Cycle–Pancyclism in Tournaments I

Hortensia Galeana-Sánchez and Sergio Rajsbaum* Instituto de Matemáticas U.N.A.M. C.U., Circuito Exterior, D.F. 04510, México

(SEPTEMBER 8, 1994)

Abstract

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In this paper we start the study of the following question: What is the maximum intersection with γ of a cycle of length k? This number is denoted f(n,k). We prove that for k in the range, $3 \leq k \leq \frac{n+4}{2}$, $f(n,k) \geq k-3$, and that the result is best possible; in fact, a characterization of the values of n, k, for which f(n,k) = k-3 is presented.

In a forthcoming paper we study f(n,k) for the case of cycles of length $k > \frac{n+4}{2}$.

1 Introduction

The subject of pancyclism in tournaments has been studied by several authors (e.g. [1], [2]). Two types of pancyclism have been considered. A tournament T is vertex-pancyclic if given any vertex v there are cycles of every length containing v. Similarly, a tournament T is arc-pancyclic if given any arc e there are cycles of every length containing e. It is well known that a hamiltonian tournament is vertex-pancyclic, but not necessarily arc-pancyclic. In this paper we introduce the concept of cycle-pancyclism to study questions such as the following. Given a cycle C, what is the maximum number of arcs which a cycle of length k contained in T has in common with C? Clearly, to study this kind of question it is sufficient to consider a hamiltonian tournament where C is a hamiltonian cycle of T.

Let T be a tournament with vertex set $V = \{0, 1, ..., n-1\}$ and arc set A. Assume without loss of generality that $\gamma = (0, 1, ..., n-1, 0)$ is a hamiltonian cycle of T. Let C_k denote a directed cycle of length k. For a cycle C_k we denote $\mathcal{I}_{\gamma}(C_k) = |A(\gamma) \cap A(C_k)|$, or simply $\mathcal{I}(C_k)$ when γ is understood. Let $f(n, k, T) = \max\{\mathcal{I}_{\gamma}(C_k) | C_k \subset T\}$ and $f(n, k) = \min\{f(n, k, T) | T$ is a hamiltonian tournament with n vertices}. This paper is the first part of a study of f(n, k);

^{*}On leave at the MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139.

it is devoted to k in the range $3 \le k \le \frac{n+4}{2}$. It is proved that f(n,k) = k-3 if and only if $n \ge 2k-4$, and $n \ne k \pmod{k-2}$. Also, $f(n,k) \ge k-2$ if and only if $n \equiv k \pmod{k-2}$. In a forthcoming paper we study f(n,k) for $k > \frac{n+4}{2}$.

The rest of this paper is organized as follows. In Section 2 some notation and basic results needed in the rest of the paper are introduced. The proof of the main result, i.e., that $f(n,k) \ge k-3$ for $n \ge 2k-4$ appears in Section 3, 4, 5 and 6. Sections 3 through 5 contain special cases (for particular values of n and k). The general case is left to Section 6, where it is proved that $f(n,k) \ge k-3$. In Section 7 it is proved that $f(n,k) \le k-3$, when $n \not\equiv k \pmod{k-2}$, and that the results are best possible; namely, for n < 2k - 4, f(n,k) < k - 3. Thus, a characterization is presented of the values of n, k for which f(n,k) = k-3 and for which f(n,k) = k-2.

2 Preliminaries

A chord of a cycle C is an arc not in C with both terminal vertices in C. The length of a chord f = (u, v) of C, denoted l(f), is equal to the length of $\langle u, C, v \rangle$, where $\langle u, C, v \rangle$ denotes the uv-directed path contained in C. We say that f is a c-chord if l(f) = c and f = (u, v) is a -c-chord if $l\langle v, C, u \rangle = c$. Observe that if f is a c-chord then it is also a -(n-c)-chord.

In what follows all notation is taken modulo n.

For any $a, 2 \le a \le n-2$, denote by t_a the largest integer such that $a + t_a(k-2) < n-1$. The important case of t_{k-1} is denoted by t in the rest of the paper. Let r be defined as follows: r = n - [k - 1 + t(k-2)].

Notice the following facts.

- If $a \leq b$, then $t_a \geq t_b$.
- *t* ≥ 0.
- $2 \le r \le k 1$.

Lemma 2.1 If the a-chord with initial vertex 0 (recall that 0 is an arbitrary vertex of T) is in A, then at least one of the two following properties holds.

- (i) $f(n, k, T) \ge k 2$.
- (ii) For every $0 \le i \le t_a$, the a + i(k-2)-chord with initial vertex 0 is in A.

