
Veri�cation of the Randomized Consensus Algorithm of Aspnesand Herlihy: a Case Study�Anna Pogosyantsy Roberto Segalaz Nancy Lynch�AbstractThe Probabilistic I/O Automaton model of [20] is used as the basis for a formal pre-sentation and proof of the randomized consensus algorithm of Aspnes and Herlihy. Thealgorithm guarantees termination within expected polynomial time.The Aspnes-Herlihy algorithm is a rather complex algorithm. Processes move through asuccession of asynchronous rounds, attempting to agree at each round. At each round, theagreement attempt involves a distributed random walk. The algorithm is hard to analyzebecause of its use of nontrivial results of probability theory (speci�cally, random walktheory), because of its complex setting, including asynchrony and both nondeterministicand probabilistic choice, and because of the interplay among several di�erent sub-protocols.We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata. In doingso, we decompose it formally into three subprotocols: one to carry out the agreementattempts, one to conduct the random walks, and one to implement a shared counter neededby the random walks. Properties of all three subprotocols are proved separately, andcombined using general results about automaton composition. It turns out that most ofthe work involves proving non-probabilistic properties (invariants, simulation mappings,non-probabilistic progress properties, etc.). The probabilistic reasoning is isolated to a fewsmall sections of the proof.The task of carrying out this proof has led us to develop several general proof techniquesfor probabilistic I/O automata. These include ways to combine expectations for di�erentcomplexity measures, to compose expected complexity properties, to convert probabilisticclaims to deterministic claims, to use abstraction mappings to prove probabilistic proper-ties, and to apply random walk theory in a distributed computational setting. We applyall of these techniques to analyze the expected complexity of the algorithm.This paper is written in memory of Anna Pogosyants, who died in a car crash in December1995 while working on this project for her Ph.D. dissertation.�Supported by AFOSR-ONR contract F49620-94-1-0199, by ARPA contracts N00014-92-J-4033 and F19628-95-C-0118, and by NSF grant 9225124-CCR.yLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA,lynch@theory.lcs.mit.eduzDipartimento di Scienze dell'Informazione, Universit�a di Bologna, Piazza di Porta San Donato 5, 40127Bologna - Italy, segala@cs.unibo.it 1



1 IntroductionWith the increasing complexity of distributed algorithms there is an increasing need for math-ematical tools for analysis. Although there are several formalisms and tools for the analysis ofordinary distributed algorithms, there are not as many powerful tools for the analysis of ran-domization within distributed systems. This paper is part of a project that aims at developingthe right math tools for proving properties of complicated randomized distributed algorithmsand systems. The tools we want to develop should be based on traditional probability theory,but at the same time should be tailored to the computational setting. Furthermore, the toolsshould have good facilities for modular reasoning due to the complexity of the systems to whichthey should be applied. The types of modularity we are looking for include parallel compositionand abstraction mappings, but also anything else that decomposes the math analysis.We develop our tools by analyzing complex algorithms of independent interest. In thispaper we analyze the randomized consensus algorithm of Aspnes and Herlihy [5], which guar-antees termination within expected polynomial time. The Aspnes-Herlihy algorithm is a rathercomplex algorithm. Processes move through a succession of asynchronous rounds, attemptingto agree at each round. At each round, the agreement attempt involves a distributed randomwalk. The algorithm is hard to analyze because of its use of nontrivial results of probabilitytheory (speci�cally, random walk theory), because of its complex setting, including asynchronyand both nondeterministic and probabilistic choice, and because of the interplay among severaldi�erent sub-protocols.We formalize the Aspnes-Herlihy algorithm using probabilistic I/O automata [20]. In doingso, we decompose it formally into three subprotocols: one to carry out the agreement attempts,one to conduct the random walks, and one to implement a shared counter needed by the randomwalks. Properties of all three subprotocols are proved separately, and combined using generalresults about automaton composition. It turns out that most of the work involves proving non-probabilistic properties (invariants, simulation mappings, non-probabilistic progress properties,etc.). The probabilistic reasoning is isolated to a few small sections of the proof.The task of carrying out this proof has led us to develop several general proof techniquesfor probabilistic I/O automata. These include ways to combine expectations for di�erent com-plexity measures, to compose expected complexity properties, to convert probabilistic claimsto deterministic claims, to use abstraction mappings to prove probabilistic properties, andto apply random walk theory in a distributed computational setting. We apply all of thesetechniques to analyze the expected complexity of the algorithm.Previous work on veri�cation of randomized distributed algorithms includes [18], wherethe randomized dining philosophers algorithm of [13] is shown to guarantee progress withprobability 1, [15, 19], where the algorithm of [13] is shown to guarantee progress withinexpected constant time, and [2], where the randomized self-stabilizing minimum spanning treealgorithm of [3] is shown to guarantee stabilization within an expected time proportional tothe diameter of a network. The analysis of [18] is based on converting a probabilistic propertyinto a property of some of the computations of an algorithm (extreme fair computations); the2



analysis of [15, 19, 2] is based on part of the methodology used in this paper. Other work isbased on probabilistic model checking (e.g, [21, 11]).Prior to the algorithm of Aspnes and Herlihy, the best known randomized algorithm forconsensus with shared memory was due to Abrahamson [1]. The algorithm has exponentialexpected running time. The algorithm of Aspnes and Herlihy was improved by Attiya, Dolev,and Shavit [6] by eliminating the use of unbounded counters needed for the random walk.Further improvements were proposed by Aspnes [4], and by Dwork, Herlihy, Plotkin, andWaarts [7]. The best known algorithm [7] runs in an expected O(n(p2 + n)) total atomicregister operations, where n is the number of processes and p is the number of processes thatparticipate in the consensus protocol.The rest of the paper is organized as follows. Section 2 presents the basic theoreticaltools for our analysis, including probabilistic I/O automata, abstract complexity measures,progress statements and re�nement mappings; Section 3 presents a coin lemma for randomwalks and a result about the expected complexity of a random walk within a probabilistic I/Oautomaton; Section 4 presents the algorithm of Aspnes and Herlihy and describes formallythe module that carries out the agreement attempts; Sections 5 and 6 prove that the Aspnes-Herlihy algorithm satis�es the validity and agreement properties; Section 7 proves severalprogress properties of the algorithm that are not based on any probabilistic argument; Section 8proves the probabilistic progress properties of the algorithm by using the results of Section 7;Section 9 builds the module that conducts the random walk; Section 10 builds the sharedcounter needed in Section 9; Section 11 derives the termination properties of the algorithm,where the complexity is measured in terms of expected number of rounds; Section 12 studiesthe expected time complexity of the algorithm; Section 13 gives some concluding remarks anddiscusses the kinds of modularization that we use in the proof.
3



Part I: The Underlying Theory2 Formal Model and ToolsIn this section we introduce the formalism that we use in the paper. We start with ordinaryI/O automata following the style of [16, 14]; then we move to probabilistic I/O automataby adding the input/output structure to the probabilistic automata of [20]. We describemethods to handle complexity measures within probabilistic automata, and we present progressstatements as a basic tool for the complexity analysis of a probabilistic system. Finally, wedescribe veri�cation techniques based on re�nements and traces.2.1 I/O AutomataAn I/O automaton A consists of �ve components:� a set States(A) of states.� a non-empty set Start(A) � States(A) of start states.� an action signature Sig(A) = (in(A); out(A); int(A)), where in(A); out(A) and int(A)are disjoint sets: in(A) is the set of input actions, out(A) is the set of output actions,and int(A) is the set of internal actions.� a transition relation Trans(A) � States(A)�Actions(A)� States(A); where Actions(A)denotes the set in(A)[ out (A)[ int(A), such that for each state s of States(A) and eachinput action a of in(A) there is a state s0 such that (s; a; s0) is an element of Trans(A).The elements of Trans(A) are called transitions , and A is said to be input enabled .� a task partition Tasks(A), which is an equivalence relation on int(A) [ out(A) that hasat most countably many equivalence classes. An equivalence class of Tasks(A) is calleda task of A.In the rest of the paper we refer to I/O automata as automata.A state s of A is said to enable a transition if there is a transition (s; a; s0) in Trans(A); anaction a is said to be enabled from s if there is a transition (s; a; s0) in Trans(A); a task T ofA is said to be enabled from s if there is an action a 2 T that is enabled from s.An execution fragment of an automaton A is a sequence � of alternating states and actionsof A starting with a state, and, if � is �nite, ending with a state, � = s0a1s1a2s2:::, such thatfor each i � 0 there exists a transition (si; ai+1; si+1) of A. Denote by fstate(�) the �rst stateof � and, if � is �nite, denote by lstate(�) the last state of �. Denote by frag�(A) the set of4



�nite execution fragments of A. An execution is an execution fragment whose �rst state is astart state.An execution fragment � is said to be fair i� the following conditions hold for every taskT of A:1. if � is �nite then T is not enabled in lstate(�);2. if � is in�nite, then either actions from T occur in�nitely many times in �, or � containsin�nitely many occurrences of states from which T is not enabled.A state s of A is reachable if there exists a �nite execution of A that ends in s. Denote byrstates(A) the set of reachable states of A. A property � of states is said to be stable for anexecution fragment � = s0a1s1 � � � if, once � is true, � remains true in all later states. That is,for every i � 0, �(si)) 8j�i�(sj).A �nite execution fragment �1 = s0a1s1 � � �ansn of A and an execution fragment �2 =snan+1sn+1 � � � of A can be concatenated . The concatenation, written �1 a �2, is the executionfragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of A is a pre�x of an executionfragment �2 ofA, written �1 � �2, i� either �1 = �2 or �1 is �nite and there exists an executionfragment �01 of A such that �2 = �1 a �01. If � = �1 a �2, then �2 is called a su�x of �, andit is denoted alternatively by �.�1.2.2 Probabilistic I/O Automata2.2.1 Preliminaries on Probability TheoryA probability space is a triplet (
;F ; P ) where1. 
 is a set, also called the sample space,2. F is a collection of subsets of 
 that is closed under complement and countable unionand such that 
 2 F , also called a �-�eld , and3. P is a function from F to [0; 1] such that P [
] = 1 and such that for any collection fCigiof at most countably many pairwise disjoint elements of F , P [[iCi] =Pi P [Ci].The pair (
;F) is called a measurable space, and the measure P is called a probability measure.A probability space (
;F ; P ) is discrete if F = 2
 and for each C � 
, P [C] =Px2C P [fxg].For any arbitrary set X , let Probs(X) denote the set of discrete probability distributions whosesample space is a subset ofX and such that all the elements of the sample space have a non-zeroprobability.A function f : 
1 ! 
2 is said to be measurable from (
1;F1) to (
2;F2) if for eachE 2 F2, f�1(E) 2 F1. Given a probability space (
1;F1;P1), a measurable space (
2;F2),5



and a measurable function f from (
1;F1) to (
2;F2), let f(P1), the image measure of P1,be the measure de�ned on (
2;F2) as follows: for each E 2 F2, f(P1)(E) = P1(f�1(E)).Standard measure theory arguments show that (
2;F2; P2) is a probability space. If (
;F ; P )is discrete, then we can de�ne f((
;F ; P )) as (f(
); 2f(
); f(P )).For notational convenience we denote a probability space (
;F ; P ) by P . We also useprimes and indices that carry over automatically to the components of a probability space.Thus, for example, P 0i denotes (
0i;F 0i; P 0i ).Given a probability space P and a set X , we abuse notation and we write P [X ] even ifX contains elements that are not in 
. By writing P [X ] we mean implicitly P [X \ 
]. Also,given an element x, we write P [x] for P [fxg].Given two discrete probability spaces P1 and P2, de�ne the product P1
P2 of P1 and P2 tobe the triplet (
1�
2; 2
1�
2 ; P1
P2), where, for each (x1; x2) 2 
1�
2, P1
P2[(x1; x2)] =P1[x1]P2[x2].We conclude with some notions about random variables that are needed in some of theproofs of our results. Let (<;F<) be a measurable space with the real numbers as samplespace. Given a probability space P , a random variable X for P is a measurable function from(
;F) to (<;F<). As an example, a random variable could be the function that expresses thecomplexity of each element of 
. It is possible to study the expected value of a random variable,that is, the average complexity of the elements of 
, as follows: E[X ] = Px2
X(x)P [x]. Auseful property of expected values is the following.Proposition 2.1 Let P be a probability space and let X be a random variable for P. Fori � 0, let the expression X � i denote the event fx 2 
 j X(x) � ig.1. If the range of X is the set of natural numbers, then E[X ] =Pi>0 P [X � i].2. E[X ]�Pi>0 P [X � i].Proof. For i � 0, let the expression X = i denote the event fx 2 
 j X(x) = ig. If therange of X is the set of natural numbers, then the expression for E[X ] can be rewritten asE[X ] = Pi>0 iP [X = i]. That is, E[X ] is a sum of terms such that each term P [X = i]appears i times. By rearranging the terms we obtain E[X ] = Pi>0Pj�i P [X = j], that is,E[X ] = Pi>0 P [X � i]. This proves the �rst item. For the second item, let X be de�ned asfollows: for each x 2 
, X(x) = bX(x)c. It is easy to show that X is a random variable. Fromthe de�nition of X, E[X ]� E[X] and for each i > 0, P [X � i] = P [X � i]. Thus, using item1, E[X ]� E[X] =Pi>0 P [X � i] =Pi>0 P [X � i].2.2.2 Probabilistic I/O AutomataA probabilistic I/O automaton M consists of �ve components:6



� a set States(M) of states.� a non-empty set Start(M) � States(M) of start states;� an action signature Sig(M).� a transition relation Trans(M) � States(M)�Actions(M)�Probs(States(M)) such thatfor each state s of States(M) and each input action a of in(M) there is a distribution Psuch that (s; a;P) is an element of Trans(M). We say that M is input-enabled.� a task partition Tasks(M), which is an equivalence relation on int(M) [ out(M) thathas at most countably many equivalence classes.In the rest of the paper we refer to probabilistic I/O automata as probabilistic automata.Execution fragments and executions are de�ned similarly to the non-probabilistic case. Anexecution fragment of M is a sequence � of alternating states and actions of M starting witha state, and, if � is �nite ending with a state, � = s0a1s1a2s2:::, such that for each i � 0 thereexists a transition (si; ai+1;P) of M such that si+1 2 
. All the terminology that is used forexecutions in the non-probabilistic case applies to the probabilistic case as well.2.2.3 Probabilistic ExecutionsAn execution fragment of M is the result of resolving both the probabilistic and the nonde-terministic choices of M . If only the nondeterministic choices are resolved, then we obtain astructure similar to a cycle-free Markov chain, which we call a probabilistic execution fragmentof M . From the point of view of the study of algorithms, the nondeterminism is resolved byan adversary that chooses a transition to schedule based on the past history of the system. Aprobabilistic execution is the result of the action of some adversary. A probabilistic executioncan be thought of as the result of unfolding the transition relation of a probabilistic automatonand then choosing one transition for each state of the unfolding. We also allow an adversary touse randomization in its choices, that is, a transition to be chosen probabilistically. This modelsthe fact that the environment of a probabilistic automaton may provide input randomly.Formally, a probabilistic execution fragment H of a probabilistic automaton M consists offour components.� a set of states States(H) � frag�(M); let q range over the states of H ;� a signature Sig(H) = Sig(M);� a singleton set Start(H) � States(M);� a transition relation Trans(H) � States(H)�Probs((Actions(H)�States(H))[f�g) suchthat for each transition (q;P) ofH there is a family f(lstate(q); ai;Pi)gi�0 of transitions ofM and a family fpigi�0 of probabilities satisfying the following properties: Pi�0 pi � 1,P [�] = 1�Pi�0 pi, and for each action a and state s, P [(a; qas)] =Pijai=a piPi[s].7



Furthermore, each state of H is reachable, where reachability is de�ned analogously to thenotion of reachability for probabilistic automata after de�ning an execution of a probabilisticexecution fragment in the obvious way. A probabilistic execution H of a probabilistic automatonM is a probabilistic execution fragment of M whose start state is a state of Start(M).A probabilistic execution is like a probabilistic automaton, except that within a transitionit is possible to choose probabilistically over actions as well. Furthermore, a transition maycontain a special symbol �, which corresponds to not scheduling any transition. In particular,it is possible that from a state q a transition is scheduled only with some probability p < 1. Insuch a case the probability of � is 1� p.We now de�ne the probability space associated with a probabilistic execution fragment, sothat its probabilistic behavior can be studied. Given a probabilistic execution fragment H ,the sample space 
H is the limit closure of States(H), where the limit is taken under pre�xordering. The �-�eld FH is the smallest �-�eld that contains the set of cones Cq, consistingof those executions of 
H having q as a pre�x. The probability measure PH is the uniqueextension of the probability measure de�ned on cones as follows: PH [Cq] is the product ofthe probabilities of each transition of H leading to q. It is possible to show that there is aunique probability measure having the property above, and thus (
H ;FH ; PH) is a well de�nedprobability space. The proof is analogous to the proof given in [20] for a similar probabilityspace.An event E of H is an element of FH . An event E is called �nitely satis�able if it canbe expressed as a union of cones. A �nitely satis�able event can be represented by a set ofincomparable states of H , that is, by a set � � States(H) such that for each q1; q2 2 �, q1 6� q2and q2 6� q1. The event denoted by � is [q2�Cq. We abuse notation by writing PH [�] forPH [[q2�Cq]. We call a set of incomparable states of H a cut of H , and we say that a cut �is full if PH [�] = 1. Denote by cuts(H) the set of cuts of H , and denote by full-cuts(H) theset of full cuts of H .An important event of PH is the set of fair executions of 
H . We de�ne a probabilisticexecution fragment H to be fair if the set of fair executions has probability 1 in PH .We conclude by extending the . operator to probabilistic execution fragments. Given aprobabilistic execution fragment H of M and a state q of H , de�ne H.q (the fragment of Hgiven that q has occurred), to be the probabilistic execution fragment of M obtained from Hby removing all the states that do not have q as a pre�x, by replacing all other states q0 withq0.q, and by de�ning lstate(q) to be the new start state. An important property of H.q is thefollowing.Proposition 2.2 For each state q0 of H.q, PH.q[Cq0 ] = PH [Cqaq0 ]=PH [Cq].2.3 Parallel CompositionTwo probabilistic automata M1 and M2 are compatible i� int(M1) \ acts(M2) = ; andacts(M1) \ int(M2) = ;. The parallel composition of two compatible probabilistic automata8



