
Optima Dock Synchronization
under Different Delay Assumptions

Hagit Artiya Amir Herzbergt Sergio Rajsbaum’

April 7, 1994

Abstract

The problem of achieving oprimal clock synchronization in a communication r.etwork
with arbitrary topology aM perfect clocks (that do not drift: is studied. CLocksynchroniza
tion algorithms are preserued Eor a large family of delay assumptions. Our algorithms are
modular and consist of three major components. The first component holds for any type
of de]ay assumptions; the second component holds for a large, natural family of local delay
assumptions; the third component has to be tailored for each specific delay assumption.

OptimaJ clock synchronization algorithms are derived for several types of delay as
sumptions by appropriately tuning the third component. The delay assumptions include
lower and upper de]ay bounds, no bounds at all, and bounds on the difference of the de
lay in opposite directions. In addition, our model handles systems where some processors
are connected by broadcast networks in which every message arrives to all processors at
approximately the same time. A composition theorem allows combinations of different
assumptions for different. Jinks or even for the same link; such mixtures are common in
practice.

Our results achieve the best possible precision in each execution. This notion of opti
mality is stronger than the more common notion of worst case optimaiity, The new notion
of optimality applies to systems where the worst case behavior of any clock synchronization
algorithm is inherently unbounded.

Keywords: distributed systems, real-time systems, clock synchronization, message passing
systems, networks, optimization, message delay assumptions, precision.

Department of Computer Science, Technion. Haifa 32D00, Israel. Supported by grant No. 92-0233 from the
United States-Israel Bnational Science Foundation (BSF), Jerusalem, Israel, Techciion V.P.R.—Argentinian
Research Fund and th fund for the promotion of research in the Technion. Email- hagitccs . technion. ac-il.

tIEM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. Partially tipported
by DGAPA Projects, National Autonomous University of Mexico (UNAM). Email: iryktvmhbitnet or
anarCwatson. ibm.com.

:\(fl Laboratory for Computer Science. 545 Technology Square. Cambridge. MA 02139. USA. On leave
from Instituto de Matemáticas. UNAM, Mexico. Partially supported by DGAPA Proj€cts. UNAM. Email:
rajsbaumctheory . lcs mit .edu.

0

1 Introduction

In most large-scale distributed systems, processors communicate by message transmission, and
do not have access to a central clock. Nonetheless it is useful, and sometimes even necessan;
for the processors to obtain some common notion of time. The technique used to attain
this notion of time is known as etoc& synchrontzotion. Synchronized clocks are useful for
various applications such as control of real-time processes, transaction processing in database
systems, and communication protocols. Recently, several software protocols that support clock
synchronization in communication networks have been proposed [1, 6, 12, 13, 14]; system
designers have been advocating the use of synchronized clocks [9].

The quality of synchronization is measured by its precision, i.e., how close together it brings
the clocks at different processors.’ The precision influences the correctness and the efficiency
of applications using the synchronized clocks.

The best precision that can be achieved is determined by the timing uncertainty that is
inherent in the system. There are two main sources of timing uncertainty in a distributed
system. First.]oca] clocks at different procesrs are independent; they do not start together
and may run at different speeds. Second. messages sent between processors incur uncertain
delays.

A relatively simple case is when local clocks are accurate. i.e.. run at the same speed, and
there are upper and lower bounds for the delay on eath link. Clock synchronization algorithms
for under this assumption. whe precision is optimal in the worst case. are dascribed in
j3, 10]. Subsequent work concentrated on clocks that may drift and on fault-tolerance (e.g..
[2, 6, 18, 19], see survey in [17]). To achieve high precision, these a]gorithms require the
existence of tight lower and upper bounds on message delay.

However, in real systems it is often the i.mcertainty of message delay, rather than clock
drift, that causes most of the difficulty in synchronizing clocks [12, 6]. Almost every processor
in a distributed system has access to a high-quality, very accurate hardware cloth; it is not
far from reality to assume that local clocks are accurate and have no drift.2 On the other
hand, often there do not exist tight upper and lower bounds on message delay, while there is
other relevant information about the delays. For example, in some systems, a bound on the
difference between delays in opposite directions is known. This motivated us to revisit the case
in which local clocks run at the same speed and have no drift, thus focusing on the impact of
message delay uncertainty on clock synchronization.

Our main contribution is a methodolo’ for designing optimal clock synchronization algo
rithms under a variety of assumptions on message delay uncertainty. The strongest results are

‘This does not ensure that clocks are close to real time. It is easy to adapt our results to reach this goal if
a perfect real time cloclc is available. Synchronization to real time is often useful, and is achieved by practical
protocols which usually deal also with multiple. imprtect real rime clocks, e.g., the Internet NIP 1121.
2To deal with the small drift which does exist, the clock ynchronizaRiou mechanism is invoked periodically;

e.g. Kopetz and Oubsenreiter [6].

1

F.
- A.

obtained for a natura] family of ocal delay assumptions: this family includ all the assump
tions studied in previous theoretical work. A de]ay assumption is local if it is specified for a
pair of processors, for example, processors connected by a link. We show that in this case.
a ciock synchronization algorithm can be obtained by considering each pair separatel3 This
simplifies the analysis substantially, and allows different pairs of processors to satisfy different
assumptions. Furthermore, we prove a composition theorem which allows us to combine sev
eral local delay assumptions. For example. it is possible that for some pair of processors there
will be upper and lower bounds on the message delay in each direrion. as well as a bound on
the difference between message delays in opposite directions.

The basic difficulty of clock synchronization stems from the existence of two different sys
tem executions in which all processors have the same views. The tightness of the achievable
synchronization depends on how “far away” in rea] time can such executions be. We capture
this notion quantitatively as the maximal shift between processors in a given execution. Using
this notion, we partition the design of a cloth synchronization algorithm into three stages:

1. Optimal clock synchronization by computing corrections to the local clocks from the
maximal shifts. This stage is valid for any kind of message delay assumptions.

2. Computation of maximal shifts from maximal local shifts, which depend only on the views
of pairs of processors. This stage is valid for message delay assumptions which are locaL

3. Computation of the maximal local shifts from the local views. This depends on the
specific message delay assumptions.

Our methodology yields optimal clock synchronization algorithms for a variety of delay
assunptions. by adapting the third stage above. In particular. we show how to compute
maximal local shifts for the following message delay assumptions:

1. upper and lower boilnds on delays are known:

2. only lower bounds on the delays are known:

3. no bounds are known;

4. bound on the difference on the delay in opposite directions; and

5. there is a bound on the difference in the times when different processors receive
ticast message.

Most previous formal work on deterministic clock synchronization addressed only the first
assumption. However, many practical systems are better modeled by the other assumptions.
The second assumption follows an observation of [1] that in many actual links, there is some
minimal delay (e.g., due to the actual transmission rate and processing time). The fourth
assumption follows experimental results (cf. [12]), showing that message delays in opposite

2

directions of a bi-directional link are usually very close. The fifth assumption is useful for
broadcast networks, such as these used in many local area networks: this is the assumption
used in 4 i6.

Om composition theorem implies that our algorithms apply to systems where the same pair
of processors satisfies several different delay assumptions. Such mixtures are quite common in
practical, heterogeneous systems. For example, there are systems in which several local area
(broadcast) networks are connected by bridges or (long distance) links.

