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●

Topological methods have yielded a variety of lower

bounds and impossibility results for distributed com-

puting. In this paper, we introduce a new tool for

proving impossibility results, based on a core theo-

rem of algebraic topology, the acyclic carrier theorem,

which unifies, generalizes, and extends earlier results.
●

1 Introduction

Combinatorial and topological methods have yielded

a variety of lower bounds results for distributed com-

puting, including general characterizations of the

computational power of certain models [4, 12, 13, 14],

and the circumstances under which specific problems

can be solved [5, 6, 8, 12, 13, 16]. In this paper,

we introduce a new tool for proving impossibility re-

sults based on a core theorem of algebraic topology.

Using the acyclic carrier theorem [15, Th. 13,3], we

unify, generalize, and extend earlier results. These

new proofs are considerably more succinct, so we can

present them here in their entirety. Although the

mathematical notions underlying this theorem are ab-

stract, they are elementary, being fully covered in the

first chapter of Munkres’ standard textbook [15].

This paper makes the following contributions.

*On leave from Instituto de Matematicas, U. N. A.M.,
M6xico. Part of this work was done while visiting the Labora-

tory for Computer Science, MIT. Partly supported by DGAPA

Pro jects.

Permission to make digitMlard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee.
PODC 95 Ottawa Ontario CA @ 1995 ACM 0-89791-710-3/95/08. .$3.50

One Kendall Square

Cambridge, MA 02139

rajsbaum@crl.dec.tom*

Earlier proofs [12, 13] relied on a mixture of com-

binatorial and continuous arguments. In this

paper, we show how to make these proofs com-

pletely algebraic, requiring no continuous math-

ematics. Some important constructs, such as the

notion of a span [13], are restated in a more ele-

gant algebraic form.

For each task, set agreement and renaming, we

prove a single, short theorem specifying an al-

gebraic property that prevents a protocol from

solving the task. These theorems are quite gen-

eral, yielding results in a variety of models.

They imply the known results, and also yield the

first impossibility results for renaming using set

agreement primitives.

A more complete discussion of related work is post-

poned to Section 4.

Finally, we believe that these results further illus-

trate the benefits of formulating concepts and models

from distributed computing in the language of alge-

braic topology, a mature branch of mainstream math-

ematics.

2 Decision Tasks

Our model is based on [13]. Informally, a task is a
problem where each process starts with a private in-

put value, communicates with the others by apply-

ing operations to shared objects, and halts with a

private output value. A protocol is a program that

solves a task in a concurrent system. A system may

be asynchronous, placing no constraints on proces-

sors’ relative speeds, or synchronous, requiring pro-

cesses to run in Iockstep. Processes may communi-

cate by applying operations to shared objects, such

as read/write memory, or objects with more powerful

semantics. They may also communicate by message-

passing. A protocol is t-resilient if it tolerates failures
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by t or fewer processes, and it is wait-free if it toler-

ates failures by n out of n + 1 processes.

Formally, an initial or final state of a process is

modeled as a vertex, a pair consisting of a process id

and a value (either input or output). We think of the

vertex as colored with the process id. A set of d + 1

mutually compatible initial or final states is modeled

as a d-dimensional simplex, (or d-simplex). If the

colors of a simplex are all distinct we say that it is

properly colored. It is convenient to visualize a vertex

as a point in Euclidean space, and a simplex as the

convex hull of a set of affinely-independent vertexes,

the higher-dimensional analogue of a solid triangle

or tetrahedron. The complete set of possible initial

(or final) states is represented by a set of simplexes,

closed under containment, called a simplicial complex

(or complex). The dimension of C is the dimension

of a simplex of largest dimension in C. Where conve-

nient, we use superscripts to indicate dimensions of

simplexes and complexes. The k-th skeleton of a com-

plex, skelk (Cn), is the subcomplex consisting of all

simplexes of dimension k or less. The set of process

ids associated with simplex Sn is denoted by ids (Sn),

and the set of values by vah (Sn).

A task specification for n + 1 processes is given by

an input complex IT, an output complex On, and

a map A carrying each input n-simplex of In to a

set of n-simplexes of C-P. This map associates with

each initial state of the system (an input n-simplex)

the set of legal final states (output n-simplexes).1 A
solution to a task is a protocol in which the processes

communicate with one another, and eventually halt

with mutually compatible decision values.

Figure 1 illustrates the input and output complexes

for two-process binary consensus. In general, the in-

put complex for consensus is constructed by assigning

independent binary values to n + 1 processes (this

complex is homomorphic to an n-sphere), and the

output complex consists of two disjoint n-simplexes,

corresponding to decision values O and 1.

