
Paired Simulation of I/O AutomatabyJ. Antonio Ram��rez-RobredoSubmitted to the Department of Ele
tri
al Engineering andComputer S
ien
ein partial ful�llment of the requirements for the degree ofMaster of Ele
tri
al Engineering and Computer S
ien
eat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 2000

 J. Antonio Ram��rez-Robredo 2000. All rights reserved.The author hereby grants to MIT permission to reprodu
e anddistribute publi
ly paper and ele
troni

opies of this thesis and togrant others the right to do so.
Author .Department of Ele
tri
al Engineering and Computer S
ien
eAugust 30, 2000Certi�ed by. .Nan
y A. Lyn
hNEC Professor of Software S
ien
e and EngineeringThesis SupervisorA

epted by .Arthur C. SmithChairman, Department Committee on Graduate Students

Paired Simulation of I/O AutomatabyJ. Antonio Ram��rez-RobredoSubmitted to the Department of Ele
tri
al Engineering and Computer S
ien
eon August 30, 2000, in partial ful�llment of therequirements for the degree ofMaster of Ele
tri
al Engineering and Computer S
ien
eAbstra
tAn important prin
iple that permeates theoreti
al work in distributed systems is thatof su

essive re�nement. This prin
iple en
ourages the algorithm designer to startwith a high-level des
ription of the system, and to su

essively re�ne it down to lower-level implementations. For this purpose, it is
ommon to relate two automata usinga forward simulation relation, whi
h is a mathemati
al relation between the states ofthe automata. Given the importan
e of this te
hnique, it is desirable to have softwaretools to work with simulation relations.In this thesis, I des
ribe my design of a new simulator for the IOA language withthe
apability of simulating pairs of automata together, whi
h are
laimed to berelated by a given simulation relation. This simulator is able to verify if the proposedsimulation relation holds in a parti
ular exe
ution of the low-level automaton, givena step
orresponden
e between the automata. The work to a

omplish this goalin
luded designing language extensions to IOA for spe
ifying the step
orresponden
e(in addition to the simulation relation) between the automata, as well as a newapproa
h for resolving single-automaton nondeterminism.I have provided do
umentation on the software implementation of the simulatorand ne
essary support modules so that future work on the IOA toolkit (be it workon the simulator or on other tools)
an be done using this software environment as afoundation.Thesis Supervisor: Nan
y A. Lyn
hTitle: NEC Professor of Software S
ien
e and Engineering

2

A
knowledgmentsMy advisor, Prof. Nan
y Lyn
h, gave me expert dire
tion in all aspe
ts of the proje
t, andshe helped me make this thesis into a mu
h better do
ument than I
ould have done on myown.The work of Dr. Stephen Garland on Lar
h and the IOA Frontend was a vital prerequisiteto this thesis, and I also wish to thank him for useful
onversations and insightful feedba
kon my ideas.This extended simulator
ould not exist without Anna E. Chefter's prior work, whi
h servedas an admirable starting point and as an en
ouraging assuran
e that the goal was withinrea
h.Joshua A. Tauber and Mi
hael J. Tsai gave me a vote of
on�den
e by using the internalrepresentation
ode in their own proje
ts, and they made very useful
omments. Man-dana Vaziri was generous in sharing her experien
e with me, and I had very valuable
on-versations with her. Undergraduate resear
hers Laura G. Dean, Christine A. Karlovi
h,Christopher H. Luhrs, and Ezra Y. Rosen wrote interesting IOA examples whi
h served asinspiration for work on the simulator, and as useful indi
ators of future simulator proje
ts.Laura G. Dean also read drafts of my thesis and pointed out numerous mistakes. Morebroadly, I am thankful to the members of the Theory of Distributed Systems group, whohave been most en
ouraging.Finally, the quality of my experien
e at MIT would have been greatly diminished withoutthe loving support from my family and the en
ouragement and
ompanionship from myfriends. It is thanks to them that I was able to maintain my wits and �nish this work.

3

Para mis padres.

4

Contents
1 Introdu
tion 111.1 Theoreti
al foundation . 111.1.1 I/O Automata . 121.1.2 Exe
utions and tra
es . 121.1.3 Simulation Relations . 131.2 The IOA Toolkit and its motivation 131.3 The IOA simulator . 141.4 Notes on terminology . 152 Resolution of nondeterminism 172.1 The problem . 172.2 A previous approa
h to NDR . 182.3 Motivation for a new approa
h . 192.4 Overview of the proposed NDR me
hanism 212.5 Other NDR features . 252.6 Future work . 272.6.1 Per-sort
hoose NDR programs 272.6.2 Per-predi
ate
hoose NDR programs 282.6.3 Per-task s
hedule NDR programs 302.6.4 Arti
ulating simulability
onditions 303 Single-automaton simulation 343.1 Limitations of the simulator . 345

3.2 The simulator algorithm . 353.3 Invariant
he
king . 383.4 Future work . 393.4.1 Simulating expli
it
ompositions 393.4.2 Graphi
al user interfa
e . 404 Paired simulation 424.1 A language for en
oding step
orresponden
es 434.2 An illustrative example of paired simulation 464.3 The paired simulator algorithm . 484.4 Example 1: mutual simulation of simple
ommuni
ation
hannels . . 504.5 Example 2: The Peterson mutual ex
lusion algorithm 554.6 Future work . 634.6.1 Improving the step
orresponden
e language 634.6.2 Interfa
ing with a
omputer-assisted theorem prover 644.6.3 Adding syntax for providing a
omplete proof 645 Grammar
hanges for simulator-related IOA extensions 655.1 Labeling of transition de�nitions . 655.2 Labeling of transition de�nitions . 665.3 Labeling of invariants . 665.4 Resolution of nondeterminism . 675.4.1 Syntax for NDR programs . 675.4.2 Syntax extensions to automaton and
hoose 685.5 Paired simulation . 696 The software environment 706.1 Review of the IOA Toolkit ar
hite
ture 706.2 The internal representation: design basi
s 716.3 The parser . 736.4 Adding simulator datatypes . 756

6.4.1 The Basi
ImplRegistry: an overview 776.5 Spe
ializing the internal representation 866.6 Modifying the simulator user interfa
e 87

7

List of Listings
List of listings . 82-1 Chooser.ioa . 222-2 Chooser.ioa, with NDR . 222-3 Simulator output on Chooser automaton. 242-4 NonDet.lsl . 252-5 Chooser.ioa . 262-6 Unde
ided.ioa . 27Algorithm for single automaton simulation 363-1 ManyChoi
es.ioa . 373-2 Fibona

i.ioa . 383-3 Simulator output with invariant
he
king on Fibona

i.ioa. 384-1 Greeters.ioa: A simple simulation relation with step
orresponden
e. 474-2 Paired simulator output on Greeters.ioa. 47Algorithm for paired simulation . 484-3 Channels.ioa . 514-4 Paired simulator output on Channels.ioa (Channel2 implementingChannel1). 524-5 Paired simulator output on Channels.ioa (Channel1 implementingChannel2). 534-6 MutEx.ioa: A mutual ex
lusion servi
e with implementation 574-7 Paired simulator output on MutEx.ioa 604-8 Paired simulator output on buggy version of MutEx.ioa 636-1 Example usage of the ILParser. 748

6-2 The SortImpl interfa
e. 756-3 The OpImpl interfa
e. 766-4 The Entity interfa
e. 766-5 The ImplRegistry interfa
e. 766-6 The publi
 interfa
e of the Basi
ImplRegistry
lass. 786-7 The Basi
SortPreImpl abstra
t
lass. 826-8 The Basi
OpPreImpl abstra
t
lass. 836-9 The SimEvent interfa
e. 886-10 The SimListener interfa
e. 88

9

List of Figures
4-1 Syntax of step
orresponden
e. 454-2 �re statements in proof blo
ks. 456-1 Internal representation: interfa
e hierar
hy. 736-2 Conventions for names of operators in implementation pa
kages. . . . 80

10

Chapter 1
Introdu
tion
One of the most important resear
h a
tivities in the area of distributed systems isthe development of mathemati
al tools for the formal modeling and veri�
ation ofdistributed algorithms. This mathemati
al ma
hinery should permit a pre
ise spe
i-�
ation of allowable behaviors exhibited by a system, as well as appli
able methodsfor determining the
orre
tness of implementations. One su
h proposed tool is theInput/Output Automaton model [7℄, I/O automaton for short, whi
h is a labeled tran-sition system that allows for modular
onstru
tion of
on
urrent systems from smaller
omponents. This model has been in
uential in the distributed systems resear
h
om-munity, and mu
h of the work in the Theory of Distributed Systems (TDS) grouphas the formalism of I/O automata at its
ore.1.1 Theoreti
al foundationIn this se
tion I present a brief summary of the prin
ipal de�nitions on whi
h the IOAToolkit is founded. All of these de�nitions have been taken almost verbatim from thetextbook Distributed Algorithms by Nan
y A. Lyn
h [7℄. The des
ription below isterse, and the reader is referred to this textbook for a more detailed dis
ussion of thede�nitions and their motivations.

11

1.1.1 I/O AutomataA signature S is a triple
onsisting of three disjoint sets of a
tions:� in(S), the input a
tions,� out(S), the output a
tions,� int(S), the internal a
tions.In terms of these
omponents we also de�ne:� lo
al(S) := out(S) [in(S), the lo
ally
ontrolled a
tions,� a
ts(S) := in(S) [inter(S) [out , all the a
tions.An input/output automaton A (I/O automaton for short)
onsists of �ve
ompo-nents:� sig(A), a signature,� states(A), a (not ne
essarily �nite) set of states,� start(A) � states(A), a nonempty set, known as the start or initial states of A.� a set trans(A) � states(A)� a
ts(sig(A))� states(A) of transitions of A, withthe property that for every state s and every input a
tion � there exists atransition (s; �; s0) 2 trans(A).� tasks(A), a partition lo
al(sig(A)) into at most
ountably many
lasses.1.1.2 Exe
utions and tra
esAn exe
ution fragment of an I/O automatonA is either a �nite sequen
e s0; �1; s1; : : : ; sr,or an in�nite sequen
e s0; �1; s1; : : : ; �r; sr; : : :, of alternating states and a
tions of Asu
h that (sk; �k+1; sk+1) is a transition of A for ea
h k � 0. If s0 is a start stateof A, then the exe
ution fragment is
alled an exe
ution. A state of A is said to berea
hable if it is the �nal state of a �nite exe
ution of A. The tra
e of an exe
ution12

fragment �, denoted by tra
e(�), is the subsequen
e of �
onsisting of all externala
tions, and it represents the externally-observed behavior of A during the exe
utionof �.1.1.3 Simulation RelationsA forward simulation relation (or just simulation relation) from automaton A toautomaton B is a binary relation f � states(A)� states(B) su
h that:1. If s 2 start(A), then f(s) \ start(B) 6= 0.2. If s is a rea
hable state of A, u 2 f(s) is a rea
hable state of B, and (s; �; s0) 2trans(A), then there is an exe
ution fragment � of B starting with u and endingwith some u0 2 f(s0), su
h that tra
e(�) = tra
e(�),where f(s) stands for fu : (s; u) 2 fg. Simulation relations are an important tool inthe study of distributed systems, and their relevan
e stems from the following:Theorem. If there is a simulation relation from A to B, then tra
es(A) � tra
es(B).In other words, the existen
e of the simulation relation shows that A imple-ments B. Not every tra
e in
lusion
an be proved using forward simulation rela-tions. For this reason, there exist further variants of this de�nition; see Lyn
h andVaandrager [8℄ for a number of them. In this do
ument, I will only
onsider forwardsimulation relations.1.2 The IOA Toolkit and its motivationAlong with the abstra
t mathemati
al tools, it is highly desirable to have as a
oun-terpart to the theory a set of software tools to aid with the pro
esses of analysis andimplementation of algorithms. An ongoing proje
t at the TDS group is the
reationof the IOA Toolkit, a suite of software tools that address these
on
erns. My ownwork forms part of this toolkit. 13

At the
ore of the IOA Toolkit is the programming language IOA, whi
h
loselyshadows I/O automata in notation and semanti
s. The language is des
ribed in [3℄,[4℄. IOA inherits several properties from the I/O automaton model that make it anunusual programming language; for example, rather than having an expli
it
ow of
ontrol, exe
utions are spe
i�ed through a
tions, whi
h may be enabled or disableda

ording to the
urrent state. Multiple a
tions may be enabled at a given pointin time, and hen
e this programming language is nondeterministi
. Moreover, thelanguage permits the manipulation of mathemati
al obje
ts of unbounded size, afeature that
ontributes to its la
k of orthodoxy. Needless to say, these propertiesraise diÆ
ult implementation issues. The motivation for these design
hoi
es is adesire to develop systems starting with the strong foundation of the I/O automatonmodel. Thus, rather than imposing limitations on the
omputational model be
auseof implementation
on
erns, the approa
h is to enfor
e a high degree of
loseness toan a-priori model, hen
e making the language simple, general, and easy to reasonabout. The extra generality has the tradeo� of making the implementation of sometools more involved. IOA has been spe
i�ed as an appli
ation of the Lar
h SharedLanguage (LSL) [5℄, whi
h allows the IOA toolkit to tap into the ri
h theorem-provingsystem Lar
h.Throughout this do
ument, I will assume some familiarity with the
ontent of theIOA User and Referen
e Manual [3℄.1.3 The IOA simulatorAnna E. Chefter designed and implemented an IOA tool,
alled the IOA Simulator [1℄.The simulator, given an IOA automaton spe
i�
ation, performs a software simulationof an exe
ution of the I/O automaton that it represents. This tool is potentially auseful aid during the design of a system using IOA, sin
e it allows the designer to seethe algorithm in a
tion. One of the diÆ
ulties in designing a simulator for IOA isresolving the nondeterminism present in this language, in order to sele
t an exe
utionto simulate among all the possible ones. 14

My Master of Engineering thesis proje
t
onsists of the following:� Improving the design of the simulator and the me
hanisms for resolution ofnondeterminism.� Extending the simulator so that it allows invariant
he
king. This is a simpleaddition on
e the simulator exists, sin
e it only entails evaluating ea
h of the in-variants of an automaton after ea
h step. See Chapters 2 and 3 for a des
riptionof my design regarding this and the previous item.� Extending the simulator to allow paired simulation: given a simulation relationbetween two automata, and a proposed step
orresponden
e, use an exe
utionof the low-level automaton to indu
e an exe
ution of the high-level automatonusing the step
orresponden
e, while
he
king the validity of the simulationrelation. This is the main part of my proje
t. See Chapter 4 for more motivationon this problem and the way in whi
h I addressed it.� Developing a software environment that fa
ilitates the implementation of futureextensions of the simulator, and future tools in the IOA Toolkit. An introdu
-tion to the use of this software environment is given in Chapter 6.1.4 Notes on terminologyI would like to
larify several points regarding the terminology that is used in the restof the do
ument1. Some I/O automaton-related words are used with slightly di�erent meanings,depending on whether they refer to the abstra
t I/O automaton model or tosynta
ti
 elements of an automaton spe
i�
ation written in IOA. For instan
e,an IOA transition blo
k typi
ally de�nes a family of transitions of the automatonthat is being modeled, one for ea
h value of its a
tual parameters and for ea
hvalue of the expli
it
hoi
es that may o

ur in its e�e
t program. A similarremark is true for automaton a
tions and their parameters.15

2. Throughout this do
ument, the word \simulation"
an refer to one of two dif-ferent notions: on one hand, it means the a
t of using a software program toexe
ute one or more I/O automata des
ribed in IOA; on the other, it refers to amathemati
al simulation relation between two abstra
t I/O automata. It is usu-ally
lear from the
ontext whi
h of these two meanings is intended; otherwise,I have used the term \paired simulation" to refer to the software simulation ofmathemati
al simulation relations (and hen
e the title of this thesis).3. A large part of the dis
ussion on resolution of nondeterminism pertains to the
hoose keyword in IOA. A

ording to the formal grammar, expli
it
hoi
es us-ing this keyword are
lassed as \value" nonterminals, but I want to avoid theambiguity between the expli
it
hoi
e as a synta
ti
 element and the value ofthe
hoi
e in a parti
ular exe
ution, and hen
e I avoid the expression \
hoosevalue". An alternative expression
ould be \
hoose term", but that is ina

u-rate sin
e the
hoose keyword is not valid in every
ontext that a term is valid.As a
ompromise, I have settled for the expression \
hoose statement": whilenot a statement itself, an expli
it
hoi
e
an only appear as the right-hand sideof an assignment, whi
h is a statement.4. In the
ontext of resolution of nondeterminism, I have made use of Lar
h
odewhi
h is synta
ti
ally
orre
t, but whose semanti
s, as interpreted by the sim-ulator, do not
onform to the semanti
s of Lar
h traits; in parti
ular, the im-plementation uses a pseudo-random number generator, while Lar
h semanti
sdi
tate a deterministi
 implementation. This was done for
onvenien
e only,sin
e the me
hanism for spe
ifying Lar
h traits was very
lose to what wasneeded to spe
ify the signatures of
ertain nondeterministi
 operators used bythe simulator. I will refer to items de�ned in this way as pseudotraits, to em-phasize the
ontrast with genuine Lar
h traits. It is plausible to eventually addan extension to IOA to allow a form of this syntax to be used by the simulator.Refer to Se
tion 2.5 for the spe
i�
s.
16

