
Recommender Systems With Non-Binary Grades

Yossi Azar
∗

School of Computer Science
Tel Aviv University

Tel Aviv 69978
Israel

azar@tau.ac.il

Aviv Nisgav
School of Electrical

Engineering
Tel Aviv University

Tel Aviv 69978, Israel
avivns@eng.tau.ac.il

Boaz Patt-Shamir
†

School of Electrical
Engineering

Tel Aviv University
Tel Aviv 69978, Israel

boaz@eng.tau.ac.il

ABSTRACT
We consider the interactive model of recommender systems,
in which users are asked about just a few of their prefer-
ences, and in return the system outputs an approximation
of all their preferences. The measure of performance is the
probe complexity of the algorithm, defined to be the maximal
number of answers any user should provide (probe complex-
ity typically depends inversely on the number of users with
similar preferences and on the quality of the desired approx-
imation). Previous interactive recommendation algorithms
assume that user preferences are binary, meaning that each
object is either “liked” or “disliked” by each user. In this pa-
per we consider the general case in which users may have a
more refined scale of preference, namely more than two pos-
sible grades. We show how to reduce the non-binary case to
the binary one, proving the following results. For discrete
grades with s possible values, we give a simple deterministic
reduction that preserves the approximation properties of the
binary algorithm at the cost of increasing probe complexity
by factor s. Our main result is for the general case, where
we assume that user grades are arbitrary real numbers. For
this case we present an algorithm that preserves the approx-
imation properties of the binary algorithm while incurring
only polylogarithmic overhead.

1. INTRODUCTION
Arguably, helping people identify objects they may desire

has always been a central part of civilization, but recently,
with the advent of the so-called “information age” it has
taken new forms. On one hand, many more objects are avail-

∗Supported in part by the Israel Science Foundation (grant
No. 1404/10).
†Supported in part by the Israel Science Foundation (grant
1372/09) and by Israel Ministry of Science and Technology.
Research partly done while visiting MIT CSAIL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

able (because many objects are digital and can be obtained
by a click of a button), and on the other hand, sophisticated
algorithms can provide the users with relatively-intelligent
advices when seeking something, where typical goals may
be movies to watch, interesting articles to read, authorita-
tive web pages, good restaurants, similar users in a social
network etc.

One of the main ways to find such objects is a recom-
mender system, and in particular collaborative filtering (see,
e.g., [14, 15] for some early work). The basic idea in collab-
orative filtering is that the system collects data about user
preferences, and tries to tailor individual recommendation
to each user based past choices of that user and the choices
of other users.

Much of the current research in collaborative filtering con-
siders the following model. There is a large dataset that
contains all past choices of users (be it purchase history,
or, say, movie grades), and the goal is to predict the way a
user would grade an object she did not examine yet.1 The
problem with this approach is that it ignores the existence of
feedback in the model: Assuming that the recommender sys-
tem indeed affects user choices, the dataset is biased toward
objects recommended by the system, and does not reflect the
“true” preference of the users. It follows that analytically,
such a system makes sense only for a single recommendation
to each user (this way there’s no feedback), or under the im-
plicit assumption that users actually choose objects based on
some external recommendations (making the feedback effect
weak enough to ignore). Obviously, these assumptions are
unsatisfactory in most cases.

This gap is bridged by the interactive recommender sys-
tem model [7, 4]. In this model, it is assumed that the
system can observe the user’s reaction to recommendations
and act on it. More specifically, the model is that the system
proposes an object to the user, and the user, in response, in-
forms the system (perhaps implicitly) of her grade for that
object. The system uses this input when making future rec-
ommendations. It is usually assumed that the system starts
out with no knowledge at all about user grades. (Note that
in this case, the system is more likely to propose controver-
sial objects to the user at the beginning, because the way
users grade them conveys more information.)

1It may be interesting to note that in the Netflix Challenge
[6], the algorithm is asked to predict the grade users have
already gave to some objects.

The model. Assume that there is a set of n users and a
set of m objects, and that each user has a grade for each
object. The grades are initially unknown, and the goal is
to find them, by means of asking users for their grades for
certain objects (a.k.a. “probing”). The performance mea-
sure we are interested in is the probe complexity, defined as
the maximal number of grades any user is asked to report.
The strongest possible goal for a recommender algorithm is
to reconstruct all user preferences. Obviously, reconstruct-
ing preferences of an esoteric user may require many more
probes than reconstructing the preferences shared by many
users. We therefore introduce two parameters, 0 < α ≤ 1
and D ≥ 0 and assume that the following holds: For each
user u there is a set of αn other users whose preferences are
at most distance D away from the preferences of u, under
some appropriate metric. It is not hard to see that in order
to reconstruct user preferences to within distance D, users
need to examine Ω(m/αn) objects on average: Intuitively,
the αn similar users need to examine all m objects between
them.
Previous work. The goal of the algorithms presented in
[7, 4] is to find a single “good object” for the users. Since
being a “good” object is a binary predicate, these algorithms
effectively assume binary grades. In [2], full preference re-
construction algorithms are presented for arbitrary grades,
but the algorithms are applicable only under the assump-
tion that D = 0, namely reconstruction is guaranteed to
work only if αn users share exactly the same preferences. A
general reconstruction result is presented in [1], where any
0 ≤ D ≤ n/ logn is allowed. However, the latter algorithm
relies strongly on the assumption that preference grades are
binary. The metric used in [1] is the Hamming distance,
namely the distance between two users is the number of
objects on which their grades differ. An improved recon-
struction algorithm is presented [8], where the presence of
some Byzantine users can be tolerated.
Our Contribution. In this paper we extend this line of
work by considering real-valued grades (normalized to the
range [0, 1]). The metric we use to measure distance between
preference vectors is L1, i.e., the distance between two users
is the sum, over all objects, of difference in their grades.