M1 and M2, denoted by M1 kM2, is the probabilistic automaton M such that1. States(M) = States(M1)� States(M2).2. Start(M) = Start(M1)� Start(M2).3. Sig(M) = ((in(M1) [ in(M2))� (out(M1) [ out(M2)); (int(M1) [ int(M2)); (out(M1) [out(M2))).4. ((s1; s2); a;P) 2 Trans(M) i� P = P1 
 P2 where(a) if a 2 Actions(M1) then (s1; a;P1) 2 Trans(M1), else P1 = U(s1), and(b) if a 2 Actions(M2) then (s2; a;P2) 2 Trans(M2), else P2 = U(s2),where U(s) denotes a probability distribution over a single state s. Informally, two probabilis-tic automata synchronize on their common actions and evolve independently on the others.Whenever a synchronization occurs, the state that is reached is obtained by choosing a stateindependently for each of the probabilistic automata involved.In a parallel composition the notion of projection is one of the main tools to supportmodular reasoning. A projection of an execution fragment � onto a component in a parallelcomposition context is the contribution of the component to obtain �. Formally, let M beM1 kM2, and let � be an execution fragment of M . The projection of � onto Mi, denoted by�dMi, is the sequence obtained from � by replacing each state with its ith component and byremoving all actions that are not actions of Mi together with their following state. It is thecase that �dMi is an execution fragment of Mi.The notion of projection can be extended to probabilistic executions (cf. Section 4.3 of[20]). Here we do not present the formal de�nition of projection; rather, we present someproperties of a projection that are needed for our analysis, and we refer the reader to [20] fora more detailed description. Given a probabilistic execution fragment H of M , it is possibleto de�ne an object HdMi, which is a probabilistic execution fragment of Mi that informallyrepresents the contribution of Mi to H . The states of HdMi are the projections onto Mi ofthe states of H . The most important fact is that the probability space associated with HdMiis the image space under projection of the probability space associated with H . This propertyallows us to prove probabilistic properties of H based on probabilistic properties of HdMi.Proposition 2.3 Let M be M1 kM2, and let H be a probabilistic execution fragment of M .Let i 2 f1; 2g. Then 
HdMi = f�dMi j � 2 
Hg, and for each � 2 FHdMi, PHdMi[�] =PH [f� 2 
H j �dMi 2 �g]. 9



2.4 Complexity MeasuresA complexity function is a function from execution fragments of M to <�0. A complexitymeasure is a complexity function � such that, for each pair �1 and �2 of execution fragmentsthat can be concatenated, max (�(�1); �(�2)) � �(�1 a �2) � �(�1) + �(�2).Informally, a complexity measure is a function that determines the complexity of an ex-ecution fragment. A complexity measure satis�es two natural requirements: the complexityof two tasks performed sequentially should not exceed the complexity of performing the twotasks separately and should be at least as large as the complexity of the more complex task; itshould not be possible to accomplish more by working less. In this section we present severalresults that apply to complexity functions; later in the paper we present results that applyonly to complexity measures.2.4.1 Expected ComplexityConsider a probabilistic execution fragment H of M and a �nitely satis�able event � of FH .Informally, the elements of � represent the points where the property denoted by � is satis�ed.Let � be a complexity function. Then, we can de�ne the expected complexity � to reach � inH as follows:E�[H;�] 4= nPq2� �(q)PH [Cq] if PH [�] = 11 otherwise.Complexity functions on full cuts enjoy several properties that are typical of random variables[8]. That is, if � is a full cut, then H induces a probability distribution P� over the statesof �. In such case, � is a random variable and E�[H;�] is the expected value of the randomvariable.2.4.2 Linear Combination of Complexity FunctionsIf several complexity measures are related by a linear inequality, then their expected values overa full cut are related by the same linear inequality (cf. Proposition 2.4). We use this propertyfor the time analysis of the protocol of Aspnes and Herlihy. That is, we express the timecomplexity of the protocol in terms of two other complexity measures (rounds and elementarycoin 
ips), and then we use Proposition 2.4 to derive an upper bound on the expected timefor termination based on upper bounds on the expected values of the other two complexitymeasures. The analysis of the other two complexity measures is simpler, and the relationshipbetween time and the other two complexity measures can be studied using known methods forordinary nondeterministic systems, with no probability involved.Proposition 2.4 Let H be a probabilistic execution fragment of some probabilistic automatonM , and let � be a full cut of H. Let �; �1; �2 be complexity functions, and c1; c2 be two10



constants such that, for each � 2 �, �(�) � c1�1(�)+c2�2(�). Then E�[H;�] � c1E�1[H;�]+c2E�2 [H;�].Proof. From the de�nition of E�[H;�] and the relationship between �; �1, and �2,E�[H;�] �Xq2�(c1�1(q) + c2�2(q))PH [Cq]:By a simple algebraic manipulation,E�[H;�] � c1Xq2��1(q)PH [Cq] + c2Xq2��2(q)PH [Cq]:The two sums above coincide with the de�nitions of E�1 [H;�] and E�2 [H;�], respectively.Thus, E�[H;�] � c1E�1 [H;�] + c2E�2 [H;�].2.4.3 Computation Subdivided into PhasesIn this section we study a property of complexity functions that becomes useful whenevera computation can be divided into phases. Speci�cally, suppose that in a system there areseveral phases, each one with its own complexity, and suppose that the complexity associatedwith each phase remains 0 until the phase starts. Suppose that the expected complexity ofeach phase is bounded by some constant c. If we know that the expected number of phasesthat start is bounded by k, then the expected complexity of the system is bounded by ck. Thedi�cult part of this result is that several phases may run concurrently.The protocol of Aspnes and Herlihy works in rounds . At each round a special coin 
ippingprotocol is run, and the coin 
ipper 
ips a number of elementary coins (elementary coin 
ips).The expected number of elementary coin 
ips is bounded by some known value c independentof the round number. We also know an upper bound k on the expected number of roundsthat are started. If we view each round as a phase, then Proposition 2.5 below says that theexpected number of elementary coin 
ips is upper bounded by ck.Proposition 2.5 Let M be a probabilistic automaton. Let �1; �2; �3; : : : be a countable col-lection of complexity measures for M , and let �0 be a complexity function de�ned as �0(�) =Pi�0 �i(�). Let c be a constant, and suppose that for each fair probabilistic execution fragmentH of M , each full cut � of H, and each i > 0, E�i [H;�] � c.Let H be a probabilistic fair execution fragment of M , and let � be a complexity measurefor M . For each i > 0, let �i be the set of minimal states q of H such that �(q) � i. Supposethat for each q 2 �i, �i(q) = 0, and that for each state q of H and each i > �(q), �i(q) = 0.Then, for each full cut � of H, E�0 [H;�] � cE�[H;�].11



Proof. From the de�nition of �0,E�0[H;�] =Xq2�Xi>0 �i(q)PH [Cq]: (1)Since for each q 2 � and each i > �(q), �i(q) = 0, Equation (1) can be rewritten asE�0[H;�] =Xq2� ��1(q) + � � �+ �b�(q)c(q)�PH [Cq]; (2)which can be rearranged intoE�0[H;�] =Xi>00@ Xq2�j�(q)�i�i(q)PH [Cq]1A : (3)For each i > 0, let �i denote the set of minimal states q of H that are pre�xes of some elementof � and such that �(q) � i. Then, by breaking the inner summation of Equation (3),E�0[H;�] =Xi>00@Xq2�i PH [Cq]0@ Xq02�jq�q0 �i(q0)PH [Cq0]=PH [Cq]1A1A : (4)Since for each q 2 �i, �i(q) = 0 (�i � �i) the innermost expression of the right hand side ofEquation (4) is E�i [H.q; (� \ Cq).q]. Since H.q is a fair probabilistic execution fragment ofM as well, E�i [H.q; (� \ Cq).q] � c. Thus,E�0[H;�] �Xi>0  Xq2�i cPH [Cq]! ; (5)and since Pq2�i PH [Cq] = PH [�i],E�0[H;�] �Xi>0 PH [�i]c: (6)Observe that PH [�i] is the probability that � is at least i in �. Recall also that � is arandom variable for the probability space identi�ed by �. Thus, by Proposition 2.1, part 2,Pi>0 PH [�i] � E�[H;�], and by substituting in (5), E�0[H;�] � cE�[H;�].12



2.4.4 Complexity Functions and Parallel CompositionTo verify properties in a modular way it is useful to derive complexity properties of complexsystems based on complexity properties of the single components. Proposition 2.6 helps indoing this.Proposition 2.6 Let M be M1 kM2, and let i 2 f1; 2g. Let � be a complexity function forM , and let �i be a complexity function for Mi. Suppose that for each �nite execution fragment� of M , �(�) = �i(�dMi). Let c be a constant. Suppose that for each probabilistic executionfragment H of Mi and each full cut � of H, E�i[H;�] � c. Then, for each probabilisticexecution fragment H of M and each full cut � of H, E�[H;�] � c.Proof. Let H be a probabilistic execution fragment of M , and let Hi denote HdMi. Let � bea full cut of H . Build a discrete probability space Pi as follows: 
i = fqdMi j q 2 �g, and foreach q0 2 
i, Pi[q0] = PH [fq 2 � j qdMi = q0g]. We prove �rst that the probability space Pi isa fringe of Hi as de�ned in [20], where a fringe of Hi is a probability distribution P over thestates of Hi such that, for each state q of Hi,Pq0�q P [q] � PHi [Cq].Consider a state q ofHi. Then, from the de�nition of Pi,Pq0�q Pi[q0] =Pq02�jq0dMi�q PH [Cq0].Since � is a cut of H , the right expression above is PH [[q02�jq0dMi�qCq0 ]. Furthermore, theevent [q02�jq0dMi�qCq0 is a subset of the inverse image under projection of Cq. Thus, byProposition 2.3,Pq0�q Pi[q0] � PHi [Cq]. This completes the proof that Pi is a fringe.Let E�i [Hi;Pi] denotePq2
i �i(q)Pi[q]. Then, since for each �nite execution fragment � ofM , �(�) = �i(�dMi), we derive E�[H;�] = E�i [Hi;Pi]. We need to show that E�i [Hi;Pi] � c.Suppose for the sake of contradiction that E�i [Hi;Pi] > c. Then there is a constant k > 0such that Pq2
ijlength(q)�k �i(q)Pi[q] > c. Consider the full cut �k of Hi containing all thestates q of Hi with length k and all the elements of 
Hi with length less than k. Then, byde�nition of �k , Pq2
ijlength(q)�k �i(q)Pi[q] � E�i[Hi;�k]. This means that E�i [Hi;�k] > c,contradicting the hypothesis that E�i [Hi;�k] � c.The converse of Proposition 2.6 does not hold in general. In fact, even though for eachprobabilistic execution fragmentH ofM and each full cut � ofH , E�[H;�] � c, there could bea probabilistic execution fragment H 0 of Mi and a full cut �0 of H 0 such that E�i [H 0;�0] > c.As an example, H 0 could be the projection of no probabilistic execution fragment of M . Ifi = 1, then H 0 could be a probabilistic execution fragment resulting from the interaction withan environment that M2 does not provide.2.5 Probabilistic Complexity StatementsA probabilistic complexity statement is a predicate that can be used to state whether all thefair probabilistic executions of a probabilistic automaton guarantee some reachability propertywithin some time t with some minimum probability p. Probabilistic complexity statements13



essentially express partial progress properties of a probabilistic system. Such partial progressproperties can then be used to derive upper bounds on the expected complexity for progress.Probabilistic complexity statements can also be decomposed into simpler statements, thussplitting the progress properties of a randomized system into progress properties that eitherare simpler to analyze or can be derived by analyzing a smaller subcomponent of the system.Progress statements are introduced in [15, 19, 20]. In this section we specialize the theoryof [20] to fair schedulers.2.5.1 Probabilistic Complexity StatementsA probabilistic complexity statement is a predicate of the form U ��c�!p U 0, where U and U 0are sets of states, � is a complexity measure, and c is a nonnegative real number. Informally,the meaning of U ��c�!p U 0 is that starting from any state of U , under any fair scheduler, theprobability of reaching a state from U 0 within complexity c is at least p. The complexity of anexecution fragment is measured according to �.De�nition 2.7 Let M be a probabilistic I/O automaton, U; U 0 � States(M), c 2 <, and �be a complexity measure. Then U ��c�!p U 0 is a predicate that is true for M i� for each fairprobabilistic execution fragment H of M that starts from a state of U , PH [eU 0;�(c)(H)] � p,where eU 0;�(c)(H) denotes the set of executions � of 
H with a pre�x �0 such that �(�0) � cand lstate(�0) 2 U 0.The fair probabilistic execution fragments of a probabilistic automaton enjoy a property thatin [20] is called �nite history insensitivity . Thus, using a result of [20], the following holds,which permits us to decompose a progress property into simpler progress properties.Proposition 2.8 Let M be a probabilistic automaton, and let U; U 0; U 00 � States(M). Let �be a complexity measure. Then,1. if U ��c�!p U 0 and U 0 ��c0�!p0 U 00, then U ��c+c0�!pp0 U 00;2. if U ��c�!p U 0, then U [ U 00 ��c�!p U 0 [ U 00.2.5.2 From Probabilistic Complexity Statements to Expected ComplexityIn this section we show how to use probabilistic complexity statements to derive propertiesabout expected complexities. In the analysis of the protocol of Aspnes and Herlihy we use14



the result of this section to study the expected number of rounds that the protocol needs toterminate.Let M be a probabilistic automaton, and let U ;U 0 � States(M). We denote by U )UunlessU 0 the predicate that is true for M i� for every execution fragment sas0 of M , s 2U � U 0 ) s0 2 U [ U 0. Informally, U ) UunlessU 0 means that, once a state from U isreached, M remains in U unless U 0 is reached.For each probabilistic execution fragment H of M , let �U 0(H) denote the set of minimalstates of H where a state from U 0 is reached. That is, �U 0(H) represents the event thatcontains all those executions of 
H where a state from U 0 is reached. The following theorem,which is an instantiation of a more general result of [20], provides a way of computing theexpected complexity for satisfying �U 0(H).Theorem 2.9 ([20]) Let M be a probabilistic automaton and � be a complexity measure forM . Let r be a real number such that for each execution fragment of M of the form sas0,�(sas0) � r, that is, each transition of M can increase the complexity � by at most r. Let Uand U 0 be sets of states of M . Let H be a probabilistic execution fragment of M that starts froma state of U , and suppose that for each state q of H such that lstate(q) 2 U some transitionis scheduled with probability 1 (i.e., the probability of � in the transition enabled from q in His 0). Furthermore, suppose that1. U ��c�!p U 0 and2. U ) UunlessU 0.Then, E�[H;�U 0(H)] � (c+ r)=p.Proof outline.We omit the proof that PH [�U 0(H)] = 1. Consider the cut � = �U 0 [�c+r , where �U 0 isthe subset of �U 0(H) of states q with �(q) � c, and �c+r is the set of minimal states q of Hsuch that �(q) � c+ r and such that no proper pre�x of q is in �U 0 (H) (cf. Figure 1). SincePH [�U 0(H)] = 1, � is a full cut. Then, from Item 1, PH [�U 0 ] � p. From Item 2, all the statesof �c+r are still elements of U , and thus the experiment above can be repeated from thosepoints. Each experiment takes c + r complexity units. Since we repeat a binary experimentuntil it succeeds, and since each time the probability of success is at least p, we expect torepeat the experiment 1=p times before being successful. Thus, the expected complexity forreaching U 0 is at most (c+ r)=p.It may be surprising to see that we start new experiments every c + r complexity unitsrather than every c units. This is because �U 0 [ �c would not be a cut if H contains atransition that leaves from a c-complexity state and reaches a state from U 0 with probabilityp0 and a c+ r-complexity state with probability 1� p0. For the fully detailed proof and for amore general result the reader is referred to [20].15
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c+rFigure 1: Computation of the expected time from U to U 0.2.5.3 How to Verify Probabilistic Complexity StatementsA useful technique to prove the validity of a probabilistic complexity statement U ��c�!p U 0 fora probabilistic automaton M is the following.1. Choose a set of random draws that may occur within a probabilistic execution of M , andchoose some of the possible outcomes;2. Show that, no matter how the nondeterminism is resolved, the chosen random draws givethe chosen outcomes with some minimum probability p;3. Show that whenever the chosen random draws give the chosen outcome, a state from U 0is reached within c units of complexity �.This technique corresponds to the informal arguments of correctness that appear in the litera-ture. Usually the intuition behind an algorithm is exactly that success is guaranteed wheneversome speci�c random draws give some speci�c results.The �rst two steps can be carried out using the so-called coin lemmas [20], which providerules to map a stochastic process onto a probabilistic execution and lower bounds on theprobability of the mapped events based on the properties of the given stochastic process; thethird step concerns non-probabilistic properties and can be carried out by means of any knowntechnique for non-probabilistic systems. Coin lemmas are essentially a way of reducing theanalysis of a probabilistic property to the analysis of an ordinary nondeterministic property.The importance of coin lemmas is also in the fact that a common source of errors in the analysisof a randomized algorithm is to map a probabilistic process onto a probabilistic execution inthe wrong way, or, in other words, to believe that a probabilistic automaton always behaveslike some de�ned probabilistic process while the claim is not true. In Section 3 we present acoin lemma that deals with random walks. 16



