Competitive Router Scheduling
with Structured Data*

Yishay Mansour' **, Boaz Patt-Shamir? ***, and Dror Rawitz?

L School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
mansour@cs.tau.ac.il
2 School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
{boaz,rawitz}@eng.tau.ac.il

Abstract. We consider the task of transmitting structured information
over bounded-capacity links. Our information model is a stream of basic
units called superpackets that are broken into k packets each. To model
the possible structure and redundancy of the superpackets, we assume
that for each superpacket there is a collection of minimal subsets of
packets whose delivery makes the superpacket useful. This very general
model encompasses, for example, MPEG streams, where one can think of
a group of pictures (GoP) as a superpacket. The fundamental difficulty
is that networks can forward only the primitive packets, but applications
can use only superpackets, and thus if no minimal subset is delivered,
the whole superpacket becomes useless. Our aim is to maximize goodput
(number of useful superpackets) in the face of overloaded communication
links, where we are forced to drop some packets.

Specifically, we assume that an arbitrary stream of packets arrives at a
router with multiple bounded-capacity outgoing links. An on-line algo-
rithm needs to decide, for each superpacket, which outgoing link to use
(all packets of the same superpacket must use the same link) and, in case
of an overload at a link, which packets to drop and which to transmit so
as to maximize goodput. We analyze a simple randomized competitive
algorithm to the general case and provide a nearly matching lower bound
on the competitive ratio of any randomized on-line algorithm.

1 Introduction

Consider a video stream encoded in MPEG-2 [1]. Grossly oversimplifying, the
structure of the stream is as follows. The stream is broken into Groups of Pictures
(GoP), which may last a few minutes each. A GoP consists of a single I-frame,
a few P-frames, and many B-frames. An I-frame is a stand-alone picture that

* Research supported in part by the Next Generation Video Consortium, Israel.

** Supported in part by a grant from the Israel Science Foundation (grant No. 709/09)
and grant No. 2008-321 from the United States-Israel Binational Science Foundation
(BSF), and by Israel Ministry of Science and Technology.

*** Supported in part by the Israel Science Foundation (grant 1372/09) and by Israel
Ministry of Science and Technology.

GoP
¢ redundancy=0

% .redundancy=1/3

- redundancy=0

P-frame
\- redundancy=1/4

B-frames

Fig. 1. A tree representation of a GoP. Gray nodes represent data. A node with redun-
dancy (is deemed useful if no more than a fraction B of its children is non-useful.

requires no other information for decoding; decoding a P-frame requires its pre-
ceding I-frame; and decoding a B-frame requires its preceding “reference frame”
(be it I- or P-frame).? The implication of this structure is that if an I-frame is
lost, then the whole GoP is lost, and if a B-frame is lost, then only a fraction
of a second is lost. But then again, if too many B-frames are lost (where “too
many” is defined subjectively), the GoP should be considered again worthless.
This structure can be modeled by a tree. Figure 1 illustrates a simple example.

The root represents the GoP; if either the I-frame (left child) or the other
data (right subtree) are lost, then the GoP is lost; however, the right subtree
may be considered useful even if one of its children is lost; and similarly, each
of these (depth 2) nodes is useful only if both its P-frame child and at least
3/4 of its B-frames are not lost. While this is not an accurate description of
MPEG, we note that the hierarchical tree structure is very natural and appears
in many other formats (e.g., XML documents [2]), with or without redundancy.
Conceivably, more complex forms of redundancy are also used.

So suppose now that we need to manage a router that delivers multiple video
streams, such that each stream may use any of a number of outgoing links (see
Figure 2). At every step, some packets arrive at the router, and the router needs
to decide which outgoing link is used for each packet, and, in case of an overflow
in that link, which packets to discard. Note that in our example, if we drop an I-
frame from each GoP, then all GoP’s are useless at the receiving ends, even if the
link has delivered all P- and B-frames (this is an instance of a high throughput,
low goodput situation). In this paper we study, from the theoretical viewpoint,
algorithms that decide which packets to drop so as to maximize the goodput of
bounded-capacity links.