Our work extends the results of Halpern, Megiddo and Munshi [3]. ilalpern et al. use linear
programming techniques which do not illuminate the inherent difficulties of synchronizing
clocks. We believe that our work gives a more precise understanding of the problem, explicitly
showing what are the requirements of each step and thereby facilitating adaptation to other
delay assumptions. Their results are a special case of the general methodology developed here,
in which exactly one message is sent on each link, and upper and lower bounds on delays are
known. In fact, the aLgorithm we obtain for this specific setting is essentiaLly the one in [31

Previous definitions of optimal clock synchronization were based on the worst (largest)
difference between clocks of two processors in any execution. For some of the assumptions that
we study in this paper, e.g., when no upper bounds on the delays are known, this worst case is
inherently unbounded. Moreover, as already stated in [3]. we would like to award algorithms
that exploit favorable conditions, and achieve precision that is as good as can be in each specific
instance. We give a precise definition of optimality for each specific execution, and show that
it is achieved by our algorithms (and hence also by the algorithm of [3]).

When trying to crystallize these ideas, it turned out that the decision of which messages to
send should be separated from the method for adjusting the clocks based on the local message
histories. Our framework shows how to optimally adjust the clocks, given any set of local
message histories. The decision of which messages to send, to whom, when, etc., can therefore
take other considerations into account, e.g., message traffic optimization, and is left outside of
the scope of this paper.

The rest of this paper is organized as follows. In Section 2, the model and the clock
synchronization problem are defined. Section 3 presents the general clock synchronization
algorithm, and proves that it achieves optimal precision; the algorithm is independent of the
message delay assumptions. In Section 4, ii is shown how to compute the inputs needed for
the general clock synchronization algorithm, when some local information about the views of
the proceors is given: the computation is valid for local systems. In Section 5. it is shown
how to compute the required information on the views for several specific delay aumptions.
Conclusions and open questions appear in Section 6.

3

2 Definitions

2.1 Defining Optimal Precision

We would like a clock synchronization algorithm w obtain the best possible precision, that is.
to bring the logical clocks as close to each other as possible. However, it is not obvious how to
compare the precision achieved by different algorithms, and how to define optimality.

An elegant soJution is to evaluate a clock synchronization algorithm by the worst (largest)
precision achieved hi any of its executions. This worst case interpretation follows the tradition
of worst case complexity analysis of algorithms.

This definition has two drawbacks. First, like any definition that concentrates on the
worst case, it does not award algorithms that behave welt in other cases. An algorithm that is
optimal under this definition can be very inefficient in executions where the delays are favorable.
Second, worst case analysis is meaningful only if the worst case precision is bounded. However,
in many important cases, the worst case precision can be easily shown to be unbounded, e.g.,
when there are no upper bounds on message delay.

We believe a more refined notion of op:imaitv is called for. Intuitiveiy. an optimal algorithm
is one whose precision, in every execution. is not :arger than the precision of any other algorithm
in an execution where the message delivery system acts the same.”

Formalizing this idea is nor so simple. The major difficulty is finding a satisfying definition
for executions where the message delivery system acts the same. The problem is that the
properties of the exeurion are determined by the interaction between the message delivery
system and the a]gorithm. The algorithm controls the execution by deciding when to send
messages, whi]e the message delivery system controls the execution by determining their delay.3
It is difficult to isolate the effect on the execution determined by the message delivery system.
Such isolation is necessary in order to compare executions of a given algorithm to executions of
other algorithms where the message delivery system is equally adversarial. A definition is too
strong if it compares an execution of one algorithm with an execution of another algorithm in
which message delays are unfairly favorable. Conversely, a definition is too weak if executions
with the same message delivery policy are not compared. We sidestep this problem by noticing
that the construction of a clock synchronization algorithm has two aspects. First, the design or
the interactive part where the processors send messages. Second, calculating corrections using
the views of the processors that were obtained during the interactive part. In this paper, we
do not address the first aspect. We assume that we have a set of views. one for each processor.
and we ask how to compute optimal corrections for this set of views.

3This is not merely a formal issue: from a practical point of view, if an algorithm sends too many messages
in a short period of time, the network becomes congested and delays are long and highly variant.

4

2.2 Model of Computation

Here we formalize the behavior of the interactive part of a clock synchronization algorithm,
which is a distributed algorithm miming on a network- The distributed algorithm decides
when to send messages, while the network decides when to deliver the messages. The interplay
between the distributed algorithm and the network generates a set of executions. The result
of this execution is the input to the clock synchronization function.

We consider a set P = {pi,... ,p} of processors. With each processor p C P we associate
a (local) clock. The clock cannot be modified by the processor. Processors do riot have access
to real time; each processor obtains its only information about time from its clock and from
messages sent by other processors. The clock is represented by a local time component, which
is a real number. In the sequel, the term clock time refers to the local time component of
the processor. while the term real tnne refers to the absolute time as measured by an outside
observer. In this work we assume that clocks do no drift, i.e.. that they run at the same rate
as real time, but they are not necessarily synchronized with each other.

Below we list the euents which can occur at processor p. together with an informal expla
nation:

Message receive events— receive(p. in, q), for all messages in and processors q: processor p re
ceives message in from processor q.

Message send events— send(p, m, q), for all messages in and processors q: processor p sends
message rn to processor 7.

Timer set events— timer-set(p, ‘F), for all clock times ‘F: processor p sets a timer to go off when
its c]ock reads T.

Timer events— timer(p. F:’, for all clock times T: a timer that was set for time ‘F on p’s clock
goes off.

Start events— start(pO): p starts executing the algorithm, with the initial vIue of its cloth
being U.

The message receive, timer and start events are interrupt events.

Each processor is modeled as an automaton with a (possibly infinite) set of states, including
an initial state, and a transition function. Each interrupt event causes an application of the
transition function. The transition function is a function from states, clock times, and interrupt
events to states, sets of message-send events, and sets of timer-set events (for subsequent clock
times). That is, the transition fuaction takes as input the current state, clock time, and
interrupt event (which is the receipt of a message from another processor or a timer going off),
and produces a new state, a set of messages to be sent, and a set of timers to be set for the
future.

0

A step of p is a tuple (ST. . s’,M.TS). where s and s are states. T is a clock time. i is
an interrupt event. .W is a set of message-send events. TS is a set of timer-set events. and
s. 1. and TS are the result of ps transition function acting on s. T. and IA history of
a processor p is a mapping associating to each number from ? (real time) a finite sequence
(possibi empty) of steps such that:

1. For each real time t. there is only a finite number of times P < t such that the corre
sponding sequence of steps is nonemptv (thus the concatenation of all the sequences in
real-time order is a sequence):

2. The interrupt event in the first step of the]iistory is a start event and the old state in
the first step is p’s initial state; let S,. be the real time of the start event;

3. There are no other start events and the old state of each subsequent step is the new state
of the previous step;

4. For each real time t, the clock time component T of each step in the corresponding
sequence is equal to t — 8,. (thus, the clock time of the start event of p is 0);

5. For each real time t, in the corresponding sequence there is at most one timer event and
it is ordered after all other events; and

6. A timer is received by p at clock time T if and only if p has previously set a timer for T.

An execution is a set of histories, one for each processor p in P, such that there is a one-
to-one correspondence between the messages received by q from p and the messages sent by
p to q. for any processors p and q. (To simplify our discussion, we assume that messages are
unique. so this correspondence is uniquely defined.) We use the message correspondence to
define the delay of a message yn received in execution a, denoted d0(m). to be the rea] time
of receipt minus the real time of sending. When a is r]ear from the context, we simply write
dim)

Let = 5. where is p’s history in a: that is, S is the real time of the start event of
processor p in a.

