Distributed Computing manuscript No.
(will be inserted by the editor)

A Leader Election Algorithm for Dynamic Networks with
Causal Clocks

Rebecca Ingram - Tsvetomira Radeva - Patrick
Shields - Saira Vigar - Jennifer E. Walter -
Jennifer L. Welch

Received: date / Accepted: date

Abstract An algorithm for electing a leader in an asynchronous netwath dy-
namically changing communication topology is presentduk @lgorithm ensures
that, no matter what pattern of topology changes occurspiblbgy changes cease,
then eventually every connected component contains a eméqualer. The algorithm
combines ideas from the Temporally Ordered Routing Alhonif TORA) for mo-
bile ad hoc networks [22] with a wave algorithm [27], all witlthe framework of a
height-based mechanism for reversing the logical diractfiocommunication topol-
ogy links [9]. Moreover, a generic representation of timesed, which can be im-
plemented using totally-ordered values that preservedhsality of events, such as

A preliminary version of this paper appears in [15]. The wofkR. Ingram was supported in part by
NSF REU grant 0649233. The work of J. L. Welch was supportepait by NSF grant 0500265 and

Texas Higher Education Coordinating Board grants ARP-Qa8107-2006 and ARP 000512-0130-2007.
The work of J. E. Walter and P. Shields was supported in pai®k grant 11S-0712911 and the URSI
program at Vassar College. The work of Tsvetomira Radevaswpported in part by the CRA-W DREU

Program through NSF grant CNS-0540631.

R. Ingram
Trinity University

T. Radeva
Massachusetts Institute of Technology
E-mail: radeva@csail.mit.edu

P. Shields
Vassar College

S. Vigar
Texas A&M University
E-mail: sairavigar@gmail.com

J. Walter
Vassar College
E-mail: walter@cs.vassar.edu

J. Welch
Texas A&M University
E-mail: welch@cse.tamu.edu

2 Rebecca Ingram et al.

logical clocks and perfect clocks. A correctness proof far @lgorithm is provided,
and it is ensured that in certain well-behaved situatiomre\wa leader is not elected
unnecessarily, that is, the algorithm satisfies a staldbtydition.

Keywords Distributed Algorithms Leader Election Link Reversal- Dynamic
Networks

1 Introduction

Leader election is an important primitive for distributezhgputing, useful as a sub-
routine for any application that requires the selection ah&ue processor among
multiple candidate processors. Applications that need@derange from the primary-
backup approach for replication-based fault-toleranagrémip communication sys-
tems [26], and from video conferencing to multi-player garfiel].

In a dynamic network, communication channels go up and dosquintly. Causes
for such communication volatility range from the changimgition of nodes in mo-
bile networks to failure and repair of point-to-point linkswired networks. Recent
research has focused on porting some of the applicationsioned above to dy-
namic networks, including wireless and sensor networksiriance, Wang and Wu
propose a replication-based scheme for data delivery inlenabd fault-prone sen-
sor networks [29]. Thus there is a need for leader electigorahms that work in
dynamic networks.

We consider the problem of ensuring that, if changes to thengonication topol-
ogy cease, then eventually each connected component okthnk has a unique
leader (introduced as the “local leader election problem{7{). Our algorithm is an
extension of the leader election algorithm in [18], whictium is an extension of the
MANET routing algorithm TORA in [22]. TORA itself is based dteas from [9].

Gafni and Bertsekas [9] present two routing algorithms Basethe notion of link
reversal. The goal of each algorithm is to create directdlolsga the communication
topology graph from each node to a distinguished destinataxe. In these algo-
rithms, each node maintainshaightvariable, drawn from a totally-ordered set; the
(bidirectional) communication link between two nodes insidered to be directed
from the endpoint with larger height to that with smallerdigi Whenever a node
becomes a sink, i.e., has no outgoing links, due to a linkggdown or due to notifi-
cation of a neighbor’s changed height, the node increashsight so that at least one
of its incoming links becomes outgoing. In one of the alduris of [9], the height is
a pair consisting of a counter and the node’s unique id, whitbe other algorithm
the height is a triple consisting of two counters and the ridd&n both algorithms,
heights are compared lexicographically with the leastifigant component being
the node id. In the first algorithm, a sink increases its ceuta be larger than the
counter of all its neighbors, while in the second algoritenmore complicated rule
is employed for changing the counters.

The algorithms in [9] cause an infinite number of messages 8ebt if a portion
of the communication graph is disconnected from the de@imaThis drawback is
overcome in TORA [22], through the addition of a clever metkia by which nodes

A Leader Election Algorithm for Dynamic Networks with Cati€docks 3

can identify that they have been partitioned from the dasitm. In this case, the
nodes go into a quiescent state.

In TORA, each node maintains a 5-tuple of integers for itgheiconsisting of a
3-tuple called theeference levela deltacomponent, and the node’s unique id. The
height tuple of each node is lexicographically compareti¢atiple of each neighbor
to impose a logical direction on links (higher tuple towawdér.)

The purpose of the reference level is to indicate when nodes lost their di-
rected path to the destination. Initially, the refereneelés all zeroes. When a node
loses its last outgoing link due to a link going down the nodets a new reference
level by changing the first component of the triple to the eattime, the second to
its own id, and the third to O, indicating that a search for dlestination is started.
Reference levels are propagated throughout a connectedoteent, as nodes lose
outgoing links due to height changes, in a search for anraterdirected path to the
destination. Propagation of reference levels is done usingechanism by which a
node increases its reference level when it becomes a sikigita value of the height
is manipulated to ensure that links are oriented appragyidf the search in one part
of the graph is determined to have reached a dead end, thémitieomponent of
the reference level triple is set to 1. When this happenggfezence level is said to
have beemeflected since it is subsequently propagated back toward the atiginif
the originator receives reflected reference levels baak fab its neighbors, then it
has identified a partitioning from the destination.

The key observation in [18] is that TORA can be adapted foddealection:
when a node detects that it has been partitioned from theealiel (the destination),
then, instead of becoming quiescent, it elects itself. Tii@rmation about the new
leader is then propagated through the connected compagkeitth component was
added to the height tuple of TORA to record the leader’s ice algorithm presented
and analyzed in [18] makes several strong assumptions, Eissassumed that only
one topology change occurs at a time, and no change occlirgergystem has fin-
ished reacting to the previous change. In fact, a scenaradviimg multiple topology
changes can be constructed in which the algorithm is incorgecond, the system is
assumed to be synchronous; in addition to nodes havinggietteeks, all messages
have a fixed delay. Third, it is assumed that the two endpoingslink going up or
down are notified simultaneously of the change.

We present a modification to the algorithm that works in amakyonous system
with arbitrary topology changes that are not necessarppmed instantaneously to
both endpoins of a link. One new feature of this algorithnoiadd a seventh compo-
nent to the height tuple of [18]: a timestamp associated thigHeader id that records
the time that the leader was elected. Also, a new rule by wiictes can choose new
leaders is included. A newly elected leader initiates a ‘®ladgorithm [27]: when
different leader ids collide at a node, the one with the mexstnt timestamp is chosen
as the winner and the newly adopted height is further praeagdhis strategy for
breaking ties between competing leaders makes the algodtimpact and elegant,
as messages sent between nodes carry only the height irtfonnod the sending
node, every message is identical in structure, and only eesage type is used.

In this paper, we relax the requirementin [18] (and in [1Bgttnodes have perfect
clocks. Instead we use a more generic notion of time, a calset .7, to represent

4 Rebecca Ingram et al.

any type of clock whose values are non-negative real nundosiisthat preserves
the causal relation between events. Both logical clock$ §b6l perfect clocks are
possible implementations of . We also relax the requirement in [18] (and in [15])
that the underlying neighbor-detection layer synchroitiz@otifications to the two
endpoints of a (bidirectional) communication link throogih the execution; in the
current paper, these natifications are only required tafyasin eventual agreement
property.

Finally, we provide a relatively brief, yet complete, pragfalgorithm correct-
ness. In addition to showing that each connected comporentwally has a unique
leader, it is shown that in certain well-behaved situatiansew leader is not elected
unnecessarily; we identify a set of conditions under whiehalgorithm is “stable”
in this sense. We also compare the difference in the stagiliarantees provided by
the perfect-clocks version of the algorithm and the caukaiks version of the algo-
rithm. The proofs handle arbitrary asynchrony in the messksiays, while the proof
in [18] was for the special case of synchronous communicatonds only and did
not address the issue of stability.

Leader election has been extensively studied, both foicsaatd dynamic net-
works, the latter category including mobile networks. Heeemention some repre-
sentative papers on leader election in dynamic networkizislat al. [12] presented
algorithms for leader election in mobile networks in whiobdes are expected to
control their movement in order to facilitate communicatidhis type of algorithm
is not suitable for networks in which nodes can move arhiyrarasudevan et al. [28]
and Masum et al. [20] developed leader election algorittoneobile networks with
the goal of electing as leader the node with the highestipriaccording to some
criterion. Both these algorithms are designed for the brastimodel. In contrast,
our algorithm can elect any node as the leader, involvesrfeypes of messages than
either of these two algorithms, and uses point-to-point momication rather than
broadcasting. Brunekreef et al. [2] devised a leader @edaigorithm for a 1-hop
wireless environment in which nodes can crash and recowerafgorithm is suited
to an arbitrary communication topology.

Several other leader election algorithms have been desdlbpsed on MANET
routing algorithms. The algorithm in [23] is based on the &dRouting Protocol
[10]. A correctness proof is given, but only for the synctoos case assuming only
one topology change. In [5], Derhab and Badache presentladetection algorithm
for ad hoc wireless networks that, like ours, is based on lgnarihms presented by
Malpani et al. [18]. Unlike Derhab and Badache, we prove dgorithm is correct
even when communication is asynchronous and multiple t@yathanges, including
network partitions, occur during the leader election pssce

Dagdeviren et al. [3] and Rahman et al. [24] have recentlppsed leader elec-
tion algorithms for mobile ad hoc networks; these algorghmave been evaluated
solely through simulation, and lack correctness proofsiffeidnt direction is ran-
domized leader election algorithms for wireless netwoekg.([1]); our algorithmis
deterministic.

Fault-tolerant leader election algorithms have been pegdor wired networks.
Representative examples are Mans and Santoro’s algorghfodp graphs subject
to permanent communication failures [19], Singh’s aldoritfor complete graphs

A Leader Election Algorithm for Dynamic Networks with Cati€docks 5

subject to intermittent communication failures [25], areahRand Singh’s algorithm
[21] and Stoller’s algorithm [26] that tolerate node crashe

Recently, Datta et al. [4] presented a self-stabilizingléraelection algorithm
for the shared memory model with composite atomicity thtisBas stronger stabil-
ity properties than our causal-clocks algorithm. In paiftic, their algorithm ensures
that, if multiple topology changes occur simultaneoustgrathe algorithm has sta-
bilized, and then no further changes occur, (1) each nodetits up in a connected
component with at least one pre-existing leader ultimatélgoses a pre-existing
leader, and (2) no node changes its leader more than onceefkstabilizing nature
of the algorithm suggests that it can be used in a dynamicorktwnce the last topol-
ogy change has occurred, the algorithm starts to stabHixisting techniques (see,
for instance, Section 4.2 in [6]) can be used to transfornifestabilizing algorithm
for the shared-memory composite-atomicity model into amvedent algorithm for
a (static) message-passing model, perhaps with some timfimgnation. Such a se-
guence of transformations, though, produces a compliedgedithm and incurs time
and space overhead (cf. [6,13]). One issue to be overcomariaforming an algo-
rithm for the static message-passing model to the modeliipaper is handling the
synchrony that is relied upon in some component transfaomsito message passing

(e.g., [14]).

2 Preliminaries
2.1 System Model

We assume a system consisting of agebf computing nodes and a sebf directed
communication channels from one node to another ngdmnsists of one channel
for each ordered pair of nodes, i.e., every possible chasmepresented. The nodes
are assumed to be completely reliable. The channels betweebss go up and down,
due to the movement of the nodes. While a channel is up, thentonication across
it is in first-in-first-out order and is reliable but asynchoas (see below for more
details).

We model the whole system as a set of (infinite) state machhmegsinteract
through sharedventqa specialization of the IOA model [17]). Each node and each
channel is modeled as a separate state machine. The evargd bly a node and one
of its outgoing channels are notifications that the charsgbing up or going down
and the sending of a message by the node over the channdiaheat up/down noti-
fications are initiated by the channel and responded to bydhde, while the message
sends are initiated by the node and responded to by the dhdimeeevents shared
by a node and one of its incoming channels are notificatioatsstimessage is being
delivered to the node from the channel; these events aratedtby the channel and
responded to by the node.

