Verification of the Randomized Consensus
Algorithm of Aspnes and Herlihy: a Case Study™*

Anna Pogosyants' Roberto Segala? Nancy Lynch!

! Laboratory for Computer Science, MIT
2 Dipartimento di Scienze dell’Informazione, Universita di Bologna

Abstract. The Probabilistic I/O Automaton model of [11] is used as the ba-
sis for a formal presentation and proof of the randomized consensus algorithm
of Aspnes and Herlihy. The algorithm is highly nontrivial and guarantees
termination within expected polynomial time. The task of carrying out this
proof has led us to develop several general proof techniques for probabilis-
tic I/O automata. These include ways to combine expectations for different
complexity measures, to compose expected complexity properties, to convert
probabilistic claims to deterministic claims, to use abstraction mappings to
prove probabilistic properties, and to apply random walk theory in a dis-
tributed computational setting.

1 Introduction

With the increasing complexity of distributed algorithms there is an increasing need
for mathematical tools for analysis. Although there are several formalisms and tools
for the analysis of ordinary distributed algorithms, there are not as many powerful
tools for the analysis of randomization within distributed systems. This paper is
part of a project that aims at developing the right math tools for proving properties
of complicated randomized distributed algorithms and systems. The tools should
be based on traditional probability theory, but at the same time should be tailored
to the computational setting. Furthermore, the tools should have good facilities for
modular reasoning due to the complexity of the systems to which they should be
applied. The types of modularity we are looking for include parallel composition and
abstraction mappings, but also anything else that decomposes the math analysis.

We develop our tools by analyzing complex algorithms of independent interest.
In this paper we analyze the randomized consensus algorithm of Aspnes and Herlihy
[3], which guarantees termination within expected polynomial time. The Aspnes-
Herlihy algorithm is a rather complex algorithm. Processes move through a succes-
sion of asynchronous rounds, attempting to agree at each round. At each round, the
agreement attempt involves a distributed random walk. The algorithm is hard to
analyze because of its use of nontrivial results of probability theory (e.g., random
walk theory), because of its complex setting, including asynchrony and both non-
deterministic and probabilistic choice, and because of the interplay among several
different sub-protocols.

* Supported by AFOSR-ONR contract F49620-94-1-0199, by ARPA contracts N00014-92-
J-4033 and F19628-95-C-0118, and by NSF grant 9225124-CCR.

We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata
[11]. In doing so, we decompose it formally into three subprotocols: one to carry out
the agreement attempts, one to conduct the random walks, and one to implement a
shared counter needed by the random walks. Properties of all three subprotocols are
proved separately, and combined using general results about automaton composition.
It turns out that most of the work involves proving non-probabilistic properties
(invariants, simulation mappings, non-probabilistic progress properties, etc.). The
probabilistic reasoning is isolated to a few small sections of the proof.

The task of carrying out this proof has led us to develop several general proof
techniques for probabilistic I/O automata. These include ways to combine expecta-
tions for different complexity measures, to compose expected complexity properties,
to convert probabilistic claims to deterministic claims, to use abstraction mappings
to prove probabilistic properties, and to apply random walk theory in a distributed
computational setting.

Previous work on verification of randomized distributed algorithms includes [§],
where the randomized dining philosophers algorithm of [5] is shown to guarantee
progress with probability 1, [6, 9], where the algorithm of [5] is shown to guar-
antee progress within expected constant time, and [1], where the randomized self-
stabilizing minimum spanning tree algorithm of [2] is shown to guarantee stabiliza-
tion within an expected time proportional to the diameter of a network. The analysis
of [8] is based on converting a probabilistic property into a property of some of the
computations of an algorithm (extreme fair computations); the analysis of [6, 9, 1]
is based on part of the methodology used in this paper.

The paper is organized as follows. Section 2 presents the basic theoretical tools
for our analysis; Section 3 presents the algorithm of Aspnes and Herlihy, describes
the module that carries out the agreement attempts, and proves safety and liveness
properties that do not depend on the details of the other modules; Section 5 builds
the module that conducts the random walk and proves termination; Section 6 studies
the expected time complexity of the algorithm; Section 7 gives some concluding
remarks. In the presentation we focus mainly on the integration of probability with
nondeterminism and we omit most of the analysis that does not involve probability.

2 Formal Model and Tools

2.1 Probabilistic I/O Automata

A probability space P is a triplet (2, F, P) where 2 is a set, F is a collection of
subsets of {2 that is closed under complement and countable union and such that
2 € F, also called a o-field, and P is a function from F to [0, 1] such that P[£2] =1
and such that for any collection {C;}; of at most countably many pairwise disjoint
elements of F, P[U;C;] =), P[C;]. A probability space (£2,F,P) is discrete if
F = 2% and for each C' C 2, P[C] = 3, . P[{z}]. For any arbitrary set X, let
Probs(X) denote the set of discrete probability spaces (£2, F, P) where £2 C X, and
such that all the elements of {2 have a non-zero probability.

