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Abstract An algorithm for electing a leader in an asynchronous network with dy-
namically changing communication topology is presented. The algorithm ensures
that, no matter what pattern of topology changes occurs, if topology changes cease,
then eventually every connected component contains a unique leader. The algorithm
combines ideas from the Temporally Ordered Routing Algorithm (TORA) for mo-
bile ad hoc networks [22] with a wave algorithm [27], all within the framework of a
height-based mechanism for reversing the logical direction of communication topol-
ogy links [9]. Moreover, a generic representation of time isused, which can be im-
plemented using totally-ordered values that preserve the causality of events, such as
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logical clocks and perfect clocks. A correctness proof for the algorithm is provided,
and it is ensured that in certain well-behaved situations, anew leader is not elected
unnecessarily, that is, the algorithm satisfies a stabilitycondition.

Keywords Distributed Algorithms· Leader Election· Link Reversal· Dynamic
Networks

1 Introduction

Leader election is an important primitive for distributed computing, useful as a sub-
routine for any application that requires the selection of aunique processor among
multiple candidate processors. Applications that need a leader range from the primary-
backup approach for replication-based fault-tolerance togroup communication sys-
tems [26], and from video conferencing to multi-player games [11].

In a dynamic network, communication channels go up and down frequently. Causes
for such communication volatility range from the changing position of nodes in mo-
bile networks to failure and repair of point-to-point linksin wired networks. Recent
research has focused on porting some of the applications mentioned above to dy-
namic networks, including wireless and sensor networks. For instance, Wang and Wu
propose a replication-based scheme for data delivery in mobile and fault-prone sen-
sor networks [29]. Thus there is a need for leader election algorithms that work in
dynamic networks.

We consider the problem of ensuring that, if changes to the communication topol-
ogy cease, then eventually each connected component of the network has a unique
leader (introduced as the “local leader election problem” in [7]). Our algorithm is an
extension of the leader election algorithm in [18], which inturn is an extension of the
MANET routing algorithm TORA in [22]. TORA itself is based onideas from [9].

Gafni and Bertsekas [9] present two routing algorithms based on the notion of link
reversal. The goal of each algorithm is to create directed paths in the communication
topology graph from each node to a distinguished destination node. In these algo-
rithms, each node maintains aheightvariable, drawn from a totally-ordered set; the
(bidirectional) communication link between two nodes is considered to be directed
from the endpoint with larger height to that with smaller height. Whenever a node
becomes a sink, i.e., has no outgoing links, due to a link going down or due to notifi-
cation of a neighbor’s changed height, the node increases its height so that at least one
of its incoming links becomes outgoing. In one of the algorithms of [9], the height is
a pair consisting of a counter and the node’s unique id, whilein the other algorithm
the height is a triple consisting of two counters and the nodeid. In both algorithms,
heights are compared lexicographically with the least significant component being
the node id. In the first algorithm, a sink increases its counter to be larger than the
counter of all its neighbors, while in the second algorithm,a more complicated rule
is employed for changing the counters.

The algorithms in [9] cause an infinite number of messages to be sent if a portion
of the communication graph is disconnected from the destination. This drawback is
overcome in TORA [22], through the addition of a clever mechanism by which nodes
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can identify that they have been partitioned from the destination. In this case, the
nodes go into a quiescent state.

In TORA, each node maintains a 5-tuple of integers for its height, consisting of a
3-tuple called thereference level, a deltacomponent, and the node’s unique id. The
height tuple of each node is lexicographically compared to the tuple of each neighbor
to impose a logical direction on links (higher tuple toward lower.)

The purpose of the reference level is to indicate when nodes have lost their di-
rected path to the destination. Initially, the reference level is all zeroes. When a node
loses its last outgoing link due to a link going down the node starts a new reference
level by changing the first component of the triple to the current time, the second to
its own id, and the third to 0, indicating that a search for thedestination is started.
Reference levels are propagated throughout a connected component, as nodes lose
outgoing links due to height changes, in a search for an alternate directed path to the
destination. Propagation of reference levels is done usinga mechanism by which a
node increases its reference level when it becomes a sink; the delta value of the height
is manipulated to ensure that links are oriented appropriately. If the search in one part
of the graph is determined to have reached a dead end, then thethird component of
the reference level triple is set to 1. When this happens, thereference level is said to
have beenreflected, since it is subsequently propagated back toward the originator. If
the originator receives reflected reference levels back from all its neighbors, then it
has identified a partitioning from the destination.

The key observation in [18] is that TORA can be adapted for leader election:
when a node detects that it has been partitioned from the old leader (the destination),
then, instead of becoming quiescent, it elects itself. The information about the new
leader is then propagated through the connected component.A sixth component was
added to the height tuple of TORA to record the leader’s id. The algorithm presented
and analyzed in [18] makes several strong assumptions. First, it is assumed that only
one topology change occurs at a time, and no change occurs until the system has fin-
ished reacting to the previous change. In fact, a scenario involving multiple topology
changes can be constructed in which the algorithm is incorrect. Second, the system is
assumed to be synchronous; in addition to nodes having perfect clocks, all messages
have a fixed delay. Third, it is assumed that the two endpointsof a link going up or
down are notified simultaneously of the change.

We present a modification to the algorithm that works in an asynchronous system
with arbitrary topology changes that are not necessarily reported instantaneously to
both endpoins of a link. One new feature of this algorithm is to add a seventh compo-
nent to the height tuple of [18]: a timestamp associated withthe leader id that records
the time that the leader was elected. Also, a new rule by whichnodes can choose new
leaders is included. A newly elected leader initiates a “wave” algorithm [27]: when
different leader ids collide at a node, the one with the most recent timestamp is chosen
as the winner and the newly adopted height is further propagated. This strategy for
breaking ties between competing leaders makes the algorithm compact and elegant,
as messages sent between nodes carry only the height information of the sending
node, every message is identical in structure, and only one message type is used.

In this paper, we relax the requirement in [18] (and in [15]) that nodes have perfect
clocks. Instead we use a more generic notion of time, a causalclockT , to represent
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any type of clock whose values are non-negative real numbersand that preserves
the causal relation between events. Both logical clocks [16] and perfect clocks are
possible implementations ofT . We also relax the requirement in [18] (and in [15])
that the underlying neighbor-detection layer synchronizeits notifications to the two
endpoints of a (bidirectional) communication link throughout the execution; in the
current paper, these notifications are only required to satisfy an eventual agreement
property.

Finally, we provide a relatively brief, yet complete, proofof algorithm correct-
ness. In addition to showing that each connected component eventually has a unique
leader, it is shown that in certain well-behaved situations, a new leader is not elected
unnecessarily; we identify a set of conditions under which the algorithm is “stable”
in this sense. We also compare the difference in the stability guarantees provided by
the perfect-clocks version of the algorithm and the causal-clocks version of the algo-
rithm. The proofs handle arbitrary asynchrony in the message delays, while the proof
in [18] was for the special case of synchronous communication rounds only and did
not address the issue of stability.

Leader election has been extensively studied, both for static and dynamic net-
works, the latter category including mobile networks. Herewe mention some repre-
sentative papers on leader election in dynamic networks. Hatzis et al. [12] presented
algorithms for leader election in mobile networks in which nodes are expected to
control their movement in order to facilitate communication. This type of algorithm
is not suitable for networks in which nodes can move arbitrarily. Vasudevan et al. [28]
and Masum et al. [20] developed leader election algorithms for mobile networks with
the goal of electing as leader the node with the highest priority according to some
criterion. Both these algorithms are designed for the broadcast model. In contrast,
our algorithm can elect any node as the leader, involves fewer types of messages than
either of these two algorithms, and uses point-to-point communication rather than
broadcasting. Brunekreef et al. [2] devised a leader election algorithm for a 1-hop
wireless environment in which nodes can crash and recover. Our algorithm is suited
to an arbitrary communication topology.

Several other leader election algorithms have been developed based on MANET
routing algorithms. The algorithm in [23] is based on the Zone Routing Protocol
[10]. A correctness proof is given, but only for the synchronous case assuming only
one topology change. In [5], Derhab and Badache present a leader election algorithm
for ad hoc wireless networks that, like ours, is based on the algorithms presented by
Malpani et al. [18]. Unlike Derhab and Badache, we prove our algorithm is correct
even when communication is asynchronous and multiple topology changes, including
network partitions, occur during the leader election process.

Dagdeviren et al. [3] and Rahman et al. [24] have recently proposed leader elec-
tion algorithms for mobile ad hoc networks; these algorithms have been evaluated
solely through simulation, and lack correctness proofs. A different direction is ran-
domized leader election algorithms for wireless networks (e.g., [1]); our algorithm is
deterministic.

Fault-tolerant leader election algorithms have been proposed for wired networks.
Representative examples are Mans and Santoro’s algorithm for loop graphs subject
to permanent communication failures [19], Singh’s algorithm for complete graphs
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subject to intermittent communication failures [25], and Pan and Singh’s algorithm
[21] and Stoller’s algorithm [26] that tolerate node crashes.

Recently, Datta et al. [4] presented a self-stabilizing leader election algorithm
for the shared memory model with composite atomicity that satisfies stronger stabil-
ity properties than our causal-clocks algorithm. In particular, their algorithm ensures
that, if multiple topology changes occur simultaneously after the algorithm has sta-
bilized, and then no further changes occur, (1) each node that ends up in a connected
component with at least one pre-existing leader ultimatelychooses a pre-existing
leader, and (2) no node changes its leader more than once. Theself-stabilizing nature
of the algorithm suggests that it can be used in a dynamic network: once the last topol-
ogy change has occurred, the algorithm starts to stabilize.Existing techniques (see,
for instance, Section 4.2 in [6]) can be used to transform a self-stabilizing algorithm
for the shared-memory composite-atomicity model into an equivalent algorithm for
a (static) message-passing model, perhaps with some timinginformation. Such a se-
quence of transformations, though, produces a complicatedalgorithm and incurs time
and space overhead (cf. [6,13]). One issue to be overcome in transforming an algo-
rithm for the static message-passing model to the model in our paper is handling the
synchrony that is relied upon in some component transformations to message passing
(e.g., [14]).

2 Preliminaries

2.1 System Model

We assume a system consisting of a setP of computing nodes and a setχ of directed
communication channels from one node to another node.χ consists of one channel
for each ordered pair of nodes, i.e., every possible channelis represented. The nodes
are assumed to be completely reliable. The channels betweennodes go up and down,
due to the movement of the nodes. While a channel is up, the communication across
it is in first-in-first-out order and is reliable but asynchronous (see below for more
details).

We model the whole system as a set of (infinite) state machinesthat interact
through sharedevents(a specialization of the IOA model [17]). Each node and each
channel is modeled as a separate state machine. The events shared by a node and one
of its outgoing channels are notifications that the channel is going up or going down
and the sending of a message by the node over the channel; the channel up/down noti-
fications are initiated by the channel and responded to by thenode, while the message
sends are initiated by the node and responded to by the channel. The events shared
by a node and one of its incoming channels are notifications that a message is being
delivered to the node from the channel; these events are initiated by the channel and
responded to by the node.
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2.2 Modeling Asynchronous Dynamic Links

We now specify in more detail how communication is assumed tooccur over the
dynamic links. The state ofChannel(u,v), which models the communication chan-
nel from nodeu to nodev, consists of astatusuv variable and a queuemqueueuv of
messages.

The possible values of thestatusuv variable areUp andDown. The channel tran-
sitions between the two values of itsstatusuv variable throughChannelUpuv and
ChannelDownuv events, called the “topology change” events. We assume thatthe
ChannelUpandChannelDownevents for the channel alternate. TheChannelUpand
ChannelDownevents for the channel fromu to v occur simultaneously at nodeu and
the channel, but do not occur at nodev.