6 Rebecca Ingram et al.

2.2 Modeling Asynchronous Dynamic Links

We now specify in more detail how communication is assumedcur over the
dynamic links. The state @@hanne{u,v), which models the communication chan-
nel from nodeu to nodev, consists of astatugy variable and a queuaqueug, of
messages.

The possible values of thetatusgy variable ardJp andDown The channel tran-
sitions between the two values of istatusgy variable throughChannelUp, and
ChannelDowyg, events, called the “topology change” events. We assumetlieat
ChannelUpandChannelDowrevents for the channel alternate. TBleannelUpand
ChannelDowrevents for the channel fromto v occur simultaneously at nodeand
the channel, but do not occur at node

The variablanqueug, holds messages in transit framo v. An attempt by node
u to send a message to nodeesults in the message being appendethtpueug,
if the channel’s status igp; otherwise there is no effect. When the channdljs
the message at the headmfijueug, can be delivered to node when a message is
delivered, it is removed frotnqueug,. Thus, messages are delivered in FIFO order.

When aChannelDowp, event occursmqueug, is emptied. Neithet norv is
alerted to which messages in transit have been lost. Theisnédssages delivered to
nodev from nodeu during a (maximal-length) interval when the channdlsform
a prefix of the messages sent by node nodev during that interval.

2.3 Configurations and Executions

The notion of configuration is used to capture an instantassepapshot of the state of
the entire system. Aonfigurationis a vector of node states, one for each nodésin
and a vector of channel states, one for each channellim aninitial configuration

— each node is in an initial state (according to its algorithm)

— for each channeChanne{u,v), mqueug, is empty, and

— for all nodesu andy, statug,y, = statugy (i.e., either both channels betweeand
v are up, or both are down).

Define arexecutioras an infinite sequen€®, e;,Cy,e,C,, . .. of alternating con-
figurations and events, starting with an initial configuwatand, if finite, ending with
a configuration such that the sequence satisfies the folgpeénditions:

— Cpis an initial configuration.

— The preconditions for evewlt are true inCi_; forall i > 1.

— G is the result of executing evegton configuratiorC;_1, for alli > 1 (only the
node and channel involved in an event change state, and lfage according
to their state machine transitions).

— If a channel remains Up for infinitely long, then every messagnt over the
channel during this Up interval is eventually delivered.

— For all nodess andv, Channe{u, v) experiences infinitely many topology change
events if and only ifChanne(v,u) experiences infinitely many topology change

A Leader Election Algorithm for Dynamic Networks with Cati€docks 7

events; if they both experience finitely many, then afterlis¢ one statugy =
statugy.

Given a configuration of an execution, define an undirectaplyGnan as fol-
lows: the vertices are the nodes, and there is an (undifeetipe between vertices
u andv if and only if at least one o€hanne}, and Channe}, is Up. Thus Gehan
indicates all pairs of nodasandv such that eithen can send messagesvor v can
send messages to If the execution has a finite number of topology change event
thenGehan NEVer changes after the last such event, and we denote theefismn of
GehanasGL. By the last bullet point above, an edgeG]"™" indicates bidirectional
communication ability between the two endpoints.

We also assign a positive real-valugidbal time gtto each eveng;, i > 1, such
thatgt(e) < gt(e1) and, if the execution is infinite, the global times increagaout
bound. Each configuration inherits the global time of itscping event, sgt(C;) =
ot(e) for i > 1; we definegt(Cp) to be 0. We assume that the nodesrad have
access tat.

Instead, each nodehas acausal clock%,, which provides it with a non-negative
real number at each event in an executigf.is a function from global time (i.e.,
positive reals) to causal clock times; given an executioncbnvenience we some-
times use the notatio;,(e) or .7,(Ci) as shorthand foZ;(gt(e)) or Zu(gt(C)).
The key idea of causal clocks is that if one event potentedly cause another event,
then the clock value assigned to the first event is less thaglttk value assigned
to the second event. We use the notion of happens-beforgtareahe concept of
potential causality. Recall that an eventis defined tohappen befor¢l16] another
evente; if one of the following conditions is true:

1. Both events happen at the same node,armtcurs before, in the execution.

2. e is the send event of some message from noenodev, ande; is the receive
event of that message by node

3. There exists an eveatsuch thake; happens before ande happens beforee

The causal clocks at all the nodes, collectively denctednust satisfy the following
properties:

— For each nodey, the values of7, are increasing, i.e., i& ande; are events
involving u in the execution with < j, then.Z(&) < Zu(ej). In particular, if
there is an infinite number of events involvinghen.7, increases without bound.

— 7 preserves thbappens-beforeelation [16] on events; i.e., if evert happens
before evengj, then7 (e) < 7 (g)).

Our description and proof of the algorithm assume that ndde® access to
causal clocks. One way to implement causal clocks is to ugegieclocks, which
ensure thatZ,(t) =t for each node and global time. Since an event that causes an-
other event must occur before it in real time, perfect clasture causality. Perfect
clocks could be provided by, say a GPS service, and were a&skimthe prelimi-
nary version of this paper [15]. Another way to implementsadiclocks is to use
Lamport’s logical clocks [16], which were specifically dgsed to capture causality.

8 Rebecca Ingram et al.

2.4 Problem Definition

Each nodeu in the system has a local varialiié, to hold the identifier of the node
currently considered by to be the leader of the connected component containing

In every execution that includes a finite number of topologgrge events, we
require that the following eventually holds: Every coneectomponen€C of the
final topology graptGé,'E! contains a nodé, theleader, such thatid, = ¢ for all
nodesu € CC, including/ itself.

3 Leader Election Algorithm

In this section, we present our leader election algorithime Ppseudocode for the
algorithm is presented in Figures 1, 2 and 3. First, we pmuaidinformal description
of the algorithm, then, we present the details of the algoriand the pseudocode,
and finally, we provide an example execution. In the restisfgbction, variablear
of nodeu will be indicated avar,. For brevity, in the pseudocode for naglesariable
vary is denoted by justar.

3.1 Informal Description

Each node in the system has a 7-tuple of integers called ath&tge directions of the
edges in the graph are determined by comparing the heightsigfiboring nodes:
an edge is directed from a node with a larger height to a notteavsmaller height.
Due to topology changes nodes may lose some of their incliedst or get new ones
throughout the execution. Whenever a node loses its lagbmg link because of a
topology change, it has no path to the current leader, swétrses all of its incident
edges. Reversing all incident edges acts as the start ofrehseeechanism (called
a reference level) for the current leader. Each node thaives the newly started
reference level reverses the edges to some of its neighbdrmaffect propagates
the search throughout the connected component. Once a recdenbs a sink and
all of its neighbors are already participating in the samerde it means that the
search has hit a dead end and the current leader is not piastis¢ part of the
connected component. Such dead-end information is thegageded back towards
the originator of the search. When a node which started &lseaceives such dead-
end messages from all of its neighbors, it concludes thattieent leader is not
present in the connected component, and so the originatbedafearch elects itself
as the new leader. Finally, this new leader information pgaptes throughout the
network via an extra “wave” of propagation of messages.

In our algorithm, two of the components of a node’s heightianestamps record-
ing the time when a new “search” for the leader is started thedime when a leader
is elected. In the algorithm in [15], these timestamps atainbd from a global clock
accessible to all nodes in the system. In this paper, we eseation of causal clocks
(defined in Section 2.3) instead.

One difficulty that arises in solving leader election in dym@networks is dealing
with the partitioning and merging of connected componeris.example, when a

A Leader Election Algorithm for Dynamic Networks with Cati€docks 9

connected component is partitioned from the current ledderto links going down,
the above algorithm ensures that a new leader is elected tlsnmechanism of
waves searching for the leader and convergecasting badletoriginator. On the
other hand, itis also possible that two connected compsmeaige together resulting
in two leaders in the new connected component. When theeliftdeights of the two
leaders are being propagated in the new connected comperentually, some node
needs to compare both and decide which one to adopt and gentiopagating.
Recall that when a new leader is elected, a component of tighthaf the leader
records the time of the election which can be used to deteritia more recent
of two elections. Therefore, when a node receives a heigtht avidifferent leader
information from its own, it adopts the one correspondintpgmore recent election.

Similarly, if two reference levels are being propagatedhia same connected
component, whenever a node receives a height with a refetenel different from
its current one, it adopts the reference level with the mecemt timestamp and con-
tinues propagating it. Therefore, even though conflictimfgrimation may be prop-
agating in the same connected component, eventually tleithlign ensures that as
long as topology changes stop, each connected componeatmigue leader.

3.2 Nodes, Neighbors and Heights

First, we describe the mechanism through which nodes getdw kheir neighbors.
Each node in the algorithm keeps a directed approximatidts afeighborhood in
Gchanas follows. When gets aChannelUpevent for the channel fromto v, it putsv

in a local set variable callefdrming,. Whenu subsequently receives a message from
v, it movesv from itsforming, set to a local set variable call&g (N for neighbor). If

u gets a message from a node which is neither ifoiisiingset, nor inNy, it ignores
that message. And whangets aChannelDowrevent for the channel fromto v, it
removesy from forming, or N, as appropriate. For the purposes of the algorithm,
considers as its neighbors only those nodesinit is possible for two nodes and

v to have inconsistent views concerning whethandv are neighbors of each other.
We will refer to the ordered pau,v), wherevis in Ny, as alink of nodeu.

Nodes assign virtual directions to their links using valealralled heights. Each
node maintains a height for itself, which can change ovee tiamd sends its height
over all outgoing channels at various points in the exeocutitach node keeps track
of the heights it has received in messages. For eachllink of nodeu, u considers
the link as incoming (directed fromto u) if the height thau has recorded fov is
larger tharu's own height; otherwise considers the link as outgoing (directed from
u to v). Heights are compared using lexicographic ordering; #fedion of height
ensures that two nodes never have the same height. Noteeteat,if v is viewed
as a neighbor ofi and vice versa, andv might assign opposite directions to their
corresponding links, due to asynchrony in message delays.

Next, we examine the structure of a node’s height in moreildgthe height
for each node is a 7-tuple of integeflr,oid,r), d, (nlts,lid),id), where the first
three components are referred to asrdference leve{RL) and the fifth and sixth

10 Rebecca Ingram et al.

components are referred to as tkader pair(LP). In more detail, the components
are defined as follows:

T, a hon-negative timestamp which is either 0 or the valueettusal clock time

when the current search for an alternate path to the leadeinitiated.

oid, is a non-negative value that is either O or the id of the nbdé started the

current search (we assume node ids are positive integers).

r, a bit that is set to 0 when the current search is initiatedsmtdo 1 when the

current search hits a dead end.

d, an integer that is set to ensure that links are directecbgpiately to neighbors

with the same first three components. During the executiatheflgorithmd

serves multiple purposes. When the algorithm is in the sthgearching for the

leader (having either reflected or unreflected RL), dhealue ensures that as a

nodeu adopts the new reference level from a nagi¢he direction of the edge

between them is fromw to u; in other words it coincides with the direction of

the search propagation. Therefauggdopts the RL o¥ and sets it® to one less

thanv's. When a leader is already elected, thealue helps orient the edges of

each node towards the leader. Therefore, when nodeeives information about

a new leader from node it adopts the entire height efand sets thé value to

one more than's.

— nlts, a non-positive timestamp whose absolute value is the telos# time when
the current leader was elected.

— lid, the id of the current leader.

— id, the node’s unique ID.

Each nodei keeps track of the heights of its neighbors in an aheight,, where
the height of a neighbor nodes stored inheight[v]. The components dfeight,[V]
are referred to agt, oid", r¥, 8", nlts’, lidY, v) in the pseudocode.

3.3 Initial States

The definition of an initial configuration for the entire syist from Section 2.3 in-
cluded the condition that each node be in an initial stateraieg to its algorithm.
The collection of initial states for the nodes must be cdastswith the collection of
initial states for the channels. L '”h‘tan be the undirected graph corresponding to the
initial states of the channels, as defined in Section 2.3nTean initial configura-

tion, the state of each nodemust satisfy the following:

— forming, is empty,

— Ny equals the set of neighborswfn Gt |

— height,[u] = (0,0,0,4,,0,¢,u) where/ is the id of a fixed node in's connected
componentirGIt (the current leader), anli equals the distance fromto ¢ in
Gty

— for eachvin N, , height[v] = height[v] (i.e., u has accurate information about
V's height), and

— 4 is initialized properly with respect to the definition of caliclocks.

A Leader Election Algorithm for Dynamic Networks with Cati€docks 11

The constraints on the initial configuration just given ignfhat initially, each
connected component of the communication topology graphahkeader; further-
more, by following the virtual directions on the links, nedean easily forward in-
formation to the leader (as in TORA). One way of viewing owgaaithm is that it
maintainsleaders in the network in the presence of arbitrary topoldgnges. In
order toestablishthis property, the same algorithm can be executed, with eade
initially being in a singleton connected component of theology graph prior to any
ChannelUpor ChannelDowrevents.