Any protocol that solves a task has an associated

protocol complex P, in which each vertex is labeled

with a process id and that process’s final state (called

its view). Each simplex thus corresponds to an equiv-

alence class of executions that “look the same” to the

processes at its vertexes.

1It is sometimes convenient to extend A to simplexes of

lower dimension, as in [13]. When m < n, A(Sm ) is the set of

legal final states in executions where only m + 1 out of n + 1

processes take steps. This extension does not add any power

to the model, since one could capture the same information

by adding a flag to each input value indicating whether that
process is allowed to participate. This transformation increases

the input complex size, but shows that both definitions are

equivalent.

\..\ ,/
-.., /’-

-“- ...”_” ..— “..---”---
Input Complex Output Complex

Figure 1: Input and Output Complexes for 2-Process

Consensus

For example, consider a model in which syn-

chronous processes communicate by broadcasting

messages, but a process can fail in the middle of a

broadcast. Figure 2 shows the protocol complex for

a three-process single-round protocol in which each

process broadcasts its index to the others, and then

halts. Each vertex in this figure is a possible final

state of a non-faulty process (faulty processes are
not shown), and simplexes indicate mutually com-

patible final states. The labels indicate the messages

received: for example, “01?” indicates that messages

were received from P and Q, but not R. The central

triangle corresponds to the execution in which no pro-

cess fails: each vertex is labeled with 012. Attached

to the central triangle are l-simplexes corresponding

to executions in which one process fails, and discon-

nected from that triangle are the three O-simplexes

(vertexes) corresponding to executions in which two

processes fail.

A simplicial map carries vertexes of one complex to

vertexes of another so that simplexes are preserved.

A simplicial map on properly colored complexes is

color preserving if it associates vertices of the same

color. Let P be the protocol complex for a protocol.

If Sn is an input simplex, let P(Sn) c P denote the

complex of final states reachable from the initial state

Sn. A protocol solves a decision task (Zn, On, A) if

and only if there exists a color-preserving (i.e., pro-

cess id-preserving) simplicial map 6: P + On, called

a decision map, such that for every input simplex Sn,

d(P(Sn)) c A(Sn). We prove our impossibilit,y re-
sults by exploiting the topological properties of the

protocol complex and the output complex to show

that no such map exists.
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Figure 2: Protocol Complex for One-Round

chronous Protocol

3 Algebraic Preliminaries

Syn-

Our discussion closely follows that of Munkres [15,

Section 1.13], which the reader is encouraged to con-

sult for more details. The Appendix presents some

simple examples of chain complexes and chain homo-

topies for readers unfamiliar with these notions.

Let X be an n-dimensional simplicial complex, and

S=(FO,..., E’q) a q-simplex of K. An orientation for
S is an equivalence class of orderings on 3’0,. ... #q,

consisting of one particular ordering and all even per-

mutations of it. For example, an orientation of a

l-simplex (F., F1) is just a direction, either from FO

to &, or vice-versa. An orientation of a 2-simplex

(Fo, FI, FZ) can be either “clockwise,” as in (3., .71,F.Z),

or “counterclockwise,” as in (F.,&, 3’1). By conven-

tion, simplexes are oriented in increasing subscript

order unless explicitly stated otherwise.

A q-chain of K is a formal sum of oriented q-

simplexes: ~~=o &” S:, where & is an integer. When
writing chains, we typically omit q-simplexes with

zero coefficients, unless they are all zero, when we

simply write O. We write 1. Sq as Sq and – 1. Sq as
–Sq. We identify –Sq with S9 having the opposite

orientation. The q-chains of K form a free Abelian

group Cq (K), called the q-th chain group of K. Ad-

joining the infinite cyclic group Z in dimension -1,

C-1(K) = z.
The boundary t$ : C’q(K) ~ C’q_l (K) is a homo-

morphism such that

i3q_laqa = o,

and the augmentation 80 : Co(K) + C–l (K) is an

epimorphlsm (i.e., a subjective homomorphism).

Let S’J = (3’0,.. . Fq) be an oriented q-simplex. De-

fine facei(S’J), the ith face of Sq, to be the (q – l)-

simplex (JJ, . . . ,;~, ..., Fq), where circumflex denotes

omission. The boundary operator ~g : Cq (K) +

Cq_l (K), q >0, is defined on simplexes:

f3Sq = &(–l)i .facei(Sq),

and extends additively to chains: 6’(CYO + QI ) = tho +

8CII. For q = O, ~. (~ = 1,and extend linearly.2 (We

sometimes omit subscripts from boundary operators.)

The boundary operator is illustrated in Figure 3.

