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Abstract

Let T be a hamiltonian tournament with n vertices and 4 a hamiltonian cycle of T". In
this paper we start the study of the following question: What is the maximum intersection
with v of a cycle of length £? This number is denoted f(n,k). We prove that for & in
the range, 3 < k < "zj, f(n,k) > k — 3, and that the result is best possible; in fact, a
characterization of the values of n, &, for which f(n,k) = k — 3 is presented.

In a forthcoming paper we study f(n, k) for the case of cycles of length £ > 24
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1 Introduction

The subject of pancyclism in tournaments has been studied by several authors (e.g. [1],[2]).
Two types of pancyclism have been considered. A tournament T is vertez-pancyclic if given
any vertex v there are cycles of every length containing ». Similarly, a tournament T is are-
pancyclic if given any arc e there are cycles of every length containing e. It is well known
that a hamiltonian tournament is vertex-pancyclic, but not necessarily arc-pancyclic. In this
paper we introduce the concept of cycle-pancyclism to study questions such as the following.
Given a cycle C', what is the maximum number of arcs which a cycle of length k contained in
T has in common with C'? Clearly, to study this kind of question it is sufficient to consider a
hamiltonian tournament where C' is a hamiltonian cycle of 7.

Let T' be a tournament with vertex set V.= {0,1,...,n—1} and arc set A. Assume without
loss of generality that v = (0,1,...,n — 1,0) is a hamiltonian cycle of 7. Let C}, denote a
directed cycle of length k. For a cycle C we denote Z,(C}) = |A(v) N A(Cy)|, or simply Z(CY)
when v is understood. Let f(n,k,T) = max{Z,(C})|Cy C T} and f(n,k) = min{f(n,k,T)|T

is a hamiltonian tournament with n vertices}. This paper is the first part of a study of f(n, k);
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it is devoted to k in the range 3 < k < 2. Tt is proved that f(n,k) = k — 3 if and only if
n>2k—4,andn#k (modk—2). Also, f(n,k)>k—2ifand onlyif n =k (mod k —2).
In a forthcoming paper we study f(n,k) for k > 2.

The rest of this paper is organized as follows. In Section 2 some notation and basic results
needed in the rest of the paper are introduced. The proof of the main result, i.e., that f(n, k) >
k — 3 for n > 2k — 4 appears in Section 3, 4, 5 and 6. Sections 3 through 5 contain special
cases (for particular values of n and k). The general case is left to Section 6, where it is proved
that f(n,k) > k — 3. In Section 7 it is proved that f(n,k) < k—3, whenn Z k (mod k — 2),
and that the results are best possible; namely, for n < 2k — 4, f(n,k) < k — 3. Thus, a
characterization is presented of the values of n, k for which f(n,k) = k — 3 and for which

f(n k) =k —2.

2 Preliminaries

A chord of a cycle (' is an arc not in ' with both terminal vertices in C'. The length of a chord
f = (u,v) of C, denoted I(f), is equal to the length of (u,C,v), where (u,C,v) denotes the
uv—directed path contained in C'. We say that f is a c¢-chord if I(f) = c and f = (u,v) is a
—c-chord if [{v, C,u) = ¢. Observe that if f is a c-chord then it is also a —(n — ¢)-chord.

In what follows all notation is taken modulo n.

For any a, 2 < a < n — 2, denote by ¢, the largest integer such that ¢ + ¢,(k —2) < n — 1.
The important case of ¢;,_, is denoted by ¢ in the rest of the paper. Let r be defined as follows:
r=n-—[k—14+1tk-2)].

Notice the following facts.

o If @ <b, then t, > t;.
o 1 2>0.

e 2< r<k—1.

Lemma 2.1 [f the a-chord with initial vertex 0 (recall that 0 is an arbitrary vertex of T) is
in A, then at least one of the two following properties holds.

Q) [k, T) >k —2.

(ii) For every 0 < i <t,, the a+ i(k — 2)-chord with initial vertex 0 is in A.

Proof: Suppose that (ii) in the lemma is false, and let

j=min{i € {1,2,. ...t} (a+i(k—2),0) € A},



then
Cr=(0,a+(-1D(k=2)U{a+(j—1)(k=2),v,a+j(k=2))U(atjk-2),0)

is a cycle such that Z(Cy) = k — 2 and hence (i) in the lemma is true. |
The following is a consequence of Lemma 2.1.