Proof: Suppose that (ii) in the lemma is false, and let

 $j = \min\{i \in \{1, 2, \dots, t_a\} \mid (a + i(k - 2), 0) \in A\},\$

then

$$C_k = (0, a + (j-1)(k-2)) \cup \langle a + (j-1)(k-2), \gamma, a + j(k-2) \rangle \cup (a + j(k-2), 0)$$

is a cycle such that $\mathcal{I}(C_k) = k - 2$ and hence (i) in the lemma is true.

The following is a consequence of Lemma 2.1.

Corollary 2.2 At least one of the two following properties holds.

- (i) $f(n, k, T) \ge k 2$.
- (ii) For every $0 \le i \le t$, every ((k-1) + i(k-2))-chord is in A.

Proof: Clearly, for any vertex $0, (0, k - 1) \in A$ since otherwise $(k - 1, 0) \in A$ and $C_k = (0, 1, \ldots, k - 1, 0)$ is a cycle with $\mathcal{I}(C_k) = k - 1$ and thus (i) holds.

Now applying Lemma 2.1 with a = k - 1 we have that (i) or (ii) hold.

3 The Cases k = 3, 4, 5

Theorem 3.1 $f(n,3) \ge 1$.

Proof: Let $i = \min\{j \in V | (j, 0) \in A\}$. Observe that *i* is well defined since $(n - 1, 0) \in A$. Clearly $i \neq 1$, so i - 1 > 0 and then (0, i - 1, i, 0) is a cycle C_3 with $\mathcal{I}(C_3) \geq 1$.

Theorem 3.2 $f(n, 4) \ge 1$.

Proof: We proceed by contradiction. Taking a = 3 and $x_0 = 0$ in Lemma 2.1 we get that for each $i, 0 \le i \le t_a$, the (3 + 2i)-chord (0, 3 + 2i) is in A. Recall that t_a is the greatest integer such that $3 + 2t_a < n - 1$.

When n is even, it holds that $t_a = (n-4)/2 - 1$, $(0, 3+2t_a) \in A$. That is, $(0, n-3) \in A$ and $C_4 = (0, n-3, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_4) = 3$. When n is odd, it holds that $t_a = \lfloor \frac{n-4}{2} \rfloor$ and $(0, 3+2t_a) \in A$, namely $(0, n-2) \in A$.

Now, we may assume that $(n-3,0) \in A$, because otherwise the cycle $C_4 = (0, n-3, n-2, n-1, 0)$ satisfies $\mathcal{I}(C_4) = 3$. If $(n-1, n-3) \in A$ then $C_4 = (n-1, n-3, 0, n-2, n-1)$ is a cycle with $\mathcal{I}(C_4) = 1$. Else, $(n-3, n-1) \in A$ and $C_4 = (n-3, n-1, 0, n-4, n-3)$ is a cycle with $\mathcal{I}(C_4) = 1$.

Theorem 3.3 $f(n,5) \ge 2$.

Proof: We consider the three cases $n \equiv 0 \pmod{3}$, $n \equiv 1 \pmod{3}$, $n \equiv 2 \pmod{3}$.

Case $n \equiv 2 \pmod{3}$. Taking a = 4 in Lemma 2.1, we get that $(0, n - 4) \in A$ and $C_5 = (0, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Case $n \equiv 1 \pmod{3}$. Taking a = 4 in Lemma 2.1, we get that $4 + 3t_4 = n - 3$. Hence $(0, n - 3) \in A$ and $(0, n - 6) \in A$. Observe that $(n - 4, 0) \in A$. Otherwise $(0, n - 4) \in A$ and $C_5 = (0, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Now, if $(n-2, n-5) \in A$ then $C_5 = (n-2, n-5, n-4, 0, n-3, n-2)$ is a cycle with $\mathcal{I}(C_5) = 2$. Else $(n-5, n-2) \in A$ and $C_5 = (0, n-6, n-5, n-2, n-1, 0)$ is a cycle with $\mathcal{I}(C_5) = 3$.

Case $n \equiv 0 \pmod{3}$. If $(0,3) \in A$ then taking a = 3 in Lemma 2.1, we obtain that $(0, n-6) \in A$ and $(0, n-3) \in A$. The proof proceeds exactly as in the proof for the case $n \equiv 1 \pmod{3}$. Hence, let us assume that $(3,0) \in A$.