3.4 Goal of the Algorithm

The goal of the algorithm is to ensure that, once topologygba cease, eventually

each connected component@f2" is “leader-oriented”, which we now define. Let

CC be any connected component@f2". First, we define a directed version®€,

denotedC, in which each undirected edge©C is directed from the endpoint with
larger height to the endpoint with smaller height. We say @@is leader-oriented
if the following conditions hold:

1. No messages are in transitQg.

2. For each (undirected) edde, v} in CC, if (u,v) is a link of u, thenu has the
correct view ofv's height.

3. Each node il€C has the same leader id, s§ywhere/ is also inCC.

4. CCis a directed acyclic graph (DAG) withas the unique sink.

A consequence of each connected component being leadettaxiis that the
leader election problem is solved.

3.5 Description of the Algorithm

The algorithm consists of three different actions, one &arheof the possible events
that can occur in the system: a channel going up, a channeggiwwn, and the
receipt of a message from another node. Next, we descritbecfdhese actions in
detail.

First, we formally define the conditions under which a nodsoigsidered to be a
sink:

— SINK= ((¥ve& Ny, LPY =LPR}) and(Vv € Ny, height,[u] < height,[v]) and(lid{ #
u)). Recall that the LP component of nods view of V's height, as stored io’s
height array, is denoteldR), and similarly for all the other height components.
This predicate is true when, accordingus local state, all ofi's neighbors have
the same leader pair asu has no outgoing links, andlis not its own leader. If
nodeu has links to any neighbors with different LRsis not considered a sink,
regardless of the directions of those links.

ChannelDown event:When a nodau receives a notification that one of its in-
cident channels has gone down, it needs to check whethelt has a path to the

12 Rebecca Ingram et al.

current leader. If th&€€hannelDowrevent has causedto lose its last neighbor, as
indicated byu's N variable, thenu elects itself by calling the subroutiEe ECTSELF.

In this subroutine, node sets its first four components to 0, and the LP component
to (nlts,u) wherenltsis the negative value afs current causal clock time. Then, in
caseu has any incident channels that are in the process of formisgnds its new
height over them. If th€hannelDowrevent has not robbadof all its neighbors (as
indicated byu’s N variable) buu has lost its last outgoing link, i.e., it passes shek
test, theru starts a new reference level (a search for the leader) ipgék T value
to the current clock timegid to u's id, ther bit to 0, and thed value to 0, as shown in
subroutineSTARTNEWREFLEVEL. The complete pseudocode for tBaannelDown
action is available in Figure 1.

ChannelUp event:When a nodel receives a notification of a channel going up
to another node, say, thenu sends its current height toand includesy in its set
forming,. The pseudocode for ti@hannelUpaction is available in Figure 1.

When ChannelDown,, event occurs:

1 N :=N\{v}

2 forming := forming\{v}

3 if (N=0)

4. ELECTSELF

5. send Update(heighfu]) to all we forming

6 else if (SINK)

7 STARTNEWREFLEVEL

8 send Update (heighfu]) to all we (N U forming
9 end if

forming := forming U {v}

When ChannelUp,y event occurs:
1.
2. send Update(heighfu]) to v

Fig. 1 Code triggered by topology changes.

Receipt of an update messagéVhen a nodel receives a message from another
nodev, containing/'s height, nodel performs the following sequence of rules (shown
in Figure 2).

First, if v is in neitherforming, nor Ny, then the message is ignored.\ife
forming, butv ¢ N, thenv is moved toN,. Next, u checks whethev has the same
leader pair asi. If vknows about a more recent leader thanodeu adopts that new
LP (shown in subroutinebopPTLPIFPRIORITY in Figure 3). If the LP’s ofu andv
are the same, thanchecks whether it is a sink using the definition above. If ita$
a sink, it does not perform any further action (because éaaly has a path to the
leader). Otherwise, ifl is a sink, it checks the value of the RL component of all of
its neighbors’ heights (includings). If some neighbor ofi, sayw, knows of a RL
which is more recent than's, thenu adopts that new RL by setting the RL part of
its height to the new RL value and changing theomponent to one less than the
component ofv. Therefore, the change s height does not cause to become a
sink (again) and so the search for the leader does not go bacérd it is thus prop-

A Leader Election Algorithm for Dynamic Networks with Cati€docks 13

agated in the rest of the connected component. The detailshawn in subroutine
PROPAGATH.ARGESTREFLEVEL in Figure 3.

If uand all of its neighbors have the same RL component of thahite say €,
oid, r), we consider three possible cases:

1. If T > 0 (indicating that this is a RL started by some node, and rettfault
value 0) and = 0 (the RL has not reached a dead end), then this is an indicatio
of a dead end becauseand all of its neighbors have the same unreflected RL. In
this casau changes its height by setting theomponent of its height to 1 (shown
in subroutineREFLECTREFLEVEL in Figure 3).

2. If T > 0 (indicating that this is a RL started by some node, and nod#fault
value 0),r = 1 (the RL has already reached a dead end)@dd-= u (u started
the current RL), then this is an indication that the curreadler may not be in
the same connected component anymore. In other wordsgatirdnches of the
RL started byu reached dead ends. Therefaneglects itself as the new leader
by setting its first 4 components to 0, and the LP componentlts, U) where
nits is the negative value af's current causal clock time (shown in subroutine
ELECTSELFin Figure 3). Note that this case does not guarantee thatdieaxer
is not in the connected component, because some recenotgpchange may
have reconnected it back tcss component. We already described how the leader
information of two different leaders is handled.

3. If neither of the two conditions above are satisfied, thés the case that either
T=0o0rt >0, r =1 andoid # u. In other words, all olu's neighbors have a
different reflected RL or contain an RL indicating that vasdopology changes
have interfered with the proper propagation of RL's, and @dau starts a fresh
RL by settingrt to the current causal clock timeid to u’s id, ther bit to 0, and
the d value to 0 (shown in subroutirerARTNEWREFLEVEL in Figure 3).

Finally, whenever a node changes its height, it sends a messdh its new
height to all of its neighbors. Additionally, whenever a epadreceives a message
from a nodev indicating thatv has different leader information from then either if
u adoptsv's LP or not,u sends an update messages with its new (possibly same
as old) height. This step is required due to the weak levebofdination in neighbor
discovery.

3.6 Sample execution

Next, we provide an example which illustrates a particulgoathm execution. Fig-
ure 4, parts (a)-(h), show the main stages of the executiothd picture for each
stage, a message in transit over a channel is indicated ightagiiey arrow. The re-
cipient of the message has not yet taken a step and so, ireits thie link is not yet
reversed.

(a) A quiescent network is a leader-oriented DAG in which enbdis the current
leader. The height of each node is displayed in parentHdsisdirection in this
figure is shown using solid-headed arrows and messagessitteae indicated
by light grey arrows.

14 Rebecca Ingram et al.

When nodeu receivesUpdateh) from node v € formingu N:
// if Vv is in neither forming nor N, message is ignored

1. heightivl :=h
2. forming := forming \ {v}
3. N:=NuU{v}
4. myOldHeight:= heighfu]
5. if ((nlts" lid") = (nlts",lid")) // leader pairs are the same
6. if (SINK)
7. if (3 (r,0id,r) | (T%,0id",r") = (7,0id,r) V we N)
8. if ((1>0) and (r=0))
9. REFLECTREFLEVEL
10. else if ((1>0) and (r=1) and (0id=u))
11. ELECTSELF
12. else // (T1=0) or (>0 and r=1 and oid # u)
13. STARTNEWREFLEVEL
14. end if
15. else // neighbors have different ref levels
16. PROPAGATH.ARGESTREFLEVEL
17. end if
// else not sink, do nothing
18. end if
19. else // leader pairs are different
20. ADOPTLPIFPRIORITY (V)

21. end if

22. if (myOldHeight# heighfu])

23. send Update(heighfu]) to all we (N U forming
24. end if

Fig. 2 Code triggered by Update message.

ELECTSELF
1. heighfu] := (0,0,0,0, — %, u,u)
REFLECTREFLEVEL

1. heighfu] := (1,0id, 1,0,nlts", lid", u)
PROPAGATH.ARGESTREFLEVEL

1. (1¥0id"rY) := max(t¥,oid¥,r")| we N}

2. O :=min{ 3" | weN and (7Y 0id",r¥) = (W, 0id",r¥)} —1
STARTNEWREFLEVEL

1. heighfu] := (%,u,0,0,nlts", lid",u)

ADOPTLPIFPRIORITY (V)

1. if ((nits’ <nlts") or ((nlts' =nlts") and (lid¥ <lid")))
2 heighfu] := (7¥,0id",rV,8" + 1,nlts", lid", u)

3. else send Update(heighfu]) to v

4 end if

Fig. 3 Subroutines.

(b) The link between nodes andH goes down triggering actioBhannelDowrat
nodeG (and nodeH). When non-leader nod8 loses its last outgoing link due
to the loss of the link to nodEl, G executes subroutineTARTNEWREFL EVEL
(because it is a sink and it has other neighbors besijeand sets the RL and
0 parts of its height to (§G,0) andd = 0. Then nodés sends messages with its

A Leader Election Algorithm for Dynamic Networks with Cati€docks 15

new height to all its neighbors. By raising its height in thvay, G has started a
search for leadefl .

(c) NodesD, E, andF receive the messages sent from n@jenessages that cause
each of these nodes to become sinks bec&iseew RL causes its incident
edges to be directed away fro& Next, node®, E, andF compare their neigh-
bors’ RL's and propagat&'s RL (since node8 andC have lower heights than
nodeG) by executingPROPAGATEL ARGESTREFLEVEL. Thus, they take on RL
(1,G,0) and set theid values to—1, ensuring that their heights are lower than
G's but higher than the other neighbors’. THepE andF send messages to their
neighbors.

(d) NodeB has received messages from bitlndD with the new RL (1G,0), and
C has received a message fréimwith RL (1,G,0); as a resultB andC execute
subroutinePROPAGATEL ARGESTREFLEVEL, which causes them to take on RL
(1,G,0) with o set to—2 (they propagate the RL because it is more recent than all
of their neighbors’ RL's), and send messages to their neighb

(e) NodeA has received message from both noBeandC. In this situation, node
A is connected only to nodes that are participating in theckestarted by node
G for leaderH. In other words, all neighbors of nodehave the same RL with
7> 0 andr = 0, which indicates thaA has detected a dead end for this search. In
this case, nod& executes subroutineeFLECTREFLEVEL, i.e., it “reflects” the
search by setting the reflection bit in theGlx) reference level to 1, resetting its
0 to 0, and sending its new height to its neighbors.

(f) NodesB andC take on the reflected reference level@l,) by executing sub-
routinePROPAGATH.ARGESTREFLEVEL (because this is the largest RL among
their neighbors) and set thedrto —1, causing their heights to be lower thais
and higher than their other neighbors’. They also send tiexr heights to their
neighbors.

(g) NodesD, E, andF act similarly asB andC did in part (f), but set theid values
to —-2.

(h) When nodé&s receives the reflected reference level from all its neigbfdbknows
that its search fo is in vain.G executes subroutir ECTSELF and elects itself
by setting the LP part of its height te-{,G) assuming the causal clock value at
nodeG at the time of the election is 7. The new LR {,G) then propagates
through the component, assuming no further link changasrodthenever a node
receives the new LP information, it adopts it because it isemecent than the
one associated with the old LP bif. Eventually, each node has RL (0,0,0) and
LP (—7,G), with D, E andF havingd = 1, B andC havingd = 2, andA having
0=-3.

We now explain two other aspects of the algorithm that weteerercised in the
example execution just given. First, note that it is pogsibl multiple searches—
each initiated by a call tsTARTNEWREFLEVEL—for the same leader to be going
on simultaneously. Suppose messages on behalf of diffseanthes meet at a node
i. We assume that messages are taken out of the input messageane at a time.
Major action is only taken by nodavhen it loses its last outgoing link; when the ear-
lier messages are processed, all that happens is that thepaijape height variables

16

Rebecca Ingram et al.