Corollary 2.2 At least one of the two following properties holds.

Q) [k, T) >k —2.

(ii) For every 0 < i <t, every ((k— 1)+ i(k — 2))-chord is in A.

Proof: Clearly, for any vertex 0, (0,k — 1) € A since otherwise (k — 1,0) € A and C} =
(0,1,...,k—1,0)is a cycle with Z(C}) = k — 1 and thus (i) holds.

Now applying Lemma 2.1 with @ = k — 1 we have that (i) or (ii) hold. |

3 The Cases k =3,4,5
Theorem 3.1 f(n,3) > 1.

Proof: Let ¢ = min{j € V|(j,0) € A}. Observe that ¢ is well defined since (n — 1,0) € A.
Clearly i # 1,804 — 1 > 0 and then (0,7 — 1,¢,0) is a cycle C5 with Z(C3) > 1. [

Theorem 3.2 f(n,4) > 1.

Proof: We proceed by contradiction. Taking ¢ = 3 and g = 0 in Lemma 2.1 we get that for
each 7, 0 < ¢ < t,, the (34 27)-chord (0,3 + 2¢) is in A. Recall that ¢, is the greatest integer
such that 3 +2¢t, < n — 1.

When n is even, it holds that ¢, = (n —4)/2—1, (0,34 2¢,) € A. Thatis, (0,n—3)€ A
and Cy = (0,n—3,n—2,n—1,0) is a cycle with Z(Cy) = 3. When n is odd, it holds that
t, = [252] and (0,3 + 2t,) € A, namely (0,n — 2) € A.
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Now, we may assume that (n — 3,0) € A, because otherwise the cycle Cy = (0,n — 3,n —
2,n—1,0) satisfies Z(Cy) = 3. If (n—1,n—3) € Athen Cy = (n—1,n—3,0,n—2,n—1)is a
cycle with Z(Cy) = 1. Else, (n—=3,n—1) € Aand Cy, = (n—3,n—1,0,n—4,n—3) is a cycle
with Z(Cy) = 1. |

Theorem 3.3 f(n,5) > 2.



Proof: We consider the three cases n=0 (mod 3),n=1 (mod3),n=2 (mod 3).

Case n = 2 (mod 3). Taking ¢ = 4 in Lemma 2.1, we get that (0,n —4) € A and
Cs=(0,n—4,n—3,n—2,n—1,0)is a cycle with Z(C5) = 4.

Case n =1 (mod 3). Taking ¢ = 4 in Lemma 2.1, we get that 4 + 3¢, = n — 3. Hence
(0,n—3) € Aand (0,n—6) € A. Observe that (n —4,0) € A. Otherwise (0,n —4) € A and
Cs=(0,n—4,n—3,n—2,n—1,0)is a cycle with Z(C5) = 4.

Now, if (n —2,n—5) € Athen C5 = (n—2,n—5,n—4,0,n—3,n—2) is a cycle with
I(Cs) =2. Flse (n—5,n—2) € Aand C5 = (0,n—6,n—5,n—2,n—1,0) is a cycle with

Case n = 0 (mod 3). If (0,3) € A then taking ¢ = 3 in Lemma 2.1, we obtain that

(0,n—6) € Aand (0,n—3) € A. The proof proceeds exactly as in the proof for the case n = 1
(mod 3). Hence, let us assume that (3,0) € A.

Observe that (5,0) € A, because otherwise (0,5) € A and taking @ = 5 in Lemma 2.1, we

get that (0,n—4) € Aand Cs = (0,n—4,n—3,n—2,n—1,0) is a cycle with Z(C5) = 4.
Therefore we have that (5,0) € A and (3,0) € A. Considering the cycle (0, 1,2,3,4,5,0)it is
easy to check that (5,3) € A and (1,5) € A (or else the proof follows). Analyzing the direction
of the arc joining 2 and 5 we see that in any case thereis a cycle C5 with Z(Cs) = 2: If (5,2) € A
then the cycle is Cs = (3,0,1,5,2,3), else, if (2,5) € A then the cycle is C5 = (3,0,1,2,5,3).
|

4 The case of n =2k -4
In this section it is proved that if n = 2k — 4 then f(n,k) > k — 3.
Theorem 4.1 Ifn =2k —4 then f(n,k) >k — 3.

