Bounds on the Time to Detect Failures
Using Bounded-capacity Message Links

Stephen Ponzio*
MIT Laboratory for Computer Science

Abstract

We consider a system of distributed processors that
communicate by passing messages and that have in-
exact information about time. Specifically, a proces-
sor knows that a single message is delayed by at most
time d and the time between any two of its consec-
utive steps is at least ¢; and at most c; it has no
other way of estimating elapsed time. This simple
model is very close to traditional models used in dis-
tributed computing theory, and has been studied by
Attiya and Lynch [2, 1] among others. We extend
the model by making a realistic assumption about
how the delay of messages is affected by the rate at
which they are sent. We define a model of message
links with bounded capacity, which are guaranteed to
deliver messages at only a given rate. If a proces-
sor sends messages at a greater rate, they may incur
greater delay.

We quantify the effect of this bounded capacity on
the time necessary to detect processor failures. We
consider a system of two processors connected by a
bi-directional message link of (integral) capacity u.
First we give two very simple protocols that guar-
antee any stopping failure will be detected within
time 2Cd + d and C?d/p + Cd + d respectively,
where C = c¢3/c;. The main result is an almost-
matching lower bound of 2Cd+d/uor C?d/u+Cd+d,
whichever is less. If the link is uni-directional, our re-
sult specializes to give a matching upper and lower
bound of C?d/u+ Cd + d.

*Supported by an NSF Graduate Fellowship

1 Introduction

In fault-tolerant distributed algorithms, a common
primitive for detecting failures is to “time out” failed
processors. If processors fail by simply stopping, then
a failure may be detected by the absence of mes-
sages from a processor. We consider how quickly
such failures can be detected in a semi-synchronous
model where processors have inexact information
about time, subject to realistic assumptions about
message links.

We use a very high level of abstraction of message
links; for our purposes, the “message link” consists
of all processing at levels lower than the process or
code that is actually implementing the timeout algo-
rithm. The delay of a message is taken to be the to-
tal amount of time that elapses between the processor
step at which the algorithm code specifies that a mes-
sage should be sent and when the recipient processor
reads in that message. At our level of abstraction,
a message link is assumed to be completely reliable,
delivering all messages in the order sent. We will as-
sume that all messages are of some fixed length, and
ignore the possible affect of a message’s length on its
delay.

For simplicity, we consider a system of two
processors.! A processor may send messages only at
atomic steps (which take zero time). It knows that
the time between each pair of its consecutive steps is
at least c; and at most c,. These bounds hold for
each processor and are common knowledge to each.
A processor cannot tell directly how much time has
elapsed between two particular steps—only that the

In [1], where systems of n processors are considered, it is
assumed that each pair of processors is connected by a pri-
vate bidirectional message link. There, it is natural to assume
that a timeout protocol executes independently for each pair of
processors. If we measure “detection time” to be from failure
until detection by every processor, the bounds hold without
this assumption.

236

1052-8725/92 $3.00 © 1992 IEEE

elapsed time is within these bounds. For each model
of message links considered, a message sent in the
absence of other messages is always delivered within
time d of when it is sent. We are interested in the
worst-case time between when a processor fails and
when the failure is detected by the other processor.

If it is assumed that every message is delivered
within time d of when it is sent (regardless of mes-
sage traffic—“unbounded capacity”), then the follow-
ing simple protocol minimizes the time between any
failure and its detection.? Each processor sends a
message at every step that it takes. If a proces-
sor takes more than (d + c3)/c; steps without re-
ceiving a message, it declares the other processor
faulty. We see that non-failed processors are never
declared faulty: the time between delivery of any
two consecutive messages is at most ¢, + d and at
least this much time—(d + ¢3)/c; steps, each tak-
ing at least time ¢;—is waited by the recipient be-
fore declaring the sender faulty. The maximum time
between a failure and its detection is approximately
Cd + d, where C = c¢2/¢1, occurring in the follow-
ing scenario: processor p broadcasts a message at
time t and then fails immediately; this message is
delivered to g at time t + d; after receiving this mes-
sage, processor ¢ runs slowly (its steps separated by
¢2) and thus p’s failure is not detected until time
t+d+ 62((d+ 02)/61) =t+d+ C(d+ 62). It is not
difficult to show that this detection time is optimal.

