
SIAM J. COMPUT.
Vol. 25, No. 2, pp. 369-389, April 1996

() 1996 Society for Industrial and Applied Mathematics
OO9

OPTIMAL CLOCK SYNCHRONIZATION UNDER DIFFERENT
DELAY ASSUMPTIONS*

HAGIT ATTIYAt, AMIR HERZBERG$, AND SERGIO RAJSBAUM

Abstract. The problem of achieving optimal clock synchronization in a communication network
with arbitrary topology and perfect clocks (that do not drift) is studied. Clock synchronization
algorithms are presented for a large family of delay assumptions. Our algorithms are modular and
consist of three major components. The first component holds for any type of delay assumptions; the
second component holds for a large, natural family of local delay assumptions; the third component
must be tailored for each specific delay assumption.

Optimal clock synchronization algorithms are derived for several types of delay assumptions by
appropriately tuning the third component. The delay assumptions include lower and upper delay
bounds, no bounds at all, and bounds on the difference of the delay in opposite directions. In
addition, our model handles systems where some processors are connected by broadcast networks in
which every message arrives at all the processors at approximately the same time. A composition
theorem allows combinations of different assumptions for different links or even for the same link;
such mixtures are common in practice.

Our results achieve the best possible precision in each execution. This notion of optimality is
stronger than the more common notion of worst-case optimality. The new notion of optimality applies
to systems where the worst-case behavior of any clock synchronization algorithm is inherently un-
bounded.

Key words, distributed systems, real-time systems, clock synchronization, message passing
systems, networks, optimization, message delay assumptions, precision

AMS subject classifications. 68Q10, 68Q22, 68Q25, 68R10

1. Introduction. In most large-scale distributed systems, processors communi-
cate by message transmission and do not have access to a central clock. Nonetheless
it is useful, and sometimes even necessary, for the processors to obtain some common
notion of time. The technique used to attain this notion of time is known as clock syn-
chronization. Synchronized clocks are useful for various applications such as control of
real-time processes, transaction processing in database systems, and communication
protocols. Recently, several software protocols that support clock synchronization in
communication networks have been proposed [1, 7, 13, 15, 16]; system designers have
been advocating the use of synchronized clocks [10].

Received by the editors April 20, 1994; accepted for publication (in revised form) September 7,
1994.

Department of Computer Science, Technion, Haifa 32000, Israel (hagit@cs.technion.ac.il). The
research of this author was supported by grant 92-0233 from the United States-Israel Binational
Science Foundation (BSF), Jerusalem, Israel, the Technion V.P.R.--Argentinian Research Fund,
and the fund for the promotion of research in the Technion.

IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598
(amir@watson.ibm.com). The research of this author was partially supported by Direccion Gen-
eral de Asuntos del Personal Acadmico (DGAPA) Projects, National Autonomous University of
Mexico (UNAM).

Laboratory for Computer Science, Massachusetts Institute of Technology, 545 Technol-
ogy Square, Cambridge, MA 02139 (rajsbaum@theory.lcs.mit.edu); on leave from Instituto de
Matemticas, UNAM, Mexico. The research of this author was partially supported by Direccion
General de Asuntos del Personal Acadmico (DGAPA) Projects, UNAM.

369

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

370 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

The quality of synchronization is measured by its precision, i.e., how close together
it brings the clocks at different processors. The precision influences the correctness
and the efficiency of applications using the synchronized clocks.

The best precision that can be achieved is determined by the timing uncertainty
that is inherent in the system. There are two main sources of timing uncertainty in
a distributed system. First, local clocks at different processors are independent: they
do not start together and may run at different speeds. Second, messages sent between
processors incur uncertain delays.

A relatively simple case is when local clocks are accurate, i.e., run at the same
speed, and there are upper and lower bounds for the delay on each link. Clock
synchronization algorithms under this assumption, whose precision is optimal in the
worst case, are described in [4, 11]. Subsequent work concentrated on clocks that may
drift and on fault tolerance (e.g., [2, 7, 20, 21]; see the survey in [19]). To achieve high
precision, these algorithms require the existence of tight lower and upper bounds on
message delay.

However, in real systems it is often the uncertainty of message delay, rather than
clock drift, that causes most of the difficulty in synchronizing clocks [13, 7]. Almost
every processor in a distributed system has access to a high-quality, very accurate
hardware clock; it is not unrealistic to assume that local clocks are accurate and
have no drift.2 On the other hand, often there do not exist tight upper and lower
bounds on message delay, while there is other relevant information about the delays.
For example, in some systems, a bound on the difference between delays in opposite
directions is known. This motivated us to revisit the case in which local clocks run
at the same speed and have no drift, thus focusing on the impact of message delay
uncertainty on clock synchronization.

Our main contribution is a methodology for designing optimal clock synchroniza-
tion algorithms under a variety of assumptions on message delay uncertainty. The
strongest results are obtained for a natural family of local delay assumptions; this
family includes all the assumptions studied in previous theoretical work. A delay as-
sumption is local if it is specified for a pair of processors, e.g., processors connected by
a link. We show that in this case, a clock synchronization algorithm can be obtained
by considering each pair separately. This simplifies the analysis substantially and
allows different pairs of processors to satisfy different assumptions. Furthermore, we
prove a composition theorem that allows us to combine several local delay assump-
tions. For example, it is possible that for some pair of processors there will be upper
and lower bounds on the message delay in each direction as well as a bound on the
difference between message delays in opposite directions.

The basic difficulty of clock synchronization stems from the existence of two dif-
ferent system executions in which all processors have the same views. The tightness
of the achievable synchronization depends on how "far away" in real time such exe-
cutions can be. We capture this notion quantitatively as the maximal shift between
processors in a given execution. Using this notion, we partition the design of a clock
synchronization algorithm into three stages.

This does not ensure that clocks are close to real time. It is easy to adapt our results to reach
this goal if a perfect real-time clock is available. Synchronization to real time is often useful and is
achieved by practical protocols that usually also deal with multiple, imperfect real-time clocks, e.g.,
the Internet NTP [13].

2 To deal with the small drift that does exist, the clock synchronization mechanism is invoked
periodically; see, e.g., Kopetz and Ochsenreiter [7].

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 371

1. Computing corrections to the local clocks from the maximal shifts. This stage
is valid for any kind of message delay assumptions.

2. Computation of maximal shifts from maximal local shifts, which depend only
on the views of pairs of processors. This stage is valid for message delay
assumptions that are local.

3. Computation of the maximal local shifts from the local views. This depends
on the specific message delay assumptions.

The computations in stages 1 and 2 are performed by a centralized, off-line algorithm.
Our methodology yields optimal clock synchronization algorithms for a variety

of delay assumptions by adapting the third stage. In particular, we show how to
compute maximal local shifts for the following message delay assumptions:

1. upper and lower bounds on delays are known (including the degenerated cases
of zero lower bound and/or infinite upper bound);

2. there is a bound on the difference on the delay in opposite directions; and
3. there is a bound on the difference in the times when different processors

receive a multicast message.
Most previous formal work on deterministic clock synchronization addressed only

a restricted version of the first assumption where the delay upper bounds are finite.
However, an observation of [1] shows that in many actual links, there is some minimal
delay (e.g., due to the actual transmission rate and processing time), while there is no
known upper bound. The second assumption follows experimental results (cf. [13]),
showing that message delays in opposite directions of a bidirectional link are usually
very close. The last assumption is useful for broadcast networks that are used in
many local area networks; this is the assumption used in [5, 18].

Our composition theorem implies that our algorithms apply to systems where the
same pair of processors satisfies several different delay assumptions. Such mixtures
are quite common in practical, heterogeneous systems. For example, there are systems
in which several local area (broadcast) networks are connected by bridges or (long-
distance) links.