The variablemqueueuv holds messages in transit fromu to v. An attempt by node
u to send a message to nodev results in the message being appended tomqueueuv

if the channel’s status isUp; otherwise there is no effect. When the channel isUp,
the message at the head ofmqueueuv can be delivered to nodev; when a message is
delivered, it is removed frommqueueuv. Thus, messages are delivered in FIFO order.

When aChannelDownuv event occurs,mqueueuv is emptied. Neitheru nor v is
alerted to which messages in transit have been lost. Thus, the messages delivered to
nodev from nodeu during a (maximal-length) interval when the channel isUp form
a prefix of the messages sent by nodeu to nodev during that interval.

2.3 Configurations and Executions

The notion of configuration is used to capture an instantaneous snapshot of the state of
the entire system. Aconfigurationis a vector of node states, one for each node inP,
and a vector of channel states, one for each channel inχ . In aninitial configuration:

– each node is in an initial state (according to its algorithm),
– for each channelChannel(u,v), mqueueuv is empty, and
– for all nodesu andv, statusuv = statusvu (i.e., either both channels betweenu and

v are up, or both are down).

Define anexecutionas an infinite sequenceC0,e1,C1,e2,C2, . . . of alternating con-
figurations and events, starting with an initial configuration and, if finite, ending with
a configuration such that the sequence satisfies the following conditions:

– C0 is an initial configuration.
– The preconditions for eventei are true inCi−1 for all i ≥ 1.
– Ci is the result of executing eventei on configurationCi−1, for all i ≥ 1 (only the

node and channel involved in an event change state, and they change according
to their state machine transitions).

– If a channel remains Up for infinitely long, then every message sent over the
channel during this Up interval is eventually delivered.

– For all nodesu andv, Channel(u,v) experiences infinitely many topology change
events if and only ifChannel(v,u) experiences infinitely many topology change
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events; if they both experience finitely many, then after thelast one,statusuv =
statusvu.

Given a configuration of an execution, define an undirected graphGchan as fol-
lows: the vertices are the nodes, and there is an (undirected) edge between vertices
u andv if and only if at least one ofChanneluv andChannelvu is Up. ThusGchan

indicates all pairs of nodesu andv such that eitheru can send messages tov or v can
send messages tou. If the execution has a finite number of topology change events,
thenGchan never changes after the last such event, and we denote the final version of
GchanasGf inal

chan. By the last bullet point above, an edge inGf inal
chan indicates bidirectional

communication ability between the two endpoints.
We also assign a positive real-valuedglobal time gtto each eventei , i ≥ 1, such

thatgt(ei)< gt(ei+1) and, if the execution is infinite, the global times increase without
bound. Each configuration inherits the global time of its preceding event, sogt(Ci) =
gt(ei) for i ≥ 1; we definegt(C0) to be 0. We assume that the nodes donot have
access togt.

Instead, each nodeu has acausal clockTu, which provides it with a non-negative
real number at each event in an execution.Tu is a function from global time (i.e.,
positive reals) to causal clock times; given an execution, for convenience we some-
times use the notationTu(ei) or Tu(Ci) as shorthand forTu(gt(ei)) or Tu(gt(Ci)).
The key idea of causal clocks is that if one event potentiallycan cause another event,
then the clock value assigned to the first event is less than the clock value assigned
to the second event. We use the notion of happens-before to capture the concept of
potential causality. Recall that an evente1 is defined tohappen before[16] another
evente2 if one of the following conditions is true:

1. Both events happen at the same node, ande1 occurs beforee2 in the execution.
2. e1 is the send event of some message from nodeu to nodev, ande2 is the receive

event of that message by nodev.
3. There exists an evente such thate1 happens before eande happens before e2.

The causal clocks at all the nodes, collectively denotedT , must satisfy the following
properties:

– For each nodeu, the values ofTu are increasing, i.e., ifei and ej are events
involving u in the execution withi < j, thenTu(ei) < Tu(ej). In particular, if
there is an infinite number of events involvingu, thenTu increases without bound.

– T preserves thehappens-beforerelation [16] on events; i.e., if eventei happens
before eventej , thenT (ei) < T (ej).

Our description and proof of the algorithm assume that nodeshave access to
causal clocks. One way to implement causal clocks is to use perfect clocks, which
ensure thatTu(t) = t for each nodeu and global timet. Since an event that causes an-
other event must occur before it in real time, perfect clockscapture causality. Perfect
clocks could be provided by, say a GPS service, and were assumed in the prelimi-
nary version of this paper [15]. Another way to implement causal clocks is to use
Lamport’s logical clocks [16], which were specifically designed to capture causality.
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2.4 Problem Definition

Each nodeu in the system has a local variablelidu to hold the identifier of the node
currently considered byu to be the leader of the connected component containingu.

In every execution that includes a finite number of topology change events, we
require that the following eventually holds: Every connected componentCC of the
final topology graphGf inal

chan contains a nodeℓ, the leader, such thatlidu = ℓ for all
nodesu∈CC, includingℓ itself.

3 Leader Election Algorithm

In this section, we present our leader election algorithm. The pseudocode for the
algorithm is presented in Figures 1, 2 and 3. First, we provide an informal description
of the algorithm, then, we present the details of the algorithm and the pseudocode,
and finally, we provide an example execution. In the rest of this section, variablevar
of nodeu will be indicated asvaru. For brevity, in the pseudocode for nodeu, variable
varu is denoted by justvar.

3.1 Informal Description

Each node in the system has a 7-tuple of integers called a height. The directions of the
edges in the graph are determined by comparing the heights ofneighboring nodes:
an edge is directed from a node with a larger height to a node with a smaller height.
Due to topology changes nodes may lose some of their incidentlinks, or get new ones
throughout the execution. Whenever a node loses its last outgoing link because of a
topology change, it has no path to the current leader, so it reverses all of its incident
edges. Reversing all incident edges acts as the start of a search mechanism (called
a reference level) for the current leader. Each node that receives the newly started
reference level reverses the edges to some of its neighbors and in effect propagates
the search throughout the connected component. Once a node becomes a sink and
all of its neighbors are already participating in the same search, it means that the
search has hit a dead end and the current leader is not presentin this part of the
connected component. Such dead-end information is then propagated back towards
the originator of the search. When a node which started a search receives such dead-
end messages from all of its neighbors, it concludes that thecurrent leader is not
present in the connected component, and so the originator ofthe search elects itself
as the new leader. Finally, this new leader information propagates throughout the
network via an extra “wave” of propagation of messages.

In our algorithm, two of the components of a node’s height aretimestamps record-
ing the time when a new “search” for the leader is started, andthe time when a leader
is elected. In the algorithm in [15], these timestamps are obtained from a global clock
accessible to all nodes in the system. In this paper, we use the notion of causal clocks
(defined in Section 2.3) instead.

One difficulty that arises in solving leader election in dynamic networks is dealing
with the partitioning and merging of connected components.For example, when a
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connected component is partitioned from the current leaderdue to links going down,
the above algorithm ensures that a new leader is elected using the mechanism of
waves searching for the leader and convergecasting back to the originator. On the
other hand, it is also possible that two connected components merge together resulting
in two leaders in the new connected component. When the different heights of the two
leaders are being propagated in the new connected component, eventually, some node
needs to compare both and decide which one to adopt and continue propagating.
Recall that when a new leader is elected, a component of the height of the leader
records the time of the election which can be used to determine the more recent
of two elections. Therefore, when a node receives a height with a different leader
information from its own, it adopts the one corresponding tothe more recent election.

Similarly, if two reference levels are being propagated in the same connected
component, whenever a node receives a height with a reference level different from
its current one, it adopts the reference level with the more recent timestamp and con-
tinues propagating it. Therefore, even though conflicting information may be prop-
agating in the same connected component, eventually the algorithm ensures that as
long as topology changes stop, each connected component hasa unique leader.

3.2 Nodes, Neighbors and Heights

First, we describe the mechanism through which nodes get to know their neighbors.
Each node in the algorithm keeps a directed approximation ofits neighborhood in
Gchanas follows. Whenu gets aChannelUpevent for the channel fromu to v, it putsv
in a local set variable calledformingu. Whenu subsequently receives a message from
v, it movesv from its formingu set to a local set variable calledNu (N for neighbor). If
u gets a message from a node which is neither in itsformingset, nor inNu, it ignores
that message. And whenu gets aChannelDownevent for the channel fromu to v, it
removesv from formingu or Nu, as appropriate. For the purposes of the algorithm,u
considers as its neighbors only those nodes inNu. It is possible for two nodesu and
v to have inconsistent views concerning whetheru andv are neighbors of each other.
We will refer to the ordered pair(u,v), wherev is in Nu, as alink of nodeu.

Nodes assign virtual directions to their links using variables called heights. Each
node maintains a height for itself, which can change over time, and sends its height
over all outgoing channels at various points in the execution. Each node keeps track
of the heights it has received in messages. For each link(u,v) of nodeu, u considers
the link as incoming (directed fromv to u) if the height thatu has recorded forv is
larger thanu’s own height; otherwiseu considers the link as outgoing (directed from
u to v). Heights are compared using lexicographic ordering; the definition of height
ensures that two nodes never have the same height. Note that,even if v is viewed
as a neighbor ofu and vice versa,u andv might assign opposite directions to their
corresponding links, due to asynchrony in message delays.

Next, we examine the structure of a node’s height in more detail. The height
for each node is a 7-tuple of integers((τ,oid, r),δ ,(nlts, lid), id), where the first
three components are referred to as thereference level(RL) and the fifth and sixth
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components are referred to as theleader pair(LP). In more detail, the components
are defined as follows:

– τ, a non-negative timestamp which is either 0 or the value of the causal clock time
when the current search for an alternate path to the leader was initiated.

– oid, is a non-negative value that is either 0 or the id of the node that started the
current search (we assume node ids are positive integers).

– r, a bit that is set to 0 when the current search is initiated andset to 1 when the
current search hits a dead end.

– δ , an integer that is set to ensure that links are directed appropriately to neighbors
with the same first three components. During the execution ofthe algorithmδ
serves multiple purposes. When the algorithm is in the stageof searching for the
leader (having either reflected or unreflected RL), theδ value ensures that as a
nodeu adopts the new reference level from a nodev, the direction of the edge
between them is fromv to u; in other words it coincides with the direction of
the search propagation. Therefore,u adopts the RL ofv and sets itsδ to one less
thanv’s. When a leader is already elected, theδ value helps orient the edges of
each node towards the leader. Therefore, when nodeu receives information about
a new leader from nodev, it adopts the entire height ofv and sets theδ value to
one more thanv’s.

– nlts, a non-positive timestamp whose absolute value is the causal clock time when
the current leader was elected.

– lid , the id of the current leader.
– id, the node’s unique ID.

Each nodeu keeps track of the heights of its neighbors in an arrayheightu, where
the height of a neighbor nodev is stored inheightu[v]. The components ofheightu[v]
are referred to as (τv, oidv, rv, δ v, nltsv, lidv, v) in the pseudocode.

3.3 Initial States

The definition of an initial configuration for the entire system from Section 2.3 in-
cluded the condition that each node be in an initial state according to its algorithm.
The collection of initial states for the nodes must be consistent with the collection of
initial states for the channels. LetGinit

chan be the undirected graph corresponding to the
initial states of the channels, as defined in Section 2.3. Then in an initial configura-
tion, the state of each nodeu must satisfy the following:

– formingu is empty,
– Nu equals the set of neighbors ofu in Ginit

chan,
– heightu[u] = (0,0,0,δu,0, ℓ,u) whereℓ is the id of a fixed node inu’s connected

component inGinit
chan (the current leader), andδu equals the distance fromu to ℓ in

Ginit
chan,

– for eachv in Nu , heightu[v] = heightv[v] (i.e., u has accurate information about
v’s height), and

– Tu is initialized properly with respect to the definition of causal clocks.
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The constraints on the initial configuration just given imply that initially, each
connected component of the communication topology graph has a leader; further-
more, by following the virtual directions on the links, nodes can easily forward in-
formation to the leader (as in TORA). One way of viewing our algorithm is that it
maintainsleaders in the network in the presence of arbitrary topologychanges. In
order toestablishthis property, the same algorithm can be executed, with eachnode
initially being in a singleton connected component of the topology graph prior to any
ChannelUpor ChannelDownevents.

