
Asynchronous Leader Election and MIS Using Abstract
MAC Layer

Nancy Lynch
CSAIL, MIT

Cambridge, MA - 02139, USA
lynch@csail.mit.edu

Tsvetomira Radeva
CSAIL, MIT

Cambridge, MA - 02139, USA
radeva@csail.mit.edu

Srikanth Sastry
CSAIL, MIT

Cambridge, MA - 02139, USA
sastry@csail.mit.edu

ABSTRACT
We study leader election (LE) and computation of a maxi-
mal independent set (MIS) in wireless ad-hoc networks. We
use the abstract MAC layer proposed in [14] to divorce the
algorithmic complexity of solving these problems from the
low-level issues of contention and collisions. We demonstrate
the advantages of such a MAC layer by presenting simple
asynchronous deterministic algorithms to solve LE and MIS
and proving their correctness. First, we present an LE algo-
rithm for static single-hop networks in which each process
sends no more than three messages to its neighbors in the
system. Next, we present an algorithm to compute an MIS
in a static multi-hop network in which each process sends a
constant number of messages to each of its neighbors in the
communication graph.

1. INTRODUCTION
The popularity and emerging ubiquity of wireless net-

works has attracted significant attention to solving clas-
sic distributed problems on ad-hoc wireless systems. The
broadcast nature of wireless networks introduces new chal-
lenges for algorithm design. Specifically, the contention for
exclusive access to the broadcast channel among multiple
processes plays a significant role in the design and correct-
ness of algorithms for wireless networks. Consequently, al-
gorithms in wireless networks have to first resolve contention
before proceeding to problem-specific communication of in-
formation that ultimately solves the problem at hand.

In fact, many algorithms proposed for wireless networks
conflate the challenges associated with low-level network
properties such as collisions and contention with the chal-
lenges associated with solving the actual problem. Conse-
quently, algorithms designed for a given wireless model may
not behave correctly in a slightly different model. Addi-
tionally, algorithm designers are required to grapple with
low-level problems such as contention management repeat-
edly, making it difficult to highlight interesting high-level
algorithmic issues.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOMC’12, July 19, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1537-1/12/07 ...$15.00.

Recently, in [14, 15, 16], the following solution was pro-
posed to address the above concerns. Posit the existence of
an abstract MAC layer that can be implemented on top of
wireless ad hoc networks such that the MAC layer addresses
the issues of collisions and contention exclusively. Thus, the
processes using this abstract MAC layer can send and re-
ceive messages, and the MAC layer reliably delivers these
messages to all the processes within the communication ra-
dius of the transmitting process.

More specifically, the abstract MAC layer [14, 15, 16] de-
livers messages reliably within the local neighborhood and
provides an acknowledgment of the message delivery to the
sender. Furthermore, the abstract MAC layer may provide
guarantees on the time it takes to deliver these messages.
However, the abstract MAC layer does not provide a sender
with information about specific recipients of its message.
This approach is intended to divide the design and analy-
sis of distributed algorithms (in wireless networks) into two
parts. The first part is the abstract MAC layer itself, which
addresses the issues of contention and collisions over the
physical network. The second part uses the abstract MAC
layer to solve the problem at hand while being agnostic to
the issues of low-level contention.

We illustrate the complexity of solving problems directly
on the physical layer and the advantages offered by the MAC
layer by focusing on two well-known problems: leader elec-
tion (LE) and maximal independent set (MIS). Briefly, in
leader election, all the processes within the network elect a
single unique process to be the ‘leader’; in maximal inde-
pendent set, the system selects a subset S of processes such
that each process in the system is either in S or a neighbor
of a process in S, but not both.

Summary of results This paper focuses on demonstrat-
ing the advantages offered by the abstract MAC layer in
designing high-level algorithms in wireless networks. First,
we show that leader election in static single-hop networks us-
ing the abstract MAC layer can be solved with an algorithm
in which each process sends no more than three messages to
its neighbors in the system. Next, we propose another al-
gorithm that computes an MIS in static multi-hop wireless
networks using the abstract MAC layer. In this algorithm,
each process sends a constant number of messages to each of
its neighbors in the communication graph. We provide for-
mal proofs of correctness for both the algorithms and state
their time and message complexity.

Organization In Section 2, we discuss current work re-
lated to leader election, MIS, and abstract MAC layer in
wireless networks. In Section 3, we provide a detailed de-

scription of our system model, including the abstract MAC
layer. In Section 4, we propose a simple algorithm to solve
leader election in single-hop networks using the abstract
MAC layer. Similarly, in Section 5, we propose a simple
algorithm to compute an MIS in multi-hop networks using
the abstract MAC layer. Finally, we end with discussion in
Section 6.

2. RELATED WORK
This section provides an overview of algorithms for solving

leader election in single-hop wireless networks, computing an
MIS in multi-hop wireless networks, and the abstract MAC
layer implementation and use.

Leader Election The leader election (LE) problem has
been studied in the context of wired networks, shared mem-
ory (cf. [1, 18]), and wireless networks (cf. [3, 8, 12, 20, 22,
25]). Here, we focus on LE in single-hop wireless systems.

Several randomized algorithms in [3, 4, 13, 20, 21, 23, 27]
use various techniques for solving LE. However, in the afore-
mentioned articles, the overall approach to solving LE can
be separated into two steps. The first step estimates the
number of processes within the system, and the second step
uses this estimate to ensure that exactly one process trans-
mits with high probability; the first process to transmit in
isolation is elected the leader. While the mechanism to esti-
mate the number of processes is different for different system
models, solving leader election itself is fairly straightforward
in the second step. Given an estimate n on the number
of processes, each process transmits its ID with probabil-
ity 1/n; with high probability, we are guaranteed that some
process will transmit in isolation within a constant number
of rounds.

Similarly, despite the deterministic algorithms [6, 9, 13]
being different for different models of wireless networks, the
overall approach for solving LE is the same. These algo-
rithms partition the set of processes into smaller subsets
based on some asymmetry (such as process ID) and elect
leaders among these smaller subsets. The set of leaders thus
obtained are further partitioned into smaller subsets and the
procedure is repeated until only one leader remains.

Maximal Independent Set Computing a maximal in-
dependent set (MIS) in ad hoc wireless networks is of par-
ticular interest because an MIS serves as a de facto infras-
tructure for deploying complex communication services like
routing, virtual network backbone, and global broadcast.

Recent investigations into computing an MIS in wireless
networks include [17, 19, 24, 25] which employ different tech-
niques, both deterministic and probabilistic, that share com-
mon properties. Each process repeatedly participates in a
competition with the neighboring processes. The processes
that win a competition join the MIS and the processes that
lose the competition do not join the MIS. If neighboring
processes neither win nor lose a competition, then they re-
set to a predetermined state and restart the competition.
While the techniques appear to be similar to each other,
the specific algorithms in the aforementioned articles differ
significantly because the low-level network properties vary
among the different system models.

Although the various techniques that solve LE and MIS,
respectively, share a similar structure, each individual tech-
nique exploits network-specific properties. Therefore, if such
network-specific properties are abstracted into a system ser-
vice with a fixed interface, then solving LE or MIS using such

an interface is arguably simpler. The construction of this in-
terface itself may be system-dependent, but the algorithms
using this interface may be network agnostic; in effect, the
algorithms designed for such an interface are portable across
systems on which such interfaces are built. In this paper,
we argue that the Abstract MAC layer is one such interface,
and we demonstrate how the Abstract MAC layer simplifies
the algorithms for solving LE and MIS.