(0,0.0.4.(-1‘H),A) LC:0

(0,003,-1 H),B, (o,o,o,s.(-1,H),<:)

LC:0 LC:0 LC:0
0,0,0,2,(-1,H),D)
(0,0,0,2,(-1,H),E) ? (0,0,0,2,(-1,H),F)

LC:0 LC:o
LC: 1 04—@ (0,0,0,1,(-1,H),G)
(0,0,0,0,(-1,H),H) LC:0

(0,0,0,4,(-1,H),A) C:0

(0003, 1H,B (0.0,03,(-1,H),)

LC:0 9 LC: 2 LC:0

W{1,G,0,-1,(-1,H),D)
)

(1,G,0,-1,(-1,H),E)
LC: 2

(1,G,0,-1,(-1,H),F)

LC:3

(1,G,0,-1,(-1,H),E)
LC: 4

(1,G,0,-1,(-1,H),F)
LC:4

(1,G,0,0,(-1,H),G)
LC:3

(e)

(1,G,1,0,(-1,H),A) LC:6

(1,111, HLB) (1,6,1,1,(1,H),0)

LC:5 LC:6 LC:5
X W(1,G:1,2,(-1,H),D)
A

(1,G,1,-2,(-1,H),E) (1,G,1,-2,(-1,H),F)

LC:6

@ (1,G,0,0,(-1,H),G)

LC:3

LC:6

(2)

(0,0,0,4,(-1,H),A) LC:0

(00,0318 (0.0,03,(-1,H).C)

Lc:0 e LC:0 Lc:0

0,0,0,2,(-1,H),D)

(0,0,0,2,(-1,H),F)

(0,0,0,2,(-1,H),E)
LC:0 (@NA ‘%Qa LC:0
LC:2 - —H— (1,G,0,0,(-1,H),G)

(0,0,0,0,(-1,H),H) £

(b)

(0,0,0,4,(-1,H),A) LC:0

V& (1,6,0,-2,(-1,H),C)

LC:3 LC:3

LC:2

(d

(1,G,1,0,(-1,H),A) LC: 4

(1,G,1,0,(-1,H),A) LC:6

(1,G,1,-1,(-1,H),B) (1,6,1,-1,(-1,H),C)
LC:5 LC: 6

(1,G,1,-2,(-1,H),D)

LC:5

(1,G,1,-2,(-1,H),E) (1 G,1,-2,(-1,H),F)
LC:6 LC:6

(0000(7G),G)
LC:7

()

Fig. 4 Sample execution when leader H becomes disconnected (&) timie increasing from (a)—(h).
With no other topology changes, every node in the conneatetponent will eventually adopt G as its

leader.

A Leader Election Algorithm for Dynamic Networks with Cati€docks 17

are updated. If and when a message is processed that cadsésmiose its last out-
going link, theni takes appropriate action, either to propagate the largéstence
level among its neighbors or to reflect the common referescs |

Another potentially troublesome situation is when, for tn@desu andyv, the
channel fromu to v is up for a long period of time while the channel franto u is
down. When the channel fromto vcomes up ati, v is placed inu’s formingset, but
is not able to move inta’s neighbor set untili receives an Update message frem
which does not occur as long as the channel fraimu remains down. Thus during
this interval,u sends update message taut sincev is not considered a neighbor of
u, vis ignored in deciding whetheris a sink. In the other direction, when the channel
fromutovcomes up atl, u sends its height tg, but the message is ignoredbgince
the link fromv to u is down and thusi is not inv's forming set or neighbor set. More
discussion of this asymmetry appears in Section 4.1; for, tleevmain point is that
the algorithm simply continues withhandv not considering each other as neighbors.

4 Correctness Proof

In this section, we show that, once topology changes cdasalgorithm eventually
terminates with each connected component being leadented. As a result, tHed
variables satisfy the conditions of the leader electiorbfenm.

We first show, in Section 4.1, an important relationship leetmthe final commu-
nication topology and thisrmingandN variables of the nodes. The rest of the proof
uses a number of invariants, denoted as “Properties”, wdnielshown to hold in ev-
ery configuration of every execution; each one is provedgisgply) by induction on
the configurations occurring in an execution. In Section wintroduce some def-
initions and basic facts regarding the information aboute®) heights that appears
in the system, either in nodes’ height arrays or in messagearisit. In Section 4.3,
we bound, in Lemma 3, the number of elections that can octeir thife last topology
change; this result relies on the fact, shown in Lemma 2,dheé a node adopts a
leader that was elected after the last topology chamgeyer becomes a sink again.
Then in Section 4.4, we bound, in Lemma 4, the number of nesreaete levels that
are started after the last topology change; the proof ofréssilt relies on several
additional properties. Section 4.5 is devoted to showinggemmas 5, 6, and 7, that
eventually there are no messages in transit and every nadarhaccurate view of
its neighbors’ heights. All the pieces are put together iedriem 1 of Section 4.6
to show that eventually we have a leader-oriented connectegponent; a couple of
additional properties are needed for this result.

Throughout the proof, consider an arbitrary execution efatgorithm in which
the last topology change event occurs at some global timg and consider any
connected component of the final topology.

4.1 Channels and Neighbors

Because of the lack of coordination between the topologypgbavents for the two
channels going between nodesindv in the two directionsy andv do not neces-

18 Rebecca Ingram et al.

sarily have consistent views of their local neighborhoodSd a4, even after the last
topology change. For instance, it is possible thatin Ny butu is not inN, forever
after the last topology change. Suppose the channel framv remainsUp from
some timé onwards, so thatremains inN, from timet onwards. However, suppose
that the channel fromto u fluctuates several times after tirheeventually stabilizing
to beingUp (cf. Fig. 5). Every time the channel togoes downu is removed from
Vv's formingandN sets. Every time the channel toccomes upy addsu to forming,
and sends its height in an Update message Whenu gets the message fromit
updates the entry farin its height array, but does not send its own height back to
As long asu's height does not change does not send its height Yo Thusv is never
able to movau from forming, into Ny.

vh in its formin
status of link is Up as u s fo g
N

set but not in its
Node v AN status of link is Down \\ \ \‘ neighbor set

N
e * | Update message \ \
'Y

1 .. .
P 3 3~y has vin its neighbor
Node u _[o€t

Fig. 5 The status of the channel fromto v remainsJp, but the status of the channel franto u fluctuates.

However, we are assured by Lemma 1 below that after tifng Ny U forming,
does not change for any nodg~urthermore, a nodealways sends Update messages
to all nodes i\, U forming,, which constitutes all the outgoing channelsiof

Lemma 1 After time trc, Ny U forming, does not change for any node u.

Proof When ChannelDowyg, occurs,u removesv from both itsN, and forming,
variables. WherChannelUp, occurs,u addsv to its forming, variable and sends an
Update message 0 Whenu receives an Update message from a nadée only
possible change to thé, andforming, variables is that is moved fromforming, to
Ny, which does not changg, U forming,.

tric is the latest among all the times at which eith&teannelDownor aChan-
nelUpoccurs. After this time, the only change to tNeset or theformingset must be
due to receipt of an Update message, causing lines 2 and §ufe2 to be executed.
Thus the only change to thé set or theformingset is that a node which is removed
from theformingset is added to thd set. This does not affett U forming

4.2 Height Tokens and Their Properties

Since a node makes algorithm decisions based solely on ¢@apsa of its neigh-
boring nodes’ height tuples, we first present several ingmiroperties of the tuple
contents. Definbto be aheight token for node im a configuration ihis in an Update
message in transit from, or h is the entry foru in the height array of any node. Let
LP(h) be the leader pair df, RL(h) the reference level (triple) df, 3(h) the d value
of h, Its(h) the absolute value of the (nonpositive) leader timestaromfmnentlts)

of h, andt(h) thet value ofh.

A Leader Election Algorithm for Dynamic Networks with Cati€docks 19

Given a configuration in whichanne(u, v) has statusJp andu € Ny, the (u,v)
height sequends defined as the sequence of height tokeyh, ..., hyn, wherehg is
u's height,hy, is v's view of u's height, anch, ..., hy,_1 is the sequence of height to-
kens in the Update messages in transit frotov. If the status oChanne{u, v) is Up
butu ¢ Ny, then the(u,v) height sequence is defined similarly except that. ., hy,
is the sequence of height tokens in the Update messagegdit framutov; in these
casesy does not have an entry farin its height array. I{Channe{u, v) is Down, the
(u,v) height sequence is undefined.

Property A : If his a height token for a nodein the (u,v) height sequence, then:

1. lts(h) < Z andt(h) < .7
2. If hisinv's height array thefts(h) < &% andt(h) < 4.

Proof By induction on the configurations in the execution.

Basis:In the initial configuratiorCy, all the leader timestamps amdralues are 0
and.7 > 0 for all nodesv.

Inductive HypothesisSuppose the property is true in configurati®n; and show
it remains true in configuratiod;. Since the property is true iy _1, for every height
tokenh in the (u,v) height sequence, we have:

(i) Its(h) < Za(Gi—1) and(h) < F(Ci_1)
(i) If hisinv's height array thetts(h) < .%(Ci—1) andt(h) < S(Ci_1)

Inductive Step:If his a pre-existing height token during even(the event im-
mediately precedinG;), then by the inductive hypothesis and the increasing ptgpe
of 4, it follows thatlts(h) < ,(C) andt(h) < Z,(G). If, on the other handy is
created during everd, then any new values dfs andt generated by are equal to
Zu(Ci) and, thus, the property remains true.

If his a height token for nodgat some other node thenh was either present at
v duringC;_1 or was received at during event;, immediately precedin@;. In the
first case, by the inductive hypothesis and the increasioggsty of %, it follows
thatlts(h) < .Z%(C) and1(h) < 5(G). In the second case, there exists a message
through whichv receivedh from u during eventg. Since. preserves causality, by
the definition of théhappens beforeelation, it follows that the creation of eithefh)
or Its(h) preceded the receipt of the messagevbyherefore, in configuratio@; it
remains true thdts(h) < %(G) andt(h) < %(C).

Property B, given below, states some important facts abeight sequences. If
the channel’s status Idp andm = 1, meaning that no messages are in transit foom
tov, then Part (1) of Property B indicates thatas an accurate view ofs height. If
there are Update messages in transit, then the most receseah has accurate in-
formation. Part (2) of Property B implies that leader panestaken on in decreasing
order. Part (3) of Property B implies that reference levedstaken on in increasing
order with respect to the same leader pair. Note that PryppBeonly holds ifm > 0.

Property B: Let hg,hy,...,hn be the(u,v) height sequence for anghanne{u,v)
whose status iglp. Then the following are true ifh > O:

20 Rebecca Ingram et al.

1. hg=h;.
2. Foralll, 0<| <m, LP(h)) <LP(h;1).
3. Foralll, 0<| <m,if LP(h)) = LP(h11), thenRL(h;) > RL(hj41).

Proof The proofis by induction on the execution.

Initially in Co, Channe{u,v) is eitherUp or Down If Channe{u, v) is Down, then
the (u,v) height sequence is undefineddhanne{u, V) is Up, then the definition of
initial configurations states that no messages are in trandiv has an accurate view
of u's height, that ism= 1 andhy = h;.

Suppose the property is true in configurati@n; and show it is still true in
configuratiorC;.

Suppose everg is ChannelDowgy,. Then the(u,v) height sequence is not de-
fined inG,.

Suppose everg is ChannelUp,. By the assumption that the channel up/down
events for a given channel alternate, the state of the ctham@ge ; is Downand there
are no messages in transit. Thu€jrthe (u,v) height sequence g h, whereh is the
height ofu in C;, which is stored inu’s height array and is in the Update message that
u sends tov. Clearly this height sequence satisfies the three condition

Suppose eversg; is the receipt by of an Update message from In one case,
the (u,v) height sequence changes by dropping the last element,afdiest message
in transit takes the place ofs view of u's height. In the other case, tlig,v) height
sequence does not change if the receipt cautesecordu’s height and addi to N.

In both cases, the three conditions still hold.

Suppose eversg; is the receipt byu of an Update message from nodeor is a
ChannelDowrevent for a channel to some node other thalfi u does not change its
height, then there is no change affecting the property.

Supposei changes its height frof, to h.

Let the(u,v) height sequence iG;_1 behy,h,,. ... hj,. By the inductive hypoth-
esis,hy = hf. By the code, they,v) height sequence iG; is h,h,h,, ..., h,. In each
case we just have to show titahas the proper relationship b, which equalsy,.

Case 1: gcallsrRerLECTREFLEVEL: All of u's neighbors are viewed as having
the same LP as, having reference levét, p,0) for somet andp, and having a larger
height tharu.

Sinceu is a sink during the stefRL(hg) < (t, p,0). SinceRL(h) = (t, p,1), and
the old and new LP are the same, the property holds.

Case 2: ecallsELECTSELF: By Property Ajltsin LP(hp) is less than or equal to
] in configurationC;_1. The new leader pair hdss .7, in configurationC;, which
is greater thar;. SoLP(h) < LP(hg).

Case 3: gcallssTARTNEWREFLEVEL: By Property A, ther value inRL(hg) is
less than or equal &7, at configuratior€i_;. The new reference level havalue 7,
at configuratiorC;, which is greater thawy] and the LP is unchanged. $&(h) =
LP(hy) andRL(h) > RL(hy).

