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Abstract

Let T be a Hamiltonian tournament with n vertices and v a Hamiltonian cycle of 7'. In

this paper we develop a general method to find cycles of length £, "TH < k < n, intersecting
v 1in a large number of arcs. In particular we can show that if there does not exist a cycle
C}, intersecting v in at least & — 3 arcs then for any arc e of v there exists a cycle C}
containing e and intersecting v in at least &k — 2n=3) _ 9 arcs. In a previous paper [3] the

n—k+3
n+4
2

case of cycles of length k, & < was studied.

1 Introduction

The subject of pancyclism in tournaments has been studied by several authors (e.g. [1],[2]).
Two types of pancyclism have been considered. A tournament T is vertez-pancyclic if given
any vertex v there are cycles of every length containing ». Similarly, a tournament T is are-
pancyclic if given any arc e there are cycles of every length containing e. It is well known
that a Hamiltonian tournament is vertex-pancyclic, but not necessarily arc-pancyclic. In a
previous paper [3] we introduced the concept of cycle-pancyclism to study questions such as
the following. Given a cycle C', what is the maximum number of arcs which a cycle of length &,
with vertex set contained in ', has in common with C'? Clearly, to study this kind of questions
it is sufficient to consider a Hamiltonian tournament where C' is a Hamiltonian cycle of 7.

Let T be a Hamiltonian tournament with vertex set V' = {0,1,...,n — 1} and arc set A.
Assume without loss of generality that v = (0,1,...,n—1,0) is a Hamiltonian cycle of T'. Let
C denote a directed cycle of length k. In [3] we proved that for & = 4,5 and for every k, such
that n > 2k — 5, there exists a cycle (), intersecting v in at least k¥ — 3 arcs. For k = 3 it was
proved that there exists a cycle (5 intersecting vy in at least one arc.

*On leave at MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA.



In this paper we assume that k+1 <n <2k —5, k > 5, and develop methods for finding a
cycle (' intersecting v in a large number of arcs. In particular we can show that if there does
not exist a cycle ('} intersecting v in at least k& — 3 arcs then for any arc e of v there exists a
cycle 'y containing e and intersecting v in at least k£ — %% — 2. The methods developed in
this paper are the basis for our subsequent work in which we study the maximum intersection
of a cycle '}, with 7.

2 Preliminaries

A chord of a cycle (' is an arc not in ' with both terminal vertices in C'. The length of a chord
f = (u,v) of C, denoted I(f), is equal to the length of (u,C,v), where (u,C,v) denotes the
uv—directed path contained in C'. We say that f is a c¢-chord if I(f) = c and f = (u,v) is a
—c-chord if [{v, C,u) = ¢. Observe that if fis a c-chord then it is also a —(n —c¢)-chord. Unless
otherwise stated if the cycle is not specified, it will be assumed that the chord is of cycle 7.

In what follows T is a tournament of n vertices with a Hamiltonian cycle v. For a cycle
C} of length k with vertex set contained in v we denote Z,(C}) = |A(vy) N A(Cy)|, or simply
Z(Cy) when v is understood. Let f(n,k,T) = max{Z(C})|Cy C T}.

Lemma 2.1 At least one of the following properties holds.

(1) f(n,k,T)>k—3.
(i1) All the following chords are in A.

(a) Every (k—1)-chord.
(b) FEvery (k — 2)-chord.

Proof: Suppose that (i) is not true.

(a)If (k—1,0)is a —(k—1)-chord then C}, = (0,1,...,k—1,0)satisfies Z(Cy) = k—1 > k-3,
and hence f(n,k,T) >k — 3.

(b) Suppose that there exists a —(k — 2)-chord, f = (y,2). We can assume w.l.o.g. that
x =1,y =k—1. It follows from (a) that (0,k—1) € A. Also (a) implies that (n—(k—1),0) € A
(notation modulo n). Note that that the hypothesis n < 2k — 5 implies that 1 <n—(k—1) <
k —1. Let z € V be the maximum in (2,7,k — 2) such that (z,0) € A. Since (0,k—1)€ A
then (2,0) € Aand (0,2+1) € A. For C}, = (2,0, 2+ 1)U (z+1,v,k—1)U(k—1,1)U(1,v,2)
it holds Z(C%) = k — 3. |



3 Lower Bounds

Lemma 3.1 Let P = (0,1,.. ,

) 1
{00,2),(1,2),(2,0), (2,0 = 1),.... (2,1
0<i<Il—(a+1), such that {(2,2

, be a directed path contained iny, z € V —V(P), and
— a—l— )} CAwithl <a<Il—1. Then there exists 1,

3,(2 i+a+ 1)} C A

Proof: First we will prove that there exists j > 1, such that j =b (mod a+1),b€{0,1},
and (z,7) € A. Since [,{—1,...,l—(a—1) are consecutive numbers, it follows that there exists
jed{li—1,...;l—(a—1)} with j =b (mod a+ 1) and b € {0, 1}; the hypothesis of the
lemma implies (z,7) € A, and j > 1 because {(0,2),(1,2)} C A. Now, let j, = min{j|j = b
(mod a+1),7 > 1,and(z,j) € A}. It follows that (2,50 — (e + 1)) ¢ A. Hence (2, jy) € A and
(jo—(a+1),2) € A. Clearly, taking ¢ = jo — (¢ + 1) we have {(7,2),(z,i+ e+ 1)} CA. =

Lemma 3.2 Ifallthe k —2,k—1,...,p-chords, k—1 < p <n—2, are in T then at least one
of the two following properties hold.

