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We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata[11]. In doing so, we decompose it formally into three subprotocols: one to carry outthe agreement attempts, one to conduct the random walks, and one to implement ashared counter needed by the random walks. Properties of all three subprotocols areproved separately, and combined using general results about automaton composition.It turns out that most of the work involves proving non-probabilistic properties(invariants, simulation mappings, non-probabilistic progress properties, etc.). Theprobabilistic reasoning is isolated to a few small sections of the proof.The task of carrying out this proof has led us to develop several general prooftechniques for probabilistic I/O automata. These include ways to combine expecta-tions for di�erent complexity measures, to compose expected complexity properties,to convert probabilistic claims to deterministic claims, to use abstraction mappingsto prove probabilistic properties, and to apply random walk theory in a distributedcomputational setting.Previous work on veri�cation of randomized distributed algorithms includes [8],where the randomized dining philosophers algorithm of [5] is shown to guaranteeprogress with probability 1, [6, 9], where the algorithm of [5] is shown to guar-antee progress within expected constant time, and [1], where the randomized self-stabilizing minimum spanning tree algorithm of [2] is shown to guarantee stabiliza-tion within an expected time proportional to the diameter of a network. The analysisof [8] is based on converting a probabilistic property into a property of some of thecomputations of an algorithm (extreme fair computations); the analysis of [6, 9, 1]is based on part of the methodology used in this paper.The paper is organized as follows. Section 2 presents the basic theoretical toolsfor our analysis; Section 3 presents the algorithm of Aspnes and Herlihy, describesthe module that carries out the agreement attempts, and proves safety and livenessproperties that do not depend on the details of the other modules; Section 5 buildsthe module that conducts the randomwalk and proves termination; Section 6 studiesthe expected time complexity of the algorithm; Section 7 gives some concludingremarks. In the presentation we focus mainly on the integration of probability withnondeterminism and we omit most of the analysis that does not involve probability.2 Formal Model and Tools2.1 Probabilistic I/O AutomataA probability space P is a triplet (
;F ; P ) where 
 is a set, F is a collection ofsubsets of 
 that is closed under complement and countable union and such that
 2 F , also called a �-�eld , and P is a function from F to [0; 1] such that P [
] = 1and such that for any collection fCigi of at most countably many pairwise disjointelements of F , P [[iCi] = Pi P [Ci]. A probability space (
;F ; P ) is discrete ifF = 2
 and for each C � 
, P [C] = Px2C P [fxg]. For any arbitrary set X, letProbs(X) denote the set of discrete probability spaces (
;F ; P ) where 
 � X, andsuch that all the elements of 
 have a non-zero probability.



An I/O automaton A consists of �ve components: a set States(A) of states; anon-empty set Start(A) � States(A) of start states; an action signature Sig(A) =(in(A); out(A); int(A)), where in(A); out(A) and int(A) are disjoint sets of input,output, and internal actions, respectively; a transition relationTrans(A) � States(A)�Actions(A)� States(A); where Actions(A) denotes the set in(A)[ out(A)[ int(A),such that for each state s of States(A) and each input action a of in(A) there isa state s0 such that (s; a; s0) 2 Trans(A); a task partition Tasks(A), which is anequivalence relation on int(A) [ out(A) that has at most countably many equiva-lence classes. The elements of Trans(A) are called transitions, and A is said to beinput enabled . An equivalence class of Tasks(A) is called a task of A. A probabilisticI/O automaton M di�ers from an I/O automaton in its transition relation. That is,Trans(M ) � States(M )�Actions(M )�Probs(States(M )). In the rest of the paperwe refer to (probabilistic) I/O automata as (probabilistic) automata.A state s of M is said to enable a transition if there is a transition (s; a;P) inTrans(M ), and an action a is said to be enabled from s if s enables a transitionwith action a. An execution fragment of M is a sequence � of alternating statesand actions of M starting with a state, and, if � is �nite ending with a state,� = s0a1s1a2s2:::, such that for each i � 0 there exists a transition (si; ai+1;P) ofM such that si+1 2 