3.4 Goal of the Algorithm

The goal of the algorithm is to ensure that, once topology changes cease, eventually
each connected component ofGchan

f inal is “leader-oriented”, which we now define. Let

CC be any connected component ofGchan
f inal. First, we define a directed version ofCC,

denoted
−→
CC, in which each undirected edge ofCC is directed from the endpoint with

larger height to the endpoint with smaller height. We say that CC is leader-oriented
if the following conditions hold:

1. No messages are in transit inCC.
2. For each (undirected) edge{u,v} in CC, if (u,v) is a link of u, thenu has the

correct view ofv’s height.
3. Each node inCC has the same leader id, sayℓ, whereℓ is also inCC.
4.

−→
CC is a directed acyclic graph (DAG) withℓ as the unique sink.

A consequence of each connected component being leader-oriented is that the
leader election problem is solved.

3.5 Description of the Algorithm

The algorithm consists of three different actions, one for each of the possible events
that can occur in the system: a channel going up, a channel going down, and the
receipt of a message from another node. Next, we describe each of these actions in
detail.

First, we formally define the conditions under which a node isconsidered to be a
sink:

– SINK= ((∀v∈Nu,LPv
u = LPu

u ) and(∀v∈Nu,heightu[u] < heightu[v]) and(lidu
u 6=

u)). Recall that the LP component of nodeu’s view of v’s height, as stored inu’s
height array, is denotedLPv

u , and similarly for all the other height components.
This predicate is true when, according tou’s local state, all ofu’s neighbors have
the same leader pair asu, u has no outgoing links, andu is not its own leader. If
nodeu has links to any neighbors with different LPs,u is not considered a sink,
regardless of the directions of those links.

ChannelDown event:When a nodeu receives a notification that one of its in-
cident channels has gone down, it needs to check whether it still has a path to the
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current leader. If theChannelDownevent has causedu to lose its last neighbor, as
indicated byu’s N variable, thenu elects itself by calling the subroutineELECTSELF.
In this subroutine, nodeu sets its first four components to 0, and the LP component
to (nlts,u) wherenlts is the negative value ofu’s current causal clock time. Then, in
caseu has any incident channels that are in the process of forming,u sends its new
height over them. If theChannelDownevent has not robbedu of all its neighbors (as
indicated byu’s N variable) butu has lost its last outgoing link, i.e., it passes theSINK

test, thenu starts a new reference level (a search for the leader) by setting its τ value
to the current clock time,oid to u’s id, ther bit to 0, and theδ value to 0, as shown in
subroutineSTARTNEWREFLEVEL. The complete pseudocode for theChannelDown
action is available in Figure 1.

ChannelUp event:When a nodeu receives a notification of a channel going up
to another node, sayv, thenu sends its current height tov and includesv in its set
formingu. The pseudocode for theChannelUpaction is available in Figure 1.

When ChannelDownuv event occurs:
1. N := N\{v}
2. forming := forming\{v}
3. if (N = /0)
4. ELECTSELF

5. send Update(height[u]) to all w∈ forming
6. else if (SINK)

7. STARTNEWREFLEVEL

8. send Update(height[u]) to all w∈ (N ∪ forming)
9. end if

When ChannelUpuv event occurs:
1. forming := forming ∪ {v}
2. send Update(height[u]) to v

Fig. 1 Code triggered by topology changes.

Receipt of an update message:When a nodeu receives a message from another
nodev, containingv’s height, nodeu performs the following sequence of rules (shown
in Figure 2).

First, if v is in neitherformingu nor Nu, then the message is ignored. Ifv ∈
f ormingu but v /∈ Nu thenv is moved toNu. Next,u checks whetherv has the same
leader pair asu. If v knows about a more recent leader thanu, nodeu adopts that new
LP (shown in subroutineADOPTLPIFPRIORITY in Figure 3). If the LP’s ofu andv
are the same, thenu checks whether it is a sink using the definition above. If it isnot
a sink, it does not perform any further action (because it already has a path to the
leader). Otherwise, ifu is a sink, it checks the value of the RL component of all of
its neighbors’ heights (includingv’s). If some neighbor ofu, sayw, knows of a RL
which is more recent thanu’s, thenu adopts that new RL by setting the RL part of
its height to the new RL value and changing theδ component to one less than theδ
component ofw. Therefore, the change inu’s height does not causew to become a
sink (again) and so the search for the leader does not go back to w and it is thus prop-
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agated in the rest of the connected component. The details are shown in subroutine
PROPAGATELARGESTREFLEVEL in Figure 3.

If u and all of its neighbors have the same RL component of their heights, say (τ,
oid, r), we consider three possible cases:

1. If τ > 0 (indicating that this is a RL started by some node, and not the default
value 0) andr = 0 (the RL has not reached a dead end), then this is an indication
of a dead end becauseu and all of its neighbors have the same unreflected RL. In
this caseu changes its height by setting ther component of its height to 1 (shown
in subroutineREFLECTREFLEVEL in Figure 3).

2. If τ > 0 (indicating that this is a RL started by some node, and not the default
value 0),r = 1 (the RL has already reached a dead end) andoid = u (u started
the current RL), then this is an indication that the current leader may not be in
the same connected component anymore. In other words, all the branches of the
RL started byu reached dead ends. Therefore,u elects itself as the new leader
by setting its first 4 components to 0, and the LP component to (nlts, u) where
nlts is the negative value ofu’s current causal clock time (shown in subroutine
ELECTSELF in Figure 3). Note that this case does not guarantee that the old leader
is not in the connected component, because some recent topology change may
have reconnected it back tou’s component. We already described how the leader
information of two different leaders is handled.

3. If neither of the two conditions above are satisfied, then it is the case that either
τ = 0 or τ > 0, r = 1 andoid 6= u. In other words, all ofu’s neighbors have a
different reflected RL or contain an RL indicating that various topology changes
have interfered with the proper propagation of RL’s, and so nodeu starts a fresh
RL by settingτ to the current causal clock time,oid to u’s id, ther bit to 0, and
theδ value to 0 (shown in subroutineSTARTNEWREFLEVEL in Figure 3).

Finally, whenever a node changes its height, it sends a message with its new
height to all of its neighbors. Additionally, whenever a node u receives a message
from a nodev indicating thatv has different leader information fromu, then either if
u adoptsv’s LP or not,u sends an update message tov with its new (possibly same
as old) height. This step is required due to the weak level of coordination in neighbor
discovery.

3.6 Sample execution

Next, we provide an example which illustrates a particular algorithm execution. Fig-
ure 4, parts (a)-(h), show the main stages of the execution. In the picture for each
stage, a message in transit over a channel is indicated by a light grey arrow. The re-
cipient of the message has not yet taken a step and so, in its view, the link is not yet
reversed.

(a) A quiescent network is a leader-oriented DAG in which node H is the current
leader. The height of each node is displayed in parenthesis.Link direction in this
figure is shown using solid-headed arrows and messages in transit are indicated
by light grey arrows.
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When nodeu receivesUpdate(h) from node v∈ forming∪ N:
// if v is in neither forming nor N, message is ignored

1. height[v] := h
2. forming := forming \ {v}
3. N := N∪{v}
4. myOldHeight := height[u]
5. if ((nltsu, lidu) = (nltsv, lid v)) // leader pairs are the same

6. if (SINK)

7. if (∃ (τ ,oid,r) | (τw,oidw,rw) = (τ ,oid,r) ∀ w∈ N)
8. if ((τ > 0) and (r = 0))
9. REFLECTREFLEVEL

10. else if ((τ > 0) and (r = 1) and (oid = u))
11. ELECTSELF

12. else // (τ = 0) or (τ > 0 and r = 1 and oid 6= u)
13. STARTNEWREFLEVEL

14. end if

15. else // neighbors have different ref levels

16. PROPAGATELARGESTREFLEVEL

17. end if

// else not sink, do nothing

18. end if

19. else // leader pairs are different

20. ADOPTLPIFPRIORITY(v)
21. end if

22. if (myOldHeight 6= height[u])
23. send Update(height[u]) to all w∈ (N ∪ forming)
24. end if

Fig. 2 Code triggered by Update message.

ELECTSELF

1. height[u] := (0,0,0,0,−Tu,u,u)

REFLECTREFLEVEL

1. height[u] := (τ ,oid,1,0,nltsu, lidu,u)

PROPAGATELARGESTREFLEVEL

1. (τu,oidu,ru) := max{(τw,oidw,rw)| w∈ N}
2. δ u := min{ δ w | w∈ N and (τu,oidu,ru) = (τw,oidw,rw)}−1

STARTNEWREFLEVEL

1. height[u] := (Tu,u,0,0,nltsu, lidu,u)

ADOPTLPIFPRIORITY(v)
1. if ((nltsv < nltsu) or ((nltsv = nltsu) and (lidv < lidu)))

2. height[u] := (τv,oidv,rv,δ v +1,nltsv, lidv,u)
3. else send Update(height[u]) to v
4. end if

Fig. 3 Subroutines.

(b) The link between nodesG andH goes down triggering actionChannelDownat
nodeG (and nodeH). When non-leader nodeG loses its last outgoing link due
to the loss of the link to nodeH, G executes subroutineSTARTNEWREFLEVEL

(because it is a sink and it has other neighbors besidesH), and sets the RL and
δ parts of its height to (1,G,0) andδ = 0. Then nodeG sends messages with its
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new height to all its neighbors. By raising its height in thisway, G has started a
search for leaderH.

(c) NodesD, E, andF receive the messages sent from nodeG, messages that cause
each of these nodes to become sinks becauseG’s new RL causes its incident
edges to be directed away fromG. Next, nodesD, E, andF compare their neigh-
bors’ RL’s and propagateG’s RL (since nodesB andC have lower heights than
nodeG) by executingPROPAGATELARGESTREFLEVEL. Thus, they take on RL
(1,G,0) and set theirδ values to−1, ensuring that their heights are lower than
G’s but higher than the other neighbors’. ThenD, E andF send messages to their
neighbors.

(d) NodeB has received messages from bothE andD with the new RL (1,G,0), and
C has received a message fromF with RL (1,G,0); as a result,B andC execute
subroutinePROPAGATELARGESTREFLEVEL, which causes them to take on RL
(1,G,0) with δ set to−2 (they propagate the RL because it is more recent than all
of their neighbors’ RL’s), and send messages to their neighbors.

(e) NodeA has received message from both nodesB andC. In this situation, node
A is connected only to nodes that are participating in the search started by node
G for leaderH. In other words, all neighbors of nodeA have the same RL with
τ > 0 andr = 0, which indicates thatA has detected a dead end for this search. In
this case, nodeA executes subroutineREFLECTREFLEVEL, i.e., it “reflects” the
search by setting the reflection bit in the (1,G,∗) reference level to 1, resetting its
δ to 0, and sending its new height to its neighbors.

(f) NodesB andC take on the reflected reference level (1,G,1) by executing sub-
routinePROPAGATELARGESTREFLEVEL (because this is the largest RL among
their neighbors) and set theirδ to −1, causing their heights to be lower thanA’s
and higher than their other neighbors’. They also send theirnew heights to their
neighbors.

(g) NodesD, E, andF act similarly asB andC did in part (f), but set theirδ values
to−2.

(h) When nodeG receives the reflected reference level from all its neighbors, it knows
that its search forH is in vain.G executes subroutineELECTSELF and elects itself
by setting the LP part of its height to (−7,G) assuming the causal clock value at
nodeG at the time of the election is 7. The new LP (−7,G) then propagates
through the component, assuming no further link changes occur. Whenever a node
receives the new LP information, it adopts it because it is more recent than the
one associated with the old LP ofH. Eventually, each node has RL (0,0,0) and
LP (−7,G), with D, E andF havingδ = 1, B andC havingδ = 2, andA having
δ = −3.