Proof: Let  and y be two vertices of 7" such that [{(z,v,y) = {y,v,2) = k — 2. Without
loss of generality we can assume that + =0, y = k — 2 and (0,k — 2) € A. Hence (k—1,2)is
a (k—1)-chord, [{2,v,k—1) =k =3, (1,k)is a (k—1)-chord and I{2,v,k+ 1) =k — 1.

o (k,2)€ A. Otherwise (2,k) € A and then Cy = (k—2,k—1,2,k)U (k,7,0) U (0,k — 2)
is a cycle with Z(Cy) = k — 3.

o (1,k—1)€ A. Otherwise (k—1,1) € A and then C, = (k—1,1,k)U(k,v,0)U(0,k—2,k—1)
is a cycle with Z(Cy) = k — 3.

Therefore, since (k,2) € A and (1,k—1) € A then C, = (1,k—1,k,2,k+ 1)U (k+1,7,1) is
a cycle with Z(Cy) = k — 3. |



5 Thecaseofr=%t—1landr=4%Lt-2
In this section it is proved that if r =k — 1 or r = k — 2 then f(n,k) > k — 3.
Theorem 5.1 Ifr=k—1orr=Fk—2 then f(n,k) > k—3.

Proof: Assume r = k — 1. By Corollary 2.2 (taking ¢ = 0) either f(n,k,7) > k — 2 or
(0,k—1) € A. In the latter case we have that (k—1+t(k—2),7,0)U(0,k—1+¢(k—2))is a
cycle of length k intersecting v in & — 1 arcs. Thus, in both cases, f(n,k,T) > k — 2.

Now, assume r = k — 2 and f(n,k,T) < k — 3.
We consider the vertices 2 = k — 1+ tk—2),y =k —1+4 (¢t —1)(k — 2). Observe that

when ¢ = 0 we obtain y = 1.

(i) (0,z) € A. It follows from Corollary 2.2.

(ii) (y,z+1)€ A. If (y,2+1)¢ Athen (z+1,y) € Aand (z+ 1,y)U(y,7,2+ 1) is a cycle
of length k& which intersects v in & — 1 arcs.

(iii) (z,y) € A. If (z,y) € A then (y,2) € A and (y,z)U(x,v,0)U(0,y) (Corollary 2.2 implies
(0,y) € A) is a cycle of length £ intersecting v in at least £ — 2 arcs.

It follows from (i), (ii) and (iii) that (z,y)U (y,z+ 1)U (z + 1,7,0)U (0,2) is a cycle of
length k& which intersects v in at least £ — 3 arcs. A contradiction. |

Corollary 5.2 Ift =0 then f(n,k) >k —3.

Proof: Ift=0thenn=%k—1+7r, where k-3 <r<k—1sincen>2k—4. Whenr=%k—1
or r = k — 2, Theorem 5.1 implies that f(n,k) > k—3. If r = k — 3 then n = 2k — 4 and
Theorem 4.1 implies that f(n,k) >k — 3. [

6 The General Case

In this section we assume that » < k — 3, since the case r > k — 3 has been considered in
Theorem 5.1, and that ¢t > 1, since the case of t = 0 has been considered in Corollary 5.2. The
next lemma follows directly from Lemma 2.1.

Lemma 6.1 If the k — 1 + a-chord, o < r, with initial vertex 0 is in A, then at least one of
the two following properties holds.

Q) [k, T) >k —2.



(ii) For every 0 <i<t—1, thek — 1+ a+i(k — 2)-chord with initial vertex 0 is in A.
Lemma 6.2 At least one of the two following properties holds.

(1) f(n,k,T)>k—3.
(i1) All the following chords are in A.

(a) Every (k—1)-chord.
(b) Every (—r)-chord.
(¢) Fvery (k — 2)-chord.
(d) Every —(r + 1)-chord.

Proof: The proof of (a) follows directly from Corollary 2.2.
The proof of (b) follows from Corollary 2.2, observing that n —r = k — 1 4+ t(k — 2).