. Denote by fstate(�) the �rst state of � and, if � is �nite,denote by lstate(�) the last state of �. An execution is an execution fragment whose�rst state is a start state. An execution fragment � is said to be fair i� the followingconditions hold for every task T of M : 1) if � is �nite then no action from T isenabled in lstate(�); 2) if � is in�nite, then either actions from T occur in�nitelymany times in �, or � contains in�nitely many occurrences of states from whichno action from T is enabled. A state s of M is reachable if there exists a �niteexecution of M that ends in s. A �nite execution fragment �1 = s0a1s1 � � �ansn ofM and an execution fragment �2 = snan+1sn+1 � � � of M can be concatenated . Theconcatenation, written �1a�2, is the execution fragment s0a1s1 � � �ansnan+1sn+1 � � �.An execution fragment �1 ofM is a pre�x of an execution fragment �2 ofM , written�1 � �2, i� either �1 = �2 or �1 is �nite and there exists an execution fragment �01of M such that �2 = �1 a �01.An execution fragment of M is the result of resolving both the probabilisticand the nondeterministic choices of M . If only the nondeterministic choices areresolved, then we obtain a structure similar to a cycle-free Markov chain, which wecall a probabilistic execution fragment of M . From the point of view of the study ofalgorithms, the nondeterminism is resolved by an adversary that chooses a transitionto schedule based on the past history of the system. A probabilistic execution is theresult of the action of some adversary. A probabilistic execution can be thought of asthe result of unfolding the transition relation of a probabilistic automaton and thenchoosing one transition for each state of the unfolding. It has a structure similarto the structure of a probabilistic automaton, where the states are �nite executionfragments of M . It is possible to de�ne a probability space PH = (
H ;FH ; PH)associated with H. In particular 
H is a set of execution fragments of M , FH isthe smallest �-�eld that contains the set of cones Cq, consisting of those elementsof 
H having q as a pre�x (let q denote a state of H), and the probability measurePH is the unique extension of the probability measure de�ned on cones as follows:



PH [Cq] is the product of the probabilities of each transition of H leading to q. Anevent E of H is an element of FH . An event E is called �nitely satis�able if it canbe expressed as a union of cones. A �nitely satis�able event can be represented bya set � of incomparable states of H. The event denoted by � is [q2�Cq. We abusenotation by writing PH [�] for PH [[q2�Cq]. We call a set of incomparable states ofH a cut of H, and we say that a cut � is full if PH [�] = 1. An important event ofPH is the set of fair executions of 
H . We de�ne a probabilistic execution fragmentH to be fair if the set of fair execution fragments has probability 1 in PH .Probabilistic automata can be composed in parallel. The states of the composi-tion are the cross product of the states of the components. The composed probabilis-tic automata synchronize on their common actions and evolve independently on theothers. Whenever a synchronization occurs, the state that is reached is obtained bychoosing a state independently for each of the probabilistic automata involved. In aparallel composition the notion of projection is one of the main tools to support mod-ular reasoning. A projection of an execution fragment � onto a component within aparallel composition is the contribution of the component to obtain �. Formally, letM be M1 kM2, the parallel composition of M1 and M2, and let � be an executionfragment of M . The projection of � onto Mi, denoted by �dMi, is the sequenceobtained from � by replacing each state with its ith component and by removingall actions that are not actions of Mi together with their following state. It is thecase that �dMi is an execution fragment ofMi. A similar construction is possible onprobabilistic execution fragments. Here we just claim that HdMi is a probabilisticexecution fragment of Mi and that the probability space associated with HdMi isthe image space under projection of the probability space associated with H.Proposition1 [10]. Let M be M1 k M2, and let H be a probabilistic executionfragment of M . Let i 2 f1; 2g. Then 
HdMi = f�dMi j � 2 
Hg, and for each� 2 FHdMi , PHdMi [�] = PH [f� 2 
H j �dMi 2 �g].2.2 Complexity MeasuresA complexity function is a function from execution fragments of M to <�0. A com-plexity measure is a complexity function � such that, for each pair �1 and �2 ofexecution fragments that can be concatenated, max (�(�1); �(�2)) � �(�1 a �2) ��(�1) + �(�2). Informally, a complexity measure is a function that determines thecomplexity of an execution fragment. A complexity measure satis�es two naturalrequirements: the complexity of two tasks performed sequentially should not exceedthe complexity of performing the two tasks separately and should be at least as largeas the complexity of the more complex task.Consider a probabilistic execution fragment H of M and a �nitely satis�ableevent � ofFH . The elements of� represent the points where the property denoted by� is satis�ed. Let � be a complexity function. Then, de�ne the expected complexity� to reach � in H asE�[H;�] 4= nPq2� �(q)PH [Cq] if PH [�] = 11 otherwise.