We now explain two other aspects of the algorithm that were not exercised in the
example execution just given. First, note that it is possible for multiple searches—
each initiated by a call toSTARTNEWREFLEVEL—for the same leader to be going
on simultaneously. Suppose messages on behalf of differentsearches meet at a node
i. We assume that messages are taken out of the input message queue one at a time.
Major action is only taken by nodei when it loses its last outgoing link; when the ear-
lier messages are processed, all that happens is that the appropriate height variables



16 Rebecca Ingram et al.

A

B C

E

D

F

GH

(0,0,0,4,(-1,H),A)   

(0,0,0,3,(-1,H),C)

(0,0,0,2,(-1,H),D)

(0,0,0,3,(-1,H),B)

(0,0,0,2,(-1,H),F)(0,0,0,2,(-1,H),E)

(0,0,0,1,(-1,H),G)

(0,0,0,0,(-1,H),H)

(a)

LC: 1

LC: 0

LC: 0

LC: 0

LC: 0

LC: 0

LC: 0

LC: 0

A

B C

E

D

F

GH

(0,0,0,4,(-1,H),A)

(0,0,0,3,(-1,H),C)

(0,0,0,2,(-1,H),D)

(0,0,0,3,(-1,H),B)

(0,0,0,2,(-1,H),F)(0,0,0,2,(-1,H),E)

(1,G,0,0,(-1,H),G)

(0,0,0,0,(-1,H),H)

(b)

LC: 2

LC: 1

LC: 0

LC: 0

LC: 0

LC: 0

LC: 0

LC: 0

A

B C

E

D

F

G

(0,0,0,4,(-1,H),A)

(1,G,0,-2,(-1,H),C)

(1,G,0,-1,(-1,H),D)

(1,G,0,-2,(-1,H),B)

(1,G,0,-1,(-1,H),F)(1,G,0,-1,(-1,H),E)

(1,G,0,0,(-1,H),G)

(d)
LC: 3

LC: 3

LC: 2

LC: 2

LC: 2

LC: 3

LC: 0

A

B C

E

D

F

G

(0,0,0,4,(-1,H),A)

(0,0,0,3,(-1,H),C)

(1,G,0,-1,(-1,H),D)

(0,0,0,3,(-1,H),B)

(1,G,0,-1,(-1,H),F)(1,G,0,-1,(-1,H),E)

(1,G,0,0,(-1,H),G)

(c)
LC: 1

LC: 0

LC: 2

LC: 2

LC: 2

LC: 0

LC: 0

A

B C

E

D

F

G

(1,G,1,0,(-1,H),A)

(1,G,0,-2,(-1,H),C)

(1,G,0,-1,(-1,H),D)

(1,G,0,-2,(-1,H),B)

(1,G,0,-1,(-1,H),F)(1,G,0,-1,(-1,H),E)

(1,G,0,0,(-1,H),G)

(e)
LC: 3

LC: 3

LC: 4

LC: 4

LC: 4

LC: 3

LC: 4

A

B C

E

D

F

G

(1,G,1,-1,(-1,H),C)

(1,G,0,-1,(-1,H),D)

(1,G,1,-1,(-1,H),B)

(1,G,0,-1,(-1,H),F)(1,G,0,-1,(-1,H),E)

(1,G,0,0,(-1,H),G)

(1,G,1,0,(-1,H),A)

(f)
LC: 3

LC: 5

LC: 4

LC: 4

LC: 4

LC: 5

LC: 4

A

B C

E

D

F

G

(1,G,1,-1,(-1,H),C)

(1,G,1,-2,(-1,H),D)

(1,G,1,-1,(-1,H),B)

(1,G,1,-2,(-1,H),F)(1,G,1,-2,(-1,H),E)

(0,0,0,0,(-7,G),G)

(1,G,1,0,(-1,H),A)

(h)

LC: 7

LC: 5

LC: 6

LC: 6

LC: 6

LC: 5

LC: 6

A

B C

E

D

F

G

(1,G,1,-1,(-1,H),C)

(1,G,1,-2,(-1,H),D)

(1,G,1,-1,(-1,H),B)

(1,G,1,-2,(-1,H),F)(1,G,1,-2,(-1,H),E)

(1,G,0,0,(-1,H),G)

(1,G,1,0,(-1,H),A)

(g)

LC: 3

LC: 5

LC: 6

LC: 6

LC: 6

LC: 5

LC: 6

Fig. 4 Sample execution when leader H becomes disconnected (a), with time increasing from (a)–(h).
With no other topology changes, every node in the connected component will eventually adopt G as its
leader.
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are updated. If and when a message is processed that causes nodei to lose its last out-
going link, theni takes appropriate action, either to propagate the largest reference
level among its neighbors or to reflect the common reference level.

Another potentially troublesome situation is when, for twonodesu andv, the
channel fromu to v is up for a long period of time while the channel fromv to u is
down. When the channel fromu to v comes up atu, v is placed inu’s formingset, but
is not able to move intou’s neighbor set untilu receives an Update message fromv,
which does not occur as long as the channel fromv to u remains down. Thus during
this interval,u sends update messages tov but sincev is not considered a neighbor of
u, v is ignored in deciding whetheru is a sink. In the other direction, when the channel
from u to v comes up atu, u sends its height tov, but the message is ignored byv since
the link fromv to u is down and thusu is not inv’s forming set or neighbor set. More
discussion of this asymmetry appears in Section 4.1; for now, the main point is that
the algorithm simply continues withu andv not considering each other as neighbors.

4 Correctness Proof

In this section, we show that, once topology changes cease, the algorithm eventually
terminates with each connected component being leader-oriented. As a result, thelidu

variables satisfy the conditions of the leader election problem.
We first show, in Section 4.1, an important relationship between the final commu-

nication topology and theformingandN variables of the nodes. The rest of the proof
uses a number of invariants, denoted as “Properties”, whichare shown to hold in ev-
ery configuration of every execution; each one is proved (separately) by induction on
the configurations occurring in an execution. In Section 4.2, we introduce some def-
initions and basic facts regarding the information about nodes’ heights that appears
in the system, either in nodes’ height arrays or in messages in transit. In Section 4.3,
we bound, in Lemma 3, the number of elections that can occur after the last topology
change; this result relies on the fact, shown in Lemma 2, thatonce a nodeu adopts a
leader that was elected after the last topology change,u never becomes a sink again.
Then in Section 4.4, we bound, in Lemma 4, the number of new reference levels that
are started after the last topology change; the proof of thisresult relies on several
additional properties. Section 4.5 is devoted to showing, in Lemmas 5, 6, and 7, that
eventually there are no messages in transit and every node has an accurate view of
its neighbors’ heights. All the pieces are put together in Theorem 1 of Section 4.6
to show that eventually we have a leader-oriented connectedcomponent; a couple of
additional properties are needed for this result.

Throughout the proof, consider an arbitrary execution of the algorithm in which
the last topology change event occurs at some global timetLTC, and consider any
connected component of the final topology.

4.1 Channels and Neighbors

Because of the lack of coordination between the topology change events for the two
channels going between nodesu andv in the two directions,u andv do not neces-
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sarily have consistent views of their local neighborhoods in Gchan, even after the last
topology change. For instance, it is possible thatv is in Nu but u is not inNv forever
after the last topology change. Suppose the channel fromu to v remainsUp from
some timet onwards, so thatv remains inNu from timet onwards. However, suppose
that the channel fromv to u fluctuates several times after timet, eventually stabilizing
to beingUp (cf. Fig. 5). Every time the channel tou goes down,u is removed from
v’s formingandN sets. Every time the channel tou comes up,v addsu to formingv

and sends its height in an Update message tou. Whenu gets the message fromv, it
updates the entry forv in its height array, but does not send its own height back tov.
As long asu’s height does not change,u does not send its height tov. Thusv is never
able to moveu from formingv into Nv.

Node v

Node u

status of link is Up 

status of link is Down 

Update message 

v has u in its forming 

set but not in its 

neighbor set

u has v in its neighbor

set

Fig. 5 The status of the channel fromu to v remainsUp, but the status of the channel fromv to u fluctuates.

However, we are assured by Lemma 1 below that after timetLTC, Nu ∪ formingu

does not change for any nodeu. Furthermore, a nodeu always sends Update messages
to all nodes inNu ∪ formingu, which constitutes all the outgoing channels ofu.

Lemma 1 After time tLTC, Nu ∪ formingu does not change for any node u.

Proof When ChannelDownuv occurs,u removesv from both itsNu and formingu

variables. WhenChannelUpuv occurs,u addsv to its formingu variable and sends an
Update message tov. Whenu receives an Update message from a nodev, the only
possible change to theNu andformingu variables is thatv is moved fromformingu to
Nu, which does not changeNu ∪ formingu.

tTLC is the latest among all the times at which either aChannelDown, or aChan-
nelUpoccurs. After this time, the only change to theN set or theformingset must be
due to receipt of an Update message, causing lines 2 and 3 of Figure 2 to be executed.
Thus the only change to theN set or theformingset is that a node which is removed
from theformingset is added to theN set. This does not affectN ∪ forming.

4.2 Height Tokens and Their Properties

Since a node makes algorithm decisions based solely on comparisons of its neigh-
boring nodes’ height tuples, we first present several important properties of the tuple
contents. Defineh to be aheight token for node uin a configuration ifh is in an Update
message in transit fromu, or h is the entry foru in the height array of any node. Let
LP(h) be the leader pair ofh, RL(h) the reference level (triple) ofh, δ (h) theδ value
of h, lts(h) the absolute value of the (nonpositive) leader timestamp (componentnlts)
of h, andτ(h) theτ value ofh.
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Given a configuration in whichChannel(u,v) has statusUp andu∈ Nv, the(u,v)
height sequenceis defined as the sequence of height tokensh0,h1, . . . ,hm, whereh0 is
u’s height,hm is v’s view of u’s height, andh1, . . . ,hm−1 is the sequence of height to-
kens in the Update messages in transit fromu to v. If the status ofChannel(u,v) is Up
but u /∈ Nv, then the(u,v) height sequence is defined similarly except thath1, . . . ,hm

is the sequence of height tokens in the Update messages in transit fromu to v; in these
cases,v does not have an entry foru in its height array. IfChannel(u,v) is Down, the
(u,v) height sequence is undefined.

Property A : If h is a height token for a nodeu in the(u,v) height sequence, then:

1. lts(h) ≤ Tu andτ(h) ≤ Tu

2. If h is in v’s height array thenlts(h) ≤ Tv andτ(h) ≤ Tv.

Proof By induction on the configurations in the execution.
Basis:In the initial configurationC0, all the leader timestamps andτ values are 0

andT ≥ 0 for all nodesv.
Inductive Hypothesis:Suppose the property is true in configurationCi−1 and show

it remains true in configurationCi . Since the property is true inCi−1, for every height
tokenh in the(u,v) height sequence, we have:

(i) lts(h) ≤ Tu(Ci−1) andτ(h) ≤ Tu(Ci−1)
(ii) If h is in v’s height array thenlts(h) ≤ Tv(Ci−1) andτ(h) ≤ Tv(Ci−1)

Inductive Step:If h is a pre-existing height token during eventei (the event im-
mediately precedingCi ), then by the inductive hypothesis and the increasing property
of Tu, it follows that lts(h) ≤ Tu(Ci) andτ(h) ≤ Tu(Ci). If, on the other hand,h is
created during eventei , then any new values oflts andτ generated byu are equal to
Tu(Ci) and, thus, the property remains true.