Observe that $(5,0) \in A$, because otherwise $(0,5) \in A$ and taking a = 5 in Lemma 2.1, we get that $(0, n - 4) \in A$ and $C_5 = (0, n - 4, n - 3, n - 2, n - 1, 0)$ is a cycle with $\mathcal{I}(C_5) = 4$.

Therefore we have that $(5,0) \in A$ and $(3,0) \in A$. Considering the cycle (0, 1, 2, 3, 4, 5, 0) it is easy to check that $(5,3) \in A$ and $(1,5) \in A$ (or else the proof follows). Analyzing the direction of the arc joining 2 and 5 we see that in any case there is a cycle C_5 with $\mathcal{I}(C_5) = 2$: If $(5,2) \in A$ then the cycle is $C_5 = (3,0,1,5,2,3)$, else, if $(2,5) \in A$ then the cycle is $C_5 = (3,0,1,2,5,3)$.

4 The case of n = 2k - 4

In this section it is proved that if n = 2k - 4 then $f(n, k) \ge k - 3$.

Theorem 4.1 If n = 2k - 4 then $f(n,k) \ge k - 3$.

Proof: Let x and y be two vertices of T such that $l\langle x, \gamma, y \rangle = l\langle y, \gamma, x \rangle = k - 2$. Without loss of generality we can assume that x = 0, y = k - 2 and $(0, k - 2) \in A$. Hence (k - 1, 2) is a (k - 1)-chord, $l\langle 2, \gamma, k - 1 \rangle = k - 3$, (1, k) is a (k - 1)-chord and $l\langle 2, \gamma, k + 1 \rangle = k - 1$.

- $(k,2) \in A$. Otherwise $(2,k) \in A$ and then $C_k = (k-2, k-1, 2, k) \cup \langle k, \gamma, 0 \rangle \cup (0, k-2)$ is a cycle with $\mathcal{I}(C_k) = k 3$.
- $(1, k-1) \in A$. Otherwise $(k-1, 1) \in A$ and then $C_k = (k-1, 1, k) \cup \langle k, \gamma, 0 \rangle \cup (0, k-2, k-1)$ is a cycle with $\mathcal{I}(C_k) = k 3$.

Therefore, since $(k,2) \in A$ and $(1, k-1) \in A$ then $C_k = (1, k-1, k, 2, k+1) \cup \langle k+1, \gamma, 1 \rangle$ is a cycle with $\mathcal{I}(C_k) = k-3$.

5 The case of r = k - 1 and r = k - 2

In this section it is proved that if r = k - 1 or r = k - 2 then $f(n, k) \ge k - 3$.

Theorem 5.1 If r = k - 1 or r = k - 2 then $f(n, k) \ge k - 3$.

Proof: Assume r = k - 1. By Corollary 2.2 (taking i = 0) either $f(n, k, T) \ge k - 2$ or $(0, k - 1) \in A$. In the latter case we have that $\langle k - 1 + t(k - 2), \gamma, 0 \rangle \cup (0, k - 1 + t(k - 2))$ is a cycle of length k intersecting γ in k - 1 arcs. Thus, in both cases, $f(n, k, T) \ge k - 2$.

Now, assume r = k - 2 and f(n, k, T) < k - 3.

We consider the vertices x = k - 1 + t(k - 2), y = k - 1 + (t - 1)(k - 2). Observe that when t = 0 we obtain y = 1.

- (i) $(0, x) \in A$. It follows from Corollary 2.2.
- (ii) $(y, x + 1) \in A$. If $(y, x + 1) \notin A$ then $(x + 1, y) \in A$ and $(x + 1, y) \cup \langle y, \gamma, x + 1 \rangle$ is a cycle of length k which intersects γ in k 1 arcs.
- (iii) $(x, y) \in A$. If $(x, y) \notin A$ then $(y, x) \in A$ and $(y, x) \cup \langle x, \gamma, 0 \rangle \cup (0, y)$ (Corollary 2.2 implies $(0, y) \in A$) is a cycle of length k intersecting γ in at least k 2 arcs.

It follows from (i), (ii) and (iii) that $(x, y) \cup (y, x + 1) \cup \langle x + 1, \gamma, 0 \rangle \cup (0, x)$ is a cycle of length k which intersects γ in at least k - 3 arcs. A contradiction.

Corollary 5.2 If t = 0 then $f(n, k) \ge k - 3$.

Proof: If t = 0 then n = k - 1 + r, where $k - 3 \le r \le k - 1$ since $n \ge 2k - 4$. When r = k - 1 or r = k - 2, Theorem 5.1 implies that $f(n,k) \ge k - 3$. If r = k - 3 then n = 2k - 4 and Theorem 4.1 implies that $f(n,k) \ge k - 3$.