An I/O automaton A consists of five components: a set States(A) of states; a
non-empty set Start(A) C States(A) of start states; an action signature Sig(A) =
(in(A), out(A), int(A)), where in(A), out(A) and int(A) are disjoint sets of input,
output, and internal actions, respectively; a transition relation Trans(A) C States(A)x
Actions(A) x States(A), where Actions(A) denotes the set in(A) U out(A) U int(A),
such that for each state s of States(A) and each input action a of in(A) there is
a state s’ such that (s,a,s’) € Trans(A); a task partition Tasks(A), which is an
equivalence relation on int(A) U out(A) that has at most countably many equiva-
lence classes. The elements of Trans(A) are called transitions, and A is said to be
input enabled. An equivalence class of Tusks(A) is called a task of A. A probabilistic
I/0 automaton M differs from an I/O automaton in its transition relation. That is,
Trans(M) C States(M) x Actions(M) x Probs(States(M)). In the rest of the paper
we refer to (probabilistic) /O automata as (probabilistic) automata.

A state s of M is said to enable a transition if there is a transition (s,a,P) in
Trans(M), and an action a is said to be enabled from s if s enables a transition
with action a. An ezecution fragment of M is a sequence « of alternating states
and actions of M starting with a state, and, if « is finite ending with a state,
& = $pa181a28s..., such that for each ¢ > 0 there exists a transition (s;, a;41,P) of
M such that s;41 € £2. Denote by fstate(«) the first state of & and, if « is finite,
denote by Istate(o) the last state of «. An ezecution is an execution fragment whose
first state is a start state. An execution fragment « is said to be fair iff the following
conditions hold for every task T of M: 1) if a is finite then no action from 7' is
enabled in Istate(a); 2) if a is infinite, then either actions from T occur infinitely
many times in «, or a contains infinitely many occurrences of states from which
no action from 7T is enabled. A state s of M is reachable if there exists a finite
execution of M that ends in s. A finite execution fragment oy = spaysy - - an s, of
M and an execution fragment as = $pGp415n41 -+ of M can be concatenated. The
concatenation, written oy~ s, is the execution fragment spa181 - - - G SpAn 15041 - - -
An execution fragment oy of M is a prefiz of an execution fragment as of M, written
a1 < ag, iff either oy = a5 or « is finite and there exists an execution fragment o
of M such that as = a1 ~ «f.

An execution fragment of M is the result of resolving both the probabilistic
and the nondeterministic choices of M. If only the nondeterministic choices are
resolved, then we obtain a structure similar to a cycle-free Markov chain, which we
call a probabilistic execution fragment of M. From the point of view of the study of
algorithms, the nondeterminism is resolved by an adversary that chooses a transition
to schedule based on the past history of the system. A probabilistic execution is the
result of the action of some adversary. A probabilistic execution can be thought of as
the result of unfolding the transition relation of a probabilistic automaton and then
choosing one transition for each state of the unfolding. It has a structure similar
to the structure of a probabilistic automaton, where the states are finite execution
fragments of M. It is possible to define a probability space Py = (25, Fu, P)
associated with H. In particular 25 is a set of execution fragments of M, Fp is
the smallest o-field that contains the set of cones €, consisting of those elements
of 25 having ¢ as a prefix (let ¢ denote a state of H), and the probability measure
Py 1s the unique extension of the probability measure defined on cones as follows:

Pr[Cy] is the product of the probabilities of each transition of H leading to ¢. An
event E of H is an element of Fg. An event E is called finitely satisfiable if it can
be expressed as a union of cones. A finitely satisfiable event can be represented by
a set @ of incomparable states of /. The event denoted by @ is U;ceC,. We abuse
notation by writing Pg[@] for Pr[UzeeCy]. We call a set of incomparable states of
H a cutl of H, and we say that a cut @ is full if Pg[@] = 1. An important event of
P 18 the set of fair executions of {2;7. We define a probabilistic execution fragment
H to be fair if the set of fair execution fragments has probability 1 in Pyg.

Probabilistic automata can be composed in parallel. The states of the composi-
tion are the cross product of the states of the components. The composed probabilis-
tic automata synchronize on their common actions and evolve independently on the
others. Whenever a synchronization occurs, the state that is reached is obtained by
choosing a state independently for each of the probabilistic automata involved. In a
parallel composition the notion of projection is one of the main tools to support mod-
ular reasoning. A projection of an execution fragment o onto a component within a
parallel composition is the contribution of the component to obtain «. Formally, let
M be M, || Ma, the parallel composition of M; and Ms, and let o be an execution
fragment of M. The projection of « onto M;, denoted by «[M;, is the sequence
obtained from o by replacing each state with its ¢*" component and by removing
all actions that are not actions of M; together with their following state. It is the
case that a[M; is an execution fragment of M;. A similar construction is possible on
probabilistic execution fragments. Here we just claim that H[M; is a probabilistic
execution fragment of M; and that the probability space associated with H[M; is
the image space under projection of the probability space associated with H.

