
Theoretical Computer Science 128 (1994) 63-74

Elsevier

63

Tentative and definite distributed
computations: an optimistic
approach to network
synchronization*

J. Garofalakis, P. Spirakis, B. Tampakas
Computer Technology Institute and Computer Science and Engineering Department, Patras Univer-

sity, Kolokotroni 3, 26110 Patras, Greece

S. Rajsbaum
Institute de Matewiticas U.N.A.M., Mexico Cit.)>, Mexico

Abstract

Garofalakis, A., P. Spirakis, B. Tampakas and S. Rajsbaum, Tentative and definite distributed

computations: an optimistic approach to network synchronization, Theoretical Computer Science

128 (1994) 63-74.

We present here a general and efficient strategy for simulating a synchronous network by a network

oflimited asynchrony. Our proposed synchronizer is optimistic in the sense that it uses very efficient

but tentative protocols to simulate a contiguous block of synchronous steps. However, since

a tentative execution does not guarantee correct simulation, we audit the computation at selected

points, The audits are used to check whether the computation of the block can be certijied to be

correct. We show that a wide class of networks of limited asynchrony admits practical tentative

protocols which are highly likely to produce a correct simulation of one step with very small

overhead. For those networks, the synchronizer exhibits a trade off between its communication

and time complexities which is below the lower bounds for deterministic synchronizers. On one

extreme the amortized complexity of our synchronizer is O(1) messages and O(log n) time (expected)

per “step” of the simulated synchronous protocol. On the other extreme the communication

complexity is 0(e/d2) and the time complexity is O(logd), for networks with e edges and maximum
degree d.

Correspondence to: P. Spirakis, Computer Technology Institute and Computer Science and Engineering
Department, Patras University, Kolokotroni 3, 26110 Patras, Greece.

*This research has been partially supported by the EEC ESPRIT Basic Research Action project No 7141

(ALCOM 2). A previous version of this paper appeared in the International Workshop on Distributed
Algorithms (WDAG 92).

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975 (93) EO177-6

64 J. Garqfalakis rt al.

1. Introduction

1 .I. The need for synchronizers

Consider a network of n processors and maximum degree A. The processors

communicate by sending messages along e communication channels (edges). Assume

that a program has been written for a synchronous network operation: On a global

start-up signal, all processors start computing simultaneously. On every beat of the

global clock each processor, according to its program, performs one computational

step and sends messages to some of its neighbors. The transmission delay in the

communication channels guarantees here that all messages arrive at their destinations

in time to be used in the next computational step. We do not care about the exact

nature and purpose of the program and we assume that processors and channels are

reliable.

If one wants to run the same program on an asynchronous network of the same

topology, where no global start-up signal exists and where transmission delays are

unpredictable, then certain measures have to be taken to keep the computation

correct. The use of synchronizers was suggested by Awerbuch [l] in order to simulate

synchronous networks by asynchronous ones.

1.2. Complexity measures

The communication complexity of a synchronous algorithm Z, Y?(Z), is the worst-case

number of messages sent during the run of the algorithm. The time complexity of

a synchronous algorithm rr, Y(n), is the number of beats generated during the run of

the algorithm. In our paper, for an asynchronous algorithm, the communication

complexity is the worst case (among all possible starting time paterns) expected

number of messages sent during a run, and the time complexity is the expected time of

execution of a run. The expectation is taken with respect to a class of distributions of

the transmission delays.

We are interested in studying what are the complexities of executing a synchronous

program 7c on an asynchronous network of limited asynchrony. Namely, the complex-

ities of a synchronizer S in our paper, are as follows: The time complexity is the worst

case (among all synchronous programs rc) expected duration of the execution of

a (synchronous) step of rr by the synchronizer S. The message complexity of S is the

expected message overhead per step added by the synchronizer.

1.3. Previous work

For networks of unlimited asynchrony, Awerbuch presented synchronizers whose

communication - time tradeoff is proved to be within a constant factor of the lower

bound. The problem of designing efficient synchronizers has been studied in the past

[2,8]. Even and Rajsbaum examined the performance of synchronizer-controlled

Tentative and definite distributed computations 65

networks which have a global clock but no global start-up signal and whose transmis-
sion delays are either negligible [S] or fixed [6]. The results were generalized to other
protocols by Malka and Rajsbaum. The performance of the synchronizer of [S, 61
under random transmission delays and processing times was analyzed in [9]. It was
shown that any synchronizer has time delay (average) per step of O(log d).