Although the above protocol guarantees minimal
delay between any failure and its detection, it requires
sending messages nearly continuously. It relies on
the strong assumption that all messages are delivered
within time d, regardless of the rate at which they are
sent. In reality, the rate at which a processor issues
messages may be much greater than the rate at which
messages may be actually sent and delivered. In such
a case, lower-level processing buffers the messages by
holding them in a queue in memory until they can ac-
tually be sent. If messages are continually issued at a
rate greater than they can be sent, then the number
of queued messages grows without bound. Thus there
is an upper bound on the rate at which messages can
be issued before such backup occurs. It is precisely
this rate that will affect the bound on detection time.
Our model gleans this rate by the following reasoning.
The maximum total delay d of a single message may
account for several levels of processing. It is therefore

2This is the strategy employed in the algorithms of {1] and
[6], which assume such unbounded-capacity message links.

likely that although one message is sent at time ¢ and
delivered at time ¢t + d, another message may be sent
before time t + d without affecting the total delay of
the second message. That is, messages sent between
the processors (algorithm code) may be pipelined to
some degree. The number of messages that can be in
transit between the processors without affecting the
total delay of any message correponds roughly to our
notion of the “capacity” p of a message link. In our
model, if all messages sent are separated by at least
time d/p, then each one is delivered within time d;
if two messages are sent within less than time d/u of
each other, the second message may be delayed by
more than d. This is the essential property of the
message links we will consider. QOur upper bounds
depend only on this property; our lower bounds de-
pend only on the property that if messages are sent
at too great a rate then they become backed up and
their delay grows.

We first give two very simple protocols that guaran-
tee any stopping failure will be detected within time
2Cd+d and C?d/u+Cd+drespectively. The main re-
sult is an almost-matching lower bound of 2Cd +d/u
or C?d/p+ Cd + d, whichever is less. Note that the
first expression of the lower bound is not tight with
the first expression of the upper bound. If the link is
uni-directional, our result specializes to give a match-
ing upper and lower bound of C?d/u + Cd + d.

2 Model and definitions

Our underlying formal model is that proposed by
Lynch and Attiya [2, 1], following the timed automata
model of [5). We consider a system of two processors,
p and q. Each processor is a deterministic (possi-
bly infinite) state machine. Formally, an execution
of the algorithm is a sequence of configurations alter-
nated with events. A configuration is a vector of the
processors’ local states. Each event has a real time
associated with it and these times are non-decreasing
with the sequence. Events are of three types:

1. A processor computation step. In a computa-
tion step, a processor, based on its local state,
may perform local computation and send a fi-
nite number of messages to other processor(s).

2. A message delivery, del(m,z). A message de-
livery event may denote the delivery of a mes-
sage to a processor (del(m,p)) or to a message

237

link (del(m, £)). If a message delivery event de-
notes the delivery of a message m to a processor
p, p may change its local state according to m
and its current state (i.e., “remember” the de-
livered message). Events corresponding to mes-
sages “delivered” to links serve only to mark the
time at which a message is sent, as explained in
the next section.

3. A processor failure. During a failure step, a pro-
cessor’s normal computation transition function
is applied to its local state, but only a subset
of the specified messages are actually sent and
the processor goes into a permanent fasled state.
In all subsequent steps, it remains in the failed
state.

For further details and precise formalism, we refer the
reader to [1]. Our formalism for messages links cap-
tures their interaction with processors by considering
a message m sent by p to ¢ at time t to be “deliv-
ered” at time ¢ to the message link connecting p and
q. That is, we consider only executions in which ev-
ery computation event at which a message m is sent is
followed by a delivery event del(m,£) with the same
real time, where £ is the appropriate message link. If
the message link has unbounded capacity (like those
in [1, 6]), then valid executions must include an event
no later than time t + d corresponding to the deliv-
ery of m at ¢. For simplicity, we will assume that
message links deliver messages in the order sent. Our
algorithms do not make strong use of this assumption
and our lower bounds hold in spite of it. The formal-
ism for bounded links is described below. Also, we
consider only executions in which the successive steps
of all processors are separated by at least time ¢; and
at most c;. Note that a processor does not “know”
directly the time between two particular steps—this
quantity is not an argument to the state transition
function. Although it is not necessary for the proof,
we will generally assume that c; < d: processor step
time is very small compared to the maximum message
delay time. In the analysis, we therefore approximate
the quantity d + ¢ by d.

2.1 Modeling bounded-capacity links

In modeling bounded-capacity message links, we
would like to capture the reality that if messages are
sent too frequently, they may take longer to be deliv-
ered.

We define a message link of unit capacity and delay
d from p to q as follows: if p sends a message m to
g at time ¢ and ¢’ is the time at which the previous
message from p to ¢ is delivered to ¢, then m is deliv-
ered to ¢ by time max(¢,t')+d. If t < ¢/, then we say
that the message link “queues” m while the previous
message is “in transit” during the interval (t,¢'). For
positive integer u, we define a message link of capacity
u and delay d as the serial composition of 4 message
links £;,...,£,, each of unit capacity and delay d/pu.
These links are connected serially so that messages
are delivered from £; to link £;41 (1 < i< p) and £,
delivers messages to the recipient process. Formally,
we consider only executions in which the computa-
tion event with the sending of m is followed by a
del(m,£;) event at the same time, and every deliv-
ery event del(m,¢;) is followed by a delivery event
del(m, £i41) (or del(m,p) if i = p) within time d/u.