Abstract MAC Layer Current work on abstract MAC
layer can be classified as either implementing abstract MAC
layers on physical networks or designing algorithms that use
an abstract MAC layer. In [11], abstract MAC layers are
implemented on wireless networks that use analog network
coding such as Zigzag decoding [7], and in [10], determinis-
tic and probabilistic abstract MAC layers are implemented
in the collision-prone radio network model [2]. Addition-
ally, the results in [10] provide efficient solutions for single-
message and multi-message broadcast problems using the
abstract MAC layer. The abstract MAC layer is used in
[5] to build the dynamic-graph model from [26]. In brief,
the dynamic-graph model allows communications channels
to go up and down, subject to certain restrictions, and thus,
constantly change the topology of the network.

3. SYSTEM MODEL
Our model considers a finite set of n processes with unique

IDs from a fixed finite ID space. The ID of each process i
is denoted idi and is immutable. Each process in an I/O
automaton [18] with a fixed initial state, knows its own ID,
but has no knowledge of other processes in the system. Pro-
cesses communicate with each other through the abstract
MAC layer as described next. We assume that processes
take steps asynchronously and may either wake up sponta-
neously, or wake up upon receiving a message from another
process.

Notation. We denote an event e that occurs at process i
as ei. Analogously, a variable v at a process i is denoted vi.

3.1 Abstract MAC Layer
Informally, the abstract MAC layer [14, 15, 16] may be

viewed as a reliable local-broadcast service that provides
feedback to the sender in the form of an acknowledgment
after the message has been successfully delivered. However,
the service need not provide information about the particu-
lar recipients of the message.

More precisely, the abstract MAC layer is an I/O au-
tomaton [18] that provides an interface with bcast(m)i and
abort(m)i inputs and rcv(m)i and ack(m)i outputs for every
messagem in some fixed alphabet and every process automa-
ton i in the system. The abstract MAC layer is assumed
to be implemented on top of the physical wireless network.
Next, we describe the behavior of the abstract MAC layer
when composed with the physical network and its interac-
tion with processes in the system. Intuitively, bcast(m)i de-
notes the broadcast of a message m by process i, abort(m)i
denotes process i aborting an ongoing broadcast of message
m, rcv(m)i denotes the receipt of a message m by process
i, and ack(m)i denotes the receipt of the ack for a previous
broadcast of message m by i.

To describe meaningful behaviors of the MAC layer, we
assume the following well-formedness conditions for the pro-
cess automata interacting with the abstract MAC layer when
composed with the physical network.

Fix an execution α of the system composed of the physical
network, abstract MAC layer, and process automata. We
say that α is well-formed iff the following hold: (1) every
abort(m)i is preceded by a bcast(m)i with no intervening
bcast()i, ack()i, or abort()i events; (2) every two bcast()i
events have an intervening ack()i or abort()i event.

Cause function. There exists a “cause” function that
maps each rcv(m)j event to a preceding bcast(m)i event,
for i 6= j, and maps each ack(m)i event and each abort(m)i
event to a preceding bcast(m)i event.

Constraints on message behavior. If an event e ≡
bcast(m)i “causes” an event e′ ≡ rcv(m)j , then (1) no other
rcv(m)j event “caused” by e precedes e′, and (2) no ack(m)i
event caused by e precedes e′. If an event e ≡ bcast(m)i
“causes” an event e′ ≡ ack(m)i, then (1) no other ack(m)i
event “caused” by e precedes e′, and (2) no abort(m)i event
“caused” by e precedes e′. Finally, every bcast(m)i event
“causes” either an ack(m)i event or an abort(m)i event.

Delay Functions. For time-complexity analysis, we as-
sume that for every pair of processes i and j that are within
the communication radius of each other, there exist up-
per bounds on the duration between a bcast(m)i event and
the rcv(m)j and ack(m)i events “caused” by the bcast(m)i
event. These upper bounds may depend on the communi-
cation graph G and are specified by two functions frcv and
fack. The function frcv denotes the finite upper bound on
the duration between a bcast(m)i event and the rcv(m)j
event that is “caused” by event bcast(m)i. The function
fack denotes the upper bound on the duration between a
bcast(m)i and the ack(m)i event that it “causes”.

However, note that the algorithms presented in this pa-
per do not use the bounds frcv and fack. The bounds are
used only for time complexity analysis, and therefore, these
bounds need not be known to the processes.

4. LEADER ELECTION
In this section we define the leader election (LE) prob-

lem and provide a solution to the LE problem in single-hop
networks using the abstract MAC layer.

4.1 Problem Definition
Briefly, leader election (LE) is a problem in which all the

processes in the system elect some process as the leader
unanimously. A solution to LE is an I/O automaton [18]
that has output actions leader(l)i for each process i and
each process ID l, and the automaton has no input actions.
In every fair execution, each process i elects a leader ex-
actly once via an event leader(l)i; furthermore, all processes
elect the same leader l. More precisely, the LE problem is
specified by two sets of properties of automaton executions:
safety and liveness properties.

Safety Properties. We consider two safety properties,
which hold in all executions. First, for each process i at
most one leader()i event occurs. Second, for every pair of
processes (i, j), if events leader(li)i and leader(lj)j occur,
then li = lj and li is the ID of some process in the system.
Liveness Property. The liveness property states that in

any fair execution1, for every process i in the system, some
event of the form leader()i occurs.

1Note that a fair execution is one in which every process
takes infinitely many steps. If no actions are enabled, then
we assume that a process takes a no-op step.

4.2 Algorithm Overview
The pseudocode of our proposed LE algorithm is shown

in Algorithm 1 and described next.

Algorithm 1: Leader election in 1-hop networks on
top of the Abstract MAC layer.
Actions at each process i whose ID is stored in the variable id.

Variables:
id: a constant, contains the value idi
output: a process ID or ⊥, initially ⊥
neighbor: a set of process IDs, initially ∅
candidate: a set of process IDs, initially ∅
dropout: a set of process IDs, initially ∅
IDset: a set of process IDs, initially ∅

Actions:
thread main

/∗ Phase 1: Discovery Phase ∗/
perform bcast(〈id,“hello”〉)
wait until event ack(〈id,“hello”〉) /∗ See thread ackHello ∗/

/∗ Phase 2: Competition phase ∗/
if (neighbor = ∅ ∨ id > max(neighbor))
then msg := 〈id,“compete”〉

else msg := 〈id,“dropout”〉
perform bcast(msg)
while ((neighbor 6⊆ dropout ∪ candidate)∨

(event ack(msg) has not occurred))
upon event rcv(〈idj ,“dropout”〉):
dropout := dropout ∪ {idj}

upon event rcv(〈idj ,“compete”〉):
candidate := candidate ∪ {idj}

endwhile
/∗ Event ack(msg) has occured before exiting the loop ∗/

/∗ Phase 3: Decision phase ∗/
if ((neighbor = ∅) ∨ (id > max(neighbor))∧

(dropout ∩ neighbor = neighbor))
perform bcast(〈id,“leader”〉)
wait until event ack(〈id,“leader”〉)
output := id

else
wait until event rcv(〈idj ,“leader”〉)
output := idj

perform leader(output)

thread recvHello
upon event rcv(〈idj ,“hello”〉): IDset := IDset ∪ {idj}

thread ackHello
upon event ack(〈id,“hello”〉): neighbor := IDset

The algorithm consists of three phases at each process:
discovery phase (Phase 1), competition phase (Phase 2), and
decision phase (Phase 3).