() f(n,k,T) >k —3.

(ii) Every (p+ 1)-chord is in T.

Proof: We show that if (ii) is false then (i) holds. Let (s1,5,) be a —(p + 1)-chord and z a

vertex in (s1,7, S2). Assume w.lo.g. that s, =0. Let 2 =2+ n—p (mod n). Observe that
{(z,2),(e+1,2),....,(c+p—(k=2),2)} CA (1)

since these are the p,p—1,...,k — 2-chords of v ending in z. Similarly
{(z,z4+p),(z,z2+p—-1),...,(z,2+ k—2)} C A. (2)

Observe that the start points of the arcs in the set (1) are consecutive in v and less than the
end points of the arcs in the set (2), which are also consecutive in 7. This is because the
largest start point of an arc in (1) is z + n — (k — 2) and the least end point of an arc in (2) is

2+ (k—2),and 2+ (k—2) > z4+n — (k—2). See Fig. 1.

Now, consider the directed path (z,7,z+ p). Note that the cardinality of (1) is at least
2 and the cardinality of (2) is p — k 4+ 3. Thus letting @ = p — k 4 3 it follows from Lemma
3.1 that there exist j, @ < j < z + (k — 2) such that {(j,2),(z,j+a+ 1)} C A. It follows
that C' = (s1,82) U (89,7, 7)U (J,2)U(z,7+a+ 1)U+ a+1,7,s) is a cycle. In order to
see that {(C') = k note that [{s;,v,s5) = n— (p+ 1), and thus [{ss,7,s;) = p+ 1. Clearly,
{j,v,j+a+1) =a+ 1. Therefore (C)=p+1—(a+1)+3 =k and C is a cycle with
I(C)=k - 3. |

It follows directly from Lemma 3.2 the following.



Theorem 3.3 At least one of the following conditions holds.
(1) f(n,k,T)>k—3.
(i1) For each p, k —2 < p < n— 2, every p-chord of vy isin T.

Let [ and r be integers such that n = l{(n —k+3)+r and 0 < r < n—k + 3. The following
theorem shows that if f(n,k,T") < k — 3 then there exist cycles with a large intersection with

5.
Theorem 3.4

(a) Ifr=0orifr=1andk <n—1 then f(n,k,T) >k —2l.
(b) Ifr=1and k=n—1 then f(n,k,T)> k-2l - 1.

(¢) Ifr =2 then f(n,k,T)>k—2l-1.

(d) Ifr > 2 then f(n,k,T) >k —2]—2.

Proof: Notice that for [l =1, 0 < r <2 it holds that 3 < k£ < 5. For these cases the theorem
follows from [3]. When [ = 1 we can assume that r > 2. Therefore we can assume that the
bounds of the theorem (k—2[, k-2l —1, k—2]—2) are at most k —4. Therefore if there exists
a cycle Cy, with Z(C}) > k — 3 the theorem follows. Assume that this is not the case, namely,
f(n,k,T) < k —3. By Theorem 3.3, for each p, k —2 < p <n — 2, every p-chord of v isin 7.

We construct a cycle C} intersecting v in the required number of arcs. For this goal we
specify the following vertices of T', through which €', passes. Let
xry = k—3
ty, = 1 —(n—k+3)

r = x—(n—k+3).

Observe that [{(x;11,7,2;) = n—k+ 3, and hence by the definition of I, z; > 0. It follows from
Theorem 3.3 that for every ¢, 1 <¢ <! —1, the (k —2)-chord (z;, 2,11 + 1) isin 7. And also,
if z € V(v) such that 2 < l{z;,7,2) < n—Fk+ 2, then (z,2;) € T. For any fixed election of
yi €7,1 <ie<I1—1,such that 2 < {{z;,7,y) < n—k+ 2, consider the following path T}, of
length £’ from 0 to z;_; (Fig. 2)

Ty = (0,21+ D) U@+ 1,7, 1) U (g1, 21, 2o+ 1)U 2o+ 1,7, y2) U (Y2, 22, 3+ 1)U U (yi—1, 21-1).

We now describe how to complete T} into a cycle C' for the different possible values of r.
Observe that [(C') will vary depending on the election of the y;’s, i.e. depending on I{(z;,7, y;).



In each case we prove that C' can be constructed in a way such that {(C') = k by a suitable
election of y;, 1 <4 <[ -1, and that Z(C') takes the required values. We shall use the fact
that {(7]) > 3(l — 1) and that the number of arcs of T} not in v is 2(/ — 1). Recall that we are
agsuming that k& > 5.

e When 7 =0 (2; =0) and when r =1 (2; = 1) and k < n — 2, (see Figures 3 and 4)

C=TuU (901—17901 + 1) U <95l + 17%3/l> U (3/170)-

The reason for not including the case of & = n — 1 when r = 1 is the following. In the
description of C' the arc (y;,0) is assumed to be in T". Theorem 3.3 guarantees the existence of
this arc when y; < 2;_; — 2; when y;, = 2;_; — 1 the arc (y,0) is a (k — 3)-chord. This implies
that the vertices #;_; — 1 and 1 are not in C' and thus & is at most n — 2.

