
Video Distribution Under Multiple Constraints∗

Boaz Patt-Shamir Dror Rawitz

boaz@eng.tau.ac.il rawitz@eng.tau.ac.il

School of Electrical Engineering

Tel Aviv University

Tel Aviv, 69978

Israel

Abstract

We consider the optimization problem of providing a set of video streams to a set of clients,

where each stream has costs in m possible measures (such as communication bandwidth, processing

bandwidth etc.), and each client has its own utility function for each stream. We assume that the

server has a budget cap on each of the m cost measures; each client has an upper bound on the

utility that can be derived from it, and potentially also upper bounds in each of them cost measures.

The task is to choose which streams the server will provide, and out of this set, which streams each

client will receive. The goal is to maximize the overall utility subject to the budget constraints. We

give an efficient approximation algorithm with approximation factor of O(m) with respect to the

optimal possible utility for any input, assuming that clients have only a bound on their maximal

utility. If, in addition, each client has at most mc capacity constraints, then the approximation

factor increases by another factor of O(mc log n), where n is the input length. We also consider the

special case of “small” streams, namely where each stream has cost of at most O(1/ logn) fraction

of the budget cap, in each measure. For this case we present an algorithm whose approximation

ratio is O(log n).

Keywords: Approximation Algorithms, Budgeted Set Cover, Resource Allocation, Scheduling, Video

Distribution.

∗An extended abstract of this paper was presented at the 28th International Conference on Distributed Computing

Systems (ICDCS), 2008. Research supported in part by the Next Genration Video (NeGeV) consortium, Israel, and by

the Israel Science Foundation (grant 664/05).

1 Introduction

The following model is an abstraction of the way cable TV is distributed in many cases (see Figure 1).

There are many available streams to multicast, and there are clients (or users), each with his own

utility for each stream. A client may be an individual household, or a neighborhood video gateway, and

the utility may represent the revenue generated by the client, or a measure of user satisfaction. The

server (which can be a cable head-end serving video gateways, or a video gateway serving households)

transmits a subset of the available streams over a multicast-capable network (typically Ethernet or

DOCSIS): A transmitted stream can be received by all clients. The objective of the system is to

maximize overall utility, but there are several constraints which any solution must respect. At the

server, these constraints typically include limited outgoing communication bandwidth, and may also

include limited processing bandwidth, limited number of input ports, etc. In general, transmitting a

stream incurs a cost at the server in each of m possible measures. In our scenario, each of these m

cost measures has a given budget cap that may not be exceeded. At the client side, the system main

constraint is that only a bounded amount of utility can be derived from each client. Clients may have

other limited resources: for example, a client typically has a maximal incoming bandwidth limit. In

general, we assume that each client has up to mc budgets, and each stream has a cost in each of the

clients’ budgets. The task is, subject to the given constraints, to select streams to broadcast by the

server, and to select streams to deliver to each user, so as to maximize the overall utility of the system.

client

client

client

client

client

client

client

content

feeds

limited

communication

bandwidth

limited

utility

limited

processing

bandwidth

limited

streams

server

Figure 1: Schematic representation of a typical system. The server serves contents to clients, using a

bounded number of input streams, bounded computational bandwidth, and bounded outgoing communi-

cation bandwidth. Each client can generate bounded utility.

It is easy to see that finding the optimal solution to this very practical problem is computationally

hard: even if there were a single user, the problem is a strict generalization of the Knapsack Problem;

from another perspective, even if there were a single cost measure, and each stream had either unit

cost and unit utility or zero cost and zero utility for each user, then the problem is a generalization of

the Maximum Coverage Problem [12]. We therefore resort to near-optimal solutions, which guarantee

worst-case approximation ratio with respect to the optimal solution.

It may be worthwhile to note that most solutions in use today employ a simple threshold-based

admission control policy, where requests are admitted so long as they do not go over certain “safety

1

margins” for the resources in question. While the choice of the threshold can be quite sophisticated

(see, e.g., [5, 4]), it appears that this approach is somewhat näıve, in that it ignores the possibly very

different utilities of different stream, which is the main difficulty we tackle in this paper. We also note

that there is infra-structure to support more sophisticated policies (such as the one we propose); one

such example is Cisco’s architecture, that allows for a server called Broadband Policy Manager (BPM)

[7, 8].

1.1 Our Results

We present several approximation algorithms for the problem. First, we provide an algorithm for the

general case. Our general algorithm uses as a building block an algorithm (with smaller approximation

ratio) for the special case where the only constraint at the client side is caps on the client utilities.

Our second main algorithm is for the special case where all streams have small costs with respect to

the budget caps: for that case, we can guarantee a much better approximation ratio.

To state the results precisely, we need to define the problem formally. (A glossary summarizing

the notation we use appears in Figure 2.)

Multi-Budget Multi-Client Distribution (mmd)

Input:

• A collection S of streams, a set U of users, and two integers m,mc > 0.

• A server cost ci(S) ≥ 0, for each S ∈ S and 1 ≤ i ≤ m, and a server budget Bi ∈ R
+∪{∞},

for each 1 ≤ i ≤ m.

We assume that ci(S) ≤ Bi for every i and S.