2.6 Re�nement Mappings and TracesA common veri�cation technique consists of specifying a system as an I/O automaton or aprobabilistic I/O automaton and then building an implementation of the speci�cation. Typ-ically the notion of implementation is identi�ed by some form of language inclusion. Theimportant fact is that the interesting properties of a speci�cation are preserved by the notionof implementation, that is, whenever a property is true for the speci�cation, such property istrue for the implementation as well. In this section we provide the pieces of the technique thatwe use for the analysis of the algorithm of Aspnes and Herlihy. More details can be found in[16, 17, 20].2.6.1 Traces and Trace DistributionsTrace and trace distributions are abstractions of the behavior of automata and probabilisticautomata, respectively, that are based only on the sequences of external actions that theautomata can provide. Several times, as is the case for the algorithm of Aspnes and Herlihy,the interesting properties of a system can be expressed in terms of trace and trace distributions.In such cases it is possible to use traces and trace distributions for the analysis and in particularto use the related proof techniques.Let � be an execution of an automaton A. The trace of �, denoted by trace(�), is theordered sequence of the external actions that appear in �. Denote a generic trace by �. Atrace is fair if it is the trace of a fair execution. Denote by traces(A) the set of traces of Aand by ftraces(A) the set of fair traces of A.Let H be a probabilistic execution fragment of a probabilistic automaton M . Let 
 =ext(M)� [ ext(M)! be the set of �nite and in�nite sequences of external actions of M . Thetrace distribution of H , denoted by tdistr(H), is the probability space (
;F ; P ) where F isthe minimum �-�eld that contains the set of cones C�, where � is an element of ext(M)�, andP = trace(PH), that is, for each E 2 F , P [E] = PH [f� 2 
H j trace(�) 2 Eg]. The fact thattdistr(H) is well de�ned follows from standard measure theory arguments. In simple words,a trace distribution is just a probability distribution over traces induced by a probabilisticexecution. Denote a generic trace distribution by D. A trace distribution of a probabilisticautomaton M is the trace distribution of one of the probabilistic executions of M . A tracedistribution is fair if it is the trace distribution of a fair probabilistic execution. Denoteby tdistrs(M) the set of trace distributions of M and by ftdistrs(M) the set of fair tracedistributions of M .2.6.2 Re�nementsDenote a transition (s; a; s0) by s a�! s0. For a �nite sequence a1 � � �an let s a1���an�! s0 if there isa collection of states s1; : : : ; sn�1 such that s a1�! s1 a2�! � � � an�1�! sn�1 an�! s0. For any externalaction a, let s a=) s0 if there are two �nite sequences x; y of internal actions and two states17



s1; s2 such that s x�! s1 a�! s2 y�! s0. Let s �=) s0 if there is a �nite sequence x of internalactions such that s x�! s0.Let A1; A2 be two automata with the same external actions. A re�nement from A1 to A2is a function h : States(A1)! States(A2) such that the following conditions hold.1. For each s 2 Start(A1), h(s) 2 Start(A2).2. For each transition s a�! s0 of A1, h(s) adext(A2)=) h(s0).That is, A2 can simulate all the transitions of A1 via the re�nement function h. An importantproperty of a re�nement is the following.Proposition 2.10 ([17]) Suppose that there exists a re�nement from A1 to A2.Then traces(A1) � traces(A2).A re�nement can be de�ned also for probabilistic automata as follows. Let M1;M2 be twoprobabilistic automata with the same external actions. A probabilistic re�nement from M1 toM2 is a function h : States(M1)! States(M2) such that the following conditions hold.1. For each s 2 Start(M1), h(s) 2 Start(M2).2. For each s a�! P , h(s) adext(M2)=) h(P).In particular, a re�nement is a special case of a probabilistic re�nement. The following propertyis valid as well.Proposition 2.11 ([20]) Suppose that there exists a probabilistic re�nement from M1 to M2.Then tdistrs(M1) � tdistrs(M2).Finally, the existence of re�nements is preserved by parallel composition, thus enabling modularveri�cation.Proposition 2.12 ([20]) Suppose that there exists a probabilistic re�nement between twoprobabilistic automata M1 and M2. Then, for each probabilistic automaton M compatiblewith M1 and M2, there exists a probabilistic re�nement from M1 kM to M2 kM .2.6.3 The Execution Correspondence TheoremRe�nements can be used also to show some liveness properties. Speci�cally, it is possible touse re�nements to derive fair trace inclusion and fair trace distribution inclusion. Our main18



technique is based on the execution correspondence theorem [10], which allows us to establishclose relationships between the executions of two automata.We use re�nements in the analysis of the shared counter in the algorithm of Aspnes andHerlihy. Our analysis is carried out mainly on an abstract speci�cation of the counters. Thisallows us to avoid dealing with unimportant details.Let A1 and A2 be I/O automata with the same external actions and let h be a re�nementfrom A1 to A2. For an execution fragment �, let j�j denote the number of actions that occurin �. If � is an in�nite execution fragment, then j�j is 1. Let � = s0a1s1a2s2 � � � and�0 = u0b1u1b2u2 � � � be executions of A1 and A2, respectively. We say that � and �0 are h-related , written (�; �0) 2 h, if there exists a total, nondecreasing mapping m : f0; 1; : : : ; j�jg !f0; 1; : : : ; j�0jg such that1. m(0) = 0,2. h(si) = um(i) for all 0 � i � j�j,3. trace(bm(i�1)+1 � � � bm(i)) = trace(ai) for all 0 < i � j�j, and4. for all j, 0 � j � j�0j, there exists an i, 0 � i � j�j, such that m(i) � j.Theorem 2.13 ([10]) Let A1 and A2 be automata with the same external actions, and let hbe a re�nement from A1 to A2. Then, for each execution �1 of A1 there is an execution �2 ofA2 such that (�1; �2) 2 h.The execution correspondence theorem can be used to show fair trace inclusion as follows:given (�1; �2) 2 h, show that �2 is fair whenever �1 is fair. In this case we also say that hpreserves the fair executions of A1.The execution correspondence theorem can be extended to the probabilistic case as well[20]. We do not write the formal de�nitions in this paper; however, the following propositioncan be proved easily from the results about execution correspondence of [20].Proposition 2.14 Let A1; A2 be two I/O automata, and let M be a probabilistic I/O automa-ton compatible with A1 and A2. Let h be a re�nement from A1 to A2 that preserves the fairexecutions of A1. Then ftdistrs(A1 kM) � ftdistrs(A2 kM).Proof outline. Since h is a re�nement from A1 to A2, we can conclude from [20] thatthe following function is a probabilistic re�nement from A1 kM to A2 kM : h0(sA1 ; sM) =(h(sA1); sM). That is, h0 coincides with h on the states of A1 and A2 and is the identity functionon the states of M . Let H1 be a fair probabilistic execution of A1 kM . From the de�nitionof h0-relation of [20], and from the de�nition of h0, it is possible to build a fair probabilisticexecution H2 of A2 kM such that (H1; H2) 2 h0. Then, from [20], tdistr(H1) = tdistr(H2).19



3 Symmetric Random Walks for Probabilistic AutomataThe correctness of the protocol of Aspnes and Herlihy is based on the theory of random walks[8]. That is, some parts of the protocol behave like a probabilistic process known in theliterature as a random walk. The main problem is to make sure that the protocol indeedbehaves as a random walk, or better, to make sure that the protocol has the same probabilisticproperties as a random walk. This is a point where intuition often fails, and therefore we needa proof technique that is su�ciently rigorous and simple to avoid mistakes.In this section we present a coin lemma for random walks. That is, we show that if wechoose events within a probabilistic execution fragment according to some speci�c rules, thenthe chosen events are guaranteed to have properties similar to the properties of random walks.Then, by verifying that each one of the chosen events guarantees progress, a non-probabilisticproperty, we can derive probabilistic progress properties of the protocol.We start by presenting the theory of random walks followed by a coin lemma for randomwalks. Then we present a result that relates expectations within a random walk to expectationswithin a probabilistic execution. This result is used in the analysis of the protocol of Aspnes andHerlihy to study the expected complexity of the coin 
ipping protocols. Finally, we instantiateour new coin lemma to the speci�c case that we need in the paper.3.1 Random WalksLet X be a probability space with sample set f�1; 1g that assigns probability p to 1 andprobability q = (1� p) to �1. Let RW = (
RW ;FRW ; PRW ) be the probability space built asfollows. The sample set 
RW is the set f�1; 1g! of in�nite sequences of numbers from f�1; 1g.For each �nite sequence x 2 f�1; 1gn, let Cx, the cylinder with base x, be the set of elementsfrom 
RW with common pre�x x, and let PRW [Cx] = pkqn�k , where k is the number of 1'sin x. Then FRW is the minimum �-�eld that contains the set of cylinders, and PRW is theunique extension to FRW of the measure de�ned on the cylinders. The construction is justi�edby standard measure theory arguments. In other words, RW is a probability space on in�nitesequences of independent experiments performed according to X .Similarly to our probabilistic executions, de�ne an event of FRW to be �nitely satis�ableif it is a union of cylinders. Furthermore, denote a �nitely satis�able event by a set � ofincomparable �nite sequences over f�1; 1g.Consider a particle in the real line, initially at position z, and let X describe a move of theparticle: �1 corresponds to decreasing by 1 the position of the particle, and 1 corresponds toincreasing by 1 the position of the particle. An element of 
RW describes an in�nite sequenceof moves of the particle. The probability space RW describes a random walk of the particle.An important random walk is a random walk with absorbing barriers , that is, a randomwalk that is considered to be successful or failed whenever the particle reaches some speci�ed20



positions (absorbing barriers) of the real line. Consider two barriers B; T such that B � z � T .Then the following events are studied:1. the particle reaches T before reaching B;2. the particle reaches B before reaching T ;3. the particle reaches either absorbing barrier.Formally, given a starting point z and a �nite sequence x = x1x2 � � �xn 2 f�1; 1gn let zx =z +Pi�n xi be the position of the particle after x. Then, the events 1, 2, and 3 above are�nitely satis�able and can be denoted by the following sets of �nite sequences, respectively:1. the set TopRW [B; T; z] of minimal sequences x 2 f�1; 1g� such that zx = T and for nopre�x x0 of x, zx0 = B;2. the set BotRW [B; T; z] of minimal sequences x 2 f�1; 1g� such that zx = B and for nopre�x x0 of x, zx0 = T ;3. the set EitherRW [B; T; z] = TopRW [B; T; z][BotRW [B; T; z].The following results are known from random walk theory [8].Theorem 3.1 Let p = q = 1=2. Then1. P [TopRW [B; T; z]] = (T � z)=(T � B);2. P [BotRW [B; T; z]] = (z �B)=(T �B);3. P [EitherRW [B; T; z]] = 1.For a �nitely satis�able event � that has probability 1 it is possible to study the averagenumber of moves that are needed to satisfy � as follows:ERW [�] =Xx2� length(x)PRW [Cx]:From random walk theory [8] we know the following result.Theorem 3.2 Let p = q = 1=2. Then ERW [EitherRW [B; T; z]] = �z2 + (B + T )z � BT .21



3.2 A Coin Lemma for Random WalksWe use a terminology that resembles coin 
ipping; thus, the number �1 is replaced by t (tail),the number 1 is replaced by h (head), p is replaced by ph, and q is replaced by pt. Let Mbe a probabilistic automaton and let Acts = f
ip1; : : : ;
ipng be a subset of Actions(M). LetS = f(U h1 ;U t1); (U h2 ;U t2); : : : ; (U hn ;U tn)g be a set of pairs where for each i; 1 � i � n, U hi ;U tiare disjoint subsets of States(M). Suppose that for every transition (s;
ipi;P) with an action
ipi the following hold:
 � U hi [U ti ; (7)P [U hi ] = ph and P [U ti ] = pt: (8)The actions from Acts represent coin 
ips, and the sets of states U hi and U ti represent the twopossible outcomes of a coin 
ip labeled with 
ipi. Since the sets Acts and S are usually clearfrom the context, we omit them from our notation. We write Acts and S explicitly only the�rst time each new notation is introduced.3.2.1 The Coin LemmaLet � be a �nitely satis�able event of RW , and let H be a probabilistic execution fragmentof M . Given an execution � of H , let xActs ;S(�) be the ordered sequence of results of the coin
ips that occur in �, e.g., if the ith occurrence of an action from Acts in � is an occurrence of
ipj that leads to a state from U hj , then the ith element of x(�) is h, and if the ith occurrenceof an action from Acts in � is an occurrence of 
ipj that leads to a state from U tj , then theith element of x(�) is t. Observe that x(�) is �nite if in � there are �nitely many occurrencesof actions from Acts.LetWActs;S(H;�) be the set of executions � of 
H such that either x(�) has a pre�x in �,or x(�) is a pre�x of some element of �. Informally, W(H;�) contains all those executions of
H where either the coin 
ips describe a random walk contained in the event denoted by �,or there is a way to �x the values of the un
ipped coins so that a random walk of the eventdenoted by � is obtained. In other words, if we view the scheduler as a malicious adversarythat tries to resolve the nondeterminism so that the probability of W(H;�) is minimized, thescheduler does not gain anything by not scheduling coin 
ipping operations.Lemma 3.3 W(H;�) is measurable in PH.Proof. The set W(H;�) is the union of two sets: the set of executions � of 
H such thatx(�) has a pre�x in �, and the set of executions � of 
H such that x(�) is a pre�x of someelement of �. The �rst set is a union of cones of the form C� such that x(�) 2 �; the second22



set is the complement of a union of cones, that is, C� such that x(�) is not a pre�x of anyelement of �.We now prove that, no matter how the nondeterminism is resolved, the probability PHof the event W(H;�) is lower-bounded by the probability PRW of the event �. That is, theprobability of the mapping of the event � onto H is at least as large as the probability of �.We �rst prove our result for a special class of events � in Lemma 3.4. Then, we prove the fullresult in Theorem 3.5.Lemma 3.4 Suppose that for each transition (s;
ipi;P) of M , P [U hi ] = ph and P [U ti ] = pt.If there is a �nite upper bound k on the length of the elements of �, then PH [W(H;�)] �PRW [�].Proof. For notational convenience, for each state q of H let PHq denote the probability spaceassociated with the unique transition that leaves from q in H .We prove that PH [W(H;�)] � 1� PRW [�].For each state q of H , each i 2 f1; : : : ; ng, and each j 2 fh; tg, denote by 
(q;U ji ) the setf(
ipi; q0) 2 
Hq j lstate(q0) 2 U ji g of pairs where 
ipi occurs and leads to a state of U ji , andfor each action a let a denote also the set of pairs whose �rst element is a, that is, the eventthat action a occurs. For each i 2 f1; : : : ; ng, let �i be the set of states q of H such that noaction 
ipj , 1 � j � n, occurs in q, and such that PHq [
ipi] > 0.The proof is by induction on length(�), the maximum length of the elements of �. Iflength(�) = 0, then either � = ; or � = f�g, where � denotes the empty sequence. Inthe �rst case W(H;�) = ;, and thus PH [W(H;�)] = 1 � PRW [�] = 1; in the second caseW(H;�) = 
H , and thus PH [W(H;�)] = 1 � PRW [�] = 0. For the inductive step, supposethat length(�) = k + 1. Then,PH [W(H;�)] = Xi2f1;:::;ng Xq2�i PH [Cq]0B@ Xj2fh;tg X(
ipi;q0)2
(q;U ji )PHq [(
ipi; q0)]PH.q0 [W(H.q0;�.j)]1CA : (9)where �.j is the event � after performing j, that is, the set of the tails of the sequences of� whose head is j. Informally, to violate W(�.j;H.q0) with a non-empty �, it is necessaryto 
ip at least once and then violate the rest of �. Observe that length(�.j) � k. Thus, byinduction, for each j 2 fh; tg and each state q0 of H ,PH.q0 [W(H.q0;�.j)] � 1� PRW [�.j]: (10)23



Using (10) in (9), and factoring 1� PRW [�.j] out of the innermost summation, we obtainPH [W(H;�)] � Xi2f1;:::;ng Xq2�i PH [Cq]0@ Xj2fh;tgPHq [
(q;U ji )](1� PRW [�.j])1A : (11)Let i 2 f1; : : : ; ng, and j 2 fh; tg, and consider a state q of H . From the de�nition ofthe transition relation of a probabilistic execution fragment, there is a collection of transi-tions (lstate(q);
ipi;Pk) and a collection of probabilities ptk such that Pk ptk = PHq [
ipi]and PHq [
(q;U ji )] = Pk ptkPk[U ji ]. From hypothesis, for each k, Pk [U ji ] = pj . Thus,PHq [
(q;U ji )] = PHq [
ipi]pj . By substituting in (11),PH [W(H;�)] � Xi2f1;:::;ng Xq2�i PH [Cq]PHq [
ipi]0@ Xj2fh;tg(1� PRW [�.j])pj1A : (12)Observe thatPi2f1;:::;ngPq2�i PH [Cq]PHq [
ipi] is the probability that some action 
ipi occursfrom in H , and hence its value is at most 1. Furthermore, observe thatPj2fh;tg pjPRW [�.j] =PRW [�], that is, since ph+ pt = 1,Pj2fh;tg pj(1�PRW [�.j]) = 1�PRW [�]. Thus, from (12),PH [W(H;�)] � 1� PRW [�]: (13)This completes the proof.Theorem 3.5 Suppose that for each transition (s;
ipi;P) of M , P [U hi ] = ph and P [U ti ] = pt.Then, PH [W(H;�)] � PRW [�].Proof. For each k > 0, let �k be the set of elements of � whose length is at most k. Then,� = [k>0�k , and from the de�nition of W , W(H;�) = [k>0W(H;�k). Furthermore, foreach k > 0, �k � �k+1, and W(H;�k) � W(H;�k+1). From simple arguments of measuretheory, PRW [�] = limk!+1 PRW [�k], and PH [W(H;�)] = limk!+1 PH [W(H;�k)]. FromLemma 3.4, for each k > 0, PH [W(H;�k)] � PRW [�k]. Thus, limk!+1 PH [W(H;�k)] �limk!+1 PRW [�k ], that is, PH [W(H;�)]� P [�].3.2.2 Expected Complexity of the Random WalkThe next theorem shows that the average length of a random walk is preserved by the mappingW , that is, for �xed H and �, the expected number of coin 
ips that may occur in H withoutreaching � is bounded above by the expected number of coin 
ips necessary to reach � inRW . First we need a de�nition. 24



De�nition 3.6 Let � be an event in RW , and let M be a probabilistic automaton. For each�nite execution fragment � of M , de�ne �(�) to be the number of actions from Acts that occurin � if x(�) does not have any pre�x in �, and to be the number of actions from Acts thatoccur in the minimum pre�x �0 of � such that x(�0) 2 �, otherwise.Informally, �(�) is the number of moves of the random walk that occur in � before satisfyingthe event denoted by �. In particular, if � is not satis�ed yet within �, �(�) is the totalnumber of moves of the random walk that occur in �. Observe that � is a complexity functionbut not a complexity measure.Theorem 3.7 Suppose that for each transition (s;
ipi;P) of H, P [U hi ] = p and P [U ti ] = q.Also, suppose that PRW [�] = 1. Let �0 be a full cut of H. Then E�[H;�0] � ERW [�].Proof. By de�nition, E�[H;�0] =Pq2�0 �(q)PH [Cq].From the de�nition of �, if q0 � q and x(q0) 2 �, then �(q0) = �(q). Thus, we can build anew full cut �00 obtained from �0 by replacing each q 2 �0 such that x(q) has a pre�x in � withthe minimum pre�x q0 of q such that x(q0) 2 � and obtain E�[H;�0] =Pq2�00 �(q)PH [Cq]. Inparticular, for no element q of �00 does the sequence x(q) have a proper pre�x in �.Partition �00 into the set �00p of states q such that x(q) is a pre�x of some element of �, andthe set �00n of states q such that x(q) is not a pre�x of any element of �. From the de�nitionof �00, for no element q of �00n x(q) has a pre�x in �. Thus, W(H;�) \ ([q2�00nCq) = ;.Since from Theorem 3.1 PH [W(H;�)] = 1, we derive that PH [�00n] = 0, which means that�00p is a full cut of H . Furthermore, since �00p � �00, E�[H;�0] � Pq2�00p �(q)PH [Cq], that is,E�[H;�0] � E�[H;�00p].For each k > 0, let �<k be the set of elements of � whose length is less than k, and let��k be the set of elements of � whose length is at least k. Similarly, let �00<k be the set ofelements q of �00p such that length(x(q)) < k, and let �00�k be the set of elements q of �00p suchthat length(x(q)) � k.Fix k > 0, and let � 2 W(H;�<k) \ ([q2�00pCq). Since � 2 W(H;�<k), from the de�-nition of � for each �nite pre�x �0 of �, �(�0) < k. From the de�nition of �00p , � 2 Cq forsome q 2 �00p with length(x(q)) < k. Thus, W(H;�<k) \ ([q2�00pCq) � [q2�00<kCq, whichimplies PH [W(H;�<k) \ ([q2�00pCq)] � PH [�00<k ]. Since PH [�00p] = 1, PH [W(H;�<k)] =PH [W(H;�<k) \ ([q2�00pCq)]. This implies that PH [W(H;�<k)] � PH [�00<k ].From Theorem 3.5, PH [W(H;�<k)] � PRW [�<k ], which, combined with the previousresult, gives PH [�00<k ] � PRW [�<k ]. From this we derive that E�[H;�00p] = Pi>0 PH [�00�k ] �Pi>0 PRW [��k ] = ERW [�], where the �rst and third steps follow from Proposition 2.1. Since,we have shown already that E�[H;�0] � E�[H;�00p], we conclude that E�[H;�0] � ERW [�].25



