality, for these reasons:80



� IOA supports the notion of a sort onstrutor, whih is essentially a family ofsorts parameterized by other sorts. For example, Seq is a sort onstrutor, sineSeq[A℄ is a sort representing a sequene of elements of any sort A.� There are families of operators, all with the same name and number of parame-ters, whih have essentially the same implementation, but di�erent signatures.For example, the equality operator = takes two entities and determines if theyare equal. It should be possible to speify a single implementation for all equal-ity operators, regardless of the sort of entity that it does omparisons between.This is beause the implementation an simply all the equals method in theEntity interfae, without knowing the details of the partiular Entity imple-mentation.This problem is addressed by providing a preimplementation. A preimplemen-tation is an objet whih provides implementations for sorts (or operators) in somefamily. Given an IOA sort, in the form of a Sort objet s, a sort preimplementation pdetermines if s belongs to the family represented by p, and, if so, p returns an appro-priate SortImpl objet for s. Operator preimplementations have a similar behavior.Sort and operator preimplementations are represented by the BasiSortPreImpl andBasiOpPreImpl abstrat lasses, respetively. See Listings 6-7 and 6-8 for their de�-nitions and doumentation on their member funtions.There exist more onrete implementations of eah of these abstrat lasses:� The abstrat lasses MathSortPreImpl and MathOpPreImpl provide a means todetermine membership in the family by using an arbitrary boolean prediate.� The abstrat lasses TemplateSortPreImpl and TemplateOpPreImpl are sublassesof BasiSortPreImpl and BasiOpPreImpl whih an perform pattern mathing.An example sort pattern is Sort1[Sort2[p, q℄,p℄, where Sort1 and Sort2 are namesof IOA sort onstrutors, and p; q are variables whih an math arbitrary IOAsorts.I will not provide the soure for any of these two speializations, and instead willshow their usage through examples. Refer to the IOA Toolkit distribution for the81



soure. The Template preimplementation lasses are the ones that are likely to beused most extensively, due to their generality, and I will explain them to more depthin the next paragraphs.Listing 6-7: The BasiSortPreImpl abstrat lass.pakage ioa.simulator.impl ;import ioa.simulator.* ;/*** This lass represents a family of sort implementations. The method* getSortImpl returns a SortImpl for a given Sort, provided that this* sort mathes (belongs to) this family; otherwise, it returns null.** Conrete sublasses of this lass must provide an implementation* for the onstrut method. There are two versions of this method.* The first version supports a parameter data, of type Objet, whih* provides implementation-dependent data generated during the* mathing proess. The seond version does not inlude this* parameter, and is to be used by sublasses whih ignore this data.* */publi abstrat lass BasiSortPreImpl {/*** Given a sort whih mathes this preimplementation, onstrut* an Entity of this sort.* Default implementation defers to onstrut(SimSort)** �param fullsort The sort being used, whih mathed this preimplementation* �param data Implementation-speifi data produed by the mathing proess*/publi Entity onstrut(SimSort fullsort,Objet data)throws SimExeption{ return onstrut(fullsort) ;}/*** Given a sort whih mathes this preimplementation and an integer,* onstrut an Entity of this sort initialized to this integer (for* sorts that support integer values). Default implementation* defers to onstrut(SimSort,int)** �param fullsort The sort being used, whih mathed this preimplementation* �param data Implementation-speifi data produed by the mathing proess* �param n The integer to use when onstruting the Entity */publi Entity onstrut(SimSort fullsort, Objet data, int n)throws SimExeption{ return onstrut(fullsort) ;}/*** Given a sort whih mathes this preimplementation, onstrut* an Entity of this sort.* (This method is used when math data is ignored).*/publi Entity onstrut(SimSort fullsort)throws SimExeption{ throw new SimImplExeption("*** unimplemented onstrut alled") ;}/*** Given a sort whih mathes this preimplementation and an integer,* onstrut an Entity of this sort initialized to this integer (for* sorts that support integer values).* (This method is used when math data is ignored).*/publi Entity onstrut(SimSort fullsort, int n)throws SimExeption{ throw new SimImplExeption("onstrution from literal unsupported by sort") ;82