Our algorithms use algorithms for the binary model as a
black box, so the main contribution of the paper is showing
how to reduce the continuous-scale grades recommendation
model to the binary one. Let us note upfront that simple dis-
cretization approaches do not work. For example, suppose
we round each grade to 0 or 1 (i.e., round(x) =

⌊
x+ 1

2

⌋
),

and apply a binary algorithm to the rounded grades. Such
a rounding performs miserably in the case of a cluster of αn
users whose preferences have small diameter D, but all their
grades are uniformly distributed around 1

2
. Intuitively, the

rounding splits this tight cluster into many sets, and places
them very far from each other. More precisely, consider the
possible parameters α and D to be supplied to the binary
algorithm: If we insist on keeping all αn users as a clus-
ter, then the binary algorithm must use distance parameter
Ω(m), and if we insist on keeping D as the distance parame-
ter, the binary algorithm must use α/2m−D as the number of
neighbors. Both alternatives give us trivial parameters, be-

cause the distance can never be greater than m, and α ≥ 1/n
always. It is easy to see that any rounding threshold will
suffer from the same problem.

Thus, the main technical tool we introduce in this paper
is a way to do the rounding while increasing D and decreas-
ing α by only a constant factor, and increasing the probe
complexity of the underlying binary algorithm by only poly-
logarithmic factor. Roughly speaking, we show the follow-
ing result. Suppose that for each user there are at least αn
users whose preferences are at most D away, where D > ε for
some constant ε > 0 (the case of D = 0 is much simpler: see
[2]). Then the preferences of all users can be reconstructed,
with high probability, to within O(D), using O(m

αn
log9/2 n)

probes per user. (Note that the m
αn

factor is unavoidable: if
αn users agree on m − D objects, then each of the m − D
objects must be probed by at least one of the αn similar
users.) The precise statement is slightly more involved: See
Theorem 4.1.

As an intermediate output, our algorithm produces esti-
mates of “inter-user distances,” i.e., each user can identify
(approximately) what is her distance from any other user
(Theorem 4.7). We believe that this result may be of inde-
pendent interest, say in the context of social networks [12].

Another result we present is a linear-reduction algorithm
for multiple evenly-spaced discrete grades (Theorem 3.1).
In this case, to handle s+ 1 possible grades, the cost of the
algorithm grows by a factor s, compared to the cost of a
binary algorithm. From the theoretical viewpoint the lin-
ear reduction is very simple. However, we include it here
because in many practical situations the grades are discrete
and there are only a few of them, in which case the linear
reduction is more efficient than the algorithm for the general
case. More formally, assuming m = Θ(n), the linear reduc-
tion has better probe complexity than the general algorithm
if the number of grades s satisfies s ≤ logn/D.
Related Work. Our model is closely related to models of
recommender systems [5, 7, 4], in which the users grades
are structured as a user-product matrix where each entry
is a user opinion on an object and the goal is to produce
an estimate of this matrix. Some variants of recommender
systems assume partial information about the matrix, which
is presented as known entries, and the task of the algorithm
is to predict unknown entries based on the given data. Other
variants assume that all entries are unknown, and the task
of the algorithm is to instruct the users which products to
try (thereby revealing some entries of the matrix) so that the
algorithm can recommend a good product more effectively.

In the former model, where a partial matrix is given, it
is common to assume a linear generative model for user’s
opinion vectors and apply algebraic techniques such as prin-
cipal component analysis [9] or singular value decomposition
[16]. Papadimitriou et al. [13] and Azar et al. [5] rigor-
ously prove conditions under which SVD is effective. Other
generative user models that were considered include simple
Markov chain models [10, 11], where users randomly select
their “type,” and each type is a probability distribution over
the objects.