If several complexity measures are related by a linear inequality, then their expectedvalues over a full cut are related by the same linear inequality. We use this result inthe time analysis of the algorithm of Aspnes and Herlihy, where we express the timecomplexity of the protocol in terms of two other complexity measures.Proposition2. Let � be a full cut of a probabilistic execution fragment H. Let�; �1; �2 be complexity functions, and c1; c2 two constants such that, for each � 2 �,�(�) � c1�1(�) + c2�2(�). Then E�[H;�]� c1E�1 [H;�] + c2E�2 [H;�].Suppose now that within a computation it is possible to identify several phases, eachone with its own complexity, and suppose that the complexity associated with eachphase remains 0 until the phase starts. Suppose that the expected complexity ofeach phase is bounded by some constant c. If we know that the expected numberof phases that start is bounded by k, then the expected complexity of the system isbounded by ck. The algorithm of Aspnes and Herlihy works in rounds, and at eachround a special coin 
ipping protocol is run. The rounds can be seen as phases. Themain di�culty is that several rounds may run concurrently.Proposition3. Let M be a probabilistic automaton. Let �1; �2; �3; : : : be a count-able collection of complexity functions for M , and let �0 be a complexity functionde�ned as �0(�) = Pi�0 �i(�). Let c be a constant, and suppose that for each fairprobabilistic execution fragment H of M , each full cut � of H, and each i > 0,E�i[H;�] � c.Let H be a probabilistic fair execution fragment of M , and let � be a complexitymeasure for M . For each i > 0, let �i be the set of minimal states q of H such that�(q) � i. Suppose that for each q 2 �i, �i(q) = 0, and that for each state q of Hand each i > �(q), �i(q) = 0.Then, for each full cut � of H, E�0 [H;�]� cE�[H;�].Finally, to verify properties modularly it is useful to derive complexity properties ofcomplex systems based on complexity properties of their components.Proposition4. LetM be M1kM2, and let i 2 f1; 2g. Let � be a complexity functionfor M , and let �i be a complexity function for Mi. Suppose that for each �niteexecution fragment � of M , �(�) = �i(�dMi). Let c be a constant. Suppose that foreach probabilistic execution fragment H of Mi and each full cut � of H, E�i [H;�]�c. Then, for each probabilistic execution fragment H of M and each full cut � of H,E�[H;�] � c.2.3 Probabilistic Complexity StatementsA probabilistic complexity statement [9, 11] is a predicate that states whether all thefair probabilistic executions of a probabilistic automaton guarantee some reachabilityproperty within some complexity c with some minimum probability p. Probabilistic



complexity statements essentially express partial progress properties of a probabilis-tic system. Such partial progress properties can then be used to derive upper boundson the expected complexity for progress. Formally, U ��c�!p U 0 is a predicate that istrue for M i� for each fair probabilistic execution fragmentH of M that starts froma state of U , PH [eU 0;�(c)(H)] � p, where eU 0;�(c)(H) denotes the set of executions �of 
H with a pre�x �0 such that �(�0) � c and lstate(�0) 2 U 0.Denote byU ) UunlessU 0 the predicate that is true forM i� for every executionfragment sas0 of M , s 2 U �U 0 ) s0 2 U [U 0. Informally, U ) UunlessU 0 meansthat, once a state from U is reached, M remains in U unless U 0 is reached. For eachprobabilistic execution fragment H of M , let �U 0(H) denote the set of minimalstates of H where a state from U 0 is reached. The following theorem provides a wayof computing the expected � for reaching U 0.Proposition5 [11]. Let M be a probabilistic automaton and � be a complexitymeasure. Suppose that for each execution fragment of M of the form sas0, �(sas0) �1, that is, each transition of M increases � by at most 1. Let U and U 0 be sets ofstates of M . Let H be a probabilistic execution fragment of M that starts from a stateof U , and suppose that for each state q of H such that lstate(q) 2 U some transitionis scheduled with probability 1. Suppose also that U ��c�!p U 0 and U ) UunlessU 0.Then, E�[H;�U 0(H)] � (c+ 1)=p.A useful technique to prove the validity of a probabilistic complexity statementU ��c�!p U 0 for a probabilistic automaton M is the following [9]: 1) choose a set ofrandom draws that may occur within a probabilistic