}/*** Returns a sort implementation for the given sort, if this PreImpl* an provide one. Returns null otherwise.*/publi abstrat SortImpl getImpl(SimSort fullsort) ;// For haining (used internally by the BasiImplRegistry)BasiSortPreImpl next = null ;BasiSortPreImpl last = null ;} Listing 6-8: The BasiOpPreImpl abstrat lass.pakage ioa.simulator.impl ;import ioa.simulator.* ;import java.util.Vetor ;/*** This lass represents a family of operator implementations. The* method getOpImpl returns an OpImpl for a given Operator, provided* that this operator mathes (belongs to) this family; otherwise, it* returns null.** Conrete sublasses of this lass must provide an* implementation for the apply method, and optionally the assign* method. There are two versions of eah of these methods. The first* version supports a parameter data, of type Objet, whih provides* implementation-dependent data generated during the mathing* proess. The seond version does not inlude this parameter, and* is to be used by sublasses whih ignore this data.*/publi abstrat lass BasiOpPreImpl {/*** Given an operator whih mathes this preimplementation, apply it* to the given vetor of operands.* Default implementation defers to apply(SimOperator,Vetor)** �param fullop The operator being applied, whih mathed this preimplementation* �param data Implementation-speifi data produed by the mathing proess* �param opands The operands of the operator*/publi Entity apply(SimOperator fullop,Objet data,Vetor/*[Entity℄*/ opands)throws SimExeption{ return apply(fullop,opands) ;}/*** Given an operator whih mathes this preimplementation, assign to* to it the given value, upon evaluation with given vetor of* operands (if this operator supports assignment).* Default implementation defers to assign(SimOperator,Vetor,Entity)* (This method is used when math data is ignored).** �param fullop The operator being assigned to, whih mathed this preimplementation* �param data Implementation-speifi data produed by the mathing proess* �param opands The operands of the operator */publi void assign(SimOperator fullop,Objet data, Vetor/*[Entity℄*/ opands,Entity value)throws SimExeption{ assign(fullop,opands,value) ;}/*** Given an operator whih mathes this preimplementation, apply it* to the given vetor of operands.* (This method is used when math data is ignored).*/publi Entity apply(SimOperator fullop,Vetor/*[Entity℄*/ opands)83



throws SimExeption{ throw new SimImplExeption("*** unimplemented apply alled") ;}/*** Given an operator whih mathes this preimplementation, assign to* to it the given value, upon evaluation with given vetor of* operands (if this operator supports assignment).* (This method is used when math data is ignored).*/publi void assign(SimOperator fullop,Vetor/*[Entity℄*/ opands,Entity value)throws SimExeption{ throw new SimImplExeption("*** unimplemented assign alled") ;}/*** Returns an operator implementation for the given operator, if* this PreImpl an provide one. Returns null otherwise.*/publi abstrat OpImpl getImpl(SimOperator fullop) ;// For haining (used internally by the BasiImplRegistry)BasiOpPreImpl next = null ;BasiOpPreImpl last = null ;}
Templates A template is spei�ed using an S-expression, given as a string param-eter to the onstrutor of TemplateOpPreImpl or TemplateOpPreImpl. In the ase orsorts, the S-expression an be either:� An S-expression of the form (name p1 ...pn), n � 0, where name is a string andthe pi are sort templates. In this ase, the template mathes any sort obtainedby applying the sort onstrutor of name name to any sorts s1; : : : ; sn suh thatsi mathes pi for all i. (The ase n = 0 mathes only simple sorts, and in thisase the parentheses an be omitted.)� An integer k � 0, denoting a variable in the pattern. This mathes any sort,provided that eah integer is mathed to the same sort throughout the template.For example, a sort template that mathes sorts of the form Sort1[Sort2[p, q℄,p℄ is("Sort1" ("Sort2" 0 1) 0). In the ase of operators, the S-expression is of the form(name (p1 ...pn) p0), where name is an operator name following the onventionsin Figure 6-2. It mathes any operator with name name, whose range mathes the84



template p0 and its range sorts s1; : : : ; si are suh that si mathes pi. For example,the pattern (" = " (0 0) ("Bool") ) mathes all the equality operators.4.Installing operator preimplementations An implementation pakage installsan operator preimplementation for a family of operators by inluding a line of theformreg.installOpPreImpl(name,preImpl);where name is the name of the operator, following the onventions in Figure 6-2,preImpl is a preimplementation objet and reg is the BasiImplRegistry. For exam-ple, this is the ode used to install the len operator for the sort onstrutor Seq[A℄// template: ("len" (("Seq" 0)) "Int")reg.installOpPreImpl("len",new TemplateOpPreImpl("(\"len\" ((\"Seq\" 0)) \"Int\")"){ publi Entity apply(SimOperator fullop, Vetor/*[Entity℄*/ opands){ SeqEntity seq = (SeqEntity) opands.elementAt(0) ;return IntEntity.make(seq.size()) ;}}) ;Installing sort preimplementations Sort implementations are installed using aall of the formreg.installSortPreImpl(name,isLiteral,preImpl);where name is the name of the sort, isLiteral is a boolean, and preImpl is theorresponding preimplementation. An example is:reg.installSortPreImpl("Seq",false, // isLiteralnew MathSortPreImpl() {publi Entity onstrut(SimSort fullsort){ return new SeqEntity(fullsort) ; }publi boolean mathes(SimSort fullsort){ return fullsort.getSubSorts().size() == 1 ; }}) ;4One must bear in mind that the S-expression is given as a Java string parameter, and heneall the quotes and speial haraters inside the S-expression must be preeded by a bakslash. Forexample, the S-expression (" = " ("Bool") (0 0)), when enoded as a Java string, beomes"(\" = \" (\"Bool\") (0 0))" 85