Drineas et al. [7] were the first to propose a competitive
model, where the algorithm directs the users which products

Non-Binary Algorithm

BIN
(binary algorithm)

virtual objects

BIN
probes

real objects

actual
probes

roundingbinary
output

Non-
binary
output

Figure 1: Framework for reducing real value algorithms to binary value algorithms

to try and the results of the tries are fed back to the algo-
rithm. In [4] it was shown that in this model, a user sharing
its preference with at least α fraction of the users (D = 0 in
our terms), can find a product he likes in O

(⌈
m
n

⌉
logn/α

)
tries. Later, in the same model Awerbuch et al. [2] recon-
struct the users preference for all objects with similar probe
complexity and show this is a lower bound.

In case users grade objects in a binary fashion (e.g. “like”
or “dislike”) Alon et al. [1] present an algorithm where user
preference vectors are computed approximately using similar
users in a competitive way. In that algorithm, if for every
user there is a set of αn other users whose preferences are
at most Hamming-distance log(n) away, then the number of
queries by each user is O

(⌈
m
n

⌉
log3.5 n/α

)
.

Awerbuch et al. [3] study recommendations algorithms in
an asynchronous model, where an adversarial (oblivious)
schedule determines which user will make the next probe,
and the algorithm may only say which object should that
user probe.
Organization. In Section 2 we formalize the model, define
some notation and present the overall framework. In Section
3 we present a reduction of the discrete model. In Section 4
we present our main result, an algorithm for the continuous
model.

2. PRELIMINARIES
Basic concepts and notation. There are n users and m
objects. Each user has a grade for each object (the grades
are initially unknown). In the discrete case, there are s+ 1
grades, assumed to be the set

{
0, 1

s
, 2
s
, . . . , 1

}
. In the con-

tinuous case, grades are real numbers in the interval [0, 1].
We sometimes refer to the complete set of user grades as
the preference matrix A, of dimension n×m. Aij is the
grade of user i to object j, and row i, denoted Ai, is called
user i’s preference vector. The distance between two pref-
erence vectors Ai and Ai′ is the L1 norm of their differ-

ence, i.e., dist(Ai, Ai′)
def
=
∑m
j=1 |Aij − Ai′j | . A matrix

An×m is called (α,D)-similar if for each row Ai it holds
that | {i′ : dist(Ai, Ai′) ≤ D} | ≥ αn, i.e., there are at least
αn row vectors whose distance from Ai is at most D.
The recommendation problem statement. The input
is an (α,D)-similar matrix An×m, of which only α, D, and
the dimensions n and m are initially known. The output is a
matrix Ân×m, which is an estimate of A. The approximation

factor of the output is max
{

dist(Ai,Âi)
D

: 1 ≤ i ≤ n
}

.

Computational model. Algorithms proceed in synchronous
rounds. In each round, each user is asked to reveal its grade
for at most one object (a “probe”). (In a distributed model,
the results of probes are published on a public “billboard,”

i.e., they are available to all users.) The maximal number
of grades any user provides is the probe complexity of the
algorithm. Trivially, the recommendation problem can be
solved without errors in probe complexity m. It is also not
difficult to see that Ω(m/αn) probe complexity is necessary
to produce O(1)-approximation of (α,D)-similar matrix.
Binary Algorithms. We shall assume that we have at our
disposal an algorithm denoted bin that solves the recommen-
dation problem when all grades are binary. More precisely,
when run on an (α,D)-similar binary matrix of dimension
n × m, bin produces, at the cost of Tbin(n,m, α,D) probe
complexity, a γbin-approximation, for some constant γbin ≥
0. The binary algorithms we use are typically randomized;
we assume that they are high-probability Monte Carlo al-
gorithms, namely they succeed with probability 1− n−c for
any desired constant c. Since in our algorithms, the number
of invocations of bin is always polynomial in n, we may ap-
ply the Union Bound to deduce that w.h.p., all invocations
of bin are successful.

Let us now explain how invocations of bin are carried out.
The problem is that we cannot apply bin directly when pref-
erences are not binary. We use the following natural on-line
reduction framework (see Figure 1). The binary algorithm
is presented with the same set of users, but with different
set of objects which we call virtual objects, where each vir-
tual object corresponds to exactly one real object (but one
real object may correspond to none or several virtual ob-
jects). Whenever bin asks user i to probe virtual object
j, the non-binary algorithm asks user i to probe the real
object corresponding to j, and presents bin with a binary
value derived from the real grade by applying some rounding
function that depends on the non-binary algorithm.

Our algorithms solve the continuous-scale problem using
a black-box implementation of a binary algorithm. For con-
creteness, we use the following result from [1].

Theorem 2.1. Given an (α, logn)-similar n ×m binary
matrix B, algorithm Small Radius from [1] reconstructs B

with probe complexity O
(

1
α

⌈
m
n

⌉
log7/2 n

)
and approxima-

tion factor O(1).

3. THE DISCRETE CASE: A LINEAR RE-
DUCTION

In this section we present an algorithm for the discrete
preference case, where there are s+ 1 possible grades. This
reduction is very simple, but it might be practical for small
values of s, and it serves as a gentle warm-up to our main
result for the continuous model.