If h is a height token for nodeu at some other nodev, thenh was either present at
v duringCi−1 or was received atv during eventei , immediately precedingCi . In the
first case, by the inductive hypothesis and the increasing property ofTv, it follows
that lts(h) ≤ Tv(Ci) andτ(h) ≤ Tv(Ci). In the second case, there exists a message
through whichv receivedh from u during eventei . SinceT preserves causality, by
the definition of thehappens beforerelation, it follows that the creation of eitherτ(h)
or lts(h) preceded the receipt of the message byv. Therefore, in configurationCi it
remains true thatlts(h) ≤ Tv(Ci) andτ(h) ≤ Tv(Ci).

Property B, given below, states some important facts about height sequences. If
the channel’s status isUp andm= 1, meaning that no messages are in transit fromu
to v, then Part (1) of Property B indicates thatv has an accurate view ofu’s height. If
there are Update messages in transit, then the most recent one sent has accurate in-
formation. Part (2) of Property B implies that leader pairs are taken on in decreasing
order. Part (3) of Property B implies that reference levels are taken on in increasing
order with respect to the same leader pair. Note that Property B only holds ifm> 0.

Property B: Let h0,h1, . . . ,hm be the(u,v) height sequence for anyChannel(u,v)
whose status isUp. Then the following are true ifm> 0:
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1. h0 = h1.
2. For alll , 0≤ l < m, LP(hl ) ≤ LP(hl+1).
3. For alll , 0≤ l < m, if LP(hl ) = LP(hl+1), thenRL(hl ) ≥ RL(hl+1).

Proof The proof is by induction on the execution.
Initially in C0, Channel(u,v) is eitherUp or Down. If Channel(u,v) is Down, then

the(u,v) height sequence is undefined. IfChannel(u,v) is Up, then the definition of
initial configurations states that no messages are in transit andv has an accurate view
of u’s height, that is,m= 1 andh0 = h1.

Suppose the property is true in configurationCi−1 and show it is still true in
configurationCi .

Suppose eventei is ChannelDownuv. Then the(u,v) height sequence is not de-
fined inCi .

Suppose eventei is ChannelUpuv. By the assumption that the channel up/down
events for a given channel alternate, the state of the channel in Ci−1 is Downand there
are no messages in transit. Thus inCi the(u,v) height sequence ish,h, whereh is the
height ofu in Ci , which is stored inu’s height array and is in the Update message that
u sends tov. Clearly this height sequence satisfies the three conditions.

Suppose eventei is the receipt byv of an Update message fromu. In one case,
the(u,v) height sequence changes by dropping the last element, if theoldest message
in transit takes the place ofv’s view of u’s height. In the other case, the(u,v) height
sequence does not change if the receipt causesv to recordu’s height and addu to Nv.
In both cases, the three conditions still hold.

Suppose eventei is the receipt byu of an Update message from nodew or is a
ChannelDownevent for a channel to some node other thanv. If u does not change its
height, then there is no change affecting the property.

Supposeu changes its height fromh′0 to h.
Let the(u,v) height sequence inCi−1 beh′0,h

′
1, . . . ,h

′
m. By the inductive hypoth-

esis,h′0 = h′1. By the code, the (u,v) height sequence inCi is h,h,h′1, . . . ,h
′
m. In each

case we just have to show thath has the proper relationship toh′1, which equalsh′0.
Case 1: ei calls REFLECTREFLEVEL: All of u’s neighbors are viewed as having

the same LP asu, having reference level(t, p,0) for somet andp, and having a larger
height thanu.

Sinceu is a sink during the step,RL(h′0) ≤ (t, p,0). SinceRL(h) = (t, p,1), and
the old and new LP are the same, the property holds.

Case 2: ei callsELECTSELF: By Property A,lts in LP(h′0) is less than or equal to
T ′

u in configurationCi−1. The new leader pair haslts Tu in configurationCi , which
is greater thanT ′

u . SoLP(h) ≤ LP(h′0).
Case 3: ei callsSTARTNEWREFLEVEL: By Property A, theτ value inRL(h′0) is

less than or equal toT ′
u at configurationCi−1. The new reference level hasτ valueTu

at configurationCi , which is greater thanT ′
u and the LP is unchanged. SoLP(h) =

LP(h′0) andRL(h) ≥ RL(h′0).
Case 4: ei callsPROPAGATELARGESTREFLEVEL: All neighbors ofu are viewed

as having the same LP asu, but with different RL’s among themselves, and as having
larger heights thanu. By the code,u takes on the largest neighboring RL, which is at



A Leader Election Algorithm for Dynamic Networks with Causal Clocks 21

least as large asu’s old RL, sinceu is a sink. The LP is unchanged. SoLP(h) = LP(h′0)
andRL(h) ≥ RL(h′0).

Case 5: ei calls ADOPTLPIFPRIORITY: By the code, the new LP is smaller than
the previous, soLP(h) < LP(h′0).

4.3 Bounding the Number of Elections

In this subsection, we show that every node elects itself at most a finite number of
times after the last topology change.

Define the following with respect to any configuration in the execution. For LP
(−s, ℓ), whereTℓ(t) = s andt ≥ tLTC, let LP tree LT(−s, ℓ) be the subgraph of the
connected component whose vertices consist of all nodes that have taken on LP
(−s, ℓ) in the execution (even if they no longer have that LP), and whose directed
edges are all ordered pairs(u,v) such thatv adopts LP(−s, ℓ) due to the receipt of
an Update message fromu. Since a node can take on a particular LP only once by
Property B,LT(−s, ℓ) is a tree rooted atℓ.

Property C: For each height tokenh with RL (t, p, r), eithert = p = r = 0, ort > 0,
p is a node id, andr is 0 or 1.

Proof The proof is by induction on the sequence of configurations inthe execution.
The basis follows since all height tokens in an initial configuration have RL(0,0,0).

For the inductive step, we consider all the ways that a new RL can be generated
(as opposed to copying an existing one). InELECTSELF, the new RL is (0,0,0). In
STARTNEWREFLEVEL, the new RL is(t, p,0), wheret is the current causal clock
time, which is positive, andp is a node id. InREFLECTREFLEVEL, the new RL is
(t, p,1), where(t, p,0) is a pre-existing height token. By the precondition for exe-
cutingREFLECTREFLEVEL, t is positive. By the inductive hypothesis applied to the
pre-existing height token(t, p,0), p is a node id.

Property D: Let h be a height token for some nodeu. If LP(h) = (−s, ℓ), where for
some global timet, Tℓ(t) = s andt ≥ tLTC, thenRL(h) = (0,0,0) andδ (h) is the
distance inLT(−s, ℓ) from ℓ to u.

Proof By induction on the configurations in the execution.
By Property A, the basis is configurationCj , just after the event at global timet

when the first height tokens with LP(−s, ℓ) are created. By the code, these height
tokens are created by nodeℓ for itself and have RL(0,0,0) andδ = 0.

Assume the property is true in configurationCi−1, with i −1≥ j, and show it is
true in configurationCi . Since no further topology changes occur, the only possibility
for eventei is the receipt of an Update message. Suppose nodeu receives Update(h)
from nodev.

As a result of the receipt of the message,u recordsh asv’s height in its view. The
inductive hypothesis implies that the property remains true for this new height token.

Also as a result of the receipt of the message,u might change its height.
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Supposeu changes its height by executingADOPTLPIFPRIORITY, adopting the
LP in h, whereLP(h) = (−s, ℓ). By the inductive hypothesis,RL(h) = (0,0,0), and
δ (h) is the distance fromℓ to v in LT(−s, ℓ) in Ci−1. By Property B, sinceu adopts
(−s, ℓ), it must be thatu’s LP is larger than(−s, ℓ) in Ci−1, and thusv is u’s parent
in LT(−s, ℓ). By the code,u sets its RL to(0,0,0) and itsδ to δ (h)+ 1. But this is
exactly the distance inLT(−s, ℓ) from ℓ to u. So all height tokens created in this step
satisfy the property.

Supposeu changes its height because it becomes a sink andu’s new height has LP
(−s, ℓ). First, we show thatu does not take on LP(−s, ℓ) as a result ofELECTSELF.
By assumption, LP(−s, ℓ) is created in configurationCj (the base case). By the code
and the increasing property of causal clocks, it follows that ℓ cannot create a duplicate
of LP (−s, ℓ) at some later configurationCi . Therefore,u does not take on LP(−s, ℓ)
as a result ofELECTSELF.

Thus, the old height ofu, call it h′, also has LP(−s, ℓ). Sinceu becomes a sink,
all its neighbors have LP(−s, ℓ) in u’s view, and by the inductive hypothesis they all
have RL(0,0,0) in u’s view. Thus the new height ofu is not the result of execut-
ing REFLECTREFLEVEL (which requires the neighbors’ commonτ to be positive)
or PROPAGATELARGESTREFLEVEL (which requires the neighbors to have different
RL’s). Instead, it must be the result of executingSTARTNEWREFLEVEL. Sinceu is a
sink and(0,0,0) is the smallest possible RL by Property C,RL(h′) = (0,0,0). Also,
sinceu is a sink,u 6= ℓ. Let v beu’s parent in the LP-treeLT(−s, l) and letd be the
distance in that tree fromℓ to v. By the inductive hypothesis, inu’s view of v’s height,
v’s δ = d, but inu’s own height,δ = d+1. Thus the edge betweenu andv is directed
towardv, andu cannot be a sink, a contradiction.

Lemma 2 Any node u that adopts leader pair(−s, ℓ) for anyℓ and any s, where for
some global time t,Tℓ(t) = s and t> tLTC, never subsequently becomes a sink.

Proof Suppose in contradiction thatu adopts leader pair(−s, ℓ) at global timet1 > t
and that at global timet2 > t1, u becomes a sink. Supposeu does not change its leader
pair in the time interval(t1, t2). (If u did change its leader pair, the new leader pairs
would all be smaller than(−s, ℓ) by Property B, and the argument would still hold
with respect to the latest leader pair taken on byu in that time interval.)

Let v be the parent ofu in the LP-treeLT(−s, ℓ). Immediately after timet1, the
link (u,v) is directed fromu to v in u’s view.

In order foru to become a sink at timet2, there must be some time betweent1
andt2 when the link(u,v) reverses direction inu’s view. Suppose the link reverses
becauseu’s height lowers. Recall thatu does not change its leader pair in(t1,t2) by
assumption. By Property D,u’s reference level remains(0,0,0) in (t1,t2) andu’s δ
stays the same in the interval. That is,u’s height does not change, and in particular
does not lower. Thus the only way that the link(u,v) can reverse direction in(t1,t2)
is due to the receipt byu of an update message fromv with a new height forv that is
higher thanu’s height.

How canv’s height change afterv takes on leader pair(−s, ℓ)? One possibility is
thatv’s leader pair changes. By Property B, any change inv’s leader pair will be to a
smaller one, which will be adopted byu together with aδ value that keeps the link
directed fromu to v in u’s view.
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The other possibility is thatv’s leader pair does not change but some other com-
ponent of its height changes. But by Property D, sincev’s leader pair has timestamp
−swith Tℓ(t) = sandt > tLTC, v’s RL andδ cannot change.

Thus no change tov’s height reported tou after timet1 can cause the link(u,v)
to be directed fromv to u in u’s view, andu cannot be a sink at timet2, which is a
contradiction.

Lemma 3 No node elects itself more than a finite number of times after global time
tLTC.

Proof Suppose in contradiction that a nodeu elects itself an infinite number of times
after the last topology change. Once it has elected itself the first time, the only way it
can become a sink and elect itself again is by adopting a new LPfirst. Thus, nodeu
needs to adopt new LP’s infinitely often aftertLTC. By Property B, the leader times-
tamp of each subsequent LP has to be greater than the previousone, which results in
an increasing sequence of leader timestamps thatu adopts. LetTmaxbe the maximum
of the clocks of all nodes at timetLTC. In the process of adopting increasing leader
timestamps, at some pointu will adopt LP(−s, ℓ) whereTℓ(t) = s and for which
s> Tmax.