We note that this model does not necessarily cor-
respond to physical reality, but is meant to capture
the degree of message pipelining available between
the highest level processors that are exchanging mes-
sages. It is this parameter, the number of messages
that may be “in transit” at the same time without
an increase in their delay, which affects the efficiency
of failure detection.

Thus, in the absence of any other message traf-
fic, the delay of a single message is bounded by
p-d/p = d. Note that if a single component link
delays all messages by its maximum amount, d/u,
then messages are delivered at a maximum rate of
messages per time d. In particular, it is easy to see
that if the last component link delays each message
by d/u, then for any interval of time of length I, at

most [WIF messages are delivered. If no two mes-

sages are sent within time d/p of each other, then
each message is delivered within time d of when it is
sent. This is easily seen by induction. For the lower
bound, we assume only that when a link delays each
message by the maximum possible amount, at least
time d/p elapses between the delivery of messages.
For this reason, our results hold for other models of
message links with capacity p and delay d, such as
p d-delay links of unit capacity in parallel, each con-
nected directly with p and q.

2.2 Timing out failed processors

A processor is said to detect the failure of another
processor when it irrevocably decides that the other

238

has failed. A timeout protocol is correct if it satisfies
two properties for all executions and all processors
p and ¢: (1) if p fails and ¢ does not fail, then ¢
eventually detects the failure of p, and (2) if neither
p nor ¢ fails, then neither p nor ¢ detects the failure
of the other.

For a given execution a, we say that p detects the
failure of ¢ within time T in « if ¢ fails at time ¢
in @ and p detects the failure of ¢ at time ¢/ < ¢ +
T in a,. We say a timeout protocol guarantees a
detection time of T if for all processors p and ¢ and
all executions a in which p fails but ¢ does not, ¢
detects the failure of p within time T in a.

3 Simple upper bounds

An upper bound of 2Cd + d is achieved by a sim-
ple protocol that works for any link capacity. The
two processors continually exchange a single “token”
message: when p receives the token message from g,
it sends the token message back to ¢, and ¢ does like-
wise. If a processor takes more than 2(d + c2)/c1
steps without receiving a message, it concludes that
the other processor is faulty. Because there is at most
one message in transit at any time, it is always de-
livered within time d of when it is sent. Clearly a
nonfaulty processor is never timed out. This proto-
col guarantees that any failure is detected within time
2Cd+ d (to be precise, d+ 2C(d + ¢2) + c2; recall we
approximate d + ¢2 = d): if p fails at time £, then
by time ¢ + d all of the messages it has sent to ¢ are
delivered and ¢ has sent its last message to p; within
another time c2(1 + 2(d + ¢2)/c1) = 2Cd, ¢ has taken
enough steps to conclude that p has failed.

An upper bound of C%d/u + Cd + d is achieved
by a one-way protocol in which each processor sends
a message every (d/p)/ci steps. This is “one-way”
in the sense that only messages from p to ¢ are
used to detect the failure of p and these messages
are independent of messages from ¢ to p. A pro-
cessor concludes that the other has failed if it takes
more than (Cd/p + d)/c, steps without receiving a
message. Clearly, the sending times of every two
messages are separated by at least time d/p and
therefore, as shown in Section 2.1, each message is
delivered within time d of when it is sent. The
maximum amount of time between the delivery of
two consecutive messages from a given processor is
ca(d/u)/e1 + d = Cdfp + d (if the first message is
delivered immediately, the sender runs slowly, and

the following message incurs the maximum possible
delay, d). This is less than the minimum amount
of time, Cd/p + d + ¢1, that the other processor
waits before detecting failure. This protocol guaran-
tees a detection time of C?d/u + Cd + d: if p fails
at time ¢, then by time t + d all of the messages
it has sent are delivered to ¢; within another time
c2(Cd/p + d)/cy = C*d/p+ Cd, ¢ has taken enough
steps to conclude that p has failed. Thus we obtain a
simple upper bound of min(2Cd+d, C?d/p+Cd+d).

4 The lower bound

We now prove a nearly corresponding lower bound of
min(2Cd + d/p, C?d/p+ Cd+ d). Note that 2Cd +
d/p < C?*dfu+ Cd+difand only if p < C+ 1.
Thus, the bounds are tight except for 4 < C + 1; in
particular, when u < C, 2Cd + d is the best upper
bound and 2Cd + d/p is the best lower bound.