In the discovery phase, each process i broadcasts a “hello”
message via the abstract MAC layer’s bcast()i action and
waits for the ack of its broadcast before moving to the com-
petition phase. Note that the abstract MAC layer guaran-
tees that i will receive a unique ack for the broadcast, and
furthermore, all the other processes within i’s communica-
tion radius will receive the “hello” message before i receives
the ack. The set of processes from whom i receives a “hello”
message, prior to the ack of its own broadcast, constitutes
the neighbor set of process i. Note that it is possible for
some process to receive the ack of its “hello” message before
having received “hello” messages from all or any of the other

processes. Therefore, the neighbor set need not include all
of the processes in the network.

In the competition phase, if every process in i’s neighbor
set has a lower ID than i, then i broadcasts a“compete”mes-
sage; otherwise, i drops out of the competition and broad-
casts a “dropout” message. In both cases, i broadcasts its
message via the abstract MAC layer’s bcast()i action. Upon
receiving a “compete” (or “dropout”) message from j, i adds
j to its candidate set (or, dropout set, respectively). Pro-
cess i remains in the competition phase until two conditions
are satisfied: (1) process i has received a “compete” or a
“dropout” broadcast message from each of the processes in
its neighbor set, and (2) process i has received the ack (from
the abstract MAC layer) for its sole broadcast in the compe-
tition phase. When the above two conditions are satisfied, i
transitions to the decision phase.

In the decision phase, process i elects itself to be the leader
iff i was competing in the competition phase and all the
processes in its neighbor set are in its dropout set. Upon
electing itself leader, process i broadcasts a “leader” message
via the bcast()i action. Otherwise, i waits for some other
process to broadcast a“leader”message and elects the sender
of that message as the leader.

4.3 Proof of Correctness
To show that the pseudocode in Alg. 1 solves LE, we need

to show that exactly one process broadcasts the “leader”
message in the decision phase. First, we show that at the
end of the discovery phase, for every pair of processes i and
j, either idi ∈ neighborj or idj ∈ neighbori. Moreover, for
some set C of processes, their neighbor set consists of IDs
strictly less than their own ID. Next, we note that all the
processes in C compete in the competition phase. Finally,
we show that the process with the smallest ID in C is the
unique process that elects itself the leader in the decision
phase.

Fix a fair execution α of the system composed of Alg. 1,
the abstract MAC layer automaton, and the physical net-
work.

Lemma 1. In α, for every process i at most one leader()i
event occurs.

Proof. Follows from the pseudocode.

Lemma 2. Let i and j be a pair of processes. At least
one of the following is true in the suffix of α that follows
events ack(〈idi,“hello”〉)i and ack(〈idj ,“hello”〉)j: (1) idi ∈
neighborj, (2) idj ∈ neighbori.

Proof. From the pseudocode we know that the event
bcast(〈idi“hello”〉)i and the event bcast(〈idj“hello”〉)j occur
exactly once at indices (say) ti and tj of α, respectively.
From the pseudocode, we know that α satisfies the well-
formedness properties described in Section 3.1. Therefore,
from the properties of the MAC layer, we know that, in α,
the event ack(〈idi,“hello”〉)i occurs at index (say) ti.a (sub-
script a stands for “ack”) and the event ack(〈idj ,“hello”〉)j
occurs at index tj.a, respectively. Also, from the MAC layer
properties, we know that, in α, event rcv(〈idj ,“hello”〉)i oc-
curs at index (say) ti.r (subscript r stands for “rcv”) and
event rcv(〈idi,“hello”〉)j occurs at index (say) tj.r, respec-
tively. Furthermore, ti < tj.r < ti.a and tj < ti.r < tj.a,
because of the guarantees of the MAC layer.

If tj.a < ti.a, then we know that ti.r < ti.a, else we
know that tj.r < tj.a. Thus, without loss of generality, let
ti.r < ti.a in α. That is, when rcv(〈idj ,“hello”〉)i occurs (at
time ti.r), the event ack(〈idi,“hello”〉)i has not occurred yet;
therefore, when event ack(〈idi,“hello”〉)i occurs, i adds idj
to neighbori. Finally, from the pseudocode, we see that idj
is never removed from neighbori.

In α, let C (standing for “competitors”) denote the set
of process IDs such that for each idi ∈ C, when process
i starts executing Phase 2, either neighbori = ∅ or idi >
max(neighbori). Next, we show that C 6= ∅; that is, there
exists at least one such process.

Lemma 3. In α, C 6= ∅.

Proof. Since the IDs at all processes are unique and are
picked from a totally ordered namespace, we know that there
exists a process whose ID is the largest among all the other
processes in the system. Let that process be i (its ID is
idi). From the pseudocode, we know that the set neighbori
is populated by the IDs of other processes in the system.
Since i has the largest ID in the system, it follows that either
neighbori = ∅ or idi > max(neighbori). Therefore, idi ∈ C
and C 6= ∅.

From Lemma 3, we know that min(C), which denotes the
smallest ID in C, exists. From the pseudocode we know that
for each process i, the set neighbori remains unchanged after
the event ack(〈idi,“hello”〉)i. Hereafter, when we refer to the
value of neighbori, we refer to this unchanging value for each
process i.

Lemma 4. In α, if idi = min(C) then neighbori∩C = ∅.

Proof. Let j be an arbitrary process such that idj ∈
neighbori. Since idi ∈ C, it follows that idi > idj . Also,
idi = min(C), so by the definition of min(C), it follows that
idj /∈ C. In other words, neighbori ∩ C = ∅.

Lemma 5. In α, for each idc ∈ C, events bcast(〈idc,
“compete”〉)c and ack(〈idc,“compete”〉)c occur; furthermore,
for each idd /∈ C, events bcast(〈idd,“dropout”〉)d and
ack(〈idd,“dropout”〉)d occur.

Proof. From the definition of C, we know that for each
process c, where idc ∈ C, when c starts Phase 2, neighborc =
∅ or idc > max(neighborc). Therefore, in Phase 2 of the
pseudocode, we see that for each process c, the event
bcast(〈idc,“compete”〉)c occurs exactly once. From the prop-
erties of the abstract MAC layer, we know that the event
ack(〈idc,“compete”〉)c occurs exactly once. From the pseu-
docode, we know that events bcast(〈idc,“dropout”〉)c and
ack(〈idc,“dropout”〉)c do not occur.

Similarly, from the definition of C, we know that for each
process ID idd /∈ C, when d starts Phase 2, neighbord 6= ∅
and idd < max(neighbord). Therefore, in Phase 2, for
each process d, event bcast(〈idd,“dropout”〉)d occurs exactly
once. From the properties of the abstract MAC layer, event
ack(〈idd,“dropout”〉)d occurs exactly once. From the pseu-
docode, we know that events bcast(〈idd,“compete”〉)d and
ack(〈idd,“compete”〉)d do not occur.

Lemma 6. In α, if idi = min(C), then at each process j,
the event leader(idi)j occurs.