To this end, we consider the following abstract model. Senders generate ba-
sic information units, called superpackets, that are broken into packets by the
network protocol at the senders. The router needs to decide which link is used
by each new superpacket: all subsequent packets of that superpacket must use

3 In fact, P-frames depend on the previous reference frame; and B-frames depend on
both their immediate surrounding frames. In addition, MPEG partitions frames into
“slices,” which are transmitted in network packets.

4 N\ (" N\

Sender Receiver

superpacket network | | packets packets| | network |superpacket m
protocol protocol

A A\ J

4 N\ (" N\

Receiver

|| network |superpacket m
protocol
\

J

Sender

superpacket network | |
protocol

(.

m links
(N\ (N N\
Sender Receiver
superpacket network |_L| network |superpacket m
protocol protocol
. \ J

Fig. 2. Basic system setup. Our focus is on the link management algorithm (shaded).
All packets belonging to the same superpacket must use the same link.

the same link.* If the number of packets assigned to a link exceeds its capacity,
the management algorithm needs to decide which packet to drop and which to
forward. To allow for arbitrary structure and redundancy, we assume that each
superpacket is associated with a collection of feasible subsets that is closed under
set inclusion (i.e., if S D S’ and S’ is feasible, then so is S). A superpacket is
considered useful only if the set of its delivered packets is one of its feasible sub-
sets. The goal of the algorithm is to maximize the number useful superpackets
at the receivers.

Our contribution. Following [3, 4], we study the fundamental PRIORITY algo-
rithm for link management, augmented with a simple randomized strategy that
allocates superpackets to links based on the links capacities. Algorithm PRIOR-
ITY assigns to each superpacket a random priority (based only on its weight,
cf. Section 2.2), and in case of overflows, low-priority packets are dropped. This
algorithm enjoys many nice features: in particular let us mention that it is highly
distributed in the sense that it can be employed consistently in multiple loca-
tions without any communication overhead (see [3]). For our context, we note
that the algorithm works without any knowledge of the feasible sets.

Our main result is competitive analysis of this simple algorithm. Specifi-
cally, suppose that at most o packets arrive in a step and that each link can
serve at most one packet per step; suppose further that each superpacket con-
tains k packets. We prove that the algorithm guarantees expected goodput of
Q(opT/(ky/o/m)), where OPT denotes the maximal number of superpackets
that can be delivered in the given input sequence and m is the number of links.
In fact, we prove our result in a more general setting: first, we consider weighted
goodput (i.e., when each superpacket has a different value, and the goal is to
maximize the total value of useful superpackets), where the competitive ratio
is not affected; and second, we consider capacitated links, where each link ¢ has
capacity ¢;. In this case the expected weight of superpackets delivered by our

4 This requirement, referred to as “stickiness” or “persistence” is typical in communi-
cation protocols, e.g. TCP.

algorithm is 2(opT/(k\/0/c)), where ¢ = Y " | ¢;. Notice that the competitive
ratio depends only on the total available bandwidth ¢, regardless of the way it
is broken into links. Also note that the competitive ratio improves linearly with
Ve. Finally, we provide a refined analysis that takes into account a parameter
we define, called the effective redundancy of the input sequence.

We present a lower bound on the competitive ratio for the case of m unit
capacity links without redundancy. Based on [3], we show that in this case,
no randomized on-line algorithm can improve on our results by more than a
polylogarithmic factor.

We show that our results extend to more general models. In some cases, there
may be more than just two values for a superpacket (no value or full value).
Superpackets may be structured so that there are a few “service levels,” with
different values, so that the value of a delivered superpacket is the value of the
highest satisfied service level. We show that our algorithm is competitive in this
model as well. We also show that our upper bound applies to the instantaneous
network model, where we are given a network, a source s and a destination ¢,
and the algorithm needs to choose a path from s to ¢ for each superpacket: all
packets of a superpacket must follow the same path. A conflict between two
superpackets occurs, if the routes of the superpackets intersect, and there exists
a time step in which packets from both arrive. The motivation for this model is
the case where a superpacket is a set of short virtual circuits between s and ¢
over a network of unit-capacity links.