We first prove that there exists some execution in
which p runs “fast” (its steps separated by time cy),
g runs “slowly” (its steps separated by time c;), mes-
sages from g to p are delivered immediately, messages
from p to q are delayed by at least time d, and at least
time d/u elapses between when p sends some pair of
messages. We prove that such an execution is pos-
sible for any protocol that is guaranteed to detect
failures within any bounded amount of time. This is
proved below using the properties of the bounded-
capacity message links. The idea is that if the last
component link from p to ¢ delays all messages by
d/u then the delivery of every pair of messages is
separated by time d/p. Therefore, if each pair of
messages sent by p were separated by less than d/y,
then messages would be sent faster than they were
delivered. Thus the number of messages sent but
undelivered and, consequently, the total delay of a
message, would grow in time without bound. After p
crashes, the queued messages are still delivered to g,
and ¢ cannot tell that p has crashed until the queue
is emptied.

Lemma 4.1 For any correct timeout protocol that
guarantees a bounded delection time, there exists an
ezeculion in which (1) all consecutive steps of p are
separated by c1, of ¢ are separated by c3; (2) all mes-
sages from q 1o p are delayed by time 0, from p to
q are delayed by at least time d; and (3) for any to,
there ezists a pair of messages my and my sent by
p al times t1 and ty respectively, with no message

239

sent by p in between those times, such that t; > i,
ta—ty >dfp.

Figure 1 depicts an example of such an execution.

Proof: Fix any execution S of the protocol in which
(3) the first three timing constraints are satisfied, (iz)
each component link from p to ¢ delays each message
by time d/u, and (iii) no processor fails. Such an
execution exists because conditions (i), (if) and (i)
are independent of each other and within the bounds
of the model. Clearly, condition (i) implies that all
messages from p to ¢ are delayed at least time d. We
prove that third condition is also satisfied in 8. To
do so, assume for contradiction that it is not.

First note that because f is unbounded in length,
p must send an unbounded number of messages: if
it does not, then let m, be the last message that it
sends and consider an execution v in which p fails af-
ter sending m,. Because g receives the same messages
from p in each execution, it cannot distinguish be-
tween the two executions and therefore ¢ either does
not detect p’s failure in v or erroneously decides that
p has failed in 8.

Recall that a processor can send messages only at
steps and p’s steps are separated by exactly time ¢;
in B. It follows that if two consecutive messages are
not separated by at least time d/u, then they are
separated by at most k = [%—“-I — 1 steps, which is
time k- ¢; < d/p.

Consider the interval [to,t0 + z] of execution B,
where z is defined below. Because p sends an un-
bounded number of messages and, by assumption, ev-
ery two consecutive messages are separated at most
time ke;, processor p sends at least |z/(ke1)] mes-
sages in this interval. But since the last component
link delays each message by d/u, at most [ﬁ;] mes-
sages are delivered in this interval. Thus the number
of messages sent but not delivered in this interval is
at least (- —1) - (ﬁ; +1). According to the prop-
erties of the message links, the last message sent in
this interval may not be delivered until all prior mes-
sages have been delivered. Thus the last message sent
by p in this interval may not be delivered until time
to+z+ %(:Tl = 37z —2). If B is the bound on detec-
tion time guaranteed by the protocol, then let z be
large enough so that % (& - 7 2) > B (recall
that ke; < d/u).

We conclude that the last message sent by p in the
interval [to,to + z] of B is not delivered until after
time to + + B. Since p does not fail in 3, ¢ does not

time out p; in particular, ¢ does not time out p before
time ¢ + z + B. However, before time to +z + B, this
execution is indistinguishable to ¢ from an execution
in which p fails at time ¢ + z and which is otherwise
identical to B at p and q up to times ¢o + z and ¢o +
z+ B, respectively. Therefore in this execution ¢ does
not detect the failure of p within time B. Thus the
protocol cannot be correct; this contradiction proves
the lemma. []

Our lower bound proof uses the retiming tech-
niques of “shifting” events in time and “shrinking”
portions of executions that were used in [2] and [4].
The basic strategy of the proof is as follows. Begin-
ning with an execution B given by Lemma 4.1, we
know that if p were to fail during the step at which
it sends m;, then ¢ would declare p faulty by time
t, + T. We would like to show that if the bound T
guaranteed by the algorithm is small, then there is an
execution in which ¢ declares p faulty though p has
not failed. Notice that ¢ cannot tell if p has failed
or not until message my arrives or doesn’t. The idea
for showing such an execution exists is to ask, what
if instead, all events at ¢ occurred earlier by d and
messages from p to ¢ arrived earlier by d? Because
¢ does not have a way of telling time absolutely, it’s
cannot tell the difference between this execution and
B. (Formally, it’s state transition function takes as
input only the current state and possibly a delivered
message and so its sequence of states is the same in
the two executions.) We say that the two executions
are indistinguishable to q. Using a similar reasoning,
we further ask, what if p ran slowly (its steps sepa-
rated by ¢z) between the when it sends m; and when
it sends m;, and ¢ runs fast (its steps separated by
c)) after it receives m;, and my is delayed by the
maximum possible amount, d? We are able to show
that in the resulting execution, ¢ declares p faulty too
soon—that is, before m, arrives.