Chapter 2
Resolution of nondeterminism
One of the
entral goals of the IOA language is that of high expressivity for math-emati
al modeling of distributed systems. As part of this goal, IOA in
orporates afamily of nondeterministi

onstru
ts. In order to simulate an automaton, a parti
-ular exe
ution must be
hosen, and perhaps the main problem to be solved in thisrespe
t is to design a satisfa
tory me
hanism for the resolution of nondeterminism.In this
hapter I outline some desirable
hara
teristi
s of su
h a me
hanism, and theway in whi
h I propose to a
hieve some of them. I will use the abbreviation NDR1to refer to resolution of nondeterminism.2.1 The problemThere are several of sour
es of nondeterminism in the IOA language; for instan
e:� an automaton
an have multiple enabled a
tions in a given state,� a given enabled a
tion
an have multiple transition de�nitions asso
iated withit,� a given transition de�nition
an take arbitrary a
tual parameter values, as longas they satisfy its where
lause, and,1nondeterminism resolution 17

� a transition de�nition
an
ontain one or more
hoose statements, ea
h of whi
hmay evaluate to an arbitrary value that satis�es the
onstraint in the where
lause.From the point of view of an IOA automaton spe
i�
ation, the sour
es of nonde-terminism
an be all regarded together as a bla
k box that
an yield both transitionsto be s
heduled and values to be assigned to
hoose statements in transitions. Thusthe problem of resolution of nondeterminism
an be regarded as that of providingan algorithmi
 means of obtaining these values and transitions as the need for themarises during the simulation of an automaton. To make the simulator a useful tool,it is desirable to make this me
hanism:� Broad. It should provide several ways to resolve nondeterminism, ea
h suitedto di�erent situations and appli
ations. For instan
e, it should allow
hoi
esand transitions to be resolved as deterministi
 fun
tions of the automaton'sstate, or using a pseudo-random number generator, or by querying the user, orany
ombination of these.� Extensible. It should be suÆ
iently open-ended that future developers andadvan
ed users
an tailor it to spe
i�
 needs without too mu
h e�ort. Forinstan
e, if a new datatype implementation is added to the simulator, it shouldbe possible to add useful NDR me
hanisms to go with it.� Usable. It should be reasonably easy to use, and it should not pla
e
umber-some demands upon the user. It is my opinion that this is the most importantof the three points: resolution of nondeterminism is an absolute ne
essity fornontrivial uses of the simulator, and it would be unfortunate that a la
k ofattention to usability
onsiderations should dis
ourage its use.2.2 A previous approa
h to NDRAnna E. Chefter designed an NDR me
hanism for IOA automaton spe
i�
ations [1℄.The essentials of her approa
h are as follows: for ea
h automaton to be simulated18

there must exist a determinator spe
i�
ation. To handle
hoose nondeterminism, thedeterminator provides for ea
h
hoose statement in the automaton a �nite set fromwhi
h its values are to be drawn. The simulator then uses these values to resolve the
hoi
e, sele
ting them uniformly at random. To handle transition nondeterminism,the determinator
ontains what amounts to a sequential program. This program ispresented as a series of if/then statements, whi
h spe
ify the transitions to s
hed-ule. Thus it allows the spe
i�
ation of behavior like: \if any automaton [in some
omposition℄ has more than �fty messages in its bu�er, then give it priority to takea step" [1℄. Additionally, determinators provide a way to generate pseudo-randomnumbers and query the user for values to be used as parameters to transitions. Be-sides serving as an NDR me
hanism, Chefter's determinator also has the ability toannotate s
heduled transitions with simulated timing and \weight" information.2.3 Motivation for a new approa
hMy own approa
h to NDR has several similarities with Anna E. Chefter's method. Forexample, the me
hanism for resolution of automaton transitions is also presented as asequential program that
an, among other things, use if/then rules to yield transitionsas a fun
tion of the automaton's state. However, the determinator framework, asdes
ribed in [1℄, has some drawba
ks, whi
h I sought to address:1. In determinators,
hoi
es
an only be resolved using a pseudo-random num-ber generator. Thus this me
hanism is restri
tive, sin
e the value of a
hoosestatement may be
onsistently
orrelated with, say, a state variable of the au-tomaton, and this might be a useful
ase to simulate. A se
ond problem is thatthe set of admissible values for a given
hoose statement may vary during anexe
ution, whi
h is a situation not addressed by this me
hanism.2. A determinator spe
i�
ation has the advantage of being neatly separated fromthe automaton itself. In parti
ular, this property yields the bene�t that no
hanges to the IOA grammar itself are ne
essary in order to implement them.19

Unfortunately, it also has the side e�e
t of requiring ea
h
hoose statement inthe automaton to have a unique name for its dummy variable, so that it
anbe unambiguously referen
ed in the determinator. This is undesirable, sin
eit requires the designer to enfor
e this global uniqueness of names, whi
h
anbe
ome a sour
e of errors.3. When there are multiple transition de�nitions with the same signature, it isne
essary to distinguish among them in some way when referring to them. De-terminators a

omplish this by using the sequential position of the transitionde�nitions in the automaton. For instan
e, the determinator
an distinguishbetween \output myA
tion:[1℄" and \output myA
tion:[2℄", if there are two tran-sition de�nitions for the same output a
tion with name \myA
tion". While thisdoes the job, there is the the possibility of modifying the automaton by alteringthe order of the transitions, inadvertently
hanging the meaning of the deter-minator. This relian
e of the determinator semanti
s on the synta
ti
 spe
i�
sof the automaton
an make it easy for the user to make mistakes, sin
e lo
al-ized
hanges with no semanti
 e�e
ts on the automaton (e.g., reordering thetransitions)
an modify the semanti
s of the determinator.4. The s
hemes for user intera
tion and random number generation are �xed aspart of the determinator syntax. For example, there is no method to produ
epseudo-random reals between 0 and 1, and, more importantly, there is no wayto add su
h a method without modifying the determinator grammar itself.The ways in whi
h I address these points are as follows:1. My proposed NDR s
heme allows arbitrary rules for determining ea
h
hoosestatement. These rules are des
ribed as sequential programs whi
h
an makede
isions based on the evaluation of arbitrary IOA terms.2. My proposal requires the programmer to augment the automaton spe
i�
ationitself with NDR-related information. Namely, it requires a s
hedule blo
k forresolving automaton transitions, and a det blo
k for resolving the values of ea
h20

hoose statement. Thus, it needs additions to the IOA grammar itself. However,sin
e the NDR information is synta
ti
ally lo
al to the expli
it
hoi
es, no globalunique-naming
onstraint is ne
essary.23. In order to address the problem of disambiguation among transition de�nitionswith the same signature, my proposal adds syntax to IOA for expli
itly namingthe transition de�nitions themselves. For example, now an automaton
anhave two transition de�nitions output myA
tion
ase A and output myA
tion
ase B. The token after the new
ase keyword
an be an arbitrary identi�eror a numeral, and it is used in the s
hedule and det blo
ks to refer to spe
i�
transition de�nitions. In this way, a permutation of the transition de�nitionsdoes not a�e
t the assignment of the
ase names, leaving the semanti
s of thes
hedule blo
k inta
t.4. The s
hedule and det blo
ks
an evaluate arbitrary IOA terms to de
ide whi
htransitions to s
hedule, or whi
h values to yield for a
hoi
e. In addition, they
an evaluate operators whose implementations perform pseudo-random numbergeneration, or user prompting, to yield a result. This has the advantage thatthe NDR me
hanism
an be extended in essentially the same way that newdatatypes are added to the simulator, as des
ribed in Chapter 6.2.4 Overview of the proposed NDR me
hanismGenerally speaking, my approa
h to NDR is to assign a program,
alled an NDRprogram, to ea
h sour
e of nondeterminism in an automaton. Ea
h su
h programis
apable of providing values that resolve a
hoi
e, or transitions to be s
heduled,depending on the
ontext. Thus there is an NDR program
orresponding to every
hoose statement in an automaton, and an NDR program for s
heduling the a
tions ofthe automaton. In this se
tion I will illustrate the operation of the NDR me
hanism2Contrast this with the situation in paired simulation, in Chapter 4, in whi
h uniqueness ofdummy variable names is required in the spe
i�
ation-level automaton in a simulation relation.21

using simple examples. Refer to Chapter 3 for a more detailed and general des
riptionof the interpretation of NDR programs by the simulator.Listing 2-1: Chooser.ioaautomaton Choosersignatureoutput a
tion1, a
tion2(n:Int)states
hosen: Int % initially arbitrarytransitionsoutput a
tion1eff
hosen :=
hoose x where 1 <= x /\ x <= 30output a
tion2(n)pre n =
hosen Listing 2-2: Chooser.ioa, with NDRautomaton Choosersignatureoutput a
tion1, a
tion2(n:Int)states
hosen: Inttransitionsoutput a
tion1eff
hosen :=
hoose x where 1 <= x /\ x <= 30det doyield 1; yield 2; yield 3odoutput a
tion2(n)pre n =
hosens
hedule dowhile true dofire output a
tion1;fire output a
tion2(
hosen)ododConsider the IOA
ode in Listing 2-1. It is an arti�
ial example that exhibitsnondeterminism both from
hoi
es and from transitions. It
ontains a transitionwhi
h is always enabled and whose e�e
t nondeterministi
ally
hooses a value toassign to the single state variable. A se
ond transition de�nition has a parameter,and it is enabled only when the state variable equals its parameters. This spe
i�
ation
an be augmented with NDR programs to resolve its nondeterminism, for example,as shown in Listing 2-2. This example
ontains the basi
 features of my approa
h.Noti
e these
ru
ial points:� The NDR program in the s
hedule blo
k uses the �re statement to s
heduletransitions of the automaton, hen
e \�ring" them. This statement allows thespe
i�
ation of the type of a
tion (input, output, external) and its parameters,whi
h may in turn depend on the values of state variables of the automaton.22

Similarly, the NDR program asso
iated with the
hoose statement uses the yieldstatement to spe
ify the values of the
hoi
e.� The NDR program asso
iated with the
hoose statement has three su

essiveyield statements. The semanti
s are as follows: when the simulator en
ountersthe
hoose statement, it will start exe
uting the NDR program until it en-
ounters a yield statement. At this point, it will use the value provided by thestatement as the value of the
hoose statement, and it will remember the
urrentstatement of the NDR program. The next time it en
ounters the same
hoosestatement, the simulator will not start its NDR program from the beginning;rather, it will resume exe
uting it where it left o�. Thus, in the example in List-ing 2-2, the
hoi
e will be resolved su

essively to 1, 2, and 3. Similarly, in thes
hedule blo
k, the simulator will remember where it left o� after a transitionwas �red and resume from there the next time it s
hedules a transition.3� Moreover, in the
ase of
hoose statements, there is an impli
it in�nite loopsurrounding the statements of the NDR program. Be
ause of this, the
hoosestatement in the example resolves to the values 1, 2, 3, 1, 2, 3, et
. This
onvention is not used in the
ase of the s
hedule blo
k in the automaton, butthe same e�e
t
an be obtained by expli
itly writing an in�nite loop, as shown.There is a rationale for these design
hoi
es. I expe
t it to be
ommon for a given
hoose statement to be resolved in the same way ea
h time it is en
ountered:say, by invoking the same pseudo-random number generator, by prompting theuser in the same manner, or by
omputing the same deterministi
 fun
tion. Thisis re
e
ted in the NDR program as an in�nite loop around a statement, whi
hwould be impra
ti
al for users to spe
ify manually if this is indeed a
ommon
ase. This is not a desirable
onvention in the s
hedule blo
k: many automata donot have in�nite exe
utions, and for them, one must be able to express s
hedulesthat eventually stop produ
ing transitions and halt. An impli
it in�nite loop3The semanti
s of yield and �re statements were inspired by the iterator
onstru
t in the pro-gramming language CLU. [6℄ 23

would disallow this.� The simulator requires the NDR programs to only �re transitions that are en-abled, and yield
hoi
e values that make the
orresponding where
lause true. Ifthe simulator en
ounters a situation where either of these
onditions does nothold, it will issue an error message and halt the simulation.Listing 2-3 shows the output of the simulator on this automaton. The simulatortakes as
ommand line parameters the number of transitions to simulate, the nameof the automaton to simulate, and the name of a �le
ontaining the intermediatelanguage form of the IOA spe
i�
ation. For every step taken by the automaton (in-Listing 2-3: Simulator output on Chooser automaton.% java ioa.simulator.shell.SimShell 5 Chooser Chooser.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables:
hosen --> 0℄℄℄℄ end initialization ℄℄℄℄[[[[begin step 1 [[[[EVENT: transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 1℄℄℄℄ end step 1 ℄℄℄℄[[[[begin step 2 [[[[EVENT: transition: output a
tion2(1) in automaton Chooser%%%% No modified state variables℄℄℄℄ end step 2 ℄℄℄℄[[[[begin step 3 [[[[EVENT: transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 2℄℄℄℄ end step 3 ℄℄℄℄[[[[begin step 4 [[[[EVENT: transition: output a
tion2(2) in automaton Chooser%%%% No modified state variables℄℄℄℄ end step 4 ℄℄℄℄[[[[begin step 5 [[[[EVENT: transition: output a
tion1 in automaton Chooser%%%% Modified state variables:
hosen --> 3℄℄℄℄ end step 5 ℄℄℄℄No errors%

luding the initialization step), the simulator reports the transition that was exe
uted,and the state variables that
hanged. 24

2.5 Other NDR featuresThere are a few important aspe
ts of the NDR me
hanism that are not illustrated bythis example:1. A s
hedule NDR program
an �re input a
tions. This is provided for
onve-nien
e, sin
e otherwise it would be ne
essary to
ompose the automaton with anenvironment automaton in order to provide a full s
hedule. On
e a satisfa
toryme
hanism for simulation of
ompositions is in pla
e, this feature might not beas important.2. It is sometimes desirable to resolve
hoi
es and s
hedule transitions using pseudo-randomness or user input as information. This issue
an be addressed by pro-viding extra operators that evaluate as random number generators and userprompters. One way to do this is to use a pseudotrait4 su
h as the one inListing 2-4. Listing 2-4: NonDet.lslNonDet: traitintrodu
esrandomNat: Nat, Nat -> Nat% uniformly random natural number in given rangequeryNat: Nat, Nat -> Nat% query user for natural number in given rangerandomInt: Int, Int -> Int% uniformly random integer in given rangequeryInt: Int, Int -> Int% query user for integer in given rangerandomBool: -> Bool% random boolean (ea
h value with probability 0.5)Ea
h of these operators is either
urrently implemented by the simulator, or iseasy to implement with the
urrent software support. Using them, an alternativeway of resolving the nondeterminism of Chooser is as follows:4I would like to emphasize that LSL traits are meant to model deterministi
 mathemati
al oper-ators, and that therefore this is not an orthodox use of Lar
h. For example, a zero-ary operator inan LSL trait represents a
onstant, and does not admit implementations that evaluate di�erently atdi�erent times. Be
ause of this, the NonDet \trait" is not meant to be used in a general IOA
ontext(e.g., inside an e�e
t blo
k); rather, it was introdu
ed to be used only in NDR programs. This turnsout to be a
onvenient and
exible way to in
orporate these
apabilities. For example, users of thesimulator
an extend the NDR
apabilities in the same way that they
an add implementations ofspe
ialized operators, as des
ribed in Chapter 6. I use the term \pseudotrait" to refer to this andother obje
ts that are synta
ti
ally like LSL traits, but whose implementations by the simulator donot
onform to LSL semanti
s. A possible future expansion would be to expand the syntax of IOAto allow de
larations similar to the NonDet pseudotrait without abusing the semanti
s of LSL.25

Listing 2-5: Chooser.ioauses NonDetautomaton Choosersignatureoutput a
tion1, a
tion2(n:Int)states
hosen: Inttransitionsoutput a
tion1eff
hosen :=
hoose x where 1 <= x /\ x <= 30det doyield randomInt(1,30)odoutput a
tion2(n)pre n =
hosens
hedule dowhile true dofire output a
tion1;if randomBool then fire output a
tion2(
hosen) fiodod In a similar way, user prompting
an be used instead of randomness.3. There are
ir
umstan
es in whi
h it would be tedious to write a
omplete s
hed-ule by hand, and in whi
h the simulator by itself
an �nd an appropriate transi-tion to s
hedule. The me
hanism supports the statement �re with no arguments.When the simulator en
ounters a statement of this kind in an NDR
ontext, itwill:(a) examine in turn ea
h lo
ally-
ontrolled transition de�nition of the automa-ton among those whose a
tual parameters are
onstants. For ea
h of them,evaluate the pre
ondition to see if it is enabled, and,(b) among those that are enabled,
hoose one uniformly at random and �re itin the usual way.4. In IOA, multiple transition de�nitions
an share the same a
tion type, nameand a
tual parameter sorts. In this s
enario, the form of the �re statementshown in Listing 2-2 would be ambiguous. This problem is solved by usingthe
ase keyword in the transition de�nition to spe
ify a name; it
an be used,for example, as in Listing 2-6. The
ase name of the transition is lo
al tothe primitive automaton in whi
h it is de�ned, and it
an be a number or analphanumeri
 identi�er. Using the
ase identi�er, the NDR program in thes
hedule blo
k
an distinguish between the two transitions.26

Listing 2-6: Unde
ided.ioaautomaton Unde
idedsignatureoutput hellostatesb: Booltransitionsoutput hello
ase 1eff b := trueoutput hello
ase 2eff b := falses
hedule dowhile true dofire output hello
ase 1 ;fire output hello
ase 2odod
2.6 Future workThe above-des
ribed syntax for resolution of nondeterminism, while
exible, might beregarded as requiring too mu
h work for its use. For example, it demands that the userprovide an NDR program asso
iated with ea
h
hoose statement in an automaton,whi
h
ould result in repetitive
ode fragments s
attered over the automaton's
ode,or in a s
hedule blo
k that is too
omplex. Here I present some possible futureadditions to the
urrent NDR syntax that would help remedy this to some extent.None of the extensions dis
ussed here have been implemented, and the following
hapters are independent of this se
tion.2.6.1 Per-sort
hoose NDR programsOne natural extension of the
hoi
e resolution syntax is the ability to spe
ify a defaultNDR program asso
iated to a given sort. This kind of feature would require a smalle�ort to implement. One approa
h is to use synta
ti
 sugar,5 making
ode like thefollowing:5Stri
tly speaking, this transformation would not be \synta
ti
" sugar, sin
e its implementationrequires stati
 semanti
 information on the types of
hoose variables.