We assume that the grades are the set S =
{

0, 1
s
, 2
s
, . . . , 1

}
,

where s = |S| − 1. The algorithm works as follows (pseudo-

Algorithm 1 discrete reconst(An×m, α,D)

(1) Define matrix Bn×sm for i ∈ [1, n], j ∈ [1,m] and

k ∈ [1, s] by Bi,(j−1)s+k =

{
1 If Ai,j >

k−1
s

0 Otherwise

(2) Invoke bin(B,α, sD), and let B̂ denote its output.

(3) Find li,j ∈ [0, s] that minimizes

li,j∑
l=1

(
1− B̂i,(j−1)s+l

)
+

s∑
l=li,j+1

B̂i,(j−1)s+l

for i ∈ [1, n] and j ∈ [1,m].

(4) Let Ln×m be the matrix over S defined by Li,j =
li,j
s

.
Output L.

code is provided in Algorithm 1 below.) For each real ob-
ject j define s binary virtual objects j1, . . . , js. Whenever
bin asks user i to probe some virtual object j`, we apply
the following rounding procedure. If none of the virtual ob-
jects corresponding to j was probed by user i so far, then
we ask i to probe (real) object j, and obtain the value of
Aij . Suppose the value is such that k−1

s
< Aij ≤ k

s
for some

1 ≤ k ≤ s. Then we set the values (for user i) of virtual
objects j1, . . . jk to 1, and the values of jk+1, . . . , js to 0 (in-
tuitively, the grades are coded in unary). Finally, if j was
already probed in the past by i, we can use the known Aij
value to return a virtual probe value to bin. This concludes
the description of the rounding procedure.

Note that the output of bin is a binary matrix, which does
not necessarily represent valid encoding of grades the way
the input was encoded, because it is only an approximation.
In the algorithm, we choose the closest (under Hamming
distance) valid encoding of a preference vector.

We have the following result, assuming that bin succeeds
with probability 1− n−Ω(1).

Theorem 3.1. With probability 1− n−Ω(1), for any user
i, Algorithm discrete reconst reconstructs the preference
vector of user i with probe complexity Tbin(n, sm, α, sD) and
approximation factor O(γbin).

Proof: Let i, i′ be any two users. Then by Step 1 of the
algorithm,

dist(Bi, Bi′) =

m∑
j=1

s∑
k=1

∣∣Bi,(j−1)s+k −Bi′,(j−1)s+k

∣∣
=

m∑
j=1

s |Ai,j −Ai′,j |

= s · dist(Ai, Ai′) ,

and therefore, by the properties of bin, we get that its invo-
cation in Step 2 yields B̂ such that dist(Bi, B̂i) ≤ γbin · sD
for any user i.

Next, for any i, j, let l∗i,j = sAi,j . Let B̂i,j denote the

vector B̂i,(j−1)s+1, . . . , B̂i,js, and let Ul denote the binary
vector of s bits with the first l−1 bits set to 1. By Step 3 of
the algorithm, dist(Uli,j , B̂

i,j) ≤ dist(Ul∗i,j , B̂
i,j). Using the

triangle inequality we obtain

‖Li −Ai‖ =

m∑
j=1

∣∣∣Sli,j − Sl∗i,j ∣∣∣
=

1

s

m∑
j=1

∥∥∥Uli,j − Ul∗i,j∥∥∥
≤ 2

s

m∑
j=1

∥∥∥Ul∗i,j − B̂i,j∥∥∥
=

2

s

∥∥∥Bi − B̂i∥∥∥ = 2γD .

which proves the approximation claim. The probe complex-
ity follows directly from the fact that in Algorithm 1 probes
are done only while evaluating bin(B,α, sD) in Step 2.

We note that the probe complexity of bin is typically
linear in the number of objects, and hence Algorithm dis-
crete reconst guarantees no degradation in approxima-
tion, but the cost grows linearly with the number of discrete
grades. In particular, when compared with the general con-
struction presented in the following section, Algorithm dis-
crete reconst is superior in terms of probe complexity
when the number of grades s+ 1 satisfies s = O(logn/D).

4. THE CONTINUOUS CASE
In this section we present our main result: an algorithm

for the case grades are arbitrary bounded real numbers.
W.l.o.g., we may assume in this case that the grades are
in the unit interval [0, 1].

The most natural idea is to reduce the continuous case to
the discrete case. But similarly to the argument mentioned
in the introduction, simplistic discretization approaches fail.
If we use resolution of 1/s, then discretization may end up in
adding an overall m/s error. In other words, there are inputs
where users are nicely concentrated in the continuous model,
but after discretization they will end up with linear distance
between them (if we use resolution of O(1/m), then Al-
gorithm discrete reconst results in increasing the probe
complexity by a factor of m, which is trivial to achieve).