We will use the technique above several times,
where, given an interval of events in which a pro-
cessor is running slowly (time ¢y between its steps),
we create a new execution in which that processor
runs fast over that interval of events (time ¢; between
its steps). We call this construction “shrinking” that
interval. Conversely, given an interval in which a pro-
cessor is running fast, we may create a new execution
in which we “stretch” that interval. Of course, we
preserve the order of events at that processor by ac-
cordingly retiming message delivery events at that
processor, and we must verify that the timing con-

240

straints on message delivery are not violated. This
may require individually retiming the message deliv-
ery events at the component message links £ ...£,.
This is easily done within the time bounds of each
individual delivery event, as long as the total delay
of any message is not increased to be greater than d
or made less than 0. We will suppress the detail of
retiming the delivery events at the component links
and verify only that the total delay of any message is
within the proper bounds.

Theorem 4.2 In a system with links of capacity p
and delay d, no correct timeout protocol can guar-
antee failures to be detected within less than time
min(2Cd + d/p, Cd/p+ Cd + d).

Proof: Let T = min(2Cd+ d/p, C?d/p+ Cd+d).
For contradiction, assume the existence of a protocol
that guarantees a detection time of T. We do not
make use of the particular value of T until the final
step of the proof (the construction of execution §").
We will reach a contradiction by showing that there
is an execution of the protocol in which p does not
fail but ¢ decides that it has.

Let 8 be an execution of the protocol whose exis-
tence is implied by Lemma 4.1 with t; = d (%)
Let m; and my be the two messages specified by the
lemma, sent by p at times t; and ¢ respectively. Fig-
ure 1 depicts an example of an execution satisfying
Lemma 4.1; for presentation, messages from p to ¢
are shown taking exactly time d, and messages from
g to p are shown sent at arbitrary times.

Let a be an execution in which () events at p are
identical to those of B up to time 3, (it) p fails at
time t, after sending m;, and (iii) events at g are
identical to those of B up to time t; +d/p+d. Clearly
« exists, since in §, message my does not arrive until
to+d > t; +d/u+d and thus the state transitions of
¢ in « are identical those in § until this time. Also,
the assumed protocol guarantees that in a, ¢ detects
the failure of p before time t; + T

The rest of the proof proceeds as follows. By shift-
ing the events of ¢ in @ and 3, we construct executions
o' and @, which are indistinguishable from a and 3
respectively, to both p and ¢. By retiming the events
of a’, we construct ", which to ¢ is indistinguishable
from a'. By retiming the events of ', we construct
B", which to ¢ is indistinguishable from o until the
event at which it times out p. Execution 8" is also
indistinguishable to p from #' until after it sends m;.

Thus, although p does not fail in 8", ¢ times out p
in 8", contradicting the correctness of the assumed
protocol.

p q

eto—to/C

d t—-d
d
(fast) 4 ty—(d—d/u)
0
‘l ‘y EN I
trtd/u (slow)
o t,+T—d

Figure 1: In the region of interest, execution a’ is simply
a with events of processor g occurring earlier in time by d.
Because p fails at time 1, ¢ detects the failure of p by time
t1 + T — d, denoted by the circle.

4.1 Construction of ¢/ and j’

Conceptually, we wish to construct o' from a by let-
ting each event at ¢ occur earlier in time by d (“shift-
ing” those events earlier by d).2 Figure 1 depicts the
suffix of o, showing the shifted events of the region
in which we shall be interested.

This execution satisfies the timing constraints on
message delivery, since messages sent by p (delayed

3Strictly speaking, this may not be possible for all events at
q because of initial conditions. However, because we are really
only interested in shifting the events in the region around t;,
we may “shrink” some earlier interval of the execution, so that
events subsequent to that interval occur earlier by time d, as
desired. In particular, we may shrink (by a factor c2/c1 = C)
the interval [0, CL_UI] of a, so that it corresponds to the interval
[o, cl.l d] of &’. Thus the last event of this interval is shifted
earlier by z.%d— ﬁd = d. Recall that we chose o = Ec_—ld
in B and tp < t1, so in 8, the last event of this interval occurs
before time t;, when m; is sent; in ', the last event of this
interval occurs at o — d, before time t; — d .

241

by at least d in a) are received by ¢ at most d earlier in
a’ and hence are delayed by at least 0 in a'; messages
sent by ¢ (delayed by 0 in «) are sent at most d earlier
in o’ and hence are delayed by at most d in o’.

Execution /' is constructed similarly, shifting ear-
lier by d the events at ¢ in 3.