Proof. Let idi = min(C) and j be an arbitrary process.
We consider three cases: (1) j = i, (2) j 6= i and idj ∈
neighbori, and (3) j 6= i and idj /∈ neighbori.

Case 1: j = i. Since idj = idi = min(C), from Lemma
5, it follows that event bcast(〈idj ,“compete”〉)j and event
ack(〈idj ,“compete”〉)j occur. From Lemma 4, we know that
for each idk ∈ neighborj , idk /∈ C. Therefore, by Lemma 5,
event bcast(〈idk,“dropout”〉)k occurs, and from the prop-
erties of the MAC layer, event rcv(〈idk,“dropout”〉)j oc-
curs. As a result, idk is added to dropoutj and not added
to candidatej . Therefore, candidatej ∩ neighborj is always
empty, and eventually, dropoutj ∩ neighborj = neighborj .
From the pseudocode, we know that no ID is deleted from
the sets candidatej and dropoutj . Therefore, eventually,
event bcast(〈idj ,“leader”〉)j occurs in the decision phase, and
after event ack(〈idj ,“leader”〉)j occurs, outputj = idj .

Case 2: j 6= i and idj ∈ neighbori. From Lemma 4, we
know that idj /∈ C. Therefore, applying Lemma 5, we know
that event bcast(〈idj ,“dropout”〉)j occurs. From the pseu-
docode, we see that event bcast(〈idj ,“dropout”〉)j occurs
when neighborj 6= ∅ and idj < max(neighborj) in Phase
2. However, in Phase 3, since neighborj 6= ∅ and idj <
max(neighborj), it follows that event bcast(〈idj ,“leader”〉)j
does not occur.

Case 3: j 6= i and idj /∈ neighbori. We know from Lemma
2 that idi ∈ neighborj . From Lemma 5, we know event
bcast(〈idi,“compete”〉)i occurs, and from the properties of
the abstract MAC layer, event rcv(〈idi,“compete”〉)j occurs.
Consequently, dropoutj∩neighborj 6= neighborj . Therefore,
event bcast(〈idj ,“leader”〉)j does not occur.

Thus, from Cases 1, 2 and 3, it follows that the event
bcast(〈idj ,“leader”〉)j occurs only when j = i (that is, only
for process i where idi = min(C)). From the properties of
the MAC layer, we know that for each process j 6= i, event
rcv(〈idi,“leader”〉)j occurs. Therefore, for each process j
in the system, in the decision phase outputj = idi. Since
no other event in α changes the value of output, from the
pseudocode we know that the event leader(idi)j occurs.

Theorem 7. The pseudocode in Algorithm 1 solves leader
election when composed with the abstract MAC layer and the
physical network.

Proof. Consider an arbitrary execution α of the system
composed of Algorithm 1, the abstract MAC layer automa-
ton, and the physical network. From Lemma 1, we know
that at each process j, at most one leader()j event occurs
in α. From Lemma 6 we know that, in α, for each process
j in the system, event leader(idi)j occurs where i is some
unique process in the system. Thus, the safety and liveness
properties of leader election are satisfied.

4.4 Message and Time Complexity
In any execution of Algorithm 1 with an abstract MAC

layer, we see from the pseudocode that each process i sends
exactly three messages using the abstract MAC layer inter-
face. For time complexity, we assume synchronous wake up,
zero local-step time, and consider the delay functions of the
abstract MAC layer to compute the time complexity. Let
Fack be the maximum of all fack values of all processes.
Algorithm 1 composed with an abstract MAC layer termi-
nates within 3Fack time units because each process sends
and waits for the ack for exactly three messages.

5. MAXIMAL INDEPENDENT SET
In this section we define the problem of computing a max-

imal independent set (MIS) and provide an algorithm which
computes an MIS in a multi-hop network using the abstract
MAC layer.

5.1 Problem Definition
A maximal independent set (MIS) of a graphG = (V,E) is

a subset of vertices S ⊆ V such that for every vertex vi ∈ V
either vi ∈ S or there exists an edge (vi, vj) ∈ E such that
vj ∈ S, and for every edge (vi, vj) ∈ E, {vi, vj} 6⊆ S. A solu-
tion to MIS is an I/O automaton [18] whose output actions
are member(b)i for each process i and b ∈ {true, false}, and
it has no input actions. In any fair execution, the automa-
ton eventually outputs events member(bi)i (exactly once)
at each process i where bi is a Boolean such that the set S
of processes at which the event member(true) occurs is an
MIS. More precisely, the MIS problem is specified by two
sets of properties of automaton executions: safety and live-
ness properties.

For each process i, let Ni denote the set consisting of all
the processes that are neighbors of i in G.

Safety Properties. First, in any execution, for each
process i, at most one member()i event occurs. Second, the
following two properties must hold:

• Independence: In any execution, for every pair of pro-
cesses i and j that are neighbors, if events member(bi)i
and member(bj)j occur, then it is not the case that
bi = bj = true.

• Maximality: In any execution, for every process i, and
for all j′ ∈ Ni ∪ {i}, if events member()j′ occur, then
∃j ∈ Ni ∪ {i} such that event member(true)j occurs.

Liveness Property. In any fair execution, for each pro-
cess i, some member()i event occurs.

5.2 Algorithm Overview
The pseudocode of the algorithm is shown in Algorithm 2.

The algorithm consists of three phases at each process: dis-
covery phase, competition phase, and decision phase. Each
process announces itself to all its neighbors (the processes
that are within its communication radius) in the discovery
phase. In the competition phase, each process participates
in a competition with its neighbors to determine whether or
not it should join the MIS. In the decision phase, processes
that win the competition join the MIS, and other process
terminate without joining the MIS. These three phases are
part of thread main of the pseudocode of the algorithm.

Each process, in its discovery phase, broadcasts its ID
through a“hello”message. The phase ends when the process
receives the ack for its broadcast, and the process proceeds
to the competition phase. Throughout the execution, when
a process (say) i receives a “hello” message from another
process (say) j, the ID idj is added to the set neighbori
(as shown in thread rcvHello in the pseudocode). Unlike in
Algorithm 1, here i updates its neighbori set throughout the
execution of the algorithm.

In the competition phase, each process competes or drops
out depending on the IDs in its neighbori set. Each process
i, at the start of its competition phase, is neither competing
nor dropping out. The competition phase consists of a while
loop and each process i remains in this loop until it can
irrevocably decide on its membership in the MIS.

Algorithm 2: MIS in multi-hop networks with the
Abstract MAC layer.
Actions at each process i whose ID is id.