Our work extends the results of Halpern, Megiddo, and Munshi [4], who use linear
programming techniques that do not illuminate the inherent difficulties of synchro-
nizing clocks. We believe that our work gives a more precise understanding of the
problem, explicitly showing the requirements of each step and thereby facilitating
adaptation to other delay assumptions. Their results are a special case of the general
methodology developed here, in which exactly one message is sent on each link, and
upper and lower bounds on delays are known. In fact, the algorithm we obtain for
this specific setting is essentially the one in [4].

Previous definitions of optimal clock synchronization were based on the worst
(largest) difference between clocks of two processors in any execution. For some of
the assumptions that we study in this paper, e.g., when no upper bounds on the delays
are known, this worst case is inherently unbounded. Moreover, as already stated in
[4], we would like to award algorithms that exploit favorable conditions and achieve
the best possible precision in each specific instance. We give a precise definition of
optimality for each specific execution and show that it is achieved by our algorithms
(and hence also by the algorithm of [4]).

When trying to crystallize these ideas, it turned out that the decision of which
messages to send should be separated from the method for adjusting the clocks based
on the local message histories. Our framework shows how to adjust the clocks op-
timally, given any set of local message histories. The decision of which messages to

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

372 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

send, to whom, when, etc., can therefore take other considerations into account, e.g.,
message traffic optimization, and is left outside of the scope of this paper.

The rest of this paper is organized as follows. In 2 the model and the clock syn-
chronization problem are defined. Section 3 presents the general clock synchronization
algorithm and proves that it achieves optimal precision; the algorithm is independent
of the message delay assumptions. In 4 we show how to compute the inputs needed
for the general clock synchronization algorithm, when some local information about
the views of the processors is given; the computation is valid for local systems. In 5
we show how to compute the required information on the views for several specific
delay assumptions. Conclusions and open questions appear in 6.

2. Definitions.

2.1. Defining optimal precision. We would like a clock synchronization algo-
rithm to obtain the best possible precision, that is, to bring the logical clocks as close
to each other as possible. However, it is not obvious how to compare the precision
achieved by different algorithms and how to define optimality.

An elegant solution is to evaluate a clock synchronization algorithm by the worst
(largest) precision achieved in any of its executions. This worst-case interpretation
follows the tradition of worst-case complexity analysis of algorithms.

This definition has two drawbacks. First, like any definition that concentrates
on the worst case, it does not award algorithms that behave well in other cases. An
algorithm that is optimal under this definition can be very inefficient in executions
where the delays are favorable. Second, worst-case analysis is meaningful only if the
worst-case precision is bounded. However, in many important cases, the worst-case
precision can easily be shown to be unbounded, e.g., when there are no upper bounds
on message delay.

We believe a more refined notion of optimality is warranted. Intuitively, an op-
timal algorithm is one whose precision, in every execution, is not larger than the
precision of any other algorithm in an execution where the message delivery system
"acts the same."

Formalizing this idea is not so simple. The major difficulty is finding a satisfying
definition for executions where the message delivery system acts the same. The prob-
lem is that the properties of the execution are determined by the interaction between
the message delivery system and the algorithm. The algorithm controls the execu-
tion by deciding when to send messages, while the message delivery system controls
the execution by determining their delay.3 It is difficult to isolate the effect on the
execution determined by the message delivery system. Such isolation is necessary in
order to compare executions of a given algorithm to executions of other algorithms
where the message delivery system is equally adversarial. A definition is too strong
if it compares an execution of one algorithm with an execution of another algorithm
in which message delays are unfairly favorable. Conversely, a definition is too weak
if executions with the same message delivery policy are not compared. We sidestep
this problem by noticing that the construction of a clock synchronization algorithm
has two aspects: first, the design of the interactive part where the processors send
messages; and second, calculating corrections using the views of the processors that
were obtained during the interactive part. In this paper, we do not address the first

3 This is not merely a formal issue: from a practical point of view, if an algorithm sends too many
messages in a short period of time, the network becomes congested and delays are long and highly
variant.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 373

aspect. We assume that we have a set of views, one for each processor, and we ask
how to compare optimal corrections for this set of views.

2.2. Model of computation. Here we formalize the behavior of the interactive
part of a clock synchronization algorithm, which is a distributed algorithm running
on a network. The distributed algorithm decides when to send messages, while the
network decides when to deliver the messages. The interplay between the distributed
algorithm and the network generates a set of executions. The result of this execution
is the input to the clock synchronization function.

We consider a set P {PI,...,Pn} of processors. With each processor p E P we
associate a (local) clock. The clock cannot be modified by the processor. Processors
do not have access to real time; each processor obtains its only information about time
from its clock and from messages sent by other processors. The clock is represented
by a local time component, which is a real number. In the sequel, the term clock time
refers to the local time component of the processor, while the term real time refers to
the absolute time as measured by an outside observer. In this work we assume that
clocks do not drift, i.e., that they run at the same rate as real time, but they are not
necessarily synchronized with each other.

We list the events that can occur at processor p, together with an informal ex-
planation.

Message-receive eventsmreceive(p, m, q) for all messages m and processors q: pro-
cessor p receives message m from processor q.

Message-send eventswsend(p, m, q) for all messages m and processors q: proces-
sor p sends message m to processor q.

Timer-set events--timer-set(p, T) for all clock times T: processor p sets a timer
to go off when its clock reads T.

Timer events--timer(p, T) for all clock times T: a timer that was set for time T
on p’s clock goes off.

Start events--start(p, 0): p starts executing the algorithm, with the initial value
of its clock being 0.
The message-receive, timer, and start events are interrupt events.

Each processor is modeled as an automation with a (possibly infinite) set of
states, including an initial state, and a transition function. Each interrupt event
causes an application of the transition function, which runs from states, clock times,
and interrupt events to states, sets of message-send events, and sets of timer-set events
(for subsequent clock times). That is, the transition function takes as input the current
state, clock time, and interrupt event (which is the receipt of a message from another
processor or a timer going off) and produces a new state, a set of messages to be sent,
and a set of timers to be set for the future.

A step of p is a tuple (s, T, i, s’, M, TS), where s and s are states; T is a clock
time; is an interrupt event; M is a set of message-send events; TS is a set of timer-set
events; and sI, M, and TS are the results of p’s transition function acting on s, T,
and i. A history r of a processor p is a mapping associating to each number from
(real time) a finite sequence (possibly empty) of steps such that the following hold.

1. For each real time t, there is only a finite number of times t < t such that
the corresponding sequence of steps is nonempty (thus the concatenation of
all the sequences in real-time order is a sequence).

2. The interrupt event in the first step of the history is a start event, and the
old state in the first step is p’s initial state; furthermore, there are no other

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

374 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

start events; let S be the real time of the start event.
3. The old state of each subsequent step is the new state of the previous step.
4. For each real time t, the clock-time component T of each step in the corre-

sponding sequence is equal to t- S (thus, the clock time of the start event
ofp is 0).

5. For each real time t, in the corresponding sequence there is at most one timer
event and it is ordered after all other events.

6. A timer is received by p at clock time T if and only if p has previously set a
timer for T.

An execution is a set of histories, one for each processor p in P, such that there
is a one-to-one correspondence between the messages received by q from p and the
messages sent by p to q for any processors p and q. (To simplify our discussion, we
assume that messages are unique, so this correspondence is uniquely defined.) Note
that this definition allows messages to be lost and delivered in non-FIFO (first in-first
out) order; however, it assumes messages are not corrupted or duplicated. We use the
message correspondence to define the delay of a message m received in execution c,
denoted d(m), to be the real time of receipt minus the real time of sending. When
a is clear from the context, we simply write d(m).