Case 4: ecallsPROPAGATHLARGESTREFLEVEL: All neighbors ofu are viewed
as having the same LP asbut with different RL's among themselves, and as having
larger heights than. By the codeu takes on the largest neighboring RL, which is at

A Leader Election Algorithm for Dynamic Networks with Cati€docks 21

least as large ass old RL, sinceuis a sink. The LP is unchanged. 8B(h) = LP(hy)
andRL(h) > RL(hg).

Case 5: gcallsaADOPTLPIFPRIORITY: By the code, the new LP is smaller than
the previous, st P(h) < LP(hg).

4.3 Bounding the Number of Elections

In this subsection, we show that every node elects itselfadtra finite number of
times after the last topology change.

Define the following with respect to any configuration in theeution. For LP
(—s,¢), whereJ;(t) = sandt > t t¢, let LP tree LT(—s,¢) be the subgraph of the
connected component whose vertices consist of all nhodeshthee taken on LP
(—s,¢) in the execution (even if they no longer have that LP), andsehdirected
edges are all ordered paifs,v) such thatv adopts LP(—s,¢) due to the receipt of
an Update message from Since a node can take on a particular LP only once by
Property BLT(—s,¢) is a tree rooted at

Property C: For each height tokelwith RL (t, p,r), eithert = p=r =0, ort > 0,
pisanodeid, andis 0 or 1.

Proof The proof is by induction on the sequence of configuratiorteénexecution.
The basis follows since all height tokens in an initial coafagion have RL0,0,0).

For the inductive step, we consider all the ways that a new &1.be generated
(as opposed to copying an existing one) ErECTSELF, the new RL is (0,0,0). In
STARTNEWREFLEVEL, the new RL is(t, p,0), wheret is the current causal clock
time, which is positive, ang is a node id. IlREFLECTREFLEVEL, the new RL is
(t,p,1), where(t, p,0) is a pre-existing height token. By the precondition for exe-
cutingREFLECTREFLEVEL, t is positive. By the inductive hypothesis applied to the
pre-existing height tokeft, p,0), p is a node id.

Property D: Let h be a height token for some nodelf LP(h) = (—s,¢), where for
some global time, .7;(t) = sandt > t.r¢, thenRL(h) = (0,0,0) and d(h) is the
distance inLT (—s,¢) from ¢ to u.

Proof By induction on the configurations in the execution.

By Property A, the basis is configurati@y, just after the event at global time
when the first height tokens with LP-s,¢) are created. By the code, these height
tokens are created by nodéor itself and have RL(0,0,0) andd = 0.

Assume the property is true in configuratiGn 1, withi —1 > j, and show it is
true in configuratior®;. Since no further topology changes occur, the only postibil
for events is the receipt of an Update message. Suppose nodeeives Updaié)
from nodev.

As a result of the receipt of the messageecordsh asv's height in its view. The
inductive hypothesis implies that the property remains far this new height token.

Also as a result of the receipt of the messageight change its height.

22 Rebecca Ingram et al.

Supposeal changes its height by executingoPTLPIFPRIORITY, adopting the
LP in h, whereLP(h) = (—s,¢). By the inductive hypothesi&L(h) = (0,0,0), and
d(h) is the distance froni tovin LT (—s,¢) in Ci_1. By Property B, sincel adopts
(—s,¢), it must be that''s LP is larger than—s,¢) in C;_1, and thusy is u's parent
in LT(—s,¢). By the codeu sets its RL t0(0,0,0) and itsd to d(h) + 1. But this is
exactly the distance ibT(—s,¢) from ¢ to u. So all height tokens created in this step
satisfy the property.

Supposel changes its height because it becomes a sinkigntew height has LP
(—s,¢). First, we show thati does not take on LP—s,¢) as a result 0ELECTSELF.
By assumption, LR—s, /) is created in configuratio@; (the base case). By the code
and the increasing property of causal clocks, it follows @r@nnot create a duplicate
of LP (—s,¢) at some later configuratid®). Thereforey does not take on LP-s, /)
as aresult oOELECTSELF.

Thus, the old height of;, call it i, also has LR —s, ¢). Sinceu becomes a sink,
all its neighbors have LP-s, ¢) in u’s view, and by the inductive hypothesis they all
have RL(0,0,0) in u's view. Thus the new height af is not the result of execut-
ing REFLECTREFLEVEL (which requires the neighbors’ commarto be positive)
or PROPAGATEL ARGESTREFLEVEL (which requires the neighbors to have different
RL's). Instead, it must be the result of executsTthRTNEWREFLEVEL. Sinceu is a
sink and(0,0,0) is the smallest possible RL by PropertyRL(h') = (0,0,0). Also,
sinceu is a sink,u # ¢. Letv beu’s parent in the LP-treeT (—s,|) and letd be the
distance in that tree fromito v. By the inductive hypothesis, inis view of v's height,
Vs 8 =d, butinu’s own heightd = d+ 1. Thus the edge betweerandv is directed
towardv, andu cannot be a sink, a contradiction.

Lemma 2 Any node u that adopts leader pdirs, ¢) for any ¢ and any s, where for
some global time t7;(t) = s and t> t; ¢, never subsequently becomes a sink.

Proof Suppose in contradiction thatadopts leader pairs,¢) at global timet; >t
and that at global time > t;, u becomes a sink. Suppogé&oes not change its leader
pair in the time intervalts,tz). (If u did change its leader pair, the new leader pairs
would all be smaller thaii—s,¢) by Property B, and the argument would still hold
with respect to the latest leader pair taken oruldry that time interval.)

Letv be the parent ofi in the LP-treeLT(—s,¢). Immediately after timey, the
link (u,v) is directed fromu to vin u's view.

In order foru to become a sink at time, there must be some time betwegn
andt, when the link(u,v) reverses direction in's view. Suppose the link reverses
becausers height lowers. Recall that does not change its leader pair(in,t) by
assumption. By Property Di's reference level remain®,0,0) in (t1,t2) andu’s o
stays the same in the interval. Thatuks height does not change, and in particular
does not lower. Thus the only way that the liilkv) can reverse direction ifty,ty)
is due to the receipt by of an update message fronwith a new height fow that is
higher tharu’s height.

How canv's height change aftertakes on leader pajrs,¢)? One possibility is
thatv's leader pair changes. By Property B, any changesifeader pair will be to a
smaller one, which will be adopted hwtogether with & value that keeps the link
directed fromu to v in u’s view.

A Leader Election Algorithm for Dynamic Networks with Cati€docks 23

The other possibility is that's leader pair does not change but some other com-
ponent of its height changes. But by Property D, sivisdeader pair has timestamp
—swith Z;(t) = sandt > t t¢, V's RL andd cannot change.

Thus no change tu's height reported ta after timet; can cause the linku,v)
to be directed fronv to u in u’'s view, andu cannot be a sink at tim®e, which is a
contradiction.

Lemma 3 No node elects itself more than a finite number of times aftdrad time
tire.

Proof Suppose in contradiction that a naglelects itself an infinite number of times
after the last topology change. Once it has elected itselfitht time, the only way it
can become a sink and elect itself again is by adopting a nefirétPThus, node
needs to adopt new LP’s infinitely often afterc. By Property B, the leader times-
tamp of each subsequent LP has to be greater than the prerieushich results in
an increasing sequence of leader timestampaitadopts. Let7maxbe the maximum

of the clocks of all nodes at timgrc. In the process of adopting increasing leader
timestamps, at some pointwill adopt LP(—s,¢) where Z;(t) = s and for which
S> Imax

This follows from the first property of causal clocks whichtsts that for each
nodeu, the values ot are increasing, i.e., & ande; are events involvingiin the
execution withi < j, then.7(e) < (), and, furthermore, if there is an infinite
number of events involving, then.7;, increases without bound.

Because&Zmaxwas the maximum value of all clocks at the time of the last logyp
change, it follows that >t tc. By Lemma 2, however, node does not become a
sink after it has adoptddP(—s, ¢) and thus it cannot elect itself again after that time,
which is a contradiction.

If we use perfect clocks to implemerf, we can get a stronger bound on the
number of times a node elects itself after the last topolbgyge. In fact, with perfect
clocks it is guaranteed that no node elects itself more thae after the last topology
change, as we now explain. As stated in the proof of Lemmaahddeu elects itself
more than once after the last topology change, it must take mew LP in between
each successive pair of elections. Also, by Property B,ithestamps in these LP’s
must be increasing. As explained in the proof of Lemma 3 etleeuld be multiple
LPs already existing at the time of the last topology chanbese timestamps are
greater than the timestamp of the LP thaakes on the first time it elects itself after
the last topology change. The reason is that the clocks aataet are drawn from
a totally-ordered set, and thus just because clock \talisdess than clock value, it
does not follow that the event associated withappened before the event associated
with clock valuet,. However, the number of such misleading timestamps is figite
eventually, ifu keeps electing itself, it will take on a timestamp that isoassted with
an event that occurred after the last topology change. Theenam apply Lemma 2
to deduce that will never elect itself again. When clocks are perfect, hesvethere
can be no such misleading timestamps in LP’s: if the timeptara new LP is greater
than the timestamp taken on byhe first time, then this LP was definitely generated
after the last topology change and Lemma 2 applies immdgidter more details,
referto Lemma 3 in [15].

24 Rebecca Ingram et al.

4.4 Bounding the Number of New Reference Levels

In this subsection, we show that every node starts a newemsferlevel at most a
finite number of times after the last topology change. Theikdp show that after
topology changes cease, nodes will not continue executing 13 of Figure 2 in-
finitely and will therefore stop sending algorithm messagést we show that thé
value of a node does not change unless its RL or LP changes.

Property E: If h andh’ are two height tokens for the same nadwith RL(h) =
RL(K) andLP(h) = LP(H), thend(h) = d(h').

Proof Initially, in Cy, the only height tokens for nodeare the ones in and the ones
in u's neighbors, and the neighbors have accurate viewsdfeight.

Suppose the property is true through configura@on. We will show it is still
true in the next configuratio@;. The only way that new height tokens can be intro-
duced into the system is if a nodechanges its height and sends Update messages
with the new height to its neighbors.

Suppose changes its height through ECTSELF (resp. STARTNEWREFLEVEL).
Since the new height's leader timestamp (respis the value of the logical clock of
u, Property A implies that there is no pre-existing heightetokor u in the system
with the new leader timestamp (resp), Thus there cannot be two height tokens for
u with the same RL and LP but conflictirdg.

Suppose changes its height througiboPTLPIFPRIORITY. Then the new height
of u has a smaller LP than the old height. By Property B, there ipmesexisting
height token foru in the system with the new LP. Thus there cannot be two height
tokens foru with the same RL and LP but conflicting deltas.

Supposel changes its height througtEFLECTREFLEVEL. Sinceu is a sink and
in its view all its neighbors have a common, unreflected, Rl it (t, p,0), u's RL
must be at modt, p,0). Sinceu’s new RL is(t, p,1), Property B implies that there is
no pre-existing height token farin the system with the new RL. Thus there cannot
be two height tokens far with the same RL and LP but conflictirnis.

Supposel changes its height througlROPAGATELARGESTREFLEVEL. The pre-
condition includes the requirement that not all the neighlbave the same RL (inis
view). Sinceu becomes a sinky’s old RL is less than the largest RL of its neighbors,
which is the RL thati takes on irC;. Property B implies that there is no pre-existing
height token fowu in the system with the new RL.

Thus there cannot be two height tokensdiorith the same RL and LP but con-
flicting ds.

The next definition and its related properties are key to tstdading how un-
reflected and reflected reference levels spread throughewnnected component
after the last topology change.

Define the following with respect to any configuration in tixeeution aftet, rc.
For global timet’ > t_rc, let theRL DAG RO, p), where 7,(t') =t, be the sub-
graph of the connected component whose vertices consigtanfd all nodes that
have taken on RL prefii, p) by executing eithePROPAGATEL ARGESTREFL EVEL

A Leader Election Algorithm for Dynamic Networks with Cati€docks 25

or REFLECTREFLEVEL in the execution (even if they no longer have that RL pre-
fix). In RD(t, p), the directed edges are all ordered pairs of nod€lde) such that

u € Nyandv € N, andu has RL prefixt, p) prior to the event in whick first takes

on RL prefix(t, p). We say that node is apredecessoof nodev in RD(t, p) andv

is asuccessoof uin RD(t, p).

Property F: If there is a height token for nodewith RL prefix(t, p), whereZ,(t') =
t andt’ >t t¢, thenuis in RD(t, p).