Most of the above techniques provide per-step synchronization: the execution of the
next “synchronous” step (of the original ideal synchronous program) begins only after
the current “synchronous” step is guaranteed to have finished correctly. In such
synchronizers, a communication (number of messages per “synchronous step” simula-
tion) penalty of at least O(n) is paid, where n is the number of network nodes.

An exception to the above is the synchronizer alpha of [l]. In this synchronizer, the
network essentially runs free, locally delaying the computation only as long “as
necessary”. In particular, each processor waits for messages to arrive from all its
neighbors before it performs the next computation step (it is assumed that every
message is followed by an “end-of-message” marker, even if the message is empty).
A similar mechanism was used by Chandy and Lamport [4] and the whole approach
is also encountered in models of marked graphs (see e.g. [3]).

1.4. Our results

To avoid the possibly long waits introduced by the simple synchronizer presented
above, we propose that each processor waits only for a certain amount W of steps,
hoping that all messages from neighbors will indeed arrive with high likelihood. This
optimistic approach provides tentative executions which do not guarantee the correct-
ness of the computation. Thus, we use a dejinite synchronization scheme, only at
certain selected points, to audit the network’s computations. The definite protocol
checks whether the whole sequence of many tentative simulated steps can be certified
to be correct. If not, the network’s computation is rolled buck to the previous audit
point, and we restart the computation from there. A similar scheme was also em-
ployed in [7] to provide robust parallel computations on faulty parallel random
access machines (PRAMS) (see [l 11). Our work shows how to apply such ideas to get
efficient synchronizers. For a wide class of networks we show our optimistic synchro-
nizer to get an amortized mean delay of 0(p log m) per “synchronous” step and an
amortized mean number of messages of O(e,@) per “synchronous” step, for a para-
meter m (A <m<n, man” and E>O), and constants fi>2 and 8>0 thus having
a performance which is better than the performance of all previously proposed
synchronizers. Moreover, by chasing m= A, for networks with e=O(A’), we obtain
a synchronizer with constant overhead in communication and time. Also by choosing
m=n, we obtain a synchronizer with constant message complexity.

We assume (as in [6]) that our networks have individual site clocks which run at the
same rate but are not necessarily synchronized. Our networks have transmission
delays that are random variables “with memory” (less variable than the exponential).
Note that the assumptions about the distribution of the transmission delays affect

66 J. Garofalakis et al.

only the performance of our synchronizer. Its correctness is guaranteed independently

of those assumptions.

2. The optimistic synchronizer

We assume that a processor has been elected leader, and that T is a spanning tree of

the network. Each processor knows which of its edges belong to T.
In the sequel, m is the protocol’s parameter, and LX, 0, 8 are constants that will be

determined later. When we say x time units, we assume that they are measured

according to the processors’ clocks (anyone of them, since they all run at the same

rate). The synchronizer is similar to the synchronizer of [S, 61; it has two operating

modes. In the steady-state mode, a processor executes a step of the synchronous

algorithm by performing the following phase.

begin
_ wait W= (a + j?) log m time units;
_ read messages that arrived and originated from neighbors within the previous

phase;
_ compute, as the simulated synchronous algorithm requires;
_ send messages to neighbors for the next phase, as the simulated algorithm requires;

end

The phase is a tentative synchronization method. Note that in each phase, each

node just waits W time units and does not use any other messages than messages of

the algorithm to be simulated received so far. The messages have to be tagged by phase
number. If a message of an older phase arrives (late) at a node, then the node just sets

an ERROR flag locally.

While a processor is in steady-state mode, it repeats the phase. After repeating the

phase k=me times, the processor enters the audit mode, which has the goal of

backtracking the computation in case an error has occurred in any of the phases since

the last audit mode, namely, during the current epoch. The audit mode consists of

three stages: local test, global test, and restarting. In the local test a processor finds out

if a message which has not yet arrived caused it to simulate a phase of the synchronous

algorithm incorrectly. In the global test the leader determines if any processor

detected an error during the previous stage, and broadcasts this information. In the

restarting, the processors either proceed to the next epoch or backtrack and repeat the

last one, as instructed by the leader. A more detailed description of the stages follows.