27

automaton Asignatureinternal doThingstatesx,y : Inttransitionsinternal doThinge� x :=
hoose ;y :=
hoose det do yield 3; yield 4 od
hoosingfor w:Int do yield randomInt(-100,100) odstand for:automaton Asignatureinternal doThingstatesx,y : Inttransitionsinternal doThinge� x :=
hoose det do yield randomInt(-100,100) od ;y :=
hoose det do yield 3; yield 4 odThus, the
hoosing blo
k would spe
ify default NDR programs for sorts used in theautomaton; these programs
ould be overridden by NDR programs expli
itly providedin
hoose statements. Another possibility is to allow a global
hoosing blo
k, besidesper-automaton ones. A me
hanism of this style would perhaps go a long way towardsavoiding the repetitive NDR spe
i�
ation of many
ommon
ases. An adequate de-velopment of this idea would in
lude a spe
i�
ation of the semanti
s in the
ase thatsome of the
hoose statements have where
lauses.2.6.2 Per-predi
ate
hoose NDR programsIn a given
hoose
onstru
t, of the general form
hoose x where P (x),
28

it
ould be advantageous to asso
iate a default NDR program not with the sort ofthe
hoose statement, but with the predi
ate P . For example, many
ommon integer-valued
hoose statements have where predi
ates that restri
t the range of the
hosenvalue to some �xed �nite set S of numbers, su
h as an interval. It is redundant, givena
olle
tion of
hoose statements restri
ted in this way, to spe
ify NDR programs forea
h of them, if all that is wanted is to
hoose, say, a random element of S ea
h timethe
hoi
e is en
ountered. With the
urrent me
hanism, reasonable programs
anresult in repetitive NDR-augmented IOA
ode su
h as the following:6automaton A...transitions...e� y1 :=
hoose x where 0 � x ^ x � 20yield randomInt(0,20) ;y2 :=
hoose x where 10 � x ^ x � 30yield randomInt(10,30) ;y3 :=
hoose x where -6 � x ^ x � 28yield randomInt(-6,28) ;y4 :=
hoose x where -20 � x ^ x � 20yield randomInt(-20,20)Ea
h NDR program is essentially a repetition of the where
lause, and it amountsto giving the simulator a li
ense to sele
t the value of the
hoose randomly fromthe
orresponding interval. A way to avoid this repetition is to develop a languageextension similar to the following:automaton A...transitions...e� y1 :=
hoose x where 0 � x ^ x � 20 ;y2 :=
hoose x where 10 � x ^ x � 30 ;y3 :=
hoose x where -6 � x ^ x � 28 ;6This example also illustrates some synta
ti
 sugar
urrently supported by the syntax: the
on-stru
t \
hoose: : : yield t" is equivalent to \
hoose: : : det do yield t od". See Chapter 5 for the detailedgrammar. 29

y4 :=
hoose x where -20 � x ^ x � 20 ;...
hoosingfor q:Int where p:Int � q ^ q � r:Intdo yield randomInt(p,r) odThe
hoosing blo
k would asso
iate NDR programs to families of predi
ates, spe
i�edin the form of patterns, whi
h
an appear as where
lauses. An implementation of thisfeature is likely to require typed pattern mat
hing, and perhaps to pla
e restri
tionson the types of predi
ates P that are a

eptable in this me
hanism. I believe this is apromising extension, sin
e it would result in the power to develop an \NDR library"of useful where predi
ates in
hoi
es (e.g., real and integer intervals, �nite sets, primes,et
.) with a variety of methods to resolve their nondeterminism, and the user wouldonly have to sele
t the NDR method from this library. It would be plausible to makethe feature des
ribed in Se
tion 2.6.1 a spe
ial
ase of this me
hanism.2.6.3 Per-task s
hedule NDR programsA natural extension to the s
hedule blo
k is to allow a separate NDR program forea
h task of the automaton. This raises the questions of how to allo
ate exe
utionsteps among the provided programs, and what to do in the
ase when some of thetasks are parameterized.2.6.4 Arti
ulating simulability
onditionsIt would be useful to de�ne a suitable set of synta
ti
ally-spe
i�ed \simulability
on-ditions" for IOA automaton spe
i�
ations. These
onditions should be narrow enoughsu
h that an automaton that satis�es them
an be exe
uted with few user-spe
i�edNDR de
orations, or none at all; they should also be broad enough that writing IOAspe
i�
ations satisfying the
onditions is not diÆ
ult, and possible for many interest-ing
ases. This is
learly an open-ended problem. In this se
tion, I will dis
uss a fewpossible simulability
onditions, in de
reasing order of restri
tiveness.30

1. Disallow logi
al quanti�ers,
hoose and for statements, and disallow automatathat have a
tions with formal parameters. This permits an easy algorithmfor simulation: iterate through the transition de�nitions, and for ea
h of themevaluate the
orresponding pre
ondition; this
an be done easily due to theabsen
e of quanti�ers. Choose a transition (perhaps randomly) among thosewhose pre
ondition evaluates to true, and exe
ute it.2. As in 1, but allow formal parameters in a
tions, as long as they only appearas
onstant values in transition de�nitions. For example, a transition de�ni-tion headed by \output a
t(1,false)" is allowed, but not one headed by \outputa
t(n:Int, b:Bool)". This is essentially the same as 1, and it makes the automatoneasy to simulate for the same reasons.3. As in 2, but allow arbitrary formal parameters in a
tions, as long as transitionde�nitions are restri
ted to the form:a
tionType a
tionName(var1 : sort1; var 2 : sort2; : : : ; varn : sortn)pre var1 = term1 ^var2 = term2 ^...varn = termn ^restPrede� . . .where� ea
h term i is an IOA term whi
h depends only on the state variables ofthe automaton, and not on any of the variables var i, and� restPred is an IOA predi
ate (without quanti�ers).This has the result that at most one value of the variables satis�es the pre-
ondition in a given state. In this way, the simulator
an, for ea
h transition,evaluate ea
h termi and verify whether restPred holds after the var i have beensubstituted by the results of evaluating the termi.31

4. As in 3, but relax the restri
tion on the form of transitions as follows:a
tionType a
tionName(var1 : sort1; var 2 : sort2; : : : ; varn : sortn)pre term 01 = term1 ^term 02 = term2 ^...term 0n = termn ^restPrede� . . .where� ea
h term 0i is of the form opi(var i; ti;1; : : : ; ti;ri), opi is an operator, and theti;j are terms involving only the state variables of the automaton,� ea
h term i is an IOA term involving only the state variables of the au-tomaton, and,� restPred is an IOA predi
ate (without quanti�ers).This sort of automaton would be simulable, provided that the s
heme for op-erator implementations presented in Chapter 6 is extended to allow
ertainoperators to implement a sear
h operation. Given values ai;j and
 of the ap-propriate sorts, this operation would yield a value bi, if one exists, su
h thatopi(bi; ai;1; : : : ; ai;ri) =
. This operation might not be implemented (or it mightbe impossible to implement eÆ
iently) for all operators, and only those forwhi
h it is implemented would be allowed in this
ontext.The simulator
ould then, for ea
h transition, evaluate ea
h term i, invoke theappropriate sear
h operation on the implementation of operator opi, and ifthe sear
h operation is valid for all i, evaluate the predi
ate restPred aftersubstituting ea
h of the results of the sear
h operations into their
orrespondingvar i. Subsequently, the simulator
an then sele
t a transition de�nition withparameters among those for whi
h this test is su

essful.It is
lear that further relaxations of these simulability
onditions are
on
eivable,espe
ially in the presen
e of the sear
h operation. For example, this operation would32

allow the evaluation of a
lass of existential quanti�ers. I have the impression thatrestri
tion 3, along with versions of the NDR extensions proposed in the pre
edingparagraphs, would go a long way towards making the simulator easy to use.It would be useful to investigate simulability
onditions that are preserved byAnna E. Chefter's
omposer algorithm ([1℄; see also remarks in Se
tion 3.4.1). Asatisfa
tory simulability
ondition that is preserved by the
omposer algorithm wouldgreatly expand the s
ope of the simulator, sin
e it would redu
e the amount of ne
-essary user exposure to the output of the
omposer, whi
h is possibly more diÆ
ultto understand.

33

Chapter 3
Single-automaton simulation
In this
hapter I des
ribe how the simulator is designed, both regarding the IOAlanguage support that it requires, and the algorithm that it follows to simulate anautomaton. Additionally, I present examples of how the simulator is used. I do nottreat details su
h as the management of operator and sort implementations. For moreinformation regarding this and other software-related issues of the simulator, refer toChapter 6.3.1 Limitations of the simulatorThe
urrent implementation of the simulator has the following limitations:1. No existential or universal quanti�ers are permitted anywhere in the IOA au-tomaton to be simulated. Often, the e�e
t of an existential quanti�er
an bea
hieved using a suitably
onstrained
hoose statement, as des
ribed in [1℄,thereby redu
ing the problem of evaluating su
h quanti�ers to the problem ofnondeterminism resolution for
hoose statements. Evaluating universal quanti-�ers would require an essentially di�erent me
hanism.2. There are restri
tions on the a
tual parameters in transition de�nitions: ea
hof them must be either a pure variable, or a term that
ontains no variables,so that it evaluates to a
onstant. Again, as explained in [1℄, this is not a34

real restri
tion, sin
e expression parameters
an be repla
ed by variables thatare suitably
onstrained by the where
lause of the transition. It would not bediÆ
ult to modify the
urrent implementation to remove this
onstraint, butsome
orresponding
hanges to the NDR me
hanisms would be ne
essary. I didnot investigate this possibility.3. No for loops are permitted anywhere in the automaton to be simulated. The IOAfor
onstru
t is very powerful and nondeterministi
. There is no straightforwardway to redu
e its exe
ution to the problem of
hoose determination, and itprobably requires spe
ialized language extensions and support from the typeimplementations. Additionally, the presen
e of
hoose statements inside thebody of a for loop would raise serious questions regarding determination.4. The simulator only supports primitive automaton spe
i�
ations. Chefter's the-sis [1℄ des
ribes a transformation algorithm (the
omposer) whi
h takes an IOAautomaton
omposition spe
i�
ation as an input, and results in an IOA spe
i�-
ation of a primitive automaton that is equivalent to it. This kind of algorithm,if implemented, would be usable with this simulator, assuming that the user iswilling to provide the ne
essary NDR programs for the output of the
omposer.See Se
tion 3.4.1 for further dis
ussion on this approa
h to simulating
ompositeautomata.3.2 The simulator algorithmA good way to understand how the simulator interprets the NDR programs is througha des
ription of the algorithm that it follows. Page 36
ontains a pseudo-
ode de-s
ription of this algorithm. It is organized in three pro
edures. The main one isSimulate(A), where A is the primitive automaton spe
i�
ation to be simulated. Thispro
edure in turn uses two auxiliary ones, also presented in the �gure. The algorithmdoes not des
ribe the details of evaluating IOA programs or terms and fo
uses on theNDR me
hanisms. Evaluating a term requires every operator in the term to have a35

simulator implementation; refer to Chapter 6 for the details on mat
hing operatorsand sorts with their implementations.NotationA:ndr The s
hedule NDR program for automaton spe
i�
ation A.A:p
 A program
ounter for A:ndr .Its value
an be a statement in A:ndr or null .A:invs The list of invariants of A.A:simpleTrans The set of transition de�nitions in A with
onstant a
tual parameters.t:pre The pre
ondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�e
t program for a transition de�nition t.
:ndr The
hoi
e NDR program for a
hoose statement
.
:p
 A program
ounter for
:ndr .Its value
an be a statement in
:ndr or null .
:var The dummy variable in a
hoose statement
.
:where The where term in a
hoose statement
.trans(A; t; n;
) The transition de�nition of type t, name n and
aselabel
 in automaton A.eval (t) The result of evaluating a term t.? Simulate(A):[A: IOA primitive automaton ℄initialize a program
ounter
:p
 for ea
h
hoose statement
 in Ainitialize a program
ounter A:p
 for the s
hedule blo
k of Awhile A:p
 6= null do
all Exe
uteS
hed(A,A:p
)advan
e A:p
 to the next statement in A:ndr ❚? Exe
uteS
hed(A; s):[A: IOA primitive automatons: statement in A:ndr ℄if s is not a �re statement thenexe
ute s (s is an assignment, a
onditional, or a while
onstru
t;the semanti
s for these types of statements are the obvious ones)else if s = \�re a
tionType a
tionName(a
tionA
tuals)
ase
" thenlet t := trans(A; a
tionType ; a
tionName ;
)assign a
tionA
tuals to the formal parameter variables of tif eval (t:pre) = true and eval (t:where) = true thenexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalChoi
e(
)elsehalt with an errorfor ea
h t 2 A:invs su
h that eval (t) = false doissue an invariant failure warningelse if s = \�re" thenlet S = ft 2 A:simpleTrans j eval (t:pre) = truegif S 6= ; then
hoose t 2 S uniformly at randomexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalChoi
e(
) ❚36

? EvalChoi
e(
):[
:
hoi
e statement ℄forever doif
:p
 is not a yield statement thenexe
ute
:p
 (
:p
 is an assignment, a
onditional, or a while
onstru
t)advan
e
:p
 to the next statement in
:ndrelse if
:p
 is of the form \yield t", where t is a term thenlet v = eval(t)assign v to
:varif eval (
:where) 6= false thenadvan
e
:p
 to the next statement in
:ndrexit EvalChoi
eelsehalt with an error ❚The pro
edure Simulate initializes a program
ounter for ea
h NDR program in theautomaton, in
luding the s
hedule blo
k and ea
h
hoose statement. This means thatthe algorithm keeps a separate NDR program
ounter for ea
h
hoose statement; thisdoes not ne
essarily translate to keeping a separate program
ounter for ea
h a
tual
hoi
e in the abstra
t automaton that is being simulated. For example,
onsider thefollowing
ode: Listing 3-1: ManyChoi
es.ioauses NonDetautomaton ManyChoi
essignatureinternal doThing(n:Int)statesm: Inttransitionsinternal doThing(n)eff m :=
hoose det do yield 1; yield 2 ods
hedule do while true dofire internal doThing(randomInt(1,100))od odThe
hoose statement in the transition for doThing a
tually represents an in�ni-tude of
hoi
es, one for ea
h value of the parameter n for doThing. A single program
ounter is kept for all of them, and one must bear this in mind when designing NDRprograms. In this
ase, the
onsequen
e is that this
hoose statement is always re-solved alternatively to 1 and 2, regardless of the parameter of the transition. Analternative ar
hite
ture is possible in this respe
t: the simulator
ould dynami
allyallo
ate a new NDR program
ounter for ea
h new set of parameter values that it37

en
ounters for the transition, keeping all the allo
ated program
ounters in a tablekeyed by the parameter values. This raises
on
erns of memory eÆ
ien
y, but is aninteresting possibility.3.3 Invariant
he
kingListing 3-2: Fibona

i.ioaautomaton Fibona

isignatureinternal
omputestatesa:Int := 1,b:Int := 0,
:Int := 1transitionsinternal
omputeeff a := b ;b :=
 ;
 := a + b% true invariant:invariant A of Fibona

i:a + b =
% false invariant:invariant B of Fibona

i:a - b =

The simulator has the
apability of
he
kingwhether the invariants of an automaton, statedusing IOA syntax, hold throughout an exe
ution.This is done simply by evaluating ea
h of the in-variants found in the IOA spe
i�
ation after ea
htransition is exe
uting, and issuing a warning mes-sage if any of them fail.The
ode in Figure 3-2 is an IOA spe
i�
ationof an automaton, along with two proposed invari-ants of its state and suitable NDR programs.1 Fig-ure 3-3 presents the
orresponding output of thesimulator; this output shows that one of the invariants did not hold on this parti
ularexe
ution. Listing 3-3: Simulator output with invariant
he
king on Fibona

i.ioa.% java ioa.simulator.shell.SimShell 5 Fibona

i Fibona

i.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables:
 --> 1b --> 0a --> 1℄℄℄℄ end initialization ℄℄℄℄[[[[begin step 1 [[[[EVENT: transition: internal
ompute in automaton Fibona

iEVENT: invariant B failed%%%% Modified state variables:
 --> 1b --> 1a --> 0℄℄℄℄ end step 1 ℄℄℄℄[[[[begin step 2 [[[[EVENT: transition: internal
ompute in automaton Fibona

iEVENT: invariant B failed1This IOA spe
i�
ation gives names to the invariants, using a syntax that is not part of IOAas des
ribed in [3℄. See Chapter 5 for a des
ription of this extension. It was added merely for the
onvenien
e of allowing the simulator to refer to invariants by name.38