3.3 Instantiation of the Coin LemmaIn this section we instantiate the results of Section 3.2 with the events presented in Section 3.1.We also introduce a notation that is more suitable for the speci�c concepts that are described.Given a �nite execution fragment � of M , let HeadsActs;S(�) denote the number of actionsof the form 
ipi in � whose post state is in the corresponding set U hi , and let TailsActs;S(�)denote the number of actions of the form 
ipi in � whose post state is in the correspondingset U ti . Let Di� Acts;S(�) denote HeadsActs;S(�)� TailsActs;S(�).De�nition 3.8 For each probabilistic execution fragment H of M , let Top[Acts;S; B; T; z](H)be the set of executions � of 
H such that either� 9�0��((z +Di� (�0) = T ) ^ 8�00��0(B < z + Di� (�00))), or� 8�0��(B < z + Di� (�0) < T ) and actions from Acts occur �nitely many times in �.The event Top[Acts;S; B; T; z](H) captures the situations where either z + Di� (�0) reachesthe top barrier T before the bottom barrier B, or the total number of \
ips" is �nite andz + Di� (�0) reaches neither barrier.De�nition 3.9 For each probabilistic execution fragment H of M , let Bot[Acts;S; B; T; z](H)be the set of executions � of 
H such that either� 9�0��((z +Di� (�0) = B) ^ 8�00��0(z +Di� (�00) < T )), or� 8�0��(B < z + Di� (�0) < T ) and actions from Acts occur �nitely many times in �.The event Bot[Acts;S; B; T; z](H) captures the situations where either z + Di� (�0) reachesthe bottom barrier B before the top barrier T , or the total number of \
ips" is �nite andz + Di� (�0) reaches neither barrier.De�nition 3.10 For each probabilistic execution fragment H of M , letEither[Acts;S; B; T; z](H) 4= Top[Acts;S; B; T; z](H)[Bot[Acts;S; B; T; z](H).The event Either[Acts;S; B; T; z](H) excludes those executions of M where in�nitely many\
ips" occur and z +Di� (�0) reaches neither barrier.Proposition 3.11 Let H be a probabilistic execution fragment of M . Then1. PH [Top[B; T; z](H)]� (z � B)=(T � B).26



2. PH [Bot[B; T; z](H)]� (T � z)=(T �B).3. PH [Either[B; T; z](H)] = 1.Proof.1. From the de�nitions, the events Top[B; T; z](H) and W(H;TopRW [B; T; z]) are thesame. From Theorems 3.1 and 3.5, PH [Top[B; T; z](H)]� (z �B)=(T �B).2. From the de�nitions, the events Bot[B; T; z](H) and W(H;BotRW [B; T; z]) are thesame. From Theorems 3.1 and 3.5, PH [Bot[B; T; z](H)]� (T � z)=(T � B).3. From the de�nitions, the events Either[B; T; z](H) and W(H;EitherRW [B; T; z]) arethe same. From Theorems 3.1 and 3.5, PH [Either[B; T; z](H)] = 1.We conclude with an instantiation of the result about expected complexities. Let �Acts bethe complexity measure such that �Acts (�) is the number of actions from Acts that occur in�. De�ne �Acts;B;T;z(�) to be the truncation of �Acts at the point where one of the absorbingbarriers is reached. That is, if there is no pre�x �0 of � such that z +Di� (�0) 2 fB; Tg, then�Acts;B;T;z(�) = �Acts (�); otherwise, �Acts;B;T;z(�) = �Acts(�0), where �0 is the minimum pre�xof � such that z + Di� (�0) 2 fB; Tg. Observe that �Acts ;B;T;z is not a complexity measure,but rather a complexity function:Example 3.1 If T = �B = 10, z = 0, �1 contains 5 
ip actions, all giving tail, and �2contains 15 
ip actions, all giving head, then �Acts;B;T;z(�1) = 5, �Acts;B;T;z(�2) = 10, while�Acts;B;T;z(�1 a �2) = 20, which is greater than 10 + 5.Proposition 3.12 Let H be a probabilistic execution fragment of M , and let �0 be a full cutof H. Let z be chosen so that B � z � T . Then, E�Acts;B;T;z [H;�0] � �z2 + (B + T )z � BT .Proof. For each state q of H observe that �Acts;B;T;z(�) = �(x(�)), where � is the functionde�ned in De�nition 3.6 using the set � of minimal sequences of f�1; 1g� such that eitherB or T is reached starting from z. From Theorem 3.7, E�Acts;B;T;z [H;�0] � ERW [�]. FromTheorem 3.2, ERW [�] � �z2 + (B+ T )z�BT , and therefore E�Acts;B;T;z [H;�0] � �z2+ (B +T )z �BT .
27



Part II: The Case Study4 The Algorithm of Aspnes and Herlihy4.1 The Consensus ProblemThe consensus problem consists of making n asynchronous processes decide on the same value(either 0 or 1) in the presence of stopping faults, given that each process starts with its owninitial value. The initial value is provided by the environment during initialization. We saythat an algorithm solves the consensus problem if it satis�es the following properties.Validity: If a process decides on a value within an execution of the algorithm, then thisvalue is the initial value of some process.Agreement: Any two processes that decide within an execution of the algorithm decideon the same value.Wait-free termination: All initialized and non-failed processes eventually decide.It is known from [9] that there is no deterministic algorithm for asynchronous processes thatsolves consensus and guarantees termination even in the presence of at most one single faultyprocess. However, the problem becomes solvable using randomization if we relax the termina-tion condition and we replace it with the following condition.Probabilistic wait-free termination: With probability 1, all initialized and non-failedprocesses eventually decide.The algorithm that we analyze in this paper is due to Aspnes and Herlihy [5] and relies onthe theory of random walks. It terminates within expected polynomial time. We have chosenthis algorithm because it is frequently cited in the literature and because it is among the mostcomplicated randomized algorithms so far proposed. The complex structure of the algorithmallows us to show how modular veri�cation techniques can be applied within a randomizedframework.4.2 Description of the AlgorithmThe algorithm of Aspnes and Herlihy proceeds in rounds. Every process maintains a variablewith two �elds, value and round , that contain the process' current preferred value (0; 1 or ?)and current round (a non-negative integer), respectively. We say that a process is at roundr if its round �eld is equal to r. Note that, due to asynchrony, di�erent processes could be28
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APFigure 2: The interaction diagram of the algorithm of Aspnes and Herlihy.at di�erent rounds at some point of an execution. The variables (value; round) are multiple-reader single-writer. Each process starts with its round �eld initialized to 0 and its value �eldinitialized to ?.After receiving the initial value to agree on, each process i executes the following loop. It�rst reads the (value; round) variables of all other processes in its local memory. We say thatprocess i is a leader if according to its readings its own round is greater than or equal to therounds of all other processes. We also say that a process i observed that another process j isa leader if according to i's readings the round of j is greater than or equal to the rounds of allother processes. If process i at round r discovers that it is a leader, and that according to itsreadings all processes that are at rounds r and r�1 have the same value as i, then i breaks outof the loop and decides on its value. Otherwise, if all processes that i observed to be leadershave the same value v , then i sets its value to v, increments its round and proceeds to the nextiteration of the loop. In the remaining case (leaders that i observed do not agree), i sets itsvalue to ? and scans the other processes again. If once again the leaders observed by i do notagree, then i determines its new preferred value for the next round by invoking a coin 
ippingprotocol. There is a separate coin 
ipping protocol for each round. Figure 2 gives a high levelview of the algorithm. The left box is the main algorithm which is subdivided into processes;the right boxes are the coin 
ipping protocols which interact with the main algorithm throughsome invocation and response messages.We represent the main part of the algorithm as an automaton AP (Agreement Protocol),and the coin 
ipping protocols as probabilistic automata CF r (Coin Flipper), one for eachround r. With this decomposition we can prove several important properties of the algorithmas properties of AP using ordinary techniques for non-probabilistic systems. Indeed, in thissection we deal with AP only, and we leave the coin 
ippers unspeci�ed. Table 1 describes thestate variables of AP . The shared state of process i consists of a single-writer multiple-readershared variable with two �elds, value(i) and round(i), that contain process i's current preferredvalue and round. The local state of a process i consists of a program counter pc, two arrays,values and rounds that store the (value; round) variables of other processes after i reads them,a variable obs that records the processes already observed by i, a variable start that recordsthe initial preferred value of i, and two boolean 
ags, decided and stopped , that re
ect whether29



Name Values InitiallyLocal statepc fnil ; init; read1; read2; check1; check2;
ip;wait ; decideg initvalues array [1 : : :n] of f0; 1;?g array of ?rounds array [1 : : :n] of int array of 0obs set of f1; : : : ; ng ;start f0; 1;?g ?decided Bool falsestopped Bool falseSingle-writer multiple-reader shared variables(value(i); round(i)) f0; 1;?g� int (?; 0)Table 1: The state variables of a process i in AP .i has decided or failed. The variable stopped is not relevant for the actual code for process i; itis used only in the analysis of the algorithm to identify those points where process i has failed.Table 2 describes the actions and the transition relation of AP . The transitions associatedwith each action a are described by giving the conditions that a state s should satisfy toenable a (Pre:), and the transformations that are performed on s to obtain the post-state ofthe transition (E�:). If the precondition is omitted, then it is taken to be true. Table 2 is basedon the following predicates and functions: obs-max-round is the maximum round observed byprocess i; obs-leader(j) is true if i observes that j is a leader; obs-agree(r; v) is true if theobservations of all the processes whose round is at least r agree on v; obs-leader-agree(v) istrue if, according to the observations of i, the leaders agree on v; obs-leader-value is the valueof one of the leaders observed by i. Formally,obs-max-round 4= maxj2obs(rounds[j])obs-leader(j) 4= j 2 obs ^ rounds [j] = obs-max-roundobs-agree(r; v) 4= 8j2obs rounds [j] � r) values[j] = vobs-leader-agree(v) 4= obs-agree(obs-max-round ; v)obs-leader-value 4= � v if obs-leader-agree(v)unde�ned if 6 9vobs-leader-agree(v)It is simple to check that obs-leader-value is a well de�ned function since it is never the case30



Actions and transitions of process i.input init(v)iE�: start  voutput start(v)iPre: pc = init ^ start = v 6= ?E�: value(i) vround(i) 1obs ;pc  read1output read1(k)iPre: pc = read1k =2 obsE�: values[k] value(k)rounds[k] round(k)obs obs [ fkgif obs = f1; : : : ; ng then pc  check1output check1iPre: pc = check1E�: if obs-leader(i)^9v2f0;1gobs-agree(rounds[i]� 1; v) thenpc  decideelseif 9v2f0;1gobs-leader-agree(v) thenvalue(i) obs-leader-valueround(i) rounds[i] + 1obs ;pc  read1else value(i) ?obs ;pc  read2output decide(v)iPre: pc = decide ^ values[i] = vE�: decided  truepc  nil

output read2(k)iPre: pc = read2k =2 obsE�: values[k] value(k)rounds[k] round(k)obs obs [ fkgif obs = f1; : : : ; ng then pc  check2output check2iPre: pc = check2E�: if 9v2f0;1gobs-leader-agree(v) thenvalue(i) obs-leader-valueround(i) rounds[i] + 1obs ;pc  read1else pc  
ipoutput start-
ip(r)iPre: pc = 
ipround(i) = rE�: pc  waitinput return-
ip(v; r)iE�: if pc = wait and round(i) = r thenvalue(i) vround(i) rounds[i] + 1obs ;pc  read1input stopiE�: stopped  truepc  nilTasks: The locally controlled actions of process i form a single task.Table 2: The actions and transition relation of AP .31



that obs-leader-agree(0) and obs-leader-agree(1) are satis�ed simultaneously.We associate all the locally controlled actions of a process i with a single task. Thus, anexecution fragment � of AP is fair if all processes that are continuously enabled are scheduledeventually in �.5 Proving ValidityThe proof of validity is very simple and is based on an invariant property (cf. Invariant 5.2).In this section and in the rest of this paper we use the word \invariant" both for automata andfor execution fragments. An invariant of an automaton is a property that is valid in all thereachable states of the automaton; an invariant of an execution fragment is a property that isvalid in all the states of the execution fragment. For notational convenience, given v 2 f0; 1g,we denote by v the value (v + 1)mod 2. We also de�ne a new predicate:agree(r; v) 4= 8j(round(j) � r) value(j) = v):That is, predicate agree(r; v) is true if all the processes at round at least r agree on value v.Invariant 5.1 Let � be an execution of AP where no action of the form init(�v)i occurs. Theneach state of � satis�es agree(1; v) and obs-agree(1; v).Proof. Straightforward inductive argument. Informally, each process observes that the leadersagree on v, and thus no process ever 
ips a coin or chooses �v as its preferred value for the nextround.Invariant 5.2 For each reachable state of AP, and each pair of processes i; j,1. s:round(i) = 0) s:value(i) = ?, and2. s:rounds[i]j = 0) s:values [i]j = ?.Proof. Straightforward inductive argument.Theorem 5.3 (Validity property) Let � be an execution of AP where no action of the forminit(�v)i occurs. Then in � no action of the form decide(�v)i occurs.Proof. Suppose by contradiction that there is an occurrence of action decide(�v)i in �, andlet s be the state immediately before action decide(�v)i. From the transition relation of AP ,s:values[i]i = �v, and by Invariant 5.2, s:rounds [i]i > 0. This contradicts Invariant 5.1.32



6 Proving AgreementIn this section we prove the agreement property of AP , that is, that any two processes thatdecide within an execution decide the same value (cf. Theorem 6.2). We give the high levelproof in Section 6.1 and we prove the main invariant in Section 6.2.6.1 High Level ProofThe key idea of the agreement proof is that if a process i that is at round r is \about to decide"on some value v, then every process that is at round r or higher has its value equal to v. Weformalize this statement in Invariant 6.1.Invariant 6.1 Let i be a process. Given a reachable state of AP, let v = value(i) and r =round(i). Then(obs-agree(r � 1; v)i ^ obs-leader(i)i ^ obsi = f1; : : : ; ng)) agree(r; v):Invariant 6.1 states that if process i has observed all the other processes and has determinedthat it is a leader and that all the processes at round at least r� 1 agree on a value v, then allthe processes at round at least r agree on a value v. Before giving the proof of Invariant 6.1, weuse Invariant 6.1 to prove the agreement property. Essentially the idea is that the premise ofInvariant 6.1 is stable, that is, it is always satis�ed in the future once it is satis�ed: if processi satis�es the premise of Invariant 6.1, then process i decides on value v, and thus the localstate of process i does not change any more.Theorem 6.2 (Agreement property) For every trace 
 of AP the following is true: ifdecide(v)i and decide(v0)j both occur in 
 then v = v0.Proof. Let 
 be a trace of AP such that decide(v)i and decide(v0)j both occur in 
. Let �be an execution of AP that has trace 
. Assume without loss of generality that decide(v)ioccurs �rst in 
. Let si and sj be the states before actions decide(v)i and decide(v0)j occur,respectively. From the transition relation of AP , process i satis�es the premise of Invari-ant 6.1 in state si, and process j satis�es the premise of Invariant 6.1 in state sj . Thus,si:agree(round(i); v) and sj :agree(round(j); v0). Furthermore, it is a simple inductive argu-ment to show that the premise of Invariant 6.1 is stable, that is, once it is satis�ed it continuesto be satis�ed. Thus, sj :agree(round(i); v). Since in sj there is at least one process at roundmax (sj :round(i); sj:round(j)), we derive that v = v0.33



6.2 Proof of Invariant 6.1The problem with Invariant 6.1 is that it is not strong enough to hold inductively. Therefore, weprovide a stronger invariant (cf. Invariant 6.3) that implies Invariant 6.1 and holds inductively.Invariant 6.1 guarantees that some properties hold for those states where a process i hasobserved all other processes; for the inductive argument we need to guarantee some propertiesalso for those states where process i has not observed all other processes yet. Furthermore, weneed to ensure more properties than just the fact that all processes at round at least r havevalue v. In particular, we need to make sure that all processes at round r � 1 cannot reachround r with a value di�erent from v.Given v 2 f0; 1g, denote by v the value (v+1)mod 2. De�ne new predicates and functions�ll-max-round i, �ll-leader(j)i, �ll-agree(r; v)i, and �ll-leader-agree(v)i to be the same as thecorresponding predicates and functions obs-max-round i, obs-leader(j)i, obs-agree(r; v)i, andobs-leader-agree(v)i, with the following exception: the rounds and preferred values used inthe de�nitions are the values observed by i for the processes that i has already observed,and the actual values of the shared variables for the processes that i has not yet observed.In other words, an incomplete observation is \completed instantly" with the actual values ofthe unobserved processes. Formally, for each process i, let �ll-roundsi and �ll-valuesi be twovectors de�ned as follows:�ll-rounds[j]i 4= � rounds [j]i if j 2 obsi;round(j) if j =2 obsi;�ll-values[j]i 4= � values [j]i if j 2 obsi;value(j) if j =2 obsi:The vectors �ll-rounds and �ll-values are called the �lled vectors of rounds and values. Then,�ll-max-round i 4= maxj(�ll-rounds[j]i);�ll-leader(j)i 4= �ll-rounds[j]i = �ll-max-round i;�ll-agree(r; v)i 4= �ll-roundsi[j] � r) �ll-values[j]i = v;�ll-leader-agree(v)i 4= �ll-agree(�ll-max-round i; v)i:The actual invariant that we prove is the following.Invariant 6.3 Let i be a process. Given a reachable state of AP, let v = value(i), r =round(i). If the following holds1. obs-agree(r� 1; v)i, 34



2. �ll-agree(r; v)i,3. �ll-max-round i = r,thena. 8jobs-agree(r; v)j,b. agree(r; v),c. 8j2obsi((round(j) = r � 1 ^ value(j) 6= v)) �ll-max-round j � r).Informally, Invariant 6.3 states that if nothing is preventing some process i from decidingon a value v at round r, then none of the processes observed by i is in a position to causeother processes not to agree on v at round r. Thus, the premises state that according to theobservations of process i, process i is a leader at round r and observes that the other processesthat are at round at least r � 1 agree on v; furthermore all the non-observed processes donot compromise the leadership of process i and agree on v if they are at round at least r.This means that it is possible for i to decide on v after completing its scan: the non-observedprocesses that are at round r� 1 and do not agree on v may reach round r with value v beforebeing observed by i. Condition a states that all processes observe agreement on v from roundr, Condition b states that all processes at round at least r do agree on v, and Condition cstates that none of the processes that have been observed already by process i is in a conditionto reach round r with a value di�erent from v.At this point we can understand better the use of ? in AP . When a process i is about todecide on v at round r, it could be the case that another process j at round r � 1 is about to
ip a coin for the value to be used in round r. Process j could have observed some old valuesof the other processes. However, in such a case the value of process j would be ?. Then,Condition c ensure that process j observes some process at round at least r, and thus, fromCondition a, process j observes that the leaders agree on v. Hence, process j cannot 
ip. Inother words, a process j might not discover that another process i is about to decide on v atround r during its �rst scan; however, process j would certainly discover the intent of processi during its second scan.Observe that Invariant 6.3 implies Invariant 6.1 directly; thus, proving Invariant 6.3 issu�cient to prove Invariant 6.1. To prove Invariant 6.3 we need several auxiliary invariants thatillustrate some of the key ideas behind the algorithm. Several invariants have straightforwardinductive proofs, which we omit. The �rst invariant, Invariant 6.4, states that a process thathas not started yet is at round 0.Invariant 6.4 Let i be a process. Then, for each reachable state of AP,(pci = init)) (round(i) = 0): 35