6 The General Case

In this section we assume that $r \leq k-3$, since the case r > k-3 has been considered in Theorem 5.1, and that $t \geq 1$, since the case of t = 0 has been considered in Corollary 5.2. The next lemma follows directly from Lemma 2.1.

Lemma 6.1 If the $k - 1 + \alpha$ -chord, $\alpha \leq r$, with initial vertex 0 is in A, then at least one of the two following properties holds.

(i) $f(n, k, T) \ge k - 2$.

(ii) For every $0 \le i \le t - 1$, the $k - 1 + \alpha + i(k - 2)$ -chord with initial vertex 0 is in A.

Lemma 6.2 At least one of the two following properties holds.

(i) $f(n, k, T) \ge k - 3$.

- (ii) All the following chords are in A.
 - (a) Every (k-1)-chord.
 - (b) Every (-r)-chord.
 - (c) Every (k-2)-chord.
 - (d) Every (r+1)-chord.

Proof: The proof of (a) follows directly from Corollary 2.2.

The proof of (b) follows from Corollary 2.2, observing that n - r = k - 1 + t(k - 2).

To prove (c) assume that there is a -(k-2)-chord, say f = (y, x). Consider the vertex x - 1. It follows from (a) that (x - 1, y) is in A, and it follows from (b) that (x - 1 + r, x - 1) is in A. Therefore, there exists a vertex z in $\langle x - 1 + r, \gamma, y - 1 \rangle$ such that (z, x - 1) and (x - 1, z + 1) are in A. Then $C_k = (y, x) \cup \langle x, \gamma, z \rangle \cup (z, x - 1) \cup (x - 1, z + 1) \cup \langle z + 1, \gamma, y \rangle$ is a cycle with $\mathcal{I}(C_k) = k - 3$, and (i) holds.

Finally, to prove (d) let (y, x) be a (r + 1)-chord. It follows from (c) and Lemma 2.1 that every t(k - 2)-chord is in A. In particular, (x + k - 2, x + (t + 1)(k - 2)) is in A. Observe that y = x + (t + 1)(k - 2) since n = (k - 1) + t(k - 2) + r. It follows that $C_k = (y, x) \cup \langle x, \gamma, x + k - 2 \rangle \cup (x + k - 2, y)$ is a cycle with $\mathcal{I}(C_k) = k - 2$. Hence (i) holds.

Lemma 6.3 Let $-1 \le i \le r$. If all the -r-chords, -(r+1)-chords, (k-2+i)-chords and (k-1+i)-chords are in T then at least one of the following properties holds.

(i) $f(n, k, T) \ge k - 3$.

(ii) All the -(2r-i+1)-chords, -(2r-i+2)-chords and -(2r-i+3)-chords are in T.

Proof: Assume that the hypothesis of the lemma holds and (i) is false. Let us prove that (ii) holds.

Since all the [(k-2)+i]-chords and all the [(k-1)+i]-chords are in T, it follows from Lemma 6.1 (taking $\alpha = i - 1$) that every [k - 2 + i + (t - 1)(k - 2)]-chord is in T, and that (taking $\alpha = i$) every [k - 1 + i + (t - 1)(k - 2)]-chord is in T. Thus the following arcs are in T: (r, 0), (r + 1, 0), (0, k - 1 + (t - 1)(k - 2) + i), (0, k - 1 + (t - 1)(k - 2) + i - 1).

Let $x_1 = r$, $x_2 = r + 1$, $x_3 = k - 1 + (t - 1)(k - 2) + i - 1$, $x_4 = x_3 + 1$, $x_5 = x_4 + k - 2$, $x_6 = x_5 + 1$, $x_7 = x_5 - 1$ and $x_8 = x_7 - 1$. Therefore $(0, x_4)$ and $(0, x_3)$ are in A.

Observe that:

- It follows from $x_5 = k 1 + t(k 2) + i$, and n = k 1 + t(k 2) + r that $l\langle x_5, \gamma, 0 \rangle = n x_5 = r i$.
- $l\langle x_6, \gamma, 0 \rangle = r i 1.$
- $l\langle x_6, \gamma, x_1 \rangle = 2r i 1.$
- $l\langle x_7, \gamma, x_1 \rangle = 2r i + 1.$
- $l\langle x_7, \gamma, x_2 \rangle = 2r i + 2.$
- $l\langle x_8, \gamma, x_2 \rangle = 2r i + 3.$
- $l\langle x_4, \gamma, x_7 \rangle = k 3.$
- $l\langle x_3, \gamma, x_8 \rangle = k 3.$

We first prove that every -(2r-i+1)-chord is in T. Suppose that there exists a (2r-i+1)chord. We can assume w.l.o.g. that (x_7, x_1) is such a chord. Hence $C_k = (x_7, x_1, 0, x_4) \cup \langle x_4, \gamma, x_7 \rangle$ is a cycle with $\mathcal{I}(C_k) = k - 3$.