This follows from the first property of causal clocks which states that for each
nodeu, the values ofTu are increasing, i.e., ifei andej are events involvingu in the
execution withi < j, thenTu(ei) < Tu(ej), and, furthermore, if there is an infinite
number of events involvingu, thenTu increases without bound.

BecauseTmaxwas the maximum value of all clocks at the time of the last topology
change, it follows thatt > tLTC. By Lemma 2, however, nodeu does not become a
sink after it has adoptedLP(−s, ℓ) and thus it cannot elect itself again after that time,
which is a contradiction.

If we use perfect clocks to implementT , we can get a stronger bound on the
number of times a node elects itself after the last topology change. In fact, with perfect
clocks it is guaranteed that no node elects itself more than once after the last topology
change, as we now explain. As stated in the proof of Lemma 3, ifa nodeu elects itself
more than once after the last topology change, it must take ona new LP in between
each successive pair of elections. Also, by Property B, the timestamps in these LP’s
must be increasing. As explained in the proof of Lemma 3, there could be multiple
LPs already existing at the time of the last topology change whose timestamps are
greater than the timestamp of the LP thatu takes on the first time it elects itself after
the last topology change. The reason is that the clocks are causal, yet are drawn from
a totally-ordered set, and thus just because clock valuet1 is less than clock valuet2, it
does not follow that the event associated witht1 happened before the event associated
with clock valuet2. However, the number of such misleading timestamps is finite, so
eventually, ifu keeps electing itself, it will take on a timestamp that is associated with
an event that occurred after the last topology change. Then we can apply Lemma 2
to deduce thatu will never elect itself again. When clocks are perfect, however, there
can be no such misleading timestamps in LP’s: if the timestamp in a new LP is greater
than the timestamp taken on byu the first time, then this LP was definitely generated
after the last topology change and Lemma 2 applies immediately. For more details,
refer to Lemma 3 in [15].
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4.4 Bounding the Number of New Reference Levels

In this subsection, we show that every node starts a new reference level at most a
finite number of times after the last topology change. The keyis to show that after
topology changes cease, nodes will not continue executing Line 13 of Figure 2 in-
finitely and will therefore stop sending algorithm messages. First we show that theδ
value of a node does not change unless its RL or LP changes.

Property E: If h andh′ are two height tokens for the same nodeu with RL(h) =
RL(h′) andLP(h) = LP(h′), thenδ (h) = δ (h′).

Proof Initially, in C0, the only height tokens for nodeu are the ones inu and the ones
in u’s neighbors, and the neighbors have accurate views ofu’s height.

Suppose the property is true through configurationCi−1. We will show it is still
true in the next configurationCi . The only way that new height tokens can be intro-
duced into the system is if a nodeu changes its height and sends Update messages
with the new height to its neighbors.

Supposeuchanges its height throughELECTSELF (resp.,STARTNEWREFLEVEL).
Since the new height’s leader timestamp (resp.,τ) is the value of the logical clock of
u, Property A implies that there is no pre-existing height token foru in the system
with the new leader timestamp (resp.,τ). Thus there cannot be two height tokens for
u with the same RL and LP but conflictingδs.

Supposeuchanges its height throughADOPTLPIFPRIORITY. Then the new height
of u has a smaller LP than the old height. By Property B, there is nopre-existing
height token foru in the system with the new LP. Thus there cannot be two height
tokens foru with the same RL and LP but conflicting deltas.

Supposeu changes its height throughREFLECTREFLEVEL. Sinceu is a sink and
in its view all its neighbors have a common, unreflected, RL, call it (t, p,0), u’s RL
must be at most(t, p,0). Sinceu’s new RL is(t, p,1), Property B implies that there is
no pre-existing height token foru in the system with the new RL. Thus there cannot
be two height tokens foru with the same RL and LP but conflictingδs.

Supposeu changes its height throughPROPAGATELARGESTREFLEVEL. The pre-
condition includes the requirement that not all the neighbors have the same RL (inu’s
view). Sinceu becomes a sink,u’s old RL is less than the largest RL of its neighbors,
which is the RL thatu takes on inCi . Property B implies that there is no pre-existing
height token foru in the system with the new RL.

Thus there cannot be two height tokens foru with the same RL and LP but con-
flicting δs.

The next definition and its related properties are key to understanding how un-
reflected and reflected reference levels spread throughout the connected component
after the last topology change.

Define the following with respect to any configuration in the execution aftertLTC.
For global timet ′ ≥ tLTC, let theRL DAG RD(t, p), whereTp(t ′) = t, be the sub-
graph of the connected component whose vertices consist ofp and all nodes that
have taken on RL prefix(t, p) by executing eitherPROPAGATELARGESTREFLEVEL
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or REFLECTREFLEVEL in the execution (even if they no longer have that RL pre-
fix). In RD(t, p), the directed edges are all ordered pairs of node ids(u,v) such that
u ∈ Nv andv ∈ Nu andu has RL prefix(t, p) prior to the event in whichv first takes
on RL prefix(t, p). We say that nodeu is apredecessorof nodev in RD(t, p) andv
is asuccessorof u in RD(t, p).

Property F: If there is a height token for nodeu with RL prefix(t, p), whereTp(t ′) =
t andt ′ ≥ tLTC, thenu is in RD(t, p).

Proof By induction on the sequence of configurations in the execution.
The basis is configurationCj , wheregt(Cj) = t ′, i.e., the time when nodep starts

RL (t, p,0). By Property A, there is no height token with RL prefix(t, p) in Cj−1, so
the only height tokens we have to consider are those created by p, for p. By definition,
p is in RD(t, p).

Suppose the property is true through configurationCi−1. We will show it is true
in Ci .

Suppose in contradiction, in eventei , some nodeu takes on RL prefix(t, p) by
calling ADOPTLPIFPRIORITY after receiving an update message from neighborv
containing heighth with RL prefix(t, p). By the inductive hypothesis,v is in RD(t, p).

Let (−s, ℓ) beLP(h). We are going to show that whenv takes on RL prefix(t, p),
it already has LP(−s, ℓ). We know thatv must have a path to nodep in Gf inal

chan that
has been in place sincep started the new RL prefix at timet ′, by the assumption that
topology changes have stopped by real timet ′. Just before timet ′, all the neighbors
of p had LP(−s, ℓ) and RL prefix lower than(t, p), by Property B, orp would not
have started a new reference level for LP(−s, ℓ). Since the neighbors ofp had LP
(−s, ℓ), they would have sent messages containing that LP to their neighbors prior to
time t ′. Likewise, those neighbors would have messages in transit to their neighbors
containing the LP(−s, ℓ) and so on. In short, if the LP(−s, ℓ) is adopted by any
nodes that have a path top at t ′, then the LP would have been adopted when that LP
spread through the network with a lower RL prefix.

Thus, whenv putsh in transit tou, there is already ahead of it in the(v,u) height
sequence a height token forv’s old height, with LP(−s, ℓ). Since the channels are
FIFO and no messages are lost after timet ′, u has already received the old height from
v beforeei . So inCi−1, u has a LP that is(−s, ℓ) or smaller already, before handling
the Update message with heighth. Thusu does not executeADOPTLPIFPRIORITY

in ei , contradiction.

Property G: If there is a height token for nodeu with RL (t, p,1), where for some
global timet ′, Tp(t ′) = t andt ′ ≥ tLTC, then all neighbors ofu are inRD(t, p).

Proof By induction on the sequence of configurations in the execution.
The basis is the configurationCj with gt(Cj) = t ′, i.e., the time when the new RL

is started at nodep. By Property A, there is no height token inCj−1 with RL (t, p,1),
and inCj we only add height tokens for nodep with RL (t, p,0). So the property is
vacuously true.

Suppose the property is true through configurationCi−1 and show it is true inCi ,
i > j.
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By Property F and the definition ofRD(t, p), the only way thatu can take on RL
(t, p,1) is by REFLECTREFLEVEL or PROPAGATELARGESTREFLEVEL.

Supposeu takes on RL(t, p,1) due toREFLECTREFLEVEL. Then allu’s neigh-
bors have RL(t, p,0) in its view. By Property F, then, they are all inRD(t, p).

Supposeu takes on RL(t, p,1) due toPROPAGATELARGESTREFLEVEL. Thus
there is a height token inCi−1 for some neighborv of u with RL (t, p,1). By the
inductive hypothesis applied tov, all of v’s neighbors, includingu, are inRD(t, p).
Thusu’s RL prefix at some earlier time is(t, p). By Property B (since the LP does not
change in this interval),u’s RL prefix inCi−1 is at least(t, p). Sinceu is a sink during
eventei , u’s RL prefix in Ci−1 is at most(t, p), so it is exactly(t, p) in Ci−1. Since
u is a sink, every neighbor ofu (in u’s view) has RL prefix at least(t, p), and since
(t, p,1) is the maximum of the neighboring RL’s, every neighbor ofu (in u’s view)
has RL prefix exactly(t, p). Thus by Property F, every neighbor ofu is in RD(t, p).

Property H: Suppose thatu andv are two nodes such thatu ∈ Nv andv ∈ Nu after
tLTC. Consider two height tokens,hu for nodeu with RL(hu) = (t, p, ru) andδ (hu) =
du, andhv for nodev with RL(hv) = (t, p, rv) andδ (hv) = dv, whereTp(t ′) = t and
t ′ ≥ tLTC. Then the following are true:
(1) If ru < rv, thenu is a predecessor ofv in RD(t, p). If u is a predecessor ofv in
RD(t, p) thenru ≤ rv.
(2) If ru = rv = 0, thendu > dv if and only if u is a predecessor ofv.
(3) If ru = rv = 1, thendv > du if and only if u is a predecessor ofv.

Proof By induction on the sequence of configurations in the execution.
Basis:Consider configurationCj , wheregt(Cj) = t ′, that is, when nodep starts

the new reference level(t, p,0). By Property A, in configurationCj−1, there are no
height tokens with RL prefix(t, p). The only new height tokens introduced by event
ej are those forp with RL (t, p,0), and the RL DAGRD(t, p) consists solely of node
p. Thus all parts of the property are vacuously true.

Induction:Assume the property holds through configurationCi−1 and show it is
true inCi , i > j.

By Property E, it is sufficient to consider the height tokens in u’s view, since there
cannot be other height tokens with the same RL and LP but differentδs.

Suppose new height tokens with RL prefix(t, p) are created by nodeu during
eventei . The only ways this can happen are viaREFLECTREFLEVEL and PROPA-
GATELARGESTREFLEVEL, by Property F.

CASE 1: REFLECTREFLEVEL. During the execution ofei , all of u’s neighbors
are viewed byu as having RL(t, p,0) and the new height tokens created foru have
RL (t, p,1).

We now show thatu’s RL prefix is less than(t, p) in Ci−1. Suppose in contradic-
tion u has RL(t, p,0) in Ci−1. By the inductive hypothesis, part (2),u’s δ value cannot
be the same as that of any of its neighbors. This is true sinceu and all its neighbors
are inRD(t, p) by Property F, and, for any pair of neighboring nodes inRD(t, p), one
is the predecessor of the other, since two events cannot happen simultaneously. Since
u is a sink, itsδ value must be smaller than those of all its neighbors. By the inductive
hypothesis, part (2),u is a successor of all its neighbors, of which there is at leastone.
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Then at some previous timet ′′ < gt(Ci−1), u executedPROPAGATELARGESTRE-
FLEVEL and took on RL(t, p,0). This must be howu took on (t, p,0) since, by
Property F,u cannot take on RL(t, p,0) by runningADOPTLPIFPRIORITY, and, if
u = p, u has no predecessors inRD(t, p), contradicting the deduction thatu is a suc-
cessor of at least one neighbor. Att ′′, u has (in its view) at least one neighbor with RL
(t, p,0), (t, p,0) is the maximum RL of allu’s neighbors, and at least one neighbor,
sayv, has a smaller RL than(t, p,0), albeit larger thanu’s (sinceu is a sink).