A q-chain a is a boundary if a = 8P for some (q+l)-

chain p, i.e., if a E 1m(t3q+I); a is a cycze if da = O,

i.e., if a E ker (dq). The group im (dq+l ) is contained

in the group ker(c3q), and the qth homology group3 is
well defined:

Hq(K) = ker(8q)/2m(Oq+l).

Informally, if every q-cycle is a boundary, then K has

no “holes” of dimension q, and conversely, any non-

boundary q-cycle corresponds to a “hole” of dimen-

sion q. If 1-l.(K) = O, i.e. is trivial, then K is con-

nected, and if Hi(K) = O, then X has no “holes” of

dimension q. If H*(X) = O for every q, we say that K

is acyclic.

The chain complex C(K) is the sequence of groups

and homomorphisms {Cq (K), dq }.

Let C(K) = {Cq(lC), d,} and C(C) = {Cq(,C), tl~}

be chain complexes for simplicial complexes K and

L. An augmentation-preserving chain map (or chain
map) @is a family of homomorphisms.

such that 8; o @q = #q_l o aq. This identity ensures

that chain maps preserve cycles and boundaries. The

composition of two chain maps is also a chain map.

2Munkres [15] uses e for fIO.
Sstrictly speaking, these are the reduced homology grouPs

[15, p.71].
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Recall that a simplicial map from K to C carries

vertexes of K to vertexes of Z so that every simplex

of K maps to a simplex of L. Loosely speaking, any

simplicial map ~ induces a chain map ~x from C(K)

to C(L): when ~(S’J) is of dimension q, f~(SQ) =

~(S9), otherwise j~ (S~) = O. (We omit subscripts
and sharp signs from induced chain maps when the

meaning is clear from context.)

If+, @J: C(K) + C(L) are chain maps, then a chain

homotopy from # to ~ is a family of homomorphisms

D* : cq(K) + cq+~ (q,

such that

Very roughly, if two chain maps are homotopic, then

one can be deformed into the other; see Munkres [15]

for intuitive justification for this definition.

Remark 3.1 Let @, @J: C(K) + C(,C) be chain ho-

motopic maps. Then the chain (@~–~~ –Dk_.l 6’) (Sk)

of Ck (~) is a cycle.

A symmetry chain map on C(K), p, is the chain

map p : C(KJ -+ C(X) induced by a simplicial map

which is a permutation of the vertexes of K. The

i-fold composition of p is pi. We sometimes abuse

notation and also denote the induced simplicial map

by p. The orbit of a simplex Sk consists of all k-

simplexes S for which pi (Sk) = S, for some i. The lc-

orbits partition the k-simplexes in equivalence classes.

For example, if p is the identity symmetry, every orbit

consists of one simplex.

Let p, p’ be symmetry chain maps on C(KJ and

C(L), respectively. A chain map CJ5: C(K) --+ C(ZJ is

symmetric with respect to p, p’, or simply symmetric,

when p, p’ are understood, if p’ o C) = @op. Similarly,

a chain homotopy D is symmetric if p’ o D = D o p.

Notice that any chain map is symmetric with respect

to the identity symmetry chain maps.

Definition 3.1 Let p, p’ be symmetry chain maps

on C(K) and C(L), respectively. A symmetric acyclic

carn”er from K to L is a function Z that assigns to

each simplex S9 of K a non-empty subcomplex of L

such that (1) X(S’J) is acyclic, (2) if S’ is a face of S’J,

then Z(SP) c X(S’J), and (3) Z(p(S)) = p’(X(S)).

A homomorphism # : C~ (K) + C~ (L) is carried by

Z if each simplex appearing with a non-zero coeffi-
cient in +(S~) is in the subcomplex X(S~).

The next theorem reduces to [15, Th. 13.3], when

p, p’ are the identity; the proofs are similar.

Theorem 3.2 (Acyclic Carrier Theorem) Let

X be a symmetric acyclic carrier from K to L.

(1) If q5 and + are two symmetric chain maps from

C(K) to C(L) that are carried by Z, then there

exists a symmetric chain homotopy of ~ to ~ that

is also carn”ed by E.

(2) There exists a symmetric chain map from C(K)

to C(L) that is carried by Z.

Proof: (1) By induction. Basis: For each O-orbit

pick a vertex S’.. Remark 3.1 implies that (~ – @)(;o)

is a cycle. Since Z (.?O) is acyclic, and ~,@ are car-

ried by Z, we can choose a l-chain Do (3’0 ) carried by

Z, such that 8D(F’0) = (# – @)(FO). For every .?~E

orbit(~o), Fi = pi(.?o), choose Do(.?t) = p’i(D(Fo)).