execution of M , and choosesome of the possible outcomes; 2) show that, no matter how the nondeterminism isresolved, the chosen random draws give the chosen outcomes with some minimumprobability p; 3) show that whenever the chosen random draws give the chosenoutcome, a state from U 0 is reached within c units of complexity �.The �rst two steps can be carried out using the so-called coin lemmas [6, 9, 11],which provide rules to map a stochastic process onto a probabilistic execution andlower bounds on the probability of the mapped events based on the properties of thegiven stochastic process; the third step concerns non-probabilistic properties and canbe carried out by means of any known technique for non-probabilistic systems. Coinlemmas are essentially a way of reducing the analysis of a probabilistic property tothe analysis of an ordinary nondeterministic property.2.4 Symmetric Random Walks for Probabilistic AutomataThe correctness of the protocol of Aspnes and Herlihy is based on the theory ofrandom walks [4]. That is, some parts of the protocol behave like a probabilisticprocess called random walk. The problem is to make sure that the protocol indeedbehaves like a random walk. This is a point where intuition often fails, and thereforewe need a proof technique that is su�ciently rigorous and simple to avoid mistakes.



Roughly speaking, a random walk is a process that describes the moves of aparticle on the real line, where at each time the particle moves in one direction withprobability p and in the opposite direction with probability (1 � p). In this sectionwe present a coin lemma for symmetric random walks. That is, p = 1=2.Let M be a probabilistic automaton and let Acts = f
ip1; : : : ;
ipng be a subsetof Actions(M ). Let S = f(U h1 ;U t1); (U h2 ;U t2); : : : ; (U hn ;U tn)g be a set of pairs wherefor each i; 1 � i � n, U hi ;U ti are disjoint subsets of States(M ) such that for everytransition (s;
ipi;P) with an action 
ipi, 
 � U hi [ U ti , and P [U hi ] = P [U ti ] =1=2. The actions from Acts represent coin 
ips, and the sets of states U hi and U tirepresent the two possible outcomes. Given a �nite execution fragment � of M , letDi� Acts;S(�) denote the di�erence between the heads and the tails that occur inH. Let z; B, and T be natural numbers, and let B < T . The value of z denotes thestarting point of the particle, while B and T denote barriers in the real line. Foreach �nite execution fragment �, let z + Di� (�) denote the position of the particleafter the occurrence of �. For each probabilistic execution fragment H of M , letTop[B; T; z](H) be the set of executions � of
H such that either the particle reachesthe top barrier T before the bottom barrier B, or the total number of \
ips" is �niteand the particle reaches neither barrier. De�ne the symmetric event Bot[B; T; z](H),which is the same as Top except that the bottom barrier B should be reached beforethe top barrier T . Finally, de�ne the event Either[B; T; z](H) as Top[B; T; z](H)[Bot[B; T; z](H), which excludes those executions ofM where in�nitely many \
ips"occur and the particle reaches neither barrier.Proposition6. Let H be a probabilistic execution fragment of M , and let B � z �T . Then1. PH [Top[B; T; z](H)] � (z � B)=(T �B).2. PH [Bot[B; T; z](H)] � (T � z)=(T � B).3. PH [Either[B; T; z](H)] = 1.We conclude with a result about the expected complexity of a random walk. Let�Acts(�) be the complexity measure that counts the number of actions from Actsthat occur in �. De�ne �Acts;B;T;z to be the truncation of �Acts at the point whereone of the barriers B and T is reached. Then we can prove an upper bound on thenumber of expected 
ip actions that occur before reaching one of the barriers.Proposition7. Let H be a probabilistic execution fragment of M , and let � be afull cut of H. Let B � z � T . Then, E�Acts;B;T;z [H;�]� �z2 + (B + T )z � BT .3 The Algorithm of Aspnes and Herlihy3.1 Description of the AlgorithmThe algorithm of Aspnes and Herlihy proceeds in rounds. Every process maintains avariable with two �elds, value and round , that contain the process' current preferred