Related work. Buffer overflow management has been studied extensively in
the last decade from the competitive analysis viewpoint (starting with [5,6]:
see [7] for a recent survey). The simplest superpacket model, in which each
superpacket consists of k packets that need all be delivered, was introduced in [8].
Emek at al. [3] consider the basic problem (k-packet superpackets, single link, no
redundancy) under the name Online Set Packing, and introduce the PRIORITY
algorithm (based on Turan’s Theorem [9]). They prove an upper bound on the
competitive ratio of PRIORITY and a lower bound on the competitive ratio of
any on-line algorithm for that problem. In [4], basic redundancy is introduced:
in our terms, there is a constant 0 < § < 1 such that any subset of at least
(1 — B)k packets is feasible (in other words, a super packet is useful if at most
a O-fraction of its packets are lost). A general technique for dealing with buffers
is also introduced in [4].

The offline version of single link management, without redundancy and su-
perpacket structure, is equivalent to the Set Packing problem (SP), where each
superpacket corresponds to a set and each time step corresponds to an element.
SP is as hard as Maximum Independent Set even when all elements are contained
in at most two sets (i.e., o < 2), and therefore cannot be approximated to within
an O(n'~¢)-factor, for any € > 0, where n is the number of sets [10]. Letting 7" de-
note the number of time steps (elements), SP is O(v/T)-approximable, and hard
to approximate within 71/27¢ for any ¢ > 0 [11]. When set size is at most k, SP
is approximable within % + ¢, for any € > 0 [12] and within k—;rl in the weighted
case [13], but known to be hard to approximate to within O(k/ log k)-factor [14].

Paper organization. The remainder of the paper is organized as follows. In
Section 2 we formalize the model and present our algorithm. The analysis of our
algorithm and the lower bound are given in Section 3. Extensions are given in
Section 4.

2 Preliminaries

2.1 Models

Data model. Our basic concept is a superpacket, typically denoted S, which
is comprised of k packets. The complete set of superpackets is denoted C. Each
superpacket S € C is associated with a feasibility collection Fs C 2°. S € Fg is
called a feasible subset of S. We assume that Fg is closed under set inclusion,
or monotone, for any superpacket S, namely that if S € Fg, then S’ € Fg for
any S’ such that S C S’. The case where Fgs = {S}, for every S € S, is referred
to as all-or-nothing. In this case a superpacket is lost if even one of its packets
is dropped.

Each superpacket S € C has a weight w(S) > 0. In the unweighted model,
w(S) =1 for all S € C. Given a set of superpackets C’ C C we define w(C’) dof
> secr w(S). The input is a sequence of packets that arrive online. We assume
that the online algorithm can associate packets with superpackets (e.g., packets
contain their parent superpacket ID in their headers). We stress, however, that
the algorithm has no knowledge on feasibility collections of superpackets. The
system progresses in discrete time steps, where the time horizon is denoted by
T. In each step ¢, a set of o(t) packets arrive. (We assume that no superpacket
has two packets arriving at the same step.) The arrival time of a packet p is
denoted by arr(p). The set of superpackets whose packet arrive at time ¢ is
denoted C(t), i.e., C(t) = {S € C : Ip € S s.t. arr(p) = t}. The burst size at
time t is denoted o(t) = |{p : arr(p) = t}|; the weighted burst size is denoted

os(t) = Y sec w(S)-

System model. In the single-link model, we have an integer capacity ¢ > 1, and
the algorithm selects, at each time step t, ¢ packets to forward. All other packets
that arrived at time ¢ are lost (possibly causing the loss of their superpackets).
In the multiple links model, there are m links with capacities ¢y, ..., ¢y, where
c; > 1fori=1,...,m. We denote ¢ = 221 ¢;. The algorithm selects a single
link for each superpacket (for all its packets), and then, in each time step, the
algorithm does, for each link, the single link task: select which packets will be
forwarded, subject to that link capacity constraint.