Notice that ODO (.?;) = (~ – ~) (Fi), since

t3Do(3’J = 8p’i(D(#o))

= p’i8(D(Fo))

= P’i(o – ‘+)(3O)

= (4 - @)P’i(~o)

Also, Do (Fi) is carried by Z because Z is symmetric.

Finally, notice that Do(p(Fi)) = p’(Do(F’i)).

For the induction step, assume a symmetric D:i is

defined in dimensions j less than d. Pick a represen-

tative S~ for each d-orbit. Because X (S$) is acyclic,

we can choose a (d+ 1)-chain Dd(S#) such that

8D(S$) = (+ - + – D8)(S{).

For each S,f = pi(S#) in the same orbit, choose

D(Sj) = p“(D(S#)). Thus,

The last step follows from the induction hypothesis.

Finally, it is easy to verify that D o p = p’ o D.

(2) By induction. Basis: For each O-orbit pick a

vertex Fo. Let a(3’0) be a vertex in X(30). For .3\ E

orbit(FO), ;~ = p’(.?o), let a(Fi) = p’i(o(Fo)).

Assume inductively that if dim(S) < d, then o(S)

is defined and ~o(S) = o (8S). Pick a representative

S: for each d-orbit. a(8S$) is a well-defined (d – l)-

chain, and because X (S$) is acyclic, we can choose a

(d+ 1)-chain of Z(S~), CJ(S$), such that

tkr(s$) = O(asg).

For each S: = p; (S$), choose

(7(s:) = p’~((7(s$)).
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Hence,

8(7(s:) = @’i(@f))
= p’~(ao(sg))

= p’~(a(m$))

= (-@(as$))

= CJ(asf).

The penultimate step follows from the induction hy-

pothesis. Finally, o(S$) is carried by X because o(S$)

is carried by X and 4Z(p(S$) = p’i(X(Sf)). ■

Remark 3.3 Ij ~,@ : C(K) + C(ZJ we both car-

ried by X, and for each S’ in K, q = dim(Sq) =

dim(Il(Sq)), then Cq+l(X(S’J)) = O, Di = O for all i,

and @ and ~ are equal chain maps.

4 Algebraic Spans

We can use the acyclic carrier theorem to establish

a variety of impossibility results. Our basic strategy

is the following. We assume that we have a protocol

with complex P that solves a task (Z, 0, A) in a par-

ticular model of computation. Let Se be a simplex,

and S~ the complex of its faces. We establish the

existence of an acyclic carrier Z from Se to P, then

the acyclic carrier theorem guarantees the existence

of a chain map o : C(St) + C(P), which we call
an algebraic span. The decision map 8 : P + 0 is

a simplicial map, and therefore induces a chain map

6: C(P) + C(0). The composition of d and a is also

a chain map:

600: c(s~) +’ c(o).

We then use semantic arguments to show that Se and

0 are topologically “incompatible,” implying that

this chain map cannot exist, and thus deriving a con-

tradiction.

We now discuss how a variety of prior lower bound
results can all be given a common reformulation in

the language of chain complexes and acyclic carriers.

These results are summarized in Figure 4.

Informally, a subdivision of a complex is a way of
“chopping up” each of its simplexes into smaller sim-

plexes, as illustrated in Figure 5. Any subdivision of

a complex has the “same topology” aa the original

complex, in the sense that the homology groups are

unchanged. Much of the earlier work in this area has
focused on some notion of subdivision.

Herlihy and Shavit [13] considered wait-free proto-

cols in which n + 1 processes communicate by reading

and writing a shared memory. They showed that it

complex
subdivided
complex

Figure 5: A Subdivided Complex

is possible to subdivide the input complex so that

there exists a simplicial map, called a span, from the

subdivision to the protocol complex. (We will refer

to this notion of span as a geometric span.) They

then used the existence of geometric spans to derive

a number of impossibility results. For t-resilient pro-

tocols, they showed that a geometric span exists on

the input subcomplex & containing the vertices col-

ored with process ids P., ..., Pt.

Herlihy and Rajsbaum [12] considered wait-free

protocols using stronger primitives characterized by

their ability to solve the (m, j)-agreement task [7], a

generalization of consensus [9]. They showed that in

this model, a geometric span exists only for the lower-

dimensional skeleton of the input complex. In partic-

ular, the span is defined on skele (Z), for 1 s J(n + 1),

where

~(~) = ~ [~~ + min{j, u modm} – 1. (1)

The more powerful the primitive, the lower the di-

mension of the geometric span.