Note that the message delivery system is not explicitly modeled. The requirements from
an execution state that messages are delivered without duplication, and that the system does
not generate rnessages the system can reorder or lose messages. A system (P. A is a set. of
processors P and a set of executions A, called admiss:ble executions. For example. A may
allow communication only between specific pairs of processors connected by a link.

The cornerstone of our definitions and proofs is the notion of equivalent executions. In
formally, two executions are equivalent if they are indistinguishable to the processors; only an
outside observer who has access to the real time can tell them apart.

To formalize this notion, define the view of processor p in history 7 to be the concatenation
of the sequences of steps in ,r, in real-time order. (Note that the view includes the clock times.)

6

The real times of occurrence are not represented in the view. Let a be an execution, and let
be ps history inn. The view of p in a is the view of p in r and is denoted ap Two executions
a and a are equivalent, denoted a &, if for every processor peP, alp = a’p.

2.3 The Clock Synchronization Problem

The goal of a clock synchronization algorithm is to bring the clocks of the processors to be
as close to each other as possible, while keeping the clocks’ values with the progress of real
time. Intuitively, each processor maintains a logical clock, which “corrects’ the value of the
Local clock. Since the logical clock is required not to drift from the progress of real time, it
is straightforward to see that the logical clock must be the local clock plus some correction
factor. Thus, the goal of a clock synchronization algorithm is to compute a correction for each
processor. such that for any two processors, the values of the local clocks (at the same real
time) plus the respective corrections are close.

Speciflcth a clock synchronization algorithm is a ftmction from a set of n views to a
vector of ii real numbers, called corrtctions, Given a clock synchronization algorithm I and
an execution a, we abuse notation and denote by f(a) the vector obtained by applying f to
then views in a; we denote by f(a.p) the component of f(a) that corresponds top. Since a
clock synchronization algorithm depends only on the views, we have:

Claim 2.1 If a a then f(a) = f(a’).

Recall that at ally real time t, the clock value of p is t
—

Given a clock synchronization
function f, the corrected local time oip in a 1st

— S2+ f(a.p). Therefore. ‘(Se,, — J(ap)) —

(S — f(a. q)) is the difference between the corrected local times of p and q in a.

To capture the precision achieved by some vector of corrections £ = (s’..., x,) denote
p(ai) = max,p I(Sa.px,)(Saqxq)’. That is. p(a,i) is the largest discrepancy between
two clocks of different processors after they are corrected.

Because the computation of the corrections does not distinguish between equivalent execu
tions, we measure the precision for a specific execution a, by considering the worst discrepancy
achieved for all the executions equivalent to a. Let .4 be the set of admissible executions. For
mally, for any execution a C .4, the inherent precision achieved by a vector of corrections a!
is

= sup{p(a’,2) : a’ a and a’ E A}

Definition 2.1 A clock synchronization algorithm f computes optimal corrections if for every
admissible ezecution a and every vector of corrections E, (af(a)) S

We call D(a,f(a)) the precision off on a, and use the shorthand p(a,f).

3 A General Clock Synchronization Algorithm

As mentioned before, the basic difficulty of computing corrections is the fact that there may
he two admissible executions a and & in which all processors have the same views. Clearly,
the tightness of the achievable synchronization depends on how “far away” iii real time can a
be from a. We formally quantify this idea by defining the maximal shift between processors
in a given execution. We show that if estimates of the maximal shifts are available, then there
exists a hrnction that computes optima’ corrections. This is done by showing a lower bound
for the precision which depends only on the maximal shifts. Then we show that this hound is
tight by presenting a method for computing corrections that achieves this value as its precision.
Jr. subsequent sections we show how to estimate the maximal shifts for specific systems.

3.1 Maximal Shifts

Consider two equivalent executions a and a’. It follows that for any p C P, the sequence of
steps in a is equal to the sequence of steps in a, except that p executes its steps at different
real times. Since the clocks have no drift, it follows that the difference between the real times
of occurrence of a step in a and the corresponding step in a’ is fixed, independently of the
step. This implies that a’ can be obtained by “shifting” the steps of the processors iii a.

In the rest of this section. we formalize this notion of shifting and study its properies. This
technique was originally introduced by Lundelius and Lynch 30] to prove lower bounds on :he
Drecision achieved by co& synchronization algorithms in complete graphs.

Formally, given a history Ir of processor p and a real numbers, a new hisrory = shift(r, s)
is defined by ir’(t) = ir(t + s) for all t. That is, all tuples are shifted earlier in n’ by s if s
is positive, and later by —s if s is negative. Clearly, the views do not change with shifting.
Furthermore:

Lemma 3.1 (Lundelius and Lynch [10]) Let iv be a history of processor p and let s be a
real number. Then K’ = shift(r, s) is a history of p and S. — s.

Let a and a’ be two equivalent executions such that each procsor p € P is shifted in
cY w.r.t. a by 8; the vector of shifts of a’ w.r,t. a is the vector S = (si ,j- That is.
execution a’ was obtained by replacing p’s history in a, IT. v.-th shzft(r. sr). for each p C P, and
by retaining the same correspondence betwe€n message send and receive events. Jechnically.
the correspondence is redefined so that a pairing in a that involves the event for p at time t,
in cx involves the event for p at time t — s,.) We denote a by shift(a, 5). Clearly:

Claim 3.2 Let a’ = shift(a, (Si,..., sn)). For every message m received by processor p fmm
q in a, d0(m) = dQ(m) + (sq — se).

S

Note that if a a’ then there exists a vector of shifts S such that a’ = shift(a. 5).

We now formalize the notion of how far away” caa a procor be shifted w.r.t. another
processor. Fix a system (PA), and let a e A. We say that s is an admissible s/nfl of q
w.r.t. p in a. if there exists a vector of shifts S = - s) with s — s = s, such that
a’ = shift(ct. S) is in A. Define

ms0(p. q) = supfs s is an admissible shift of q w.r.t. p in a}.

This is ±e maximal shift of q w.r.t. p iu a; that is, how far away can q he shifted from p while
retaining the admissibility of the execution. Since C is obviously an admissible shift of q w.r.t..
pin a, it fol]ows that ms0(pq) 0.

Claim 3.3 Let a E A and let a e a. If a’ cA, then S,,
— 5&,q S + ms(p, q),

for any two processors p and q.

Proof: Since a’ e a it follows that a’ = shift(a, S) for some vector of shifts S = (st,. s,j.
Fix a pair of processors p and q. Since a’ E A it follows that 8q — s,, ms0(p, q). The claim
follows since = — s,, and 5&q = S,q — S9.

3.2 The Lower Bound

Fix a system (PA), an admissibLe execution a, and a clock synchronization algorithm f. The
following lemma relates the maximal shift and the attainable precision.

Lemma 3.4 For any pair of processors p and q. Ø(a. f) So,, — f(ap)
— 50.q + f(a, q) +

msa(p. q).