Invariant 6.5 states that a process has observed all other processes whenever either it hasdecided, or it is checking the local variables, or it is interacting with the coin 
ipping protocol.Invariant 6.5 Let i be a process. Then, for each reachable state of AP,pci 2 fcheck1; check2; decide;
ip;waitg ) obsi = f1; : : : ; ng:Invariant 6.6 states that the preferred value of a process is ? during the second scan of theshared variables and during the interaction with the coin 
ipping protocol.Invariant 6.6 Let i be a process. Then, for each reachable state of AP,pci 2 fread2; check2;
ip;waitg ) value(i) = ?:Invariant 6.7 states that if a process is interacting with a coin 
ipping protocol, then thatprocess observes that the leaders do not agree.Invariant 6.7 Let i be a process. Then, for each reachable state of AP,pci 2 f
ip;waitg )6 9vobs-leader-agree(v)i:Invariant 6.8 states that the round numbers observed by each process are never larger thanthe actual round numbers of the processes.Invariant 6.8 Let i; j be two processes. Then, for each reachable state of AP,rounds[j]i � round(j):Invariant 6.9 is a consequence of the fact that a process cannot prefer two di�erent valuesduring the same round. That is, if process j observes the current round of process i andprocess i does not prefer ?, then then the value of process i observed by process j coincideswith the actual preferred value of process i. In other words, if process j observes that at somepoint process i is at round r and prefers value v, then the actual preferred value of process iwhile its round is r is either v or ?.Invariant 6.9 Let i; j be two processes. Then, for each reachable state of AP,(rounds[i]j = round(i) ^ value(i) 2 f0; 1g)) (values[i]j = value(i)):36



Proof. For notational convenience, let I(s) denote the invariant above. We prove I(s) byinduction on the length of an execution of AP leading to s. If s is a start state, then I(s) issatis�ed trivially since s:value(i) = ? for all i. For the inductive step it is enough to showthat for every transition (s; a; s0) of AP , I(s) implies I(s0). We distinguish the following casesbased on a.1. a = read1(i)j or a = read2(i)j.The transition relation of AP ensures that s0:values[i]j = s0:value(i). Thus, I(s0) is true.2. a = check1i or a = check2i or a = start(v)i, or a = return-
ip(v; r)i, v 2 f0; 1g, r > 0.If s0:pci = decide , then none of the relevant variables for I(s0) has changed, and thus I(s0)is true; if s0:pci 6= decide, then either s0:round(i) = s:round(i) + 1 or s0:value(i) = ? (cf.Ivariants 6.4 and 6.6). In the �rst case, since process j does not change state, and sinceby Invariant 6.8 s:round(i) � s:rounds [i]j, we derive that s0:round(i) > s0:rounds[i]j.Thus, in both cases one of the premises of I(s0) is not satis�ed, which means that I(s0)is true.3. None of the previous cases hold.I(s) implies I(s0) trivially, since all the relevant components stay unchanged.Invariant 6.10 states that whenever a process has observed itself, the observed round and valuecoincide with the actual round and value.Invariant 6.10 Let i be a process. Then, for each reachable state of AP,i 2 obsi ) (rounds [i]i = round(i) ^ values[i]i = value(i)):Proof. Fix a process i. For notational convenience let I(s) denote the invariant above. Weprove I(s) by induction on the length of an execution of AP leading to s. If s is a start state,then I(s) is satis�ed trivially since s:obsi = ;. For the inductive step it is enough to showthat for every transition (s; a; s0) of AP , I(s) implies I(s0). We distinguish the following casesbased on a.1. a = read1(i)i or a = read2(i)i.The transition for read(i)i ensures that s0:rounds[i]i = s:round(i) and that s0:values[i]i =s:value(i). Since round(i) and value(i) do not change from s to s0, I(s0) is true.2. a = check1i or a = check2i or a = init(v)i, or a = return-
ip(v; r)i, v 2 f0; 1g, r > 0.If s0:pci 2 fdecide;
ipg, then none of the relevant variables for I(s0) has changed froms to s0, and I(s0) is true. If s0:pci =2 fdecide;
ipg, then s0:obs = ;, falsifying i 2 s:obsi.Therefore, I(s0) is satis�ed trivially. 37



3. None of the cases above hold.I(s) implies I(s0) trivially, since all the relevant conditions stay unchanged.Invariant 6.11 states that whenever the maximum round is at most r and all processes agreeon a value v from round r, then all processes observe that there is agreement on v from roundr.Invariant 6.11 Let r be a non-negative integer and v 2 f0; 1g. Then, for each reachable stateof AP,(max-round � r ^ agree(r; v))) 8jobs-agree(r; v)j:Proof. Suppose that the premises of the invariant above are satis�ed, and let i; j be twoprocesses such that rounds [i]j = r. By Invariant 6.8 and from max-round � r, round(i) = r.Thus, from agree(r; v), value(i) = v. By Invariant 6.9, values[i]j = v.The following lemma is more technical and is used to shorten the inductive argument in theproof of Invariant 6.3. It states that, under certain conditions, if the premises of Invariant 6.3are satis�ed in the post-state of a transition, then the premises of Invariant 6.3 are satis�ed inthe pre-state of the transition as well.Lemma 6.12 Let (s; a; s0) be a transition of AP, where a is either read1(k)j or read2(k)j orcheck1j or check2j or return-
ip(v0; r0)i, v0 2 f0; 1g, r0 > 0. Let i be a process such that i 6= jif a = check1j or a = check2j or a = return-
ip(v0; r0)j. If, for v 2 f0; 1g and r > 0, thefollowing conditions hold in s0:1. obs-agree(r� 1; v)i,2. �ll-agree(r; v)i,3. �ll-max-round i = r,4. value(i) = v and round(i) = r,then the same conditions hold in s as well.Proof. We distinguish two cases based on a.1. a = read1(k)j or a = read2(k)j .Observe that for each process l, s:value(l) = s0:value(l) and s:round(l) = s0:round(l).This implies Condition 4 in s. It is left to show Conditions 1; 2; and 3 for s. Ifi 6= j then s:values i = s0:valuesi and s:roundsi = s0:roundsi. Thus, Conditions 1; 2;38



and 3 are satis�ed trivially in s. If i = j, then for every process l such that l 6= k,s:values[l]i = s0:values[l]i and s:rounds [l]i = s0:rounds [l]i. Since k 62 s:obsi (i is readingfrom k), and since Condition 1 holds in s0, Condition 1 also holds in s. Condition 2follows directly from Condition 2 for s0 and the fact that s0:values[k]i = s:value(k)and s0:rounds[k]i = s:round(k); Condition 3 follows from Condition 3 in s0 and froms0:rounds[k]i = s:round(k).2. a = check1j or a = check2j or a = return-
ip(v0; r0)j .Observe that, by Invariants 6.5 and 6.10, s:round(j) = s:rounds[j]j. Conditions 3 and4 are trivial, since the state of process i is the same in s and s0 (i 6= j), s:round(j) �s0:round(j), and s:round(i) = r. Similarly, Condition 1 holds in s. It is left to showthat Condition 2 holds in s. Since j is the only process that changes state, and sinceCondition 2 is a�ected only if j 62 s0:obsi, which is equivalent to j 62 s:obsi, it is su�cientto verify s:round(j) = r ) s:value(j) = v under the assumption that j 62 s:obsi. Wedistinguish two cases.(a) s0:pcj 2 fdecide;
ipg.No other state variable has changed in the transition. Thus, Condition 2 holds in s.(b) s0:pcj = read .From Condition 3 in s0 we have s0:round(j) � r. If s0:value(j) = ?, then Condition 2for s0 implies s0:round(j) < r, and therefore s:round(j) < r, which implies Condition2 for s. If s0:value(j) 6= ?, then the transition relation of AP implies s:round(j) <s0:round(j), and therefore, since from Condition 3 s0:round(j) � r, s:round(j) < r.This implies Condition 2 for s.Proof of Invariant 6.3For notational convenience, for each state s and process i let I(s) denote the whole invari-ant, C1 (s; i);C2(s; i); and C3 (s; i) denote Conditions 1, 2, and 3, respectively, and Ca(s; i),Cb(s; i), and Cc(s; i) denote Conditions a, b, and c, respectively.We prove I(s) by induction on the length of an execution of AP leading to s. If s is a startstate, then I(s) is satis�ed trivially since s:value(j) = ? for all j and s:obsi = ;, and thusC2 (s; i) is not satis�ed. For the inductive step it is enough to show that for every transition(s; a; s0) of AP , I(s) implies I(s0). We distinguish the following cases based on a.1. a = start(v0)j for some v0 and j.Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),v = s0:round(i). We distinguish the following cases.(a) i = j.In this case r = 1 and v0 = v. Since s0:obsi = ;, Cc(s0; i) is trivially true, andCb(s0; i) follows from C2 (s0; i). Furthermore, from C3 (s0; i), s0:max-round = 1, andthus the premises of Invariant 6.11 are satis�ed, giving Ca(s0; i).39



(b) i 6= j and r = 1.From C1 (s0; i), j =2 s0:obsi, otherwise process i would have observed ? at round r�1.Thus, from C2 (s0; i), v0 = v. Since, except for process j, all the relevant componentsfor C1 (s; i) and C2 (s; i) do not change, we derive C1 (s; i)^ C2 (s; i). If C3 (s; i) istrue as well, then Ca(s; i)^Cb(s; i)^Cc(s; i) is true, and Ca(s0; i)^Cb(s0; i)^Cc(s0; i)follow directly. If C3 (s; i) is false, then s:obsi = ;, otherwise C1 (s; i) would be false,and thus j is the only process in s0 that is at round r. This implies Cb(s0; i)^Cc(s0; i)directly. By Invariant 6.8, Ca(s; i) is true, and thus, since none of the relevant statecomponents change, Ca(s0; i) is true as well.(c) i 6= j and r = 2.Observe that C1 (s; i) ^ C2 (s; i) ^ C3 (s; i) is true, since process j does not a�ecttheir validity. Thus, Ca(s; i) ^ Cb(s; i)^ Cc(s; i) is true. Then, Ca(s0; i) ^ Cb(s0; i)since process j does not a�ect their validity. Since s0:obsj = ;, from C3 (s0; i) andby Invariant 6.8 we derive that process j satis�es the condition for Cc(s0; i). Thus,Cc(s0; i) follows from Cc(s; i).(d) i 6= j and r > 2.I(s0) follows trivially from I(s) since process j does not a�ect any of the relevantconditions.2. a = read1(k)j or a = read2(k)j for some j and k.Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),v = s0:round(i). By Lemma 6.12, s:value(i) = v, s:round(i) = r, and C1 (s; i)^C2(s; i)^C3 (s; i). Since I(s) is true, we also have Ca(s; i)^ Cb(s; i) ^ Cc(s; i). We need to showCa(s0; i)^ Cb(s0; i) ^ Cc(s0; i).To show Ca(s0; i) it is enough to show that s0:rounds[k]j � r ) s0:values[k]j = v. Fromthe transition relation of AP , s0:rounds [k]j = s:round(k) and s0:values[k]j = s:value(k).Thus, Cb(s; i) su�ces.Cb(s0; i) follows trivially from Cb(s; i) since none of the relevant state components change.For Cc(s0; i), suppose that j 2 s0:obsi, s0:round(j) = r� 1, s0:value(j) 6= v. Observe thati 6= j since s:round(i) = r and thus s0:round(i) 6= r � 1. The terms s:�ll-max-round jand s0:�ll-max-round j di�er only in the use of round(k) and rounds[k]j . The transitionrelation of AP ensures the equality of the two terms above. Thus, Cc(s0; i) follows fromCc(s; i).3. For some j, a = check1j or a = check2j or a = return-
ip(v0; r0)i, v0 2 f0; 1g, r0 > 0.Consider a processes i such that C1 (s0; i) ^ C2 (s0; i) ^ C3 (s0; i). Let r = s0:round(i),v = s0:round(i). Observe that, by Invariants 6.5 and 6.10, s:round(j) = s:rounds [j]j.Furthermore, observe that for all processes l,s0:roundsl = s:rounds l ^ s0:valuesl = s:valuesl ^ s0:obsl � s:obsl: (14)40



If s0:pcj 2 fdecide;
ipg, then I(s0) follows trivially from I(s) since none of the relevantstate components change. Thus, we consider only the case where s0:pcj 6= decide. Inparticular, s0:obsj = ;.If i = j (and s0:pci =2 fdecide;
ipg), then from s0:obsi = ; we get Cc(s0; i). Further-more, s0:obsi = ; and C2 (s0; i) imply s0:agree(r; v), and thus Cb(s0; i) is true. Froms0:obsi = ; and C3 (s0; i), we derive s0:max-round � r. This means that the conditions ofInvariant 6.11 are satis�ed, and thus Ca(s0; i) is true.If i 6= j (and s0:pci =2 fdecide;
ipg), then Lemma 6.12 implies that s:value(i) = v ands:round(i) = r and C1 (s; i) ^ C2 (s; i) ^ C3 (s; i). Since I(s) is true, we have Ca(s; i) ^Cb(s; i)^Cc(s; i). Equation (14) and Ca(s; i) imply Ca(s0; i). Since s0:round(i) = r, froms0:obsj = ; we derive s0:�ll-max-round j � r, and thus Cc(s0; i) follows from Cc(s; i). Toshow Cb(s0; i) we distinguish the following cases.(a) s:round(j) � r.By Invariant 6.5, s:obsj = f1; : : : ; ng, and thus, by Invariant 6.10, s:rounds[j]j =s:round(j). From Ca(s; i), since s:obsj = f1; : : : ; ng, and since s:round(j) � r, wederive s:obs-leader-agree(v)j . By Invariant 6.7, s:pcj 6= wait , and thus, from thetransition relation of AP , s0:value(j) = v and s0:round(j) > r. Therefore, Cb(s0; i)follows from Cb(s; i).(b) s:round(j) = r � 1 and s:value(j) = ?.By Invariant 6.5, s:obsj = f1; : : : ; ng. If j 2 s0:obsi, then Ca(s; i) ^ Cc(s; i) impliess:obs-leader-agree(v)j . By Invariant 6.7 and from the transition relation of AP ,s0:value(j) = v and s0:round(j) = r. Therefore Cb(s0; i) follows from Cb(s; i). Ifj =2 s0:obsi, then from C2(s0; i), s0:value(j) = v. Thus, Cb(s0; i) follows from Cb(s; i).(c) s:round(j) = r � 1 and s:value(j) 6= ?.By Invariant 6.5, s:obsj = f1; : : : ; ng, and by Invariant 6.6, a = check1. If j =2s0:obsi, then C2 (s0; i) implies :s:obs-leader-agree(�v)j, since otherwise s0:value(j)would be �v; if j 2 s0:obsi and s:value(j) = v, then Ca(s; i) and Invariant 6.10 imply:s:obs-leader-agree(�v)j ; if j 2 s0:obsi and s:value(j) = �v, then from Cc(s; i) wederive s:�ll-max-round j � r, and thus, from Ca(s; i), s:obs-leader-agree(v)j.Thus, in every case we have :s:obs-leader-agree(�v)j . If s:obs-leader-agree(v)j, thenfrom the transition relation of AP we have s0:value(j) = v and s0:round(j) = r.Therefore, Cb(s0; i) follows from Cb(s; i). If :s:obs-leader-agree(v)j , then from thetransition relation of AP we have s0:value(j) = ? and s0:round(j) = r � 1. Again,Cb(s0; i) follows from Cb(s; i).(d) s:round(j) < r � 1.Since s0:round(j) � r � 1, Cb(s0; i) follows trivially from Cb(s; i).4. None of the previous cases hold.I(s) implies I(s0) since all the relevant components of s and s0 stay unchanged.41



Proof of Invariant 6.1Follows directly from Invariant 6.3.7 Non-Probabilistic Progress PropertiesOur next objective is to show that in the algorithm of Aspnes and Herlihy some decision isreached within some expected number of rounds. This property depends on the probabilisticproperties of the coin 
ipping protocols. However, there are several progress properties of thealgorithm that do not depend on any probabilistic assumption. In this section we study suchproperties. The advantage of this approach is that we can use existing techniques for ordinarynondeterministic systems and con�ne the probabilistic arguments to a very limited section ofthe analysis. In this way we can also point out very precisely what is the essential role ofprobability within the protocol we analyze. The results of this section are integrated withprobabilistic arguments in Section 8.For each round r, let CF r be a coin 
ipping protocol, that is, a probabilistic automaton withthe interface of a coin 
ipper of Figure 2. De�ne AH (Aspnes-Herlihy) to be AP k (kr�1CF r).For each �nite execution fragment � of AH , de�ne�MaxRound (�) 4= lstate(�):max-round � fstate(�):max-round ;where max-round is a function that gives the maximum round number among all the processes.Since the round number of each process is monotonically nondecreasing, it is immediate toverify that �MaxRound is a complexity measure. De�ne the following sets of states.R the set of reachable states of AH such that 9ipci =2 finit ; nilg;D the set of reachable states of AH such that 8i(pci 2 finit; nilg).We call the states of R active, since they represent situations where some process is participat-ing actively in the consensus protocol. We want to show that, under some special conditions onthe coin 
ipping protocols, starting from any state of R, a state from D is reached within somebounded number of rounds. It turns out that it is easier to split the problem in two parts: �rstwe show a simple property that, unless the algorithm terminates, the system reaches a pointwhere one process has just moved to a new maximum round (F0 and F1 below, where thesubscript corresponds to the value preferred by the process at the maximum round); then, weshow that from such an intermediate point, under some special conditions on the coin 
ippingprotocols, the algorithm terminates. Formally, de�ne the following sets of states.F0 the set of states of R where there exists a round r and a process l such that round(l) = r,value(l) = 0, obsl = ;, and for all processes j 6= l, round(j) < r;42