value (0; 1 or ?) and current round (a non-negative integer), respectively. We saythat a process is at round r if its round �eld is equal to r. The variables (value ; round)are multiple-reader single-writer. Each process starts with its round �eld initializedto 0 and its value �eld initialized to ?.After receiving the initial value to agree on, each process i executes the followingloop. It �rst reads the (value; round) variables of all other processes in its localmemory. We say that process i is a leader if according to its readings its own roundis greater than or equal to the rounds of all other processes. We also say that aprocess i observed that another process j is a leader if according to i's readings theround of j is greater than or equal to the rounds of all other processes. If process iat round r discovers that it is a leader, and that all processes that are at rounds rand r� 1 have the same value as i, then i breaks out of the loop and decides on itsvalue. Otherwise, if all processes that i observed to be leaders have the same valuev , then i sets its value to v, increments its round and proceeds to the next iterationof the loop. In the remaining case, (leaders that i observed do not agree), i sets itsvalue to ? and scans again the processes. If once again the leaders observed by i donot agree, then i determines its new preferred value for the next round by invokinga coin 
ipping protocol. There is a separate coin 
ipping protocol for each round.We represent the main part of the algorithm as an automaton AP (AgreementProtocol) and the coin 
ipping protocols as probabilistic automata CF r (Coin Flip-per), one for each round r. With this decomposition we can analyze several propertiesjust on AP using ordinary techniques for non-probabilistic systems. Indeed, in thissection we deal with AP only, and we leave the coin 
ippers unspeci�ed.The formal de�nition of AP is given in Table 1. Beside the shared variablesvalue(i) and i), each process has a program counter pc, two arrays values and roundscontaining the scans of the other processes, a set variable obs saying what processeshave been observed, a variable start holding the initial preferred value, and twovariables decided , and stopped stating whether the process has decided or failed. Weexplain some of the relevant predicates: obs-leader (j) is true if i observes that j is aleader; obs-agree(r; v) is true if the observations of all the processes whose round isat least r agree on v; obs-leader-agree(v) is true if i observes that the leaders agreeon a value v; obs-leader-value is the value of one of the leaders observed by i. Wesay that a process is active if it is attempting to agree on a value. An active processbecomes inactive either by deciding a value or by failing.3.2 Safety PropertiesValidity states that \if a process decides on a value, then this value is the initialvalue of some process". The proof of validity derives from a trivial invariant sayingthat no process will ever prefer a value di�erent from its initial value if all processeshave the same initial value. Agreement states that \any two processes that decidewithin an execution of the algorithm decide on the same value". The key idea of theproof of agreement is that if a process i that is at round r is \about to decide" onsome value v, then every process that is at round r or higher has its value equal tov. De�ne agree(r; v) to be true if all the processes at round at least r prefer v.



Actions and transitions of process i.input init(v)iE�: start  voutput start(v)iPre: pc = init ^ start = v 6= ?E�: value(i) vround(i) 1obs ;pc  read1output read1(k)iPre: pc = read1k =2 obsE�: values[k] value(k)rounds[k] round(k)obs obs [ fkgif obs = f1; : : : ; ng then pc  check1output check1iPre: pc = check1E�: if 9v2f0;1gobs-agree(rounds[i]� 1; v)^obs-leader(i) thenpc  decideelseif 9v2f0;1gobs-leader-agree(v) thenvalue(i) obs-leader-valueround(i) rounds[i] + 1obs ;pc  read1else value(i) ?obs ;pc  read2output decide(v)iPre: pc = decide ^ values[i] = vE�: decided  truepc  nil

output read2(k)iPre: pc = read2k =2 obsE�: values[k] value(k)rounds[k] round(k)obs obs [ fkgif obs = f1; : : : ; ng thenpc  check2output check2iPre: pc = check2E�: if 9v2f0;1gobs-leader-agree(v) thenvalue(i) obs-leader-valueround(i) rounds[i] + 1obs ;pc  read1else pc  
ipoutput start-
ip(r)iPre: pc = 
ipround(i) = rE�: pc  waitinput return-
ip(v; r)iE�: if pc = wait ^ round(i) = r thenvalue(i) vround(i) rounds[i] + 1obs ;pc  read1input stopiE�: stopped  truepc  nilTasks: The locally controlled actions of process i form a single task.Table 1. The actions and transition relation of AP.