To prove (c) assume that there is a —(k — 2)-chord, say f = (y,z). Consider the vertex
z — 1. It follows from (a) that (z — 1,y) is in A, and it follows from (b) that (z — 1+ 7,2 — 1)
is in A. Therefore, there exists a vertex z in (¢ — 1 4+ r,7,y — 1) such that (z,2 — 1) and
(x—1,z41)arein A. Then C} = (y,2)U(z,7,2)U(z,e —DU(z— 1,24+ 1)U (z+1,7,y)is
a cycle with Z(Cy) = k — 3, and (i) holds.

Finally, to prove (d) let (y,2) be a (r 4+ 1)-chord. It follows from (c) and Lemma 2.1
that every ¢(k — 2)-chord is in A. In particular, (z + k — 2,2 + (t + 1)(k — 2)) is in A.
Observe that y = @ + (t + 1)(k — 2) since n = (k — 1) + t(k — 2) 4+ r. It follows that C} =
(y,2)U{(z,y,24+k—2)U(z+k—2,y)is a cycle with Z(C}) = k — 2. Hence (i) holds. |

Lemma 6.3 Let —1 < ¢ < r. If all the —r-chords, —(r + 1)-chords, (k — 2 4 i)-chords and
(k=14 i)-chords are in T then at least one of the following properties holds.

(1) f(n,k,T)>Fk—-3.
(ii) All the —(2r — i+ 1)-chords, —(2r — i + 2)-chords and —(2r — i 4+ 3)-chords are in T

Proof: Assume that the hypothesis of the lemma holds and (i) is false. Let us prove that
(ii) holds.

Since all the [(k — 2) 4 ¢]-chords and all the [(k — 1) 4 i]-chords are in 7', it follows from
Lemma 6.1 (taking o = 7 — 1) that every [k — 2414 (¢t — 1)(k — 2)]-chord is in 7', and that
(taking a = i) every [k — 1 + ¢+ (t — 1)(k — 2)]-chord is in 7. Thus the following arcs are in
T: (r,0),(r+1,0),(0,k=14+(t—-1)(k—2)4+1),(0,k—1+({t—-1)(k—-2)+1—1).

Letzy=r,ao=r+l,as=k—-1+0-1)k=-2)+1—1l, a4 =25+ 1,25 =24+ k-2,

¢ = x5+ 1, 27 = x5 — 1 and xg = @7 — 1. Therefore (0,24) and (0, z3) are in A.

Observe that:



o It follows from a5 =k — 14+ ¢(k—2)+ ¢, and n =k — 1+ t(k — 2) 4+ r that {{z5,7,0) =

n—2Ts=1r—21.

2
o {zyv,x7) =k —3.
k

o [{x3,v,28) =

We first prove that every —(2r—i41)-chord is in 7. Suppose that there exists a (2r —i+1)-
chord. We can assume w.l.o.g. that (27,2,) is such a chord. Hence C} = (27,21,0,24) U
(24,7, 27) is a cycle with Z(C}) = k — 3.

Now we prove that every —(2r — i+ 2)-chord is in 7. Assume the contrary and let (27, 2)
be a (2r — i + 2)-chord. Then C} = (27,22,0,24) U (24,7, 27) is a cycle with Z(Cy) = k — 3.
Finally we show that every —(2r — i + 3)-chord is in 7. Assuming the opposite let (x5, 25)

be a (2r — i 4 3)-chord. Then C} = (2g,22,0,23) U (23,7, 2s) is a cycle with Z(C}) = k — 3.
|

Lemma 6.4 At least one of the following properties holds.

Q) [k, T) >k —2.

(i1) For any vertex x, there exist at most k —3 consecutive vertices in v which are in—neighbors

of x.

Proof: Assume that (i) does not hold. Assume without loss of generality that 2 = 0. The
vertices k — 1 4+ i(k — 2), for 0 < ¢ < ¢, are not in—neighbors of 0. This follows from Lemma
6.2 part (a), and Lemma 2.1. Thus, there are at most k — 3 consecutive vertices in (k—1,v,0)
which are in—neighbors of 0. Since (0,1) € A, also in (0,v,k — 1) there are at most k — 3
consecutive in—neighbors of 0. |

Observe that in the Lemma 6.4 the general assumption of this section that n > 2k — 4 is
not needed. The following corollary is a direct consequence of this lemma.