Now we prove that every -(2r-i+2)-chord is in T. Assume the contrary and let (x_7, x_2) be a (2r-i+2)-chord. Then $C_k = (x_7, x_2, 0, x_4) \cup \langle x_4, \gamma, x_7 \rangle$ is a cycle with $\mathcal{I}(C_k) = k - 3$.

Finally we show that every -(2r - i + 3)-chord is in T. Assuming the opposite let (x_8, x_2) be a (2r - i + 3)-chord. Then $C_k = (x_8, x_2, 0, x_3) \cup \langle x_3, \gamma, x_8 \rangle$ is a cycle with $\mathcal{I}(C_k) = k - 3$.

Lemma 6.4 At least one of the following properties holds.

- (i) $f(n, k, T) \ge k 2$.
- (ii) For any vertex x, there exist at most k-3 consecutive vertices in γ which are in-neighbors of x.

Proof: Assume that (i) does not hold. Assume without loss of generality that x = 0. The vertices k - 1 + i(k - 2), for $0 \le i \le t$, are not in-neighbors of 0. This follows from Lemma 6.2 part (a), and Lemma 2.1. Thus, there are at most k - 3 consecutive vertices in $\langle k - 1, \gamma, 0 \rangle$ which are in-neighbors of 0. Since $(0, 1) \in A$, also in $\langle 0, \gamma, k - 1 \rangle$ there are at most k - 3 consecutive in-neighbors of 0.

Observe that in the Lemma 6.4 the general assumption of this section that $n \ge 2k - 4$ is not needed. The following corollary is a direct consequence of this lemma.

Corollary 6.5 Let T be a tournament with n vertices and γ a hamiltonian cycle of T. For each vertex x of T such that the number of consecutive in-neighbors of x in γ is at least k-2, $3 \leq k \leq n$, there exists a cycle C_k containing the vertex x, with $\mathcal{I}(C_k) \geq k-2$. **Lemma 6.6** If every k-chord and every (-r)-chord is in A then at least one of the two following properties holds.

- (i) $f(n, k, T) \ge k 3$.
- (ii) For every α , $0 < \alpha r < k$, every $-(\alpha + 1)r$ -chord is in A.

Proof: Assume that (ii) does not hold; we show that (i) holds. Let α be the least integer for which an $(\alpha + 1)r$ -chord is in A, and let (x_2, x_1) be an $(\alpha + 1)r$ -chord.

Let $x_0 \in V$ such that $l\langle x_2, \gamma, x_0 \rangle = r$. It follows that $(x_1, x_0) \in A$ because it is an $-\alpha r$ chord. Let $x_3 \in V$ such that $l\langle x_0, \gamma, x_3 \rangle = k + (t-1)(k-2)$. Observe that $x_3 \in \langle x_1, \gamma, x_0 \rangle$ because $\alpha r < k$ and $t \ge 1$.

Lemma 6.1 and the fact that every k-chord is in A imply that either $f(n, k, T) \ge k - 2$ or every k + (t-1)(k-2)-chord is in A. In the latter case $(x_0, x_3) \in A$ and $l\langle x_3, \gamma, x_2 \rangle = k - 3$. We conclude that $C_k = \langle x_3, \gamma, x_2 \rangle \cup (x_2, x_1, x_0, x_3)$ is a cycle with $\mathcal{I}(C_k) = k - 3$, and hence $f(n, k, T) \ge k - 3$.

Lemma 6.7 At least one of the following properties holds.

- (i) $f(n, k, T) \ge k 3$.
- (ii) For $-1 \le i \le r$, every -(2r+1-i)-chord and every (k-1+i)-chord is in A.

Proof: Suppose that f(n, k, T) < k - 3. We shall prove that property (ii) holds by induction on *i*. We start with i = -1 and i = 0, namely, we prove that the following chords are in A:

- (a) Every (k-2)-chord.
- (b) Every (k-1)-chord.
- (c) Every -(2r+2)-chord.
- (d) Every -(2r+1)-chord.

In fact we also prove that:

(e) Every -(2r+3)-chord is in A.

The proof of (a) and (b) follows directly from Lemma 6.2.