2.1. Local audit

When a processor enters the local audit mode, it finds out if it has executed any

phase incorrectly during the current epoch. This test can be performed as follows. If

Tentative and definite distributed computations 67

ERROR is set, then some step has been performed incorrectly. If ERROR is not set,
a mistake could have been performed only in case a late message has not yet been
received. To check this, each processor sends an END-EPOCH message to every
neighbor, and waits for an END-EPOCH message, from every neighbor. The message
sent from u to v includes the number of times u sent a message to v during the current
epoch (messages may arrive out of order due to our assumption of independent
stochastic delays, also the last phase has to be checked). When v has received an
END-EPOCH message from every neighbor, it knows whether it has received all the
messages of the current epoch. If any of the messages did not arrive on time, v sets its
ERROR flag, and waits for any messages that have not arrived yet. This concludes the
local audit. Thus this stage serves also the purpose of cleaning the links from any
messages.

2.2. Global audit

At this point some processors could have the ERROR set, while others did not
detect any error locally. After the global audit, if at least one processor had the
ERROR set after the local audit, then all the processors will have the ERROR set. The
leader starts the global audit broadcasting along the tree an AUDIT message. After
relaying the AUDIT message, a processor waits for an answer message from each son
in the tree. The answer will be either a YES (in the case of the ERROR flag set) or
a NO otherwise message. If the processor receives at least one YES message or if it has
its ERROR set, it answers a YES to its parent and sets its ERROR flag. When the
leader receives an answer from each son, it sets its ERROR if it received at least one
YES message. At this point no messages are in transit in the network. Then the leader
starts a second wave of messages: it broadcasts a BACKTRACK message if its
ERROR flag is set or else it broadcasts a RESTART message. If a processor receives
a BACKTRACK message it sets its ERROR flag. This completes the global audit
stage with no messages in transit in the network and either every processor has its
ERROR flag set or no processor has its ERROR flag set.

Alternatively a node, if it had its error flag set, it may send a YES to its parent
without propagating the AUDIT message below it. This will effectively allow the root
to backtrack or proceed in to the next phase sooner. We, however, prefer the first
approach for clarity reasons.

2.3. Restarting

Once the auditing test is completed, the leader invokes the following distributed
restart algorithm (similar to the initialization mechanism of [5,6]). The leader sends
to each of its neighbors a START-EPOCH message. When a processor receives
a START-EPOCH message for the first time it sends it out on every link. If ERROR is
set it unsets it and rolls back the computation to the previous epoch. Else, if ERROR
is not set it commits the epoch. Then the processor enters steady-state mode. Observe

68 J. Garofalakis et al.

that the START-EPOCH messages propagate in the whole network (not only the

tree) via flood. The aim is to guarantee that neighboring processors enter steady state

more or less at the same time.

2.4. Improvements on the algorithm

Several improvements on the algorithm are possible. Note that if at least one

processor sets its flag to ERROR, then every processor in the network rolls back the

computation to the beginning of the epoch. This can be improved by appending to the

START-EPOCH messages, information including the number of the latest correctly

executed phase (i.e. this will allow roll back to the latest correctly executed phase).

This information can be gathered by the leader.

It is possible also to modify the algorithm so that no leader is needed. The global

audit needs to be modified. Instead, each processor propagates a wave with an

AUDIT message including its own i.d. When it gets the answers from each neighbor it

knows if at least one processor has its ERROR set. It then enters the restarting stage

and broadcasts the START-EPOCH messages. A processor receiving such a message

for the first time relays it immediately. Hence a single flood of START-EPOCH

messages is propagated, perhaps started by different processors. Yet neighboring

processors restart steady state approximately at the same time. Observe that the

difference between the times on which two neighbors re-enter steady-state mode is

bounded by the message delay of a START-EPOCH message.