Variables:
currentState: an element of {hello, compete, droppedOut},

initially hello
quit: a Boolean, initially false
neighbor: a set of process IDs, initially ∅
candidate: a set of process IDs, initially ∅
dropout: a set of process IDs, initially ∅

Actions:
thread rcvHello
upon event rcv(〈idj ,“hello”〉):

neighbor := neighbor ∪ {idj}

thread rcvCompete
upon event rcv(〈idj ,“compete”〉):
candidate := candidate ∪ {idj}
dropout := dropout \ {idj}

thread rcvDropout
upon event rcv(〈idj ,“dropout”〉):
dropout := dropout ∪ {idj}
candidate := candidate \ {idj}

thread rcvMember
upon event rcv(〈idj ,“member”〉):
quit := true

thread rcvNotMember
upon event rcv(〈idj ,“not member”〉):
neighbor := neighbor \ {idj}
candidate := candidate \ {idj}
dropout := dropout \ {idj}

thread main /∗ See Algorithm 3 ∗/

cobegin /∗ Execute the following threads concurrently ∗/
main // rcvHello // rcvCompete // rcvDropout //
rcvNotMember // rcvMember

coend

Each iteration of the while loop may be viewed as a lo-
cal phase of the algorithm. Different processes may execute
a different number of such local phases, and different pro-
cesses may be at different phases concurrently. At the start
of the loop, each process i determines whether it will com-
pete or drop out of competition based on the following rule:
if some process ID in the neighbori set has a higher value
that idi, then process i drops out of the competition (be-
cause a higher-ID neighbor may join the MIS), and other-
wise, process i competes. In either case, every time process
i changes its decision to compete, or to drop out, it broad-
casts a message announcing its intention (to either compete
or drop out). Also, process i maintains a partitioning of
the neighbori set into two disjoint sets: candidatei and
dropouti. The set candidatei contains the processes that
are competing to join the MIS, and the set dropouti con-
tains the processes that are dropped out of competition.

The candidatei and dropouti sets are updated as follows.
Upon receiving a message from some other process (say) j
announcing that j is competing, idj is added to candidatei
and removed from dropouti (as shown in thread rcvCompete
of the pseudocode). Similarly, upon receiving a message
from j announcing that it is dropped out, idj is added to
the dropouti set and removed from the candidatei set (as
shown in thread rcvDropout of the pseudocode). Note that

a process i may compete in one iteration (because it has
the highest ID among the neighbors it has heard from) and
drop out in another iteration (because it received a message
from a neighbor with a higher ID than idi) and revert to
competing again in some future iteration (because all the
neighbors with higher ID than idi have decided not to join
the MIS). The number of times process i switches back and
forth between competing and dropping out depends on the
number of neighbors of i with ID higher than idi.

Algorithm 3: Thread main from Algorithm 2.

thread main
/∗ Phase 1: Discovery Phase ∗/
perform bcast(〈idi,“hello”〉)
wait until event ack(〈idi,“hello”〉)

/∗ Phase 2: Competition Phase ∗/
while ((neighbor 6= dropout ∨ currentState 6= compete)∧

¬quit)
if (neighbor = ∅ ∨ idi > max(neighbor))
if (currentState 6= compete)
perform bcast(〈idi,“compete”〉)
wait until ack(〈idi,“compete”〉)
currentState := compete

else
if (currentState 6= droppedOut)
perform bcast(〈idi,“dropout”〉)
wait until ack(〈idi,“dropout”〉)
currentState := droppedOut

wait until neighbor = candidate ∪ dropout
endwhile

/∗ Phase 3: Decision Phase ∗/
if (quit) /∗ Do not join MIS ∗/
perform bcast(〈idi,“not member”〉)
wait until event ack(〈idi,“not member”〉)
perform member(false)

else /∗ Join MIS ∗/
perform bcast(〈idi,“member”〉)
wait until event ack(〈idi,“member”〉)
perform member(true)

halt

A process can irrevocably join the MIS iff all of its neigh-
bors have either dropped out or decided not to join the MIS,
and a process can irrevocably not join the MIS iff one of its
neighbors joins the MIS. Eventually, each process i exits the
while loop, and enters the decision phase, if (1) neighbori is
empty, (2) process i is competing whereas all the processes
in its neighbori set have dropped out, or (3) one of its neigh-
bors joins the MIS. In cases (1) and (2), i joins the MIS, and
in case (3), i decides to not join the MIS.

If a process i receives a broadcast from j that states that
j has joined the MIS, then process i decides not to join
the MIS (through setting the quit variable to true in thread
rcvMember). If a process i receives a broadcast from j that
states that j has decided to not join the MIS (through thread
rcvNotMember), then i removes idj from its neighbori set
as shown in thread rcvNotMember (and therefore, idj is
removed from the dropouti and candidatei sets as well).

5.3 Proof of Correctness
In order to show that the pseudocode in Algorithm 2 com-

putes an MIS, we need to show that all fair executions of Al-
gorithm 2 satisfy the safety and liveness properties of MIS
in Section 5.

The structure of the proof of correctness is as follows.
First, note that the pseudocode establishes the first safety
requirement: for each process i, at most one member()i
event occurs. The lemmas that follow help establish the
independence and maximality safety properties, and finally,
the progress property.

Lemma 8 and Corollary 9 establish that while a process i
is in its competition phase, for all neighbors j of i, idi is in j’s
neighbor set. If process i (eventually) joins the MIS, then
the following Lemmas hold. Lemma 10 shows that for all
neighbors j of i, idi is in the neighborj set even after i exits
the competition phase. Lemma 11 establishes that when i
exits its competition phase, its quiti variable is false, and
Lemma 12 shows that for the remainder of the execution,
for each neighbor j of i, idi is in the candidatej set.

The above lemmas help establish the independence prop-
erty in Lemma 13, and the maximality property in Lemma
14. The liveness property is established through helper Lem-
mas 15 and 16: Lemma 15 shows that at each process, its
neighbor set is always a superset of the union of its dropout
and candidate set, and Lemma 16 shows that at each pro-
cess, its neighbor set is eventually and permanently equal
to the union of its dropout and candidate set. Lemma 16
is used to establish the liveness property in Lemma 17 and
Corollary 18. Finally, Theorem 19 proves correctness by
invoking Lemmas 13 and 14, and Corollary 18.

For the remainder of this section, fix a fair execution α
of the automaton composed of Algorithm 2, the abstract
MAC layer and the physical system. Let α[k] denote the
k-th event in α; k is said to be the index at which event α[k]
occurs.

Lemma 8. In α, for every pair of processes (i, j), where
i and j are neighbors, in the suffix that follows the event
ack(〈idi,“hello”〉)i, idi ∈ neighborj, until the event
rcv(〈idi,“not member”〉)j occurs.

Proof. From the pseudocode we know that the event
bcast(〈idi,“hello”〉)i occurs exactly once in α at index (say)
ti. That is, α[ti] denotes the event bcast(〈idi,“hello”〉)i.
From the properties of the MAC layer, we know that, in α,
the event ack(〈idi,“hello”〉)i occurs at index (say) ti.a (sub-
script a stands for “ack”). Also, from the properties of the
MAC layer, we know that, in α, event rcv(〈idi,“hello”〉)j
occurs at index (say) tj.r (subscript r stands for “rcv”),
where ti < tj.r < ti.a. From the pseudocode, we know
that j adds idi to neighborj in thread rcvHello when event
rcv(〈idi,“hello”〉)j occurs. Finally, note that idi is removed
from neighborj only in thread rcvNotMember when event
rcv(〈idi,“not member”〉)j occurs.

Corollary 9. In α, while process i is in its competi-
tion phase, for each process j that is a neighbor of i, idi ∈
neighborj.

Proof. Follows from the pseudocode, Lemma 8, and the
observation that event rcv(〈idi,“not member”〉)j occurs only
when i is in its decision phase.

Lemma 10. In α, if event member(true)i occurs, then in
the suffix of α starting from the last state in which process
i is in its competition phase, for each neighbor j of i, idi ∈
neighborj.