Given an algorithm ALG and an instance 7, we denote the set of completed
superpackets by ALG(Z) (or simply by ALG), and call it the goodput of the al-
gorithm. If the algorithm is randomized, its goodput for a given instance is a
random variable, and we shall refer to its expected value. We measure the per-
formance of algorithms using competitive analysis: The competitive ratio of an
algorithm is the supremum, over all instances Z, of w(OPT(Z))/w(ALG(Z)), where
w(OPT(Z)) is the maximum possible goodput for Z.

Additional notation. We define for every set of packets S,

N[S| ¥ (S ec:Tpe S, p €8 st arr(p) = arr(p)}
and N () def N[S]\{S}. Notice that N(S) = N[S]if S & C. For a finite sequence
of values 1, ..., x,, we denote T = % Yoy @i and Tyax = max {21, ..., 2, }. We

use the notation Ty = % S Ty

2.2 Algorithm
The following algorithm was proposed in [3] for the Online Set Packing problem.

Algorithm 1 : PRIORITY
1: For each superpacket S with weight w(S): select a priority r(S) € [0, 1] indepen-
dently at random by the cumulative distribution function Pr[r(S) < z] = z*%).
2: for all time step ¢t do
3 Receive o(t) packets
4: Deliver the ¢ packets whose superpackets have the largest priority.
5: end for

Note that, if w(S) is integral, the priority r(S) € [0,1] of a superpacket S is
distributed like the maximum of w(S) independent U0, 1] random variables.

For our case, where we have m links, we use the following simple link alloca-
tion algorithm. Each link is then managed by its own replica of PRIORITY.

Algorithm 2 : PLINK

1: Whenever a packet p from superpacket S arrives:

2: if p is the first packet from S then

3: set £(S) € {1,...,m} randomly by Pr[{(S) = i] = %

4: end if > else £(S) was set previously
5: send p to link £(S) (managed by Algorithm PRIORITY,(g))

3 Multiple Capacitated Links

In this section we study the case where weighted superpackets arrive at a
server with multiple links. We show that the competitive ratio of PLINK is
O(k+/aog/c - 75). (Recall that ¢ is the total capacity of all links.) We also present
an almost matching lower bound for the all-or-nothing case with unit capacity
links that is based on the lower bound for single unit capacity link from [3].
Our lower bound applies even to unweighted input sequences. We conclude the
section with a discussion on the difference between the effects of many links and
of large capacity.

3.1 Analysis of Algorithm PLink

We start by stating lower bounds on the survival probability of a superpacket S
under PRIORITY, in the single link case. (We abuse notation by using PRIORITY
to denote the set of surviving superpackets.) Note that the bounds hold for
arbitrary feasible subsets of S. (Similar results appear in [3], but assuming that
the only feasible set is S itself). Due to lack of space, the proofs are omitted.

Lemma 1. Let ¢ = 1. For any superpacket S € C and for any feasible subset S

w(S)
Of S we have PI’[S S PRIORITY] Z m

Lemma 2. Let ¢ > 1. For any superpacket S € C and for any feasible subset S
cw(S)
of S we have Pr[S € PRIORITY] > mln{m, 1} .

We now extend the lemmas to the multiple links case. We abuse notation
once again by using PLINK to denote the set of surviving superpackets.

Lemma 3. For any S € C and for any feasible subset S of S we have

. w(S)
2w(N(S)) +c-w(S)

Pr[S € PLINK] >

=10

Proof. Let £(S) denote the link that was selected for S by PLINK. Also let
N;(S) = {8 € N(S) : £(S") = i}. By the independence of the random choices
we get that E[w(N;(S))] = < - w(N(S)), and by Markov’s Inequality we have
that Pr [w(N;(S)) > 2= - w(N(S))] < 1.

According to Lemmas 1 and 2 it follows that

(S)=% and
[SEPLINK| N(S);<2C w(N(S‘)):| > —mln{chN(S ,1}
‘ - (S)
> L 1
2 2c;w N(S te ’LU(S)
1 cw(1
= —min —
2 2w (N (S) —i—cw(S)7
L)
2 2w(N(9)) + cw(S)
Hence
Pr[S € PLINK | £(S) =i] >Pr [w(Nl(S)) < w | £(S) = Z] .