Let Sc,p Sr where r is p’s history in a; that is, Sc,p is the real time of the start
event of the processor p in a.

Note that the message delivery system is not explicitly modeled. The requirements
from an execution state are that messages are delivered without duplication and that
the system does not generate messages; the system can reorder or lose messages.

A system (P, A) is a set of processors P and a set of executions A, called admissible
executions. For example, 4 may allow communication only between specific pairs of
processors connected by a link.

The cornerstone of our definitions and proofs is the notion of equivalent execu-
tions. Informally, two executions are equivalent if they are indistinguishable to the
processors; only an outside observer who has access to the real time can tell them
apart.

To formalize this notion, define the view of processor p in history r to be the
concatenation of the sequences of steps in r in real-time order. (Note that the view
includes the clock times.) The real times of occurrence are not represented in the
view. Let a be an execution, and let r be p’s history in c. The view of p in a is the
view of p in r and is denoted clp. Two executions c and c are equivalent, denoted
a _= a, if for every processor p E P, alp

2.3. The clock synchronization problem. The goal of a clock synchroniza-
tion algorithm is to bring the clocks of the processors as close to each other as possible,
while keeping the clocks’ values with the progress of real time. Intuitively, each pro-
cessor maintains a logical clock, which "corrects" the value of the local clock. Since
the logical clock is required not to drift from the progress of real time, it is straightfor-
ward to see that the logical clock must be the local clock plus some correction factor.
Thus, the goal of a clock synchronization algorithm is to compute a correction for
each processor such that, for any two processors, the values of the local clocks (at the
same real time) plus the respective corrections are close.

Specifically, a clock synchronization algorithm is a function from a set of n views
to a vector of n real numbers, called corrections. Given a clock synchronization
algorithm f and an execution a, we abuse notation and denote by f(c) the vector
obtained by applying f to the n views in ; we denote by f(c,p) the component of

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 375

f(a) that corresponds to p. Since a clock synchronization algorithm depends only on
the views, we have the following claim.

CLAIM 2.1. If a =-- a’, then f(a) f(a’).
Recall that at any real time t, the clock value of p is t- S,p. Given a clock

synchronization function f, the corrected local time of p in a is t- S,p + f(a,p).
Therefore, [(S,v- f(a,p))- (S, f(a, q))[is the difference between the corrected
local times of p and q in a.

To capture the precision achieved by some vector of corrections
denote p(a,) maXp,qeP [(Sa,p Xp) (Sc,q Xq)[. That is, p(a,2) is the largest
discrepancy between two clocks of different processors after they are corrected.

Because the computation of the corrections does not distinguish between equiva-
lent executions, we measure the precision for a specific execution a by considering the
worst discrepancy achieved for all the executions equivalent to a. Let Jt be the set
of admissible executions. Formally, for any execution a E Jr, the inherent precision
achieved by a vector of corrections 2 is

tb(a,) sup{p(a’, 2): a’ _-- a and a’

DEFINITION 2.1. A clock synchronization algorithm f computes optimal correc-
tions iffor every admissible execution a and every vector of corrections , fi(a, f(a)) <_

We call (a, f(a)) the precision of f on a and use the shorthand (a, f).
3. A general clock synchronization algorithm. As mentioned before, the

basic difficulty of computing corrections is the fact that there may be two admissible
executions a and a in which all processors have the same views. Clearly, the tightness
of the achievable synchronization depends on how "far away" in real time a can
be from a. We formally quantify this idea by defining the maximal shift between
processors in a given execution. We show that if estimates of the maximal shifts are
available, then there exists a function that computes optimal corrections. This is
done by showing a lower bound for the precision that depends only on the maximal
shifts. Then we show that this bound is tight by presenting a method for computing
corrections that achieves this value as its precision. In subsequent sections we show
how to estimate the maximal shifts for specific systems.

3.1. Maximal shifts. Consider two equivalent executions a and a. It follows
that for any p P, the sequence of steps in a is equal to the sequence of steps in a,
except that p executes its steps at different real times. Since the clocks have no drift,
it follows that the difference between the real times of occurrence of a step in a and
the corresponding step in a is fixed, independently of the step. This implies that a
can be obtained by "shifting" the steps of the processors in a.

In the rest of this section, we formalize this notion of shifting and study its
properties. This technique was originally introduced by Lundelius and Lynch [11] to
prove lower bounds on the precision achieved by clock synchronization algorithms in
complete graphs.

Formally, given a history 7r of processor p and a real number s, a new history
r’ shift(, s) is defined by ’(t) (t + s) for all t. That is, all tuples are shifted
earlier in r by s if s is positive and later by -s if s is negative. Clearly, the views do
not change with shifting. Furthermore, we have the following result.

LEMMA 3.1 (Lundelius and Lynch [11]). Let be a history of processor p, and
let s be a real number. Then r’ shift(r, s) is a history of p and S, S s.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

376 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Let a and a be two equivalent executions such that each processor p E P is
shifted in a with respect to (w.r.t.) a by Sp; the vector of shifts of a w.r.t, a is the
vector g’- (Sl,..., sn/. That is, execution a was obtained by replacing p’s history
in a, 7r, with shift(r, Sp), for each p E P, and by retaining the same correspondence
between message-send and message-receive events. (Technically, the correspondence
is redefined so that a pairing in a that involves the event for p at time t, in a involves
the event for p at time t- Sp.) We denote a by shift(a, ’). Clearly, we have the
following claim.

CLAIM 3.2. Let a’ shift(a, (Sl,..., snl). For every message m received by
processor p from q in a, da,(m) d(m) + (Sq Sp).

The following claim follows from the definitions.
CLAIM 3.3. For any pair of executions a and a, a =_ a if and only if there

exists a vector of shifts such that a’ shift(a, g’).
We now formalize the notion of how "far away" a processor can be shifted w.r.t.

another processor. Fix a system (P, ,4), and let a 4. We say that s is an admissible
shift of q w.r.t, p in a if there exists a vector of shifts g’ (sl,..., sn} with Sq Sp s
such that a shift(a, g’) is in Jr. Define

msa(p, q) sup{s s is an admissible shift of q w.r.t, p in

This is the maximal shift of q w.r.t, p in a; that is, how far away can q be shifted from
p while retaining the admissibility of the execution. Since 0 is obviously an admissible
shift of q w.r.t, p in a, it follows that msa(p, q) >_ 0. Note that in certain cases, e.g.,
when no message was sent, the maximal shift can be infinite.

CLAIM 3.4. Let a ,4 and let a’ a. If a’ A, then Sa,,p Sa’,q Sa,p
Sa,q + ms(p, q) for any two processors p and q.

Proof. By Claim 3.3, a’ shift(a, g’) for some vector of shifts
Fix a pair of processors p and q. Since a jr, it follows that sq Sp < msa(p, q).
The claim follows since Sa,,p Sa,p- 8p and S,,q S,q Sq.

3.2. The lower bound. Fix a system (P, Jr), an admissible execution a, and
a clock synchronization algorithm f. The following lemma relates the maximal shift
and the attainable precision.

LEMMA 3.5. For any pair of processors p and q, fi(a, f) >_ Sa,p-
f(a, q) + msa(p, q).

Proof. Let s be an arbitrary admissible shift of q w.r.t, p in a. Let a’ E ,4 be an
execution such that a -_- a and q is shifted w.r.t, p by s. Then

/7(a, f) >_ p(a’, f(a’)) >_ Sa,,p- f(a’,p)- Sa,,q -F f(a’,q)

+ y(a’, q)+ s

Sa,p f(a,p) Sa,q / f(a,q)-F s (by Claim 2.1).