The intuition behind our algorithm is as follows. While
any discretization has bad instances in which clusters are
split along discretization borders, a random discretization
is likely to avoid many of these bad events. If we use many
discretizations, many of them should not split many clusters.
It turns out that this intuition is roughly correct, but it is
not readily clear how to use this random discretizations. Our
solution is to construct a metric embedding from L1-norm

in [0, 1]m to Hamming distance in {0, 1}Θ(m log n
D

) in order
to use bin to estimate the distance between users preference
vectors. Specifically, we propose to use the concept of friends
detector, defined as follows.

Definition 4.1. Given a set of users with preference vec-
tors A1, . . . , An and 0 ≤ D1 ≤ D2, a (D1, D2)-friends detec-
tor is a predicate that takes any two users i, i′, whose value
is true if dist(Ai, Ai′) ≤ D1 and false if dist(Ai, Ai′) > D2.

The result of a friends detector may be arbitrary for users
whose distance is between D1 and D2.2

High-level algorithm. Conceptually, our algorithm works
as follows.

(1) Invoke Procedure distance est(A,α,D), and obtain
a good friends detector. (This step uses a reduction to
bin.)

(2) Using the friends detector and additional probes, ob-
tain a good approximation of A.

In Step 2, users probe random real objects directly, so that
each object has sufficiently large coverage by all users types,
and then, each user collects the results of probes obtained in
the second stage by users close to him (as identified by the
friends detector computed in Step 1), and outputs their av-
erage as an estimate of his grade vector. We elaborate on the
implementation of each step later in this section, but state
the following corollary, which summarizes the algorithm per-
formance for α,D-similar preference matrix. It follows from
Theorem 4.9, applied with Theorem 2.1.

Theorem 4.1. There is a distributed algorithm that, with
overwhelming probability, reconstructs for each user its pref-
erence vectors with O(D) L1-distance error. This algorithm

has a probe complexity O
(

1
α

⌈
m
n

⌉
·
⌈

logn
D

⌉
log3.5(m+ n)

)
.

4.1 Estimating L1-distances between users
The core of the first stage is carried out by Algorithm

distance est, which uses a reduction to bin. The idea is
as follows. First we choose Θ(m logn

D
) objects at random as

virtual objects. This has the consequence that the expected
distance between users whose distance over all m objects is
D, is reduced to distance Θ(logn) when considering only
the virtual objects. Now, for each such virtual object a
random threshold is selected independently and uniformly
from [0, 1]: the results of probes will be rounded according
to these random thresholds.

More specifically, the algorithm works as follows (see Algo-
rithm 2 for pseudo-code). Let K = d3cm logn/De for some
constant c > 4. The algorithm chooses K tuples 〈tk, jk〉Kk=1

where tk are i.i.d. uniform random variable from [0, 1], and
jk are objects chosen independently, uniformly at random
from {1, . . . ,m}. (Note that K, the number of virtual ob-
jects, might be larger or smaller than the number of real
objects, m.) We define a binary matrix Bn×K , where each
row i corresponds to user i (whose real preference vector is
Ai), and each column k corresponds to object jk (i.e. to col-
umn jk in A). B is defined as follows: Entry Bi,k is the grade
of user i for object jk, rounded using tk as a threshold. Al-
gorithm bin is invoked on B using the reduction framework
of Figure 1, yielding reconstructed matrix B̂. The output
W (i, i′), the distance estimate between users i, i′, is simply
the adjusted Hamming distance between rows i, i′ in B̂.

We now turn to analyze Algorithm distance est. We
first bound the errors due to the random choices of jk and
tk values, and then consider the errors introduced by the
imperfection of bin.

2We note that [12] presents an implementation of a friends
detector for the much simpler case where D1 = 0.

Algorithm 2 distance est(A,α,D)

(1) Let K = d3cm logn/De.
(2) For each k ∈ {1, . . . ,K} let 〈tk, jk〉 be such that tk

is chosen independently uniformly at random from
[0, 1] and jk independently uniformly at random from
{1, . . . ,m} (with repetitions).

(3) Let B be a binary matrix of size n × K defined by

Bi,k =

{
1 If Ai,jk > tk

0 Otherwise .

(4) Let B̂ be the output of bin(B,α/2, 4KD/m). (Note
that 4KD/m = Θ(logn).)

(5) Let W (i, i′) = m
K

dist(B̂i, B̂i′). Output W .

Below, we maintain the following convention. We consider
users i1, i2, i3 such that dist(Ai1 , Ai2) ≤ D and dist(Ai1 , Ai3) >

5β where β
def
= 4D ·max(γbin, 1). We will prove that the al-

gorithm estimates the distances between users preferences
with error bounded by O(Dγbin).

Lemma 4.2. If dist(Ai1 , Ai2) ≤ D then dist(Bi1 , Bi2) ≤
β
2
· K
m

with probability at least 1− n−c/4.