Proof: Let s be an arbitrary admissible shift of q w.r.t. p in a. Let a’ c A be an execution
such that a’ a and q is shifted w.r.t. p by s. Then.

(a.f) p(a’,f(a’)) S& — f(a’.p)
— 504 + f(a,q)

= S0, — fça’,p)
— + f(a, q) t s

= Se,, — f(a,p)
—

+ f (cxq) + s (by Claim 2.1)

Since s was chosen arbitrarily,

p(a,f)50,f(a,p)—S0,9+f(a,q)+ms0Q’,q).

9

The expression defined next will turn out to be a lower bound on the precision that can be
achieved in a. Let 9 be a cyclic sequence of processors, that is, 0 PQ’PX, ,Pk—1.Pk where

= pa; processors p, and p are nor necessarily adjacent in the graph. Denote 10 = k and
ms(O) = 4ms0(p1,p1). Let AQ0) = ms(6)/ 9. and define

= m&{A08) 9 is a. cyclic sequence of processors}.

Theorem 3.5 For any clock synchronization algorithm f, (a,f) ,4.

Proof: Let 9 P0 13k be an arbitrary cyclic sequence of processors (where Pk = po). By
Lemma 3.4,

cXa, f) S — f(a,p) — Sap÷l + f(ap,,) +ms0(p.p.÷i)

for every i, 0 S I k — 1. Summing over all the consecutive processors in 0, we have

k p(.f) E — f(o,p,) — — f(a.p,_1)+
—0

Clearly,

E — f(a.p)— + fa.pi)] =0,

and hence.

p(ct,f) ms(p,,p,1)=A0(0)

as needed.

3.3 The Upper Boirnd

We now show the converse direction, i.e., that there exists a clock synchronization algorithm f
with p(a,f) = A”-’ for every a, provided certain estimates can be computed from the views.
By Theorem 35 no other clock synchronization algorithm can athieve better precision. Hence
our clock synchronization algorithm computes optimal corrections, in the sense of Definition
2.1.

Clearly. if the values of rns0(p.q) are known then it is possible to calculate As we
shall see, computing A is the crux of computing optimal corrections. However, since the
views do Hot include the actual message delays, it is not clear what is the set of equivaknt
executions: hence, in general. it is impossible to compute the values of ms(p,q) from the
views. Below we show that it suffices to have ony estimat on msQ(p. q). In the next sections.
we show how to obtain these estimates for specific systems.

10

Define the estimated maximal global shift to be ifisjp.q) = ms0(p.q) + Se., — Saq. The
next lemma is the key to replacing ms3 with the estimat ins2 in the calculation of A. The
lemma shows that the maximum average cycle weight with respect to the actual maximal shifts
[s equal to the maximum average cycle weight with respect. to the estimates. Specifically, for any
cyclic sequence of processors 0 = pa. •Pk (where Pk = p0) let ths0(9) = rfisa(p,,p+i).
Also, let A0(O) r thsa(8)/0I, and define

= max{A0(0) :9 is a cyclic sequence of processors}.

Lemma 3.6 A = A.

Proof: Consider any cyclic sequence of processors 0 = po,... ,p (where Pk = po), and sum
the estimates around the cycle:

ths(,pi) =
— S,p. —

However, the va]u for cancel each other, and we get mso(pt.p.+:). which is ms2(O).
Since this holds for every cyclic sequence of processors, it holds also for any critical sequence
0 where Aa is maximiz€d, i.e.. where A0(O) = .4.

Thus, we have the foLlowing function SHIFTS far mputing corrections given inputs
thsa(p, q) = ms0(p. q) ÷ S — Saq, for every pair of processors p and q.

1. Compute A (by computing A).

2. Select an arbitrary root processor r. The correction for each processor p C P is
dist(r,p)—the distance in the (complete) graph relative to the weights w(p,q)

— ths0(p,q).

The value of A”’ can be computed in Step 1 by using an algorithm of Karp [5], that
runs in 0(n3) time. By Lemma 3.6, this is equivalent to computing A. By definition,
.1” A0(9) = ms0(0)/[Ol, for any cycle 0. Therefore,

S (A° — rns(p.q)) = — rñs0(O) 0.
(p)EO

This implies that there are no negative weight cycles in the complete graph with the weights
w(p,q) = — nis0(p.q). Thus, the distances can be computed in Step 2.

Theorem 3.7 The function SHWrs computes optimal corrtctions w:th prension in each
execution a.

II

Proof: Denote by f(a) the vector of corrections computed by SHIFTS when given C35a(P. qh
We will show that (a, f) A; it follows from Theorem 3.5 that these are optimal correc
tions.

To prove that a.f) < A we need to show rhat p(a’.f(a)) < 4’ for any admissible
execution a’ a. It suffices to show that for ever’ pair of processors p and q

— f(a,p)
— 504 + f(a, q) Ar”

Fix some pair of processors p and q. By the definition of the function SUIFTS, f(a, q) =

dist (r, q) and f(op) = dist(r, p) relative to the weights w(p, q) = — tfls0(p, q). Thus

f(a, q) — f(a,p) = dist(r, q) — dist(r,p) w(p, q) = — rns0(p, q)

Adding rfls0(p.q) — ms0(p, q) to both sides, we get

rns(p, q) — ms0(p, q) -i- f(a, q) — f(a, p) — rns,(p, q)

By the definition of estimated maximai shifts, rfisj,p,q) — ms(p.q) = — Sq. Hence

So 5a,g +f(a.q) — f(a.p) —ms(p.q) .4

Since a a. Claim 2.1 implies that f(a) = f(a’), and thus

— S0 + f(a’. q) — f(a. p) -- msp. q) <

By Claim 3.3.
—

S. — + ms(p, q) and thus,

— f(a’,p)
— S&,q + f(&,q) AQ

as needed.

So far, we have reduced the problem of designing an optimal clock synchronization algo
rithm to the problem of finding the estimates ths of maximal shifts. Given such estimates,
the clock synchronization problem can be solved by computing the function SHIFTS. The next
two sections show how to calculate ins0.

4 Calculating Estimates in Local Systems

In the previous section, we presented a function for computing optimal corrections, which
relies on estimat ms(p, q) of the maximal shifts for each pair of processors p and q. We next
show how to compute these estimates in the natural c!ass of local systems. 1ntuitiveh in locai
systems the delays of messages sent to a pair of proce&ors. e.g.. along edges connecting them.
do not depend on the delays of messages sent to other processors.

12

For jocal systems, estimates iñs(p. q) can be computed in two steps. In the first step, local
(pairwise) estimates mls(p, q) are computed. In the second step, the desired globa] estimates
rfis(p. q) are produced by combining the local estimates. Tn this section we deal only with the
second step. i.e.. we show how to compute global estimates from local estimates. In the next
section. we compute the local estimates based on the views for several specific systems.

In order to design a clock synchronization algorithm for a specific local system. only the
calculation of local estimates needs to be modified. As illustrated by the particular systems
discussed in the next section. this calculation handles each pair of processors separately. This
significamly simpbfies reasoning, and allows us to deal with combinations of several assump
tions on the same or on different edges, as we show at the end of this section.

4.1 Local Systems

Informally, a system is local if its admissible executions can be expressed as the intersection
of sets of executions, each set restricting only the views of a specific pair of processors.