Since s was chosen arbitrarily,

Z(a, f) >_ S,p f(a,p) S,q + f(a,q) + ms(p, q). n

The previous lemma implies that if msa (p, q) is infinite for a pair of processors p, q
then no clock synchronization algorithm can achieve a finite precision f3(a, f). The
expression defined next will turn out to be a lower bound on the precision that can be
achieved in a. Let O be a cyclic sequence of processors, that is, 0 Po, P,..., Pk-, Pk,
where pk P0; processors p and p+ are not necessarily adjacent in the graph.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 377

Denote lel k and mss(0) k-1’,=0 mss(p,,p,+l). Let As(0) ns(O)/lOl, and
define

max max{As (t?)" t9 is a cyclic sequence of processors}.

THEOREM 3 6 For any clock synchronization algorithm f,/(, f) > Amax
Proof. Let 0 P0,...,Pk be an arbitrary cyclic sequence of processors (where

Pk PO). By Lemma 3.5,

(o, y) > Ss,, f(o,pi) Ss,p,+ + f(o,p+) + mss(pi,p+)

for every i, 0 _< i _< k- 1. Summing over all the consecutive processors in 0, we have

k-1

k. tb(a, f) > [Ss,p, f(a,p) Ss,,+ + f(a,p+) + mss(p,p+)].
i=0

Clearly,

k--1

i=0

and hence,

k-1

(a, f) > mss(p,, p,+) As(O),
i=0

as needed.

3.3. The upper bound. Now we show the converse direction, i.e., that there
exists a clock synchronization algorithm f with 5(, f) Amx, for every c, provided
certain estimates can be computed from the views. By Theorem 3.6, no other clock
synchronization algorithm can achieve better precision. Hence our clock synchroniza-
tion algorithm computes optimal corrections in the sense of Definition 2.1.

Clearly, if the values of mss(p, q) are known, then it is possible to calculate
Amax is the crux of computing optimal corrections--slmax" As we shall see, computing --s

However, since the views do not include the actual message delays, it is not clear
what the set of equivalent executions is; hence, in general, it is impossible to compute
the values of mss(p, q) from the views. Below we show that it suffices to have only
estimates on mss(p, q). In the next sections, we show how to obtain these estimates
for specific systems.

Define the estimated maximal global shift to be rfiss (p, q) mss (p, q)+Ss,p-Ss,q.
The next lemma is the key to replacing mss with the estimates rfiss in the calculation
of Aamax. The lemma shows that the maximum average cycle weight with respect to
the actual maximal shifts is equal to the maximum average cycle weight with respect
to the estimates. Specifically, for any cyclic sequence of processors 0 PO,...,Pk

(where Pk PO), let mss(O) E,=o mss(p,pi+). Also, let As(O) ms(O)/lOI, and
define

.ax max{s(0)" 0 is a cyclic sequence of processors}.

LEMMA 3.7. Amax Amax

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

378 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Proof. Consider any cyclic sequence of processors 0 p0,..., pk (where Pk P0),
and sum the estimates around the cycle as follows:

k-1 k-1

Z llSa (Pi, Pi-i [ms, (Pi, Pie-l) -- S,,pi S(,pi+].
i--O i--O

k--1However, the values for S,,p, cancel each other and we get i=0 ms(pi,pi+), which
is msa(O). Since this holds for every cyclic sequence of processors, it also holds for
any sequence where A is maximized, i.e. where A(0) Amax

Thus, we have the following function for computing corrections.

FUNCTION SHIFTS
Given inputs ns,(p, q) ms(p, q) + S,p S,q for every pair of processors p

and q.
nx1 Compute Amax (by computing __a

2. Select an arbitrary root processor r. The correction for each processor p P
is distw(r,p)--the distance in the (complete) directed graph relative to the
weights w(p, q) Aamax rfis, (p, q).

The value of .amax can be computed in step 1 by using an algorithm of Karp [6]
that runs in O(n3) time. By Lemma 3.7, this is equivalent to computing Aamax. By
definition, Aamax >_ A.(e) ms.(0)/101 for any cycle 0. Therefore,

,--c(Amax nsc(p, q)) --IOIA.mx ns.(0) _> 0.
(p,q)dO

This implies that there are no negative weight cycles in the complete graph with
the weights w(p, q) Aax nhsa(p, q). Thus, the distances can be computed as in
step 2.

THEOREM 3.8. The function SHIFTS computes optimal corrections with precision
Amax in each execution cOl

Proof. Denote by f(a) the vector of corrections computed by SHIFTS given
rfisa(p, q). We will show that fi(a, f) <_ Aamax; it follows from Theorem 3.6 that
these are optimal corrections.

To prove that fi(a, f) _< Aama we need to show that p(a’, f(’)) <_ Aamax for any
admissible execution cd _-- c. It suffices to show that for every pair of processors p
and q,

So,p f(o/, p) cd,q -- f(o/t q) < Amax

Fix some pair of processors p and q. By the definition of the function SHIFTS,
f(, q) distw(r, q)and f(o,p) distv(r,p), relative to the weights w(p,q) A
nhsa (p, q). Thus

f(, q) f((, p) dist,(r, q) distw(r, p) <_ w(p, q) Amax rfisa(p, q).

Adding nhs(p, q) ms(p, q) to both sides, we get

rfis, (p, q) ms(p, q) + f(a, q) f(a,p) <_ Amax ms(p, q).

By the definition of estimated maximal shifts, nsa(p, q) ms(p, q) Sa,p S,q.
Hence

S,p S,q + f(a,q) f(a,p) + ms(p, q) _< Ax.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 379

Since a a’, Claim 2.1 implies that f(a) f(a’), and thus

S,v S,q + f(a’, q) f(a’,p) + ms(p, q) _< Amax.
By Claim 3.4, S,,p S,,q <_ S,p- S, + ms(p, q), and thus,

S,,,v f(a’, p) S,,q + f(a’, q) < Amx,
as needed.

This theorem implies that given estimates rfis of the maximal shifts, we can
compute optimal corrections.

4. Calculating estimates in local systems. In the previous section, we re-
duced the problem of designing an optimal clock synchronization algorithm to the
problem of finding the estimates rfisa(p, q) of maximal shifts for each pair of proces-
sors p and q. Given such estimates, the clock synchronization problem can be solved
by computing the function SHIFTS. Next we show how to calculate rfis. In this sec-
tion, we show how to compute these estimates in the natural class of local systems.
Intuitively, in local systems the delays of messages sent to a pair of processors, e.g.,
along edges connecting them, do not depend on the delays of messages sent to other
processors.

For local systems, estimates _nhs(p, q) can be computed in two steps. In the first
step, local (pairwise) estimates mls(p, q) are computed. In the second step, the de-
sired global estimates rfis(p, q) are produced by combining the local estimates. In
this section we deal only with the second step; i.e., we show how to compute global
estimates from local estimates. In the next section, we compute the local estimates
based on the views for several specific systems.

To design a clock synchronization algorithm for a specific local system, only the
calculation of local estimates must be modified. As illustrated by the particular sys-
tems discussed in the next section, this calculation handles each pair of processors
separately. This significantly simplifies reasoning and allows us to deal with combi-
nations of several assumptions on the same or on different edges, as we show at the
end of this section.

4.1. Local systems. Informally, a system is local if its admissible executions
can be expressed as the intersection of sets of executions, each set restricting only the
views of a specific pair of processors.

DEFINITION 4.1. A set of executions jtp,q is local to p and q provided that for
every execution a E 4p,q, if there exists an execution a such that a[q a[q and
a’ IP alp, then a’ 4p,q.

Note that this implies that .Ap,q allows arbitrary shifts as long as both p and q
are shifted by the same amount, which is reworded as follows.