Proof: Let χk be a random variable taking the value 1 if tk
falls in between Ai1,jk and Ai2,jk and 0 otherwise. Clearly
dist(Bi1 , Bi2) =

∑K
k=1 χk. Since tk is chosen uniformly from

[0, 1] we have

Pr(χk = 1) =

m∑
j=1

Pr (jk = j) Pr (χk = 1 | jk = j)

=

m∑
j=1

1

m
|Ai1,j −Ai2,j |

≤ D/m ,

and hence E [dist(Bi1 , Bi2)] = E
[∑K

k=1 χk
]
≤ KD/m =

3c logn. Therefore, since χk are independent Bernoulli ran-
dom variables, Chernoff Bound implies that

Pr (dist(Bi1 , Bi2) > 2KD/m) = Pr

(
K∑
k=1

χk > 2KD/m

)

< exp

(
−1

4
c logn

)
= n−c/4 .

The lemma follows, because β ≥ 4D.

Lemma 4.3. For all users i1, dist(B̂i1 , Bi1) ≤ β · K
m

with

probability at least 1− n−c/4−1.

Proof: The lemma holds due to fulfillment of the conditions
required for the success of bin in Step 4 of Algorithm dis-
tance est. Let I be the αn preference vectors in A closest
to Ai1 . By assumption, their distance from Ai1 is at most D.
For any i ∈ I and k ∈ {1 . . .K}, let χi,k be random variable
taking the value 1 iff tk is between Ai1,jk and Ai,jk . By defi-
nition of I, E [χi,k] ≤ D/m for any i ∈ I. By linearity of ex-

pectation, E
[∑

i∈I dist(Bi1 , Bi)
]

=
∑
i∈I
∑K
k=1 E [χi,k] ≤

αnDK/m.
For each k, consider the random variable 1

αn

∑
i∈I χi,k.

This is a set of independent random variables in [0, 1], so by
the Chernoff Bound we have

Pr

(∑
i∈I

dist(Bi1 , Bi2) > 2αnDK/m

)

= Pr

(
K∑
k=1

(
1

αn

∑
i∈I

χi,k

)
> 2DK/m

)
< exp (−c/4 logn) = n−c/4 .

It follows from the Markov Inequality that there is a subset
IB ⊆ I such that |IB | ≥ 1

2
|I| and dist(Bi1 , Bi) ≤ 4KD/m

for any i ∈ IB . Finally, we apply the Union Bound and
deduce that the probability such IB exists for all n users is
at least 1 − n−c/4−1. The result now follows from the fact
that B̂ is obtained by applying bin with parameters α/2 and
4KD/m.

Combining the above two bounds yields the first property
of the algorithm

Lemma 4.4. For any ii, i2 satisfying dist(Ai1 , Ai2) ≤ D
we have W (i1, i2) ≤ 5

2
β, with probability 1− n−Ω(1).

Proof: Summing over objects and using the triangle in-
equality with Lemmas 4.2 and 4.3, we obtain: with proba-
bility 1− n−Ω(1), if dist(Ai1 , Ai2) ≤ D then

W (i1, i2) =
m

K
dist(B̂i1 , B̂i2)

=
m

K

K∑
j=1

∣∣∣B̂i1,j − B̂i2,j∣∣∣
≤ m

K

(
K∑
j=1

∣∣∣B̂i1,j −Bi1,j∣∣∣
+

K∑
j=1

|Bi1,j −Bi2,j |

+

K∑
j=1

∣∣∣B̂i2,j −Bi2,j∣∣∣
)

≤ 5

2
β .

Applying similar analysis, we can bound from below the
distance estimates of users whose preference vectors are far
away from each other.

Lemma 4.5. If dist(Ai1 , Ai3) > 5β then dist(Bi1 , Bi3) >
9
2
β · K

m
with probability at least 1− n−

3c
10 .

Proof: For any k, define χk be a random variable taking
the value 1 if tk falls in between Ai1,jk and Ai3jk and 0
otherwise. Clearly dist(Bi1 , Bi3) =

∑K
k=1 χk. Since tk is

chosen uniformly from [0, 1] we have

Pr(χk = 1) =

m∑
j=1

Pr (jk = j) Pr (χk = 1 | jk = j)

=

m∑
j=1

1

m
|Ai1,j −Ai3,j |

>
5β

m
,

and hence E [dist(Bi1 , Bi3)] = E
[∑K

k=1 χk
]
> 5K

m
β. There-

fore, since χk are independent Bernoulli random variables,
we can apply the Chernoff Bound to obtain

Pr

(
dist(Bi1 , Bi3) ≤ 9K

2m
β

)
= Pr

(
K∑
k=1

χk ≤
9K

2m
β

)

≤ exp

(
− Kβ

40m

)
≤ n−

3c
10 .

The last inequality follows from the fact β ≥ 4D.

Lemma 4.6. If dist(Ai1 , Ai3) > 5β then W (i1, i3) > 5
2
β

with probability 1− n−Ω(1).