Propositionl [10]. Let M be My || Ma, and let H be a probabilistic execution
fragment of M. Let i € {1,2}. Then Qpry, = {a[M; | a € 25}, and for each
e c fH[M,; PH[M,[@] = PH[{Oé € N2y | Oz{MZ’ S @}]

2.2 Complexity Measures

A complexity function is a function from execution fragments of M to R#2°. A com-
plexity measure is a complexity function ¢ such that, for each pair «; and as of
execution fragments that can be concatenated, maz(¢(a1), d(az)) < ¢(a1 ™ aq) <
é(a1) + ¢(az). Informally, a complexity measure is a function that determines the
complexity of an execution fragment. A complexity measure satisfies two natural
requirements: the complexity of two tasks performed sequentially should not exceed
the complexity of performing the two tasks separately and should be at least as large
as the complexity of the more complex task.

Consider a probabilistic execution fragment H of M and a finitely satisfiable
event @ of Fyr. The elements of © represent the points where the property denoted by
O is satisfied. Let ¢ be a complexity function. Then, define the expected complexity
¢ to reach @ in H as

Ey[H, 0] 2 {gqe@ #(q)PulC,] if PylO] =1

otherwise.

If several complexity measures are related by a linear inequality, then their expected
values over a full cut are related by the same linear inequality. We use this result in
the time analysis of the algorithm of Aspnes and Herlihy, where we express the time
complexity of the protocol in terms of two other complexity measures.

Proposition2. Let © be a full cut of a probabilistic execution fragment H. Let
@, b1, o2 be complexity functions, and c1,cy two constants such that, for each o € O,

d(a) < ecr1¢1(a) + cada(). Then Ey[H,0) < c1Ey,[H, O]+ c2Ey,[H, O]

Suppose now that within a computation it is possible to identify several phases, each
one with its own complexity, and suppose that the complexity associated with each
phase remains 0 until the phase starts. Suppose that the expected complexity of
each phase is bounded by some constant c¢. If we know that the expected number
of phases that start is bounded by %, then the expected complexity of the system is
bounded by ck. The algorithm of Aspnes and Herlihy works in rounds, and at each
round a special cotn flipping protocol is run. The rounds can be seen as phases. The
main difficulty 1s that several rounds may run concurrently.

Proposition3. Let M be a probabilistic automaton. Lel ¢q, da, ¢3,... be a count-
able collection of complexity functions for M, and let ¢' be a complexity function
defined as ¢'(o) = > ;5 ¢i(a). Let ¢ be a constant, and suppose that for each fair
probabilistic execution fragment H of M, each full cut © of H, and each i > 0,
E%[Ha @] S C.

Let H be a probabilistic fair execution fragment of M, and let ¢ be a complexity
measure for M. For each i > 0, let ©; be the set of minimal states g of H such that
é(q) > i. Suppose that for each ¢ € O, ¢;(¢) = 0, and that for each state ¢ of H
and each i > ¢(q), ¢:i(¢) = 0.

Then, for each full cut @ of H, Ex[H, 0] < cEy[H,O].

Finally, to verify properties modularly it is useful to derive complexity properties of
complex systems based on complexity properties of their components.

Proposition4. Let M be My ||Ma, and let i € {1,2}. Let ¢ be a complexity function
for M, and let ¢; be a complexity function for M;. Suppose that for each finite
execution fragment o of M, ¢(«) = ¢;(a[M;). Let ¢ be a constant. Suppose that for
each probabilistic execution fragment H of M; and each full cut © of H, Ey,[H, 0] <
c. Then, for each probabilistic execution fragment H of M and each full cut @ of H,
E¢[H, @] S C.

2.3 Probabilistic Complexity Statements

A probabilistic complexity statement [9, 11] is a predicate that states whether all the
fair probabilistic executions of a probabilistic automaton guarantee some reachability
property within some complexity ¢ with some minimum probability p. Probabilistic

complexity statements essentially express partial progress properties of a probabilis-
tic system. Such partial progress properties can then be used to derive upper bounds

. < . . .
on the expected complexity for progress. Formally, U %‘c) U’ is a predicate that is

true for M iff for each fair probabilistic execution fragment H of M that starts from
a state of U, Pgley: ¢(c)(H)] > p, where ey g0y (H) denotes the set of executions
of 27 with a prefix o’ such that ¢(a’) < ¢ and Istate(a’) € U'.

Denote by U = Uwunless U’ the predicate that is true for M iff for every execution
fragment sas’ of M, s € U— U’ = s € UU U’. Informally, U = Uunless U’ means
that, once a state from U is reached, M remains in U unless U’ is reached. For each
probabilistic execution fragment H of M, let @y/(H) denote the set of minimal
states of H where a state from U’ is reached. The following theorem provides a way
of computing the expected ¢ for reaching U’.