This example uses a MathSortPreImpl, with a prediate that tests to see whetherthere is exatly one subsort given to the sort onstrutor Seq.To learn more about providing simulator implementations, I reommend exam-ining the soure of the implementation pakages provided with the simulator. Thissoure will be inluded in the IOA Toolkit distribution.6.5 Speializing the internal representationThe objet oriented nature of Java allows the speialization of lasses through sub-lassing, and this faility is the main tool for speializing the internal representation.However, this still leaves the problem of how to instrut the ILParser to reate spe-ialized versions of ILElement objets, rather than objets with the default imple-mentation. This an be done by de�ning a new sublass of ILFatory. This lassontains methods for reating eah of the elements of the internal representation.One a speialized sublass of ILFatory is de�ned, it an be installed as the defaultglobal ILFatory using the stati method ILFatory.setInstane. The parser usesthe installed fatory to reate objets of the internal representation.All of the internal representation interfaes that are leaves of the inheritane treein Figure 6-1 have a basi implementation. For every internal representation interfaenamed X, its basi implementation is the lass ioa.il.BasiX. For most IOA tools,it will be enough to speialize the Basi family. For example, if a partiular toolneeds to have a speial-purpose method alled speial in eah Automaton objet itmanipulates, it an aomplish this by:1. De�ning a sublass of BasiAutomaton, named, say, SpeialAutomaton. Thislass will add the metod speial.2. De�ning a sublass of BasiILFatory, whih rede�nes the method newAutomatonso that it reates objets of lass SpeialAutomaton instead of BasiAutomaton.3. Installing this new fatory as the global fatory, using ILFatory.setInstane.86



4. Calling the parser to reate an internal representation of an IOA intermediatelanguage �le.After the last step, the returned Spe objet will ontain only Automaton objets whihare atually of lass SpeialAutomaton, and this hypothetial tool will be able to astthem into SpeialAutomaton to aess the method speial.The ILFatory mehanism an also be used to allow the ILParser to reognizeustom intermediate language statements. For more information on doing this, referto the doumentation in the IOA Toolkit distribution.6.6 Modifying the simulator user interfaeI attempted to provide some mehanisms that would allow a good user interfae forthe automaton to be implemented independently of the simulator itself. Towards thisgoal, I de�ned interfaes for simulator events and listeners. Simulator events are Javaobjets representing events that our during a simulation of an automaton in an IOAspei�ation, and they implement the interfae SimEvent (Lisiting 6-9). A simulatorlistener is a Java objet implementing the interfae SimListener (Listing 6-10), whihontains methods that are alled whenever a simulator event ours. For example, atransition taken in an automaton implements the SimEvent interfae.Sine at the time of this writing there is only one (text-based) user interfae forthe simulator, it is by no means lear whether this mehanism is general enough touse as a basis for, say, a graphial user interfae. For example, it ould be neessaryto make the listeners be event-spei�. However, the arhiteture of the simulator issuh that building on this event/listener sheme will probably not be diÆult.
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Listing 6-9: The SimEvent interfae.pakage ioa.simulator ;/*** An event that may be broadast by the simulator.*/publi interfae SimEvent {/*** Returns true if this event is an error that should ause the* simulation to halt.*/publi boolean isError() ;/*** Returns a string with a human-readable desription of this* simulator event.*/publi String eventDesription() ;} Listing 6-10: The SimListener interfae.pakage ioa.simulator ;/*** An objet that may reeive events broadast by the simulator*/publi interfae SimListener {/*** Handle the given event. Return false if simulator should not* ontinue, true otherwise.* �exeption SimExeption if an error ours during handling */publi boolean handleSimEvent(SimEvent ev)throws SimExeption ;}
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