Proof: Similarly to the proof of Lemma 4.4, summing over
columns and using the triangle inequality with Lemmas 4.5
and 4.3, we get that if dist(Ai1 , Ai3) > 5β then with proba-
bility 1− n−Ω(1)

W (i1, i3) =
m

K
dist(B̂i1 , B̂i3)

=
m

K

K∑
j=1

∣∣∣B̂i1,j − B̂i3,j∣∣∣
≥ m

K

(
K∑
j=1

|Bi1,j −Bi1,j |

−
K∑
j=1

∣∣∣B̂i1,j −Bi3,j∣∣∣
−

K∑
j=1

∣∣∣B̂i3,j −Bi3,j∣∣∣
)

>
5

2
β .

Finally, we claim that distance est can be used to obtain
a good implementation of a friends detector (cf. Def. 4.1).
The following theorem is implied by Lemmas 4.4 and 4.6

Theorem 4.7. Let An×m be a (α,D)-similar matrix with
real values from [0, 1]. Then, given a binary reconstruction
algorithm bin, a (D, 20 dγbineD)-friends detector can be im-
plemented, with probe complexity Tbin(n,K, α/2, c1 ·logn) for
some constant c1, and with success probability 1− n−Ω(1).

Proof: Compute W by algorithm distance est and output
“true” iff W (i, i′) ≤ 5

2
β.

Algorithm 3 build prefs(A,α,D, β) By user i

(1) Invoke Algorithm distance est(A,α,D) to compute
a (D, 5β)-friends detector.
Let I =

{
i′ : W (i′, i) ≤ 5

2
β
}

be the set of users de-
tected as “friends”. (Recall that β = 4 dγeD.)

(2) Let C = ∅. Repeat r logn times:

(2a) Probe each object j, independently with proba-
bility log(m+n)

αn
and post probe results on the bill-

board.
Let Si be the set of objects probed by user i.
For each object j, let Ij = {i′ ∈ I : j ∈ Si′}, i.e.,
members of I that probed j.

(2b) For each object j do:

(2bi) If j ∈ Si then set Cj to Ai,j as probed in
Step 2a.

(2bii) If j /∈ Si then set Cj = 1

|Iji |
∑
i′∈Iji

Ai′,j . If

Iji = ∅ set Cj = 1/2 (this will happen with
negligible probability).

(2c) C ← C ∪ {C}.
(3) Return Cl ∈ C which maximizes

|{Cl′ ∈ C : dist(Cl, Cl′) ≤ 30β}|.

4.2 Reconstructing the preference vectors
We now describe the complete algorithm, assuming that

we are given a good friends detector (Definition 4.1), and
our task is to reconstruct an approximation of the preference
vectors.

The idea is as follows (see pseudo-code in Algorithm 3).
First, the users probe an appropriately large random sam-
ple of the objects: intuitively, this is to get sufficient cover-
age. Next, each user looks at the results of probes of users
who are deemed “close,” as determined by the friends detec-
tor; for each object, the user computes the averages of the
friends’ grades as a candidate output, thereby obtaining a
candidate vector. We prove that in expectation, the candi-
date vector is close to the true preference vector. However,
its variance is unknown, and therefore, to get a usable ap-
proximation, we repeat the procedure: we construct many
candidate vectors independently, and output the one with
many close neighbors (this is akin to picking the median of
single-dimension samples). For that output, we prove that
with high probability, the result is a good approximation.

We now analyze the algorithm. We start by considering a
single candidate.

Lemma 4.8. Let A be (α,D)-similar, and suppose that
Algorithm build prefs uses a (D, 4 dγbineD)-friends detec-
tor over A. Then for any candidate vector C computed by
user i in Step 2b of Algorithm build prefs, E [dist(C,Ai)] ≤
20 dγbineD.

Proof: Since there are at least αn users with dist(Ai, Ai′) ≤
D, Theorem 4.7 ensures that |I| ≥ αn, and hence E

[
Ij
]
≥

log (m+ n). By the Chernoff Bound |Ij | ≥ 1 with over-
whelming probability. We apply the Union Bound and de-
duce that, with overwhelming probability, |Ij | ≥ 1 for all

j. Theorem 4.7 also ensures that I includes only users with
preference vectors at distance at most 5β ≤ 20 dγbineD from
user i preference vector.

Fix i. For any i′ ∈ I and any j ∈ Si′ let ηji′ be the
random variable ηji′ = |Ai,j −Ai′,j | with expectation (over
the choices by user i′) E

[
ηji′
]
≤ 5β

m
. As the objects probed

by each user are chosen independently of the values in the
matrix A we may conclude that the random variables ηji′ =
|Ai,j −Ai′,j | are independent from the random variables Ij .
By the triangle inequality,

E [dist(C,Ai)] = E

[
m∑
j=1

|Cj −Ai,j |

]

≤ E

 m∑
j=1

1

|Ij |
∑
i′∈Ij

ηji′


=

m∑
j=1

1

|Ij |
∑
i′∈Ij

E
[
ηji′
]

≤ 5β .