%%%% Modified state variables:
 --> 2b --> 1a --> 1℄℄℄℄ end step 2 ℄℄℄℄[[[[begin step 3 [[[[EVENT: transition: internal
ompute in automaton Fibona

iEVENT: invariant B failed%%%% Modified state variables:
 --> 3b --> 2a --> 1℄℄℄℄ end step 3 ℄℄℄℄[[[[begin step 4 [[[[EVENT: transition: internal
ompute in automaton Fibona

iEVENT: invariant B failed%%%% Modified state variables:
 --> 5b --> 3a --> 2℄℄℄℄ end step 4 ℄℄℄℄[[[[begin step 5 [[[[EVENT: transition: internal
ompute in automaton Fibona

iEVENT: invariant B failed%%%% Modified state variables:
 --> 8b --> 5a --> 3℄℄℄℄ end step 5 ℄℄℄℄No errors%
3.4 Future workIn this se
tion I present areas in whi
h the NDR me
hanism des
ribed above is notentirely adequate, and outline possible dire
tions of future improvement.3.4.1 Simulating expli
it
ompositionsCurrently, the simulator
annot handle
omposite automata dire
tly. As suggestedabove, it is possible to do the following:1. Using an implementation of Chefter's
omposer transformation, turn an expli
itIOA
omposition of automata into an IOA primitive automaton spe
i�
ation.2. After applying the
omposer, manually edit its output to augment it with theNDR programs that are requisite for simulation by this implementation.39

While this approa
h would
ertainly work, it raises some usability
onsiderations.For one, it is reasonable that users of the simulator will want to spe
ify the nondeter-minism resolution dire
tly in the vo
abulary of an expli
it
omposition. Running itthrough the
omposer results in an equivalent automaton that, however, is likely to bemore
omplex than the original input. Moreover, the
omposer will introdu
e extravariables and transitions that might obs
ure the fun
tion of the original automaton,making the task of spe
ifying the NDR programs more diÆ
ult. I would like to stressthe importan
e of usability: simulating an I/O automaton is not
on
eptually a hardproblem, and it would be a mistake to make a simulator that is unne
essarily diÆ
ultto use. In this light, I think that an interesting dire
tion of future resear
h is toextend the simulator so that it
an deal dire
tly with (perhaps restri
ted) expli
it
ompositions.3.4.2 Graphi
al user interfa
eGraphi
al user environments have be
ome the norm for
omplex software that requiresuser intera
tion. The simulator
ould bene�t greatly from a well-designed graphi
alinterfa
e. For example, it
ould be possible to:1. Graphi
ally represent the state of the automata being simulated.2. Use dialog boxes to query the user when ne
essary for NDR purposes.3. Allow the user to
hange the NDR parameters of the automata in betweensimulations, without manually going ba
k to the sour
e and front-end.4. Allow the user to sele
t whi
h invariants should be
he
ked and whi
h shouldbe ignored.The simulator's software design already has some me
hanisms that should be usefulfor a graphi
al user interfa
e implementor; for example, it allows \listeners" to beregistered. A listener is a Java obje
t whi
h is noti�ed whenever an event o

ursin the simulator. For example, the failure of an invariant and the exe
ution of atransition are some of the events that
an be handled in this way. A listener
ould, in40

parti
ular, use the event noti�
ation to update the graphi
al display in response toparti
ular types of events. This event/listener ar
hite
ture
ould be further re�nedto allow a given listener to re
eive only a parti
ular subset of the events. Refer toChapter 6 for more information.

41

Chapter 4
Paired simulation
In the study of distributed systems, it is
ommon for
omplex systems to be analyzedthrough su

essive re�nements: in the presen
e of an abstra
t spe
i�
ation A, onewould like to show that another spe
i�
ation B is an implementation of A. If A andB are I/O automata, this is modeled by the statement thattra
es(B) � tra
es(A):To prove a statement of this form, it is almost inevitable to use an argument byindu
tion over the length of an exe
ution ofB. This indu
tive reasoning on automatonexe
utions has been abstra
ted, yielding the method of simulation relations. Usingthis method, one seeks to
onstru
t a simulation relation f from B to A, as des
ribedin Se
tion 1.1.3.The IOA language in
ludes syntax for asserting simulation relations between au-tomaton spe
i�
ations. One of the goals of IOA is to provide software tools to assistin the analysis of I/O automata. For example, given a proposed simulation relationf from B to A, it would be useful to test its validity when restri
ted to a parti
ularexe
ution of B. As in the
ase of invariants, a single exe
ution in whi
h f is observednot to hold would suÆ
e to show that f is invalid. While
ontinued veri�
ation off in di�erent exe
utions of B does not prove the
orre
tness of f , it does provideempiri
al eviden
e that f may be true, before the user spending the ne
essary e�ort42

to prove its
orre
tness.In this
hapter, I des
ribe how the simulator des
ribed in Chapter 3 was extendedto allow simulation of a pair of automata related by a mathemati
al simulation rela-tion. The
entral problem here is this: the simulation relation itself, being merely apredi
ate that relates the states of two automata, is not suÆ
ient to spe
ify how ea
hstep in the implementation automaton
orresponds to a sequen
e of steps in the spe
-i�
ation automaton. In general, there might be multiple step
orresponden
es thatrealize a given valid simulation relation between automata, and even if there is onlyone, it
an be diÆ
ult to �nd it. From this point of view, the problem of derivinga spe
i�
ation-level exe
ution from an implementation-level exe
ution is analogousto that of deriving a deterministi
 exe
ution of a single automaton from a spe
i�
a-tion that allows nondeterminism. Not surprisingly, the problem of programmati
allyspe
ifying a step
orresponden
e admits a similar solution.Related work Jonsson, Pnueli, and Rump [9℄ de�ne a new te
hnique for provingtra
e in
lusions between abstra
t transition systems. The method
onsists in de�ninga transdu
er, whi
h takes as input an exe
ution of the implementation-level systemand outputs a
orresponding exe
ution of the spe
i�
ation-level system. They provea soundness theorem for this method, whi
h states, in essen
e, that the existen
e of a
orre
t transdu
er between the systems implies tra
e in
lusion. While the transdu
ersused in [9℄ are mathemati
al
onstru
ts, this idea suggests doing software simulationof a pair of automata while verifying a step
orresponden
e.4.1 A language for en
oding step
orresponden
esA step
orresponden
e needs to spe
ify, for a given low-level transition, a high-levelexe
ution fragment su
h that the simulation relation holds between the respe
tive�nal states of the transition and the exe
ution fragment. Thus, a step
orrespon-den
e
an be seen as a \attempted proof" of the simulation relation, missing onlythe reasoning that shows that the simulation relation is preserved. To spe
ify the43

proposed proof of a simulation relation, I extended the
urrent syntax of the forwardsimulation IOA
onstru
t to in
lude a new se
tion
alled proof,1 for spe
ifying the step
orresponden
e. This se
tion
ontains one entry for ea
h possible transition de�ni-tion in the low-level automaton, and ea
h entry en
odes an algorithm for produ
inga high-level exe
ution fragment, using a program similar to the NDR programs usedin automaton s
hedule blo
ks. In addition to these entries, the proof se
tion also
on-tains an initialization blo
k, whi
h spe
i�es how to set the variables of the high-levelautomaton given the initial state of the low-level automaton, and an optional statesse
tion that de
lares auxiliary variables used by the step
orresponden
e.Figure 4-1 shows the general high-level stru
ture of a simulation proof en
odedusing this language. Note that this syntax extends the syntax for forward simulationrelations in IOA. Some of the se
tions in the proof blo
k have a more
exible syntaxthan is depi
ted here, and some
an be omitted; refer to Chapter 5 for the detailedgrammar. The states blo
k introdu
es auxiliary variables used in the proof, and theirinitial values. The initially blo
k spe
i�es how to initialize the state variables of thespe
i�
ation automaton as a fun
tion of the implementation automaton's initial state,so as to satisfy the simulation relation.Ea
h proofEntry i is either the keyword ignore or a proof program, surrounded by doand od delimiters, a

ording to the grammar rules for SimProofProgram as detailedin Chapter 5. Su
h a program is essentially an NDR program, of the form allowedin an automaton's s
hedule blo
k, ex
ept that the �re statements must now provideadditional information to resolve the
hoose statements of the spe
i�
ation automa-ton. If a proof program is present, the simulator will exe
ute it from beginning toend to produ
e a high-level exe
ution fragment for that
ase, using the �re statementsto s
hedule transitions in the spe
i�
ation automaton. A proof entry equal to ignoreis equivalent to a proof program with no statements, and it is used to represent an1It was Dr. Stephen Garland who suggested
alling the step
orresponden
e a \proof", andmaking it a new part of the simulation relation de�nition; my original idea was to append the
orresponden
e to the low-level automaton, whi
h would not have been as
lean a solution. It isplausible to further extend this syntax to in
lude a
omplete proof, in a form suitable for automatedproof veri�
ation. 44

forward simulationfrom autImpl to autSpe
 :simPredi
ateproofstatesauxVar1 : sort1,auxVar2 : sort2,...auxVarm : sortminitiallyv1 := term1;v2 := term2;...vn := termnfor a
tType1 a
tName1(a
tFormals 1)
ase
aseId1proofEntry 1for a
tType2 a
tName2(a
tFormals 2)
ase
aseId2proofEntry 2...for a
tTypep a
tNamep(a
tFormals p)
ase
aseIdpproofEntry p Figure 4-1: Syntax of step
orresponden
e.
�re a
tionType a
tionName(a
tionA
tuals)
ase
aseIdusing term1 for v1,term2 for v2,...termk for vk Figure 4-2: �re statements in proof blo
ks.

45

empty high-level exe
ution fragment.The �re statements allowed in proof programs have the stru
ture depi
ted inFigure 4-2. This general �re statement has the meaning: \s
hedule the transitionof type a
tionType, name a
tionName with a
tual parameters a
tionA
tuals, usingthe values of the terms term1; : : : ; termn to resolve the
hoose statements in thetransition's e�e
t having dummy variables v1; : : : ; vn". If present, the
aseId label isused to disambiguate between transition de�nitions with the same signature.This design imposes a
onstraint not present in the single-automaton
ase: it mustbe required that, for a given transition de�nition in the spe
i�
ation automaton, the
hoi
e statements in it have dummy variable names whi
h are distin
t. While ingeneral it is undesirable to pla
e unique-naming
onstraints for lo
al dummy variables,I justify this design de
ision by arguing that, in the
ase or paired simulation, theseare not just dummy variables, but serve also as natural names for the
hoi
es in ahigh-level transition. An alternative design would be to add syntax for expli
itlynaming the
hoi
e statements.4.2 An illustrative example of paired simulationListing 4-1
ontains a simple IOA spe
i�
ation
ontaining a simulation relation witheverything ne
essary for it to be exe
uted. The automaton GreeterSpe
 is a spe
i�
a-tion for automata that produ
e the output a
tion hello any number, perhaps in�nite,of times. The automaton FiniteGreeter is a spe
ialization of this automaton that onlyprodu
es a �nite (but arbitrary) number of hello outputs. FiniteGreeter has exa
tlyone
hoi
e point, whi
h o

urs in its initialization of the maxGreets variable. To beable to simulate it, I provided an NDR program for it,
onsisting of the program thatyields a random integer in the range 1 : : : 100 as the value of the
hoi
e.2 A point tonoti
e here is that the
hoose statement in GreeterSpe
's transition de�nition has adummy variable even though it does not have a where
lause
onstraining it; this is2Note that the semanti
s of FiniteChooser allow it to output any �nite number of hello a
tions;the addition of the yield does not
hange these semanti
s: it merely modi�es the behavior of thesimulator, in this
ase by having it
hoose a random number in that parti
ular range.46

ne
essary if the simulation proof is to refer to it by name. This is another ne
essaryIOA grammar
hange for paired simulation, and is des
ribed in Chapter 5.Listing 4-1: Greeters.ioa: A simple simulation relation with step
orresponden
e.uses NonDetautomaton GreeterSpe
signatureoutput hellostatesstillGoing: Bool :=
hoosetransitionsoutput hellopre stillGoingeff stillGoing :=
hoose sgautomaton FiniteGreetersignatureoutput hellostatesmaxGreets: Int :=
hoose yield randomInt(1,5),
ount: Int := 0transitionsoutput hellopre
ount < maxGreetseff
ount :=
ount + 1forward simulation from FiniteGreeter to GreeterSpe
 :GreeterSpe
.stillGoing <=>(FiniteGreeter.
ount < FiniteGreeter.maxGreets)proofinitiallystillGoing := (FiniteGreeter.
ount < FiniteGreeter.maxGreets)for output hello dofire output hellousing (FiniteGreeter.
ount < FiniteGreeter.maxGreets) for sgodListing 4-2 is the output of the paired simulator on this IOA spe
i�
ation. As inthe
ase of non-paired simulation, it outputs the transitions taken and state variablesmodi�ed for every step of the implementation automaton. In addition, it outputs thetransitions of the spe
i�
ation automaton indu
ed by ea
h implementation step. Forea
h transition taken in either automaton, the simulator outputs the variables thatwere
hanged by the transition's e�e
t. The absen
e of simulator error messages in theoutput indi
ates that the simulation relation was veri�ed to hold, in this parti
ularrun, with this proposed step
orresponden
e.Listing 4-2: Paired simulator output on Greeters.ioa.% java ioa.simulator.shell.PairedShell 5 FiniteGreeter GreeterSpe
 Greeters.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:
ount --> 0maxGreets --> 2%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ end initialization ℄℄℄℄[[[[begin implementation step 1 [[[[47

Exe
uted impl transition: transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 1Exe
uted spe
 transition: transition: output hello in automaton GreeterSpe
 using true for sg%%%% Modified state variables for spe
 automaton:stillGoing --> true℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[begin implementation step 2 [[[[Exe
uted impl transition: transition: output hello in automaton FiniteGreeter%%%% Modified state variables for impl automaton:
ount --> 2Exe
uted spe
 transition: transition: output hello in automaton GreeterSpe
 using false for sg%%%% Modified state variables for spe
 automaton:stillGoing --> false℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[begin implementation step 3 [[[[EVENT: exe
ution ended℄℄℄℄ end implementation step 3 ℄℄℄℄>>>> No errors%
4.3 The paired simulator algorithmAs I did in Chapter 3 for the single-automaton
ase, here I present pseudo
ode forthe paired simulator. The pseudo
ode is organized into several pro
edures, of whi
hSimulatePair is the main one. NotationR:proof The proof blo
k in simualtion relation RR:impl The implementation-level automaton in simulation relation RR:spe
 The spe
i�
ation-level automaton in Rt:pre The pre
ondition term for a transition de�nition t.t:where The where term for a transition de�nition t.t:e� The e�e
t program for a transition de�nition t.
:var The dummy variable in a
hoose statement
.
:where The where term in a
hoose statement
.trans(A; t; n;
) The transition de�nition of type t, name n and
ase label
 in automaton Aeval (t) The result of evaluating a term t.proofProg(R; t) The proof program
orresponding to t in R:proof .t must be a transition of R:impl? SimulatePair(R):[R: IOA simulation relation ℄let A := R:impl , B := R:spe
, p := R:proof
all Initialize(R)simulate A as des
ribed in Chapter 3, ex
ept that:for ea
h transition t exe
uted in A
all Exe
Corresponding(R,t) ❚ 48

? Initialize(R):[R: IOA simulation relation ℄let A := R:impl , B := R:spe
, p := R:proofinitialize the state of A (using its NDR me
hanism if ne
essary)initialize the auxiliary variables in the states blo
k of pinitialize the state of B a

ording to the initially blo
k of p
all Che
kSimRel(R) ❚? Exe
Corresponding(R; t):[R: IOA simulation relationt: a transition of R:impl ℄let p := proofProg (R; t)let ` be an empty sequen
e of transitionsfor ea
h statement s in p doif s is not a �re statement thenexe
ute s (s is an assignment, a
onditional, or a while
onstru
t)elselet t0 := trans(S:spe
; a
tionType ; a
tionName ;
aseId)
all Exe
Spe
Effe
t(R; s; t0)append t0 to `
all Che
kSimRel(R)if tra
e(`) 6= tra
e(t) thenhalt with an error ❚? Exe
Spe
Effe
t(R; s; t):[R: IOA simulation relations: a �re statement of the form given in Figure 4-2t: the transition of R:spe

orresponding to s ℄assign a
tionA
tuals to the formal parameters of tif eval (t:pre) = true and eval (t:where) = true thenexe
ute the statements in t:e� following IOA semanti
s;when a
hoose statement
 needs to be evaluated,
all EvalSpe
Choi
e(R; s; t;
)elsehalt with an error ❚? EvalSpe
Choi
e(R; s; t;
)[R: IOA simulation relations: a �re statement of the form given in Figure 4-2t: the transition of R:spe

orresponding to s
: a
hoose statement in t:e� ℄let r := eval (termi), where vi is the name of
:varassign r to
:varif eval (
:where) = false thenhalt with an error ❚? Che
kSimRel(R)[R: IOA simulation relation ℄if eval (R:pred) = false thenhalt with an error ❚The pro
edure SimulatePair invokes the algorithm for single-automaton exe
utiondes
ribed in Chapter 3, ex
ept that it
alls pro
edure Exe
Corresponding for every49