Because p and ¢ do not know the time between
any particular pair of steps they take, they cannot
distinguish between either @ and o’ or # and #'. It
follows that o’ and #’ are not distinguishable to p up
to the point at which it fails and not distinguishable
to ¢ up to when it receives m, in B’ (which is at least
time ¢, > t; + d/p). Also, ¢’s detection of p’s failure
occurshbefore time t; + T — d in o'. q

eto—to/C

d—(d—d/p)+ & (d-d/u)

(slow)

(fast)

"

o /‘1'—%(‘1—4/#)

ti+d/p

(fast)

J

o144 (T-d)

Figure 2: Execution a” is constructed from o' by mapping
the interval [ty —(d—d/p), t1+ (T —d)] of @’ to the interval
[t — (d - d/n), t1 + £(T — d)] of &” and appropriately
shifting the rest of ¢'s events.

4.2 Construction of execution o”

Recall that ¢ runs slowly in @ and o’—its steps are
separated by c;. We now construct a” from o’ by re-
timing certain events at ¢. Events at p are the same
as in ¢’ up to time t;, when p fails in both execu-
tions; events at p after time ¢, are inconsequential to
the proof and may be defined arbitrarily within the
bounds of the model.

The retiming operation at ¢ maps the interval [t; —

(d—d/p), t1+(T—d)] of o to the interval [t; — & (d—
d/p), t; + &(T — d)] of a” by letting ¢ run fast over
this interval in o”’. The mapping shrinks the events
around time t;: events at time ¢; in o’ also occur at
t; in a”; events in the above interval of o’ are retimed
to occur closer to time ¢y by a factor of C. The rest of
execution a/—before time t; —(d—d/p) and after time
t + (T — d)—is shifted to preserve the step times of
events on the borders of this interval. To be precise,
o' is defined at ¢ by retiming each event that occurs
at ¢ at time ¢/ > ﬁd in o’ to occur at ¢ at time ¢”
in a”, where t" is defined as follows:

(' 4 (d—d/p)— %(d—d/p) shift
if ggd<t' <t —(d-d/p)
b+ —t) shrink

t” —

it —(d—d/p) <t <t +(T-d)
'~ (T—d)+ 4(T-d) shift
if t'>t +(T-d)

\

This execution is illustrated in Figure 2.4

By construction, this retiming operation does not
cause violations of the bounds on processor step
times. We now verify that o” is consistent with the
timing assumptions for message delivery. First note
that all events at p before time ¢; occur at the same
time in executions 8, a,a’ and a”. We show that
for any event at q occurring at time ¢” in a” and at
time ¢ in a (and hence at t’ =t — d in o') such that
t" <t andt > Z,—g—ld, we have t —d < t” < t. By
the retiming mapping above, if ¢/ < t;, then

¢St < 4 (- dfp) - S dfw),

(this is because ¢’ is mapped forward in time furthest
when t! < t; — (d — d/p); least when t’ = t;) which,

4 Again, we need to shift the events before time ¢; —(d—d/u)
while preserving initial conditions. To do this we partially undo
the shrinking performed on the interval [0, Ci—f of o. These
events were mapped to the interval [0, C_l—i of o', in which ¢
runs fast, with the last event of the interval occurring exactly
time d earlier in o’ than in . In o'/, we need the last event of
this interval to occur exactly time (d—d/u) — é (d—d/u) later
than in a’. Because this amount is less than d, we are able to
do this, in effect partially undoing the original shrinking. The
timing assumptions for steps of q are clearly satisfied. Because
the net effect from both shrinking operations is to shift any
particular event in the interval [0, ﬁd] of o earlier by less
than d in o, the timing assumptions for message delivery are
also clearly satisfied, for the reasons outlined in the discussion
of a'.

242

substituting t' = t — d, gives
t—d <t < t—d/p-é(d—d/p) <t)

In o, every message from p to ¢ is delayed by at
least d. We claim that in o”, every message from p
to ¢ is delayed by at least time 0 and by less time
than in a. If a message is delivered at g after time ¢;
in o”, then because p sends no messages after time
t,, it must be sent by ¢; (no new message receipts at
q have been introduced to o) and hence delayed at
least time 0; also, events at g after time t; in a” occur
earlier in a” than in a, so the message is delayed by
less than it is in a. If a message is delivered at ¢
at time ¢” < t; in o then by Equation (1), it is
delivered earlier in a” than in « by not more than d;
because this message is delayed by at least d in a, it
follows that it is delayed by at least time 0 in a”.

We also claim that the delay of each message from
q to pin a” is delayed by at least 0 and at most d.
In e, all messages from ¢ to p are delayed 0; if in o
they are sent before t;, then from Equation 1 they
are sent earlier (and delayed more) by not more than
d. The receipt of any message sent by ¢ after ¢; is
inconsequential to the proof and is defined arbitrarily
to be within the bounds of the model.

Finally, we note that ¢ detects the failure of p be-
fore time t, + &(T — d) in o”.