CLAIM 4.1. Assume .Ap,q is local to p and q. Let a ,4p,q, and let g’ (sl,..., Sn)
be a vector of shifts such that Sp Sq. Then shift(a, g’) jtp,q.

Let a Jtp,q. We say that s is a locally admissible shift of q w.r.t, p in a if there
exists a vector of shifts g’= (sl,..., sn) such that sq Sp s and shift(a, g’) e Jtp,q.
We have the following claim.

CLAIM 4.2. Assume jtv,q is local to p and q, and consider an execution a Jtp,q.
A value s is a locally admissible shift of q w.r.t, p in a if and only if for every vector
of shifts g’= (Sl,..., Sn} with sq Sp s, shift(a, if) Ap,q.

Define the maximal local shift of q w.r.t, p in a to be

mls(p, q) sup{s s is a locally admissible shift of q w.r.t, p in a}.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

380 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Intuitively, mls(p, q) is the maximal possible shift of q w.r.t, p in a, when the admis-
sibility of processors other than p and q need not be preserved.

We usually leave the sets Ap,q unspecified when they are clear from the context.
Later, when we want to specify different assumptions on the same pair of processors,
we consider more than one local set of executions for this pair. In this case, to distin-
guish between different local sets for processors p and q we will use 4p,q, 4,q, A,q,
etc.

DEFINITION 4.2. A set of admissible executions ,4 is local if there exist local sets
4p,q such that ,4 Np,qEP 4p,q, and for every p and q, 4p,q is local to p and q.

Claim 4.2 implies the following.
CLAIM 4.3. Assume A is local. Let (s1,..., Sn) be a vector of shifts and let

a E 4. Then shift(a, ’) e 4 if and only if Sq Sp is a locally admissible shift of q
w.r.t, p in (, for every pair of processors p and q.

Notice that mls(p, q) >_ ms(p, q) and mls(p, q) >_ 0. We say that mlsa(p, q) is
a local shift, while ms(p, q) is a global shift.

Note that mlsa(p, q) may differ from mlsa(q,p). However, if shift(a, (sl,... ,Ha})
is in 4p,q, then sq Sp is a locally admissible shift of q w.r.t, p and Sp sq is a locally
admissible shift of p w.r.t.q. Thus, if s is a locally admissible shift of q w.r.t, p in a,
then -s is a locally admissible shift of p w.r.t, q in a.

Throughout the rest of the section, we assume that A is local with respect to some
local sets of executions. Hence, the locally admissible shifts are defined. Furthermore,
we assume that the locally admissible shifts have the following property.

ASSUMPTION 1. Let x and y be two numbers such that x < y. For every two
processors p, q and every a .4, if x and y are locally admissible shifts of q w.r.t, p
in , then every value z [y,x] is a locally admissible shift of q w.r.t, p in (.

Intuitively, this assumption implies that the possible shifts constitute a contin-
uous interval without any singularity points, and therefore, it holds in most natural
applications.

4.2. From local shifts to global shifts. Our goal is to compute global esti-
mates rhs(p, q) from local estimates mlsa(p, q). In this section, as a first step in this
direction, we show how to obtain maximal global shifts ms(p, q) from maximal local
shifts mls (p, q). This also shows how to derive a lower bound on the precision of clock
synchronization from a lower bound on the precision of each edge independently.

Let a be an admissible execution. Denote by dist,(p, q) the distance from p to
q in the graph G relative to the weights w’(p, q) mls(p, q). We assume that all
the distances dist,, are finite; it is not difficult to generalize the result for the case of
infinite distances.

LEMMA 4.4. For any pair of processors p and q, dist,(p, q) <_ msa(p, q).
Proof. Assume, by way of contradiction, that for some pair of processors p and q,

dist,, (p, q) > ms(p, q). Thus there exists some value s, ms(p, q) < s < dist,, (p, q).
We show that s is a (globally) admissible shift of q w.r.t, p in a, which contradicts
the definition of msa (p, q).

Since s > ms (p, q), it follows that s > 0. Thus we can write s c.distw, (p, q), for
some real number c, 0 < c < 1. Fix some pair of processors j and k. By Assumption
1, c. mlsa(k,j) is a locally admissible shift of j w.r.t, k in a. In addition, c. mlsa(j, k)
is a locally admissible shift of k w.r.t, j in c, and thus -c. mls(j,k) is a locally
admissible shift of j w.r.t, k in a.

For every processor define si c. distw, (p, i); note that Sp 0 and Sq s. We
now show that sj sk is a locally admissible shift of j w.r.t, k in a. By the triangle

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 381

inequality

dist,, (p, j) _< dist,, (p, k) + w’(k, j),

and since w’(k, j) mls (k, j), we have (by changing sides)

dist,, (p, j) dist,, (p, k) <_ mls (k, j).

Since c > 0, by multiplying by c and substituting sj and sk, we get

sj Sk <_ C. mls(k,j).

By similar reasoning.

s sj <_ c. mls(j, k).

This implies

-c. mlsa(j, k) <_ sj sk <_ c. mls(k, j).

Since -c. mlsa(j, k) and c-mls(k,j) are locally admissible shifts of j w.r.t, k in a,
Assumption 1 implies that sy sk is a locally admissible shift of j w.r.t, k in a.

Since this holds for any j and k, Claim 4.3 implies that shift(a, (sl,..., Sn)) is
in .4. Therefore, s sq Sp is a (globally) admissible shift of q w.r.t, p in a. Since
s > msa(p, q), this contradicts the definition of msa(p, q). [-i

We now show that msa(p, q) dist,, (p, q), by proving the converse inequality.
LEMMA 4.5. For any two processors p and q, msa(p, q)

_
distw,(p, q).

Proof. Let s be an arbitrary admissible shift of q w.r.t, p in a. Then there exists a
vector of shifts ’= (sl,..., sn/with s sq- Sp, such that shift (a, ’) E jr. Consider
a shortest path p0,...,Pk from p P0 to q Pk w.r.t, the weights w. Summing over
the path we get

Since shift(a, ’) E A, Claim 4.3 implies that Sp Sp,_ is a locally admissible shift
of p w.r.t, p-i in a. Hence,

Sp Sp_ <_ mlsa (pi_ 1, pi) w’ (pi_ 1, pi)

for each i- 1,... ,k. By combining (1) and (2) we get

k k

s E(Sp Sp_ <_ E w’(Pi-1, Pi) distw, (p, q).
i--1 i--1

Therefore, s _< dist,(p, q). Since this holds for any admissible shift, it follows that
ms (p, q) <_ dist,, (p, q).

THEOREM 4.6. For any admissible execution a and any two processors p and q,
ms (p, q) can be computed from mls (p, q).

Proof. For any admissible execution a and any two processors p and q, Lemma 4.4
implies that ms (p, q) _> dist,, (p, q), where w’ (p, q) mls (p, q). Lemma 4.5 implies
that msa(p, q) dist,(p, q). The claim follows since distw,(p, q) depends only on
mls (p, q).

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

382 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

4.3. Using estimates for local shifts. Now the issue is how to compute the
values nSs(p, q) that are needed as inputs to the function SHIFTS. We assume that
the function is provided with estimates of the local shifts. Under this assumption the
computation can be accomplished by the following function.

FUNCTION GLOBAL ESTIMATES
Given inputs nls(p, q) mls(p, q) + S(,p Sc,q for every pair of processors p

and q.
1. Compute nSs(p,q) by a shortest path computation in G with weights
mls (p, q).

THEOREM 4.7. The function GLOBAL ESTIMATES computes nSs(p, q), for every
pair of processors p and q.