Pr [S € PLINK |
L. w(s)
4 2w(N(S)) + cw(S)

£(S)=iand
w(N(8))< 2

Therefore,

Pr(S € PLing] = > & .Pr[S € PLINK | £(S) = i] >
C

i

=10
[\
=3
=
2
+

Q
=4
2

The following lemma states the property that allows us to bound the com-
petitive ratio of PLINK.

Lemma 4. Let C' C C be a collection of superpackets, and for every S € C'
let S C S be a feasible subset of S. Then, either (i) E[w(PLINK)] > wl&) or

8 J
(it) Blw(PLINK)] > 5 = oy

Proof. By linearity of expectation we have

E[w(PLINK)] = Z w(S) - Pr[S € PLINK]

Sec
w(S) c-w(S)
2 S%C: 4 2w(N(S)) + cw(9)
_ w(S)
4= 2w(N(S)) + cw(S)
c w(C)?

R ST)

where the first inequality follows from Lemma 3 and the second is due to the
following implication of the Cauchy-Schwarz Inequality: for any positive reals

. a? (Z'ai)2
a1y --,0n and by, ..., by, it holds that Zib—: e T

If e w(C') > 23 geer w(N(S)), then Efw(PLINK)] > § - g2C)L — (€D ang
w(cl)2

16 Tseer wN(E) -

otherwise, E[w(PLINK)] > O

Lemmas 5 and 6 below apply Lemma 4 with two different collections C’.

Lemma 5. Either Elw(PLINK)] > @ , or E[w(PLINK)] > w(opr)®

Proof. For each superpacket S € opT fix S to be the subset of S which
contains the packets delivered by opPT. Clearly S is a feasible subset of S.
Hence, by Lemma 4 with ¢’ = OPT we have that either E[w(PLINK)] >

w(OPT) c w(opT)?
=5 or Elw(PLINK)] > 6o, w(NE) - In the latter case, observe that

each superpacket in C intersects at most ck superpackets in OpPT. Hence,

Y seor wN(S)) < chw(C). It follows that Efw(PLINK)] > 100 0

Lemma 6. PEither E[w(PLINK)] > <

ol =
‘Q
[

cw(C)?
, or E[w(PLINK)] > 6T oes -

Proof. Fix a superpacket S and let S = S. By Lemma 4 with ¢’ = C we have

that either E[w(PLINK)] > @, or E[w(PLINK)] > %% . Summing

over the superpackets we get that
Y w(N(S)) < Y o(t)os(t) = T-705 , (1)
Sec t
and the lemma follows. O
Combining Lemmas 5 and 6 we obtain our main result.

o0g
cog

Theorem 1. The competitive ratio of PLINK is at most 16k

Proof. If either w(PLINK) > w(0PT)/8 or w(PLINK) > w(C)/8, then we are
done. Otherwise, we have that

w(opPT)? cw(C)?
Elw(PL > — d Elw(PL > .
[w(PLINK)] > 16kw(C) a o (PLINK)] > 16T - cog
The maximum of these bounds is minimized when w(0OPT) = ;Iff“;%)% , and

therefore, for any instance

E[w(PRIORITY)] > w(OPT)~1—16 %.
T - 503

Finally, since T- 75 =), 04(t) < > geck-w(S) = k-w(C), it follows that

1 c 05 1 c-Og

> R = R
E[(PRIORITY)] > w(OPT) 16\ ¥%o0s 16k \| 7o

O

Note that the upper bound we provide in Theorem 1 does not depend on the
number of links, but rather on the input sequence and on the total capacity of
the links.

Corollary 1. The competitive ratio of PLINK is at most 16k+/0max/c-

Proof. Follows from the fact that gog < 73 - opax. O

3.2 A Lower Bound

We now present a lower bound for the multiple links case. It uses the simple
scenario of unweighted, unit-capacity per link (i.e., m = ¢) instances, and thus
it applies to more general setting a fortiori. However, we assume that the only
feasible subset of a superpacket is all packets, i.e., no redundancy is considered.