4.3 Construction of execution "

We now construct execution 8" in which p does not
fail and which is indistinguishable to ¢ from o’ up to
time t; + 2(T — d). In proving that 8" satisfies the
timing assumptions on step time and message deliv-
ery, we will, for the first and only time, make use of
the fact that T' = min(2Cd + d/p, C%d/p+ Cd + d).
Because ¢ times out p before time t; + £(T' — d) in
o, we conclude that in 8”, ¢ mistakenly times out
the nonfaulty p, contradicting the assumed correct-
ness and completing the proof.

To construct 3" at q we use exactly the same events
as in o, up to time t, + & (T —d). We do not specify
the events occurring at g later than this except to say
that any message sent by p after time ¢, is delayed
by time d.

At p, we construct 8" from ' by mapping the in-
terval [t), t1 + d/p] of B’ to the interval [t;, ¢ +
&(T — d) — d) of 8" (p runs fast over this inteval
in B'; it runs more slowly over this interval in 8”).
Events in this interval are retimed to occur further

p q
. eto—to/C

d—(d—d/p)+(d=d/u)

(slow)
(fast) Y
‘] % - 4(4-a/0)
1 1
(m1) \
(not fast)

114 5(T-d)-d ((fast)

7
® t1+&(T-d)

Figure 3: Execution 8" is essentially the same as execution
a”, except that p does not fail; instead, it runs slowly after
sending message my, and message m; is delayed by d. Be-
cause p sends no other messages before m3, this execution
appears the same as a” to g until it receives m2.

from time ?; by at most a factor of C' (as we will
show). We do not specify events occurring at p after
time ¢ + (T —d) —d except to say that any message
sent by ¢ after time t; — 5(d — d/p) is delivered at p
exactly time d later. Thus, 3 is defined at p (up to
t1+ (T — d) — d) by retiming each event that occurs
at time ¢/ in ' to occur at time ¢ in 8", where t" is
defined as follows:

o t if <ty
T+ 2 G2) i

This execution is illustrated in Figure 3.

We now verify that 8" is consistent with the timing
assumptions of the model. Note that all events of 8
at p before time ¢; are the same as in 8, &, o, o', and
o''; events of 8" at ¢ before time ¢; + &(T —d) are by
definition the same as in o”’. Having already verified
the timing properties for a”, we need verify only the
timing properties involving events (processor steps,
message sends, and message receipts) occurring at p
in the interval [t;,t; + %(t — d) — d]. Events occurring

at p later than ¢; + & (T — d) — d and at ¢ later than

t1+-é-.(T—d) are inconsequential to the proof and may

243

Hh<t'<ty+d/p

be scheduled in any way consistent with the bounds
of the model. Basically, we just need to ensure that
we are not causing p to run too fast over this interval
(that’s why we need T < C2%d/p + Cd + d) and that
messages from q to p are not delivered more than d
after they are sent (that’s why we need T < 2Cd+d).

First, we verify that successive steps of p after ¢;
are separated by at most c;. We show that for any
interval [t,t}] of 8, mapped from the interval ti,¢5]
of B/, where t) <t} <t} <t1+d/p, we have t] -t <
C(t; —t):

(T —d) -
-t = (tj--t:—)———C(Td/z) :
L(C/p+Cd)-d
< (-t D

= (t-t)C.

Because any two steps of p are separated by time c;
in B, they are separated by at most C-¢; = ¢z in 8.

We now verify that the delays of messages sent by
p after t; are within the proper bounds. Actually, it
turns out that my (the first message sent by p after
1,) is sent by p after time t; + (T —d) — d: my is
sent at t3 > t; + d/u in B’ (and B) and thus at t§ >
t1+&(T—d)—din B”. Messages sent by p after time
t; are specified to be delayed by at least time d, so m»
is not delivered until at least time t; + & (7'~ d) (after
¢ times out p). The delivery of m; and all subsequent
messages by p is consistent with our definition of 8"
at q.

We now verify that messages from ¢ to p are within
the proper bounds. We analyze these messages in
three cases according to when they are sent by ¢ in
execution 3 (which is the same time as they are sent
in o).

Case 1: q sends at timet' < t; —d in #' (and o).
These messages are delivered to p by time t; in 8’ (in
beta, they were sent at ¢; and delivered immediately).
Events at p before ¢; in #’ occur at the same time in
B". These events occur at the same time in o’ and o
(events at p before ¢; were not changed in going from
o' to o). Since both the send events and receive
events for these messages occur at the same times
respectively in #” and o”, the analysis of a” shows
that their delays are within the proper bounds.

Case 2: q sends at time ¢’ in #' (and o), where
ti—d<t <ty (d—d/p).