Proof. Observe that the weight of any cycle w.r.t, the weights mls is equal to
the weight of the cycle w.r.t, the weights mls because the S components~cancel. It
follows that there are no negative weight cycles in G w.r.t, the weights mls. Also,
the weight of any path from p to q w.r.t, weights mls is equal to the weight of the
path w.r.t, mls plus S,p- S(,q. The claim follows from Theorem 4.6.

By composing functions GLOBAL ESTIMATES and SHIFTS, we can compute the
optimalcorrections and their precision given only the estimates to the maximal local
shifts mls. This follows immediately from Theorem 4.7 together with Theorem 3.8.

4.4. A composition theorem. In many systems, several constraints are im-
posed on the delay of messages. For example, it is possible that there is a bound on
the delay in each direction of the link as well as a bound on the difference in message
delay in opposite directions. In these cases, the system is local w.r.t, several sets of
executions, each of which is local to the same pair of processors p and q. We now show
how to combine several sets of executions local to p and q into a single complex set
of executions local to p and q. This allows us to deal with local systems by regarding
each pair of processors and each assumption separately; this will be useful in the next
section.

We remark that the theory developed so far already allows us to deal with local
systems where different pairs of processors obey different types of constraints.

Note that the notion of an admissible shift (and the derived notion of maximal
shift) is defined in the context of a specific set of admissible executions. To develop
the results in this section it is convenient to state this fact explicitly by saying that
a value is an admissible shift (or maximal shift) under 4, where ,4 is some set of
executions.

For some pair of processors p and q, let A,q be a set of executions local to p and q,
and let Jt,q be another set of executions local to p and q. Denote Ap,q .Ap,q N.A,q.
It is easy to see that Ap,q is local to p and q. For any execution a E .4, let mls’ (p, q)
be the maximal local shift of q w.r.t, p in a under Jt,. Similarly, define mlsa(p, q)
and mls (p, q). We have the following theorem.

mm(mls (p, q) mls, (p, q))THEOREM 4.8. mls,(p,q) "
Proof. The fact that mls,(p, q) _< tulsa(p, q) follows immediately since every

execution in fltp,q is an execution in ,4,q. Thus if s is a locally admissible shift of q
w.r.t, p in c under .dp,q, then it is a locally admissible shift of q w.r.t, p in c under 4,q.
Similarly mls,(p, q) _< tulsa(p, q). Therefore, tulsa(p, q) _< min(mls(p, q), tulsa(p, q)}.

Assume for contradiction that s is a value such that mls(p,q)
IImn{mls(p, q), tulsa(p, q)}. Since tulsa(p, q) < s < mls:(p, q), Assumption I im-

plies that s is a locally admissible shift of q w.r.t, p in c under Jt,q. Similarly, s

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 383

is also a locally admissible shift of q w.r.t, p in a under 4p,q. By Claim 4.2, for
every vector of shifts - (sl,..., Sn), such that s sq 8p, shift(a, ’) is in both
Jt,q and Ap,. Therefore, shift(a,*) is in Ap,. Thus, s is a locally admissible
shift of q w.r.t, p in a under Jtp,q, a contradiction since mls(p, q) < s. Therefore
mls (p, q) "mls(p,mln{mls (p, q) q) } rl

5. Clock synchronization for specific delay assumptions. We now show
how to compute estimated maximal local shifts for specific sets of executions 4p,q
local to p and q, given the views. By Theorems 4.7 and 4.8, this implies a clock
synchronization algorithm that computes optimal corrections for any system whose
set of admissible executions is the intersection of any collection of sets of these types.
By Theorem 4.7, all we must show is how to compute the estimates of the maximal
local shifts mls(p, q). This calculation is based on estimates for the delays (defined
below), which can easily be computed from the views of the processors.

The estimated delay d(m) of a message m sent from p to q is the actual (real-
time) delay plus the difference in (real-time) start times of the processors; that is,
d(m) d(m) / S,p S,q. This is similar to the definitions of estimated maximal
global shifts and estimated maximal local shifts. The next lemma shows that the
estimated delay can be computed from the views.

LEMMA 5.1. Given the views ofprocessors p and q in an execution a, it is possible
to compute the estimated delay l(m) of any message m sent from p to q.

Proof. Let tp(m) denote the local (p’s) clock time when p sent the message
m according to p’s view; similarly, tq(m) denotes the local (q’s) clock time when q
received the message m according to q’s view. By property 4 of histories as defined
in 2.2, m was sent at real time tp(m) + S,p; similarly, m was received at real time
tq(m) + Sa,q. It follows that the delay of rn is d(m) (tq(m)+ Sa,q) -(tp(m) + S,p).
Hence, (rn) d(m)+ Sa,p- Sa,q tq(m)- tp(m). Since messages are unique, tp(m)
and tq(m) can be computed from the views of p and q. rl

5.1. Bounds on the delay. In the systems considered in [4, 11], there is an
upper and a lower bound on the transmission delay for any edge. We extend this
assumption by allowing edges without upper bounds, in which case we say that the
upper bound is oc. In particular, this gives optimal clock synchronization for com-
pletely asynchronous networks where there are no bounds on the delay.

Consider a set lp,q [1, u] where and u give bounds (real numbers) for each ordered
pair of processors p and q, such that 0 _< l(p, q) <_ u(p, q) <_ oc. Execution a is in
,4p,q[1, u] if the delay of every message sent from p to q is in the range [l(p, q), u(p, q)]
and the delay of every message from q to p is in the range [l(q, p), u(q, p)]. Clearly,
Ap,q[l, u] is local to p and q.

The maximal delay of a message received by q from p in execution a is denoted
dmax(p, q). Similarly, the minimal delay of a message received by q from p in a is
denoted maxas (p, q). If no message was received by q from p in a, then -(]max (p, q) -oo
and dn(p, q) oo. We first observe that in such systems, tulsa(p, q) depends only
on the maximal and minimal delays between p and q.

LEMMA 5.2. Let be an execution of (P, flip,q[1, HI). Then

mlsa(p, q) min{(u(q,p) dmax(q,p)), (di(p, q) l(p, q))}.

Proof. We can partition the constraints on the communication between p and q
in two" the conditions on the delay of messages from p to q, and the conditions on
the delay of messages from q to p. This is done by expressing the set 4p,q[1, u] as the

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

384 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

intersection of jt(q,p)[1, u], which constrains the messages from q to p, and Jt(p,q)[1, u],
which constrains the messages from p to q. Let mls (p, q) be the maximal local shift
of q w.r.t, p in a under Jt(q,p)[/, u]; mls (p, q) is defined similarly under Jt(p,q)[1, u].

We first show that mls(p, q) u(q,p)-dmX(q,p). It is obvious that mls(p, q) <_
u(q, p) -damaX(q, p). Assume, by way of contradiction, that s > u(q, p) -dmX(q, p) is a
locally admissible shift of q w.r.t, p in a. This immediately implies that dX(q, p)
-cx); i.e., at least one message was received by p from q.

Denote a’ shift(a, (sl,..., sn)), where sq s and si 0 for all q. By Claim
4.2, a is in 4(q,p). By Claim 3.2, if a message rn from q to p has delay d in a, then m
has delay d + s in a’. Thus, Amax(q, p) dmaX(q, p)- S. Since s aa (q p)
and clmax(q p) > -cx: it follows that the maximal delay of a message from q to p in
cg is strictly greater than u(q,p), which is a contradiction.

In a similar manner, we show that mls’.’(p, q) damin(p, q)- l(p, q). It is obvious
that mls(p, q) <_ damin(p, q) l(p, q). Assume, by way of contradiction, that s >
damin(p, q)- l(p. q) is a locally admissible shift of q w.r.t, p in c. This immediately
implies that dmln(p q) < (:; i.e. at least one message was received by q from p.