F1 the set of states of R where there exists a round r and a process l such that round(l) = r,value(l) = 1, obsl = ;, and for all processes j 6= l, round(j) < r.We show two properties, the �rst of which is almost trivial:1. (Proposition 7.3) If AH is in a state s of R and all invocations to the coin 
ippers onnon-failing ports get a response, then a state from F0 [ F1 [ D is reached within oneround.2. (Proposition 7.8) If AH is in a state s of Fv, all invocations to the coin 
ippers onnon-failing ports get a response, and all invocations to CF s:max-round get only responsev, then a state from D is reached within two rounds.To state formally the two properties above we need to de�ne the meaning of the sentences \allinvocations to the coin 
ippers on non-failing ports get responses", and \all invocations to CF rget only response v", which we identify with the concepts of responsiveness and (v; r)-globality ,respectively.De�nition 7.1 A port i is non-failing in an execution fragment � of AH or of CF r if actionstopi does not occur in �.An invocation to CF r from process i is pending in a reachable state s of CF r if there isan execution � of CF r, ending in state s, such that in � port i is non-failing, there is at leastone occurrence of action start-
ip(r)i, and the last occurrence of start-
ip(r)i is not followedby any action of the form return-
ip(v; r)i.An execution fragment � of CF r is responsive if, for each decomposition �1 a �2 of � thefollowing holds: if in fstate(�2) there is a pending request of process i to CF r, then in �2either action stopi occurs, or action return-
ip(v; r)i occurs for some v 2 f0; 1g. An executionfragment � of AH is responsive if, for each r > 0, �dCF r is responsive.An execution fragment � of CF r is v-global i� for each action of the form return-
ip(v0; r)ithat occurs in �, v0 = v. An execution fragment � of AH is (v; r)-global i� �dCF r is v-global.Remark 7.1 The de�nition of pending request may appear rather cumbersome, since wecould state it just in terms of the components of a state of CF r. The problem is that CF r isnot speci�ed yet, and thus we cannot refer to its state components: we can refer only to theinteractions that CF r has with its external environment.Statement 1 is almost trivial and states that within one round some process moves �rstto a new round or all processes terminate. Statement 2 is the key result of this section. Itstates that if the maximum round is r and the process at round r has value v, then the systemquiesces within two rounds if CF r behaves like a global coin 
ipper. We start with Statement 1,which requires a trivial preliminary lemma. 43



Lemma 7.2 Let � be a fair execution fragment of AH that starts from a state of R, andassume that � is responsive. Then in � either a state from D is reached, or max-round growsunboundedly.Proof. Follows directly from the fact that all processes perform �nitely many operations inevery round.Proposition 7.3 Let s0 be a state of R, and let � be a fair execution fragment of AH thatstarts from state s0. Suppose that � is responsive. Then in � a state of F0 [ F1 [ D isreached within one round. That is, � = �1 a �2 such that lstate(�1) 2 F0 [ F1 [ D and�MaxRound (�1) � 1.Proof. If D is not reached, then, by Lemma 7.2, max-round grows unboundedly. Thus, someprocess will be the �rst process to reach round s0:max-round + 1. At that point a state fromF0 [ F1 is reached.This proves Statement 1. For Statement 2 we need to prove some preliminary invariants. The�rst invariant is an immediate consequence of the fact that a process has a correct view ofitself whenever it has observed itself.Invariant 7.4 Let i be a process. Then, for each reachable state of AH ,�ll-max-round i � round(i):Proof. Straightforward inductive argument.The second invariant states that the round of each process is monotonically increasing andthat a process cannot prefer both values 0 and 1 in the same round.Invariant 7.5 Let � be an execution fragment of AH , and let s0 = fstate(�) be reachable inAH . Let l be a process, r = s0:round(l), and v = s0:value(l). If v 6= ?, then for each state of�, round(l) � r ^ (round(l) = r ) value(l) 6= �v):Proof. Straightforward inductive argument.The third invariant is more technical. The important part is the second condition, which statesthat all processes observe agreement on value v from round r+1 provided that the coin 
ipperfor round r always returns v, that at the beginning there is exactly one process at round r,and that the process at round r prefers value v. The other two conditions are necessary tocarry out the inductive proof. 44



Invariant 7.6 Let � be an execution fragment of AH whose �rst state s0 is a state of Fv.Let r = s0:max-round, and let l be the (unique) process that satis�es s0:round(l) = r. Supposethat � is (v; r)-global. Then, for each state of �,1. 8j(round(j) = r) :�ll-leader-agree(�v)j)2. 8j�ll-agree(r + 1; v)j.3. agree(r+ 1; v).Proof. For notational convenience let I(s) denote the whole invariant. State s0 satis�esConditions 2 and 3 trivially since s0:max-round < r + 1. For Condition 1, since process l isthe only process at round r, and since s0:value(l) = v and s0:obsl = ;, it cannot be the casethat s0:�ll-leader-agree(�v)l. For the inductive step we consider a subsequence sas0 of � and wedistinguish cases based on a.1. a = init(v0)i for some i.If r > 1, then none of the conditions of I(s) are a�ected. If r = 1, then Conditions 2and 3 are not a�ected as well. Consider a generic process j such that s0:round(j) =r. If j = i, then since s0:obsj = ;, Invariant 7.5 and Condition 3 for s0 ensure that:�ll-leader-agree(�v)j. If j 6= i, then, since Condition 1 holds in s, there is some processk 6= i that is a leader with value di�erent from �v in the �lled vector of process j. Weknow that k 6= i because, by Invariant 7.4, s:�ll-max-round j � r, and thus process icould not a�ect Condition 1 in s. The kth entry of the �lled vector of j is not a�ectedduring the transition from s to s0, and thus Condition 1 is preserved.2. a = read1(k)i or a = read2(k)i for some i and k.In this case Condition 3 is not a�ected. Thus, we need to deal only with Conditions 1and 2, which are a�ected only for process i. In particular, Conditions 1 and 2 di�erin s and s0 for the use of (round(k); value(k)) and (rounds [k]i; values[k]i), respectively.The transition relation of AP ensures the equality of the terms above, and thus thepreservation of Conditions 1 and 2.3. a = check1i or a = check2i or a = return-
ip(v0; r0)i for some i.We consider only the case where r0 = round(i), since otherwise nothing changes duringthe transition from s to s0. We distinguish the following cases.(a) s:round(i) < r � 1.In this case I(s0) follows trivially from I(s) since none of the conditions are a�ected.(b) s:round(i) = r � 1.Conditions 2 and 3 are not a�ected. If s0:round(i) = r � 1, then Condition 1 is nota�ected as well. Otherwise, s0:obsi = ;. Observe also that i 6= l. Thus, Condition 1follows from Condition 1 for s and by Invariant 7.5.45



(c) s:round(i) = r.If s0:round(i) = r, then Conditions 2 and 3 are not a�ected. For Condition 1, ifs0:pci = decide, then Condition 1 is not a�ected; otherwise, s0:value(i) = ? ands0:obsi = ;. Thus, Condition 1 follows from Condition 1 for s and from Condition 3.If s0:round(i) = r + 1, then Condition 1 and the transition relation of AP(v; r)ensure that s0:value(i) = v. Thus, Conditions 1, 2 and 3 are all preserved.(d) s:round(i) > r.From Condition 2 on s, either process i decides on v, or a new round is reachedwith preference v. In both cases Conditions 1, 2 and 3 are preserved.4. None of the previous cases hold.I(s0) follows trivially from I(s) since none of the relevant state components change.Finally, we can show that from Fv the maximum round of the processes does not grow by morethan 2 provided that the coin 
ipper at the maximum round always returns v.Invariant 7.7 Let � be an execution fragment of AH whose �rst state s0 is a state of Fv.Let r = s0:max-round. Suppose that � is (v; r)-global. Then, for each state of �, and for eachprocess j,round(j) � r + 2:Proof. First observe that � satis�es the conditions of Invariant 7.6, which means that Invari-ant 7.6 is satis�ed by all the states of �.All the cases for the proof are straightforward except for the case where a transition(s; check1j ; s0) occurs and s:round(j) = r+ 2. In such case, from Condition 2 of Invariant 7.6,s:�ll-agree(r + 1; v)j. Since s:obsj = f1; : : : ; ng, we derive that s:obs-agree(r + 1; v), and thusprocess j sets pcj to decide without reaching round r+ 3. Observe that check2j cannot occurwhen round(j) = r+ 2 since in such case value(j) = ? and Invariant 7.6 would be violated.Proposition 7.8 Let � be a fair execution fragment of AH whose �rst state s0 is a stateof Fv. Let r = s0:max-round. Suppose that � is responsive and (v; r)-global. Then in � astate from D is reached within two rounds. That is, � = �1 a �2 where lstate(�1) 2 D and�MaxRound (�1) � 2.Proof. Suppose that D is not reached in �. Then, by Lemma 7.2, some process eventuallyreaches round r + 3, contradicting Invariant 7.7. Therefore, in � a state from D is reached.Furthermore, by Invariant 7.7, a state from D is reached within two rounds.46



8 Probabilistic Progress PropertiesSuppose that each coin 
ipping protocol CF r satis�es the following properties.C1 For each fair probabilistic execution fragment of CF r that starts with a reachable stateof CF r, the probability of the execution fragments that are responsive is 1.C2 For each fair probabilistic execution of CF r, and each value v 2 f0; 1g, the probabilityof the executions that are responsive and v-global is at least p, where p is a real numbersuch that 0 < p � 1.In this section we show that under Conditions C1 and C2 for every CF r, AH guaranteesprogress within expected O(1=p) rounds. That is, we prove the following proposition.Proposition 8.1 If each coin 
ipping protocol CF r satis�es properties C1 and C2, then inAH , starting from any state of R and under any fair scheduler, a state from D is reachedwithin at most O(1=p) expected rounds.Thus, we need to show only that it is possible to build distributed implementations of the coin
ippers that satisfy C1 and C2 with a suitable value for p. We build the implementations inSections 9 and 10.Remark 8.1 Observe that property C1 refers to probabilistic execution fragments, whileProperty C2 refers to probabilistic executions. This distinction is important. Property C1states that a coin 
ipper gives responses with probability 1 from any arbitrary point in its com-putation; Property C2 guarantees that with probability p a speci�c value is always returned,but only if we observe the coin 
ipper from the beginning. C2 is not true for an arbitraryprobabilistic execution fragment: if we consider a fragment that begins in a state where twoprocesses are about to return two di�erent values, then all processes return the same valuewith probability 0.We now turn to the proof of Proposition 8.1. The main statement that we use isR �MaxRound�3�!p D: (15)To prove Statement (15) we prove two intermediate statements:R �MaxRound�1�!1 F0 [ F1 [ D; (16)and for each v 2 f0; 1g,Fv �MaxRound�2�!p D: (17)47



The proofs of Statements (16) and (17) rely on Propositions 7.3 and 7.8 and on the probabilisticproperties of the coin 
ipping protocols. In particular, the �rst statement relies on the factthat the coin 
ippers respond, which occurs with probability 1 (C1), and the second statementrelies on the fact that some speci�c coin 
ipper always returns a speci�c value v, which is thecase with probability at least p (C2).Proposition 8.2 Assuming that the coin 
ippers in AH satisfy C1,R �MaxRound�1�!1 F1 [ F0 [ D: (18)Proof. Let H be a probabilistic execution fragment of AH that starts from a state of R. Let� be the set of executions of 
H where each invocation to any coin 
ipper on a non-failing portgets a response. By Proposition 7.3, in each execution of � a state from F1[F0[D is reachedwithin one round. Thus, it is su�cient to show that PH [�] = 1. Let, for each i � 1, �i be theset of executions of 
H where each invocation to CF i on a non-failing port gets a response.Then � = \i�1�i. Observe that, by de�nition, �i is the inverse image under projection of theset of executions of 
HdCFi where each invocation on a non-failing port gets a response. FromC1, for each i, PHdCFi [�idCF i] = 1, and thus, by Proposition 2.3, PH [�i] = 1. Therefore,PH [�] = 1 since any countable intersection of probability 1 events has probability 1.Proposition 8.3 Assuming that the coin 
ippers in AH satisfy C1 and C2,Fv �MaxRound�2�!p D: (19)Proof. Let H be a probabilistic execution fragment of AH that starts from a state s0 ofFv, and let r = s0:max-round . Let � be the set of executions of 
H where each invocationto any coin 
ipper on a non-failing port gets a response and where each response of CF rhas value v. By Proposition 7.8, in each execution of � a state from D is reached withintwo rounds. Thus, it is su�cient to show that PH [�] � p. Let, for each i � 1, �i be theset of executions of 
H where each invocation to CF i on a non-failing port gets a response.Furthermore, let �0r be the set of executions of 
H where no response of CF r has value �v. Then,� = (\i�1�i) \ �0r. From C1, for each i, PHdCF i [�idCF i] = 1, and thus, by Proposition 2.3,PH [�i] = 1. Since s0 2 Fv and r = s0:max-round , HdCF r is a probabilistic execution of CF r(the start state of HdCF r is a start state of CF r), and thus property C2 can be applied. FromC2, PHdCFr [�0rdCF r] � p, and thus, by Proposition 2.3, PH [�0r] � p. Therefore, PH [�] � psince any countable intersection of probability 1 events has probability 1 and the intersectionof a probability 1 event with an event with probability p has probability at least p.Proof of Proposition 8.1. By Proposition 2.8, Statements (16) and (17) can be combinedto lead to Statement (15). 48



Since in AH R is not left unless a state from D is reached, since each transition of AHincreases �MaxRound by at most 1, and since from fairness and C1 some transition is scheduledwith probability 1 from each state ofR, by Theorem 2.9 we derive that within at most expected4=p rounds a state from D is reached under any fair scheduler.9 The Coin Flipping ProtocolWe are left to show that it is possible to build a distributed coin 
ipping protocol with theproperties C1 and C2 stated in Section 8, where by a distributed protocol we mean a protocolwhere processes interact through single-writer multiple-reader shared variables only.In this section we build an almost distributed version of the coin 
ipping protocol whereprocesses interact through a multiple-writer multiple-reader shared register; in Section 10 were�ne the protocol of this section to yield a distributed protocol. The protocol is based onrandom walks and satis�es properties C1 and C2 with a su�ciently high probability p that isindependent of n.9.1 The Code for the ProtocolWe represent the coin 
ipping protocol by letting an automaton DCN r (Distributed CoiN)interact with a centralized counter CT r (CounTer), that is, CF r = HideI(DCN r k CT r),where I is the set of actions used for the interaction between DCN r and CT r, and HideI isan operator that transforms the actions of I from external to internal. Figure 3 shows thestructure of the coin 
ipping protocol. In this Section, DCN r is distributed while CT r iscomposed of n processes that receive requests from DCN r and read/update a single sharedvariable: the details of the distributed implementation of a shared counter are not necessaryfor any properties of the coin 
ipping protocol. The distributed version of the shared counteris presented in Section 10.Since the protocols for DCN r and CT r are the same for any round r, we drop the subscriptr from our notation. Table 3 gives the state variables of DCN ; Table 4 gives the transitionrelation of DCN . Each process 
ips a fair coin to decide whether to increment or decrementthe shared counter. Then the process reads the current value of the shared counter, and if thevalue read is beyond the barriers �Kn, where K is a �xed constant, then the process returns.The protocol described in Table 4 is slightly di�erent from the protocol described in [5]: oncea coin 
ip is requested, our protocol checks counter before 
ipping a coin, while the protocolof [5] starts immediately by 
ipping a coin. Our protocol improves the protocol of [5] in thatproperties C1 and C2 are satis�ed even in the presence of multiple requests on the same port.This improvement is not essential for the correctness of the protocol of [5], since the protocolguarantees that there is at most one request at each port; however, our improvement simpli�esthe proof slightly in that we do not have to prove explicitly that there is at most one requestat each port. 49
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ipping protocol.Table 5 gives the state variables of the shared counter CT ; Table 6 gives the actions andtransition relation of CT . Informally, each process of CT receives requests that are han-dled by referring to a multiple-writer multiple-reader shared variable counter . Increment anddecrement operations are performed by updating counter directly; read operations are imple-mented by �rst copying the value of counter to a multiple-writer single-reader variable prereadand then, in a separate step, returning the value of preread to the environment. However, anupdate to counter may invalidate the value that a read operation is ready to return. This factis expressed by the nondeterministic choice to reset any set of preread variables to ? whenevera process updates counter . Due to the way the preread variables are handled, the speci�cationof CT states that an increment or decrement operation always completes unless the corre-sponding process fails, while a read operation is guaranteed to complete only if increments anddecrements eventually cease. Essentially, our use of the preread variables is an abstraction ofwhat the implementation of Section 10 actually does.We now proceed with the analysis of CF . In particular, we show that with probability1, all the invocations to CF on a non-failing port get an answer, and, for v 2 f0; 1g, withprobability at least (K� 1)=2K all the answers are v. The analysis is split into two parts: the�rst part deals with non-probabilistic properties, while the second part deals with probability.9.2 Non-Probabilistic AnalysisLet Acts be f
ip1; : : : ;
ipng, and let S be f(U i1;U d1 ); (U i2;U d2 ); : : : ; (U in;U dn )g, where U ij is theset of states of CF where process j has just 
ipped inc (fpcj = inc), and U dj is the set of states50



Name Values InitiallyLocal statefpc fnil;
ip; inc;wait-inc; dec;wait-dec; read-counter ;wait-counter ; nilcompare ; return-
ip0; return-
ip1gstopped Bool falselocal-counter int 0Table 3: The state variables of a process i in DCN .of CF where process j has just 
ipped dec (fpcj = dec).Given a �nite execution fragment � of CF , let �inc(�) be the number of coin 
ips in �that give inc, and let �dec(�) be the number of coin 
ips in � that give dec. Function �incand �dec correspond to functions HeadsActs;S and TailsActs;S in Section 3.3; the di�erence�inc(�)��dec (�) corresponds to Di� Acts;S(�). Given a state s of CF , let jsjinc be the numberof processes in s whose program counter of either DCN or CT is inc, and let jsjdec be thenumber of processes in s whose program counter of either DCN or CT is dec. Formally, letSinc = fj j s:fpcj = inc _ s:cpcj = incg, the processes that are about to increment, and letSdec = fj j s:fpcj = dec _ s:cpcj = decg, the processes that are about to decrement. Letjsjinc = jSincj and jsjdec = jSdec j. The following lemma states how counter and the actualnumber of coin 
ips giving inc and dec are related.Lemma 9.1 Let � be a �nite execution of CF, and let s = lstate(�). Then,�inc(�)� �dec(�) = s:counter + jsjinc � jsjdec :Proof. Straightforward induction on the length of �.Given a state s, let Sbelow (Sabove ) be the set of processes in s that have a pending requestand either are up to 
ipping an elementary coin or are up to detecting that counter is below(above) the barrier Kn (�Kn). Let jsjbelow and jsjabove denote the cardinality of Sbelow andSabove , respectively. Formally, Sbelow is the set of processes i such that either1. s:fpci = 
ip, or2. s:fpci = read-counter and s:counter < Kn, or3. s:fpci = compare and s:local-counter i < Kn, or51



Actions and transitions of process i.input start-
ip(r)iE�: if fpc = nil ^ :stopped thenfpc  read-counteroutput start-readiPre: fpc = read-counterE�: fpc wait-counterinput end-read(c)iE�: if fpc = wait-counter thenlocal-counter cfpc  compareinternal compareiPre: fpc = compareE�: if local-counter � Kn thenfpc  return-
ip1elseif local-counter � �Kn thenfpc  return-
ip0else fpc  
ipoutput return-
ip(v; r)iPre: fpc = return-
ipvE�: fpci  nil
internal 
ip(r)iPre: fpc = 
ipE�: Pr[fpc  inc] = 1=2^Pr[fpc  dec] = 1=2output start-inciPre: fpc = incE�: fpc  wait-incinput end-inciE�: if fpc = wait-inc thenfpc  read-counteroutput start-deciPre: fpc = decE�: fpc  wait-decinput end-deciE�: if fpc = wait-dec thenfpc  read-counterinput stopiE�: stopped  truefpc  nilTasks: The locally controlled actions of process i form a single task.Table 4: The actions and transition relation of DCN .4. s:cpci = read-counter and either s:preread i < Kn or s:counter < Kn.Similarly, Sabove can be de�ned by replacing < Kn with > �Kn. The following two lemmasstate a key property for the analysis of the coin 
ipping protocol. We describe only Lemma 9.2since Lemma 9.3 is symmetric. Suppose that a state is reached where the value of counterminus the number of processes that either are up to decrementing counter or are up to detectingthat counter is below Kn is at least Kn. Then Lemma 9.2 states that this property continuesto remain valid in the future. Roughly speaking, each process that reads counter terminates(does not 
ip nor update counter any more) because it observes a value that is at least Kn.Lemma 9.2 The following property is stable for CF, that is, it continues to be satis�ed onceit is satis�ed.s:counter � jsjdec � jsjbelow � Kn: (20)52