3. Correctness and complexity of the optimistic synchronizer

3.1. Outline

From the synchronizer’s protocol, it is clear that an epoch which has been incor-

rectly performed (because some message arrived too late) will be rolled back by every

processor. Also, no message of previous epochs remain in the network. If the window

W is big enough, then too many errors will not occur, and an epoch will be eventually

committed when the computations of all nodes during the epoch were correctly done.

Thus our synchronizer is correct (it never commits erroneous computations).

Intuitively, if at the beginning of each phase of a node the node and its neighbors are

“approximately synchronized” then they will remain so, at the end of the phase (with

high probability, depending on a successful selection of W). The audit mode (and the

related initialization phase) serve two purposes: To make all nodes “approximately

synchronized” and to preserve the correctness of the computation (by a de$nite

protocol).

3.2. Complexity analysis

We analyze here the protocol as presented with the leader version (the no leader

version has a comparable performance, but the epochs are implicitly committed). For

Tentative and definite distributed computations 69

the performance analysis we use the fact that the delays are random variables with
memory, of mean at most l/n (1 a parameter). Intuitively, a random variable is with
memory if it is “new better than used” in expectation. Many natural distributions
belong to this class, such as normal, uniform, and exponential. As we shall now see, the
exponential is the one that produces the worst performance of the synchronizer.
Therefore, the complexity analysis will be done assuming that the delays are exponen-
tially distributed with mean l/i.

Definition (see also Ross [lo]). A random variable x is called a random variable with

memory if

vu30 E(x-a/x>a)dE(x),

where E(x) is the expected value of x. As the reader may notice, we include the
exponential random variable in this definition. This is done for reason of uniformity of
presentation of Theorem 3.1 and Facts 1 and 2. We adopt this extension of our
terminology to the exponential despite the fact that the exponential is called a “mem-
oryless” distribution in probability theory, since it is a limit distribution in our case.

Definition. A random variable x is called less uariuble than a random variable y if, for
all increasing convex functions h,

E(h(x))bR(h(y)).

We denote this by x <<v y.

Fact I [lo]: Let x be a random variable with memory and y be an exponential
random variable of same mean. Then xd, y.

Fuct2[10]: Ifx1,x2,..., x, are independent random variables and yl, y,, . . . , y, are
independent random variables and xi Gvyi then g(x,, x2, . .., x,)d,g(yl, y2, ,v,,)
for any increasing convex function g which is convex in each of its arguments.

Theorem 3.1. The probability of an error during a phase of a node is maximized when the

message delays are exponential random variables, among all possible delay distributions

with memory.

Proof. An error occurs when the maximum of the message delays from the neighbors
(plus the max “slack” in initial neighbor synchronization) exceeds W. Since the max
function (and the plus) are convex, by Facts 1 and 2, all moments are maximized when
the delays are exponential random variables. 0

Corollary 3.2. The exponential delays of messages provide the worst-case performance

of the optimistic synchronizer, among all possible distributions of delays (of the same

mean) which are random variables with memory.

70 J. Garofalakis et al

Theorem 3.3. For each p > 2 and CI >0 there is a y >O such that the following holds:
Assume that all the neighbors of a node v, and v itself,jnish phase i within a time interval
of CI log m (where a is a positive constant). Then, all the messages that are sent to v at the
end of phase i will be received within the window W of phase i+ 1 of v, with probability
2 1 -m-O, provided that W is at least ylogm, where y=rx +/I/k

Proof. Let to be the instant at which the last phase i of v’s neighbors finishes. In the

worst case, all neighbors finish their phase i at to (else they finish earlier).

Let D1, D,, D,. be the message delays of the messages that were sent to v at the

end of phase i.
Let D=max{D,, D2, D,,,,}.
Clearly m’ is at most equal to the number of v’s neighbors and hence m’ ,< A.

Prob(D<x}=Prob(VDi, Dirx}= fi Prob(Di<x)
i=l

because of independence. Since in the worst case all Di’s are exponential, the above

probability (of small delay) is minimized when all Di’s are exponential. Thus,

Prob(D<xj>,(l-e-‘“)“‘,

where A is the rate of the exponential.