Definition 4.1 A set of executions Apq is local to p and q provided that for every execution
o E Ap,q, if there exists an execution a such that a’q = alq and a’Ip [p, then a c Apr

Note that this implies that Ap,q allows arbitrary shifts as long as both p and q are shifted
by the same amount. That is:

Claim 4.1 Assume Apq is Local top and q. Let a C A,, and Jet S = (si..... s,,) be a vector
of shifts such that s = Sq. Then shif4a.5) C

Let a e Ap,q. We say that is a locally admissible shtfl of q w.r.t. p in a if there exists a
vector of shifts S — (s,,.., sn). such that s — s = s and shift(a, 5) E Apq. We have:

Claim 4.2 Assume A is local top and q. and consider an execution a cA,,.2. A value $ is a
locally admissible shift of q tart, pin a if and only if for every vector of shifts S = (si ... s)
with s,

—

s s, shift(aS) e Ap,q.

Define the maximal local shift of q w.r.t. p n a to be

misa(p, q) = sup{s s is a locally admissible shift of q w,r.t. p in a}.

Intuitively, mls (p, q) is the maximal possible shift of q wit. p in a, when the admissibility of
processors other than p and q need not be preserved.

We usually leave the sets A,,q unspecified, when they are clear from the context. Later,
when we want to specir different assumptions on the same pair of processers, we consider more
than one local set of executions for this pair. In this case, to distinguish between different local
sets for processors p and q we will use Ap,q, A;q, Aq etc.

13

Definition 4.2 A set of admissible executions A is local i/there exist local sets A. such
that A = flEp A4. and for every p and q.A.9 is local to p and q.

Claim 4.2 implies:

Claim 4.3 Assume A is locaL Let S = s) be a vector of shifts and let a eA. Then
shift(a. 5) € .4 if and only if 5q — s is a locally admissible shift of q w.r.t. p in a, for euer
pair of processors p and q.

Notice that m]s0(p, q) ms(p, q) and m)s(p, q) 0. We say that mls2(p, q) is a IQCOI
shift, while ms,, (p. q) is a global shift.

Note that mlsa(pq) may differ from mls(q,p). However, if shift(cv, (si, . . . ,s,)) is in
then 8q —

s is an locally admissible shift of q w.r.t. p and s — s is a iocally admissible shift
of p w.r.t. q. Thus, ifs is a locally admissible shift of q w.r.t. p in a, then —s is a locally
admissible shift of p w.r.t. q in a.

Throughout the rest of the section, we assume that .4 is local with respect to some local
sets of executions. Hence, the locally admissible shifts are defined. Furthermore, we assume
that the locally admissible shifts have the following property which holds in most natural
applications.

Assumption 1 Let x andy be two numbers such that x < y. For every two processors p,q,
and every o € .4, if x andy locally admissible shifts of q wr.t. p in a, then every value

€ [y, x is a locally admissible shift of q w.r.t. p zn a.

4.2 From Local Shifts to Global Shifts

Our goal is to compute global estimat rfis0(p.q) from local estimat rnLs0(p.q). In this sec
tion, as a first step in this direction, we show how to obtain maximal global shifts msp. q) from
maximal local shifts mls0(p.q). This also shows how to derive a lower bound on the precision
of clock synchronization from a tower bound on the precision of each edge independentlyu

Let a be an admissible execution. Denote by dist.(p,q) the distance from p to q in the
graph C relative to the weights w(p.q) = mLs(p.q).

Lemma 4.4 For any pair of processors p and q, dist.(p,q) ms(p,q).

Proof: Assume, by way of contradiction, that for some pair of processors p and q,
distw:(p, q) > msa(p, q). Thus there exists some value s, msa(p, q) < s < dist(p, q) (we
assume that all the distances disc are finite; it is not difficult to generalize the result for the
case of infinite distances). We show that s is a (globally) admissible shift of q w.r.t. p in a,
which contradicts the definition of msa(p, q).

14

Since s > msjp, q), it follows that s > 0. Thus we can write s = c dist (p. q), for some
real number c. 0< c <1. FLx some pair of processors j and k. By Assumption 1. c rnls(k,j)
is a locally admissible shift off w.r.t. k in a. In addition c mls(j, k) is a locally admissible
shift of k w.r.t. j in a, and thus —c mlsa(j, k) is a]ocally admissible shift of j w.r.t. k in a.

For every processor i define s c dist(p,i); note that s,, = 0 and 5q = s. We now show
that s,

— 8k isa locally admissible shift of j w.r.t. kin a- By the triangle inequality

dist(p,j) disç(p, k) + w(k,j)

and since w(k,j) rnls0(k,j), we have (by changing sides)

dist (p. j) — dist-(pk) S mls(k,j) -

Since c> 0, by multiplying by c and substituting s and 5k, we get

S —S cmls0(k.j)

By simi]ar reasoning,
— s c niIs(j, k)

This implies
- mlsjj,k) s — 8k c - mls(k,j)

Since —c-mls0(,k) and c-mls0(k,j) are locally admissible shifts of j w.r.t. kin a, Assumption 1
implies that s

— 8k is a locally admissible shift of j w.r.t. k in a-

Since this holds for any j and k. Claim 4.3 implies that shift(a, (si,.., sn)) is in A. There
fore, = s — s, is a g1oballv) admissible shift of q w.r.t. p in a. Since s > ms(pq). this
contradicts the definition of ms0p. q).

We now show that msJp.q) = dist(p,q), by proving the converse inequality.

Lemma 45 For any trso processors p and q. ms(pq) S dtsL(p.q),

Proof: Let s be an arbitrary admissible shift of q w.r.t. p in a. Then there exists a vector
of shifts S = (Si . . s,) with s =

—

s, such that shifi(a, S) € A. Consider a shortest path
po, - - - pk from p = Po to q = pk with respect to the weights to’. Summing over the path we get

k

(s — = — = Sq
—

S, = S . (1)

Since shift(a. S) € A, Claim 4.3 implies that.
—

is a locally admissible shift of p w.r.t.
Pi—! in a. Hence,

—

s_ S mls2(p1.1,p) = w’(p,_1,pj) , (2)

15

for each i = 1. k. By combining Equations (1) and (2) we get:

= — sr,.) w’_i,p,) = dist(p.q)

Therefore. s dist(p,q) Since this holds for any admissible shift, it foflows that msa(p.q)
disç (p.q.

Theorem 4.6 For any admissible execution a and any ttto processors p and q. msp. q) can
bt computed from m[spq).

Proofi For any admissible execution a and aaiy two processors p and q, Lemma 4.4 implies
that msa(p, q) dist,(p, q), where w(p, q) mlsa(p. q). Lemma 4.5 implies that ms0(p, q) =

dist (p, q). The claim follows since dist (p, q) depends only on mis0 (p, q).

4.3 Using Estimates for Local Shifts

Now, the issue is how to compute the values rfis0(p, q) needed as inputs to the function SHIFTS.
We assume that the function is provided with estimates of the local shifts. Under this assump
tion the computation can be accomplished by the following function GLOBAL ESTIMATES, with
inputs mls(p, q) = mlsa(p, q) + 5a,p — 5aq, for every pair of processors p and q.

I. Compute ths(p,q) by a shortest path computation inC with weights rnls(pq).

Theorem 4.7 The fu,zction GLOBAL ESTIMATES computes n5s(p. q), for every pair of p’o
cessors p and q.