Our lower bound uses, as a black box, the following lower bound from [3] for
Online Set Packing (OSP).

Theorem 2 ([3]). For any randomized online algorithm, there exists an infinite
Jamily of unweighted, unit-capacity instances of OSP for which the competitive

ratio is 2(k/Omax)-

Next building on Theorem 2 we obtain a lower bound for the multiple unca-
pacitated links case.

Theorem 3. For any online randomized algorithm there exists an infinite fam-
ily of unweighted, instances for which, under the m unit capacity link model, the

competitive ratio is 2(ky/Omax/C).

Proof. Let 7' be the instance whose existence is promised by Theorem 2. Define
an instance Z where each superpacket in Z’ is replicated ¢ times. (Note that
¢ = m in this case.) Clearly, |OPT(Z)| > ¢ |oPT(Z")], since it is possible to route
the 7th copy of each set to link i. We show that given any randomized online
algorithm ALG for the multiple links case, one can obtain an algorithm ALG’ for
the single link case such that E[|ALG’|] > E[|ALG|]/c. Hence, |OPT|/E[|ALG|] >
|oPT’|/E[|ALG'|], and the theorem follows.

Given an algorithm ALG, define ALG; to be the set of completed superpackets
that were routed to link 7. Let £ be the link that maximizes performance, i.e., £ =
argmax; E[|ALG;|]. Clearly, E[|ALG;|] > E[|aLG]|]/c. We construct an algorithm
ALG' for osP that simulates link £. More specifically, given an input sequence,
ALG' makes m copies of each superpacket, and executes ALG on the new instance.
Let ALG¢(t) be the set of superpackets whose packets were transmitted by ALG
on link ¢ at time ¢. If S; € ALG(t), where S7 is a copy of S, then ALG’ transmits a
corresponding packet from S, namely ALG'(t) = {S : 3y, 87 ¢ ALG[(t)}. Since
no two copies of S can be completed by ALG, it follows that |ALG'| > |ALGy|.
Hence, E[|ALG'|] > E[|ALG|]/¢, as required. O

We note that our lower bound shows that our upper bound is essentially
tight—for the case of unit capacity links.

3.3 The Effect of Many Links and Large Capacity

As we mentioned above, it is interesting to note that the competitive ratio of
Algorithm PLINK depends only on the total available bandwidth, regardless of
how it is partitioned among the links. However, the lower bound of Theorem 3 is
proved specifically for the case of unit capacity links. It is natural to ask whether
link capacity plays an important role in algorithm performance. The answer is
positive, as demonstrated by the following scenario. Consider two models, one
with m unit-capacity links and another with a single link with capacity m. Sup-
pose that there are n > m superpackets without any redundancy, and let the
arrival sequence consists of all possible (:fl) bursts of size m in arbitrary order. In
the m unit-capacity links model, only m superpackets can be completely deliv-
ered, because each channel can deliver only one complete superpacket. However,
in the single-link capacity m model, all superpackets are delivered. This means
that the optimum may change dramatically when links are consolidated.

We conclude this section with two observations about the effect of sufficiently
many unit capacity links. The proofs are omitted.

First, we consider the effect on the optimal solution.
Observation 7. If m > k(omax — 1), then OPT = C.

Next, we consider the effect on the competitive ratio,

Theorem 4. Suppose that ALG is an algorithm that assigns superpackets to
links uniformly at random, and consider unweighted instances without redun-

dancy. Then if m > ké;'; then E[|ALG|] > (1 — €)|oPT|.

We note that since

Al

< Omax, the same result holds for m > k"%

4 Extensions

In this section we present a refinement of the analysis of PLINK, and then
we extend the analysis to more general settings. More specifically, we provide
a refined analysis of PLINK that takes into account the effective redundancy
of the input sequence (Section 4.1). We show that PLINK can be used in the
case where there are several feasibility collections for each superpacket, and each
collection is associated with a different service level (Section 4.2). We also extend
our results to the instantaneous network model (Section 4.3).