Invariant 4 Given a reachable state of AP, let v = value(i) and r = round (i).Then (obs-agree(r � 1; v)i ^ obs-leader (i)i ^ obsi = f1; : : : ; ng)) agree(r; v).Invariant 4 is su�cient to prove agreement. The idea is that the premise of Invari-ant 4 is stable. In fact, if process i satis�es the premise of Invariant 4, then processi decides on value v, and thus the local state of process i does not change any more.The analysis of Invariant 4 follows standard methods for invariant proofs within or-dinary nondeterministic systems, and is based on several other invariants. The maininvariant, which we omit here, is expressed in a new style that we think is useful: ittalks about the state of a process when it is in the middle of a scanning pass, anddescribes properties that would hold if the scanning pass is completed instantly.4.1 Non-Probabilistic Progress PropertiesOur next objective is to show that in the algorithm of Aspnes and Herlihy somedecision is reached within some expected number of rounds. This property dependson the probabilistic properties of the coin 
ipping protocols. However, there areseveral progress properties of the algorithm that do not depend on any probabilisticassumption. In this section we study such properties. The advantage of this approachis that we can use most of the existing techniques for ordinary nondeterministicsystems and con�ne probabilistic arguments to a limited section of the analysis.For each round r, let CF r denote the coin 
ipping protocol for round r. De�neAH to be AP k (kr�1CF r). For each �nite execution fragment � of AH , de�ne thecomplexity measure �MaxRound(�) as the di�erence between the maximum roundnumbers of the �nal and initial states of �. De�ne the following sets of states.R the set of reachable states of AH such that there is an active process;D the set of reachable states of AH such that there is no active process.We show that, under some conditions on the coin 
ipping protocols, starting fromany state of R, a state from D is reached within some bounded number of rounds.We split the problem: �rst we show that, unless the algorithm terminates, the systemreaches a point where one process just moved to a new maximum round; then, weshow that from such an intermediate point the algorithm terminates. The proofs arebased on simple invariants. Formally, for v 2 f0; 1g, de�ne the following set of states.Fv the set of states of R where there exists a round r and a process l such thatround (l) = r, value(l) = v, obsl = ;, and for all processes j 6= l, round (j) < r.Proposition8. If AH is in a state s of R and all invocations to the coin 
ipperson non-failing ports get a response, then a state from F0 [F1 [D is reached withinone round.Proposition9. If AH is in a state s of Fv, all invocations to the coin 
ipperson non-failing ports get a response, and all invocations to CF s:max-round get onlyresponse v, then a state from D is reached within two rounds.



4.2 Probabilistic Progress PropertiesSuppose that each coin 
ipping protocol CF r satis�es the following properties.C1 For each fair probabilistic execution fragment ofCF r that starts with a reachablestate of CF r, the probability that each invocation on a non-failing port gets aresponse is 1.C2 For each fair probabilistic execution of CF r , and each value v 2 f0; 1g, theprobability that all invocations on a non-failing port get response v is at least p,0 < p � 1.Proposition10. If each coin 
ipping protocol CF r satis�es properties C1 and C2,then in AH, starting from any state of R and under any fair scheduler, a state fromD is reached within O(1=p) expected rounds.Proof. We �rst derive the statement R �MaxRound�3�!p D from two intermediate state-ments R �MaxRound�1�!1 F0 [ F1 [ D and Fv �MaxRound�2�!p D, v 2 f0; 1g. The proofs of theintermediate statements rely on Propositions 8 and 9 and on C1 and C2. Sincein AH R is not left unless a state from D is reached, since each transition of AHincreases �MaxRound by at most 1, and since from fairness and C1 some transitionis scheduled with probability 1 from each state of R, by Theorem 5 we derive thatwithin expected 4=p rounds a state from D is reached under any fair scheduler.5 The Atomic Coin Flipping Protocol5.1 The ProtocolWe build a coin 
ipping protocol that satis�es C1 and C2 with p = (K�1)=2K. Theprotocol is based on random walks. We de�ne the protocol by letting a probabilisticautomatonDCN r (Distributed CoiN) interact with a non-probabilistic counter CT r(CounTer), that is, CF r = DCN r kCTr. In this Section, DCN r is distributed whileCT r is composed of n processes that receive requests from DCN r and read/updatea single shared variable. In Section 5.4 we discuss how to decentralize CT r. Since theprotocols for DCN r and CT r are the same for any round r, we drop the subscriptr from our notation. In DCN each process 
ips a fair coin to decide whether toincrement or decrement the shared counter. Then the process reads the currentvalue of the shared counter by invoking CT , and if the value read is beyond thebarrier �Kn (+Kn), where K is a �xed constant, then the process returns 0 (1).The speci�cation of CT states that an increment or decrement operation alwayscompletes unless the corresponding process fails, while a read operation is guaranteedto complete only if increments and decrements eventually cease.