Name Values InitiallyLocal statecpc fnil;wait ; inc; end-inc; dec; end-dec; read-counterg waitstopped Bool falseMultiple-writer multiple-reader shared variablescounter int 0Multiple-writer single-reader shared variables (process i reads)preread(i) int [ f?g ?Table 5: The state variables of a process i in CT .Proof. Straightforward inductive argument.Lemma 9.3 The following property is stable for CF.s:counter + jsjinc + jsjabove � �Kn: (21)Proof. Straightforward inductive argument.A simple consequence of Lemmas 9.2 and 9.3 is that whenever the di�erence between thecoin 
ips that give inc and the coin 
ips that give dec is beyond the barriers �(K + 1)n, thevalue of counter is always beyond �Kn.Lemma 9.4 Let � = �1a �2 be an execution of CF such that �inc(�1)��dec(�1) = (K+1)n.Then each state of �2 satis�es counter � Kn.Proof. By Lemma 9.1, �inc(�1)��dec(�1) = s:counter + jsjinc �jsjdec where s = lstate(�1) =fstate(�2), and thus s:counter + jsjinc�jsjdec = (K+1)n. By a simple algebraic manipulation,s:counter � jsjdec � jsjbelow = s:counter + jsjinc � jsjdec � (jsjinc + jsjbelow ). Observe that, byde�nition, Sinc \ Sbelow = ;, and therefore jsjinc + jsjbelow � n. This means that s:counter �jsjdec�jsjbelow � Kn. By Lemma 9.2, each state s0 of �2 satis�es s0:counter�js0jdec�js0jbelow �Kn. Thus, each state of �2 satis�es counter � Kn.53



Actions and transitions of process i.input start-inciE�: if cpc = wait thencpc  incinternal inciPre: cpc = incE�: counter  counter + 18jpreread(j) choose(preread(j);?)cpc end-incoutput end-inciPre: cpc = end-incE�: cpc waitinput start-deciE�: if cpc = wait thencpc  decinternal deciPre: cpc = decE�: counter  counter � 18jpreread(j) choose(preread(j);?)cpc end-dec
output end-deciPre: cpc = end-decE�: cpc  waitinput start-readiE�: if cpc = wait thencpc  read-counterinternal readiPre: cpc = read-counterpreread(i) = ?E�: preread(i) counteroutput end-read(c)iPre: cpc = read-counterpreread(i) = c 6= ?E�: cpc  waitpreread(i) ?input stopiE�: stopped  truecpc  nilTasks: The locally controlled actions of process i form a single task.Table 6: The actions and transition relation of CT .Lemma 9.5 Let � = �1a�2 be an execution of CF such that �inc(�1)��dec(�1) = �(K+1)n.Then each state of �2 satis�es counter � �Kn.Proof. Symmetric to the proof of Lemma 9.4.Lemma 9.6 Let � be an execution of CF, such that � 2 Top[�(K� 1)n; (K+1)n; 0](H) forsome probabilistic execution H of CF. Then � is 1-global.Proof. Since � 2 Top[�(K � 1)n; (K + 1)n; 0](H), either each pre�x �0 of � satis�es �(K �1)n < �inc(�0) � �dec(�0) < (K + 1)n, or � = �1 a �2 where �inc(�1) � �dec(�1) = (K + 1)nand no pre�x �01 of �1 satis�es �inc(�01)� �dec(�01) � �(K � 1)n.In the �rst case, by Lemma 9.1, no state of � satis�es counter � �Kn. In the second case,by Lemma 9.1, no state of �1 satis�es counter � �Kn. Furthermore, by Lemma 9.4, eachstate of �2 satis�es counter � Kn. Therefore, no state of � satis�es counter � �Kn. Thismeans that in both cases no process returns value 0 in �.54



Lemma 9.7 Let � be an execution of CF, such that � 2 Bottom[�(K�1)n; (K+1)n; 0](H)for some probabilistic execution H of CF. Then � is 0-global.Proof. Symmetric to the proof of Lemma 9.6.Lemma 9.8 Let � be a fair execution of CF, such that � 2 Either[�(K+1)n; (K+1)n; 0](H)for some probabilistic execution H of CF. Then � is responsive.Proof. If � contains �nitely many 
ip actions, then eventually all the increment and decrementoperations deriving from the 
ipping operations are completed or interrupted (the correspond-ing end-inc or end-dec actions occur or the corresponding processes fail). Thus, there is apoint after which no more inc and dec operations are performed. Let �0 be a su�x of �where no more 
ip, increment or decrement operations are performed. Then in �0 none of thepreread i variables is set to ? while action end-read(c)i is enabled, and thus all read operationson non-failing ports terminate eventually. At that point, since no more 
ips are performed in�0, each process that completes a read operation returns a value.If � contains in�nitely many 
ip actions, then, since � 2 Either[�(K+1)n; (K+1)n; 0](H),� = �1 a �2 such that �inc(�1) � �dec(�1) = �(K + 1)n. Here we consider the case where�inc(�1)� �dec(�1) = (K + 1)n; the other case is symmetric. By Lemma 9.4, each state of �2satis�es counter � Kn. Thus, each non-failing process returns a value once it reads counter(performing the read operation in �2) since the value read is at least Kn.Lemma 9.9 Let � be a fair execution of CF, such that � 2 Top[�(K � 1)n; (K+ 1)n; 0](H)for some probabilistic execution H of CF. Then � is responsive and 1-global.Proof. By Lemma 9.8, each invocation on a non-failing port gets a response. By Lemma 9.6no invocation gets response 0. Hence, each invocation on a non-failing port gets response 1.Lemma 9.10 Let � be a fair execution of CF, such that � 2 Bottom[�(K � 1)n; (K +1)n; 0](H) for some probabilistic execution H of CF. Then � is responsive and 0-global.Proof. Symmetric to the proof of Lemma 9.9.9.3 Probabilistic AnalysisIn this short subsection we prove the probabilistic properties of the coin 
ipping protocol, thatis, it guarantees properties C1 (Proposition 9.11) and C2 (Proposition 9.12). The proofs relyon the non-probabilistic properties proved in Section 9.2 and on the coin lemmas for symmetricrandom walks of Section 3.3. 55



Proposition 9.11 The coin 
ipper CF satis�es C1. That is, for each fair probabilistic execu-tion fragment of CF that starts with a reachable state of CF, the probability of the executionsthat are responsive is 1.Proof. LetH be a fair probabilistic execution fragment of CF that starts with a reachable states of CF , and let � be a �nite execution of CF such that lstate(�) = s. Let z = �inc(�)��dec(�).If �0 is an execution of the event Either[�(K+1)n; (K+1)n; z](H), then �a�0 is an executionof Either[�(K � 1)n; (K+ 1)n; 0](H 0) for some fair probabilistic execution H 0 of CF , and byLemma 9.8, every invocation to CF in � a �0 gets a response. From De�nition 7.1, everyinvocation to CF in �0 gets a response. By Theorem 3.11, PH [Either[�(K + 1)n; (K +1)n; z](H)] = 1. This completes the proof.Proposition 9.12 The coin 
ipper CF satis�es C2 with p = (K + 1)=2K. That is, �xedv 2 f0; 1g, for each fair probabilistic execution of CF, the probability of the executions that areresponsive and v-global is at least (K � 1)=2K.Proof. Assume that v = 1; the case for v = 0 is symmetric. Let H be a fair probabilisticexecution of CF . If � is an execution of Top[�(K�1)n; (K+1)n; 0](H), then, by Lemma 9.9,every invocation to CF in � gets response 1. Furthermore, by Theorem 3.11, PH [Top[�(K �1)n; (K + 1)n; 0](H)]� (K � 1)=2K. This completes the proof.10 Implementation of the Shared CounterIn this section we build an implementation of CT and we show that it can replace the abstractautomaton CT in CF without compromising Propositions 9.11 and 9.12, that is, propertiesC1 and C2 with p = (K � 1)=2K. In this way, using the coin 
ipping protocol with the newcounter, we obtain a protocol for consensus that uses only single-writer multiple-reader sharedvariables.The implementation of CT , which we denote by DCT (Distributed CounTer), is an adap-tation of an algorithm proposed by Lamport [12] for read/write registers. The state variablecounter of CT is represented by n single-writer multiple-reader registers, one for each pro-cess, with two �elds: a num �eld, which is incremented whenever the value of the register ischanged, and a val �eld representing the contribution of the corresponding process to the valueof counter . The operations inc and dec on a process i are implemented by incrementing ordecrementing the val register and incrementing the num register of process i. The operationread-counter is implemented by scanning the shared registers until two consecutive scans givethe same value. Table 7 gives the state variables of DCT ; Table 8 gives the transition relationof DCT .We now verify that it is possible to replace DCT for CT in CF without compromisingproperties C1 and C2. Let DCF (Distributed Coin Flipper) be de�ned as HideI(DCN kDCT),where I is the set of actions used for the interaction between DCN and DCT .56



Name Values InitiallyLocal statecpc fnil ;wait ; inc; end-inc; dec; end-dec; scan; read-counterg waitprescan array [1 : : :n] of int � int array of (0; 0)�rst array [1 : : :n] of int � int array of (0; 0)obs set of f1; : : : ; ng ;stopped Bool falseSingle-writer multiple-reader shared variables(num(i); val(i)) int � int (0; 0)Table 7: The state variables of a process i in DCT .Observe that properties C1 and C2 are properties of the fair trace distributions of CFand DCF . Speci�cally, observe that responsiveness and v-globality can be stated in terms oftraces. Then, property C1 can be stated as \in each fair trace distribution, the probabilityof the set of traces that are responsive is 1", and property C2 can be stated as: \in eachfair trace distribution, the probability of the set of traces that are responsive and v-global isat least p". Thus, to show that DCF satis�es properties C1 and C2 it is su�cient to showthat ftdistrs(DCF) � ftdistrs(CF). For this purpose, by using Proposition 2.14, it is su�cientto build a re�nement h from DCT to CT and show that h preserves the fair executions ofDCT . Note that h is not probabilistic since DCT and CT are not probabilistic. That is, theproperties that we need to show do not involve probability.Proposition 10.1 There is a re�nement from DCT to CT that preserves the fair executionsof DCT.Proof. The re�nement keeps the preread variables di�erent from ? whenever the �rst scanhas occurred and no increment or decrement operations have done anything that would makethe �rst and second scans di�er. Formally, h(s) = s0 where, for each process i,s0:cpci = � read-counter if s:cpci = scans:cpci otherwise,s0:counter = Xj val(j) 57



Actions and transitions of process i.input start-inciE�: if cpc = wait thencpc  incinternal inciPre: cpc = incE�: val(i) val(i) + 1num(i) num(i) + 1cpc end-incoutput end-inciPre: cpc = end-incE�: cpc waitinput start-deciE�: if cpc = wait thencpc  decinternal deciPre: cpc = decE�: val(i) val(i) � 1num(i) num(i) + 1cpc end-decoutput end-deciPre: cpc = end-decE�: cpc wait
input start-readiE�: if cpc = wait thencpc  scanobs ;internal scan(k)iPre: cpc = scank =2 obsE�: scan[k] (counter(k);num(k))obs obs [ fkgif obs = f1; : : : ; ng thenif :�rst ^ (prescan = scan) then�rst  truecounter  Pnj=1 scani[j]:valcpc  read-counterelseprescan  scan�rst  falseoutput end-read(c)iPre: cpc = read-counterc =Pnj=1 scan[j]:valE�: cpc  waitinput stopiE�: stopped  truecpc  nilTasks: The locally controlled actions of process i form a single task.Table 8: The actions and transition relation of DCT .s0:preread i = 8>>>><>>>>: c if :s:�rst i and c =Pj s:prescan[j]iand s:cpci 2 fscan; read-countergand 8j(j 2 obsi ) prescan[j]i = scan[j]i)and 8j(j =2 obsi ) prescan[j]i = (val(j); num(j)))? otherwise.It is straightforward to check that h is a re�nement mapping.Consider now a fair execution �1 of DCT . From the execution correspondence theoremthere is an execution �2 of CT such that (�1; �2) 2 h. Suppose by contradiction that �2 is notfair. Then in �2 there is a process i whose corresponding task is eventually continuously enabledbut never performed. Observe that h�1 preserves the enabledness of each task of CT , and thatin DCT it is not possible that for some task T there is an execution fragment with in�nitely58



many internal actions from T and no external action from T . Thus, since (�1; �2) 2 h,eventually in �1 the task of process i is continuously enabled but never performed. This meansthat �1 is not fair, a contradiction.Theorem 10.2 The coin 
ipper DCF satis�es properties C1 and C2 with p = (K � 1)=2K.Proof. By Proposition 10.1, there is a re�nement from DCT to CT that preserves the fairexecutions of DCT . By Proposition 2.14, ftdistrs(DCF) � ftdistrs(CF). This completes theproof.11 Summing UpIn this section we paste together the results of the previous sections to derive an upper boundon the expected number of rounds for termination.Theorem 11.1 Using the coin 
ippers of Sections 9 and 10, AH guarantees wait-free termi-nation within a constant expected number of rounds, that is, from each reachable state of AH ,under any fair scheduler, a state of D is reached within a constant expected number of rounds.Proof. The coin 
ippers DCF of Sections 9 and 10 satisfy properties C1 and C2 withp = (K�1)=2K, where K is a constant (cf. Theorem 10.2 and Propositions 9.11 and 9.12). ByProposition 8.1, AH guarantees wait-free termination within at most O(2K=(K�1)) expectedrounds, that is, within a constant expected number of rounds.We analyze some implications of Theorem 11.1. In particular, the de�nition of D mayappear rather counterintuitive, since reaching D does not necessarily mean deciding: it ispossible to reach D by letting processes fail. However, Theorem 11.1 gives enough informationto derive several di�erent termination properties as the following corollary shows.Corollary 11.2 Let H be a fair probabilistic execution fragment of AH , and suppose that Hstarts from a reachable state s of AH . Then the following properties are satis�ed by H.1. If in s all processes are initialized already, then within a constant expected number ofrounds all non-failing processes decide.2. If in s there is at least one initialized and non-failed process, and if no new processes failin H, then a decision is reached within a constant expected number of rounds.Proof. To reach D all initialized processes must either fail or decide. In the �rst case, sinceD is reached, all non-failed processes have decided. In the second case, since there is at leasta non-failed initialized process, and since such process does not fail, such process decides.59



12 Timing Analysis of the AlgorithmIn this section we prove an upper bound on the expected time it takes for all processes toterminate, starting from an arbitrary reachable state, once all processes have some minimumspeed. For this purpose we augment the I/O automata of the previous sections paper so thattime can be observed. Our augmentation resembles the patient construction of [10] and pro-duces another probabilistic I/O automaton. Note that we cannot regard the augmentation wepresent in this paper as the de�nition of a general timed probabilistic model. Our augmen-tation is the minimum machinery that is necessary for the time analysis of an asynchronousalgorithm.12.1 Modeling TimeIn order to model time we add a special component :now to the states of all our probabilisticI/O automata, and we add the set of positive real numbers to the input actions of all our prob-abilistic I/O automata. We call the new actions time-passage actions. The :now componentis a nonnegative real number and describes the current time of an automaton. At the begin-ning (i.e., in the start states) the current time is 0, and thus the :now component is 0. Theoccurrence of an action d, where d is a positive real number, increments the :now componentby d and leaves the rest of the state unchanged. Thus, the occurrence of an action d modelsthe fact that d time units are elapsing. The amount of time elapsed since the beginning of anexecution is recorded in the :now component. Since time-passage actions must synchronize ina parallel composition context, parallel composition ensures that the :now components of thecomponents are always equal. Thus, we can abuse notation and talk about the :now compo-nent of the composition of two automata while we refer to the :now component of one of thecomponents. Observe that our augmented probabilistic I/O automata are still probabilisticI/O automata.For any probabilistic I/O automaton augmented with time we de�ne a new complexitymeasure �t as follows:�t(�) = lstate(�):now � fstate(�):now :It is straightforward to check that �t is a complexity measure. Informally, �t measures thetime that elapses during an execution. We say that an execution fragment � of a probabilisticautomaton M is well-timed if there is no task T of M and no decomposition �1 a �2 a �3 of �such that �t(�2) > 1, all the states of �2 enable T , and no action from T occurs in �2. Thatis, � is well-timed if each task does not remain enabled for more than one time unit withoutbeing performed.All the properties that we have studied in the previous sections are still valid for ouraugmented automata, since they are not a�ected by the presence of the :now componentand of the new input actions. It is simple to observe that if we remove the time-passage60



transitions from a fair execution of an augmented automaton we obtain a fair execution of thenon-augmented automaton.In the rest of this section we strengthen the properties of the previous sections by showingthat, under the assumption of well-timedness, the algorithm of Aspnes and Herlihy terminateswithin an expected polynomial time. That is, if from a certain point each processor has someminimum speed, then the algorithm of Aspnes and Herlihy guarantees termination within anexpected polynomial time.12.2 Preliminary De�nitionsBefore presenting the timing analysis we give some preliminary de�nitions. Recall that, foreach r > 0, DCF r denotes HideI(DCN r k DCT r), where I is the set of actions used for theinteraction between DCN r and DCT r. That is, DCF r is the result of substituting DCT rfor CT r in CF r. Let DAH (Distributed Aspnes-Herlihy) denote AP k (kr�1DCF r). For anexecution fragment � of DCF r or of DAH , let �
ip;r(�) be the number of 
ip events of DCF rthat occur in �, and let �id ;r(�) be the number of inc and dec events of DCF r that occurin �. For each execution fragment � of DAH let �id(�) denote the number of inc and decevents that occur in �. It is straightforward to check that �
ip;r, �id ;r and �id are complexitymeasures. Observe that the following trivial result holds.Lemma 12.1 For each execution fragment � of DAH ,1. �id(�) =Pr>0 �id ;r(�), and2. for each r > 0, �id ;r(�) = �id ;r(�dDCF r).12.3 Non-Probabilistic Properties of the Complexity MeasuresIn this section we study the relationship between the complexity measures �t; �id ; �
ip ; �id;r,and �
ip;r de�ned above. The �rst signi�cant result of this section, Lemma 12.4, providesa linear upper bound on the time it takes for DAH to span a given number of rounds andto 
ip a given number of coins under the assumption of well-timedness. We �rst prove apreliminary lemma, which provides a linear upper bound on the time a coin 
ipping protocolis active without any inc, dec, return-
ip or stop action occurring. The preliminary lemma is�rst proved for a coin 
ipping protocol (cf. Lemma 12.2), and then proved for a coin 
ippingprotocol within DAH .Lemma 12.2 Let � be a fair, well-timed execution fragment of DCF r, r > 0. Suppose thatin fstate(�) there is at least one non-failed process with a pending start-
ip(r) request. Thenin � there is an occurrence of an action from finc; dec; return-
ip; stopg within time O(n).61