low-level transition t that is s
heduled. The pro
edure Exe
Corresponding followsthe proof program asso
iated with t in the proof blo
k of the simulation relation,exe
uting ea
h of the high-level transitions determined by �re statements. In addition,Exe
Corresponding veri�es that the indu
ed high-level transitions have the sametra
e as t, and
alls Che
kSimRel to determine if the simulation relation holds at theend of the step. The pro
edure Exe
Spe
Effe
t,
alled by Exe
Corresponding forea
h high-level transition, exe
utes the e�e
t program of the transition as in the single-automaton
ase, ex
ept that pro
edure EvalSpe
Choi
e is
alled for every expli
it
hoi
e. The latter pro
edure evaluates a
hoose statement using the value provided inthe using part of the �re statement that determined the high-level transition, providedthat it satis�es the where predi
ate.Noti
e that the low-level step is taken in full before its
orresponding proof entryis examined, and the prior state of the low-level automaton is not re
orded. Thismeans that the proof program
an only refer to the low-level state after the low-levelstep has taken pla
e. Nevertheless, it is easy to modify an implementation automatonto make it keep tra
k of relevant parts of its old state, or of the
hoi
es it makes.In this way, the proof
an refer to this information, and the language
an be veryexpressive. A possibility for future expansion is to extend the syntax so that it
anrefer expli
itly to the state before and after the low-level step, and to the
hoi
estaken during the step.4.4 Example 1: mutual simulation of simple
om-muni
ation
hannelsThis example is drawn from [7℄, in whi
h a version of it is used to illustrate basi
ideas about simulation proofs.3 Listing 4-3 is an IOA spe
i�
ation of two
hannelautomata, together with two simulation relations between them, one in ea
h dire
tion.Both automata have the same external signature, with an input a
tion send(n:Nat)3In the textbook, the automaton
orresponding to Channel2 is modeled as a
omposition of two
opies of automata similar to Channel1. 50

and an output a
tion re
eive(n:Nat). The parameters to these transitions representmessages. Automaton Channel1 uses a sequen
e with a �rst-in, �rst-out dis
iplineto hold messages \in transit" in the
hannel. Automaton Channel2 uses two queues,and has an additional internal a
tion transfer(n:Nat) to move messages from the �rstqueue to the se
ond. This
ode in
ludes s
hedule blo
ks for both automata, andproof blo
ks for both simulation relations. The s
hedule NDR programs use pseudo-random numbers to generate the various a
tions. Both simulations simply state thatthe
on
atenation of the queues of Channel2 equals the queue in Channel1, and thestep
orresponden
es are, as expe
ted, straightforward. Listing 4-4 shows the outputof the paired simulator on the simulation from Channel2 to Channel1, and Listing 4-5shows the output on the opposite simulation.Listing 4-3: Channels.ioauses NonDetautomaton Channel1signatureinput send(n:Nat)output re
eive(n:Nat)statesqueue: Seq[Nat℄ := {}transitionsinput send(n:Nat)eff queue := n -| queueoutput re
eive(n:Nat)pre len(queue) ~= 0 /\last(queue) = neff queue := init(queue)s
heduledo while true doif randomBool thenfire input send(randomNat(1,100))fi ;if randomBool /\ len(queue) ~= 0 thenfire output re
eive(last(queue))fiod odautomaton Channel2signatureinput send(n:Nat)output re
eive(n:Nat)internal transfer(n:Nat)statesqueue1: Seq[Nat℄ := {},queue2: Seq[Nat℄ := {}transitionsinput send(n:Nat)eff queue1 := n -| queue1internal transfer(n:Nat)pre len(queue1) ~= 0 /\last(queue1) = neff queue2 := n -| queue2;queue1 := init(queue1)output re
eive(n:Nat)pre len(queue2) ~= 0 /\last(queue2) = neff queue2 := init(queue2)s
hedule 51

do while true doif randomBool thenfire input send(randomNat(1,100))fi ;if randomBool /\ len(queue1) ~= 0 thenfire internal transfer(last(queue1))fi ;if randomBool /\ len(queue2) ~= 0 thenfire output re
eive(last(queue2))fiod odforward simulation from Channel2 to Channel1 :Channel1.queue = Channel2.queue1 || Channel2.queue2proofinitiallyqueue := Channel2.queue1 || Channel2.queue2for input send(n:Nat) dofire input send(n)odfor output re
eive(n:Nat) dofire output re
eive(n)odfor internal transfer(n:Nat)ignoreforward simulation from Channel1 to Channel2 :Channel1.queue = Channel2.queue1 || Channel2.queue2proofinitiallyqueue1 := Channel1.queue;queue2 := {}for input send(n:Nat) dofire input send(n)odfor output re
eive(n:Nat) dofire internal transfer(n);fire output re
eive(n)odListing 4-4: Paired simulator output on Channels.ioa (Channel2 implementing Channel1).% java ioa.simulator.shell.PairedShell 10 Channel2 Channel1 Channels-proof.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:queue2 --> [℄queue1 --> [℄%%%% Modified state variables for spe
 automaton:queue --> [℄℄℄℄℄ end initialization ℄℄℄℄[[[[begin implementation step 1 [[[[Exe
uted impl transition: transition: input send(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [3℄Exe
uted spe
 transition: transition: input send(3) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [3℄℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[begin implementation step 2 [[[[Exe
uted impl transition: transition: input send(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [90, 3℄Exe
uted spe
 transition: transition: input send(90) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [90, 3℄℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[begin implementation step 3 [[[[Exe
uted impl transition: transition: internal transfer(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [3℄queue1 --> [90℄℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[begin implementation step 4 [[[[52

Exe
uted impl transition: transition: input send(56) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [56, 90℄Exe
uted spe
 transition: transition: input send(56) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [56, 90, 3℄℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[begin implementation step 5 [[[[Exe
uted impl transition: transition: internal transfer(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [90, 3℄queue1 --> [56℄℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[begin implementation step 6 [[[[Exe
uted impl transition: transition: output re
eive(3) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [90℄Exe
uted spe
 transition: transition: output re
eive(3) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [56, 90℄℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[begin implementation step 7 [[[[Exe
uted impl transition: transition: internal transfer(56) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [56, 90℄queue1 --> [℄℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[begin implementation step 8 [[[[Exe
uted impl transition: transition: output re
eive(90) in automaton Channel2%%%% Modified state variables for impl automaton:queue2 --> [56℄Exe
uted spe
 transition: transition: output re
eive(90) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [56℄℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[begin implementation step 9 [[[[Exe
uted impl transition: transition: input send(39) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [39℄Exe
uted spe
 transition: transition: input send(39) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [39, 56℄℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[begin implementation step 10 [[[[Exe
uted impl transition: transition: input send(66) in automaton Channel2%%%% Modified state variables for impl automaton:queue1 --> [66, 39℄Exe
uted spe
 transition: transition: input send(66) in automaton Channel1%%%% Modified state variables for spe
 automaton:queue --> [66, 39, 56℄℄℄℄℄ end implementation step 10 ℄℄℄℄>>>> No errors% Listing 4-5: Paired simulator output on Channels.ioa (Channel1 implementing Channel2).% java ioa.simulator.shell.PairedShell 10 Channel1 Channel2 Channels-proof.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:queue --> [℄%%%% Modified state variables for spe
 automaton:queue2 --> [℄queue1 --> [℄℄℄℄℄ end initialization ℄℄℄℄[[[[begin implementation step 1 [[[[Exe
uted impl transition: transition: input send(11) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [11℄Exe
uted spe
 transition: transition: input send(11) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [11℄℄℄℄℄ end implementation step 1 ℄℄℄℄ 53

[[[[begin implementation step 2 [[[[Exe
uted impl transition: transition: output re
eive(11) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [℄Exe
uted spe
 transition: transition: internal transfer(11) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue2 --> [11℄queue1 --> [℄Exe
uted spe
 transition: transition: output re
eive(11) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue2 --> [℄queue1 --> [℄℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[begin implementation step 3 [[[[Exe
uted impl transition: transition: input send(92) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [92℄Exe
uted spe
 transition: transition: input send(92) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [92℄℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[begin implementation step 4 [[[[Exe
uted impl transition: transition: input send(87) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [87, 92℄Exe
uted spe
 transition: transition: input send(87) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [87, 92℄℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[begin implementation step 5 [[[[Exe
uted impl transition: transition: input send(44) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [44, 87, 92℄Exe
uted spe
 transition: transition: input send(44) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [44, 87, 92℄℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[begin implementation step 6 [[[[Exe
uted impl transition: transition: output re
eive(92) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [44, 87℄Exe
uted spe
 transition: transition: internal transfer(92) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue2 --> [92℄queue1 --> [44, 87℄Exe
uted spe
 transition: transition: output re
eive(92) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue2 --> [℄queue1 --> [44, 87℄℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[begin implementation step 7 [[[[Exe
uted impl transition: transition: input send(60) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [60, 44, 87℄Exe
uted spe
 transition: transition: input send(60) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [60, 44, 87℄℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[begin implementation step 8 [[[[Exe
uted impl transition: transition: input send(38) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [38, 60, 44, 87℄Exe
uted spe
 transition: transition: input send(38) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [38, 60, 44, 87℄℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[begin implementation step 9 [[[[Exe
uted impl transition: transition: output re
eive(87) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [38, 60, 44℄Exe
uted spe
 transition: transition: internal transfer(87) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue2 --> [87℄queue1 --> [38, 60, 44℄Exe
uted spe
 transition: transition: output re
eive(87) in automaton Channel254

%%%% Modified state variables for spe
 automaton:queue2 --> [℄queue1 --> [38, 60, 44℄℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[begin implementation step 10 [[[[Exe
uted impl transition: transition: input send(84) in automaton Channel1%%%% Modified state variables for impl automaton:queue --> [84, 38, 60, 44℄Exe
uted spe
 transition: transition: input send(84) in automaton Channel2%%%% Modified state variables for spe
 automaton:queue1 --> [84, 38, 60, 44℄℄℄℄℄ end implementation step 10 ℄℄℄℄>>>> No errors%
4.5 Example 2: The Peterson mutual ex
lusion al-gorithmListing 4-6 is an IOA sour
e �le
ontaining several elements:� Automaton MutEx is an abstra
t IOA spe
i�
ation for a two-pro
ess mutualex
lusion servi
e. This automaton supports requests for a
riti
al se
tion fromtwo users, in the form of input a
tions try i, i = 0; 1. The automaton grantsthe
riti
al se
tion to user i by exe
uting output a
tion
rit i. When user iis �nished with the
riti
al se
tion, it signals so with input a
tion exit i, afterwhi
h the servi
e eventually responds with output a
tion rem i. This responsesignals that the
orresponding user has entered its remainder region, and maymake another request for the
riti
al se
tion.The servi
e spe
i�
ation guarantees mutual ex
lusion; that is, it guaranteesthat the two pro
esses will not be granted the
riti
al se
tion at the same time.This is stated in the form of an invariant for the MutEx automaton. However,this guarantee holds only provided that ea
h user has a well-formed intera
tionwith the servi
e. This means that the tra
e of the exe
ution, restri
ted to useri, has the form (try i,
rit i, exit i, rem i, try i, : : :). In other words, a user willonly request the
riti
al se
tion if it is in the remainder se
tion, and it will only55

request to exit the
riti
al se
tion if it is already in it. Refer to [7℄ for more onthe terminology of mutual ex
lusion.� Automaton Peterson2PMutEx is an implementation of two-pro
ess mutual ex
lu-sion that uses shared variables. This is the Peterson algorithm, and the readeris referred to [7℄ for a
orre
tness proof. The IOA form of this algorithm is takenalmost dire
tly from [7℄, where it is presented both in a traditional sequentialstyle and as an I/O automaton in pre
ondition-e�e
t style. The automaton alsohas a s
hedule blo
k, whi
h produ
es only well-formed exe
utions. Listing 4-6also in
ludes an invariant for Peterson2PMutEx, asserting mutual ex
lusion.� A forward simulation relation from Peterson2PMutEx toMutEx is in
luded, alongwith a step
orresponden
e in the form of a proof blo
k. Both the simulationrelation and the step
orresponden
e are quite simple. The simulation relationsimply states that the region of ea
h user is the same for the spe
i�
ation and theimplementation. The step
orresponden
e ignores most low-level transitions,ex
ept those that
ause a region
hange for a user. The latter invoke the a
tionin the spe
i�
ation automaton that produ
es the same region
hange.This �le in
ludes everything ne
essary to perform paired simulation between au-tomata Peterson2PMutEx and MutEx, and the output of this is shown in Listing 4-7.One of the intended uses of the paired simulator is the possibility of dete
tingwhen a proposed simulation relation does not hold. As an example of this type ofuse, I altered automaton Peterson2PMutEx by introdu
ing a bug. I
hanged the e�e
tof internal transition set
ag 0 to set variable
ag 0 to 0 instead of 1. With thismodi�
ation in pla
e, I started the paired simulator for 400 steps. With lu
k, thebug would be found in the exe
ution randomly
hosen by the s
hedule blo
k, and thesimulator would halt with an error. This did indeed happen, and the result is shownin Listing 4-8 (only the relevant parts of the output are shown).
56

Listing 4-6: MutEx.ioa: A mutual ex
lusion servi
e with implementationuses NonDet% --% Automaton MutEx abstra
ts mutual ex
lusion for two% agents sharing a resour
e. It assumes well-formedness% of the inputs.type region = enumeration of try,
rit, exit, remautomaton MutExsignatureinput try_0, try_1 % Agent requests
riti
al regionoutput
rit_0,
rit_1 % Servi
e grants
riti
al regioninput exit_0, exit_1 % Agent exits
riti
al regionoutput rem_0, rem_1 % Agent may enter remainder regionstatesreg_0: region := rem,reg_1: region := remtransitionsinput try_0eff reg_0 := tryoutput
rit_0pre reg_0 = try /\ reg_1 ~=
riteff reg_0 :=
ritinput exit_0eff reg_0 := exitoutput rem_0pre reg_0 = exiteff reg_0 := reminput try_1eff reg_1 := tryoutput
rit_1pre reg_1 = try /\ reg_0 ~=
riteff reg_1 :=
ritinput exit_1eff reg_1 := exitoutput rem_1pre reg_1 = exiteff reg_1 := reminvariant A of MutEx :~(reg_0 =
rit /\ reg_1 =
rit) % asserts mutual ex
lusion% --% Automaton Peterson2PMutEx implements the Peterson two pro
ess mutual% ex
lusion algorithm. It
ontains a s
hedule blo
k for simulation,% whi
h also s
hedules input a
tions.type p
Val = enumeration of rem, setflag, setturn,
he
kflag,
he
kturn,leavetry,
rit, reset, leaveexitautomaton Peterson2PMutExsignatureinput try_0, try_1 % Agent requests
riti
al regionoutput
rit_0,
rit_1 % Servi
e grants
riti
al regioninput exit_0, exit_1 % Agent exits
riti
al regionoutput rem_0, rem_1 % Agent may enter remainder regioninternal setflag_0, setflag_1internal setturn_0, setturn_1internal
he
kflag_0,
he
kflag_1internal
he
kturn_0,
he
kturn_1internal reset_0, reset_1statesturn: Int := 0, % Takes values in {0,1} onlyflag_0: Int := 0, % Writable by task 0 onlyflag_1: Int := 0, % Writable by task 1 onlyp
_0: p
Val := rem, % Writable/readable by task 0 onlyp
_1: p
Val := rem, % Writable/readable by task 1 onlyreg_0: region := rem,reg_1: region := remtransitionsinput try_0eff p
_0 := setflag ; reg_0 := tryinternal setflag_0 57

pre p
_0 = setflageff flag_0 := 1 ;p
_0 := setturninternal setturn_0pre p
_0 = setturneff turn := 0 ;p
_0 :=
he
kflaginternal
he
kflag_0pre p
_0 =
he
kflageff if flag_1 = 0 thenp
_0 := leavetryelsep
_0 :=
he
kturnfiinternal
he
kturn_0pre p
_0 =
he
kturneff if turn ~= 0 thenp
_0 := leavetryelsep
_0 :=
he
kflagfioutput
rit_0pre p
_0 = leavetryeff p
_0 :=
rit ; reg_0 :=
ritinput exit_0eff p
_0 := reset ; reg_0 := exitinternal reset_0pre p
_0 = reseteff flag_0 := 0 ;p
_0 := leaveexitoutput rem_0pre p
_0 = leaveexiteff p
_0 := rem ; reg_0 := reminput try_1eff p
_1 := setflag ; reg_1 := tryinternal setflag_1pre p
_1 = setflageff flag_1 := 1 ;p
_1 := setturninternal setturn_1pre p
_1 = setturneff turn := 1 ;p
_1 :=
he
kflaginternal
he
kflag_1pre p
_1 =
he
kflageff if flag_0 = 0 thenp
_1 := leavetryelsep
_1 :=
he
kturnfiinternal
he
kturn_1pre p
_1 =
he
kturneff if turn ~= 1 thenp
_1 := leavetryelsep
_1 :=
he
kflagfioutput
rit_1pre p
_1 = leavetryeff p
_1 :=
rit ; reg_1 :=
ritinput exit_1eff p
_1 := reset ; reg_1 := exitinternal reset_1pre p
_1 = reseteff flag_1 := 0 ;p
_1 := leaveexitoutput rem_1pre p
_1 = leaveexiteff p
_1 := rem ; reg_1 := rems
hedulestatesdie: Natdo while true dodie := randomNat(1,7) ;if die = 1 then 58

if reg_0 = rem thenfire input try_0elseif reg_0 =
rit thenfire input exit_0fielseif die = 2 thenif reg_1 = rem thenfire input try_1elseif reg_1 =
rit thenfire input exit_1fielsefire % (fire any enabled lo
ally-
ontrolled transition)fiod odinvariant B of Peterson2PMutEx :~(reg_0 =
rit /\ reg_1 =
rit) % asserts mutual ex
lusionforward simulationfrom Peterson2PMutExto MutEx : MutEx.reg_0 = Peterson2PMutEx.reg_0 /\MutEx.reg_1 = Peterson2PMutEx.reg_1proofinitiallyreg_0 := Peterson2PMutEx.reg_0 ;reg_1 := Peterson2PMutEx.reg_1for input try_0 dofire input try_0odfor internal setflag_0ignorefor internal setturn_0ignorefor internal
he
kflag_0ignorefor internal
he
kturn_0ignorefor output
rit_0 dofire output
rit_0odfor input exit_0 dofire input exit_0odfor internal reset_0ignorefor output rem_0 dofire output rem_0odfor input try_1 dofire input try_1odfor internal setflag_1ignorefor internal setturn_1ignorefor internal
he
kflag_1ignorefor internal
he
kturn_1ignorefor output
rit_1 dofire output
rit_1odfor input exit_1 dofire input exit_1odfor internal reset_1ignorefor output rem_1 dofire output rem_1od
59