We proceed to prove that when r = 0 and when r =1 (z; = 1) and k < n -2, Z(C) =
[(C') — 2l and C can be constructed to have I(C') = k.

The description of C' implies that exactly 2! arcs of C' are not in v. Therefore Z(C') =
I(C)—2l.

Next we show that C' can be constructed to have [(C') = k. Notice that C'N is the union
of the paths (z; + 1,7, ¥,), for 1 <7 <1, and hence [ < S, Wai+1,7,y;) =1(C)—2l. Hence,
31 < U(C). It follows that we can construct cycles C' with any [(C'), 31 < [(C'), and, by the
definition of C', with [(C)<n—1(r=0)or [(C)<n—2(r=1). Since we want [(C') = k it
remains to show that it holds that 3] < k. The proof is as follows. First observe that

3n

—— <k
n—k+3 - "
because it is equivalent to
3n < k(n—k—|—3):kn—k2—|—3k
k* =3k —nk+3n < 0
E(k—3) < n(k-3),

and because 5 < k < n. Now, if » = 0 then n = I(n — k 4 3). Hence 3l = 2= and then
3l<k.Ifr=1thenn=1I0n—-k+3)+ 1. Hence 3/ = Snl) ~ _3n_ < [

n—k+3 n—k+3 —
e When r =1 (2;=1)and k =n — 1.

Notice that in this case y, = 4 because {{z;,7,2;_1) = 4 and x;_; = 5, we can define
C=TyU(5,3,1,2,0),

where y; = ;. — 1 for 1 < i <1 —1. Clearly {(C') = n — 1 because the only vertex not in
(' is 4. The description of € implies that exactly 2/ + 1 arcs of (' are not in 7. Therefore
I(C)=k -2l - 1.



o When r =2 (2; = 2, Fig. 5)

C=T,U ($1_1,$1 + 1) U <$l + 17773/l> U (ylvwlvo)'

There are exactly 2/ 4 1 arcs of C' not in y. Hence Z(C) = [(C) — 21 — 1.

In this case I[(C') > 3l + 1. Since n = {(n — k + 3) + 2, to prove that C' can be constructed
to have I(C') = k it is sufficient to prove that 22=2 4 1 < k. The proof is as follows.

M < k-1
n—k+3 —
3n—2) < (k=1)(n—k+3)
E2—4k -3 < n(k —4)
E(k—4) < n(k—-4),

which holds because 5 < k£ < n.
e When r > 2 (z; > 2)

C=To Uz, zr+ DU+ 1,790 Uy 2, 1) ULy, vi1) U (Yig1,0).

There are exactly 2/ 4 2 arcs of C' not in y. Hence Z(C) = [(C) — 21 — 2.

In this case [(C') > 3]+ 3. Since n = I(n — k + 3) + r, to prove that C' can be constructed
to have [(C') = k it is sufficient to prove that 3(-2-= + 1) < k. Clearly it suffices to prove the

n—k+3
inequality for » = 3. The proof is as follows.
n—3
—+1) < k
3(— 3t ) <
3(n—34+n—Fk+3) < b
n—k+3 -
3(2n — k) < L
n—k+3 —
32n—k) < k(n—k+3)
kE(k—6) < n(k-6),
which holds since 5 < k < n. [

Notice that Theorem 3.4 guarantees the existence of a cycle C} with Z(Cy) > k-2 -2 >
k— n—21?+3 —2, forany (n+5)/2 < k < n—1. Therefore, even in the extreme case of k = n—1,
f(n,k,T)>n/2-3.

Given an arc a of v, in each of the constructions of the cycle C' in the previous theorem,
it is possible to construct C' in such a way that it contains a. This is done by letting a =

(14 1,2, 4+ 2). Hence we have the following

Corollary 3.5 If f(n,k,T) < k — 3 then for any arc a € « there exists a cycle Cy, a € Cf,
with Z(Cy) > k — —22— — 2.

n—k+3




a+l

z+p-1

z+p

Figure 1: llustrating Lemma 3.2

References

[1] B. Alspach, “Cycles of each length in regular tournaments.” Canadian Math. Bull., 10,
(1967), 283-286.

[2] J.C. Bermond, C.Thomasen, “Cycles in digraphs — A survey.” J. Graph Theory, 5, (1981),
43, 145-157.

[3] H. Galeana—Sanchez, S. Rajsbaum, “Cycle Pancyclism in Tournaments I,” Pub. Prel. 266

(technical report), Instituto de Matematicas, UNAM, Mexico, April 1992. Submitted for
publication.



X+ 1

X2

Figure 2: The path T,
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Figure 3: When r» =0 (2, = 0)
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Figure 4: When r =1 (2;=1) and k <n —2
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Figure 5: When r = 2
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