Let 0 be any vertex of T. By Lemma 6.2 (b) and (d) (r, 0) and (r + 1, 0) are in A.

It follows from Lemma 6.2 (part (a) and part (c)), and Lemma 2.1 that the following two chords, whose end-points are consecutive in γ , are in A: (0, k-1+(t-1)(k-2)) and (0, t(k-2)).

Since 0 is an arbitrary vertex of T, we can prove that (c), (d) and (e) hold:

- Part (c): every -(2r+2)-chord is in A. If $(n-r-1, r+1) \in A$ then $C_k = (n-r-1, r+1) \cup (r+1, 0) \cup (0, k-1+(t-1)(k-2)) \cup \langle k-1+(t-1)(k-2), \gamma, n-r-1 \rangle$ is a cycle with $\mathcal{I}(C_k) = k-3$, a contradiction.
- Part (d): every -(2r+1)-chord is in A. If $(n-r-1,r) \in A$ then $C_k = (n-r-1,r) \cup (r,0) \cup (0,k-1+(t-1)(k-2)) \cup \langle k-1+(t-1)(k-2), \gamma, n-r-1 \rangle$ is a cycle with $\mathcal{I}(C_k) = k-3$, a contradiction.
- Part (e): every -(2r+3)-chord is in A. If $(n-r-2, r+1) \in A$ then $C_k = (n-r-2, r+1) \cup (r+1, 0) \cup (0, t(k-2)) \cup \langle t(k-2), \gamma, n-r-2 \rangle$ is a cycle with $\mathcal{I}(C_k) = k-3$, a contradiction.

Assume that the lemma holds for each i', $i' \leq i$ and let us prove it for i + 1; namely, we prove:

- (α) Every (k + i)-chord is in A,
- (β) Every -(2r-i)-chord is in A.

Proof of (α)

It follows from the inductive hypothesis that for each $j, 0 \le j \le i$, every (k-1)+j-chord and every (k-2) + j-chord is in A. Hence, by Lemmas 6.2 and 6.3, every -(2r - j + 1)-chord, -(2r - j + 2)-chord and every -(2r - j + 3)-chord is in A. That is, for each $j, 0 \le j \le i + 2$, every -(2r - j + 1)-chord is in A. These are (i + 3)-chords with initial vertices consecutive in γ .

Assume for contradiction that $(x_3, 0)$ is a -(k+i)-chord. Let $x_0 = n - (2r - i - 1)$. Hence letting $x_2 = 2$, we have that (x_2, x_0) , is a -(2r - (i - 1))-chord.

Let us show that $x_0 \in \langle x_3 + 1, \gamma, n - 1 \rangle$:

$$l\langle x_0, \gamma, 0 \rangle = 2r - i - 1,$$

$$\begin{split} l\langle x_3, \gamma, x_0 \rangle &= n - (k + i + 2r - i - 1) \\ &= k - 1 + t(k - 2) + r - (k + i + 2r - i - 1) \\ &\geq (k - 1) + (k - 2) + r - k - i - 2r + i + 1 = k - 2 - r. \end{split}$$

Since we are assuming $r \leq k-3$ then $l\langle x_3, \gamma, x_0 \rangle \geq 1$. Hence $l\langle x_0, \gamma, 0 \rangle \geq 1$, because $r \geq 1$.

Now, there exists an $x \in \Gamma^+(x_0)$ such that x is in $\langle x_2, \gamma, x_3 - 1 \rangle$. This is a direct consequence of Lemma 6.4 and the fact that the number of vertices in $\langle x_2, \gamma, x_3 - 1 \rangle$ is at least k - 2. Let x_4 be the smallest (the nearest to 0 in γ) such vertex.

Let $x_1 = 0$. We will prove that $x_4 - i - 3 \in \langle x_1, \gamma, x_4 - 3 \rangle$. Since for each $j, 0 \le j \le i + 2$, every -(2r - j + 1)-chord is in A, it follows that $\{(0, x_0), (1, x_0), (2, x_0), \dots, (i + 2, x_0)\} \subseteq A$. Hence, the election of x_4 implies $x_4 \ge i + 3$ and then $x_4 - i - 3 \ge 0 = x_1$. Finally, since $l\langle x_4, \gamma, x_3 \rangle + l\langle x_1, \gamma, x_4 - i - 3 \rangle = k - 3$ then $C_k = (x_4 - i - 3, x_0, x_4) \cup \langle x_4, \gamma, x_3 \rangle \cup \langle x_3, x_1 \rangle \cup \langle x_1, \gamma, x_4 - i - 3 \rangle$ is a cycle with $\mathcal{I}(C_k) = k - 3$.