Proposition [11]. Let M be a probabilistic automaton and ¢ be a complexily
measure. Suppose that for each execution fragment of M of the form sas’, ¢(sas’) <
1, that is, each transition of M increases ¢ by at most 1. Let U and U’ be sets of
states of M. Let H be a probabilistic execution fragment of M that starts from a state
of U, and suppose that for each state ¢ of H such that Istate(q) € U some transition

1s scheduled with probability 1. Suppose also that U %9) U' and U = UunlessU’.
Then, Ex[H,Op(H)] < (c+1)/p.

A useful technique to prove the validity of a probabilistic complexity statement
U %Si U’ for a probabilistic automaton M is the following [9]: 1) choose a set of

random draws that may occur within a probabilistic execution of M, and choose
some of the possible outcomes; 2) show that, no matter how the nondeterminism is
resolved, the chosen random draws give the chosen outcomes with some minimum
probability p; 3) show that whenever the chosen random draws give the chosen
outcome, a state from U’ is reached within ¢ units of complexity ¢.

The first two steps can be carried out using the so-called coin lemmas [6, 9, 11],
which provide rules to map a stochastic process onto a probabilistic execution and
lower bounds on the probability of the mapped events based on the properties of the
given stochastic process; the third step concerns non-probabilistic properties and can
be carried out by means of any known technique for non-probabilistic systems. Coin
lemmas are essentially a way of reducing the analysis of a probabilistic property to
the analysis of an ordinary nondeterministic property.

2.4 Symmetric Random Walks for Probabilistic Automata

The correctness of the protocol of Aspnes and Herlihy is based on the theory of
random walks [4]. That is, some parts of the protocol behave like a probabilistic
process called random walk. The problem is to make sure that the protocol indeed
behaves like a random walk. This is a point where intuition often fails, and therefore
we need a proof technique that is sufficiently rigorous and simple to avoid mistakes.

Roughly speaking, a random walk is a process that describes the moves of a
particle on the real line, where at each time the particle moves in one direction with
probability p and in the opposite direction with probability (1 — p). In this section
we present a coin lemma for symmetric random walks. That is, p = 1/2.

Let M be a probabilistic automaton and let Acts = {flip,, ..., flip,,} be a subset
of Actions(M). Let S = {(U, UY), (UL, UL),... . (UL, Ul)} be a set of pairs where
for each i,1 < i < n, Ul U} are disjoint subsets of States(M) such that for every
transition (s, flip,, P) with an action flip;, 2 C U} U U}, and P[U}] = P[U]] =
1/2. The actions from Acts represent coin flips, and the sets of states U} and U}
represent the two possible outcomes. Given a finite execution fragment o of M, let
Diff 4cts s(@) denote the difference between the heads and the tails that occur in
H. Let z, B, and T be natural numbers, and let B < T'. The value of z denotes the
starting point of the particle, while B and 7' denote barriers in the real line. For
each finite execution fragment «, let z + Diff (o) denote the position of the particle
after the occurrence of a. For each probabilistic execution fragment H of M, let
Top[B, T, z](H) be the set of executions « of 2 such that either the particle reaches
the top barrier 1" before the bottom barrier B, or the total number of “flips” is finite
and the particle reaches neither barrier. Define the symmetric event Bot[B, T, z](H),
which is the same as Top except that the bottom barrier B should be reached before
the top barrier T'. Finally, define the event Either[B, T, z](H) as Top[B, T, z](H)U
Bot[B, T, z](H), which excludes those executions of M where infinitely many “flips”
occur and the particle reaches neither barrier.

Proposition6. Let H be a probabilistic execution fragment of M, and let B < z <
T. Then

1. Pg[Top[B,T,z)(H)] > (- — B)/(T — B).

2. Pg[Bot[B,T,z](H)] > (T —2)/(T — B).

3. Pg[Either[B, T, z](H)] = 1.

>
>

We conclude with a result about the expected complexity of a random walk. Let
$ Acts(a) be the complexity measure that counts the number of actions from Acts
that occur in a. Define ¢ 4.4 B 7,- to be the truncation of ¢ 4.4 at the point where
one of the barriers B and T is reached. Then we can prove an upper bound on the
number of expected flip actions that occur before reaching one of the barriers.

Proposition7. Let H be a probabilistic execution fragment of M, and let © be a
full cut of H. Let B < z<T. Then, Eg,,, p,.[H O1< -2+ (B+T)z— BT.

3 The Algorithm of Aspnes and Herlihy

3.1 Description of the Algorithm

The algorithm of Aspnes and Herlihy proceeds in rounds. Every process maintains a
variable with two fields, vaelue and round, that contain the process’ current preferred

value (0,1 or L) and current round (a non-negative integer), respectively. We say
that a process is at round r if its round field is equal to r. The variables (value, round)
are multiple-reader single-writer. Each process starts with its round field initialized
to 0 and its value field initialized to L.