5.2 Non-Probabilistic AnalysisLet Acts be f
ip1; : : : ;
ipng, and let S be f(U i1;U d1 ); (U i2;U d2 ); : : : ; (U in;U dn)g, whereU ij is the set of states of CF where process j has just 
ipped inc (fpcj = inc), andU dj is the set of states of CF where process j has just 
ipped dec (fpcj = dec). Givena �nite execution fragment � of CF , let �inc(�) be the number of coin 
ips in �that give inc, and let �dec(�) be the number of coin 
ips in � that give dec.Lemma11. Let � be a fair execution of CF, such that � 2 Top[�(K � 1)n; (K +1)n; 0](H) for some probabilistic execution H of CF . Then in � every invocation ona non-failing port gets response 1.The proof of Lemma 11 follows from simple invariant properties. The main idea isthat the value of the shared counter remains beyond Kn once the barrier (K + 1)nis reached. A symmetric argument is valid for Bottom[�(K � 1)n; (K +1)n; 0](H).5.3 Probabilistic AnalysisWe prove only C2 by applying our coin lemma for random walks.Proposition12. The coin 
ipper CF satis�es C2 with p = (K + 1)=2K. That is,�xed v 2 f0; 1g, for each fair probabilistic execution of CF, with probability at least(K � 1)=2K each invocation to CF on a non-failing port returns value v.Proof. Assume that v = 1; the case for v = 0 is symmetric. Let H be a fair prob-abilistic execution of CF . If � is an execution of Top[�(K � 1)n; (K + 1)n; 0](H),then, by Lemma 11, every invocation to CF in � gets response 1. Furthermore, byTheorem 6, PH [Top[�(K � 1)n; (K + 1)n; 0](H)] � (K � 1)=2K.5.4 Implementation of the Shared CounterIt is possible to build a distributed implementation of CT that preserves C1 andC2. The implementation, which we denote by DCT (Distributed CounTer), is pre-sented in [3]. In the full paper we verify that DCT implements CT by exhibiting are�nement mapping [7] from DCT to CT . This part of the proof is simple and doesnot involve probability. Then we use the compositionality results of [11] to show thatDCT can replace CT in AH .5.5 Summing UpIn this section we paste together the results of the previous sections to derive anupper bound on the expected number of rounds for termination. In particular, if weknow that there is at least one initialized process that does not fail, then we knowthat a decision is reached within constant many rounds.