Proof By induction on the sequence of configurations in the exenouti

The basis is configuratid®;, wheregt(C;) =t’, i.e., the time when node starts
RL (t, p,0). By Property A, there is no height token with RL preftxp) in Cj_1, so
the only height tokens we have to consider are those cregtpdbr p. By definition,
pisinRD(t, p).

Suppose the property is true through configura@pn . We will show it is true
in G;.

Suppose in contradiction, in evegt some nodel takes on RL prefixt, p) by
calling ADOPTLPIFPRIORITY after receiving an update message from neighbor
containing height with RL prefix(t, p). By the inductive hypothesigjs in RD(t, p).

Let (—s, /) beLP(h). We are going to show that whertakes on RL prefixt, p),

it already has LR —s, ¢). We know thatv must have a path to nogein Gég;";' that
has been in place singestarted the new RL prefix at tinté by the assumption that
topology changes have stopped by real tifndust before tim¢/, all the neighbors

of p had LP(—s,¢) and RL prefix lower tharit, p), by Property B, op would not
have started a new reference level for [Ps,¢). Since the neighbors gf had LP
(—s,¢), they would have sent messages containing that LP to thigihbers prior to
timet’. Likewise, those neighbors would have messages in transigir neighbors
containing the LP(—s,¢) and so on. In short, if the LP—s,¢) is adopted by any
nodes that have a path poatt’, then the LP would have been adopted when that LP
spread through the network with a lower RL prefix.

Thus, wherv putsh in transit tou, there is already ahead of it in tife u) height
sequence a height token f@s old height, with LP(—s,¢). Since the channels are
FIFO and no messages are lost after tthe has already received the old height from
v beforeg. So inC_j, u has a LP that i§—s, ¢) or smaller already, before handling
the Update message with heightThusu does not executeDOPTLPIFPRIORITY
in g, contradiction.

Property G: If there is a height token for nodewith RL (t, p,1), where for some
global timet’, Z,(t") =t andt’ > t_r¢, then all neighbors af are inRD(t, p).

Proof By induction on the sequence of configurations in the exenuti

The basis is the configurati@®) with gt(C;) =t’, i.e., the time when the new RL
is started at nodp. By Property A, there is no height token@;_; with RL (t, p,1),
and inC;j we only add height tokens for nogewith RL (t, p,0). So the property is
vacuously true.

Suppose the property is true through configura@pn and show it is true ig;,
i>].

26 Rebecca Ingram et al.

By Property F and the definition &D(t, p), the only way thati can take on RL
(t,p,1) is by REFLECTREFLEVEL Or PROPAGATH.ARGESTREFLEVEL.

Supposeal takes on RL(t, p,1) due toREFLECTREFLEVEL. Then allu’s neigh-
bors have RL(, p,0) in its view. By Property F, then, they are allRD(t, p).

Supposel takes on RL(t, p,1) due toPROPAGATEH.ARGESTREFLEVEL. Thus
there is a height token i@;_; for some neighbov of u with RL (t,p,1). By the
inductive hypothesis applied tg all of v's neighbors, including, are inRD(t, p).
Thusu's RL prefix at some earlier time {$, p). By Property B (since the LP does not
change in this interval)y's RL prefix inCi_1 is at leas(t, p). Sinceu is a sink during
eventg, u's RL prefix in Ci_1 is at most(t, p), so it is exactly(t, p) in Gi_;. Since
uis a sink, every neighbor af (in u's view) has RL prefix at leagt, p), and since
(t,p,1) is the maximum of the neighboring RL's, every neighboudfn u's view)
has RL prefix exactlyt, p). Thus by Property F, every neighborwfs in RD(t, p).

Property H: Suppose that andv are two nodes such thate N, andv € N, after
t_rc. Consider two height tokenk, for nodeu with RL(h,) = (t, p,ry) andd(hy) =
dy, andhy for nodev with RL(hy) = (t, p,ry) andd(hy) = dy, where7,(t') =t and
t' >t rc. Then the following are true:

(1) If ry <ry, thenu is a predecessor ofin RD(t, p). If uis a predecessor afin
RD(t, p) thenry <ry.

(2) If ry=ry =0, thendy, > dy if and only ifu is a predecessor of

3) If ry, =ry =1, thend, > d, if and only ifu is a predecessor of

Proof By induction on the sequence of configurations in the exenuti

Basis:Consider configuratio€;j, wheregt(Cj) =t’, that is, when node starts
the new reference levét, p,0). By Property A, in configuratio€;_1, there are no
height tokens with RL prefixt, p). The only new height tokens introduced by event
gj are those fop with RL (t, p,0), and the RL DAGRD(t, p) consists solely of node
p. Thus all parts of the property are vacuously true.

Induction: Assume the property holds through configurati@n; and show it is
true inG;, i > j.

By Property E, it is sufficient to consider the height tokensg'$ view, since there
cannot be other height tokens with the same RL and LP butrdiffés.

Suppose new height tokens with RL preftsp) are created by node during
eventg. The only ways this can happen are WaFLECTREFLEVEL and PROPA
GATELARGESTREFLEVEL, by Property F.

CAsE 1: REFLECTREFLEVEL. During the execution o, all of u's neighbors
are viewed by as having RL(t, p,0) and the new height tokens created fonave
RL (t,p,1).

We now show that's RL prefix is less tharit, p) in C_;. Suppose in contradic-
tionuhas RL(t, p,0) in C;_1. By the inductive hypothesis, part (2)s J value cannot
be the same as that of any of its neighbors. This is true sireoed all its neighbors
are inRD(t, p) by Property F, and, for any pair of neighboring nodeRit, p), one
is the predecessor of the other, since two events cannoehaimpultaneously. Since
uis a sink, itsd value must be smaller than those of all its neighbors. Byrttagtive
hypothesis, part (2} is a successor of all its neighbors, of which there is at least

A Leader Election Algorithm for Dynamic Networks with Cati€docks 27

Then at some previous tinté < gt(Ci_1), u executed®’ROPAGATEL ARGESTRE-
FLEVEL and took on RL(t, p,0). This must be how took on (t, p,0) since, by
Property Fu cannot take on RIt, p,0) by runningADOPTLPIFPRIORITY, and, if
u= p, u has no predecessorsRD(t, p), contradicting the deduction thats a suc-
cessor of at least one neighbor.tAtu has (in its view) at least one neighbor with RL
(t,p,0), (t, p,0) is the maximum RL of all’'s neighbors, and at least one neighbor,
sayv, has a smaller RL thaft, p,0), albeit larger thaw’s (sinceu is a sink).

Suppose has heighhy at timet”, and its view of/’s height ishy at timet”. Since
uis a sink,hy andhy have the same leader pair, day, we have

RL(hU) < RL(hV) < (t7 P, 0) (1)

This means that there was a previous titffe< t” whenv actually took on height
hy (with leader paifdp;). We also know thav has taken orft, p,0) before timet”,
sinceu is a successor of all its neighbors and it takes on(Rp,0) at timet”. Note
thatv could not have taken on R, p,0), with leader paifp; beforet”. This is
because at” its leader pair is alstp; and its heighRL(hy) < (t, p,0). By Property
B two height tokens with the same leader pair must have isargaeference levels.
Hence,v took on(t, p,0) aftert” and before¢”. Supposes took on(t, p,0) at time
ssuch that” < s< t”. We know thatv has to be a sink at timgin order to do so.
Thus at times all v's neighbors inv's view have the same leader pair as itself, and
takes on(t, p,0) with leader pail p; either byPROPAGATH. ARGESTREFLEVEL or
STARTNEWREFLEVEL. Suppose/s own height ish;, at times and its view ofu’s
height ish,. Bothh, andh(, have leader paip; and, sincer is a sink we have

h, <,)

Note thathy, hy, hi, andh;, all have leader paip;. We also know thalh, < hy from
(1). Now from Property B
hi, < hy (3)

Also from Property B
hy <hj, (4)

Hence, from (1), (3) and (4), we have
h, <h, <h, <H, (5)

This is in contradiction to (2).

Part (1): All neighbors ofi are its predecessors RD(t, p) and inC;, the prede-
cessors ofl haver = 0 andu hasr = 1 so this part continues to hold.

Part (2): The creation of the new height tokens does notaffiécpart, since the
new tokens do not hawe= 0.

Part (3): Sincau is not inRD(t, p) in Ci_1, Property G implies that there cannot
be a height token for any afs neighbors with RL(t, p, 1), and this part is vacuously
true.

CASE 2: PROPAGATH.ARGESTREFLEVEL. In this casep’s neighbors have at
least two different RLs so we need to consider which iRpropagates(t, p,0) or

(t,p,1).

28 Rebecca Ingram et al.

Case 2.1Supposel's new height has RIt, p,0). We first show thati has RL less
than(t, p,0) in Ci_1. By the precondition fOPROPAGATH. ARGESTREFLEVEL,

in u's view, (t, p,0) is the largest neighboring RL, at least one neighbor has RL
less thar(t, p,0), andu is a sink. Thusr's RL must be less thaft, p,0).

Part (1): Since the new height tokens of botind its predecessors have reflection
bit 0, this part is not invalidated iG;.

Part (2): Each ofi's neighbors for whichu has a height tokel with RL (t, p,0)

is a predecessor ofin RD(t, p), sinceu is not yet inRD(t, p). By the codep’s
new heighth has ad calculated so thdt’ > h.

Part (3): The new height tokens do not have reflection bit Thiogart is unaf-
fected.

Case 2.2Supposer's new height has RI(t, p,1). Then the largest RL amongs
neighbors has, in's view, RL (t, p,1). Property G implies that is in RD(t, p).

So the RL prefix ol is at least(t, p). Sinceu is a sink, its RL prefix igt, p) in
Ci_1. So all neighbors (inu's view) have RL(t, p,0) or (t,p,1) and there is at
least one neighbor with each RL.

Consider any neighbarof u with RL (t, p,1) in u's view. By the inductive hy-
pothesis, part (1) must be a successor oin C;_;. Consider any neighbav of
uwith RL (t, p,0) in u's view. By the inductive hypothesis, part (2),must be a
predecessor afin G_1.

Part (1): Sincau's new height causes it to have the same reflection bit asdts su
cessors, and a larger reflection bit than its predecesh@gart continues to hold
inG,.

Part (2): Since the new height tokens do not have reflectiod, bhis part is not
affected.

Part (3): As argued above, eachud neighborss for whichu has a height token
W with RL (t, p,1) is a successor af in RD(t, p). By the codeu’s new heighth
has ad calculated so thdt > h.

Lemma 4 Every node starts a finite number of new RLs aftegt

Proof Suppose in contradiction that some nadstarts an infinite number of new
RLs aftert tc.

Now we show thati takes on a new LP infinitely often. Suppose in contradiction
that u does not do so. Lef p be the latest time at which takes on a new LP.
Consider the first and second times thadtarts a new RL (for the same LP) after
max{t.rc,tup}; call these times; andt,.

At global timets, u sets itst to 11. Sinceu does not take on any more LPs,
Property B implies that at the beginning of the step at tijer's 1 is at leastry,
which is positive.

At the beginning of the event at tintg let (t, p,r) beu's RL and let(tc, pc,rc) be
the common RL of all’'s neighbors (iru’s view). Thus the precondition for starting
a new RL cannot be thag = 0, otherwiseu would not be a sink. So it must be that
tc > 0,rc =1, andpc # u.

There are two cases, depending on the relationship bet@ephand (tc, pc)
(note that(t, p) cannot be larger thaftc, pc) sinceu is a sink).

A Leader Election Algorithm for Dynamic Networks with Cati€docks 29

Case 1:(t,p) < (t, pc)- Sinceu has a height token with Ritc, pc,1) for each
neighborv, we can apply Property G to deduce that all neighbong @icludingu,
are inRD(tc, pc). Thus, at some previous timehas RL prefix(tc, pc). But Property
B implies that it is not possible farto have RL prefixtc, pc) and then later to have
RL prefix (t, p), since(t, p) < (tc, Pc)-

Case 2:(t, p) = (tc, pc)- By Property F, nodais in RD(t, p). Thusu has a neigh-
borvthatis a predecessor ofin RD(t, p).

Here we know thav is in Ny. Also, sincev is a predecessor afin RD(t, p) uis
in Ny. Hence, we can apply Property H.

Since inu’s view, v has RL(t, p, 1), Property H, Part (1), implies thatks reflection
bit must also be 1, and Property H, Part (3), implies thatheight must be greater
thanv's. But this contradicts being a sink.

Sinceutakes on a new LP infinitely often, by Property B, ttevalues of the LP’s
thatu adopts are increasing without bound. L#&tax be the maximum of the clocks
of all nodes at time_t¢c. Sinceu is adopting LPs with bigger leader timestamps, at
some point in time it will adoptP(—s,¢) where for some global timg 7;(t) =s
and for whichs > Jmax BecauseZmax is the maximum of all clocks at the time of
the last topology change, we can conclude that rc. But then by Lemma 2y is
never again a sink after that time, contradicting the assiemghatu starts a new RL
infinitely often.