Corollary 6.5 Let T be a tournament with n vertices and v a hamiltonian cycle of T. For
each vertex x of T such that the number of consecutive in—neighbors of x in v is at least k — 2,
3 <k < n, there exists a cycle Cy containing the vertex x, with I(Cy) > k — 2.



Lemma 6.6 If every k-chord and every (—r)-chord is in A then at least one of the two fol-
lowing properties holds.

(1) f(n,k,T)>k—3.
(ii) For every a, 0 < ar < k, every —(a + 1)r-chord is in A.

Proof: Assume that (i) does not hold; we show that (i) holds. Let o be the least integer for
which an (a 4+ 1)r-chord is in A, and let (25, 2;) be an (a + 1)r-chord.

Let 2y € V such that I{zq,7,20) = r. It follows that (z,,2,) € A because it is an —ar-
chord. Let z3 € V such that [{xq,y,25) = k+ (t — 1)(k — 2). Observe that z3 € (21,7, z0)
because ar < k and t > 1.

Lemma 6.1 and the fact that every k-chord is in A imply that either f(n,k,T)> k-2 or
every k + (t — 1)(k — 2)-chord is in A. In the latter case (zq,23) € A and [{z3,v,2.) = k — 3.
We conclude that Cf, = (z3,7,22) U (29,21, 20, 23) is a cycle with Z(C}) = k — 3, and hence
f(n,k,T)> k- 3. [ ]

Lemma 6.7 At least one of the following properties holds.
(1) f(n,k,T)>k—3.
(ii) For —1 < i<, every —(2r 4+ 1 — t)-chord and every (k — 1 + i)-chord is in A.

Proof: Suppose that f(n,k,T) < k—3. We shall prove that property (ii) holds by induction
on 7. We start with « = —1 and ¢ = 0, namely, we prove that the following chords are in A:

(a) Every (k — 2)-chord.
(b) Every (k — 1)-chord.
(¢) Every —(2r + 2)-chord.
(d) Every —(2r + 1)-chord.

In fact we also prove that:
(e) Every —(2r + 3)-chord is in A.

The proof of (a) and (b) follows directly from Lemma 6.2.
Let 0 be any vertex of T. By Lemma 6.2 (b) and (d) (r,0) and (r + 1,0) are in A.

It follows from Lemma 6.2 (part (a) and part (c)), and Lemma 2.1 that the following two
chords, whose end-points are consecutive in v, are in A: (0, k—14(t—1)(k—2)) and (0, {(k—2)).

Since 0 is an arbitrary vertex of 7', we can prove that (c), (d) and (e) hold:



o Part (c): every —(2r + 2)-chord isin A. If (n —r —1,r4+1) € A then C}, = (n —r —
Lr+D)U(r+1L,00U0,k—14+(t—-1)(k=2)U(k—14+(t—-1)(k—-2),y,n—7r—1)is a
cycle with Z(Cy) = k — 3, a contradiction.

o Part (d): every —(2r + 1)-chordisin A. If (n —r—1,r)€ Athen Cp, = (n—r—1,7)U
(r,0)U(0,k—1+(t—-1)(k=2)U(k—=1+(t—1)(k—-2),y,n—r—1)is a cycle with
I(Cy) = k — 3, a contradiction.

o Part (e): every —(2r + 3)-chord isin A. If (n —r —2,r4+1) € A then C}, = (n — 7 —
2,r+ 1)U (r+1,0)U(0,t(k—2))U(t(k—2),v,n—r —2)is a cycle with Z(C}) = k — 3,
a contradiction.

Assume that the lemma holds for each ¢, ¢/ < ¢ and let us prove it for ¢ + 1; namely, we
prove:

(a) Every (k + ¢)-chord is in A,
() Every —(2r — ¢)-chord is in A.

Proof of («)

It follows from the inductive hypothesis that for each j, 0 < j <, every (k— 1)+ j-chord and
every (k —2)+ j-chord is in A. Hence, by Lemmas 6.2 and 6.3, every —(2r — j 4+ 1)-chord,
—(2r — j 4 2)-chord and every —(2r — j + 3)-chord is in A. That is, for each j, 0 < j <i+ 2,
every —(2r — j + 1)-chord is in A. These are (¢ 4 3)-chords with initial vertices consecutive in
y.