Proof. From Lemma 8, we know that in the suffix fol-
lowing event ack(〈idi,“hello”〉)i (which occurs in the dis-
covery phase), for each process j that is a neighbor of i,

idi ∈ neighborj until event rcv(〈idi,“not member”〉)j oc-
curs. However, from the pseudocode we know that such an
event cannot occur if member(true)i event occurs. There-
fore, the suffix of α starting from when i enters its competi-
tion phase i ∈ neighborj .

Lemma 11. In α, if event member(true)i occurs, then in
all the states in α where process i is in its competition phase,
quiti = false.

Proof. If event member(true)i occurs, then from the
pseudocode, we see that in the state succeeding the event
in which i enters its decision phase, quiti = false. From
the pseudocode, we know that before entering its decision
phase, i is in its competition phase. Since we know from the
pseudocode that quiti = true is a stable predicate, for quiti
to be false when i enters its decision phase, quiti must be
false while i is in its competition phase.

Lemma 12. In α, if event member(true)i occurs, then in
the suffix of α starting from the last state in which process
i is in its competition phase, for each neighbor j of i, idi ∈
candidatej.

Proof. Applying Lemma 11 we know that, when i exits
the while loop in the main thread, quiti is false. However,
the exit condition for the loop is that either (1) quiti is true,
or (2) neighbori = dropouti and currentStatei = compete.
Thus, we know that when i exits the while loop, neighbori =
dropouti and currentStatei = compete.

From the pseudocode, we see that in order for the value of
currentStatei to be set to compete upon exiting the while
loop, the following must be true. Let events α[tbcast] ≡
bcast(〈idi,“compete”〉)i and α[tack] ≡ ack(〈idi,“compete”〉)i
be the last pair of bcast()i and ack()i events to occur before
i exits the while loop. Therefore, no bcast(〈idi,“dropout”〉)i
event occurs after event α[tack]. The above argument con-
cludes that for each process j that is a neighbor of i, event
α[tj.rcv] ≡ rcv(〈idi,“compete”〉)j occurs which is “caused”
by α[tbcast] and no event rcv(〈idi,“dropout”〉)j occurs after
α[tj.rcv]. Therefore, we conclude that event α[tj.rcv] adds
idi to the set candidatej and idi is never removed from
candidatej thereafter.

By the properties of the abstract MAC layer, we know
that tj.rcv < tack. Also, event α[tack] occurs before i exits
the competition phase. Therefore, if event member(true)i
occurs, then in the suffix of α starting from the last state in
which process i is in its competition phase, for each neighbor
j of i, idi ∈ candidatej .

Lemma 13. In α, for each pair of processes (i, j), where
i and j that are neighbors, if event member(bi)i and event
member(bj)j occur, then it is not the case that bi = bj =
true.

Proof. For the purpose of contradiction, assume that
bi = bj = true. Applying Lemmas 10 and 12 to i and its
neighbor j, we get the following: in the suffix of α starting
from the last state Si in which process i is in its competition
phase, idi ∈ neighborj ∩ candidatej . Let α[ti] denote the
event in α immediately succeeding Si.

Applying Lemmas 10 and 12 to j and its neighbor i, we
see that in the suffix of α starting from the last state Sj in
which process j is in its competition phase, idj ∈ neighbori∩
candidatei. Let α[tj] denote the event in α immediately
succeeding Sj .

Since Sj is the last state in α in which j is in the com-
petition phase, the exit condition for the while loop must
be enabled in Sj . Therefore, either (1) quitj = true or (2)
neighborj = dropoutj . Since j is in the competition phase
in Sj , applying Lemma 11 we know that quitj = false.
Therefore, neighborj = dropoutj in Sj .

Without loss of generality, let ti < tj . Therefore, Sj is
in the suffix of α that follows event α[ti], and consequently,
in Sj , idi ∈ neighborj ∩ candidatej . From the pseudocode,
we see that idi /∈ dropoutj in Sj . Thus, we see that in Sj ,
idi ∈ neighborj , and idi /∈ dropoutj ; this contradicts our
earlier conclusion that neighborj = dropoutj in Sj .

Lemma 14. In α, for every process i, and for all j′ ∈
Ni ∪ {i}, if events member()j′ occur, then ∃j ∈ Ni ∪ {i}
such that event member(true)j occurs.

Proof. Suppose in contradiction that there is no j ∈
Ni ∪{i} such that member(true)j occurs. Therefore, for all
processes j ∈ Ni ∪ {i}, event member(false)j occurs. In
particular, event member(false)i occurs.

From the pseudocode we know that event member(false)i
occurs if quiti = true. Note that quiti is set to true (in
thread rcvMember) only when, for some process j ∈ Ni,
event rcv(〈idj ,“member”〉)i occurs. This implies that event
bcast(〈idj ,“member”〉)j must have occurred in α. From the
pseudocode, we know that event bcast(〈idj ,“member”〉)j is
followed by event member(true)j . Therefore, if the event
member(false)i occurs in α, then for some process j that is
a neighbor of i, the event member(true)j occurs: a contra-
diction.

Lemma 15. In α, for each process i, the following invari-
ant holds: neighbori ⊇ dropouti ∪ candidatei.

Proof. Fix a process i. The proof is by induction on the
number of events in α. For the base case, note that, initially,
neighbori = dropouti = candidatei = ∅. Therefore, in the
initial state of α, neighbori ⊇ dropouti ∪ candidatei.

For the inductive hypothesis, assume that for some state
S in α, neighbori ⊇ dropouti ∪ candidatei. In the inductive
step, we show that in the state following S in α, neighbori ⊇
dropouti ∪ candidatei.

Let the state following S in α be S′. If the event e be-
tween S and S′ occurs at a process j 6= i, then we see that
neighbori ⊇ dropouti ∪ candidatei in S′, and the inductive
step is complete. For the remainder of this proof, we assume
that the event e occurs at process i.

The only events at process i that change the values of
neighbori, dropouti, or candidatei are in threads rcvHello,
rcvNotMember, rcvCompete, and rcvDropout. We consider
each thread separately.

Case 1. In thread rcvHello elements are only added to
the set neighbori. Therefore, if neighbori ⊇ dropouti ∪
candidatei in S, then in S′ resulting from executing thread
rcvHello neighbori ⊇ dropouti ∪ candidatei.

Case 2. Thread rcvNotMember removes the same ele-
ment from all three sets neighbori, dropouti, and candidatei.
Therefore, if neighbori ⊇ dropouti ∪ candidatei in S, then
in S′, resulting from executing thread rcvNotMember, it fol-
lows that neighbori ⊇ dropouti ∪ candidatei.

Case 3. Thread rcvCompete adds a process ID (say) idj
to candidatei and removes it from dropouti. If we show
that idj ∈ neighbori in state S, then we know that in S′,
neighbori ⊇ dropouti ∪ candidatei, and the inductive step
is complete.

Note that thread rcvCompete is executed only when event
ercv ≡ rcv(〈idj ,“compete”〉)i occurs. From the properties of
the abstract MAC layer we know that there exists a pre-
ceding event ebcast ≡ bcast(〈idj ,“compete”〉)j that “caused”
ercv, and there also exists a succeeding event eack ≡
ack(〈idj ,“compete”〉)j that was “caused” by ebcast. From
the pseudocode we know that in the execution segment from
ebcast to eack, process j is in its competition phase. There-
fore, applying Corollary 9, we know that idj ∈ neighbori in
states S and S′.