Proof of $(\beta$)

Part (β) follows from Lemma 6.3 (taking i + 1 instead of i) and the following facts.

- Every (k + i)-chord is in A. Follows from part (α) .
- Every (k 1 + i)-chord is in A. Follows from the inductive hypothesis.
- Every (-r)-chord and every -(r+1)-chord is in A. Follows from Lemma 6.2.

Theorem 6.8 If $n \ge 2k - 4$ then $f(n,k) \ge k - 3$.

Proof: The case of n = 2k - 4 is considered in Section 4. Assume that n > 2k - 4 and assume for contradiction that f(n, k, T) < k - 3.

It follows from Lemma 6.7 that for each $i, -1 \le i \le r$, every (k + i - 1)-chord is in A. In particular

$$\{(0, k-2), (0, k-1), (0, k), \dots, (0, k+r-1)\} \in A.$$
(1)

It follows from Lemma 6.2 that every (-r)-chord is in A, and by Lemma 6.7 that every k-chord is in A. Therefore, by Lemma 6.6 for every α , $0 < \alpha r < k$, every $-(\alpha + 1)r$ -chord is in A. Let $\alpha_0 = \max\{\alpha \in \mathcal{N} | \alpha r < k\}$. Clearly $\alpha_0 r < k$, and by Lemma 6.6 every $-(\alpha_0 + 1)r$ -chord is in A. In particular $((\alpha_0 + 1)r, 0) \in A$ and $k \leq (\alpha_0 + 1)r < k + r$. Thus $y = (\alpha_0 + 1)r \in \{k - 2, k - 1, k, k + 1, \dots, k + r - 1\}$. Therefore $(y, 0) \in A$. On the other hand, (1) implies that $(0, y) \in A$. A contradiction.

7 Upper Bounds

Two upper bounds are presented in this section. The first upper bound shows that for n, k, such that $n \ge 2k - 4$ the lower bounds on f(n, k) presented previously are tight. In fact, a characterization of tournaments with $f(n, k) \ge k - 2$ is presented.

It has been shown that for $n \ge 2k - 4$, $f(n,k) \ge k - 3$. The second upper bound shows that for n < 2k - 4, f(n,k) < k - 3.

We start the proof of the first upper bound with the following simple lemma.

Lemma 7.1 Let C_k be a cycle with $\mathcal{I}(C_k) = k - 2$. If $f_1 = (0, x_1)$, $f_2 = (y_1, y_2)$ are the arcs of C_k not in γ then $y_2 = y_1 + n - (k - 2 + x_1)$. Namely, f_2 is $a - (k - 2 + x_1)$ -chord of γ .

Theorem 7.2 For $n \ge 5$, $k \ge 5$, such that $n \not\equiv k \pmod{k-2}$, $f(n,k) \le k-3$.

Proof: We prove the theorem by presenting a hamiltonian tournament T_n with no cycles C_k having $\mathcal{I}(C_k) = k - 2$. We define T_n as follows.

$$\begin{split} A(T_n) &= & \{(i,i+k-1+s(k-2))|i\in\{0,1,\ldots,n-1\}, s\in\{0,1,\ldots,t\}\} \cup \\ & \{(i+j,i)|j\in\{\{2,3,\ldots,\lfloor\frac{n-1}{2}\rfloor\} - \\ & \{k-1+s(k-2)|s\in\{0,1,\ldots,t\}, i\in\{0,1,\ldots,n-1\}\}\} \} \cup \\ & \{(i,i+1)|i\in\{0,1,\ldots,n-1\}\}. \end{split}$$

(t was defined in Section 2) If n is even it remains to define the orientation of the n/2-chords. These are defined as follows. For $i \in \{0, 1, ..., n/2 - 1\}$, the arcs

$$(i + n/2, i)$$

are in A.

Assume for contradiction that C_k is a cycle of T_n with $\mathcal{I}(C_k) = k - 2$, and let $f_1 = (0, x_1)$, $f_2 = (y_1, y_2)$ the only arcs of C_k not in γ . Without loss of generality we can assume that $l(f_1) < n/2$. The definition of T_n implies that $x_1 = k - 1 + s(k - 2), s \in \{0, 1, \ldots, t\}$.

It follows from Lemma 7.1 that $y_2 = y_1 + n - (k - 1 + (s + 1)(k - 2))$. If s < t then $s + 1 \le t$ and f_2 is a -(k - 1 + (s + 1)(k - 2))-chord, contradicting the definition of T_n .