4.1 Effective Redundancy

To refine the analysis of Algorithm PLINK, we defined the following concepts.
The burstiness of a superpacket S is defined as B(S) = >_ g og(arr(p)). The

minimal burstiness of S is Buyin(S) = mingcz, B(S). Let ps = Bumin(S)/B(S)
and p = maxgec ps. p is called the effective redundancy of the input sequence.
We now refine Lemma 6 to include p as follows.

. w(C cw(C)?
Lemma 8. Either Ejw(PLINK)] > %, or E[w(PLINK)] > ﬁ.

Proof. We follow the proof of Lemma 6, but we take S to be a feasible subset of

S with minimal burstiness, namely such that B(S) = Buin(S5). Equation (1) is
replaced with D ¢ w(N(S)) < D gee B(S) <D geepB(S) =p-T-50g . 0O

We can therefore conclude that in this case we have an improvement of |/p
factor over Theorem 1:

Theorem 5. The competitive ratio of PLINK is at most 16k /225 .

cog

We note that p decreases if bursts are roughly the same weight or if there
are no packets whose delivery is essential to the survival of superpackets.

To motivate the parameter p, consider the case where superpackets are hi-
erarchically structured. Specifically, we assume that the feasible collection of a
superpacket S is defined by a structure tree Ts, whose leaves are the packets,
and whose root is identified with the superpacket. A structure tree is a rooted
tree with a redundancy parameter assigned to each node, subject to the following
restriction for internal nodes: Let d(v) denote the number of children of a node
v. The redundancy parameter of a node v is 35 € {0, i, ce d";lzl }. (Assume
w.lo.g. that 85 = 0 if d(v) < 1.) The interpretation of redundancy is defined
recursively as follows. A subset S’ of the leaves of a structure tree T is said to
be feasible if either of the following conditions hold: (i) S’ contains one packet
and T contains one leaf; or (ii) Let v1,...,vg be the children of the root of T,
with structure trees 17, ..., Ty, respectively. Let S7,..., S be the subsets of S’
corresponding to T1, ..., Ty, resp. Then S’ is feasible if at least (1 — 37)d of the

subsets S7, ..., S/ are feasible.
Consider a superpacket S with its structure tree T's. We define the redundancy
of a leaf v in Ts as p, def Hf:o(l — B35), where v = vg,v1,...,v, = r is the

path from v to the root r. The redundancy of the superpacket S is defined as

ps def MAaXy is a leaf Pv- 1NOtice that pg depends on Ts and on 3%, but not on the

input sequence.
Observation 9. pg < pg for every superpacket S € C.

It follows that we can replace p with p = maxg pg in Theorem 5. We note
that pg = 1 in the GoP example (see Figure 1), since the I-frame is contained
in any feasible set. However, the competitive ratio will improve, if we send the
I-frame twice.

4.2 Multiple Service Levels

In the model considered in Section 3, each superpacket S has a single weight
(value) w(S) that is collected if a feasible subset of S is delivered. In some
cases, there may be more than just two values for the superpacket (no value
or full value). We consider this case here. Intuitively, we consider superpackets
structured so that there are a few “service levels,” with different values, so that
the value of a delivered superpacket is the value of the highest satisfied service
level. We show that Algorithm PLINK is competitive in this case as well.

Formally, we assume that with each superpacket ¢ there are ¢ feasibility
collections]—'é D .7-'% e D fg and a weight w(S). There are also ¢ payment
levels 0 < a; < --- < ay <1, such that the profit obtained from a superpacket
S with delivered packets S’ is a; - w(S), where i is the maximal service level ¢
such that S" C Fi.

Let w;(S) ef w(S)(a; — a;—1), for i = 1,...,¢, namely w;(S) stands for
the marginal profit obtained by going from service level i — 1 to service level i.

Let opT; denote the optimal value with respect to the instance with the weight
function w;.

Lemma 10. Ezecuting Algorithm PLINK with the original weights results in
E[w; (PLINK)] > 16ky/ZZ - w;(OPT;) for a service level i, where p; is defined by

cog

the feasible collections for service level i.

Proof. Since w; is proportional to the original weight function w, for every 7, it
follows that the analysis of Algorithm PLINK continues to hold with respect to
w;, even if the random priorities are chosen according to w (see Lemmas 1-3).