Case 4. Thread rcvDropout adds a process ID (say) idj
to dropouti and removes it from candidatei. The argument
for inductive step in this case is similar to Case 3 and has
been omitted.

Thus, in α, for each process i, the following invariant
holds: neighbori ⊇ dropouti ∪ candidatei.

Lemma 16. In α, for each process i, eventually and per-
manently, neighbori = dropouti ∪ candidatei.

Proof. Assume for contradiction that there exists some
process i such that neighbori 6= dropouti ∪ candidatei, in-
finitely often in α. From Lemma 15, we know that through-
out α, neighbori ⊇ dropouti ∪ candidatei. Therefore, we
know that neighbori ⊃ dropouti ∪ candidatei, infinitely of-
ten in α. That is, there exists a process j such that idj ∈
neighbori and idj /∈ dropouti ∪ candidatei, infinitely often.

From the pseudocode, we see that if idj is deleted from
neighbori in some event e, then in the suffix of α that fol-
lows e, idj /∈ neighbori. Therefore, if idj ∈ neighbori
infinitely often, then in all the states of some suffix of α,
idj ∈ neighbori.

Also, from the pseudocode, we see that if idj ∈ dropouti∪
candidatei in any state S in α, then no event removes idj
from dropouti ∪ candidatei without also removing idj from
neighbori. Consequently, if idj ∈ neighbori and idj /∈
dropouti ∪ candidatei, infinitely often in α, then in all the
states of α, idj /∈ dropouti ∪ candidatei.

However, from the pseudocode, we see that process j
eventually enters its competition phase, and from Corol-
lary 9, we know that idj ∈ neighbori. Also, in process
j’s competition phase, either bcast(〈idj ,“compete”〉)j event
or bcast(〈idj ,“dropout”〉)j event occurs. From the proper-
ties of the abstract MAC layer, we know that such an event
“causes” either an event rcv(〈idj ,“compete”〉)i or an event
rcv(〈idj ,“dropout”〉)i, respectively. Consequently, there ex-
ists a state S′ in α in which either idj ∈ candidatei or
idj ∈ dropouti. This contradicts our earlier conclusion that
idj /∈ dropouti ∪ candidatei throughout α.

For any prefix of α, let M denote the set of processes
at which some member() event has occurred in that prefix.
Recall that J is the set of processes in the system. Therefore,
M ⊆ J and |M | ≤ n. We now prove progress through the
following helper lemma.

Lemma 17. For all k ∈ N, where 0 ≤ k ≤ n, there exists
a prefix β of α such that |M | = k.

Proof. The proof is by induction on the size of M .
Base Case: There exists a prefix β of α in which |M | = 0.

The proof is as follows: initially, no member() events have
occurred, so M = ∅ and the base case holds true.

Inductive Hypothesis: There exists a prefix β of α such
that |M | = k for some k < n.

Inductive Step: Now we show that there exists a prefix
β′ of α in which |M | = k + 1.

Let γ be the suffix of α starting from the end of β. For the
purpose of contradiction, assume that for each j ∈ J \M , no
member()j events occur in γ; that is, no member()j event
occurs in α. Therefore, j is in its competition phase eventu-
ally and permanently. At the start of γ, let i be the process
with the highest ID in J \M (so, no member()i events have
occurred in β). Let N ′i denote the set of processes in J \M
that are neighbors of i.

Since no member()i event occurs in α, i is in its com-
petition phase eventually and permanently, and therefore,
quiti = false in all states of α. From the pseudocode, we
know that quiti is a stable predicate. From the pseduocode,
we see that quiti is set to true when a rcv(〈idj ,“member”)i
event occurs (for some j). Therefore, for each process j ∈M
that is a neighbor of i, event rcv(〈idj ,“member”)i does not
occur and event rcv(〈idj ,“not member”)i occurs. Thus, we
know that eventually and permanently, idj /∈ neighbori,
idj /∈ dropouti, and idj /∈ candidatei. In other words,
eventually and permanently, sets neighbori, dropouti, and
candidatei contain only the IDs of processes in N ′i .

Applying Corollary 9, we know that for each process j ∈
N ′i , idj ∈ neighbori, and idi ∈ neighborj . Since i has the
highest ID in N ′i ∪ {i}, eventually and permanently, either
neighbori = ∅ or idi > max(neighbori), and for each pro-
cess j ∈ N ′i , idj < max(neighborj) eventually and perma-
nently. Therefore, from the pseudocode, we see that, for
each j ∈ N ′i , eventually and permanently, currentStatej =
droppedOut. Furthermore, we see that when currentStatej
changes to droppedOut for the final time in α, the events
bcast(〈idj ,“dropout”〉)j and ack(〈idj ,“dropout”〉)j occur,
and until j exits the while loop, no additional bcast()j and
ack()j events occur. Therefore, neighbori = dropouti even-
tually and permanently in α.

Recall that i has the highest ID in N ′i ∪ {i}, and there-
fore, eventually and permanently, either neighbori = ∅ or
idi > max(neighbori). Therefore, eventually and perma-
nently, currentStatei = compete. Note that (neighbori =
dropouti)∧ (currentStatei = compete) is a sufficient condi-
tion for i to exit the while loop and enter its decision phase.
In the decision phase, a member()i event occurs. This con-
tradicts our assumption that for each process j ∈ J \M , no
member()j events occur in α. Therefore, some member()
event occurs in γ, and there exists a prefix β′ of α in which
|M | = k + 1.

Therefore, by induction we have proved that eventually
|M | = n in α; that is, for each process i, an event member()i
occurs.

The following corollary establishes the liveness property.

Corollary 18. For each process i, an member()i event
occurs in α.

Theorem 19. The pseudocode in Algorithm 2 computes
an MIS.

Proof. Given any arbitrary admissible execution α of
the automaton composed of Algorithm 2, the abstract MAC
layer and the physical system, the pseudocode shows that for
each process i at most one member()i event occurs, Lemmas
13 and 14 show that α satisfies the safety properties of MIS
(independence and maximality, respectively), and Corollary
18 shows that α satisfies the liveness property of MIS.

5.4 Message and Time Complexity
In any execution of Algorithm 2 on an abstract MAC

layer where ∆ is the maximum degree of the communication
graph, each process i sends at most 2∆+3 messages through
the abstract MAC layer interface. Intuitively, each neighbor
j of i such that idj > idi can contribute to an extra iteration
of the while loop at i. Summing up the two messages per it-
eration, the initial “compete” message to enter the loop, the
initial“hello”message and the final“member”/“not member”
messages we get a total of 2∆ + 3 messages.

To compute the time complexity, we assume synchronous
wakeup, zero local-step time, and consider the delay func-
tions of the abstract MAC layer. Let Fack be the maximum
of all fack values of all processes. The pseudocode in Algo-
rithm 2 computes an MIS within (2n + 2)Fack time. Intu-
itively, after processes are in the competition phase, in every
2Fack time units, at least one process decides to join or not
join the MIS. Summing up the initial Fack time units for
processes to enter the competition phase, 2Fack time units
for each process to make a decision, and additional Fack time
to broadcast the last “member”/“not member” message, we
get a total of (2n+ 2)Fack time units.