After receiving the initial value to agree on, each process ¢ executes the following
loop. Tt first reads the (value, round) variables of all other processes in its local
memory. We say that process ¢ 1s a leader if according to its readings its own round
is greater than or equal to the rounds of all other processes. We also say that a
process ¢ observed that another process j is a leader if according to i’s readings the
round of j is greater than or equal to the rounds of all other processes. If process ¢
at round r discovers that it 1s a leader, and that all processes that are at rounds r
and 7 — 1 have the same value as i, then ¢ breaks out of the loop and decides on its
value. Otherwise, if all processes that ¢ observed to be leaders have the same value
v, then 7 sets 1ts value to v, increments 1ts round and proceeds to the next iteration
of the loop. In the remaining case, (leaders that ¢ observed do not agree), i sets its
value to L and scans again the processes. If once again the leaders observed by ¢ do
not agree, then ¢ determines its new preferred value for the next round by invoking
a coin flipping protocol. There 1s a separate coin flipping protocol for each round.

We represent the main part of the algorithm as an automaton AP (Agreement
Protocol) and the coin flipping protocols as probabilistic automata CF, (Coin Flip-
per), one for each round r. With this decomposition we can analyze several properties
just on AP using ordinary techniques for non-probabilistic systems. Indeed, in this
section we deal with AP only, and we leave the coin flippers unspecified.

The formal definition of AP is given in Table 1. Beside the shared variables
value(7) and i), each process has a program counter pc, two arrays values and rounds
containing the scans of the other processes,; a set variable obs saying what processes
have been observed, a variable start holding the initial preferred value, and two
variables decided, and stopped stating whether the process has decided or failed. We
explain some of the relevant predicates: obs-leader(j) is true if ¢ observes that j is a
leader; obs-agree(r, v) is true if the observations of all the processes whose round is
at least r agree on v; obs-leader-agree(v) is true if ¢ observes that the leaders agree
on a value v; obs-leader-value is the value of one of the leaders observed by . We
say that a process is active if it is attempting to agree on a value. An active process
becomes inactive either by deciding a value or by failing.

3.2 Safety Properties

Validity states that “if a process decides on a value, then this value is the initial
value of some process”. The proof of validity derives from a trivial invariant saying
that no process will ever prefer a value different from its initial value if all processes
have the same initial value. Agreement states that “any two processes that decide
within an execution of the algorithm decide on the same value”. The key idea of the
proof of agreement 1s that if a process ¢ that is at round r is “about to decide” on
some value v, then every process that is at round » or higher has its value equal to
v. Define agree(r,v) to be true if all the processes at round at least r prefer v.

Actions and transitions of process 1.

input init(v);

EAf:

start — v

output start(v);
Pre: pc = init A start =v # L
value(z) — v
round(1) — 1
obs — 0
pc — readl

EAf:

output
Pre:

EAf:

output
Pre:
EAf:

read1(k);

pc = readl

k ¢ obs

values[k] — value(k)
rounds[k] — round(k)
obs — obs U {k}

if obs = {1,...,n} then pc «— checkl

checkl;
pc = checkl

if 3,c10,1} 0bs-agree(rounds[i] — 1, v)A

obs-leader(1) then

elseif 3, (0,1} obs-leader-agree(v) then

else

pc «— decide

value(t) «— obs-leader-value
round(t) — rounds[i] + 1
obs — 0

pc — readl

value(z) — L
obs — 0
pc — read?

output decide(v);
Pre: pc = decide A values[i] = v
Eff: decided «— true

pc — nal

output read2(k);

Pre: pc = read?
k ¢ obs

Eff: values[k] — value(k)
rounds[k] — round(k)
obs — obs U {k}
if obs = {1,...,n} then

pc — check?2

output check2;

Pre: pc = check?2

Eff: if 3,c10,1) 0bs-leader-agree(v) then
value(t) «— obs-leader-value
round(1) «— rounds[i] + 1
obs — 0
pc — readl

else

pe — flip

output start-flip(r);
Pre: pc = flip
round(1) =r
Eff: pc — wait

input return-flip(v, r);
Eff: if pc = wait A round(i) = r then
value(z) — v
round(1) «— rounds[i] + 1
obs — 0
pc — readl

input stop,
Eff: stopped — true
pc — nal

Tasks: The locally controlled actions of process ¢ form a single task.

Table 1. The actions and transition relation of AP.

Invariant 4 Given a reachable state of AP, let v = value(i) and r = round(7).
Then (obs-agree(r — 1,v); A obs-leader(i); A obs; ={1,...,n}) = agree(r,v).