Theorem13. Using either the counters CT or DCT, from each reachable state ofAH, under any fair scheduler, a state of D is reached within a constant expectednumber of rounds.Proof. The coin 
ippers with the counters CT or DCT satisfy properties C1 andC2 with p = (K � 1)=2K. By Proposition 10, AH guarantees that D is reachedwithin at most O(2K=(K � 1)) expected rounds.6 Timing Analysis of the AlgorithmIn this section we derive an upper bound on the time to reach D once all processeshave some minimum speed. We achieve this result by studying the expected numberof inc and dec events that occur within the coin 
ippers and then converting thenew expected bound into a time bound.We change slightly our formal model to handle time. Speci�cally, we add a com-ponent :now to the states of all our probabilistic I/O automata, and we add the setof positive real numbers to the input actions of all our probabilistic I/O automata.The :now component is a nonnegative real number and describes the current timeof an automaton. At the beginning (i.e., in the start states) the current time is 0,and thus the :now component is 0. The occurrence of an action d, where d is apositive real number, increments the :now component by d and leaves the rest of thestate unchanged. Thus, the occurrence of an action d models the fact that d timeunits are elapsing. The amount of time elapsed since the beginning of an executionis recorded in the :now component. Since time-passage actions must synchronize ina parallel composition context, parallel composition ensures that the :now compo-nents of the components are always equal. Thus, we can abuse notation and talkabout the :now component of the composition of two automata while we refer tothe :now component of one of the components. We de�ne a new complexity measure�t(�) as the di�erence between the :now components of the last and �rst states of�. Informally, �t measures the time that elapses during an execution. We say thatan execution fragment � of a probabilistic automaton M is well-timed if each taskdoes not remain enabled for more than one time unit without being performed.We give some preliminary de�nitions. Let, for each r > 0, DCF r (DistributedCoin Flipper) denote DCN r kDCT r . Let DAH (Distributed Aspnes-Herlihy) denoteAP k(kr�1DCF r). For an execution fragment � of DCF r or of DAH , let �
ip;r(�) bethe number of 
ip events of DCF r that occur in �, and let �id;r(�) be the numberof inc and dec events of DCF r that occur in �. For each execution fragment � ofDAH let �id(�) be the number of inc and dec events that occur in �.We start with some non-probabilistic properties about the new complexity mea-sures. The �rst result, Lemma 14, provides a linear upper bound on the time it takesfor DAH to span a given number of rounds and to 
ip a given number of coins underthe assumption of well-timedness. The next two results state basic properties of thecoin 
ipping protocols. That is, once a barrier �(K + 1)n is reached, there are atmost n other 
ip events, and within any execution fragment of DCF r the di�erencebetween the inc; dec events and the 
ip events is at most n.



Lemma14. Let � be a well-timed execution fragment of DAH, and suppose thatall the states of �, with the possible exception of lstate(�) are active, that is, arestates of R. Let R = fstate(�):max-round. Then, �t(�) � d1n2(�MaxRound(�) +R) + d2n�id(�) + d3n2 for some constants d1; d2, and d3.Lemma15. Let � = �1 a �2 be a �nite execution of DCF r, and suppose thatjDi� Acts;S(�1)j � (K + 1)n. Then �
ip;r(�2) � n.Lemma16. Let � be a �nite execution fragment of DCF r . Then,�id;r(�) � �
ip;r(�) + n.We now deal with probabilistic properties. First, based on our results on ran-dom walks and on Lemma 15, we show in Lemma 17 an upper bound on the ex-pected number of coin 
ips performed by a coin 
ipper. Then, in Lemma 18 weuse Lemma 16 and our results about linear combinations of complexity measures toderive an upper bound on the expected number of increment and decrement oper-ations performed by a coin 
ipper, and we use our compositionality result aboutcomplexity measures to show that the bound is preserved by parallel composition.Finally, in Lemma 19 we use our result about phases of computations to combineTheorem 13 with Lemma 18 and derive an upper bound on the expected number ofinc and dec events performed by the algorithm.Lemma17. Let H be a probabilistic execution fragment of DCF r that starts froma reachable state, and let � be a full cut of H. Then E�
ip;r [H;�] � (K +1)2n2+n.Lemma18. Let H be a probabilistic execution fragment of DAH that starts from areachable state, and let � be a full cut of H. Then E�id;r [H;�]� (K + 1)2n2 + 2n.Lemma19. Let H be a probabilistic fair execution fragment of DAH with start states, and let R = s:max-round. Suppose that s is reachable. Let � denote the set ofminimal states of H where a state from D is reached. Then E�id [H;�] = O(Rn2).The main result is just a pasting together of the results obtained so far. An immediateconsequence on the algorithm of Aspnes and Herlihy is that, if we know that someinitialized process does not fail and that the maximum round is 1, then a decisionis reached within expected cubic time.Theorem20. Let H be a probabilistic fair, well-timed execution fragment of DAHwith a reachable start state s, and let R = s:max-round. Let � denote the set ofminimal states of H where a state from D is reached. Then E�t[H;�] = O(Rn3).Proof. By Lemma 14 and Proposition 2,E�t [H;�]� d1n2E�MaxRound[H;�]+d1n2R+d2nE�id [H;�] + d3n2. Thus, by Theorem 13 and Lemma 19, E�t [H;�] = O(Rn3).
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