Proof. Let X be finc; dec; return-
ip; stopg. Let i be a non-failed process with a pendingstart-
ip(r) request in fstate(�), and suppose for the sake of contradiction that in � there is nooccurrence of actions from X within time 3n+d, where d is a su�ciently large constant. Fromthe code of DCF r, process i runs through a cycle where a read request is performed and anaction from finc; dec; return-
ipg occurs unless process i fails (action stop) occurs. Thus, oneaction from X occurs before completing a cycle. The maximum time necessary to completea cycle is given by the time to complete a read request plus the time to check the result andperform the corresponding operations. The constant d accounts for the time necessary tocomplete all the operations except for the read request. Since no action from X occurs withintime 3n+d, a read request completes within time at most 3n: in fact, within 3 scans of processi there are two consecutive scans that give the same result. Thus, within time 3n+ d processi completes a cycle, which means that an action from X occurs, a contradiction.Lemma 12.3 Let � be a fair, well-timed execution fragment of DAH , and let r > 0. Supposethat in fstate(�)dDCF r there is at least one non-failed process with a pending start-
ip(r)request. Then in � there is an occurrence of an action from finc; dec; return-
ip; stopg withintime O(n).Proof. Let X be finc; dec; return-
ip; stopg. By Lemma 12.2 in �dDCF r there is an occur-rence of an action from X within time c1n + c2 for appropriate constants c1 and c2. Thatis, �dDCF r = �1 a �2 such that �t(�1) � c1n + c2 and an action from X occurs in �1.Let �01 be a pre�x of � such that �1 = �01dDCF r. Then, from the de�nition of projection,an action from X occurs in �01, and from the de�nition of :now within parallel composition,�t(�01) = �t(�1) � c1n+c2. This means that in � an action fromX occurs within time c1n+c2.Lemma 12.4 Let � be a well-timed execution fragment of DAH , and let R = fstate(�):max-round.Suppose that all the states of �, with the possible exception of lstate(�) are active, that is, arestates of R. Then, �t(�) � d1n2(�MaxRound (�) + R) + d2n�id (�) + d3n2 for some constantsd1; d2, and d3.Proof. At each round each process performs a linear number of transitions outside the coin
ipping protocol using time at most c1n for some constant c1. Divide � into two kinds of execu-tion fragments: those where some active process is outside the coin 
ipping protocols, and thosewhere no active process is outside the coin 
ipping protocols. The total time complexity of the�rst kind of execution fragments is upper bounded by c1n2(�MaxRound (�) +R), correspondingto the case where at each time there is exactly one process outside the coin 
ipping protocols.Consider now the second kind of execution fragments. Since each process returns at most oncein each round and fails at most once overall, there are at most �id (�)+n(�MaxRound (�)+R)+nevents inc, dec, return-
ip and stop in �. By Lemma 12.3, whenever some process is 
ipping,the maximum distance between two events of the kind inc; dec; return-
ip, and stop is linear.62



Thus, the maximum time where some process is 
ipping in � (the time complexity of thesecond kind of execution fragments) is at most c01n2(�MaxRound (�)+R) + c2n�id (�)+ c3n2 forsome constants c01; c2, and c3. Combining the two results, the time that elapses in � is at mostd1n2(�MaxRound (�) +R) + d2n�id (�) + d3n2, where d1 = c1 + c01, d2 = c2, and d3 = c3.The next two lemmas state basic properties of the coin 
ipping protocols. Lemma 12.5derives from the fact that all the processes within a coin 
ipping protocol terminate oncethe shared counter reaches an absorbing barrier (K + 1)n or �(K + 1)n. Essentially, oncean absorbing barrier is reached, there are at most other n 
ip events, one for each process.Lemma 12.6 derives from the fact that each inc or dec event must be preceded by a 
ip event.If we start from an arbitrary reachable state, there could be some inc and dec events thatoccur without any preceding 
ip event. However, the number of anomalous inc and dec eventsis at most n, that is, one for each process.Lemma 12.5 Let � = �1 a �2 be a �nite execution of DCF r, and suppose that j�inc(�1) ��dec(�1)j � (K + 1)n. Then �
ip;r(�2) � n.Proof. We consider the case where �inc(�1) � �dec(�1) � (K + 1)n. The other case issymmetric. By Lemma 9.4, each state of �2 satis�es counter � Kn, and thus each non-failingprocess returns 1 once it reads counter (performing the read operation in �2) and checks itsvalue. Each process can 
ip at most once in �2 before starting a new read operation. Thus,the number of 
ip events that occur in �2 is bound by n.Lemma 12.6 Let � be a �nite execution fragment of DCF r that starts from a reachable state.Then, �id ;r(�) � �
ip;r(�) + n.Proof. In fstate(�) there are at most n increment or decrement events that can be performedwithout �rst 
ipping a coin.12.4 Expected Bound on Increment and Decrement EventsIn this section we show an upper bound on the expected number of increment and decrementevents that occur within a probabilistic execution of DAH . First, based on our results onrandom walks (cf. Proposition 3.12), we show in Lemma 12.7 an upper bound on the expectednumber of coin 
ips performed by a coin 
ipper. Then, in Lemma 12.8 we use this result to-gether with our results about linear combinations of complexity measures (cf. Proposition 2.4)to derive an upper bound on the expected number of increment and decrement events per-formed by a coin 
ipper. Then, in Lemma 12.9 we use our compositionality results aboutcomplexity measures (cf. Proposition 2.6) to show that the bound of Lemma 12.8 is preservedby parallel composition. Finally, in Lemma 12.10 we use our result about phases of computa-tions (cf. Proposition 2.5) to combine the result about the expected number of increment and63



decrement events of a coin 
ipper with our knowledge of the maximum expected number ofcoin 
ippers that may be invoked. This allows us to derive an upper bound on the expectedtotal number of increment and decrement events during the consensus protocol.Lemma 12.7 Let H be a probabilistic execution fragment of DCF r that starts from a reachablestate of DCF r, and let � be a full cut of H. Then E�
ip;r [H;�] � (K + 1)2n2 + n.Proof. Let s be the start state of H , and let � be a �nite execution of DCF r with s =lstate(�). Let z = �inc(�) � �dec(�). If jzj � (K + 1)n, then, by Lemma 12.5, for eachq 2 �, �
ip;r(q) � n, and thus E�
ip;r [H;�] � n. If jzj < (K + 1)n, then, by Proposition 3.12,E�Acts;�(K+1)n;(K+1)n;z [H;�] � �z2+ (K + 1)2n2 � (K + 1)2n2, that is, the event denoted by �is satis�ed within expected (K+1)2n2 
ip events, truncating the count whenever an absorbingbarrier �(K+1)n is reached. Once an absorbing barrier is reached, by Lemma 12.5 there are atmost n other 
ip events. Thus, for each state q of H , �
ip;r(q) � �Acts;�(K+1)n;(K+1)n;z(q)+n.By Proposition 2.4, E�
ip;r [H;�] � (K + 1)2n2 + n.Lemma 12.8 Let H be a probabilistic execution fragment of DCF r that starts from a reachablestate of DCF r, and let � be a full cut of H. Then E�id ;r [H;�] � (K + 1)2n2 + 2n.Proof. By Lemma 12.6, for each execution fragment of � of CF r, �id ;r(�) � �
ip;r(�) + n.Then, by Proposition 2.4, E�id;r [H;�] � E�
ip;r [H;�] + n. By Lemma 12.7, E�
ip;r [H;�] �(K + 1)2n2 + n. Thus, E�id;r [H;�] � (K + 1)2n2 + 2n.Lemma 12.9 Let H be a probabilistic execution fragment of DAH that starts from a reachablestate of DAH , and let � be a full cut of H. Then E�id;r [H;�] � (K + 1)2n2 + 2n.Proof. Since HdDCF r is a probabilistic execution fragment of DCF r that starts from areachable state of DCF r, by Lemma 12.8, E�id;r [HdDCF r;�0] � (K + 1)2n2 + 2n for each fullcut �0 of HdDCF r. By Proposition 2.6, since by Lemma 12.1 for each execution fragment �of AH , �id ;r(�) = �id ;r(�dDCF r), E�id ;r [H;�] � (K + 1)2n2 + 2n.Lemma 12.10 Let H be a probabilistic fair execution fragment of DAH with start state s,and let R = s:max-round . Suppose that s is reachable. Let � denote the set of minimal statesof H where a state from D is reached. Then E�id [H;�] = O(Rn2).Proof. If R = 0, then � = fsg, and thus E�id [H;�] = 0 = O(Rn2). For the rest of theproof assume that R > 0. Given a state q of H , we know that �id(q) = �id ;1(q) + � � � +�id ;R(q) + �0(q), where �0(q) =Pr>0 �id ;r+R(q). For each r > 0, let �r be the set of minimalstates q of H such that �MaxRound (q) � r. Then, for each q 2 �r, �id ;r+R(q) = 0, andfor each state q of H and each r > �MaxRound (q), �id ;r+R(q) = 0 (CF r+R does not start64



until some process reaches round r + R). Furthermore, by Lemma 12.9, there is a constantc = (K + 1)2n2 + 2n such that for each probabilistic execution fragment H 0 of M , each fullcut �0 of H 0, and each i > 0, E�id;i [H 0;�0] � c. Therefore, we are in the conditions to applyour result about phases of computation (cf. Proposition 2.5): each round is a phase, and thenumbers of inc and dec events that occur within each round are the complexity measures fortheir corresponding round. Function �MaxRound is the measure of how many phases are started.By Proposition 2.5, E�0[H;�] � cE�MaxRound [H;�]. By Theorem 11.1,E�MaxRound [H;�] is boundby a constant (independent of n). Therefore, E�0 [H;�] = O(n2). Finally, since for each i; H ,and �, E�id;i [H;�] = O(n2), by Proposition 2.4, E�id [H;�] = O(Rn2) + O(n2) = O(Rn2).12.5 Expected Bound on TimeWe are now ready to prove our main result, which is just a pasting together of the resultsobtained so far. Speci�cally, we show that starting from any reachable state of DAH , assum-ing well-timedness, a state from D is reached within expected time O(Rn3), where R is themaximum round of the processes at the starting state. Our result about reaching D impliesdirectly several results about the termination properties of the consensus protocol of Aspnesand Herlihy (cf. Corollary 12.12).Theorem 12.11 Let H be a probabilistic fair, well-timed execution fragment of DAH withstart state s, and let R = s:max-round. Suppose that s is reachable. Let � denote the set ofminimal states of H where a state from D is reached. Then E�t[H;�] = O(Rn3).Proof. If R = 0, then � = fsg, and thus E�t [H;�] = 0 = O(Rn3). If R > 0, then, byLemma 12.4, for each well-timed execution fragment � of DAH ,�t(�) � d1n2(�MaxRound (�) + R) + d2n�id (�) + d3n2:By Proposition 2.4,E�t[H;�] � d1n2E�MaxRound [H;�]+ d1n2R+ d2nE�id [H;�] + d3n2:Thus, by Theorem 11.1 and Lemma 12.10, E�t[H;�] = O(Rn3).Theorem 12.11 gives enough information to derive some time bounds for DAH . Here wegive some examples. The �rst item says that whenever all processes are initialized already allnon-failing processes decide within expected time O(Rn3), where R is the number of roundsthat are started already. That is, the algorithm has to work for an expected cubic time foreach one of the rounds that are started already. The second item says that if we know that atleast one of the initialized processes will not fail, then some process decides within expectedtime O(Rn3). The third item is an instantiation of the �rst item saying that all non-failingprocesses decide within cubic time if at the beginning all processes are initialized and themaximum round number is 1. 65



Corollary 12.12 Let H be a fair, well-timed probabilistic execution fragment of DAH thatstarts from a reachable state s of DAH . The following properties are satis�ed by H.1. If in s all processes are initialized already and R is the maximum round of the processes,then within expected time O(Rn3) all non-failing processes decide.2. If in s there is at least one initialized and non-failed process, the maximum round numberis R, and no new process fails, then within expected time O(Rn3) some process decides.3. If in s all processes are initialized and the maximum round is 1, then within expectedtime O(n3) all non-failing processes decide.Proof. Item 1 follows from Theorem 12.11 and from the fact that at to reach D each processmust either fail or decide; Item 2 follows from the fact that to reach D all active processesmust decide; Item 3 is an instantiation of Item 1.13 Concluding RemarksWe have studied the expected complexity of the randomized consensus algorithm of Aspnesand Herlihy, a highly nontrivial randomized distributed algorithm, and we have developed acollection of mathematical tools that can be used for the analysis of other algorithms as well.Our analysis of the algorithm was driven by two main ideas: decompose the algorithm intosimpler parts and separate probability from nondeterminism. The collection of modularizationtools that we have developed and their successful application show that the analysis of ran-domized distributed algorithms is indeed feasible and not too di�cult. Most of our analysis isessentially the same as the analysis of an ordinary distributed, non-randomized, algorithm.It is useful to observe the kinds of modularization that we have used and where we haveused them. For each kind of modularization we provide a breif description and references tothe places in the paper where the modularization results are stated and used, respectively.� Decomposition of a partial progress statement into more statements: progress is achievedthrough several small easy steps (Proposition 2.8 used in Proposition 8.1).� Derivation of expected complexity bounds from partial progress statements: an in�nitaryproperty is analyzed by means of some �nite form of progress (Theorem 2.9 used inProposition 8.1).� Modularity of probability spaces with respect to parallel composition (Proposition 2.3used in Propositions 8.2 and 8.3).� Coin lemmas and related results to reduce probability to nondeterminism (Theorems 3.5and 3.7 used in Propositions 9.11 and 9.12 and in Lemma 12.7).66



� Transformation of relations between complexity measures into relations between expectedcomplexities. We analyze the complexity of an ordinary execution and we study therelationship between di�erent complexity measures at the level of executions. Then, wetransfer the results to probabilistic executions and expected values. (Proposition 2.4 usedin Lemmas 12.8 and 12.10 and in Theorem 12.11).� Analysis of computations divided into phases (Proposition 2.5 used in Lemma 12.10).� Preservation of expected complexity bounds under parallel composition (Proposition 2.6used in Lemma 12.9).� Re�nement mappings and related compositionality results (Propositions 2.10, 2.11, and 2.14used in Theorem 10.2).If we compare the length of our analysis with the length of the original paper of Aspnes andHerlihy, we observe that the two lengths are similar. The length of our analysis is double thelength of the analysis in [5]; however, our analysis includes a timing analysis of the protocol,which was not present in [5], and it includes all the details, many of which were not consideredin the analysis of [5]. Also, our proof would be considerably shorter if we had not includedthe detailed invariants and their proofs. These details are usually not included in algorithmpapers.Although we think it is acceptable that low-level details of a proof be omitted in an algo-rithm paper, we believe that a high level proof should be rigorous enough to avoid the subtletiesof randomization, which are due mainly to the interplay between probability and nondeter-minism. Intuition often fails when dealing with randomization in a distributed setting. Theresults that we have presented in this paper provide criteria that allow us to avoid becomingconfused by the subtleties of randomization. We have analyzed a complicated algorithm inorder to ensure that our results are applicable to realistic randomized distributed protocols(not just toy examples), and in order to increase the chance that our results will apply to awide range of protocols.References[1] K. Abrahamson. On achieving consensus using a shared memory. In Proceedings of the7th Annual ACM Symposium on Principles of Distributed Computing, 1988.[2] S. Aggarwal. Time optimal self-stabilizing spanning tree algorithms. Technical ReportMIT/LCS/TR-632, MIT Laboratory for Computer Science, 1994. Master's thesis.[3] S. Aggarwal and S. Kutten. Time optimal self stabilizing spanning tree algorithms. InR.K. Shyamasundar, editor, 13th International Conference on Foundations of SoftwareTechnology and Theoretical Computer Science, volume 761 of Lecture Notes in ComputerScience, pages 400{410, Bombay, India., December 1993. Springer-Verlag.67



[4] J. Aspnes. Time- and space-e�cient randomized consensus. Journal of Algorithms,14(3):414{431, May 1993.[5] J. Aspnes and M.P. Herlihy. Fast randomized consensus using shared memory. Journalof Algorithms, 15(1):441{460, September 1990.[6] Hagit Attiya, Danny Dolev, and Nir Shavit. Bounded polynomial randomised consensus.In Piotr Rudnicki, editor, Proceedings of the 8th Annual Symposium on Principles ofDistributed Computing, pages 281{294, Edmonton, AB, Canada, August 1989. ACMPress.[7] C. Dwork, M. Herlihy, S. Plotkin, and O. Waarts. Time-lapse snapshots. Unpublishedmanuscript.[8] W. Feller. An Introduction to Probability Theory and its Applications. Volume 1. JoknWiley & Sons, Inc., 1950.[9] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with afamily of faulty process. Journal of the ACM, 32(2):374{382, April 1985.[10] R. Gawlick, R. Segala, J.F. S�gaard-Andersen, and N.A. Lynch. Liveness in timed anduntimed systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for ComputerScience, November 1993.[11] H. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 ofReal-Time Safety Critical Systems. Elsevier, 1994.[12] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806{811, 1977.[13] D. Lehmann and M. Rabin. On the advantage of free choice: a symmetric and fullydistributed solution to the dining philosophers problem. In Proceedings of the 8th AnnualACM Symposium on Principles of Programming Languages, pages 133{138, January 1981.[14] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.[15] N.A. Lynch, I. Saias, and R. Segala. Proving time bounds for randomized distributed al-gorithms. In Proceedings of the 13th Annual ACM Symposium on Principles of DistributedComputing, Los Angeles, CA, pages 314{323, 1994.[16] N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. InProceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing,pages 137{151, Vancouver, Canada, August 1987. A full version is available as MITTechnical Report MIT/LCS/TR-387.[17] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations { part I: Untimedsystems. Technical Report MIT/LCS/TM-486, MIT Laboratory for Computer Science,May 1993. Also appears as CWI technical report CS-R9313.68



[18] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. DistributedComputing, 1(1):53{72, 1986.[19] A. Pogosyants and R. Segala. Formal veri�cation of timed properties of randomizeddistributed algorithms. In Proceedings of the 14th Annual ACM Symposium on Principlesof Distributed Computing, Ottawa, Ontario, Canada, pages 174{183, August 1995.[20] R. Segala. Modeling and Veri�cation of Randomized Distributed Real-Time Systems. PhDthesis, MIT, Dept. of Electrical Engineering and Computer Science, 1995. Also appearsas technical report MIT/LCS/TR-676.[21] M.Y. Vardi. Automatic veri�cation of probabilistic concurrent �nite-state programs. InProceedings of 26th IEEE Symposium on Foundations of Computer Science, pages 327{338, Portland, OR, 1985.

69