Invariant 4 is sufficient to prove agreement. The idea is that the premise of Invari-
ant 4 is stable. In fact, if process 7 satisfies the premise of Invariant 4, then process
t decides on value v, and thus the local state of process ¢ does not change any more.
The analysis of Invariant 4 follows standard methods for invariant proofs within or-
dinary nondeterministic systems, and is based on several other invariants. The main
invariant, which we omit here, is expressed in a new style that we think is useful: it
talks about the state of a process when it is in the middle of a scanning pass, and
describes properties that would hold if the scanning pass is completed instantly.

4.1 Non-Probabilistic Progress Properties

Our next objective is to show that in the algorithm of Aspnes and Herlihy some
decision 1s reached within some expected number of rounds. This property depends
on the probabilistic properties of the coin flipping protocols. However, there are
several progress properties of the algorithm that do not depend on any probabilistic
assumption. In this section we study such properties. The advantage of this approach
is that we can use most of the existing techniques for ordinary nondeterministic
systems and confine probabilistic arguments to a limited section of the analysis.

For each round r, let CF, denote the coin flipping protocol for round r. Define
AH to be AP || (||;>1CF,). For each finite execution fragment o of AH, define the
complexity measure ¢narround(®) as the difference between the maximum round
numbers of the final and initial states of «. Define the following sets of states.

R the set of reachable states of AH such that there is an active process;
D the set of reachable states of AH such that there is no active process.

We show that, under some conditions on the coin flipping protocols, starting from
any state of R, a state from D is reached within some bounded number of rounds.
We split the problem: first we show that, unless the algorithm terminates; the system
reaches a point where one process just moved to a new maximum round; then, we
show that from such an intermediate point the algorithm terminates. The proofs are
based on simple invariants. Formally, for v € {0, 1}, define the following set of states.

F, the set of states of R where there exists a round r and a process ! such that
round(l) = r, value(l) = v, obs; = @), and for all processes j # [, round(j) < r.

Proposition8. If AH is in a state s of R and all invocations to the coin flippers
on non-failing ports get a response, then a state from FoU F1 UD is reached within
one round.

Proposition9. If AH is in a state s of F,, all invocations to the coin flippers
on non-failing ports get a response, and all invocations to CF; pmap-round get only
response v, then a state from D is reached within two rounds.

4.2 Probabilistic Progress Properties
Suppose that each coin flipping protocol CF, satisfies the following properties.

C1 For each fair probabilistic execution fragment of C'F,. that starts with a reachable
state of C'F,, the probability that each invocation on a non-failing port gets a
response is 1.

C2 For each fair probabilistic execution of CF,, and each value v € {0,1}, the
probability that all invocations on a non-failing port get response v is at least p,
0<p<l.

Proposition10. If each coin flipping protocol CF, satisfies properties C1 and C2,
then in AH, starting from any state of R and under any fair scheduler, a state from
D is reached within O(1/p) expected rounds.

¢MazRound
=

. < . .
Proof. We first derive the statement R =?D from two intermediate state-

ments R ¢M“&;"'§dslfo UF, UD and F, ¢M“'Rp#d327), v € {0,1}. The proofs of the

intermediate statements rely on Propositions 8 and 9 and on C1 and C2. Since
in AH R is not left unless a state from D is reached, since each transition of AH
increases @ ifasRound by at most 1, and since from fairness and C1 some transition
is scheduled with probability 1 from each state of R, by Theorem 5 we derive that
within expected 4/p rounds a state from D is reached under any fair scheduler.

5 The Atomic Coin Flipping Protocol

5.1 The Protocol

We build a coin flipping protocol that satisfies C1 and C2 with p = (K—1)/2K. The
protocol is based on random walks. We define the protocol by letting a probabilistic
automaton DCN, (Distributed CoiN) interact with a non-probabilistic counter C'T,
(CounTer), that is, CF, = DCN, || CT,. In this Section, DCN, is distributed while
CT, is composed of n processes that receive requests from DCN, and read/update
a single shared variable. In Section 5.4 we discuss how to decentralize C'T'.. Since the
protocols for DCN, and CT, are the same for any round r, we drop the subscript
r from our notation. In DCN each process flips a fair coin to decide whether to
increment or decrement the shared counter. Then the process reads the current
value of the shared counter by invoking C'T, and if the value read i1s beyond the
barrier —Kn (+Kn), where K is a fixed constant, then the process returns 0 (1).
The specification of CT states that an increment or decrement operation always
completes unless the corresponding process fails, while a read operation is guaranteed
to complete only if increments and decrements eventually cease.

5.2 Non-Probabilistic Analysis

Let Acts be {flip,, ..., flip, },and let S be {(U{, U), (U, UH),... (U}, UD)}, where
U; is the set of states of C'F' where process j has just flipped inc (fpc]» = inc), and
U]»d is the set of states of C'F' where process j has just flipped dec (fpc]» = dec). Given
a finite execution fragment o of CF, let ¢inc(a) be the number of coin flips in «
that give inc, and let ¢g4ec(e) be the number of coin flips in « that give dec.