Chaudhuri, Herlihy, Lynch, and Tuttle [8] consid-

ered a model in which n + 1 processes communicate

by sending messages over a completely connected net-

work. Computation in this model proceeds in a se-

quence of rounds. In each round, processes send mes-

sages to other processes, then receive messages sent

to them in the same round, and then perform some
local computation and change state. Communication

is reliable, but up to t processes can fail by stopping

in the middle of the protocol, perhaps after sending

only a subset of their messages. Let Pr be the proto-

col complex after r rounds. In their Bermuda Trian-

gle construction, they identified a subcomplex of the

protocol complex isomorphic to a subdivided simplex.
This construction yields a geometric span from an &

simplex Se to P., for r < lt/tJ.
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Model Carrier Span

wait-free read/write objects [13] ~wF 0: c(z) + C(P)
t-resilient read/write objects [13] Zt a : C(zt) + C(P)

wait-free (m, j)-consensus objects [12] Zm,j 0: C(skeli(Z)) -+ C(P), for 1< J(n + 1)

t-resilient synchronous message-passing [8] Z. a : C(St) + C(Pr), for r < f?/t

Figure 4: Summary of Algebraic Spans

In this paper, we show how these results can be

unified by replacing the geometric language of sub-

divisions and simplicial maps with the more abstract

algebraic language of chain complexes and acyclic car-

riers. To illustrate this remark, we focus first on the

wait-free geometric span of Herlihy and Shavit [13].

Establishing the existence of geometric spans required

a combination of combinatorial and continuous argu-

ments:

1.

2.

3.

4.

P(Sn) is acyclic,

P(S~) is simply connected,

inductively use these two facts to construct a

family of continuous maps from subdivisions of

the input complex, and

apply simplicial approximation to transform

these continuous maps into the desired simpli-

cial maps.

Reformulating this result in algebraic terms yields a

simpler derivation: because every P(S~ ) is acyclic,

the function ~wF that assigns to each input simplex

Y’ the protocol subcomplex ‘P(S’m) is an acyclic car-

rier, and the acyclic carrier theorem guarantees the

existence of an algebraic span a : C(Z) + C(P),

which we use for the impossibility results.

The geometric and algebraic notions of span are re-

lated as follows. Any geometric span, reinterpreted as

a chain map, is an algebraic span. Although algebraic

spans are more abstract, they are simpler in several

ways. It is easier to establish the existence of an al-

gebraic span: the second, third, and fourth steps of

the derivation are unnecessary. The geometric span

is not unique — it is easily seen that there are an

infinite number of permissible subdivisions and sim-

plicial maps. By contrast, the acyclic carrier theorem

implies that algebraic spans are unique up to chain

homotopy.

The other geometric spans have similar reformu-

lations. The t-resilient geometric span corresponds
to an acyclic carrier Yt from 16 to ‘P. Each sim-

plex in & (S~) is labeled with ids (S~), and corre-

sponds to a t-resilient execution in which processes

ids(Sm) U {Pt+l, . . . . Pn} take steps, but the pro-

cesses in {Pt+l, ..., Pn} run synchronously. The geo-

metric span for (m, j)-consensus objects corresponds

to an acyclic carrier Xm,j from l-simplexes of Z to

T’, for 1 S J(n + 1), yielding an algebraic span

0: C(skell (Z)) + C(T). Finally, the Bermuda Tri-

angle construction corresponds to an acyclic carrier

X$ from an t-simplex Se to P., for r < [t/t], yield-

ing an algebraic span 0: C(St) + C(P,).

These correspondences are summarized in Figure

4.

Attiya and Rajsbaum [2] take a different approach

to proving lower bounds for wait-free read/write

memory. Instead of using subdivisions, they use a

weaker, purely combinatorial notion called a “divided

image,” that avoids the need for the geometric and al-

gebraic arguments used to construct geometric spans.

Divided images can also be reformulated in terms of

chain maps.

5 Set Agreement

In the (N, /c)-consensus task [7], each process starts

with a private input value from some set vak, com-

municates with the others by applying operations to

shared objects, and then halts after choosing a pri-

vate output value. Each process is required to choose

some process’s input value, and the set of values cho-

sen should have size at most k. This problem inde-

pendently was shown to have no t-resilient solution in

read/write memory by Borowsky and Gafni [5] and

by Herlihy and Shavit [13], and no wait-free solution,

by Saks and Zaharoglou [16]. A variety of impossi-

bility results for implementing (N, k)-consensus from

(M, j)-consensus were given by Borowsky and Gi~fni

[6], and by Herlihy and Rajsbaum [12].