Therefore E[w;(PLINK)| > 16k+\/50;5/co;5-w; (OPT;) = 16k+/T0g/cog-w; (OPT;).

O
Theorem 6. The competitive ratio of PLINK is at most 16k g‘_: .
Proof. By linearity of expectation and Observation 10 we have that
E[w(PLINK)] = > Efw;(PLINK)]
705
> 16k, — - w;(OPT;
2k lor)
703 703
> 16k, — ;(OPT = 16k, — -w(oPT) .
> 16k /2 S wi(or) 22 wor)
O

4.3 Instantaneous Network Model

We can extend our results to the following scenario we call the instantaneous
network model. In this model we are given a graph with unit capacity edges and
two distinguished nodes, a source s and a destination ¢, and the algorithm needs
to choose a path from s to ¢ for each superpacket: all packets of a superpacket
must follow the same path. A conflict between superpackets S and S’ occurs if
the routes of S and S’ intersect, and there exists a time step in which packets
from both S and S’ arrive.

We observe that the instantaneous network model can be reduced to the unit
capacity multiple links model.

Lemma 11. There exists a reduction from the instantaneous network model to
the unit capacity multiple links model.

Proof. Consider any feasible solution. For each superpacket S, let p(S) be the
path from s to ¢t that is used for S by the solution. Let C' = {ey,...,es} be
a minimum s,¢-cut in the network, and for each superpacket S, let e(S) be
some edge in C' that is contained in p(S), namely e(S) € C N p(S). Define

Ci = {5 :e(S) =e;}. Clearly, U;,C; = C. Let pu,...,ps be f simple edge disjoint
paths from s to t, where e; € p;. We reassign superpackets to paths as follows:
p'(S) = p; if e(S) = e;, namely if S € C;. Since the superpackets in C; intersect
at e; using p, no new conflict is introduced by the new assignment p’. O

It follows that

Theorem 7. There exists a randomized algorithm for the instantaneous network

model whose competitive ratio is at most 16k g .

Theorem 8. For any online randomized algorithm for the instantaneous net-
work model there exists an infinite family of unweighted, instances for which the

competitive ratio is 2(kv/omax /).

References

1. International Organization for Standardization: MPEG-2 standard (2000)
ISO/IEC 13818-2:2000.

2. World Wide Web Consortium: Extensible markup language (XML) 1.0. W3C
Recommendation (November 2008) http://www.w3.org/TR/REC-xml/ .

3. Emek, Y., Halldérsson, M.M., Mansour, Y., Patt-Shamir, B., Radhakrishnan, J.,
Rawitz, D.: Online set packing and competitive scheduling of multi-part tasks. In:
29th Annual ACM Symposium on Principles of Distributed Computing. (2010)

4. Mansour, Y., Patt-Shamir, B., Rawitz, D.: Overflow management with multipart
packets. In: IEEE INFOCOM. (2011)

5. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-
time streams. In: 19th Annual ACM Symposium on Principles of Distributed
Computing. (2000) 21-30

6. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. In: 33rd Annual ACM Sympo-
sium on Theory of Computing. (2001) 520-529

7. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41(1) (2010) 100-128

8. Kesselman, A., Patt-Shamir, B., Scalosub, G.: Competitive buffer management
with packet dependencies. In: 23rd IPDPS. (2009) 1-12

9. Alon, N.; Spencer, J.H.: The Probabilistic Method. 3rd edn. Wiley Interscience
(2008)

10. Hastad, J.: Clique is hard to approximate within n'~¢. Acta Mathematica 182(1)
(1999) 105-142

11. Halldérsson, M.M., Kratochvil, J., Telle, J.A.: Independent sets with domination
constraints. Discrete Applied Mathematics 99(1-3) (2000) 39-54

12. Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM J. Discrete Math. 2(1) (1989) 68-72

13. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. Nord. J. Comput. 7(3) (2000) 178-184

14. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-
dimensional matching. In: 6th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization Problems. Volume 2764 of LNCS. (2003)
83-97