Lemma1l. Let « be a fair execution of CF, such that o € Top[—(K — 1)n, (K +
Dn, 0](H) for some probabilistic execution H of CF. Then in o every invocation on
a non-failing port gets response 1.

The proof of Lemma 11 follows from simple invariant properties. The main idea is
that the value of the shared counter remains beyond Kn once the barrier (K + 1)n
is reached. A symmetric argument is valid for Bottom[—(K — 1)n, (K + 1)n, 0](H).

5.3 Probabilistic Analysis

We prove only C2 by applying our coin lemma for random walks.

Proposition12. The coin flipper CF satisfies C2 with p = (K 4+ 1)/2K. That is,
fized v € {0,1}, for each fair probabilistic execulion of CF, with probabilily al least
(K —1)/2K each invocation to CF on a non-failing port returns value v.

Proof. Assume that v = 1; the case for v = 0 is symmetric. Let H be a fair prob-
abilistic execution of CF. If « is an execution of Top[—(K — 1)n, (K + 1)n,0](H),
then, by Lemma 11, every invocation to CF in « gets response 1. Furthermore, by

Theorem 6, Pg[Top[—(K —)n, (K 4+ 1)n,0](H)] > (K — 1)/2K.

5.4 Implementation of the Shared Counter

It is possible to build a distributed implementation of C'T" that preserves C1 and
C2. The implementation, which we denote by DCT (Distributed CounTer), is pre-
sented in [3]. In the full paper we verify that DCT implements CT by exhibiting a
refinement mapping [7] from DCT to CT. This part of the proof is simple and does
not involve probability. Then we use the compositionality results of [11] to show that
DCT can replace CT in AH.

5.5 Summing Up

In this section we paste together the results of the previous sections to derive an
upper bound on the expected number of rounds for termination. In particular, if we
know that there is at least one initialized process that does not fail, then we know
that a decision is reached within constant many rounds.

Theorem 13. Using either the counters CT or DCT, from each reachable state of
AH, under any fair scheduler, a state of D is reached within a constant exrpected
number of rounds.

Proof. The coin flippers with the counters C'T or DCT satisfy properties C1 and
C2 with p = (K — 1)/2K. By Proposition 10, AH guarantees that D is reached
within at most O(2K /(K — 1)) expected rounds.

6 Timing Analysis of the Algorithm

In this section we derive an upper bound on the time to reach D once all processes
have some minimum speed. We achieve this result by studying the expected number
of inc and dec events that occur within the coin flippers and then converting the
new expected bound into a time bound.

We change slightly our formal model to handle time. Specifically, we add a com-
ponent .now to the states of all our probabilistic I/O automata, and we add the set
of positive real numbers to the input actions of all our probabilistic I/O automata.
The .now component is a nonnegative real number and describes the current time
of an automaton. At the beginning (i.e., in the start states) the current time is 0,
and thus the .now component is 0. The occurrence of an action d, where d is a
positive real number, increments the .now component by d and leaves the rest of the
state unchanged. Thus, the occurrence of an action d models the fact that d time
units are elapsing. The amount of time elapsed since the beginning of an execution
is recorded in the .now component. Since time-passage actions must synchronize in
a parallel composition context, parallel composition ensures that the .now compo-
nents of the components are always equal. Thus, we can abuse notation and talk
about the .now component of the composition of two automata while we refer to
the .now component of one of the components. We define a new complexity measure
¢+(a) as the difference between the .now components of the last and first states of
a. Informally, ¢; measures the time that elapses during an execution. We say that
an execution fragment a of a probabilistic automaton M 1s well-timed if each task
does not remain enabled for more than one time unit without being performed.

We give some preliminary definitions. Let, for each » > 0, DCF, (Distributed
Coin Flipper) denote DCN || DCT,. Let DAH (Distributed Aspnes-Herlihy) denote
AP||(||r>1 DCF,). For an execution fragment a of DCF, or of DAH , let ¢, »(a) be
the number of flip events of DCF, that occur in «, and let ¢;4,(«) be the number
of inc and dec events of DCF, that occur in «a. For each execution fragment o of
DAH let ¢iq(a) be the number of inc and dec events that occur in a.

We start with some non-probabilistic properties about the new complexity mea-
sures. The first result, Lemma 14, provides a linear upper bound on the time it takes
for DAH to span a given number of rounds and to flip a given number of coins under
the assumption of well-timedness. The next two results state basic properties of the
coin flipping protocols. That is, once a barrier (K + 1)n is reached, there are at
most n other flip events, and within any execution fragment of DCF', the difference
between the inc, dec events and the flip events is at most n.

Lemma 14. Let o be a well-timed execution fragment of DAH, and suppose that
all the states of o, with the possible exception of Istate(a) are active, that is, are
states of R. Let R = fstate(a).maz-round. Then, ¢¢(a) < din*(¢pavround(e) +
R) + dandiq(a) + dsn? for some constants dy,ds, and ds.