In 8" (and o) the sending event at g is shifted to
time ¢/ +(d—d/p) — &(d—d/p), which is less than £;.
Such a message is delivered at time t'+d in 3’ where

ty <t'+d < ty+d/p. In 8" the delivery event at pis
mapped to t; + g (¢(T — d) — d)(t' + d — 11), which
is greater than ¢;. Thus, such a message is properly
delivered after it is sent (delayed by at least 0). With
some calculation, using the definitions of T and ¢’ and
noting - (3(T —d)—d)—1 20, it is easily verified
that the difference between ¢, +ﬂ1—‘;(%(T—d)—d)(t’ +
d—t;) and t' + (d — d/p) — 5(d — d/p) is at most d.
Case 3: q sends at timet' > t; — (d—d/p)in §'.
These messages are sent at t” > t; — &(d — d/p) in
B” and thus are defined to be delivered at p exactly
time d later. Note that such messages are delivered
at p later than time

1
C

1 1
2d/g— —d—
t1+2d+cd/p c d

t+ é(20d+ dJp—dy—d

1
t, — d+6d/[l+d

v

1
t1+'5(T—d)—d.

This is consistent with our definition of §” at p.
Thus we conclude that 8" is a valid timed execution
in which p does not fail but ¢ times out p. This
is a contradiction on the correctness of the assumed
protocol. |

Bounds for a unidirectional mes-
sage link

4.4

We remark that our proof gives a tight upper and
lower bound of C%d/p + Cd + d for a system of two
processors with a message link in only one direction.

In such a system, we have two processors, p and g,
and a single message link of capacity u from p to g¢.
Naturally, a protocol does not need to detect failures
of g. All other previous definitions apply.

The second simple protocol described in Section 3
operates independently in each direction. It imme-
diately gives a protocol for the unidirectional case,
guaranteeing that in any execution, ¢ detects the fail-
ure of p within time C2d/p + Cd + d.

It is also not difficult to see that our lower bound
proof of Theorem 4.2 specializes to the unidirec-
tional case to give a corresponding lower bound of
C%d/p + Cd + d. Theorem 4.2 is proved for T =
min(2Cd + d/p, C%d/p + Cd+ d). A similar theo-
rem for the unidirectional case may be proved with
T = C?®d/p + Cd + d. Recall that in that proof,
the value of the timeout detection time T" guaranteed

244

by the protocol is not used before the claims about
execution f#”. All preceding claims except those in-
volving messages from ¢ to p carry over a fortiori.
Lemma 4.1, for example, is true also for the unidirec-
tional case with the exception of its third condition,
which regards messages from ¢ to p. The proof of
Theorem 4.2 uses the fact that T < 2Cd + d/p in
claims about A" only to verify bounds on the delay
of messages from g to p. This analysis is not needed
for a theorem about the unidirectional case and hence
the entire proof specializes to the unidirectional case
to give a lower bound of C2d/p+ Cd+d.

5 Conclusion

We have attempted to reconcile an important as-
sumption of [2, 1, 6] with the reality that processors
can, but should not, send messages faster than they
can be delivered. Our model intended to capture the
parameters that are important to the designer of algo-
rithms for failure detection: the total message delay
time and the amount of pipelining that is available
within our entire (high-level) message link abstrac-
tion. Our formal model of bounded-capacity links
was motivated not by a desire to reflect physical re-
ality but to quantify this degree of pipelining. Using
this model, we were able to derive mathematical re-
sults that depend explicity on these parameters.

Acknowledgments

Thanks to Greg Troxel and Nancy Lynch for helpful
discussions.

References

[1] H. Attiya, C. Dwork, N. Lynch, and L. Stock-
meyer. Bounds on the time to reach agreement in
the presence of timing uncertainty. Report TM—
435, Laboratory for Computer Science, MIT,
November 1990. Also in STOC 1991.

[2) H. Attiya and N. A. Lynch. Time bounds for
real-time process control in the presence of tim-
ing uncertainty. Proc. 10th IEEE Real-Time Sys-
tems Symposium, 1989, pp. 268-284. Also:
Technical Memo MIT/LCS/TM-403, Labora-
tory for Computer Science, MIT, July 1989.

8]

[4

(5]

245

M. Fischer, N. Lynch and M. Paterson. Impossi-
bility of distributed consensus with one faulty
process. Journal of the ACM, Vol. 32, No. 2
(1985), pp. 374-382.

J. Lundelius and N. Lynch. An upper and
lower bound for clock synchronization. Infor-
mation and Control, Vol. 62, Nos. 2/3 (Au-
gust/September 1984), pp. 190-204.

M. Merritt, F. Modugno and M. Tuttle. Time
constrained automata. CONCUR’91 Proceed-
ings Workshop on Theories of Concurrency: Uni-
fication and Extension, 1991.

S. Ponzio. Consensus in the presence of timing
uncertainty: omission and Byzantine failures.
Proc. 10th ACM Symp. on Principles of Dis-
tributed Computing, 1991, pp. 125-138. Also:
The real-time cost of timing uncertainty: con-
sensus and failure detection. MIT SM Thesis,
June 1991. Available as MIT Lab. for Com-
puter Science Technical Report MIT/LCS/TR-
518, October 1991.