Theorem 5.1 Suppose we have a protocol for (n +

1, k) -set agreement, a properly colored simplex Se,

and an acyclic carrier E from Se to T’ such that

vals(6(X(S))) = vals(S) (2)

for all simplexes S in Se. Then k z / + 1.
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Proofi Let x : C(0) + C(S1) be the chain map
induced by the simplicial map sending (Pi, vj ) to the

vertex of Se with value vi. (Here p is just the identity

symmetry.) The acyclic carrier theorem guarantees

that there exists a chain map a : C’(S1) + C(P)
carried by Z. Let 6 be the chain map corresponding

to the decision map of P:

c(s~) $ c(P) 3 c(o) 4’ c(s~)

Let # : C(S1) -+ C(S1) be the composition of o, 6,

and n. Let @ be the acyclic carrier from Se to itself,

@(Si) = Si, and L the identity chain map on Se. Thus

L is carried by @. Equation 2 implies that @ is an

acyclic carrier also for #J. Because dim (Si) = i =

dzm(@(Si)), Remark 3.3 implies that the two maps

are equal. Therefore L(S~) = #(SL) = St.

Assume for contradiction that k ~ f?. In each exe-

cution, however, no more than 1 values are chosen,

implying that d reduces the dimension of every 1-

simplex. The chain map d thus sends every l-simplex

to the O chain, so n 0150 C(SL) = q!J(S1) = O, a contra-

diction. ■

Now we consider each of the acyclic carriers de-

scribed in Section 4.

For asynchronous read/write memory, pick any

Sn c X with distinct inputs, and consider the acyclic

carrier XWF described in the previous section. For

each S ~ Sn, in XWF (Sn), only the processes in

ids (S) take steps, so Equation 2 is satisfied.

Corollary 5.2 There is no wait-free (n + 1, rL)-

consensus protocol in read/write memory /5, 13, 16].

Consider the acyclic carrier Et for t-resilient read-

write memory. One can satisfy Equation 2 by adding

a “pre-processing” stage to any (rL + 1, t)-consensus

protocol: each process writes it input value to a

shared array, waits for n – t + 1 values to appear,

and replaces its own input with that of the process

Pi with smallest index i that writes. No input value

from Pt+l, . . . . Pn will ever be chosen.

Corollary 5.3 There 2s no t-resilient (n + 1, t)-

consensus protocol in read/write memory [5, 13].

The acyclic carrier Zn, j, when processes share

read/write memory and (m, j)-consensus objects,

does not directly satisfy Equation 2, because E~,j (S)

may include processes not in ids(S). But in [12] it is

shown how to modify the decision values of the pro-

cesses in ids(~~,j (S)) – ids(S) so as to satisfy Equa-

tion 2 (see [12] for details).

Corollary 5.4 There is no wait-free (n+l, J(n+l) –

1)-consensus protocol if processes share a read\write

memory and (m, j) -consensus objects.

The Bermuda Triangle construction [8] satisfies Equa-

tion 2 because it associates a unique value with each

vertex of Se, and ensures that the algebraic span for

each simplex (F., . . . . ?m ) maps to executions where

all input values are taken from the set {v., . . . . Vm}.

Corollary 5.5 There is no t-resilient (n + 1, k)-

consensus protocol that takes fewer than [t/k] + 1

rounds in the synchronous fail-stop message-passing

model [8].

Each of these lower bounds is known to be tight.

6 Renaming

In the renaming task of Attiya et al. [1], n + 1 pro-

cesses with unique names taken from a large name

space must choose unique names taken from a small

name space. More precisely, in the (n + 1, K)-

renaming task, the processes are given unique in-

put names in the range O,..., N, and are required

to choose unique output names in the range O,..., K,

where n s K < N.

To rule out trivial solutions (Pi chooses output

name i), we are interested in protocols for which a

process’s choice is independent of its process id. Let

a be a permutation of the process ids. If e is an

execution, define a(e) to be the execution in which

each occurrence of id Pi is replaced by a(Pi ) (i.e.,

the same interleaving, but processes are renamed).

Define a’ (Pi, ei) to be (a(Pi), cz(ei)). A protocol is

anonymous if C+ is a simplicial map from P to it-

self, and val(d(P; , e;)) = val(6(a(Pi, ei))) (i.e, both

processes choose the same output names in both ex-

ecutions). We restrict out attention to anonymous

protocols.

In this section, we use symmetry arguments to give

general lower bounds on renaming. We show that

if an (n, K)-renaming protocol has a span Z from a

simplex Se to P with the property that the protocol

behaves “symmetrically” on the boundary of X(S1),

then K z 21+ 1.