4.5 Bounding the Number of Messages
In this subsection we show that eventually no algorithm gss are in transit.

Lemma 5 Eventually all nodes in the same connected component ohg(f%ﬁj:
have the same leader pair.

Proof Choose a connected componenlﬁiﬁﬁ. Lemma 3 implies that there are a
finite number of elections. Thus there is some smallest LPewer appears in the
connected component at or aftefc, say(—s, /). Suppose in contradiction, it is not
true that eventually all nodes in the same connected connmmﬁ@;'}”j: have the
same leader pair. We know that causal clocks have the pyagpaittfor each noda,

the values of7; are increasing (i.e., & ande;j are events involving in the execution
with i < j, thenZu(&) < Ju(gj)), and, furthermore, if there is an infinite number of
events involvingu, then.7; increases without bound. We also know from Lemma 3
that no node elects itself more than a finite number of timesr gllobal timet, t¢.
From this and from Property B we know that eventually everganim the connected
component will stop changing its leader pair. We can themitjzar the connected
componentinto two sets of nodes, those that have ad¢pted) and those that have

not. Thus there exist two nodasandv such that there is an edge@i#”aﬂ betweeru

andv, andu’s final leader pair is—s,¢), wherea's final leader pair is nof—s, ¢).
Case L:If (—s,¢) originated at or afteti ¢ then both communication channels
(fromu to v andv to u) exist inG' " Suppose the laghannelUp, event occurs at

chan*
timet <t rc. After timet, vis in forming, and, by the code; is not removed from

30 Rebecca Ingram et al.

forming,, since nadChannelDowpy, event occurs after this time. By Lemma 1 there is
no change iM,uUforming, aftert,rc, hencev is either inNy or forming, aftert rc. In
either case, when adopts(—s,¢), v gets an Update from and adoptg—s, ¢). This
leads to a contradiction.

Case 2:Supposé—s, /) originated beforé tc. We know that there is a la&than-
nelUp event atu for v (since the channel is eventuallip aftert, t¢). Suppose this
ChannelUpevent occurs at time If at timet nodeu has already taken on leader
pair (—s,¢), thenu will send an Update messageuwith (—s,¢). If nodeu takes on
leader pair—s, /) at timet’ > t, thenu will send an Update messageuwvith (—s, /)
at timet’. In either case nodewill receive this Update message. Since nedimes
not take on leader pairs,¢), it must be tha ignores this message, because the
Channe}, is down andu is neither informing, nor in N,. However, in this case there
will be at timet” > t’, a lastChannelUpevent atv for u (since the channel is eventu-
ally U p aftert_tc). At timet” v will send its heighh (with a leader pair older than
(—s,¢)) to u. At this time nodeu detects that has an older leader pair (sineéhas
not taken or(—s,¢)) and nodeai sends an Update message witts, /) to v. Whenv
receives this message with a more recent leade(pair’), v adopts this leader pair.
This is a contradiction to the assumption thandv have different leader pairs.

Lemma 6 Eventually there are no messages in transit.

Proof By Lemma 5, eventually every node in the connected compdreesithe same
LP, say(—s,¢). Lemma 4 states that there are a finite number of new RLs dtarte
Thus there is a maximum RL that appears in the connected coemp@associated
with the common LR —s,¢). Lett be some global time after the last RL has been
started and the last leader has been elected.

Assume in contradiction that messages are always in tr&iside every message
sent is eventually received, there must be an infinite nurobé&ipdate messages
sent. Thus, infinitely often after time an Update message is received that causes
the recipient to (temporarily) become a sink, change itgtiteand send new Update
messages. Since there are no more elections or new RLgistétiee timet, the ac-
tions taken by the recipients are FLECTREFLEVEL andPROPAGATELARGESTRE-
FLEVEL . Thus eventually every node has the same, maximum, RL. Ghonedes
have the same RL, the only possible action when a node becarsiek is to run
ELECTSELF or STARTNEWREFL EVEL . But this contradicts the fact that after time
these events do not happen.

The previous lemma, together with Property B, gives us thisltary:

Lemma 7 Eventually every node has an accurate view of its neighbiasgjhts.

4.6 Leader-Oriented DAG

This subsection culminates in showing that eventually therithm terminates (i.e.,
no messages are in transit), with each connected compoeiaigtleader-oriented.

Property I: A node is never a sink in its own view.

A Leader Election Algorithm for Dynamic Networks with Cati€docks 31

Proof By induction on the sequence of configurations in the exenuti

In the initial configuration, every node in every connectenhponent is assumed
to have RL (0,0,0), LF¢,0) where? is a node in the same component, anithalue
such that it has a directed patho

Assume the property is true in configuratiGn ; and show it is true il€;, i > 0.
Letu be the node taking the step

First consider the case whenis the receipt of an Update message from a neigh-
bor. If the neighbor’s new height causet become a sink, then eitheelects itself
(in which case, by definition it is no longer a sink) wreflects a reference level,
starts a new reference level, or propagates a referendelleeach of the latter three
cases, the code ensures thé no longer a sink, as reflection manipulates the reflec-
tion bit, starting a new reference level manipulatestttemponent, and propagation
manipulates thé value appropriately. If the neighbor’s new height causesadopt
a new leader pair, then the code ensuresulignho longer a sink by manipulating the
d value appropriately (the nedvvalue is greater than that of the node which sent the
Update message).

If g is aChannelDowrevent, then any changes height through electing itself
or starting a new reference level does not cause become a sink, as explained
above. Ifg is aChannelUpevent, then no change is made to any of the heights stored
atu.

Property J: Consider any height tokénfor nodeu. If RL(h) = (0,0,0), thend(h) >
0. Furthermored(h) = 0 if and only ifu is a leader.

Proof By induction on the sequence of configurations in the exenufThe basis
follows by the definition of the initial configuration.

Assume the property is true in configuratiGn ; and show it is true ilC;, i > 0.
Letu be the node taking the step

Supposel elects itself. Then by the code, it sets its RL @b all zeroes, so the
property holds.

Now consider all the ways thatcan change its RL and/@x, other than by elect-
ing itself. Reflection causasto have a non-zero reflection bit, so the property holds
vacuously. Starting a new reference level caudeshave a positive, so the property
holds vacuously.

Consider the situation whanpropagates the largest reference level, say RL. The
precondition for propagation is that neighbors have different reference levels, and
thus RL must be larger than the reference level of anothesafeighbors. By Prop-
erty C, thenu's RL cannot be (0,0,0). Thuss new height does not have reference
level (0,0,0) and thus the property holds vacuously.

Consider the situation wheamnadopts a new LP, because of the receipt of height
h. If RL(h) = (0,0,0), then the inductive hypothesis shows tdh) > 0, and thus
u's new height has positivé and the property holds. RL(h) # (0,0,0), then the
property holds vacuously.

Theorem 1 Eventually the connected component is leader-oriented.

32 Rebecca Ingram et al.

Proof By Lemma 5, eventually all nodes in the component have theedaPn say
(—s,¢). By Lemma 7, every node eventually has an accurate view ofeighbors’
heights.

First, we show that nodé must be in the component. Suppose in contradiction
that node is not in the component. Since cycles are not possible, thes@me node
in the component that has no outgoing links. But this nodeois/nsince we are
assumind is not in the component, and thus the node is a sink, violatimgerty .

Now that we know that nodeéis in the component, we can proceed to show that
the component ig-oriented. Property J states that ndgdand only nodée, has RL
(0,0,0) and zerd®. Property C implies no node has a negative number in its RL.
Thus Property J implies thdthas the smallest height in the entire component and
thereforel has no outgoing links. Property | tells us that there are nkssiso every
node other thar has an outgoing link. Since there are no cycles, the compasen
leader-oriented, wheréis the leader.

5 Leader Stability

In this section, we consider under what circumstances a eader will be elected.
For some applications of a leader election primitive, cliagghe leader might be
costly or inconvenient, so it would be desirable to avoichdao unless it is neces-
sary. In fact, with perfect clocks, without some kind of fsitay” condition limiting
when new leaders can be elected, we could solve the problgmawiuch simpler al-
gorithm: whenever a node becomes a sink because of a charingldpwn, it elects
itself; a node adopts any leader it hears about with a laterdiamp.

The algorithm of Derhab and Badache [5] achieves stabilityding inferences
on the overlap of time intervals, included in messages, soenthat an older, possi-
bly viable, leader is maintained rather than electing a nee: @ heir inferences re-
quire a more complicated set of rules and messages thangmrithin, which elects
a new leader whenever local conditions indicate that ahpti an older leader have
been lost. While topology changes are taking place, ourridigo may elect new
leaders while paths still exist, in a global view, to old leesl However, we show that
new leaders will not be elected by our algorithm if executsterts from a leader-
oriented state in which the channels between one pair ofsailke while the old
leader is still a part of the connected component.

While the correctness proof of our algorithm uses a generim of time, .7,
for the stability proof we need a stricter requirement ontémeporal order of events.
Because it is of critical importance to determine which Eadare older and which
ones are newer, we need the clock times of non-causaliéyeakvents to be ordered
consistently with the global times at which the events oatorder to achieve stabil-
ity. If perfect clocks are used to implemefit, then Theorem 2 provides the stability
proof of the algorithm. Note that with perfect clocks nodasénan accurate notion
of the current time, which is equivalent to having accesddabaj time.

Theorem 2 Suppose at global timé & connected component Caf Gepapis leader-
oriented with leade¥. Furthermore, suppose the two channels between a single pai

A Leader Election Algorithm for Dynamic Networks with Cati€docks 33

of nodes in CCgo down, the latter of these two ChannelDown events occuiat

t > t/, and no other topology changes occur betwe€eand t. Let the resulting con-
nected component containifigpe CC. Then, as long as there are no further topology
changes in CC, no node in CC elects itself.

Proof Only one of the twaChannelDowrevents can create a sink@C. This is the
ChannelDowrevent that occurs at the node with the greater height\sa§uppose
that this is the latter of the tw@hannelDowrevents, and it occurs at tinte(since,
even if it is the first of the tw&€ChannelDowrevents, by the code, Update messages
received by on the incoming channel will be ignored after its outgoingmmhel goes
down).

If the loss of the channel at tintedoes not create a sink {©C, then no Update
messages are sent@C and no node ilCC elects itself.

Otherwise, suppose the loss of the channel causes somel @€ to become
a sink. Theru starts a new RI(t, u,0).

Suppose in contradiction some node&d@ elects itself after timé. Suppose the
first time this happens is tinte.

Claim 1: Every message in transit after t has eitlter t or Its < —te.

Claim 1 follows from Property B and the assumption that no sagss are in
transit just before th€hannelDowrevent at timd.

Claim 2: After time t and beforestho new RL prefix is started.

Proof: Suppose in contradiction a new RL prefix is started afemd beforde. Let
tr be the first time this happens. Since there are no topologyggsaor elections in
this interval, the new RL prefix must be started because sade,rcall iti, executes
Line 13 of Figure 2 in response to the receipt of an Update ayesat;, .

There are two cases in which a node executes Line 13 of Figure 2

Case 1:After updating the height of one its neighbors, in respoosthé mes-
sage received, nodeviews all its neighbors as having RD,0,0). By Claim 1 and
Property A, the Update message received must mave, and, since > 0, this is a
contradiction.

Case 2:After updating the height of one its neighbors in respongheéanessage
received, node views all neighbors as having the same reflected(Rl, 1), but
j #1i. Since at, (the time when nodereceives the Update message that causes it to
start a new RL), the newest RL prefix(is u), this common reflected RL has< t.
By Claim 1,s>t, sos=t. Since only one node loses its last outgoing link at time
no node besidastakes a step at timeand thusj = u.

Thus, ini’s view, all the neighbors afhave RL(t,u,1) buti # u. By Property F,
all neighbors of are inRD(t,u). By Property G with respect to a neighboriof is
also inRD(t,u). Sincei is a (temporary) sink during the execution of this siepust
still have RL(t,u).

Sincei # u, i must have a neighbgrthat is its predecessor RD(t,u). Property
H, part (1), implies that’s reflection bit must also be 1. But then Property H, part
(3), implies that the height token fgrin i's view must be smaller thais height,

34 Rebecca Ingram et al.

contradicting being a sink. (End of Proof of Claim 2.)

By Claim 2, the node that elects itself at titgenust beu.

Note that durindt,te), the only way a node i€C can change its height is by be-
coming a sink, since there is only one leader pair pres€@Cirm hus in the following,
we will use “becoming a sink” interchangeably with “changjimeight”.