Supposeu has heighthu at timet ′′, and its view ofv’s height ishv at timet ′′. Since
u is a sink,hu andhv have the same leader pair, sayl p1, we have

RL(hu) < RL(hv) < (t, p,0) (1)

This means that there was a previous timet ′′′ < t ′′ whenv actually took on height
hv (with leader pairl p1). We also know thatv has taken on(t, p,0) before timet ′′,
sinceu is a successor of all its neighbors and it takes on RL(t, p,0) at timet ′′. Note
that v could not have taken on RL(t, p,0), with leader pairl p1 beforet ′′′. This is
because att ′′′ its leader pair is alsol p1 and its heightRL(hv) < (t, p,0). By Property
B two height tokens with the same leader pair must have increasing reference levels.
Hence,v took on(t, p,0) after t ′′′ and beforet ′′. Supposev took on(t, p,0) at time
s such thatt ′′′ < s< t ′′. We know thatv has to be a sink at times in order to do so.
Thus at times all v’s neighbors inv’s view have the same leader pair as itself, andv
takes on(t, p,0) with leader pairl p1 either byPROPAGATELARGESTREFLEVEL or
STARTNEWREFLEVEL. Supposev’s own height ish′v at times and its view ofu’s
height ish′u. Bothh′v andh′u have leader pairl p1 and, sincev is a sink we have

h′v < h′u (2)

Note thathv, hu, h′v, andh′u all have leader pairl p1. We also know thathu < hv from
(1). Now from Property B

h′u ≤ hu (3)

Also from Property B
hv ≤ h′v (4)

Hence, from (1), (3) and (4), we have

h′u ≤ hu < hv ≤ h′v (5)

This is in contradiction to (2).
Part (1): All neighbors ofu are its predecessors inRD(t, p) and inCi , the prede-

cessors ofu haver = 0 andu hasr = 1 so this part continues to hold.
Part (2): The creation of the new height tokens does not affect this part, since the

new tokens do not haver = 0.
Part (3): Sinceu is not inRD(t, p) in Ci−1, Property G implies that there cannot

be a height token for any ofu’s neighbors with RL(t, p,1), and this part is vacuously
true.

CASE 2: PROPAGATELARGESTREFLEVEL. In this case,u’s neighbors have at
least two different RLs so we need to consider which RLu propagates,(t, p,0) or
(t, p,1).
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Case 2.1:Supposeu’s new height has RL(t, p,0). We first show thatu has RL less
than(t, p,0) in Ci−1. By the precondition forPROPAGATELARGESTREFLEVEL,
in u’s view, (t, p,0) is the largest neighboring RL, at least one neighbor has RL
less than(t, p,0), andu is a sink. Thusu’s RL must be less than(t, p,0).
Part (1): Since the new height tokens of bothu and its predecessors have reflection
bit 0, this part is not invalidated inCi .
Part (2): Each ofu’s neighbors for whichu has a height tokenh′ with RL (t, p,0)
is a predecessor ofu in RD(t, p), sinceu is not yet inRD(t, p). By the code,u’s
new heighth has aδ calculated so thath′ > h.
Part (3): The new height tokens do not have reflection bit 1 so this part is unaf-
fected.
Case 2.2:Supposeu’s new height has RL(t, p,1). Then the largest RL amongu’s
neighbors has, inu’s view, RL (t, p,1). Property G implies thatu is in RD(t, p).
So the RL prefix ofu is at least(t, p). Sinceu is a sink, its RL prefix is(t, p) in
Ci−1. So all neighbors (inu’s view) have RL(t, p,0) or (t, p,1) and there is at
least one neighbor with each RL.
Consider any neighborv of u with RL (t, p,1) in u’s view. By the inductive hy-
pothesis, part (1),v must be a successor ofu in Ci−1. Consider any neighborw of
u with RL (t, p,0) in u’s view. By the inductive hypothesis, part (2),w must be a
predecessor ofu in Ci−1.
Part (1): Sinceu’s new height causes it to have the same reflection bit as its suc-
cessors, and a larger reflection bit than its predecessors, this part continues to hold
in Ci .
Part (2): Since the new height tokens do not have reflection bit 0, this part is not
affected.
Part (3): As argued above, each ofu’s neighborsv for whichu has a height token
h′ with RL (t, p,1) is a successor ofu in RD(t, p). By the code,u’s new heighth
has aδ calculated so thath′ > h.

Lemma 4 Every node starts a finite number of new RLs after tLTC.

Proof Suppose in contradiction that some nodeu starts an infinite number of new
RLs aftertLTC.

Now we show thatu takes on a new LP infinitely often. Suppose in contradiction
that u does not do so. LettLLP be the latest time at whichu takes on a new LP.
Consider the first and second times thatu starts a new RL (for the same LP) after
max{tLTC,tLLP}; call these timest1 andt2.

At global time t1, u sets itsτ to τ1. Sinceu does not take on any more LPs,
Property B implies that at the beginning of the step at timet2, u’s τ is at leastτ1,
which is positive.

At the beginning of the event at timet2, let (t, p, r) beu’s RL and let(tc, pc, rc) be
the common RL of allu’s neighbors (inu’s view). Thus the precondition for starting
a new RL cannot be thattc = 0, otherwiseu would not be a sink. So it must be that
tc > 0, rc = 1, andpc 6= u.

There are two cases, depending on the relationship between(t, p) and (tc, pc)
(note that(t, p) cannot be larger than(tc, pc) sinceu is a sink).
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Case 1:(t, p) < (tc, pc). Sinceu has a height token with RL(tc, pc,1) for each
neighborv, we can apply Property G to deduce that all neighbors ofv, includingu,
are inRD(tc, pc). Thus, at some previous time,u has RL prefix(tc, pc). But Property
B implies that it is not possible foru to have RL prefix(tc, pc) and then later to have
RL prefix (t, p), since(t, p) < (tc, pc).

Case 2:(t, p) = (tc, pc). By Property F, nodeu is in RD(t, p). Thusu has a neigh-
borv that is a predecessor ofu in RD(t, p).

Here we know thatv is in Nu. Also, sincev is a predecessor ofu in RD(t, p) u is
in Nv. Hence, we can apply Property H.

Since inu’s view,vhas RL(t, p,1), Property H, Part (1), implies thatu’s reflection
bit must also be 1, and Property H, Part (3), implies thatu’s height must be greater
thanv’s. But this contradictsu being a sink.

Sinceu takes on a new LP infinitely often, by Property B, thelts values of the LP’s
thatu adopts are increasing without bound. LetTmax be the maximum of the clocks
of all nodes at timetLTC. Sinceu is adopting LPs with bigger leader timestamps, at
some point in time it will adoptLP(−s, ℓ) where for some global timet, Tℓ(t) = s
and for whichs> Tmax. BecauseTmax is the maximum of all clocks at the time of
the last topology change, we can conclude thatt > tLTC. But then by Lemma 2,u is
never again a sink after that time, contradicting the assumption thatu starts a new RL
infinitely often.

4.5 Bounding the Number of Messages

In this subsection we show that eventually no algorithm messages are in transit.

Lemma 5 Eventually all nodes in the same connected component of graph Gf inal
chan

have the same leader pair.

Proof Choose a connected component ofGf inal
chan. Lemma 3 implies that there are a

finite number of elections. Thus there is some smallest LP that ever appears in the
connected component at or aftertLTC, say(−s, ℓ). Suppose in contradiction, it is not
true that eventually all nodes in the same connected component of Gf inal

chan have the
same leader pair. We know that causal clocks have the property that for each nodeu,
the values ofTu are increasing (i.e., ifei andej are events involvingu in the execution
with i < j, thenTu(ei) < Tu(ej)), and, furthermore, if there is an infinite number of
events involvingu, thenTu increases without bound. We also know from Lemma 3
that no node elects itself more than a finite number of times after global timetLTC.
From this and from Property B we know that eventually every node in the connected
component will stop changing its leader pair. We can then partition the connected
component into two sets of nodes, those that have adopted(−s, ℓ) and those that have
not. Thus there exist two nodesu andv such that there is an edge inGf inal

chan betweenu
andv, andu’s final leader pair is(−s, ℓ), whereasv’s final leader pair is not(−s, ℓ).

Case 1:If (−s, ℓ) originated at or aftertLTC then both communication channels
(from u to v andv to u) exist inGf inal

chan. Suppose the lastChannelUpuv event occurs at
time t ≤ tLTC. After time t, v is in formingu and, by the code,v is not removed from
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formingu, since noChannelDownuv event occurs after this time. By Lemma 1 there is
no change inNu∪formingu aftertLTC, hencev is either inNu or formingu aftertLTC. In
either case, whenu adopts(−s, ℓ), v gets an Update fromu and adopts(−s, ℓ). This
leads to a contradiction.

Case 2:Suppose(−s, ℓ) originated beforetLTC. We know that there is a lastChan-
nelUpevent atu for v (since the channel is eventuallyUp after tLTC). Suppose this
ChannelUpevent occurs at timet. If at time t nodeu has already taken on leader
pair (−s, ℓ), thenu will send an Update message tov with (−s, ℓ). If nodeu takes on
leader pair(−s, ℓ) at timet ′ > t, thenu will send an Update message tov with (−s, ℓ)
at timet ′. In either case nodev will receive this Update message. Since nodev does
not take on leader pair(−s, ℓ), it must be thatv ignores this message, because the
Channelvu is down andu is neither informingv nor inNv. However, in this case there
will be at timet ′′ > t ′, a lastChannelUpevent atv for u (since the channel is eventu-
ally U p after tLTC). At time t ′′ v will send its heighth (with a leader pair older than
(−s, ℓ)) to u. At this time nodeu detects thatv has an older leader pair (sincev has
not taken on(−s, ℓ)) and nodeu sends an Update message with(−s, ℓ) to v. Whenv
receives this message with a more recent leader pair(−s, ℓ), v adopts this leader pair.
This is a contradiction to the assumption thatu andv have different leader pairs.

Lemma 6 Eventually there are no messages in transit.

Proof By Lemma 5, eventually every node in the connected componenthas the same
LP, say(−s, ℓ). Lemma 4 states that there are a finite number of new RLs started.
Thus there is a maximum RL that appears in the connected component associated
with the common LP(−s, ℓ). Let t be some global time after the last RL has been
started and the last leader has been elected.

Assume in contradiction that messages are always in transit. Since every message
sent is eventually received, there must be an infinite numberof Update messages
sent. Thus, infinitely often after timet, an Update message is received that causes
the recipient to (temporarily) become a sink, change its height, and send new Update
messages. Since there are no more elections or new RLs started after timet, the ac-
tions taken by the recipients areREFLECTREFLEVEL andPROPAGATELARGESTRE-
FLEVEL . Thus eventually every node has the same, maximum, RL. Once all nodes
have the same RL, the only possible action when a node becomesa sink is to run
ELECTSELF or STARTNEWREFLEVEL . But this contradicts the fact that after timet
these events do not happen.

The previous lemma, together with Property B, gives us this corollary:

Lemma 7 Eventually every node has an accurate view of its neighbors’heights.

4.6 Leader-Oriented DAG

This subsection culminates in showing that eventually the algorithm terminates (i.e.,
no messages are in transit), with each connected component being leader-oriented.

Property I: A node is never a sink in its own view.
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Proof By induction on the sequence of configurations in the execution.
In the initial configuration, every node in every connected component is assumed

to have RL (0,0,0), LP(ℓ,0) whereℓ is a node in the same component, and aδ value
such that it has a directed path toℓ.

Assume the property is true in configurationCi−1 and show it is true inCi , i > 0.
Let u be the node taking the stepei .

First consider the case whenei is the receipt of an Update message from a neigh-
bor. If the neighbor’s new height causesu to become a sink, then eitheru elects itself
(in which case, by definition it is no longer a sink) oru reflects a reference level,
starts a new reference level, or propagates a reference level. In each of the latter three
cases, the code ensures thatu is no longer a sink, as reflection manipulates the reflec-
tion bit, starting a new reference level manipulates theτ component, and propagation
manipulates theδ value appropriately. If the neighbor’s new height causesu to adopt
a new leader pair, then the code ensures thatu is no longer a sink by manipulating the
δ value appropriately (the newδ value is greater than that of the node which sent the
Update message).