Listing 4-7: Paired simulator output on MutEx.ioa% java ioa.simulator.shell.PairedShell 30 Peterson2PMutEx MutEx MutEx.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:reg_1 --> remreg_0 --> remp
_1 --> remp
_0 --> remflag_1 --> 0flag_0 --> 0turn --> 0%%%% Modified state variables for spe
 automaton:reg_1 --> remreg_0 --> rem℄℄℄℄ end initialization ℄℄℄℄[[[[begin implementation step 1 [[[[Exe
uted impl transition: input try_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> tryp
_1 --> setflagExe
uted spe
 transition: input try_1 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_1 --> try℄℄℄℄ end implementation step 1 ℄℄℄℄[[[[begin implementation step 2 [[[[Exe
uted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp
_0 --> setflagExe
uted spe
 transition: input try_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 --> try℄℄℄℄ end implementation step 2 ℄℄℄℄[[[[begin implementation step 3 [[[[Exe
uted impl transition: internal setflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 --> setturnflag_1 --> 1℄℄℄℄ end implementation step 3 ℄℄℄℄[[[[begin implementation step 4 [[[[Exe
uted impl transition: internal setflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 --> setturnflag_0 --> 1℄℄℄℄ end implementation step 4 ℄℄℄℄[[[[begin implementation step 5 [[[[Exe
uted impl transition: internal setturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 -->
he
kflagturn --> 1℄℄℄℄ end implementation step 5 ℄℄℄℄[[[[begin implementation step 6 [[[[Exe
uted impl transition: internal
he
kflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 -->
he
kturn℄℄℄℄ end implementation step 6 ℄℄℄℄[[[[begin implementation step 7 [[[[Exe
uted impl transition: internal setturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflagturn --> 0℄℄℄℄ end implementation step 7 ℄℄℄℄[[[[begin implementation step 8 [[[[Exe
uted impl transition: internal
he
kturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 --> leavetry℄℄℄℄ end implementation step 8 ℄℄℄℄[[[[begin implementation step 9 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kturn℄℄℄℄ end implementation step 9 ℄℄℄℄[[[[begin implementation step 10 [[[[Exe
uted impl transition: output
rit_1 in automaton Peterson2PMutEx60

%%%% Modified state variables for impl automaton:reg_1 -->
ritp
_1 -->
ritExe
uted spe
 transition: output
rit_1 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_1 -->
rit℄℄℄℄ end implementation step 10 ℄℄℄℄[[[[begin implementation step 11 [[[[Exe
uted impl transition: internal
he
kturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflag℄℄℄℄ end implementation step 11 ℄℄℄℄[[[[begin implementation step 12 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kturn℄℄℄℄ end implementation step 12 ℄℄℄℄[[[[begin implementation step 13 [[[[Exe
uted impl transition: internal
he
kturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflag℄℄℄℄ end implementation step 13 ℄℄℄℄[[[[begin implementation step 14 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kturn℄℄℄℄ end implementation step 14 ℄℄℄℄[[[[begin implementation step 15 [[[[Exe
uted impl transition: internal
he
kturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflag℄℄℄℄ end implementation step 15 ℄℄℄℄[[[[begin implementation step 16 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kturn℄℄℄℄ end implementation step 16 ℄℄℄℄[[[[begin implementation step 17 [[[[Exe
uted impl transition: internal
he
kturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflag℄℄℄℄ end implementation step 17 ℄℄℄℄[[[[begin implementation step 18 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kturn℄℄℄℄ end implementation step 18 ℄℄℄℄[[[[begin implementation step 19 [[[[Exe
uted impl transition: internal
he
kturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflag℄℄℄℄ end implementation step 19 ℄℄℄℄[[[[begin implementation step 20 [[[[Exe
uted impl transition: input exit_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> exitp
_1 --> resetExe
uted spe
 transition: input exit_1 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_1 --> exit℄℄℄℄ end implementation step 20 ℄℄℄℄[[[[begin implementation step 21 [[[[Exe
uted impl transition: internal reset_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 --> leaveexitflag_1 --> 0℄℄℄℄ end implementation step 21 ℄℄℄℄[[[[begin implementation step 22 [[[[Exe
uted impl transition: output rem_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 --> remp
_1 --> remExe
uted spe
 transition: output rem_1 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_1 --> rem 61

℄℄℄℄ end implementation step 22 ℄℄℄℄[[[[begin implementation step 23 [[[[Exe
uted impl transition: internal
he
kflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 --> leavetry℄℄℄℄ end implementation step 23 ℄℄℄℄[[[[begin implementation step 24 [[[[Exe
uted impl transition: output
rit_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 -->
ritp
_0 -->
ritExe
uted spe
 transition: output
rit_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 -->
rit℄℄℄℄ end implementation step 24 ℄℄℄℄[[[[begin implementation step 25 [[[[Exe
uted impl transition: input exit_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> exitp
_0 --> resetExe
uted spe
 transition: input exit_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 --> exit℄℄℄℄ end implementation step 25 ℄℄℄℄[[[[begin implementation step 26 [[[[Exe
uted impl transition: internal reset_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 --> leaveexitflag_0 --> 0℄℄℄℄ end implementation step 26 ℄℄℄℄[[[[begin implementation step 27 [[[[Exe
uted impl transition: output rem_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> remp
_0 --> remExe
uted spe
 transition: output rem_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 --> rem℄℄℄℄ end implementation step 27 ℄℄℄℄[[[[begin implementation step 28 [[[[Exe
uted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp
_0 --> setflagExe
uted spe
 transition: input try_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 --> try℄℄℄℄ end implementation step 28 ℄℄℄℄[[[[begin implementation step 29 [[[[Exe
uted impl transition: internal setflag_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 --> setturnflag_0 --> 1℄℄℄℄ end implementation step 29 ℄℄℄℄[[[[begin implementation step 30 [[[[Exe
uted impl transition: internal setturn_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_0 -->
he
kflagturn --> 0℄℄℄℄ end implementation step 30 ℄℄℄℄>>>> No errors

62

Listing 4-8: Paired simulator output on buggy version of MutEx.ioa% java ioa.simulator.shell.PairedShell 400 Peterson2PMutEx MutEx BrokenMutEx.il[[[[begin initialization [[[[EVENT: initialized simulator%%%% Modified state variables for impl automaton:reg_1 --> remreg_0 --> remp
_1 --> remp
_0 --> remflag_1 --> 0flag_0 --> 0turn --> 0%%%% Modified state variables for spe
 automaton:reg_1 --> remreg_0 --> rem℄℄℄℄ end initialization ℄℄℄℄[[[[begin implementation step 1 [[[[Exe
uted impl transition: input try_0 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_0 --> tryp
_0 --> setflagExe
uted spe
 transition: input try_0 in automaton MutEx%%%% Modified state variables for spe
 automaton:reg_0 --> try℄℄℄℄ end implementation step 1 ℄℄℄℄[... et
 ...℄[[[[begin implementation step 34 [[[[Exe
uted impl transition: internal setturn_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 -->
he
kflagturn --> 1℄℄℄℄ end implementation step 34 ℄℄℄℄[[[[begin implementation step 35 [[[[Exe
uted impl transition: internal
he
kflag_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:p
_1 --> leavetry℄℄℄℄ end implementation step 35 ℄℄℄℄[[[[begin implementation step 36 [[[[Exe
uted impl transition: output
rit_1 in automaton Peterson2PMutEx%%%% Modified state variables for impl automaton:reg_1 -->
ritp
_1 -->
ritEVENT: invariant B failed**** EVENT: attempted to s
hedule invalid transition: output
rit_1 in automaton MutEx;reason: pre
ondition fails**** [This event is an error; halting℄**** EVENT: FAILED simulation relation from Peterson2PMutEx to MutEx**** [This event is an error; halting℄℄℄℄℄ end implementation step 36 ℄℄℄℄>>>> Some errors o

ured during simulation4.6 Future workThere are many dire
tions in whi
h this tool
an be extended. Below are somesuggestions for possible future proje
ts.4.6.1 Improving the step
orresponden
e languageThe language des
ribed in this
hapter is already substantially
exible, and it might beargued that together with auxiliary automaton state variables and auxiliary variables63

in the step
orresponden
e, it allows one to express most of what is usually expressedin simulation proofs. However, to make easier to use, it might be desirable to haveexpli
it syntax for:� referring to state variable values both before and after the low-level transition,and,� referring to the a
tual value to whi
h an expli
it
hoi
e was resolved in thelow-level automaton.Neither of these two additions should be hard to implement. For example, prior andposterior values of variables
ould be distinguished with a prime de
oration on variablenames. Referen
es to low-level expli
it
hoi
e values
ould be done using anotherunique-naming-per-transition
onvention, this time in the low-level automaton.4.6.2 Interfa
ing with a
omputer-assisted theorem proverThe paired simulator may provide
ounterexample exe
utions where the proposed step
orresponden
e does not hold, but it will never
ompletely
ertify the proof, even if itprovides empiri
al eviden
e of its
orre
tness after multiple simulations. However, aversion of this language
ould be used as an interfa
e between the simulation relationstated in IOA and a theorem prover: the proof program
an be used to drive thetheorem prover in the major overall steps of the proof, redu
ing the amount of routinework that the user has to do.4.6.3 Adding syntax for providing a
omplete proofAs it stands, the proof blo
k is not a really a proof, sin
e it is missing the reason-ing that shows that ea
h high-level exe
ution fragment produ
ed by a for blo
k inthe proof preserves the simulation relation, assuming the relation held true in theimmediately pre
eding state. An interesting proje
t would be to add syntax thatwould allow the in
lusion of this reasoning, in a form suitable for automated proofveri�
ation. 64

Chapter 5
Grammar
hanges forsimulator-related IOA extensions
In this
hapter I present grammars for the additions to IOA used by the simulator.I only present those parts of the IOA grammar that were modi�ed; the reader
anrefer to [3℄ for the rest of the IOA grammar, and for the grammar syntax
onventionsused here.5.1 Labeling of transition de�nitionsAs explained in Chapter 3, my approa
h to resolution of nondeterminism requires away to refer to a transition de�nition in a primitive automaton. In general, it is notenough for this to spe
ify the name and parameters of the transition: it is possiblefor two transitions with identi
al signature and where
lause to be enabled in thesame state. This addition to the IOA syntax remedies the situation by providing anexpli
it naming me
hanism:Original:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?Modi�ed:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?65

transCase?transCase ::= '
ase' idOrNumeral
5.2 Labeling of transition de�nitionsAs explained in Chapter 3, my approa
h to resolution of nondeterminism requires away to refer to a transition de�nition in a primitive automaton. In general, it is notenough for this to spe
ify the name and parameters of the transition: it is possiblefor two transitions with identi
al signature and where
lause to be enabled in thesame state. This addition to the IOA syntax remedies the situation by providing anexpli
it naming me
hanism:Original:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?Modi�ed:transition ::= a
tionHead
hooseFormals? pre
ondition? effe
t?a
tionHead ::= a
tionType a
tionName (a
tionA
tuals where?)?transCase?transCase ::= '
ase' idOrNumeral
5.3 Labeling of invariantsIt is
onvenient for invariants to have a name, so that the simulator
an refer to thespe
i�
 invariant in
ase it fails. This was a

omplished with the following grammar
hange, whi
h allows any numeral or identi�er to be given as the name for an invariant.Original:invariant ::= 'invariant' 'of' automatonName ':' predi
ateModi�ed:invariant ::= 'invariant' idOrNumeral? 'of' automatonName ':' predi
ate

66

5.4 Resolution of nondeterminismThis modi�
ation de�nes a way for the programmer to spe
ify how the nondetermin-ism in an automaton is to be resolved by the simulator. The modi�
ation has twoparts:1. Addition of a syntax for sequential programs that spe
ify the values to
hooseor the transitions to s
hedule (\NDR programs").2. Extensions to the existing syntax for automaton and
hoose that in
orporatethese sequential programs.The semanti
s for these
hanges are explained in Chapter 3.5.4.1 Syntax for NDR programsThis grammar is very similar to the existing program grammar in IOA, ex
ept that itpermits the new �re and yield statements, used by the NDR me
hanisms to s
heduleautomaton a
tions and determine values of
hoi
es, as well as the while statement,whi
h provides a looping
onstru
t with simple deterministi
 semanti
s. Note that,for a given
ontext in whi
h an NDRProgram is a

epted, only one of the two statements�re and yield is permissible. Also, assignments whose right-hand sides are
hooses arenot permitted, sin
e the NDR program must be deterministi
 to be any use. These
onstraints are enfor
ed during the stati

he
king phase of the front-end.NDRProgram ::= NDRStatement;*NDRStatement ::= assignmentj NDRConditionalj NDRWhilej NDRFirej NDRYieldNDRConditional ::= 'if' predi
ate 'then' NDRProgram('elseif' predi
ate 'then' NDRProgram)*('else' NDRProgram)? 'fi'NDRWhile ::= 'while' predi
ate 'do' NDRProgram 'od'NDRFire ::= 'fire' a
tionType a
tionName a
tionA
tuals? transCase?j 'fire'NDRYield ::= 'yield' term 67

5.4.2 Syntax extensions to automaton and
hooseThese extensions might appear more wordy than ne
essary. For instan
e, it wouldbe possible to avoid the do...od bra
keting of NDRPrograms. The reason I de
idedfor this slightly long-winded syntax is the possibility that, in the future, additionallanguage support me
hanisms for nondeterminism resolution might be designed, andthis syntax allows the head keyword (i.e., s
hedule or det) to still be used by thesepotential syntax extensions.Extension to primitive automaton syntaxThis extension is straightforward: it simply provides a pla
e to spe
ify the s
heduleof a primitive automaton.Original:simpleBody ::= 'signature' formalA
tionList+ states transitions tasks?Modi�ed:simpleBody ::= 'signature' formalA
tionList+ states transitions tasks?s
hedule?s
hedule ::= 's
hedule' states? 'do' NDRProgram 'od'Extension to
hoose syntaxThis extension is also mostly straightforward. Besides providing a pla
e to hold theNDRProgram, however, it does two additional things: �rst, it spe
i�es a shorthandnotation for a (presumably)
ommon form of
hoi
e determination, and se
ond, itallows for a
hoose statement to spe
ify a variable name without a
onstraining wherepredi
ate. This is ne
essary for paired simulation, sin
e the names of the
hosen valuesin the spe
i�
ation automaton are still ne
essary to
arry out the step
orresponden
e,even in the absen
e of a where predi
ate.Original:
hoi
e ::= '
hoose' (variable 'where' predi
ate)?Modi�ed:
hoi
e ::= '
hoose' (variable ('where' predi
ate)?)?
hoi
eNDR?
hoi
eNDR ::= 'det' 'do' NDRProgram 'od'j NDRYield 68

5.5 Paired simulationIn addition to the mathemati
al statement of a simulation relation between automata,the simulator also needs a step
orresponden
e between the automata whi
h realizesthe simulation relation. Hen
e, it was ne
essary to develop a language for spe
ifyingthese
orresponden
es. See Chapter 4 for the semanti
s of this language, and forjusti�
ation of the approa
h and terminology.I augmented the syntax of IOA forward simulations to permit the spe
i�
ation of a\proof", whi
h embodies the step
orresponden
e. This proof spe
i�es, for ea
h tran-sition that the implementation automaton might take, a way to produ
e a sequen
eof transitions for the spe
i�
ation automaton. These are the additions:Original:simulation ::= ('forward' j 'ba
kward') 'simulation' 'from'automatonName 'to' automatonName ':' predi
ateModi�ed:simulation ::= ('forward' j 'ba
kward') 'simulation' 'from'automatonName 'to' automatonName ':' predi
atesimProof?simProof ::= 'proof' states? ('initially' (variable ':=' term);+)?simProofEntry+simProofEntry ::= 'for' a
tionType a
tionNamea
tionFormals? transCase?(('do' simProofProgram 'od') j 'ignore')simProofProgram ::= simProofStatement;+simProofStatement::= assignmentj simProofConditionalj simProofWhilej simProofFiresimProofConditional::= 'if' predi
ate 'then' simProofProgram('elseif' predi
ate 'then' simProofProgram)*('else' simProofProgram)? 'fi'simProofWhile ::= 'while' predi
ate 'do' simProofProgram 'od'simProofFire ::= 'fire' a
tionType a
tionNamea
tionA
tuals? transCase?('using' (term 'for' variable),+)?Again, some front-end stati

he
king is ne
essary, sin
e this type of simulationproof only makes sense for forward simulations.69