From the hypothesis of the theorem, at tithéhe connected compone@€' is
£-oriented. By definition o?—oriented,(f)' is a DAG with the unique sink being
Thus every node i€C’ has a (directed) path @C to ¢. LetCC be the result of re-
moving the directed edge correspondingtpv} from CC. LetA be the set of nodes
in CC that have a (directed) path fan CC (i.e., after theChannelDowrat timet),
and letB be the set of nodes @GC that no longer have a (directed) pathéton CC.
Clearly/isin Aanduis in B.

Claim 3: No node in A becomes a sink duriftgte).
Proof: By induction on the distanog from the node td in CC.

Basis: d= 0. By definition, the leadef is never a sink.

Induction: d> 0. Consider a noda € A at distanced from ¢ in CC. Attimet, a
has a neighbaa’ whose distance téin CCisd — 1 such that the edge (&C between
aanda’ (in the views of botha and &) is directed froma to &'. By the inductive
hypothesisd is never a sink durin,te] and thus keeps the same height. Since the
height ofa cannot decrease (by Property B, since there is no new leail®r {he
edge inCC betweera anda’ (in the views of botra anda’) remains directed frora
to a'. (End of Proof of Claim 3.)

Next, we are going to show, by induction on the distance fcamRD (t,u), that
at timete all nodes in RO(t, u) (except for noder) have RL(t,u,1). The base case is
true because by the precondition for nade elect itself at time, all its neighbors
must have RL(t,u,1). Therefore, all nodes at distance 1 frorm RD (t,u) have RL
(t,u,1). Suppose all nodes at distaricom uin RD (t, u) have RL(t,u,1). We need
to show that all nodes at distanke- 1 fromu in RD (t,u) have RL(t,u,1) too. Let
x be an arbitrary node at distanke- 1 fromu in RD (t,u). By the definition of RD,
x is a descendant of some node at distaké®m u in RD (t,u). By the inductive
hypothesis and Property H, Part (1), it follows tlédtas RL(t,u,1).

Therefore, we know that at timig there can be no height tokens in the system
with RL (t,u,0). Then by Property G, every node that has RLu,1) must view
all its neighbors as having R[t,u,1). But since some node with R[t,u,1) is a
neighbor of some node i, this contradicts Claim 3 and Property G.

The stability condition above is no longer true if we use ¢adjiclocks to imple-
ment.7, instead of perfect clocks. Because logical clocks ensohg @ happens-
before relation between events, it is not possible to djsiish old leaders from new
ones if there is no causal chain between their electionsir&i§ shows an example
situation in which the use of logical clocks leads to a no@etag itself despite the
hypotheses of Theorem 2 holding. However, if we add an erfjairement to The-
orem 2 that the RL prefixes at all nodes &e0, 0) before the last topology change,

A Leader Election Algorithm for Dynamic Networks with Cati€docks 35

then no pre-existing RL's are present and we can guaran&enthnode will elect
itself, using a proof similar to the one of Theorem 2. Thiswheer, is a weaker
stability condition.

6 Conclusion

We have described and proved correct a leader electionitdgofor dynamic net-
works. To provide for the temporal ordering of events that sitgorithm requires,
we use a generic notion of time—causal clocks—which can p&emented using, for
instance, perfect clocks or logical clocks. Note that trgoathm is correct in the
case of complete synchrony between clocks (perfect claakd)also in the case of
clocks with no bound on skew (logical clocks), but it is notreat for approximately
synchronized clocks (which assume an upper bound on skele3sithey preserve
causality. Notably, our definition of causal clocks doesinciude vector clocks (e.g.,
[8]), since vector clock values do not form a totally-ordieset in order to capture
non-causality as well as causalitn open question is how to extend our algorithm
and its analysis to handle a wider range of clocks, such aaippately synchro-
nized clocks and vector clocks.

We identified different sets of circumstances under whiehalgorithm does not
elect a leader unnecessarily. Depending on the types okglosed to implement
causal time and the amount of synchrony they provide, horvthese circumstances
tend to be different. It would be interesting to introduc#edent types of clocks,
which not only preserve causality but also have some uppamndbon skew, and see
how they affect the stability condition of the algorithm. Mover, an analysis of the
time and message complexity needs to be performed, takingatount that using
some clocks to implement causal time will be more efficiembpared to others.

Acknowledgements We thank Bernadette Charron-Bost, Antoine Gaillard, Niguhhann, Lyn Pierce,
Srikanth Sastry and Josef Widder for helpful conversatiansl the anonymous reviewers for comments
that improved the presentation.

References

1. Awerbuch, B., Richa, A.W., Scheideler, C.: A jammingistent MAC protocol for single-hop wire-
less networks. In: Proceedings of the Twenty-Seventh AnAGM Symposium on Principles of
Distributed Computing, pp. 45-54 (2008)

2. Brunekreef, J., Katoen, J.P., Koymans, R., Mauw, S.:dpeand analysis of dynamic leader election
protocols in broadcast networks. Distributed Compu8(#), 157-171 (1996)

3. Dagdeviren, O., Erciyes, K.: A hierarchical leader étecprotocol for mobile ad hoc networks. In:
Proceedings of 8th International Conference on Compuati§cience, LNCS 5101, pp. 509-518
(2008)

4. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stakilig leader election in dynamic networks. In:
Proceedings of the 12th International Symposium on Stalidin, Safety, and Security of Distributed
Systems, pp. 35-49 (2010)

1 If two reference levels with incomparable timestamps sthin different parts of the network and
then met at a node, our current algorithm would not be ablétose the one that is later in real time.

36 Rebecca Ingram et al.

0,0,0),0,(L,-10),L 0,0,0),0,(L,-10),
© (),0,() (),0,(L,-10),L

(0,0,0),2,(L,-10),d

©
(0,0,0),2,(L,-10),C

(0,0,0),2,(L,-10),c
(15,a,0),0,(L,-10),a

(0,0,0),2,(L,-10),a (0,0,0),3,(L,-10),b

(o) (0:0,0),3,(L,-10),b

(2) Two new links (gray) go up and one
link (dashed) goes down. Node a is a
sink and starts a new reference level.

(1) Initial configuration — all nodes have a path to
the leader L. All RLs are set to 0. The delta values
correspond to the shortest path to the leader.

(0,0,0),0,(L,-10),L (0,0,0),0,(L,-10),L

(20,d,0),0,(L,-10),d

© O,
(0,0,0),2,(L,-10), (0,0,0).2,(L.-10).c 9’
,U,0),4,(L,-10), 15,a,0),0,(L,-10),a
(15.2,0),0,(L,110).2 (5200102 N +(20,d,1),0,(L.-10)b

(4) Node b reflects the reference level it
(3) Two links go down. Node d is a sink received from d. Two links go up before
and starts a new reference level. node b propagates the reflected reference

level back to node d.

(0,0,0),3,(L,-10),b

(0,0,0),0,(L,-10),L ® (0,0,0),0,(L,-10),L

(20,,1),-1,(L,-10),a

(15,a,0),0,(L,-10),a (20,d,1),0,(L,-10),b

(20,d,1),0,(L,-10),b
(6) Node a receives the new RL from ¢, and
since it is a sink, it propagates the largest RL
of its neighbors, which is b's RL. Node d
receives a reflected RL from all (both) of its
neighbors and elects itself.

(5) A link-down occurs at node ¢, which is
the LTC. Node c¢ is a sink and thus starts a
new RL. Since nodes have logical clocks, ¢'s
clock may be slower than d's.

Fig. 6 Example of a node electing itself after the last topologyngea

A Leader Election Algorithm for Dynamic Networks with Cati€docks 37

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

. Derhab, A., Badache, N.: A self-stabilizing leader étecalgorithm in highly dynamic ad hoc mobile

networks. |IEEE Transactions on Parallel and Distributest&ys1X(7), 926—939 (2008)

. Doley, S.: Self-Stabilization. MIT Press, Cambridge, Y2800)
. Fetzer, C., Cristian, F.: A highly available local leadksction service. IEEE Transactions on Software

Engineering25(5), 603-618 (1999)

. Fidge, C.: Timestamps in message-passing systems txserpe the partial ordering. Australian

Computer Science Communicatiob&1), 56-66 (1988)

. Gafni, E., Bertsekas, D.: Distributed algorithms for gieting loop-free routes in networks with fre-

guently changing topology. IEEE Transactions on Commuioica C-29(1), 11-18 (1981)

Haas, Z.: A new routing protocol for the reconfigurableeteiss networks. In: Proceedings of the 6th
IEEE International Conference on Universal Personal Conigations, pp. 562-566 (1997)

Han, S., Xia, Y.: Optimal leader election scheme for ftegyeer applications. In: Proceedings of the
6th International Conference on Networking, p. 29 (2007)

Hatzis, K.P., Pentaris, G.P., Spirakis, P.G., Tampakas Tan, R.B.: Fundamental control algorithms
in mobile networks. In: Proceedings of the 11th ACM Sympuosan Parallel Algorithms and Archi-
tectures (SPAA), pp. 251-260 (1999)

Higham, L., Liang, Z.: Self-stabilizing minimum spangitree construction on message-passing net-
works. In: DISCO01, pp. 194-208 (2001)

Howell, R.R., Nesterenko, M., Mizuno, M.: Finite-statf-stabilizing protocols in message-passing
systems. Journal of Parallel and Distributed Compuig®), 792—817 (2002)

Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: Aynabronous leader election algorithm for dy-
namic networks. In: Proceedings of the 23rd IEEE Intermatid®arallel and Distributed Processing
Symposium (IPDPS), pp. 1-12 (2009)

Lamport, L.: Time, clocks and the ordering of events instrihuted system. Communications of the
ACM 21(7), 558-565 (1978)

Lynch, N.A., Tuttle, M.R.: An introduction to input/quit automata. CWI-Quarterl®(3), 219-246
(1989). Centrum voor Wiskunde en Informatica, Amsterdaime Netherlands. Technical Memo
MIT/LCS/TM-373, Laboratory for Computer Science, Mass#s#tts Institute of Technology, Cam-
bridge, MA 02139, November 1988. Also, “Hierarchical Catreess Proofs for Distributed Algo-
rithms,” in Proceedings of the Sixth Annual ACM Symposium on PrincgdlBsstributed Computing
pages 137-151, Vancouver, British Columbia, Canada, AUtRB7.

Malpani, N., Welch, J.L., Vaidya, N.: Leader electiogalthms for mobile ad hoc networks. In:
Proceedings of the 4th International Workshop on Discrége#thms and Methods for Mobile Com-
puting and Communications (DIAL M), pp. 96—-103 (2000)

Mans, B., Santoro, N.: Optimal elections in faulty logtworks and applications. IEEE Transactions
on Computerg7(3), 286—-297 (1998)

Masum, S.M., Ali, A.A., Bhuiyan, M.T.l.: Asynchronousdder election in mobile ad hoc networks.
In: Proceedings of International Conference on Advancéatimation Networking and Applications,
pp. 29-34 (2006)

Pan, Y., Singh, G.: A fault-tolerant protocol for electiin chordal-ring networks with fail-stop pro-
cessor failures. |IEEE Transactions on Reliabifi§(1), 11-17 (1997)

Park, V.D., Corson, M.S.: A highly adaptive distributexliting algorithm for mobile wireless net-
works. In: Proceedings of the 16th IEEE Conference on CoergDommunications (INFOCOM),
pp. 1405-1413 (1997)

Parvathipuram, P., Kumar, V., Yang, G.C.: An efficierstder election algorithm for mobile ad hoc
networks. In: Proceedings of the 1st International Comfeeeon Distributed Computing and Internet
Technology, LNCS 3347, pp. 32—41 (2004)

Rahman, M., Abdullah-Al-Wadud, M., Chae, O.: Perforgeanalysis of leader election algorithms
in mobile ad hoc networks. International Journal of Comp&eience and Network Securig(2),
257-263 (2008)

Singh, G.: Leader election in the presence of link fadur|[EEE Transactions on Parallel and Dis-
tributed System3(3), 231-236 (1996)

Stoller, S.: Leader election in distributed systemdwitash failures. Tech. rep., Department of
Computer Science, Indiana University (1997)

Tel, G.: Introduction to Distributed Algorithms, SecoBdition. Cambridge University Press (2000)
Vasudevan, S., Kurose, J., Towsley, D.: Design and sisaby a leader election algorithm for mobile
ad hoc networks. In: Proceedings of the 12th IEEE Internati€onference on Network Protocols
(ICNP), pp. 350-360 (2004)

38 Rebecca Ingram et al.

29. Wang, Y., Wu, H.: Replication-based efficient data @egiivscheme for delay/fault-tolerant mobile
sensor network (dft-msn). In: Proceedings of Pervasive fiidimg and Communications Workshops,
p. 5 (2006)