Proof: Observe that the weight of any cycle w.r.t. the weights mls is equal to the weight of
the cycle w.r.t. the weights Inls because the S components cancel. It follows that there are
no negative weight cycles in G w.r.t. the weights m1s2 Also, the weight of any path from p o
q w.r.t. weights mIs,, is equal to the weight of the path wr.t. mIs0 plus SQ — 50q The claim
follows from Theorem 4.6.

By composing functions GLOBAL ESTIMATES and SHIFTS, we can compute the optimal
corrections and their precision given only the estimates to the maximal local shifts mIs0. This
follows immediately from Theorem 4.7 above, together with Theorem 3.7.

16

4.4 A Composition Theorem

In many systems, several constraints are imposed on the delay of messages. For example, it
is possible that there is a bound on the delay in each direction of the link as well as a bound
on the difference in message delay n opposite directions. In these cases, the system is local
with respect to several sets of executions, each of which is local to the same pair of processors
p and q. We now show how to combine several sets of executions local to p and q into a single
complex set of executions local to p and q. This allows us to deal with complex local systems
by regarding each pair of processors and each assumption separately; this will be useful in the
next section.

We remark that the theory developed so far already allows us to deal with local systems
where different pairs of processors obey different types of constraints.

Note that the notion of an admissible shift (and the derived notion of maximal shift) is
defined in the context of a specific set of admissible executions. To develop the results iii this
section it is convenient to state this fact explicitly by saying that a value is an admissible shift
(or maximal shifr under A, where A is some Se. of executions.

For some pair of processors p and q, let Aq be a set of executions local to p and q, and
let A;q be another set of executions local to p and q. Denote Ap,q = A n A. It is easy to
see that Ap,q is local top and q. For any execution c € A, let mls(p, q) be the maximal local
shift of q w.r.t. pin a under Aq Similarly, define mls(p, q) and mlsp,q). We have;

Theorem 4.8 mls(p, q) = min{mls(p, q), mls(p, q)}.

Proof: The fact that mls0(p. q) m14 (p q) follows immediately since every execution in
is an execution in Aq. Thus ifs is a locally admissib]e shift of q w.r.t. pin a under Apq. then
it is a locally admissible shift of q w.r.t. pin a under 4q• Similarly ml50(p. q) mls(p, q).
Therefore, mIs0 (p. q) min{mls(p, q). nthp. q)}.

Assume for contradiction that s is a value such that mls0(p.q) < s <
min{mls(p,q),mls(p,q)}. Since mls0(p.q) < s < mls(p,q), Assumption 1 implies that
is a locally admIssible shift of q w.r.t. p in a under 4q Similarly, s is also a locally admissible
shift of q w.r.t. pin cx under A,q B Claim 4.2, for every vector of shifts S (s,, . . s,), such
that s = — s,, shift(a,S) is in both A,q and 4q Therefore, shift(cx,S) is in A,,q. Thus,
is a locally admissible shift of q w.r.t. pin a under A,q, a contradiction since mls0(p,q) <
Therefore nils0(p,q) = min{mlsp,q),mlsp,q)}.

5 Clock Synchronization for Specific Delay Assumptions

We now show how to compute estimated maximal local shifts for specific sets of executions
Ap.q local to p and q. given the views. By Theorem 4.7 and Theorem 4.8. this implies a

17

clock synchronization algorithm that mputes optima] corrections for am’ system whose set of
admissible executions is the intersection of any collection of sets of these types. By Theorem 4.7,
all we have to show is how to compute the estimates of the maximal local shifts mis(p.q). This
calculation is based on estimates for the delays (defined below) which can be easily computed
from the views of the processors.

The estimated dc/au drn) of a message m sent from p to q is the actual (real time) delay plus
the difference in (real time) start times of the processors: that is. d(m) = d{rn) + — S.
This is similar to the definitions of estimated maximal global shifts and estimated maximal
local shifts. The next lemma shows that the estimated delay can be comput€d from the views.

Lemma 5.1 Given the views of processors p and q in an execution a, it is posszble to compute
the estimated delay d(rn) of any message m sent from p to q.

Proof: Let t(m) denote the local (ps) clock time when p sent the message m according to
p’s view; similarly, tq(rn) denotes the local (q’s) clock time when q received the message iii

according to q’s view. By Property 4 of histories as defined in Section 2.2, m was sent at real
time tp(m)+Sa,,,; similarly, in was received at real time tq(rn)+Sa,q. It follows that the delay of
mis d(rn) = (tq(m)-1-Sr,q)-—(tp(m)+Sa,p). Hence, d(m) = d(m)+SaS0q= tq(m)—tp(m).
Since messages are unique. t(m) and t(m) can be computed from the views of p and q.

5.1 Bounds on the Delay

in the systems considered in 13, 101, there is an upper and a lower bound on the transmission
delay, for any edge. We extend this assumption by a]]owing edges without upper bounds, in
which case we say that the upper bound is x. Thus, in particular. we have for the first time
an optimal clock synchronization in a compiete]y asynchronous network where there axe no
bounds on the delay.

Consider a set ApqII, u] where land u give bounds (real numbers) for each ordered pair of
processors p and q. such that 0 < Up. q) u(p. q) . Execution a is in A,,1[I. 1 if the delay
of even messa€e sent from p to q is in the range [lisp. q). u(p. q)’ arid the delay of every message
from q to p is in the range l(q, p). u(q.p]. Clearly. .Apq[/, ii] is local top and q.

The maximal delay of a message received by q from p in execution a is denoted dr(p. q).
Similarly, the minimal delay of a message received by q from pin a is denoted d’(p.q). if
no message was received by q from p in a then q) = —oc and d”(p, q) CX. We
first observe that in such systems, mls (p, q) depends only on the maximal and minimal delays
between p and q.

Lemma 5.2 Let a be an execution of (P, Ap,q[I, ii]). Then

mls(pq) = min{(u(q,p) — d:cax(q,p)),(dln(p,q)
— l(p,q))}.

18

Proof: We can partition the constraints on the communication between p and q into two:
The conditions on the delay of messages from p to q and the conditions on the delay of rnsages
from q to p. This is done by expressing the set Ap,qL ui as the intersection of A<.>4 u] which
constrains the messages from a o p, and ,A<pq>[I. u], which constrains the messag from p to
q. Let mls(p, q) be the maximal local shift of q v.r.t, pin a under A<>f 1, u]; mls(p. q) is
defined similar]y under A<p,q>[l, u].

We firstshow that m1s(p,q) = u(q,p)—d(q,p). It isobvious that, mls(p,q) u(q,p)—
d(q, p). Assume, byway of contradiction, that s > zt(q, p) — d”(q. p) is a locally admissible
shift of q w.r.t. p in a. This immediately implies that d’(q,p) > —oc, i.e., at least one message
was received by p from q.