If we want Prob{D <x> to be >/ 1 -m-O then it is enough to have

(1 _e-““)“‘> 1 -m-P q e-““< 1 -(I _m-B)llm

1
= x3,ln

(

1

1” 1
1 -(I _m-P)Um’

But

(1 l-J&j
l/m’ 1

>l---
mBm”

>,,-’
mB’

since m’ >, 1. Thus.

l- 1-i (1
l/WI' B G’ a x2zlogm.

mP

Thus, if we pick a y aza+p/& then all the messages from the various phases i of v’s

neighbors will indeed arrive at u during the window W= (z + /I/L) log m of v’s phase

i+ 1, with probability > 1 -m-“. Cl

Corollary 3.4. 3fi0 >O: VP> Do, if all phases i finish correctly within an interval of
O(logm) time then all phases i+ 1 will finish correctly within an interval of O(logm)

time with probability at least 1 -m-O.

Tentative and dejnite distributed computations 71

Proof. Since all clocks rates are the same and there are no drifts, the finishing time of

phase i + 1 of any node happens after IV+ x steps from the finishing time of phase i of

the same node. Here x is the time interval (same for all nodes) to: (1) read messages

(pad if necessary), (2) do one step of synchronous algorithm and (3) send messages

(pad if necessary) (x is the same for all nodes due to the synchronous algorithm). Thus

the finishing times of phase i+ 1 of all nodes are just translated by the same amount

from the finishing times of phase i of each corresponding node. Hence the assumption

of Theorem 3.3 holds for all phases. Therefore, it is clear that

Prob { 3 phase i + 1 finishing incorrectly)

-<C Prob{incorrect finishing of a phase i+ l} dCm-80

and choose /I,, high enough: nm-80<m-a. III

In the sequel, let k= me, t3>0.

Theorem 3.5. For each PI > 3 and aI > 0,3y > 0: If an epoch of the network starts in such

a way that all starting moments of neighbor nodes are in an interval of size txl log m

(aI >O a constant) then all nodes willJinish the epoch correctly with probability at least

1 -m-trr, provided W= y log m.

Proof. Let /I= /I1 +O. Choose y>ccl +/?/A. Let Ej be the event “phase j of the epoch

finishes correctly provided that all nodes start it within an interval of a1 log m”.
Then, if E= n;=, Ej, we wish to find the Prob{E}. But

Prob(E)=Prob
i 1

0 I?j < i Prob{Ej}~km-B=m-‘8-e’=m-81.
j=l j=l

Thus, Prob{E}>l-m-P’. q

Theorem 3.6. For each CI > 0 38 > 0: Each epoch of our synchronizer starts in such a way

that all starting moments of neighbor nodes are within an interval of size a log m (a > 0 is
an appropriate constant) with probability at least 1 -mmB.

Proof. The starting time of the last of any set of neighbors to start is at most the

maximum of m exponential independent random variables of mean d = 1 /A (because of

the flood protocol by which the leader starts or restarts an epoch). The probability

that this maximum can exceed a log m is at most m -p for some p depending on a (proof

as in Theorem 3.3). 0

Theorems 3.5 and 3.6 show the following corollary.

Corollary 3.7. Each epoch terminates correctly with probability at least 1 -rnmB and
D can be controlled by adjusting the window size W.

12 J. Garofalakis et al.

From Corollary 3.7 and from the fact that the mean value of a geometric random

variable Y of density Prob(Y= i> =(l -~)~-rp is bounded above by l/p, we get the

following corollary.

Corollary 3.8. The mean number of unsuccessful repetitions of an epoch before commit is
bounded above by 2.

Proof. Since an epoch fails with probability dn-” just put p= 1 -m-B. 0

Thus we get our main result.

Theorem 3.9. The amortized (over an epoch) expected number of synchronizer messages
(per synchronous step of the simulated algorithm) is O(e/m’). The amortized (over an
epoch) expected delay of the synchronizer (per “synchronous” step of the simulated
algorithm) is 0(/I log m), for a constant fi and A <m < n.

Proof. Select a 0 >O (k = me), for 0 = fl- /I1 and pi > 3. The number (expected) of

messages of the synchronizer per epoch is O(e) (e = number of network edges), 2e for

END-EPOCH messages, n for AUDIT, e for YES or NO, and e for BACKTRACK or

RESTART messages by protocol description, and by the fact that no messages of the

synchronizer are used in phases. Thus the amortized number is O(e)/k = O(e/m’), for

the constant 8.