Let S1=(Fo,..., .31) be a simplex where each ,?i is

labeled with process id Pi, and let Se (@-l) be its

complex of (proper) faces. Define rotation maps

by p(~i) = F;+lmodl+l, and

p’:P+P

by p’ (Pi, ei) = (P~+l~~d~+~, p(vi)). Thus the induced

chain maps p and p’ are symmetry maps.

The proof is based on the following, purely topo-

logical lemma.
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Lemma 6.1 Ij # : C(S”) -+ C(S) is symmetric,

then +(8S”) = k. 8Sn, for k ~ 1 (mod n + 1).

Proofi Let L : C(Sn) + C(Sn) be the identity

chain map. The acyclic carrier theorem implies that

there is a symmetric chain homotopy D between @J

and L.

In particular, (~ – L – DO) (S~-l) is a cycle of Sn.

Since the group of (n – I)-cycles of Sn is infinite cyclic

generated by i3Sn,

(~- L- D@(S;-’) =1.8S”, (3)

for some integer t.

Note that

pi(jaceO(Sm)) = (–l)ifacei(Sn), (4)

and hence

p(dsn) = 85’*. (5)

By definition, #(8Sn) = @X~=O(–l)i . @cei(Sn).

Thus, by Equation 4,

@(dS”) = #2~=Opi~aceO(Sn)

= X~=O@pi&ceO (Sn),

= X?=Opi#~aceO(Sn)

by symmetry of+. By Equation 3,

#(tM’n) = X?=opi(l?. t3Sn + (~ + LM)(jaceO(Sn))).

By Equation 5,

= 1(7L + 1) odSn + ~~=opi(~ + Dt3)(faceO(Sn))).

By Equation 4 and symmetry of L,

g5(aSn)= l?(n+l).8sn+2p= JL+Da)((-1)’faceJsn)).

Since b is the identity,

q5(8S”) = l(n + 1) . 8S” + tM’” + D&i9n,

and the proof follows from ad = O. ■

Informally, this lemma says that any map from Se

to itself that is symmetric on the boundary must

“wrap” the boundary around itself a non-zero number

of times.

Theorem 6.2 Suppose we have a protocol for (n +

1, K) -renaming, and a symmetric w.r.t. P, P’ acYclic

carrier .X from Se to P such that

Ms(x(s)) = ids(s),

for all proper faces S of Se. Then K >21 + 1.

Proofi Assume for contradiction that K < 21+ 1.

Let n :0 ~ Se be the simplicial map T(Pi, v) = Jj,
where j = (P; + (v mod 2)) mod / + 1. Let r also

denote the induced chain map.

The simplicial map r does not send any l-simplex

of O(S1) to Se. This is because m sends an t-simplex

of O(S1) to Se only if the processes have chosen all

even or all odd output names, which is impossible

because the range O,..., 2/– 1 does not contain/+1

distinct even or distinct odd names. It follows that

the chain map (m)/ = O.

We have the following sequence of maps.

c(s~) % C(P) 3 c(o) 4 c(s~).

Let d : C(S1) + C(S~) be the composition

and ~. It follows from ‘(T)I = O tha~ @(St) = O, and

hence

@(as’) = o. (6)

We claim that the chain map # is symmetric. lDe-

fine the symmetry p“ : 0 + 0 to be p“(P~, v~) =

(Pi+l~od~+l, vi). We have the following commutative
diagram of symmetric chain maps:

c(s~) 3 C(P) 4 c(o) 4 C(C9)
P-l’ P’ J P“ J P&

c(s~) % c(P) 3’ c(o) 4’ c(s~)

We check that each rectangle commutes: a is sym-

metric by the acyclic carrier theorem, 6 is symmetric

because the protocol is anonymous, and m is symmet-

ric by construction.

Lemma 6.1 implies that #(8Sfl) = k.8Se, fork 7~ O,

contradicting Equation 6. ■

Now we consider each of the acyclic carriers de-
scribed in Section 4. For asynchronous read/write

memory, consider the acyclic carrier Z WF discussed

earlier. The carrier for a single input simplex dloes

not satisfy the symmetry requirements of Theorem

6.2. We can, however, construct a symmetric span by

“gluing together” the spans from a number of input

simplexes as shown in Figure 6. Notice that this com-

plex is a subdivided simplex, and that input names

are assigned symmetrically around the boundary,

Definition 6.1 Let S“ = (FiO,..., %), where

2d(FJ = Pi. In the standard chromatic subdivi-

sion of Sn, denoted X(Sn), each n-simplex has the

form {(Po, SO),..., (Pn, Sri)}, where S, is a subsim-
plex of Sn, such that (1) Pi 6 ids(S~), (2) for all &

and S’j, one is a subsimplex of the other, and (:3) if

Pj c ids(Sz), then S’j G fl.
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Figure 6: Standard Chromatic Subdivision