-

Denote a = shzft(a, (si,.. ,s)), where 5q sand s = 0 for all i q. By Claim 4.2, a’ is
in A<>. By Claim 3.2, if a message m from q top has delay din a, then m has delay d +

cca maxin a. Thus, d, (q, p d0 (q.p) —s. SLnC€ s > u(q,p) — d0 (q, p) and d0 q,p) > —, it
follows that the maximal delay of a message front q to pin a is strictly greater than u(q,p).
A contradiction.

in a similar manner, we show that mlspq) = d”(p.q)
—

l(p. q). It is obvious that
mls(pq) d’pq — I(p,q) Assume, by way of contradiction, that > d°m(p. q) — l(p.q)
is a locally admissible shift of q w.r.t. p in a. This immediately implies that dm(p, q) < oc,
i.e., at least one message was received by q from p.

Let a be as defined above. By Caim 4.2. a is in t<p,q>. By Claim 3.2. if a message m
from p to q kas delay d in a. then in has delay d — s in a. Thus, d(p. q) = d(p. q) —

Since > d”(p. q)
—

l(p, q) and d(p. q) < X!, it follows that the minimal delay of a message
from p to q in a’ is less than l(p, q). A contradiction.

The claim now follows from Theorem 4.8.

Lemma 5.2 gives the maximal local shifts as a function of the actual maximal and minimal
delays. However, the views of the processors give only estimates of the delays, not the delays
themselves. Yet, the estimates of the delays give an estimate for the maximal local shift
mls0(p,q). Formally, the estimated maximal delay is defined as

d(p,q) = d7(p,q) + 5 —

while the estimated minimal delay is defined as

—mm mmd0 (p.q) = d ‘pq) ÷ 50p — Sa,q

We have:

Corollary 5.3 Let a be an admissible execution of (P.A,,q[l. u]). Then

rnls0(p,q) = min{(u(qp)
— ax(q,p)),(In(p,q)

- 4p,qfl}.

19

Note that dm and dtm” can be computed from the vLews of p and since d(p, q) is the
minimum of d(m) for all msag in received by q from p in a. and (p. q) is the maximum
of d(m) for all messages m received by q from p in a.

If we make the natural assumption that all delays are non-negative, we get a general bound
on mis and mis (without any other bounds on the delay).

Corollary 5.4 Let a be an admissible execution of a system (P,.Apq) local to p,q. Then
mls0(p, q) d(p, q) and nls(p, q) a:(, q)

5.2 Links with Bounds on the Round Trip Delay Bias

In many communication links there are no tight bounds on the transmission delays. However.
whenever the traffic load on one direction of a link is high, the load in the opposite direction
of the link is aLso high. Thus, it is possible to give a bound on the difference, or bias, between
delay in one direction and delay in tile opposite direction. For the purpose of iUustrating our
tedmiques. we siniplifv the a.ssumption and require that the difference between the delay of
any pair of messages in opposite directions is bounded. We now show how to calculate maximal
local shifts for links in this case. It is possible to generalize our results to the more realistic
scenario in which this assumption holds only for messages that were sent around the same
time.”

Specifically, we associate a nonnegative number b(p, q) with processors p. q. An execution
a is in Ap,q[b] if for any message in received by p from q, and any message m’ received by q
fromp, d0(rn) —d0(m) b(pq). We also restrict A[b] to nonnegative delays, i.e., for every
message in. d(rn) 0. The next lemma shows that mls0(p,q) depends only on the maximal
and minimal delays between p and q.

Lemma 5.5 Let a be an admissible execution of (P,Apg[b’). Then

mlsa(p. q) = min{d’”(p. q). q) i- d(p. q) — d(q.p)]}.

Proof: Consider the following two sets of admissible executions local to p and q. The first
set contains every execution a such that the delay of every message in a is non-negative.
The second set 4q is like Apq[bj except that the delays are allowed to be negative.

Clearly A,[b] is the intersection of and A,q. By Theorem 48, mls(p,q) =

min{mlsp, q), mls(p, q)}. By Lemma 5.2, mlsp, q) = d1(p, q). Therefore, it suffices to
prove that mls(p, q) = [b(p, q) +dm(p, q) — dX(q, p)]

Fix a vaLue sand denote a’ = shift(o, (2i ,.,s,j), where sq = sands1 = 0 for all i # q.
By Claim 4.2. s is a locally admissible shift of q w.r.t. pin a if and only if a’ E

20

Dy Claim 3.2, for any message in received by p from q, d2(ni) = da(m) + s. Similarly, for
any message in’ received by q from p, 4(m) = 4(m) — s. Therefore,

d (rn) — 4(m) = 4(m) — 4(m) — 2s,

and da (in) —4’ (in’) = 4(m) — 4(m’) + 2g.

The round trip delay bias of an arbitrary pair of messages m and rn in a is at most b(p, q) if
and only if

da(m’)da(m)2s b(p,q),

and 4(m)
—

4(m) + 2s b(p, q).

Since a is admissible and s 0, the first inequality trivially holds. Hence, s is a locally
admissible shift of q w.r.t. p if and only if

s [b(p, q) + da(rn’) — 4(m)].

Namely,

s [b(p,q) +dQp,q) —d(q,p)].

Thus mls(p, q) = [b(p, q) + d”(p, q) — d(q,p)].

Corollary 5.6 Let a be an admissible execution of (P,A[b]). Then

min 1 rnin -max

mls0(p, q) = min{da (p, q), [b(p, q) + da (p q) — da (q,p)]}.

5.3 Multicast Networks

Communication in many networks is performed through broadcast media where a message is
transmitted simultaneously to a subset of the processors. Multicast transmission may often
have useful timing properties for clock synchronization. In this subsection we investigate a
simple timing property: there exists a bound e on the difference between the arrival times of
a message at different processors.

Optimal clock synchronization algorithms for multicast networks which have a bound on
the differences in delay for different processors are presented in [4, 16]. Our solution demon
strates the usefulness of the reductions of the preceding sections. To provide optimal clock
synchronization under the multicast assumption we need only to find a way of defining local
shifts. This, somewhat surprisingly, turns out to be an easy task. Furthermore, the broadcast
model car’ be limited to specific subsets corresponding to subnetworks of an internet, and
combined with the other assumptions using the Composition Theorem.

To define this assumption, we allow events of the form send(p, in, Q), for all messages in

and sets of processors Q; this event represents a multicast of in to the processors in Q. The

21

definition of an execution is modified so that there is a one-to-one correspondence between
the messages received by p from k to messages sent by k to p or multicast by k to a set Q
which includes p, for any processors p and k. Let d(p, in) denote the difference between the
time the message in is multicast by some processor k and the time processor p receives it:
this is the delay of the message m to p. The estimated delay of the message m to p in a is
d(pm) = dcp.nn ,- — S. As before, the estimated dekay of a message from k top can
be computed from the views of p and k.

The system is the pair (P ,4(e)), where 4(e) is is the the intersection of local sets Ap,q(c).
for every unordered pair of processors p and q. An execution a is in .Apq(e) if for every message
rn multicast to both p and q, d(p,m) — d(qm)] a That is, m reaches pat most e after it
reaches q, and vice versa.

Note that A(e) is local top and q. This is because any shift applied to both p and q does
not change the difference d(p, in) —d(q, in). The next lemma shows how to calculate mls(p, q)

Lemma 5.7 Let a be an admissible execution of (PApq(e)). Then

mis0(p. q) = c + rnin{d(q, in) — d(p. ,n)}.

Proof: Fix a value s and denote a’ = shifi(a, (s1, s,)). where s = s and s = 0 for all
I q. By Claim 4.2. s is a locally admissible shift of q w.r.t. p in a if and only if a’ € Ap,q(e).