Chapter 6
The software environment
In this
hapter I provide do
umentation for the Java interfa
es and
lasses usedin the implementation of the simulator and related software support. This is withthe hope that future work
an be done using this software environment as a basis.Through this
hapter, mentions of the \IOA Toolkit distribution" refer to a softwarepa
kage (in
luding sour
e and Java exe
utables) to be eventually made available bythe Theory of Distributed Systems group,
ontaining all of the IOA Toolkit and itsdo
umentation. The distribution is the best sour
e of up-to-date and
omprehensivedo
umentation on the toolkit.6.1 Review of the IOA Toolkit ar
hite
tureThe IOA Toolkit is divided into a front-end and a ba
k-end. The front-end, in gen-eral, takes IOA and LSL spe
i�
ations as input, and, after
he
king syntax and stati
semanti
s, outputs an equivalent spe
i�
ation written in an intermediate language.Elements present in the intermediate language are meant to
orrespond rather di-re
tly with internal representations of IOA
on
epts that are designed to be usedby IOA tools; this language is also intended to be easy to parse while still beinghuman-readable with some e�ort. The
urrent intermediate language is based onS-expressions and is very similar to the one des
ribed in [1℄, ex
ept for some modi-�
ations that make it more manageable in some
ases. I will not present a detailed70

grammar of the intermediate language, sin
e for most purposes the existing parserand internal representation
an be used without having to understand it. Moreover,the intermediate syntax is likely to evolve in response to the insight that has beengained while developing IOA tools.Te
hni
ally speaking, ea
h IOA tool is in itself a separate ba
k-end, whi
h takesas input the intermediate form of an IOA spe
i�
ation and does some tool-spe
i�
work with it. However, there is
ommon support for the IOA tools in the form ofan intermediate language parser and an internal representation of IOA elements, inthe form of a Java
lass hierar
hy. Both the parser and the internal representationhierar
hy were designed to be highly
exible and reusable by IOA tools; see Se
tion 6.5for more details.Sin
e understanding the ar
hite
ture of the front-end will not typi
ally be ne
-essary for extending the simulator or the IOA Toolkit, the following se
tions onlydes
ribe the internal representation, the intermediate language parser, and the meansof extending the simulator.6.2 The internal representation: design basi
sThe goal of the internal representation is to spe
ify and implement a set of obje
tinterfa
es to be used by IOA tools. There is meant to be an interfa
e, and a
or-responding implementation, for ea
h element that may appear as part of an IOAspe
i�
ation, su
h as automata, a
tions, terms, programs, and invariants.In designing the internal representation of IOA elements, it was important tokeep in mind that parti
ular IOA tools are likely to need spe
ialized support fromthe obje
ts they use. For example, a
ode generator is likely to require methods to
ompile automaton obje
ts, while the simulator employs methods to evaluate termobje
ts. Moreover, it is desirable to have shared software support: for example, itwould be highly impra
ti
al to need a spe
ialized intermediate language parser forea
h separate IOA tool due to minor intermediate language modi�
ations. These twogoals are somewhat
on
i
ting, sin
e the parser will need to
reate obje
ts, whi
h will71

in turn have to use parti
ular implementations of the interfa
es. The solution to hastwo parts:1. The elements of the internal representation are spe
i�ed not with Java
lasses(abstra
t or otherwise), but with Java interfa
es. These interfa
es are in theJava pa
kage ioa.il, and their hierar
hy is rooted at the interfa
e ioa.il..ILElement.2. The parser and other tool-independent support modules do not dire
tly
on-stru
t obje
ts implementing these interfa
es; rather, they use a globally-availablefa
tory obje
t, whi
h is a sub
lass of the ILFa
tory abstra
t
lass and has meth-ods for
onstru
ting obje
ts for ea
h of the leaves in the interfa
e inheritan
ehierar
hy. Thus, for example, it has methods named newPrimitiveAutomatonand newSimulationRelation. This allows implementors of IOA tools to re-pla
e the global ILFa
tory with their own spe
ializations of it, whi
h may havedomain-spe
i�
 knowledge. Furthermore, a spe
ialized ILFa
tory
an re
ognizespe
ialized IOA statements.1There is a set of basi
 implementations of these interfa
es, along with an implementa-tion of ILFa
tory (the Basi
ILFa
tory) whi
h
onstru
ts instan
es in this set. Thesebasi
 implementations, as well as the Basi
ILFa
tory, are easy to sub
lass in order toadd tool-spe
i�
 behavior. The use of a fa
tory obje
t is des
ribed, for example, in [2℄,under the name \abstra
t fa
tory pattern". See se
tion 6.5 for
on
rete informationon
reating spe
ialized fa
tories.See Figure 6-1 for the inheritan
e tree of the interfa
e hierar
hy used in the internalrepresentation. For details on the interfa
es, refer to the IOA Toolkit distribution,whi
h
ontains the most up-to-date software and do
umentation.1For example, this is how the simulator-spe
i�
 statements yield, while, and �re were implemented.
72

PrimitiveAutomaton
SimulationRelationSpe
State

ILElementA
tionA
tionSetA
tionTableAutomatonCompositeAutomatonHidingAutomatonBindingOperatorSortVariableForClauseInvariantProgramSignature

Statement
ValueChoi
eTermAppli
ationTermLiteralTermQuantifierTermExistsTermForAllTermReferen
eTermSortRefTermVarRefTerm

Transition
AssignmentConditionalLoopStateTableSymbolTableTask

Figure 6-1: Internal representation: interfa
e hierar
hy.6.3 The parserThe parsing of IOA spe
i�
ations from the intermediate language is done by theinstan
es of the ILParser
lass. Listing 6-1 shows an example of usage of the ILParser.This
ode sample performs the following a
tions, whi
h are representative of thegeneral usage:1. It installs a new ILFa
tory, whi
h may
onstru
t spe
ialized implementationsof the ILElement interfa
es. This step is optional, and the Basi
ILFa
tory isused by default.2. It
reates an obje
t of
lass java.io.Reader, whi
h is the Java
lass used torepresent streams of text. In this
ase, the Reader
omes from a spe
i�
 named�le, but the origin is not spe
i�ed.3. It
reates an ILParser, using the Reader as parameter for the
onstru
tor.73

4. It invokes the method getSpe
 on the parser, whi
h performs the a
tual pars-ing and returns an obje
t of the interfa
e ioa.il.Spe
, representing the IOAspe
i�
ation
ontained in the Reader.5. After this, the Spe
 obje
t
an be used a

ording to its interfa
e, do
umentedin the IOA Toolkit distribution. For instan
e, individual automata in the spe
-i�
ation
an be obtained from the Spe
 obje
t.Additionally, it is ne
essary to use Java ex
eption handling in the
ase that errorso

ur during parsing, in whi
h
ase the getSpe
 method will throw an ex
eption of
lass ioa.il.ILParseEx
eption. The method getSpe
 is the only external fun
tional-ity available in the ILParser. However, the ILParser also allows extensive tool-spe
i�

ustomization, allowing it to re
ognize spe
ialized IOA statements and extensions tointermediate language elements; see 6.5 for a des
ription of these
apabilities.Listing 6-1: Example usage of the ILParser.import ioa.il.* ;import java.io.InputStreamReader ;import java.io.FileInputStream ;import java.io.File ;// [...℄publi
 void useParser() {try {// 1. (Optional) Install a spe
ialized ILFa
tory with domain-// spe
ifi
 knowledge (by default, Basi
ILFa
tory will be used)ILFa
tory.setInstan
e(new MyILFa
tory());// 2. Create a Reader obje
t (in this
ase, from a file)InputStreamReader in =(new InputStreamReader(new FileInputStream(new File("myFile.il"))));// 3. Create an ILParser with this ReaderILParser parser = new ILParser(in) ;// 4. Parse the Spe
 obje
tSpe
 spe
 = parser.getSpe
();// 5. Use it (for instan
e, get an automaton obje
t from it)Automaton aut = spe
.getAutomaton("myAutomaton");}
at
h(ILParseEx
eption e) {// 6. Handle parsing errorsSystem.out.println("pani
!");}}
74

6.4 Adding simulator datatypesSome appli
ations of the simulator are likely to require support for datatypes be-yond those in the
urrent implementation. This se
tion des
ribes how to implementnew datatypes (IOA sorts and operators), and how to have the simulator use theseimplementations.Sort implementations are represented by obje
ts implementing the interfa
e ioa..simulator.SortImpl, shown in Listing 6-2. A SortImpl obje
t has the ne
essaryknowledge to
reate new obje
ts of a given sort, either from s
rat
h, or from aninteger value, in the
ase of sorts that support numeri
 values. Note that, sin
eIOA is a fun
tional language, this is by no means the only way to
onstru
t obje
ts:virtually every operator implementation has to
reate a new obje
t to store the resultit returns, as mutation is not possible.Similarly, operator implementations are represented by obje
ts implementing theinterfa
e ioa.simulator.OpImpl, in Listing 6-3. The OpImpl interfa
e has a singlemethod, apply, whi
h returns the result of evaluating the operator that is beingimplemented on a given ve
tor of operands. As noted above, this result will typi
allybe a newly
reated obje
t.Both OpImpl and SortImpl handle obje
ts implementing the interfa
e ioa.simulator..Entity, shown in Listing 6-4. This is the interfa
e for all the obje
ts
reated duringthe simulation of an automaton. Its methods are very generi
; they are enough, how-ever, sin
e the type-spe
i�
 operations are all performed by suitable OpImpl obje
ts.The name \entity" was
hosen to
learly di�erentiate IOA-level obje
ts from JavaObje
ts.The simulator obtains implementations for sorts and operators by querying aglobal implementation registry. This registry is an obje
t of
lass ioa.simulator..ImplRegistry, and it
ontains methods that, given an operator or a sort, return a
orresponding implementation. This is an abstra
t
lass, and its interfa
e is shown inListing 6-5. As shown, the registry method getImpl
an return SortImpl and OpImplobje
ts
orresponding to Sort and Operator obje
ts, respe
tively.Listing 6-2: The SortImpl interfa
e.75

pa
kage ioa.simulator ;publi
 interfa
e SortImpl {/** This method
onstru
ts a new Entity of this sort, withouta spe
ified initial value */publi
 Entity
onstru
t()throws SimEx
eption ;/** This method
onstru
ts a new Entity of this sort with thespe
ified integral initial value (to be implemented only by sortsthat a

ept literals */publi
 Entity
onstru
t(int n)throws SimEx
eption ;} Listing 6-3: The OpImpl interfa
e.pa
kage ioa.simulator ;import java.util.Ve
tor ;/*** Interfa
e for implementations of operators.*/publi
 interfa
e OpImpl {/** Run the implementation
ode for applying the
orresponding* operator to the given ve
tor of operands, and return the result* */publi
 Entity apply(Ve
tor/*[Entity℄*/ opands)throws SimEx
eption ;} Listing 6-4: The Entity interfa
e.pa
kage ioa.simulator ;import ioa.il.* ;/** This interfa
e represents an obje
t in a simulation. Entities have* a Sort, and are
reated either from s
rat
h by SimSorts or as a* result of evaluating SimOperators.* Note: I
hose "Entity" to avoid
onfusing these obje
ts with java* "obje
ts". */publi
 interfa
e Entity {/*** Returns the sort of this entity*/publi
 Sort getSort() ;/*** Returns a string representation of this entity*/publi
 String toString() ;/** Returns true if and only if this entity equals the given entity,* in some sense depending on the parti
ular entity. */publi
 boolean equals(Entity ent) ;} Listing 6-5: The ImplRegistry interfa
e.pa
kage ioa.simulator ;import ioa.il.* ;import java.util.Ve
tor ;/** This is an abstra
t
lass that represents a mapping from sorts and* operators to sort and operator implementation (Sorts and Operators* to SortImpls and OpImpls). In addition it provides stati
 methods* for setting and getting the unique global instan
e of the76

* implementation registry. */publi
 abstra
t
lass ImplRegistry {private stati
 ImplRegistry instan
e ;publi
 stati
 ImplRegistry getInstan
e() { return instan
e ; }publi
 stati
 void setInstan
e(ImplRegistry newInstan
e) { instan
e = newInstan
e ; }/*** Returns a SortImpl for the given Sort, or null if none is known.*/publi
 abstra
t SortImpl getSortImpl(Sort sort)throws SimEx
eption ;/*** Returns an OpImpl for the given Operator, or null if none is known.*/publi
 abstra
t OpImpl getOpImpl (Operator operator)throws SimEx
eption ;}
6.4.1 The Basi
ImplRegistry: an overviewFor typi
al appli
ations, it will not be ne
essary to write an implementation ofImplRegistry from s
rat
h; the pa
kage ioa.simulator.impl
ontains the implemen-tation Basi
ImplRegistry, whi
h supports both simple sorts and parameterized sorts.This is also the default implementation registry. In this se
tion, I des
ribe how toadd type implementations using the Basi
ImplRegistry and related
lasses.See Listing 6-6 for the publi
 interfa
e of the Basi
ImplRegistry. Some of thesemethods are inherited from the super
lass ImplRegistry, others are used for
on-stru
ting a new Basi
ImplRegistry, and the remaining ones are used for installingnew implementations in the registry.When it is initialized, the Basi
ImplRegistry goes through a list of implementa-tion pa
kages, ea
h of whi
h is represented by a Java
lass (not a Java obje
t). Animplementation pa
kage is meant to in
lude sorts and operators that are logi
allyrelated. The pa
kage must have a stati
 method, with the signature:publi
 stati
 void install(Basi
ImplRegistry reg);The Basi
ImplRegistry has a default list of implementation pa
kages.2 This list
anbe overridden by
alling the Basi
ImplRegistry
onstru
tor with a Java Enumeration2At the time of this writing, this list
ontains implementation pa
kages for the sorts: Bool,Int, Nat, Array[A,B℄, and Seq[A℄. In addition, the implementation pa
kage ioa.simulator.impl..NonDetImpl is installed by default, and it
ontains implementations of some of the operators for77

of strings whi
h are fully-quali�ed names of implementation pa
kages. Alternatively,the list
an be overridden by setting the Java property ioa.simulator.impl.pa
kagesto a
olon-separated list of fully-quali�ed pa
kage names.For ea
h implementation pa
kage, the Basi
ImplRegistry
alls the
orrespondinginstall method, passing itself as the argument. This method, in turn,
an
all themethods Basi
ImplRegistry installSortImpl, installOpImpl, installSortPreImpl,and installOpPreImpl. The former two are used to install simple sorts and asso
iatedoperators, while the later two are used to handle parameterized sorts. The followingsubse
tions explain the use of ea
h of these methods.Listing 6-6: The publi
 interfa
e of the Basi
ImplRegistry
lass.pa
kage ioa.simulator.impl ;import ioa.il.* ;import ioa.simulator.* ;publi

lass Basi
ImplRegistry extends ImplRegistry {// Methods inherited from ImplRegistrypubli
 SortImpl getSortImpl(Sort _sort)throws SimEx
eption ;publi
 OpImpl getOpImpl(Operator _op)throws SimEx
eption ;// Constru
torspubli
 Basi
ImplRegistry()throws SimEx
eption ;publi
 Basi
ImplRegistry(Enumeration/*[String℄*/ pa
kages)throws SimEx
eption ;// Methods for installing implementations, from implementation pa
kage// install methods.publi
 void installSortPreImpl(String name, boolean isLiteral, Basi
SortPreImpl preImpl) ;publi
 void installOpPreImpl(String name, Basi
OpPreImpl preImpl) ;publi
 void installSortImpl(String key, boolean isLiteral, Basi
SortImpl impl) ;publi
 void installOpImpl(String key, Basi
OpImpl impl) ;// Auxiliary methods for installing implementationspubli
 stati
 String makeOpKey(String name,String range,String[℄ domain) ;publi
 stati
 String makeOpKey(String name,String range) ;publi
 stati
 String makeSortKey(String name) ;} ;
Simple sorts: installSortImpl and installOpImplA simple sort is one that does not take other sorts as parameters. For example, thebuilt-in sorts Int and Nat are simple sorts. An implementation pa
kage installs arandomness and user intera
tion in the Lar
h pseudotrait NonDet, as des
ribed in Chapter 3. (Thisis an example of an implementation pa
kage that is not tied to a single IOA sort or sort
onstru
tor.)78

simple sort by in
luding a line of the formreg.installSortImpl(reg.makeSortKey(sortName),isLiteral,sortImpl);in its install method, where:� reg is the Basi
ImplRegistry obje
t passed to the install method,� sortName is the name of the simple sort, given as a string,� isLiteral is a boolean, whi
h is true if this sort
an be assigned values spe
i�edas numerals in the IOA sour
e3, and� sortImpl is an obje
t of
lass Basi
SortImpl, whi
h is the sort implementationitself. This
lass is an implementation of the SortImpl interfa
e, with someextra methods used internally by the Basi
ImplRegistry. It is often
onvenientto provide this argument by anonymously sub
lassing Basi
SortImpl.For example, this is the
ode used to install the implementation of the built-in sortInt: reg.installSortImpl(reg.makeSortKey("Int"),true,new Basi
SortImpl(){ publi
 Entity
onstru
t() { return new IntEntity() ; }publi
 Entity
onstru
t(int n) { return new IntEntity(n) ; }}) ;An operator whose signature involves only simple sorts is installed with a line ofthe formreg.installOpImpl(reg.makeOpKey(opName,range,domain),opImpl);where:� reg is the Basi
ImplRegistry obje
t,3This is likely to be
ome obsolete, sin
e the me
hanism for handling literal values will probably
hange to be
ome more general. 79

"name" a plain operator (example: "su

")" name" a pre�x operator (example: " !")"name " a post�x operator (example: "~ ")" name " an in�x operator (example: " + ")(mix�x operators are spe
i�ed similarly,using as a pla
eholder for arguments)"�<sel>field" a sele
tion operator for a �eld (IOA syntax: a.�eld)Operator symbols are en
oded as des
ribed in [3℄; for example, the symbol \2" isen
oded as \in, whi
h is written as the Java string "\\in".Figure 6-2: Conventions for names of operators in implementation pa
kages.� opName is the name of the operator, given as a string,� domain is the name of the range sort, given as a string,� range is a tuple of the names of the domain sorts, given as an array of strings,� opImpl is an obje
t of
lass Basi
OpImpl, whi
h is an implementation of theOpImpl interfa
e. Again, this is
onveniently provided using Java anonymoussub
lassing.The name of the operator must follow the
onventions in Figure 6-2. As an example,the following
ode installs the greater-than-or-equal operator for the built-in sort Int:reg.installOpImpl(reg.makeOpKey("__>=__","Bool",new String[℄ { "Int", "Int" }),new Basi
OpImpl(){ publi
 Entity apply(Ve
tor/*[Entity℄*/ opands){ IntEntity ent1 = (IntEntity) opands.elementAt(0) ;IntEntity ent2 = (IntEntity) opands.elementAt(1) ;return BoolEntity.make(ent1.n >= ent2.n) ;}}) ;Parameterized operator and sort implementationsThe OpImpl and SortImpl me
hanisms des
ribed above are not suÆ
ient to spe
ifyimplementations in full generality, for these reasons:80