If ei is aChannelDownevent, then any change tou’s height through electing itself
or starting a new reference level does not causeu to become a sink, as explained
above. Ifei is aChannelUpevent, then no change is made to any of the heights stored
at u.

Property J: Consider any height tokenh for nodeu. If RL(h) = (0,0,0), thenδ (h)≥
0. Furthermore,δ (h) = 0 if and only ifu is a leader.

Proof By induction on the sequence of configurations in the execution. The basis
follows by the definition of the initial configuration.

Assume the property is true in configurationCi−1 and show it is true inCi , i > 0.
Let u be the node taking the stepei .

Supposeu elects itself. Then by the code, it sets its RL andδ to all zeroes, so the
property holds.

Now consider all the ways thatu can change its RL and/orδ , other than by elect-
ing itself. Reflection causesu to have a non-zero reflection bit, so the property holds
vacuously. Starting a new reference level causesu to have a positiveτ, so the property
holds vacuously.

Consider the situation whenu propagates the largest reference level, say RL. The
precondition for propagation is thatu’s neighbors have different reference levels, and
thus RL must be larger than the reference level of another ofu’s neighbors. By Prop-
erty C, thenu’s RL cannot be (0,0,0). Thusu’s new height does not have reference
level (0,0,0) and thus the property holds vacuously.

Consider the situation whenu adopts a new LP, because of the receipt of height
h. If RL(h) = (0,0,0), then the inductive hypothesis shows thatδ (h) ≥ 0, and thus
u’s new height has positiveδ and the property holds. IfRL(h) 6= (0,0,0), then the
property holds vacuously.

Theorem 1 Eventually the connected component is leader-oriented.
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Proof By Lemma 5, eventually all nodes in the component have the same LP, say
(−s, ℓ). By Lemma 7, every node eventually has an accurate view of itsneighbors’
heights.

First, we show that nodeℓ must be in the component. Suppose in contradiction
that nodeℓ is not in the component. Since cycles are not possible, thereis some node
in the component that has no outgoing links. But this node is not ℓ, since we are
assumingℓ is not in the component, and thus the node is a sink, violatingProperty I.

Now that we know that nodeℓ is in the component, we can proceed to show that
the component isℓ-oriented. Property J states that nodeℓ, and only nodeℓ, has RL
(0,0,0) and zeroδ . Property C implies no node has a negative number in its RL.
Thus Property J implies thatℓ has the smallest height in the entire component and
thereforeℓ has no outgoing links. Property I tells us that there are no sinks, so every
node other thanℓ has an outgoing link. Since there are no cycles, the component is
leader-oriented, whereℓ is the leader.

5 Leader Stability

In this section, we consider under what circumstances a new leader will be elected.
For some applications of a leader election primitive, changing the leader might be
costly or inconvenient, so it would be desirable to avoid doing so unless it is neces-
sary. In fact, with perfect clocks, without some kind of “stability” condition limiting
when new leaders can be elected, we could solve the problem with a much simpler al-
gorithm: whenever a node becomes a sink because of a channel going down, it elects
itself; a node adopts any leader it hears about with a later timestamp.

The algorithm of Derhab and Badache [5] achieves stability by using inferences
on the overlap of time intervals, included in messages, to ensure that an older, possi-
bly viable, leader is maintained rather than electing a new one. Their inferences re-
quire a more complicated set of rules and messages than our algorithm, which elects
a new leader whenever local conditions indicate that all paths to an older leader have
been lost. While topology changes are taking place, our algorithm may elect new
leaders while paths still exist, in a global view, to old leaders. However, we show that
new leaders will not be elected by our algorithm if executionstarts from a leader-
oriented state in which the channels between one pair of nodes fail, while the old
leader is still a part of the connected component.

While the correctness proof of our algorithm uses a general notion of time,T ,
for the stability proof we need a stricter requirement on thetemporal order of events.
Because it is of critical importance to determine which leaders are older and which
ones are newer, we need the clock times of non-causality-related events to be ordered
consistently with the global times at which the events occurin order to achieve stabil-
ity. If perfect clocks are used to implementT , then Theorem 2 provides the stability
proof of the algorithm. Note that with perfect clocks nodes have an accurate notion
of the current time, which is equivalent to having access to global time.

Theorem 2 Suppose at global time t′ a connected component CC′ of Gchan is leader-
oriented with leaderℓ. Furthermore, suppose the two channels between a single pair
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of nodes in CC′ go down, the latter of these two ChannelDown events occurs attime
t > t ′, and no other topology changes occur between t′ and t. Let the resulting con-
nected component containingℓ be CC. Then, as long as there are no further topology
changes in CC, no node in CC elects itself.

Proof Only one of the twoChannelDownevents can create a sink inCC. This is the
ChannelDownevent that occurs at the node with the greater height (sayv). Suppose
that this is the latter of the twoChannelDownevents, and it occurs at timet, (since,
even if it is the first of the twoChannelDownevents, by the code, Update messages
received byv on the incoming channel will be ignored after its outgoing channel goes
down).

If the loss of the channel at timet does not create a sink inCC, then no Update
messages are sent inCC and no node inCC elects itself.

Otherwise, suppose the loss of the channel causes some nodeu in CC to become
a sink. Thenu starts a new RL(t,u,0).

Suppose in contradiction some node inCC elects itself after timet. Suppose the
first time this happens is timete.

Claim 1: Every message in transit after t has eitherτ ≥ t or lts≤−te.

Claim 1 follows from Property B and the assumption that no messages are in
transit just before theChannelDownevent at timet.

Claim 2: After time t and before te no new RL prefix is started.
Proof: Suppose in contradiction a new RL prefix is started aftert and beforete. Let
tr be the first time this happens. Since there are no topology changes or elections in
this interval, the new RL prefix must be started because some node, call iti, executes
Line 13 of Figure 2 in response to the receipt of an Update message attr .

There are two cases in which a node executes Line 13 of Figure 2:
Case 1:After updating the height of one its neighbors, in response to the mes-

sage received, nodei views all its neighbors as having RL(0,0,0). By Claim 1 and
Property A, the Update message received must haveτ ≥ t, and, sincet > 0, this is a
contradiction.

Case 2:After updating the height of one its neighbors in response tothe message
received, nodei views all neighbors as having the same reflected RL(s, j,1), but
j 6= i. Since attr (the time when nodei receives the Update message that causes it to
start a new RL), the newest RL prefix is(t,u), this common reflected RL hass≤ t.
By Claim 1,s≥ t, sos= t. Since only one node loses its last outgoing link at timet,
no node besidesu takes a step at timet and thusj = u.

Thus, ini’s view, all the neighbors ofi have RL(t,u,1) but i 6= u. By Property F,
all neighbors ofi are inRD(t,u). By Property G with respect to a neighbor ofi, i is
also inRD(t,u). Sincei is a (temporary) sink during the execution of this step,i must
still have RL(t,u).

Sincei 6= u, i must have a neighborj that is its predecessor inRD(t,u). Property
H, part (1), implies thati’s reflection bit must also be 1. But then Property H, part
(3), implies that the height token forj in i’s view must be smaller thani’s height,
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contradictingi being a sink. (End of Proof of Claim 2.)

By Claim 2, the node that elects itself at timete must beu.
Note that during(t, te), the only way a node inCC can change its height is by be-

coming a sink, since there is only one leader pair present inCC. Thus in the following,
we will use “becoming a sink” interchangeably with “changing height”.

From the hypothesis of the theorem, at timet ′ the connected componentCC′ is

ℓ-oriented. By definition ofℓ-oriented,
−→
CC′ is a DAG with the unique sink beingℓ.

Thus every node inCC′ has a (directed) path in
−→
CC′ to ℓ. Let

−→
CC be the result of re-

moving the directed edge corresponding to{u,v} from
−→
CC′. Let A be the set of nodes

in CC that have a (directed) path toℓ in
−→
CC (i.e., after theChannelDownat timet),

and letB be the set of nodes inCC that no longer have a (directed) path toℓ in
−→
CC.

Clearlyℓ is in A andu is in B.

Claim 3: No node in A becomes a sink during(t,te).
Proof: By induction on the distanced from the node toℓ in CC.

Basis: d= 0. By definition, the leaderℓ is never a sink.
Induction: d> 0. Consider a nodea∈ A at distanced from ℓ in CC. At time t, a

has a neighbora′ whose distance toℓ in CC is d−1 such that the edge inCCbetween
a anda′ (in the views of botha anda′) is directed froma to a′. By the inductive
hypothesis,a′ is never a sink during[t, te] and thus keeps the same height. Since the
height ofa cannot decrease (by Property B, since there is no new leader pair), the
edge inCC betweena anda′ (in the views of botha anda′) remains directed froma
to a′. (End of Proof of Claim 3.)

Next, we are going to show, by induction on the distance fromu in RD (t,u), that
at timete all nodes in RD(t,u) (except for nodeu) have RL(t,u,1). The base case is
true because by the precondition for nodeu to elect itself at timete, all its neighbors
must have RL(t,u,1). Therefore, all nodes at distance 1 fromu in RD (t,u) have RL
(t,u,1). Suppose all nodes at distancek from u in RD (t,u) have RL(t,u,1). We need
to show that all nodes at distancek+1 from u in RD (t,u) have RL(t,u,1) too. Let
x be an arbitrary node at distancek+1 fromu in RD (t,u). By the definition of RD,
x is a descendant of some node at distancek from u in RD (t,u). By the inductive
hypothesis and Property H, Part (1), it follows thatx has RL(t,u,1).

Therefore, we know that at timete there can be no height tokens in the system
with RL (t,u,0). Then by Property G, every node that has RL(t,u,1) must view
all its neighbors as having RL(t,u,1). But since some node with RL(t,u,1) is a
neighbor of some node inA, this contradicts Claim 3 and Property G.

The stability condition above is no longer true if we use logical clocks to imple-
mentT , instead of perfect clocks. Because logical clocks ensure only a happens-
before relation between events, it is not possible to distinguish old leaders from new
ones if there is no causal chain between their elections. Figure 6 shows an example
situation in which the use of logical clocks leads to a node electing itself despite the
hypotheses of Theorem 2 holding. However, if we add an extra requirement to The-
orem 2 that the RL prefixes at all nodes are(0,0,0) before the last topology change,
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then no pre-existing RL’s are present and we can guarantee that no node will elect
itself, using a proof similar to the one of Theorem 2. This, however, is a weaker
stability condition.

6 Conclusion

We have described and proved correct a leader election algorithm for dynamic net-
works. To provide for the temporal ordering of events that the algorithm requires,
we use a generic notion of time–causal clocks–which can be implemented using, for
instance, perfect clocks or logical clocks. Note that the algorithm is correct in the
case of complete synchrony between clocks (perfect clocks)and also in the case of
clocks with no bound on skew (logical clocks), but it is not correct for approximately
synchronized clocks (which assume an upper bound on skew) unless they preserve
causality. Notably, our definition of causal clocks does notinclude vector clocks (e.g.,
[8]), since vector clock values do not form a totally-ordered set in order to capture
non-causality as well as causality1 An open question is how to extend our algorithm
and its analysis to handle a wider range of clocks, such as approximately synchro-
nized clocks and vector clocks.

We identified different sets of circumstances under which the algorithm does not
elect a leader unnecessarily. Depending on the types of clocks used to implement
causal time and the amount of synchrony they provide, however, these circumstances
tend to be different. It would be interesting to introduce different types of clocks,
which not only preserve causality but also have some upper bound on skew, and see
how they affect the stability condition of the algorithm. Moreover, an analysis of the
time and message complexity needs to be performed, taking into account that using
some clocks to implement causal time will be more efficient compared to others.
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