Lemma 4.8 bounded the expected error of the reconstruc-
tion done by build prefs. We now summarize the overall
algorithm.

Theorem 4.9. Let An×m be (α,D)-similar matrix with
entries in [0, 1], and let bin be a binary reconstruction al-
gorithm with approximation ratio γbin and probe complexity
Tbin. Then with probability 1−n−Ω(1), Algorithm build prefs
reconstructs A with approximation ratio O(γbin) and probe

complexity Tbin

(
n,K, α

2
, 4KD

m

)
+ O

(
m
n
· log2(m+n)

α

)
, where

K = d3cm logn/De = O(m
D

logn).

Proof: For each candidate C ∈ C let y be the random
variable equal to the distance of the candidate from the
user’s preference vector, i.e. y = |C −Ai|. As the distances
are non-negative random variables, Markov’s Inequality im-
plies that the probability of each distance to be larger than
3 times its expectation is less than 1

3
. By the Chernoff

Bound, the probability that at least half of the distances
are higher than 3 times their expectation is at most n−r/36.
Hence, with probability 1−n−r/36, there is a subset C∗ with
|C∗| > 1

2
|C| such that for each candidate C ∈ C∗ we have

that dist(C,Ai) ≤ 3E[y]. It follows there is at least one can-
didate with at least 1

2
|C| neighbors at distance at most 6E[y]

from it. Every candidate with at least 1
2
|C| neighbors has at

least one neighbor at distance at most 3E[y] from Ai. Hence,
the output vector is at distance at most 3E[y]+30β from Ai.
The Theorem follows, because E[y] ≤ 5β by Lemma 4.8.

The complexity bound follows from Theorem 4.7 and the

fact that only O
(
m
n
· logn·log(m+n)

α

)
probes are added by

Step 2a of Algorithm build prefs.

5. REFERENCES
[1] N. Alon, B. Awerbuch, Y. Azar, and B. Patt-Shamir.

Tell me who I am: an interactive recommendation
system. In Proc. 18th Ann. ACM Symp. on
Parallelism in Algorithms and Architectures (SPAA),
pages 1–10, 2006.

[2] B. Awerbuch, Y. Azar, Z. Lotker, B. Patt-Shamir, and
M. Tuttle. Collaborate with strangers to find own
preferences. In Proc. 17th ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pages
263–269, 2005.

[3] B. Awerbuch, A. Nisgav, and B. Patt-Shamir.
Asynchronous active recommendation systems. In
Principles of distributed systems : 11th international
conference (OPODIS 2007), volume 4878 of LNCS,
pages 48–61, 2007.

[4] B. Awerbuch, B. Patt-Shamir, D. Peleg, and
M. Tuttle. Improved recommendation systems. In
Proc. 16th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pages 1174–1183, 2005.

[5] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia.
Spectral analysis of data. In Proc. 33rd ACM Symp.
on Theory of Computing (STOC), pages 619–626,
2001.

[6] R. M. Bell and Y. Koren. Lessons from the netflix
prize challenge. SIGKDD Explor. Newsl., 9(2):75–79,
2007.

[7] P. Drineas, I. Kerenidis, and P. Raghavan.
Competitive recommendation systems. In Proc. 34th
ACM Symp. on Theory of Computing (STOC), pages
82–90, 2002.

[8] S. Gilbert, R. Guerraoui, F. M. Rad, and
M. Zadimoghaddam. Collaborative scoring with
dishonest participants. In Proc. 22nd Ann. ACM
Symp. on Parallel Algorithms and Architectures
(SPAA), pages 41–49, 2010.

[9] K. Goldberg, T. Roeder, D. Gupta, , and C. Perkins.
Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval Journal,
4(2):133–151, July 2001.

[10] J. Kleinberg and M. Sandler. Convergent algorithms
for collaborative filtering. In Proc. 4th ACM Conf. on
Electronic Commerce (EC), pages 1–10, 2003.

[11] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins. Recommendation systems: A
probabilistic analysis. In Proc. 39th IEEE Symp. on
Foundations of Computer Science (FOCS), pages
664–673, 1998.

[12] A. Nisgav and B. Patt-Shamir. Finding similar users
in social networks: extended abstract. In Proc. 21st
Ann. ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pages 169–177, 2009.

[13] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and
S. Vempala. Latent semantic indexing: A probabilistic
analysis. In Proc. 17th ACM Symp. on Principles of
Database Systems (PODS), pages 159–168. ACM
Press, 1998.

[14] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: an open architecture for
collaborative filtering of netnews. In Proc. 1994 ACM
Conf. on Computer Supported Cooperative Work,
pages 175–186, Oct. 1994.

[15] P. Resnick and H. R. Varian. Recommender systems.
Commun. ACM, 40(3):56–58, 1997.

[16] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Analysis of recommendation algorithms for
e-commerce. In Proc. 2nd ACM Conf. on Electronic
Commerce (EC), pages 158–167. ACM Press, 2000.