Assume now that s = t. Hence $x_1 = k - 1 + t(k - 2)$, and n = (k - 1) + t(k - 2) + r implies $l\langle x_1, \gamma, 0 \rangle = r$. On the other hand, we have that $C_k - \{(0, x_1), (y_1, y_2)\} \in \langle x_1, \gamma, 0 \rangle$. Thus $l\langle x_1, \gamma, 0 \rangle \ge k - 1$, and $r \ge k - 1$. The definition of r implies $r \le k - 1$. Therefore r = k - 1 and then $n \equiv k \pmod{k - 2}$, a contradiction.

It is easy to verify that if $n \equiv k \pmod{k-2}$, then $f(n,k) \ge k-2$. Hence as a consequence of the previous theorem we get the following characterization of $f(n,k) \ge k-2$.

Corollary 7.3 $f(n,k) \ge k-2$ if and only if $n \equiv k \pmod{k-2}$.

The next theorem follows from Theorem 6.8 and Theorem 7.2.

Theorem 7.4 For each $n \ge 2k-4$, such that $n \not\equiv k \pmod{k-2}$ it holds that f(n,k) = k-3.

We now present the proof of the second upper bound. The aim is to show that the range of k that we have been considering $(2k - 4 \le n)$ is as large as possible, with $f(n,k) \ge k - 3$.

Theorem 7.5 For $n \ge 5$, $k \ge 5$, such that $n \le 2k - 5$ it holds that f(n,k) < k - 3.

Proof: We prove the theorem by presenting a tournament T_n with no cycles C_k having $\mathcal{I}(C_k) \geq k-3$. We define T_n as follows. If n is odd then

$$A(T_n) = \{(i, i+1) | i \in \{0, 1, \dots, n-1\}\} \cup \{(i, i+j) | j \in \{\frac{n+1}{2}, \frac{n+1}{2} + 1, \dots, n-2\}\}.$$

If n is even then

$$A(T_n) = \{(i, i+1) | i \in \{0, 1, \dots, n-1\}\} \cup \\ \{(i, i+j) | j \in \{\frac{n}{2}+1, \frac{n}{2}+2, \dots, n-2\}\} \cup \\ \{(i, i+\frac{n}{2}) | i \in \{0, 1, \dots, \frac{n}{2}-1\}\}.$$

Consider a cycle C_k of length k. Observe that $\mathcal{I}(C_k) < k-2$. We prove that $\mathcal{I}(C_k) < k-3$, by showing that for any cycle C with $\mathcal{I}(C) = k-3$, it holds that $l(C) \leq k-1$.

Let $f_1 = (x_1, x_2)$, $f_2 = (x_3, x_4)$, and $f_3 = (x_5, x_6)$ be the three arcs of C not in γ . Hence, without loss of generality,

$$C = (x_1, x_2) \cup \langle x_2, \gamma, x_3 \rangle \cup (x_3, x_4) \cup \langle x_4, \gamma, x_5 \rangle \cup (x_5, x_6) \cup \langle x_6, \gamma, x_1 \rangle.$$

By the definition of T_n it follows that $l(f_i) \ge n/2$, for each $i \in \{1, 2, 3\}$. Moreover, there exists $j \in \{1, 2, 3\}$, such that $l(f_i) > n/2$. On the other hand,

$$l(C) = l\langle x_2, \gamma, x_1 \rangle + l\langle x_6, \gamma, x_5 \rangle - l\langle x_3, \gamma, x_4 \rangle + 3$$

= $n - l(f_1) + n - l(f_3) - l(f_2) + 3.$

Now we proceed with the proof for n even. The case of n odd is analogous. Since $l(f_j) > n/2$ and $l(f_i) \ge n/2$ it follows that

$$l(C) \le n/2 + n/2 - (n/2 + 1) + 3 = \frac{n+4}{2}.$$

Therefore $l(C) \leq k - 1$, since $n \leq 2k - 5$.

Finally, the complete characterization of f(n, k) = k - 3 is presented.

Theorem 7.6 (Main Result) f(n,k) = k-3 if and only if $n \ge 2k-4$, and $n \ne k \pmod{k-2}$.

Acknowledgments: We thank an anonymous referee for a thorough review and useful suggestions.

References

- B. Alspach, "Cycles of each length in regular tournaments." Canadian Math. Bull., 10, (1967), 283-286.
- [2] J.C. Bermond, C.Thomasen, "Cycles in digraphs A survey." J. Graph Theory, 5, (1981), 43, 145–157.