� IOA supports the notion of a sort
onstru
tor, whi
h is essentially a family ofsorts parameterized by other sorts. For example, Seq is a sort
onstru
tor, sin
eSeq[A℄ is a sort representing a sequen
e of elements of any sort A.� There are families of operators, all with the same name and number of parame-ters, whi
h have essentially the same implementation, but di�erent signatures.For example, the equality operator = takes two entities and determines if theyare equal. It should be possible to spe
ify a single implementation for all equal-ity operators, regardless of the sort of entity that it does
omparisons between.This is be
ause the implementation
an simply
all the equals method in theEntity interfa
e, without knowing the details of the parti
ular Entity imple-mentation.This problem is addressed by providing a preimplementation. A preimplemen-tation is an obje
t whi
h provides implementations for sorts (or operators) in somefamily. Given an IOA sort, in the form of a Sort obje
t s, a sort preimplementation pdetermines if s belongs to the family represented by p, and, if so, p returns an appro-priate SortImpl obje
t for s. Operator preimplementations have a similar behavior.Sort and operator preimplementations are represented by the Basi
SortPreImpl andBasi
OpPreImpl abstra
t
lasses, respe
tively. See Listings 6-7 and 6-8 for their de�-nitions and do
umentation on their member fun
tions.There exist more
on
rete implementations of ea
h of these abstra
t
lasses:� The abstra
t
lasses Mat
hSortPreImpl and Mat
hOpPreImpl provide a means todetermine membership in the family by using an arbitrary boolean predi
ate.� The abstra
t
lasses TemplateSortPreImpl and TemplateOpPreImpl are sub
lassesof Basi
SortPreImpl and Basi
OpPreImpl whi
h
an perform pattern mat
hing.An example sort pattern is Sort1[Sort2[p, q℄,p℄, where Sort1 and Sort2 are namesof IOA sort
onstru
tors, and p; q are variables whi
h
an mat
h arbitrary IOAsorts.I will not provide the sour
e for any of these two spe
ializations, and instead willshow their usage through examples. Refer to the IOA Toolkit distribution for the81

sour
e. The Template preimplementation
lasses are the ones that are likely to beused most extensively, due to their generality, and I will explain them to more depthin the next paragraphs.Listing 6-7: The Basi
SortPreImpl abstra
t
lass.pa
kage ioa.simulator.impl ;import ioa.simulator.* ;/*** This
lass represents a family of sort implementations. The method* getSortImpl returns a SortImpl for a given Sort, provided that this* sort mat
hes (belongs to) this family; otherwise, it returns null.** Con
rete sub
lasses of this
lass must provide an implementation* for the
onstru
t method. There are two versions of this method.* The first version supports a parameter data, of type Obje
t, whi
h* provides implementation-dependent data generated during the* mat
hing pro
ess. The se
ond version does not in
lude this* parameter, and is to be used by sub
lasses whi
h ignore this data.* */publi
 abstra
t
lass Basi
SortPreImpl {/*** Given a sort whi
h mat
hes this preimplementation,
onstru
t* an Entity of this sort.* Default implementation defers to
onstru
t(SimSort)** �param fullsort The sort being used, whi
h mat
hed this preimplementation* �param data Implementation-spe
ifi
 data produ
ed by the mat
hing pro
ess*/publi
 Entity
onstru
t(SimSort fullsort,Obje
t data)throws SimEx
eption{ return
onstru
t(fullsort) ;}/*** Given a sort whi
h mat
hes this preimplementation and an integer,*
onstru
t an Entity of this sort initialized to this integer (for* sorts that support integer values). Default implementation* defers to
onstru
t(SimSort,int)** �param fullsort The sort being used, whi
h mat
hed this preimplementation* �param data Implementation-spe
ifi
 data produ
ed by the mat
hing pro
ess* �param n The integer to use when
onstru
ting the Entity */publi
 Entity
onstru
t(SimSort fullsort, Obje
t data, int n)throws SimEx
eption{ return
onstru
t(fullsort) ;}/*** Given a sort whi
h mat
hes this preimplementation,
onstru
t* an Entity of this sort.* (This method is used when mat
h data is ignored).*/publi
 Entity
onstru
t(SimSort fullsort)throws SimEx
eption{ throw new SimImplEx
eption("*** unimplemented
onstru
t
alled") ;}/*** Given a sort whi
h mat
hes this preimplementation and an integer,*
onstru
t an Entity of this sort initialized to this integer (for* sorts that support integer values).* (This method is used when mat
h data is ignored).*/publi
 Entity
onstru
t(SimSort fullsort, int n)throws SimEx
eption{ throw new SimImplEx
eption("
onstru
tion from literal unsupported by sort") ;82

}/*** Returns a sort implementation for the given sort, if this PreImpl*
an provide one. Returns null otherwise.*/publi
 abstra
t SortImpl getImpl(SimSort fullsort) ;// For
haining (used internally by the Basi
ImplRegistry)Basi
SortPreImpl next = null ;Basi
SortPreImpl last = null ;} Listing 6-8: The Basi
OpPreImpl abstra
t
lass.pa
kage ioa.simulator.impl ;import ioa.simulator.* ;import java.util.Ve
tor ;/*** This
lass represents a family of operator implementations. The* method getOpImpl returns an OpImpl for a given Operator, provided* that this operator mat
hes (belongs to) this family; otherwise, it* returns null.** Con
rete sub
lasses of this
lass must provide an* implementation for the apply method, and optionally the assign* method. There are two versions of ea
h of these methods. The first* version supports a parameter data, of type Obje
t, whi
h provides* implementation-dependent data generated during the mat
hing* pro
ess. The se
ond version does not in
lude this parameter, and* is to be used by sub
lasses whi
h ignore this data.*/publi
 abstra
t
lass Basi
OpPreImpl {/*** Given an operator whi
h mat
hes this preimplementation, apply it* to the given ve
tor of operands.* Default implementation defers to apply(SimOperator,Ve
tor)** �param fullop The operator being applied, whi
h mat
hed this preimplementation* �param data Implementation-spe
ifi
 data produ
ed by the mat
hing pro
ess* �param opands The operands of the operator*/publi
 Entity apply(SimOperator fullop,Obje
t data,Ve
tor/*[Entity℄*/ opands)throws SimEx
eption{ return apply(fullop,opands) ;}/*** Given an operator whi
h mat
hes this preimplementation, assign to* to it the given value, upon evaluation with given ve
tor of* operands (if this operator supports assignment).* Default implementation defers to assign(SimOperator,Ve
tor,Entity)* (This method is used when mat
h data is ignored).** �param fullop The operator being assigned to, whi
h mat
hed this preimplementation* �param data Implementation-spe
ifi
 data produ
ed by the mat
hing pro
ess* �param opands The operands of the operator */publi
 void assign(SimOperator fullop,Obje
t data, Ve
tor/*[Entity℄*/ opands,Entity value)throws SimEx
eption{ assign(fullop,opands,value) ;}/*** Given an operator whi
h mat
hes this preimplementation, apply it* to the given ve
tor of operands.* (This method is used when mat
h data is ignored).*/publi
 Entity apply(SimOperator fullop,Ve
tor/*[Entity℄*/ opands)83

throws SimEx
eption{ throw new SimImplEx
eption("*** unimplemented apply
alled") ;}/*** Given an operator whi
h mat
hes this preimplementation, assign to* to it the given value, upon evaluation with given ve
tor of* operands (if this operator supports assignment).* (This method is used when mat
h data is ignored).*/publi
 void assign(SimOperator fullop,Ve
tor/*[Entity℄*/ opands,Entity value)throws SimEx
eption{ throw new SimImplEx
eption("*** unimplemented assign
alled") ;}/*** Returns an operator implementation for the given operator, if* this PreImpl
an provide one. Returns null otherwise.*/publi
 abstra
t OpImpl getImpl(SimOperator fullop) ;// For
haining (used internally by the Basi
ImplRegistry)Basi
OpPreImpl next = null ;Basi
OpPreImpl last = null ;}
Templates A template is spe
i�ed using an S-expression, given as a string param-eter to the
onstru
tor of TemplateOpPreImpl or TemplateOpPreImpl. In the
ase orsorts, the S-expression
an be either:� An S-expression of the form (name p1 ...pn), n � 0, where name is a string andthe pi are sort templates. In this
ase, the template mat
hes any sort obtainedby applying the sort
onstru
tor of name name to any sorts s1; : : : ; sn su
h thatsi mat
hes pi for all i. (The
ase n = 0 mat
hes only simple sorts, and in this
ase the parentheses
an be omitted.)� An integer k � 0, denoting a variable in the pattern. This mat
hes any sort,provided that ea
h integer is mat
hed to the same sort throughout the template.For example, a sort template that mat
hes sorts of the form Sort1[Sort2[p, q℄,p℄ is("Sort1" ("Sort2" 0 1) 0). In the
ase of operators, the S-expression is of the form(name (p1 ...pn) p0), where name is an operator name following the
onventionsin Figure 6-2. It mat
hes any operator with name name, whose range mat
hes the84

template p0 and its range sorts s1; : : : ; si are su
h that si mat
hes pi. For example,the pattern (" = " (0 0) ("Bool")) mat
hes all the equality operators.4.Installing operator preimplementations An implementation pa
kage installsan operator preimplementation for a family of operators by in
luding a line of theformreg.installOpPreImpl(name,preImpl);where name is the name of the operator, following the
onventions in Figure 6-2,preImpl is a preimplementation obje
t and reg is the Basi
ImplRegistry. For exam-ple, this is the
ode used to install the len operator for the sort
onstru
tor Seq[A℄// template: ("len" (("Seq" 0)) "Int")reg.installOpPreImpl("len",new TemplateOpPreImpl("(\"len\" ((\"Seq\" 0)) \"Int\")"){ publi
 Entity apply(SimOperator fullop, Ve
tor/*[Entity℄*/ opands){ SeqEntity seq = (SeqEntity) opands.elementAt(0) ;return IntEntity.make(seq.size()) ;}}) ;Installing sort preimplementations Sort implementations are installed using a
all of the formreg.installSortPreImpl(name,isLiteral,preImpl);where name is the name of the sort, isLiteral is a boolean, and preImpl is the
orresponding preimplementation. An example is:reg.installSortPreImpl("Seq",false, // isLiteralnew Mat
hSortPreImpl() {publi
 Entity
onstru
t(SimSort fullsort){ return new SeqEntity(fullsort) ; }publi
 boolean mat
hes(SimSort fullsort){ return fullsort.getSubSorts().size() == 1 ; }}) ;4One must bear in mind that the S-expression is given as a Java string parameter, and hen
eall the quotes and spe
ial
hara
ters inside the S-expression must be pre
eded by a ba
kslash. Forexample, the S-expression (" = " ("Bool") (0 0)), when en
oded as a Java string, be
omes"(\" = \" (\"Bool\") (0 0))" 85

This example uses a Mat
hSortPreImpl, with a predi
ate that tests to see whetherthere is exa
tly one subsort given to the sort
onstru
tor Seq.To learn more about providing simulator implementations, I re
ommend exam-ining the sour
e of the implementation pa
kages provided with the simulator. Thissour
e will be in
luded in the IOA Toolkit distribution.6.5 Spe
ializing the internal representationThe obje
t oriented nature of Java allows the spe
ialization of
lasses through sub-
lassing, and this fa
ility is the main tool for spe
ializing the internal representation.However, this still leaves the problem of how to instru
t the ILParser to
reate spe-
ialized versions of ILElement obje
ts, rather than obje
ts with the default imple-mentation. This
an be done by de�ning a new sub
lass of ILFa
tory. This
lass
ontains methods for
reating ea
h of the elements of the internal representation.On
e a spe
ialized sub
lass of ILFa
tory is de�ned, it
an be installed as the defaultglobal ILFa
tory using the stati
 method ILFa
tory.setInstan
e. The parser usesthe installed fa
tory to
reate obje
ts of the internal representation.All of the internal representation interfa
es that are leaves of the inheritan
e treein Figure 6-1 have a basi
 implementation. For every internal representation interfa
enamed X, its basi
 implementation is the
lass ioa.il.Basi
X. For most IOA tools,it will be enough to spe
ialize the Basi
 family. For example, if a parti
ular toolneeds to have a spe
ial-purpose method
alled spe
ial in ea
h Automaton obje
t itmanipulates, it
an a

omplish this by:1. De�ning a sub
lass of Basi
Automaton, named, say, Spe
ialAutomaton. This
lass will add the metod spe
ial.2. De�ning a sub
lass of Basi
ILFa
tory, whi
h rede�nes the method newAutomatonso that it
reates obje
ts of
lass Spe
ialAutomaton instead of Basi
Automaton.3. Installing this new fa
tory as the global fa
tory, using ILFa
tory.setInstan
e.86

4. Calling the parser to
reate an internal representation of an IOA intermediatelanguage �le.After the last step, the returned Spe
 obje
t will
ontain only Automaton obje
ts whi
hare a
tually of
lass Spe
ialAutomaton, and this hypotheti
al tool will be able to
astthem into Spe
ialAutomaton to a

ess the method spe
ial.The ILFa
tory me
hanism
an also be used to allow the ILParser to re
ognize
ustom intermediate language statements. For more information on doing this, referto the do
umentation in the IOA Toolkit distribution.6.6 Modifying the simulator user interfa
eI attempted to provide some me
hanisms that would allow a good user interfa
e forthe automaton to be implemented independently of the simulator itself. Towards thisgoal, I de�ned interfa
es for simulator events and listeners. Simulator events are Javaobje
ts representing events that o

ur during a simulation of an automaton in an IOAspe
i�
ation, and they implement the interfa
e SimEvent (Lisiting 6-9). A simulatorlistener is a Java obje
t implementing the interfa
e SimListener (Listing 6-10), whi
h
ontains methods that are
alled whenever a simulator event o

urs. For example, atransition taken in an automaton implements the SimEvent interfa
e.Sin
e at the time of this writing there is only one (text-based) user interfa
e forthe simulator, it is by no means
lear whether this me
hanism is general enough touse as a basis for, say, a graphi
al user interfa
e. For example, it
ould be ne
essaryto make the listeners be event-spe
i�
. However, the ar
hite
ture of the simulator issu
h that building on this event/listener s
heme will probably not be diÆ
ult.

87

Listing 6-9: The SimEvent interfa
e.pa
kage ioa.simulator ;/*** An event that may be broad
ast by the simulator.*/publi
 interfa
e SimEvent {/*** Returns true if this event is an error that should
ause the* simulation to halt.*/publi
 boolean isError() ;/*** Returns a string with a human-readable des
ription of this* simulator event.*/publi
 String eventDes
ription() ;} Listing 6-10: The SimListener interfa
e.pa
kage ioa.simulator ;/*** An obje
t that may re
eive events broad
ast by the simulator*/publi
 interfa
e SimListener {/*** Handle the given event. Return false if simulator should not*
ontinue, true otherwise.* �ex
eption SimEx
eption if an error o

urs during handling */publi
 boolean handleSimEvent(SimEvent ev)throws SimEx
eption ;}

88

Bibliography
[1℄ Anna E. Chefter. A Simulator for the IOA Language. Master of Engineering andBa
helor of S
ien
e in Computer S
ien
e and Engineering Thesis, Massa
husettsInstitute of Te
hnology, Cambridge, MA, May 1998.[2℄ Eri
h Gamma, et al. Design Patterns: Elements of Reusable Obje
t-OrientedSoftware. Addison Wesley, 1995.[3℄ Stephen J. Garland, Nan
y A. Lyn
h and Mandana Vaziri. IOA: A Languagefor Spe
ifying, Programming and Validating Distributed Systems. User and Ref-eren
e Manual. Laboratory for Computer S
ien
e, Massa
husetts Institute ofTe
hnology, Cambridge, MA 02139, De
ember 1997.[4℄ Stephen J. Garland and Nan
y A. Lyn
h. Using I/O Automata for DevelopingDistributed Systems. In Gary T. Leavens and Murali Sitaraman, editors, Founda-tions of Component-Based Systems, pages 285-312, Cambridge University Press,2000.[5℄ Lar
h: Languages and Tools for Formal Spe
i�
ation, John V. Guttag and JamesJ. Horning, editors, Springer-Verlag, 1993.[6℄ Barbara Liskov, et al. CLU Referen
e Manual, Te
hni
al Report MIT/LCS/TR-225, MIT Laboratory for Computer S
ien
e, Cambridge, MA, O
tober 1979.[7℄ Nan
y A. Lyn
h. Distributed Algorithms. Morgan Kaufmann Publishers, SanMateo, CA, 1996. 89

[8℄ Nan
y A. Lyn
h and Frits Vaandrager. Forward and ba
kward simulations {Part I: Untimed systems. Information and Computation, 121(2), pages 214-233,September 1995.[9℄ Bengt Jonsson, Amir Pnueli and Camilla Rump. Proving re�nement using trans-du
tion. Distributed Computing (1999) 12: 129-149.[10℄ Bill Joy, Guy Steele, James Gosling, Gilad Bra
ha. The Java Language Spe
i�-
ation, Se
ond Edition. Addison-Wesley, 2000.

90