Assume for contradiction that (25,0)is a —(k + ¢)-chord. Let g = n —(2r —i—1). Hence
letting x5, = 2, we have that (22, 2), is a —(2r — (¢ — 1))-chord.

Let us show that 2o € (x5 +1,7,n— 1):

Hxo,v,0)=2r —i—1,

Wxs,v,20) = n—(k+i+2r—i—1)
= k-14+tk=2)+r—(k+i4+2r—i—1)
> (k—-D+k-2)+r—k—t-2r+i+1=k—-2-r.

Since we are assuming 7 < k — 3 then {{z3,7,20) > 1. Hence [{xq,v,0) > 1, because r > 1.

Now, there exists an ¢ € I't(z) such that  is in (25,7, 25—1). This is a direct consequence
of Lemma 6.4 and the fact that the number of vertices in (x5, 7,25 — 1) is at least k — 2. Let
x4 be the smallest (the nearest to 0 in ) such vertex.

Let 2, = 0. We will prove that 2, — 7 — 3 € (z1,7,24— 3). Since for each j,0 < j <i+ 2,
every —(2r — j 4+ 1)-chord is in A, it follows that {(0,z),(1,20),(2,20),...,(7 + 2,20)} C A.
Hence, the election of z, implies 4, > ¢+ 3 and then 2, — 71 —3> 0 = z;.



Finally, since I{z4,7,23) + [{z1,7,24 — 1 —3) = k — 3 then C} = (24 — 1 — 3,20,24) U
(24,7, 23) U (23, 21) U (21,7, 24 — ¢ — 3) is a cycle with Z(Cy) = k — 3.

Proof of (5)

Part (3 ) follows from Lemma 6.3 (taking ¢ 4+ 1 instead of ¢) and the following facts.

e Every (k4 i)-chord is in A. Follows from part (a).
e Every (k — 1+ ¢)-chord is in A. Follows from the inductive hypothesis.

o Lvery (—r)-chord and every —(r + 1)-chord is in A. Follows from Lemma 6.2.

Theorem 6.8 Ifn > 2k —4 then f(n,k) >k — 3.

Proof: The case of n = 2k — 4 is considered in Section 4. Assume that n > 2k — 4 and
assume for contradiction that f(n,k,7) < k — 3.

It follows from Lemma 6.7 that for each ¢, —1 < i < r, every (k+ i — 1)-chord is in A. In
particular

{00,k = 2),(0,k —1),(0, k), ... (0, k+ 7 — 1)} € A. (1)

It follows from Lemma 6.2 that every (—r)-chord is in A, and by Lemma 6.7 that every
k-chord is in A. Therefore, by Lemma 6.6 for every o, 0 < ar < k, every —(a + 1)r-chord is in
A. Let oy = max{a € N|ar < k}. Clearly ayr < k, and by Lemma 6.6 every —(ag+ 1)r-chord
is in A. In particular ((ag +1)r,0) € Aand k < (g + 1)r < k+r. Thus y = (ag+ 1)r €
{k=2,k—1,k,k+1,...,k+r—1}. Therefore (y,0) € A. On the other hand, (1) implies that
(0,y) € A. A contradiction. ]

7 Upper Bounds

Two upper bounds are presented in this section. The first upper bound shows that for n, k&,
such that n > 2k — 4 the lower bounds on f(n,k) presented previously are tight. In fact, a
characterization of tournaments with f(n,k) > k — 2 is presented.

It has been shown that for n > 2k — 4, f(n,k) > k — 3. The second upper bound shows
that for n < 2k — 4, f(n,k) <k —3.

We start the proof of the first upper bound with the following simple lemma.
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Lemma 7.1 Let C}, be a cycle with T(Cy) = k— 2. If fi = (0,21), fo = (y1,y2) are the arcs
of Cy, not in vy then yo =y, +n — (k=24 xy). Namely, fy is a —(k — 2+ x)-chord of 7.

Theorem 7.2 Forn > 5, k > 5, such that n 2k (mod k —2), f(n, k) <k —3.

Proof: We prove the theorem by presenting a hamiltonian tournament 7, with no cycles C},

having Z(Cy) = k — 2. We define 7}, as follows.