Let a be as defined above. By Claim 4.2, c is in ,4(p,q). By Claim 3.2, if
a message m fromp to q has delay d in a, then m has delay d-s in a. Thus,
Amin(p,q) lmina, (p, q) s. Since s > dmin(p, q) l(p, q) and dmin(p, q) ((, it follows
that the minimal delay of a message from p to q in a is less than l(p, q), which is a
contradiction.

The claim now follows from Theorem 4.8.
Lemma 5.2 gives the maximal local shifts as a function of the actual maximal and

minimal delays. However, the views of the processors give only estimates of the delays,
not the delays themselves. Yet, the estimates of the delays give an estimate for the
maximal local shift lsa(p, q). Formally, the estimated maximal delay is defined as

(max. (]max
a (P,q)= (p q)+S

while the estimated minimal delay is defined as

(min din Sa. (p. q) (p. q) +
We have the following result.

COROLLARY 5.3. Let c be an admissible execution of (P, Jtp,q[1, u]). Then

max mAn
mls,(p,q) min{(u(q,p)-da (q,p)),(d, (p,q)-l(p,q))}.

Note that max and jmin can be computed from the views of p and q, since

, (p, q) is the minimum of (rn) for all messages m received by q from p in c and
amaX(p, q) is the maximum of (rn) for all messages m received by q from p in c.

If we make the natural assumption that all delays are nonnegative, we get a
general bound on mls and nls (without any other bounds on the delay).

COROLLARY 5.4. Let c be an admissible execution of a system (P, jtp,q) local to
1mAn mAn

p, q. Then mls, (p, q) < (1, (p, q) and rls (p, q) < d (p, q).

5.2. Links with bounds on the round-trip delay bias. In many communi-
cation links there are no tight bounds on the transmission delays. However, whenever
the traffic load in one direction of a link is high, the load in the opposite direction
of the link is also high. Thus, it is possible to give a bound on the difference, or

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 385

bias, between the delay in one direction and the delay in the opposite direction. For
the purpose of illustrating our techniques, we simplify the assumption and require
that the difference between the delay of any pair of messages in opposite direction
be bounded. We now show how to calculate maximal local shifts for links in this
case. it is possible to generalize our results to the more realistic scenario in which
this assumption holds only for messages that were sent "around the same time."

Specifically, we associate a nonnegative number b(p, q) with processors p, q. An
execution a is in Ap,q[b] if for any message m received by p from q and any message
m’ received by q from p, Ida(m)- da(m’)l _< b(p,q). We also restrict tp,q[b] to
nonnegative delays; i.e., for every message m, d(m) >_ 0. The next lemma shows that
mlsa(p, q) depends only on the maximal and minimal delays between p and q.

LEMMA 5.5. Let a be an admissible execution of (P, jtp,q[b]). Then

1 dmin max,mls(p,q) min din(p,q),-[b(p,q)+ (p,q) -as (q,p)]

Proof. Consider the following two sets of admissible executions local to p and q.
The first set Jt,q contains every execution a such that the delay of every message in
a is nonnegative; denote the maximal local shifts under jt,q by mls. The second
set jt,q is like jtp,q[b] except that the delays are allowed to be negative; denote the
maximal local shifts under A,q by mls. Clearly Ap,[b] is the intersection of

mln{mls (p, q), mls (p, q) }. By Lemma 5.2,and A,q. By Theorem 4.8, mls(p, q) "
mls(p, q) dmin(p, q). Therefore, it suffices to prove that tulsa(p, q) 1/2[b(p, q)+
damin(p, q) dmax(q, p)].

Fix a value s and denote a’ shift(a, (s,..., sn)), where sq s and s 0 for
all i q. By Claim 4.2, s is a locally admissible shift of q w.r.t, p in a if and only if

By Claim 3.2, for any message m received by p from q, d,,(m) d,(m)+ s.
Similarly, for any message m’ received by q from p, d,,(m’) da(rW) s. Therefore,

d, (m’) d,, (m) da(m’) d,(m) 2s,

d, (m) d, (m’) d(m) d(rW) + 2s.

The round-trip delay bias of an arbitrary pair of messages m and m’ in a’ is at most
b(p, q) if and only if

da (m’) da (m) 2s <_ b(p, q),

da(m)- da(m’)/ 2s <_ b(p, q).

Since a is admissible and s _> 0, the first inequality trivially holds. Hence, s is a
locally admissible shift of q w.r.t, p if and only if

s<l [b(p, q) + da (m’) d. (m)].

Namely,

1 din max<- -i [b(p, q) + (p, q) p)].

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

386 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

Thus mls(p, q) 1/2[b(p, q) + damin(p, q) damaX(q,p)]. [:]

COROLLARY 5.6. Let a be an admissible execution of (P, jt[b]). Then

" min 1 min max
mls(p,q) mind (p,q),-[b(p,q)+d (p,q)-d (q,p)]

5.3. Multicast networks. Communication in many networks is performed
through broadcast media where a message is transmitted simultaneously to a sub-
set of the processors. Multicast transmission may often have useful timing properties
for clock synchronization. In this subsection we investigate a simple timing property:
there exists a bound e on the difference between the arrival times of a message at
different processors. We do not assume that there is any bound on the delay of any
individual message.

Optimal clock synchronization algorithms for multicast networks that have
bound on the differences in delay for different processors are presented in [5, 18].
Our solution demonstrates the usefulness of the reductions of the preceding sections.
To provide optimal clock synchronization under the multicast assumption we need
only to find a way of defining local shifts. This, somewhat surprisingly, turns out to
be an easy task. Furthermore, the broadcast model can be limited to specific subsets
corresponding to subnetworks of an internet and combined with the other assumptions
using the composition theorem.

To define this assumption, we allow events of the form send(p, m, Q) for all mes-
sages m and sets of processors Q; this event represents a multicast of m to the pro-
cessors in Q. The definition of an execution is modified so that there is a one-to-one
correspondence between the messages received by p from k to messages sent by k to
p or multicast by k to a set Q that includes p for any processors p and k. Let d(p, m)
denote the difference between the time the message m is multicast by some processor
k and the time processor p receives it; this is the delay of the message m to p. The
estimated delay of the message m to p in a is (p, m) d(p, m) + Sa,k ,-c,p. As
before, the estimated delay of a message from k to p can be computed from the views
of p and k.

The system is the pair (P,4(e)), where t(e) is the intersection of local sets
Jtp,q(e) for every unordered pair of processors p and q. An execution
if for every message m multicast to both p and q, Id(p, m) -d(q, m)l _< . That is, m
reaches p at most time units after it reaches q, and vice versa.

Note that ,dp,q() is local to p and q. This is because any shift applied to both p
and q does not change the difference d(p, m) -d(q, m). The next lemma shows how
to calculate mls(p, q).

LEMMA 5.7. Let a be an admissible execution of (P,,dp,q(e)). Then

mlsa(p, q) + rnn{d(q, rn) d(p, rn)}.

Proof. Fix a value s and denote a’ shift(a, <Sl,..., Sn>), where Sq s and
si 0 for all i q. By Claim 4.2, s is a locally admissible shift of q w.r.t, p in a if
and only if a’ E Ap,q().