6. DISCUSSION
A Case for Asynchrony. Note that our leader election

and MIS algorithms are asynchronous despite many wireless
models and abstract MAC layer implementations providing
timing guarantees. Such asynchronous algorithms offer two
advantages. (1) The algorithms are agnostic of issues to
synchrony and therefore deployable in any system on top of
which the abstract MAC layer is constructed. (2) When de-
ployed in systems with better synchrony guarantees, these
algorithms automatically provide faster termination. For in-
stance, our leader election algorithm uses a constant number
of messages on the abstract MAC layer. When executed on
the abstract MAC layer from [11], leader election can be
solved in O(n logn) time w.h.p. Better MAC layer imple-
mentations will automatically translate to better bounds for
our algorithms.

High Time Complexity. The high time complexity
O(n) of the MIS algorithm remains to be discussed. In
contrast, the time complexities of other MIS algorithms are
much lower. For instance, the randomized algorithm in
[19] has a time complexity of O(log2 n), the deterministic
algorithms in [25] have time complexities O(log2 n) with-
out collision detection and O(logn) with collision detection,
the deterministic algorithm in [17] has a time complexity
of O(log ∆ · log∗ n) (where ∆ is the maximum degree of a
process), and the deterministic algorithm in [24] has a time
complexity of O(log∗ n). Next, we argue for the high time
complexity of our algorithm despite the aforementioned re-
sults.

Although the system model in [19] is completely asyn-
chronous without any collision detection, the MIS algorithm
is randomized whereas our MIS algorithm is deterministic.
An exponential gap between deterministic and randomized
distributed algorithms is not unexpected [2, 6].

The algorithms in [17, 24, 25] are all deterministic, but
assume lock-step synchrony. In such systems, deterministic
neighborhood discovery requires just one round of broad-
cast, whereas in systems with asynchronous abstract MAC

layer processes cannot deterministically ‘know’ their exact
neighborhood.

Also, the algorithms in [17, 24, 25] are assumed to be exe-
cuting in a growth bounded graph which imposes restrictions
on the degree of the nodes and the node density in the wire-
less network. We make no such assumptions. We contend
that the weak assumptions and the strong power of the ad-
versary in our system model contributes to the high time
complexity of our MIS algorithm.

7. REFERENCES
[1] H. Attiya and J. Welch. Distributed Computing :

Fundamentals, Simulations, and Advanced Topics.
John Wiley and Sons, Inc., 2004.

[2] R. Bar-Yehuda, O. Goldreich, and A. Itai. On the
time-complexity of broadcast in radio networks: an
exponential gap between determinism randomization.
In Proc. of the 6th Annual ACM Symposium on
Principles of Distributed Computing, pages 98–108,
1987.

[3] J. L. Bordim, Y. Ito, and K. Nakano. Randomized
leader election protocols in noisy radio networks with
a single transceiver. In Proc. of the 4th International
Symposium on Parallel and Distributed Processing and
Applications, pages 246–256, 2006.

[4] J. I. Capetanakis. Tree algorithms for packet
broadcast channels. IEEE Trans. on Information
Theory, 25(5):505–515, 1979.

[5] A. Cornejo, N. Lynch, S. Viqar, and J. L. Jennifer
L. Welch. Neighbor discovery in mobile ad hoc
networks using an abstract MAC layer. In Proc. of the
47th Annual Allerton Conference on Communication,
Control, and Computing, pages 1460–1467, 2009.

[6] M. Ghaffari, N. Lynch, and S. Sastry. Leader election
using loneliness detection. In Proc. of the 25th
International Symposium on Distributed Computing,
pages 268–282, 2011.

[7] S. Gollakota and D. Katabi. Zigzag decoding:
combating hidden terminals in wireless networks. In
Proc. of the ACM SIGCOMM 2008 Conference on
Data Communication, pages 159–170, 2008.

[8] R. Ingram, P. Shields, J. Walter, and J. L. Welch. An
asynchronous leader election algorithm for dynamic
networks. In Proc. of the 23rd IEEE International
Parallel and Distributed Processing Symposium, 2009.

[9] T. Jurdziński, M. Kutylowski, and J. Zatopiański.
Efficient algorithms for leader election in radio
networks. In Proc. of the 21st Annual Symposium on
Principles of Distributed Computing, pages 51–57,
2002.

[10] M. Khabbazian, F. Kuhn, D. R. Kowalski, and
N. Lynch. Decomposing broadcast algorithms using
abstract MAC layers. In Proc. of the 6th International
Workshop on Foundations of Mobile Computing, pages
13–22, 2010.

[11] M. Khabbazian, F. Kuhn, N. Lynch, M. Medard, and
A. P. Gheibi. MAC design for analog network coding.
In Proc. of the 7th ACM SIGACT/SIGMOBILE
International Workshop on Foundations of Mobile
Computing, pages 42–51, 2011.

[12] D. Kowalski and A. Pelc. Broadcasting in undirected

ad hoc radio networks. Distributed Computing, 18(1),
2005.

[13] D. Kowalski and A. Pelc. Leader election in ad hoc
radio networks: A keen ear helps. In Proc. of the 36th
International Colloquium on Automata, Languages
and Programming, pages 521–533, 2009.

[14] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. In Proc. of the 23rd International
Conference on Distributed Computing, pages 48–62,
2009.

[15] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. Technical Report
MIT-CSAIL-TR-2010-040, CSAIL, MIT, 2010.

[16] F. Kuhn, N. Lynch, and C. Newport. The abstract
MAC layer. Distributed Computing, 24(3):187–296,
2011.

[17] F. Kuhn, T. Moscibroda, T. Nieberg, and
R. Wattenhofer. Fast deterministic distributed
maximal independent set computation on
growth-bounded graphs. In Proc. of the 19th
International Symposium on Distributed Computing,
pages 273–287, 2005.

[18] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann, 1996.

[19] T. Moscibroda and R. Wattenhofer. Maximal
independent sets in radio networks. In Proc. of the
24th Annual ACM Symposium on Principles of
Distributed Computing, pages 148–157, 2005.

[20] K. Nakano and S. Olariu. Randomized leader election
protocols in radio networks with no collision detection.
In Proc. of the 11th International Conference on
Algorithms and Computation, pages 362–373, 2000.

[21] K. Nakano and S. Olariu. Leader election protocols for
radio networks. In Handbook of wireless networks and
mobile computing, pages 219–242. John Wiley & Sons,
Inc., 2002.

[22] K. Nakano and S. Olariu. A survey of leader election
protocols for radio networks. In Proc. of the
International Symposium on Parallel Architectures,
Algorithms and Networks, pages 63–68, 2002.

[23] K. Nakano and S. Olariu. Uniform leader election
protocols for radio networks. IEEE Trans. on Parallel
and Distributed Systems, 13(5), 2002.

[24] J. Schneider and R. Wattenhofer. A log-star
distributed maximal independent set algorithm for
growth-bounded graphs. In Proc. of the 27th
Symposium on the Principles of Distributed
Computing, pages 35–44, 2008.

[25] J. Schneider and R. Wattenhofer. What is the use of
collision detection (in wireless networks)? In Proc. of
the 24th International Symposium on Distributed
Computing, pages 133–147, 2010.

[26] J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual
exclusion algorithm for ad hoc mobile networks.
Wireless Networks, 7:585–600, 2001.

[27] D. E. Willard. Log-logarithmic selection resolution
protocols in a multiple access channel. SIAM Journal
of Computing, 15:468–477, 1986.