The total delay per epoch per node is at most y k log m (for the phases of the

epoch, where 7 is as in Theorem 3.3) with probability at least 1 -mep, plus the delay

of the commit protocol. The mean delay of the commit protocol is 0(1/n). In

this delay we must add the contribution of the global restart delay which is 0(1/i) on

the average. If we examine a large but not infinite sequence of epochs of our protocol

then for most of the epochs the neighboring nodes remain approximately synchro-

nized (in the sence that corresponding starting times are within O(log m)). However,

this will eventually be violated (after mP epochs on the average). In that case the next

epoch will be erroneous due to the delays. However, the subsequent restart by the

leader (by using the spanning tree and the flood) will again approximately synchronize

the neighboring nodes with probability at least 1 -m -ci. In this stochastic process, we

take amortized values over this large number of epochs. Then we take expected values.

Due to ergodicity then the total delay is (expected) O(k log m) and the amortized value

is O(logm). 0

4. Future work and extentions

We are currently extending our optimistic synchronizer to work for networks

whose node clocks are not accurate but can be synchronized by another protocol.

Tentative and definite distributed computations 73

Our optimistic synchronizer presented so far has to know an appropriate window
size W in order to work efficiently, since the multiplication constant of W depends on
the mean message delay. The mean message delay can be estimated (and adjusted
when the protocol starts doing a lot of restarted epochs) by the following simple
protocol.

4.1. Mean delay estimation protocol for node TV

(1) For each neighbor w of u, v sends a “count delay” message, and stores the
sending time t(u, w). If u receives such a message, it sends it back to its originator as
soon as it receives it.

(2) When v receives the count delay message back, it notes the receipt time
(according to v’s clock) t’(v, w). Let d(v, w) = t’(a, w)- t(v, w).

(3) The above is repeated g times. Let di(u, w) the estimate of each time.
Then

,_Ji(V, w)+d*(v, w)+ . ..+d.(v, w)

29

With the delay estimation protocol our synchronizer can be applied to networks
where mean message delays vary with time, and where message delay distributions are
not the same in each neighbor (then one has to use the largest estimated mean delay in
the formula for W).

Acknowledgment

P. Spirakis wishes to thank Z. Kedem and K. Palem for insightful comments on
rollback techniques, and C. Bouras for many discussions on the general topic of
average case analysis of distributed protocols.

References

cl] B. Awerbuch, Complexity of network synchronization, J. Assoc. Comput. Mach. 32 (1985).

[2] B. Awerbuch and D. Peleg, Network synchronization with polylogarithmic overhead, in: Proc. IEEE

FOCS (1990).

133 F.C. Commoner, W. Holt, S. Even and A. Pnueli, Marked directed graphs, J. Comput. System Sci.
5 (1971).

[4] K.M. Chandy and L. Lamport, Distributed snapshots: determining global states of distributed

systems, ACM Trans. Comput. Systems 3 (1985).

[S] E. Even and S. Rajsbaum, Lack of global clock does not slow down the computation in distributed

networks, TR No. 522, Department of Computer Science, Haifa, Israel, 1988. The first part of this

paper appeared also with the title “Unison in Distributed Networks” in: R.M. Capocelli, ed.,
Sequences, Combinatorics, Compression, Security and Transmission (Springer, Berlin, 1990).

[6] E. Even and S. Rajsbaum, The use of a synchronizer yields maximum rate in distributed networks, in:
Proc. 2Znd ACM STOC (1990).

14 .I. Garofalakis et al.

[7] Z. Kedem, K. Palem, A. Raghunathan and P. Spirakis, Combining tentative and definite executions

for very fast dependable parallel computing, in: Proc. ACM STOC (1991).

[S] D. Peleg and J. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput. 18 (1989)

740-747.
[9] S. Rajsbaum and M. Sidi, On the average performance of synchronized programs in distributed

networks, in: Pm. WDAG (1990).
[lo] S.M. Ross, Stochastic Processes (Wiley, New York, 1983).

[l l] J.C. Wyllie, The complexity of parallel computations, Ph.D. dissertation. Department of Computer

Science, Cornell University, Ithaca, New York, 1981.