Lemmal5. Let « = a3 ~ as be a finite execution of DCF,, and suppose that
|DiﬁAct5,S(a1)| Z ([{ + 1)” Then ¢ﬂz‘p,r(0é2) S n.

Lemma 16. Let o be a finite execution fragment of DCF,. Then,
id,r(@) < Spip,r(@) + 1.

We now deal with probabilistic properties. First, based on our results on ran-
dom walks and on Lemma 15, we show in Lemma 17 an upper bound on the ex-
pected number of coin flips performed by a coin flipper. Then, in Lemma 18 we
use Lemma 16 and our results about linear combinations of complexity measures to
derive an upper bound on the expected number of increment and decrement oper-
ations performed by a coin flipper, and we use our compositionality result about
complexity measures to show that the bound is preserved by parallel composition.
Finally, in Lemma 19 we use our result about phases of computations to combine
Theorem 13 with Lemma 18 and derive an upper bound on the expected number of
e and dec events performed by the algorithm.

Lemma17. Let H be a probabilistic execution fragment of DCF, that starts from
a reachable state, and let @ be a full cut of H. Then By, [H, 0] < (K +1)*n?+n.

Lemma 18. Let H be a probabilistic execution fragment of DAH that starts from a
reachable state, and let @ be a full cut of H. Then By, [H,0] < (K +1)*n? 4 2n.

Lemma 19. Let H be a probabilistic fair execution fragment of DAH with start state
s, and let R = s.maz-round. Suppose that s is reachable. Let © denote the set of
minimal states of H where a state from D is reached. Then Ey4,,[H, 0] = O(Rn?).

The main result is just a pasting together of the results obtained so far. An immediate
consequence on the algorithm of Aspnes and Herlihy is that, if we know that some
initialized process does not fail and that the maximum round is 1, then a decision
is reached within expected cubic time.

Theorem 20. Let H be a probabilistic fair, well-timed execution fragment of DAH
with a reachable start state s, and let R = s.maz-round. Let @ denote the set of
minimal states of H where a state from D s reached. Then E4[H, 0] = O(Rn?).

Proof. By Lemma 14 and Proposition 2, Fy,[H, O] < din?Ey,,.nomd H, @] +d1n* R+
dsnEy,,[H, O]+ dsn®. Thus, by Theorem 13 and Lemma 19, Ey,[H,©] = O(Rn?).

7

In
1s

th

Concluding Remarks

the full paper [10] the length of the analysis of the Aspnes-Herlihy algorithm
double the length of the original proof of Aspnes and Herlihy [3]. This shows
at it 1s possible to prove formally and rigorously the correctness of a randomized

distributed algorithm without using too much space. Furthermore, even though in

th
us

of
pr

e full paper we have proved all the results, a shorter high level analysis of a protocol
ing our tools is sufficient to increase considerably our confidence in the correctness
the protocol. The high level analysis provides a designer with a collection of simple
operties to check so that the possible subtleties of randomization can be discovered.

References

10.

11.

. S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Technical Report
MIT/LCS/TR-632, MIT Laboratory for Computer Science, 1994. Master’s thesis.

. S. Aggarwal and S. Kutten. Time optimal self stabilizing spanning tree algorithms.
In R.K. Shyamasundar, editor, 13th International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 761 of Lecture Notes in
Computer Science, pages 400-410, Bombay, India., December 1993. Springer-Verlag.

. J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory. Journal
of Algorithms, 15(1):441-460, September 1990.

. W. Feller. An Introduction to Probability Theory and its Applications. Volume 1. Jokn
Wiley & Sons, Inc., 1950.

. D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric and fully
distributed solution to the dining philosophers problem. In Proceedings of the 8"
Annual ACM Symposium on Principles of Programming Languages, pages 133-138,
January 1981.

. N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed
algorithms. In Proceedings of the 13" Annual ACM Symposium on Principles of Dis-
tributed Computing, Los Angeles, CA, pages 314-323, 1994.

. Nancy Lynch and Frits Vaandrager. Forward and backward simulations — Part II:
Timing-based systems. Information and Computation, 121(2):214-233, September
1995.

. A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Distributed
Computing, 1(1):53-72, 1986.

. A. Pogosyants and R. Segala. Formal verification of timed properties of randomized

distributed algorithms. In Proceedings of the 14" Annual ACM Symposium on Princi-

ples of Distributed Computing, Ottawa, Ontario, Canada, pages 174-183, August 1995.

A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus

algorithm of Aspnes and Herlihy: a case study. Technical Memo MIT/LCS/TM-555,

MIT Laboratory for Computer Science, 1997.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.

PhD thesis, MIT, Dept. of Electrical Engineering and Computer Science, 1995. Also

appears as technical report MIT/LCS/TR-676.