For every message m multicast to both p and q, let d’(q, m) and d’(p, m) denote
the delay of m in a’ for processors p and q, respectively. The value s is a locally
admissible shift of q w.r.t, p in a if and only if

Id’(p, m) d’(q, m)l <_

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 387

for every message m multicast to both p and q. If q is not the sender of m, then
d’ (p, rn) d(p, rn) and d’ (q, rn) d(q, m) s; if q is the sender of m, then d’ (q, m)
d(q, m) and d’(p, rn) d(p, rn) + s. In both cases, s is a locally admissible shift of q
w.r.t, p in a if and only if

Id(p, m)- d(q, m)+ s <_

for every message rn multicast to both p and q.
Hence, s is a locally admissible shift of q w.r.t, p in a if and only if

Isl _< + Id(p, m)- d(q, m)l

for every message m multicast to both p and q. Since mls(p, q) _> 0, this implies that

mlsa(p, q) e + mn{d(p, m) d(q, m)},

as needed.
As before, this result also applies to the estimated delays that can be computed

from the views.
COROLLARY 5.8. Let a be an admissible execution of (P, .Ap,q()). Then

q) +

Proof. Fix a message m and let k be the sender of m. We have

nlsa(p, q) mlsa(p, q)+ Sa,p S.,q (by definition)

e + min{d(q, m) d(p, rn)} + S,p Sa,g (by Lemma 5.7)
m

+ mimn{ (d(q, rn) + S,k Sa,q) (d(p, rn) + S,k Sa,p)}

e + min{a(q, m) a(p, m)} (by definition),

as needed.

6. Discussion. We have presented a framework for designing optimal clock syn-
chronization algorithms under a variety of assumptions on message delay uncertainty.
The general result yields optimal clock synchronization algorithms under the following
assumptions: upper and lower bounds on delays are known (including degenerated
cases); only a bound on the difference of the round-trip delays is known; and a mul-
ticast assumption that bounds the difference in delay in reaching different processors
is known. Moreover, the results apply to cases where different links satisfy different
assumptions or where the same link satisfies several assumptions. This work extends
results of Halpern, Megiddo, and Munshi [4] and introduces a new notion of optimality
on any specific instance.

The specific delay assumptions analyzed here are typical of realistic systems, and
it seems relatively easy to perform similar analysis for additional delay assumptions.
It is our belief that this will lead to the design of optimal clock synchronization
algorithms for other message delay assumptions.

In this paper, we only address the issue of computing optimal corrections, given
the views of the processors. An interesting open question is to compute the opti-
mal corrections in a distributed manner. To understand the difficulty involved in

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

388 HAGIT ATTIYA, AMIR HERZBERG, AND SERGIO RAJSBAUM

the distributed implementation of this computation, consider the following straight-
forward approach. Each pair of neighboring processors p and q compute mlsa(p, q)
and nlsa(q,p) using the estimated delays (which can be deduced from their views).
All processors send the estimated maximum local shifts to a distinguished processor
(leader). The leader computes the estimated maximum global shifts using function
GLOBAL ESTIMATES and a correction value for each processor according to function
SHIFTS. Finally, the leader sends the corrections to the processors. Note, however,
that the precision obtained by this centralized clock synchronization algorithm is opti-
mal only with respect to the part of the execution that does not include the messages
to and from the leader. That is, any additional communication, required for exchang-
ing the views, is bound to change the views themselves. A solution may require the
definition of optimality to be relaxed.

Extensions of our work to the truly distributed case appear in [17]. This work also
generalizes some of our results to clocks that drift. Other follow-up work includes an
investigation of the problem from the knowledge theoretic point of view [14]. Some
techniques for developing clock synchronization algorithms for broadcast networks
appeared in [3].

Another important open question is to achieve optimal clock synchronization
in systems where the probabilistic properties of the message delay distribution are
known. This assumption is at the heart of most practical algorithms for clock syn-
chronization [i, 13]. We believe the setting developed here allows one to address this
assumption and that this will lead to improvements to these important algorithms.

Finally, an obvious open problem is to make our results to be fault tolerant,
following the many works addressing fault-tolerant clock synchronization.

Acknowledgments. We thank Joe Halpern, Marios Mavronicolas, Boaz Patt-
Shamir, and the anonymous referees for helpful comments.

REFERENCES

[1] F. CRISTIAN, Probabilistic clock synchronization, Distrib. Comput., 3 (1989), pp. 146-158.
[2] D. DOLEV, J. HALPERN, AND H. R. STRONG, On the possibility and impossibility of achieving

clock synchronization, J. Comput. System Sci., 32 (1986), pp. 230-250.
[3] D. DOLEV, R. REISCHUK, AND H. R. STRONG, Observable clock synchronization, in Proc.

13th ACM Symposium on Principles of Distributed Computing, August 1994, Association
for Computing Machinery, New York, 1994, pp. 284-293.

[4] J. HALPERN, N. MEGIDDO, AND A. A. MUNSHI, Optimal precision in the presence of uncer-
tainty, J. Complexity, 1 (1985), pp. 170-196.

[5] J. HALPERN AND I. SUZUKI, Cloak synchronization and the power of broadcasting, in Proc.
28th Annual Allerton Conference on Communication, Control, and Computing, Allerton,
IL, October 1990, pp. 588-597.

[6] R. M. KARP, A characterization of the minimum cycle mean in a digraph, Discrete Math.,
23 (1978), pp. 309-311.

[7] H. KOPETZ AND W. OCHSENREITER, Cloak synchronization in distributed real-time systems,
IEEE Trans. Comput., 36 (1987), pp. 933-939.

[8] L. LAMPORT, Time, clocks and the ordering of events in distributed systems, Comm. Assoc.
Comput. Mach., 21 (1978), pp. 558-565.

[9] L. LAMPORT AND P. MELLIAR-SMITH, Synchronizing clocks in the presence offaults, J. Assoc.
Comput. Mach., 32 (1985), pp. 52-78.

[10] B. LISKOV, Practical uses of synchronized clocks in distributed systems, invited talk at the
9th ACM Symposium on Principles of Distributed Computing, Association for Computing
Machinery, New York, 1990; Distrib. Comput., 6 (1993), pp. 211-219.

[11] J. LUNDELIUS AND N. LYNCH, An upper and lower bound for clock synchronization, Inform.
and Control, 62 (1984), pp. 190-204.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

OPTIMAL CLOCK SYNCHRONIZATION 389

[12] K. MARZULLO, Loosely-coupled distributed services: A distributed time service, Ph.D. thesis,
Stanford University, Stanford, CA, 1983.

[13] D. MLLS, Network time protocol (version 2) specification and implementation, IEEE Trans.
Comm., 39 (1991), pp. 1482-1493.

[14] Y. MOSES AND B. BLOOM, Knowledge, timed precedence and clocks, in Proc. 13th ACM Sym-
posium on Principles of Distributed Computing, Los Angeles, August 1994, Association
for Computing Machinery, New York, 1994, pp. 294-303.

[15] Y. OFEK, Generating a fault-tolerant global clock using high-speed control signals for the
MetaNet architecture, IEEE Trans. Comm., 42 (1994), pp. 2179-2188.

[16] OPEN SOFTWARE FOUNDATION, Introduction to OSF DCE, Open Software Foundation
(OSF), Cambridge, MA, December 1991.

[17] B. PATT-SHAMIR AND S. RAJSBAUM, A theory of clock synchronization, in Proc. 26th ACM
Sumposium on Theory of Computing, Association for Computing Machinery, New York,
1994, pp. 810-819.

[18] g. SUGIHAIA AND I. SUZUKI, Nearly optimal clock synchronization under unbounded message
transmission time, in Proc. 1988 International Conference on Parallel Processing III, St.
Charles, IL, 1988, pp. 14-17.

[19] B. SIMONS, J. L. WELCH, AND N. LYNCH, An Overview of Clock Synchronization, IBM
Technical Report RJ 6505, IBM, October 1988.

[20] T. SI:tIKANTH AND S. TOUEG, Optimal clock synchronization, J. Assoc. Comput. Mach., 34
(1987), pp. 626-645.

[21] J.L. WELCH AND N. LYNCH, A new fault tolerant algorithm for clock synchronization, Inform.
and Comput., 77 (1988), pp. 1-36.

D
ow

nl
oa

de
d

04
/0

7/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