We now construct a subdivision #(Se) c Z, iso-

morphic to x(S~), by assigning input values to ver-

texes of X(St). The input values are defined induc-

tively. The unique vertex of x’ (SO) has input value

O. Assume inductively that we have assigned rn(rn +

1)/2 input values to the vertexes in X’(Sm-l ) =
X’(~acem(Sm)). The rotation map that sends Pi

to p~+l~od~+l induces a bijective simplicial map

p : ~acei(sm) ~ ~acei+l (S~) by ~(~i) = ~i+lmodnt+l,
and also p : X(.h%(sm)) + x(facei+l (Sin)), by

P(Pi, Si) = (p(Pi), p(si)). Every vertex 7 G X(@-l)
is equal to pi(Z), for some ii 6 X(S~–l ). Assign each

vertex d G x’ (JW–l ) the same input value as d. Fi-

nally, the interior vertex V of X(Sm) labeled with Pi

is assigned the input value m(rn + 1)/2 + i.

This construction uses 0(n2) input names. Any re-

naming protocol for 2n + 1 input names can be trans-

formed into a protocol for a larger number of input

names simply by using the shared-memory renaming

protocol of Bar-Noy and Dolev [3] to reduce the num-

ber of names to 2n + 1, and therefore the impossibility
of (n+ 1, K)-renaming for 0(n2 ) input names implies

impossibility for 2n + 1 input names.

Corollary 6.3 There is no wait-fee (n + 1, 2n)-

consensus protocol in readiwrite memory [11, 13].

A similar argument yields:

Corollary 6.4 There is no t-resilient (n + 1, 2t)-

consensus protocol in read/write memory.

If processes share read/write memory and (m, j)-

consensus objects, then it is not known whether E~,j
can be chosen so that ids(Zm,j (S~)) = ids(S~). This

condition is clearly satisfied, however, when m =

n+l, andj>(n+l)/2.

Corollary 6.5 There is no wait-free (n + 1, 2j)-

renaming protocol if processes share a read/write

memory and (n + 1, j) -consensus objects.

This result is new.

We do not analyze renaming lower bounds for syn-

chronous message-passing systems, since it is known

that log n rounds are necessary and sufficient for wait-

free (n + 1, n + 1)-renaming [10] using comparison-

based protocols.

Appendix

This appendix gives some simple examples of chain

maps and chain homotopies. Readers unfamiliar with

chain complexes are encouraged to work out these

examples.

A Examples

Let S2 = (3’0, F1, F2) be an oriented 2-simplex (a

“solid” triangle), and S1 the complex of its proper

faces (a “hollow” triangle). S1 includes three ()-

simplexes (vertexes): SO, 71, and F2, and three 1-

simplexes: S: = facei (S2), O < i s 2 The reader

should check that

dS~ = (–l)i(?i+l~.ds – .?i+zmods).

The O-th chain group of ~1, CO(S1 ), is generated by

the Si, meaning that all O-chains have the form

where the & are integers. The first chain group,

CI(S1),is generated by the S;, and all l-chains have

the form

A~.s;+ Al. s;+ A2.s;,

where the S: each have standard orientation. Since

S1 contains no simplexes of higher dimension, the
higher chain groups are trivial.

The rotation map p : S1 + & defined by p(?i) =
.?~+l~~ds induces a chain map p : c(S1 ) +. c(S1 ).
For O s i <2, p(Sj) = –Sj+l, and p(S~) = S;. To
verify that p is a chain map, it suffices to check that

The identity map L : S1 + S1 also induces a chain

map L : C(S1) + C(@). We now show that L and
p are chain homotopic, by displaying both an acyclic

carrier, and the chain homotopy D. The acyclic car-

rier X is the following: X(;i) is the complex consisting

of S~_l and its vertexes, and Z (S:) is the subcomplex
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of S1 containing P(S: ), p(S~+l ), and their vertexes.

Both L and p are carried by S, and both X(Fi) and

X(S} ) are acyclic (being contractible). The chain
homotopy D is given by D(F’i) = (–l)z-l S/_l, and

D(S1 ) = O. It is easily verified that

(D8 + 8D)(S) = (L - P)(S).

Although every simplicial map induces a chain map,

some chain maps are not induced by any simplicial

map. Consider the chain map @(F’i) = .li, @(S~) =

S/ + (– l)i8S2. Notice that @(8S2 ) = 40 ~S2, so this

map “wraps” the boundary around itself four times,

something no simplicial map could do. This map is

not chain homotopic to L, although (~ – L)(S) is a

cycle for every simplex S.
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