AT,) = {G,i+k—-14+s(k-2))lie{0,1,....,n—1},s€{0,1,...,t}}U

n—1

{(l+],l)|]€ {{2737"'7L 9 J}_
{k—14s(k-2)se{0,1,...,t},7€{0,1,...,n—1}}}} U
{(i,i+ D]ie {0,1,...,n—1}}.

(t was defined in Section 2) If n is even it remains to define the orientation of the n/2-chords.
These are defined as follows. For ¢ € {0,1,...,n/2 — 1}, the arcs

(i +n/2,4)

are in A.

Assume for contradiction that Cy is a cycle of T, with Z(Cy) = k — 2, and let f; = (0,2,),
fa = (y1,y2) the only arcs of C} not in . Without loss of generality we can assume that
I(f1) < n/2. The definition of T, implies that z; =k — 1+ s(k —2), s € {0,1,...,t}.

It follows from Lemma 7.1 that y» = y1 +n—(k—1+(s+1)(k—2)). If s <t then s+1 <¢
and fyisa —(k— 14 (s+ 1)(k — 2))-chord, contradicting the definition of 7,,.

Assume now that s =¢. Hence ;, = k— 14+ #(k—2), and n = (k— 1)+ t(k — 2) + r implies
l{x1,7,0) = r. On the other hand, we have that Cy — {(0,21),(y1,92)} € {(21,7,0). Thus
lz1,7,0) > k—1,and r > k — 1. The definition of r implies » < k — 1. Therefore r = k — 1
and then n =k (mod k — 2), a contradiction. |

It is easy to verify that if n =k (mod k—2), then f(n,k) > k—2. Hence as a consequence
of the previous theorem we get the following characterization of f(n,k) > k — 2.

Corollary 7.3 f(n,k)>k—2if and only ifn =k (mod k — 2).
The next theorem follows from Theorem 6.8 and Theorem 7.2.
Theorem 7.4 For eachn > 2k—4, such that n # k (mod k—2) it holds that f(n,k) = k—3.

We now present the proof of the second upper bound. The aim is to show that the range
of k that we have been considering (2k — 4 < n) is as large as possible, with f(n,k) > k — 3.
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Theorem 7.5 Forn > 5, k > 5, such that n < 2k — 5 it holds that f(n,k) < k — 3.

Proof: We prove the theorem by presenting a tournament 7, with no cycles 'y having

I(Cy) > k — 3. We define T,, as follows. If n is odd then
AT,) = {(,i+1)]ie{0,1,...,n—1}}U

. n+1 n+1
{60+ 7)l5 €4 5 5 +1,...,n—2}}.

If n is even then

A(T,) = {G,i+1)lie{0,1,....,n—1}}U
{Uﬂ+ﬂU€{g+Lg+2w~m—2HU

{livi+ )i € {0,000, 5 = 13},

2

Consider a cycle C} of length k. Observe that Z(C}) < k—2. We prove that Z(Cy) < k—3,
by showing that for any cycle €' with Z(C') = k — 3, it holds that [(C') < k — 1.

Let fi = (21,22), fo = (23,24), and f3 = (25,26) be the three arcs of C' not in v. Hence,
without loss of generality,

C = (21, 22) U2, 7, 23) U (23, 24) U (2a,7, 25) U (25, 26) U (¥6,7, 21).
By the definition of T, it follows that I(f;) > n/2, for each ¢ € {1,2,3}. Moreover, there exists
J € {1,2,3}, such that I(f;) > n/2. On the other hand,
Z(C) = l<$2777$1> + l<$6777$5> - l<$3777$4> +3

— 0 —I(fi)+n—1(fs) = U(fs) + 3.

Now we proceed with the proof for n even. The case of n odd is analogous. Since I(f;) > n/2
and {(f;) > n/2 it follows that

n+ 4
5

Therefore [(C) < k — 1, since n < 2k — 5. |

(CY<n/24+n/2—(n/2+1)+3=

Finally, the complete characterization of f(n,k) =k — 3 is presented.

Theorem 7.6 (Main Result) f(n,k)=k-3 ifand only ifn > 2k—4, andn £ k (mod k—
2).

Acknowledgments: We thank an anonymous referee for a thorough review and useful sug-
gestions.
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