For every message In multicast to both p and q, let &(q. in) and d’(p. in) denote the delay
of m ui a for processors p and q respectivelt The value s is a locally admissible shift of q
with respect to p in a if and only if

d’(p,m) — d’(q,m) 6,

for every message in multicast to both p and q. If q is not the sender of in then d’(p,m) =

d(p, in) and d’(q, in) = d(q, in) —5; ifq is the sender ofm then d’(q, in) = d(q, in) and &(p,in) =

d(p, in) + s. In both cases, s is a locally admissible shift of q with respect top in a if and only
if

d(p,m) — d(q,m) + s e

for every message in multicast to both p and q.

Hence, s is a locally admissible shift of q with respect to p in a if and only if

IsI Sc + d(p, in) — d(q. m)

for every message m multicast to both p and q. Since mlsa(p, q) 0. this implies that

mls0Q,, q) = c ÷ min{d(p, in) — d(q. in))

as needed.

22

As before, this result applies also to the estimated delays which can be computed from the
views.

Corollary 5.8 Let a be in adrnt,sible execution of (P. A (ej). Then

rnls(p, q) = e + min{d(q, m) — J(p, rn)}

Proof: Fix a message m and let k be the sender of m. We have

rnlsQ(p, q) = mlsa(p,q) + 5Qp — (by definition)

= e + min{d(q, rn) — d(p, m)} + — (by Lemma 5.7)

= s + min{(d(q, m) + Sak — S) — (d(p, in) + S0k — Sa)}

= + min{d(q, m) — J(p, m)} (by definition),

as needed.

6 Discussion

We have shown a framework for designing optimal clock synchronization algorithms under
a variety of assumptions on message delay w’wertainr The general result yields optimal
clock synchronization algorithms under the following assumptions: upper and lower bounds on
delays are known; only lower bounds on the delays are known: no bounds are known; only a
bound on the difference of the round trip delays is known; and a multicast assumption which
bounds the difference in delay in reaching different processors. Moreover, the results apply
to cases where different links satisfy different assumptions, or the same link satisfies several
assumptions. This work extends results of Halpern, Megiddo and Munshi [3], and introduces
a new notion of optimality on any specific instance.

The specific delay assumptions analyzed here are typical of realistic systems, and it seems
relatively easy to perform similar analysis for additional delay assumptions. It is our belief
that this will lead to the design of optimal clock synchronization algorithms for other message
delay assumptions.

In this paper. we only address the issue of computing optimal corrections, given the views
of the processors. An interesting open question is to compute the optimal corrections in a
distrthuted manner. To understand the difficulty involved in the distributed implementation
of this computation. consider the following straightforward approach. Each pair of neighboring
processors p and q compute mls(pq) and rnls0(q.p) using the estimated delays which can
be deduced from their views). All processers send the estimated m&’dmum local shifts to a
distthga[shed processor (leader - The leader computes the estimated maximum global shifts
using function GLOBAL ESTIMATES, and a correction value for each processor according to

23

function SHIFTS. Finally, the leader sends the corrections to the processors. Note, however.
that the precision obtained by this centralized clock synchronization algorithm is optima) only
with respect to the part of the execution that does not include the messages to and from the
leader. That is. any additional mmuuicat-ion. required for exchanging the views, is bound to
change the views themselves. A solution may require the definition of optirnaiitv to be relaxed.
Some extensions in this direction have already been obtained in j15J. Also in this work. sonw
of our results have been generalized to clocks that drift.

Another important open question is to achieve optimal clock synchronization in systems
where the probabilistic properties of the message delay distribution are known. This assump
tion is at the heart of most practical algorithms for clock synchronization [1, 12]. We believe
the setting developed here allows one to address this assumption, and that this will lead to
improvements in these important algorithms.

Finally, an obvious open problem is to make our results to be fault-tolerant, following the
many works addressing fault-tolerant clock synchronization.

Acknowledgments: We rhanic Joe Ha]pern, Marios Mavronicolas and Boaz Patt-Shamir
for helpful comments.

24

References

[1] F. Cristiari, “Probabilistic Clock Synchronization’ Dist. Comp., 3 (1989), pp. 146—158.

[2] D. Dolev. J. Halpern and H. B. Strong, “On the possibility and impossibility of achieving
clock synchronization,” J. Conp. and Sys. Sci., 32:2 (1986) pp. 230—250.

[3] 3. Halpern, N. Megiddo and A. A. Munshi, “Optimal precision in the presence of uncer
tainty,” .J Complexity, 1 (1985), pp. 170—196.

[4] J. Halpern and I. Suzuki, Clock Synchronization and the Power of Broadcasting,” Proc.
Aflertun Conference. 1990. pp. 5S8—597.

5 R. M. Karp, A characterization of the minimum cycle mean in a digraph.’ Disc. Math..
23 (1978). pp. 309—311.

[6] H. Kopetz and %V. Ochser.reiter, Clock SvnchronLzation in Distributed Real-Time Sys
tems.” IEEE T,rnts. Comp., 36:8 (August 1987), pp. 933—939.

[7] L. Lamport, “Time, clocks and the ordering of events in distributed systems” Comrnuni
caflons of the ACM, 21;7 (July 1978), pp. 558—565.

[8] L. Lamport and P. Melliar-Smith, “Synchronizing clocks in the presence of faults,” Journal
of the ACM, 32:1 (January 1985), pp. 52—78.

[9] B. Liskov, “Practical Uses of Synchronized Clocks in Distributed Systems,” invited talk
at the 9th .4CM Symp. on Principtes of Distributed Computing, 1990. Appeared in Dis
tnbuted Computing. 6 (1993). pp. 211—219.

[10 3. Lundelius and N. Lynch. An Upper and Lower Bound for Clock Synchronization.’
Info, and Control, 62:2/3 (August/September 1984). pp. 190—204.

11] K. Marzulio. Loosely-Coupled Distributed Service.,: A Distributed Time Service, Ph.D.
thesis. Stanford University. 1983.

[12] 0. Mills Network Time Protoco] (Version 2) Specification and Implementation,” IEEE
Trans. Comm., Vol. 39, No. 10 (October 1991), pp. 14S2—1493.

[13] Y. Ofek, “Generating a fault tolerant clock using high-speed control ignals for the
MetaNet architecture,” IEEE Trans. Comm., 1993. To appear.

[14] Open Software Foundation, Introduction to OSF DCE, OSF, Cambridge, Massechusetts,
December 1991.

i1S B. Patt-Shamir and S. Rajsbaum, A Theory of Clock Synchronization.” to appear in
Proc. 26th ACM Symp. on Theory of Computing. 1994.

2.3

16] K. Sugihara and I. Suzuki. “Nearly Optimal Clock Synchronization Under Unbounded
Message ‘flansrnission Time.” Proc. 1988 International Conference on Parallel Processing
IlL 1988, pp. 14—17.

l7 3. Simons. I L. Welch andN. Lynch. An ovennew of clock synchrornzation. IBMTecimical
Report Ri 6505, October 19b8.

[18] T. Srilcanth and S. Toueg, “Optimal Clock Synchronization,’ Journal of the ACM, 34:3
(July 1987), pp. 626—645.

[19] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock synchronization,”
Info, and Coinp., 77:1 (April 1988), pp. 1—36.

26