• A user load kuj (S) ≥ 0, for each 1 ≤ j ≤ mc, stream S ∈ S, and user u ∈ U , and a user

capacity Ku
j ∈ R

+ ∪ {∞}, for each 1 ≤ j ≤ mc and user u ∈ U .

• A user utility wu(S) for each user u and stream S.

We note that wu(S) = 0 means that user u does not want or cannot receive stream S. We

assume that wu(S) = 0 if kuj (S) > Ku
j for some j.

Output: an assignment of a set of streams A(u) to each user u maximizing

w(A)
def
=

∑

u∈U

∑

S∈A(u)

wu(S) ,

such that

• Server budget constraints: For each 1 ≤ i ≤ m,

∑

S∈∪u∈UA(u)

ci(S) ≤ Bi .

• User capacity constraints: For each 1 ≤ j ≤ mc and user u,

∑

S∈A(u)

kuj (S) ≤ Ku
j .

2

Quantities related to an mmd instance:

• S: streams set

• U : users set

• ci: ith cost function

• Bi: ith budget

• m: number of server budgets

• kuj : jth load function of users u

• Ku
j : jth capacity of u

• mc: number of user budgets

• w(S)
def
=

∑

u∈S wu(S): total utility of stream S where f(C)
def
=

∑

S∈C
f(S) for any subset C ⊆ S

and function f : S → R+.

Quantities related to an assignment A:

• S(A)
def
=

⋃

u∈U A(u), also called the range of A: the set of streams that are assigned to users

by A.

• ci(A)
def
= ci(S(A)): ith cost of A

• kuj (A)
def
= kuj (A(u)): jth load of A on u

• wu(A)
def
= wu(A(u)): utility of A with respect to u

Figure 2: Glossary of Notation

We also consider the special case of mmd where there is only one server budget constraint, and

also there is only one capacity constraint per user (i.e., m = mc = 1). We refer to this special case as

the Single-Budget Multi-Client Distribution problem, abbreviated henceforth smd.

Before we state our results, we need to define yet another concept. Given a capacity measure i

and a user u, one can compare all streams in terms of their cost-benefit ratio: how much utility is

generated by a stream for unit load. We define the local skew of user u at capacity measure i to

be the ratio between the largest and smallest cost-benefit ratios (not including zero utility streams).

The local skew of an instance, denoted α henceforth, is the maximum, over all users u and all load

measures i, of the local skew of u at i. (A formal definition is given in Section 3.) Note that α ≥ 1

always, and equality holds if and only if all load functions of each user u are proportional to his utility

wu. Also, note that logα = O(log n) when all numbers in the input are polynomial in n (in this paper

all logarithms are to base 2 unless otherwise stated).

Using the notion of local skew, we state our main result. For simplicity, we consider the case where

all costs and utilities are polynomial in the input length n.

Theorem 1.1. There exists an O(n2) time O(mmc log(2αmc))-approximation algorithm for mmd,

where α is the local skew of the instance, m is the number of cost measures, mc is the maximal number

of capacity constrains at a user, and n is the input length.

Note that if each user has only a single capacity constraint, and if the local skew is 1 (which means

that the user is only limited by the maximal utility it can generate), then our algorithm guarantees

an O(m) approximation. If all costs and utilities are polynomial in the input length n, then the

approximation ratio is O(mmc log n).

3

Our second result deals with streams with small costs and loads. We first generalize the local

skew α as follows. Given an mmd instance, we define the global skew of the instance denoted by γ.

Intuitively, the global skew γ bounds the ratio between the best and the worst streams, in terms of

utility for each unit cost. (The exact definition is given in Section 5.) We note that γ ≥ α for all

instances of mmd, and that γ is polynomial in n if all numbers in the input are polynomial in n.

Theorem 1.2. Given an mmd instance, let µ
def
= 2γ(m + |U |mc) + 1, where γ is the global skew of

the instance, m is the number of cost measures, and mc is the maximal number of capacity constrains

at a user. Suppose that ci(S) ≤
Bi

logµ for every i, and kui (S) ≤
Ku

logµ for every i and u. Then an

O(log µ)-approximation can be found in polynomial time.

The ratio is O(log n) if all numbers in the input are polynomial in n.

It is important to note that the algorithm we present to prove Theorem 1.2 is actually an online

algorithm with competitive ratio O(log µ). By “online” we mean that the algorithm considers streams

one by one as they arrive, and decides whether to supply the stream and to which users, without

knowledge of future arrivals.

1.2 Previous work

Our model can be viewed as a generalization of the Budgeted Set Cover problem [13], which is a

variant of the Set Cover problem [11]. In the set cover problem, the input consists of a collection of

sets with cost for each set; the goal is to find a subcollection of sets of minimal cost, whose union is

the same as the union of the complete collection. Set cover admits O(log n) approximation [17] and

not better, unless P = NP [9, 2]. In the budgeted set cover problem, the input consists of a “budget”

B and a collection of sets of weighted elements, where each set has a cost. The goal is to find a

subcollection of the sets whose cost is at most B, maximizing the total weight of the union. In the

(unweighted) Maximum Coverage problem, the goal is to cover as many elements as possible, using

at most B sets. In this case the natural greedy algorithm computes solutions whose weight is within

a factor of 1− (1− 1
B)B > 1− 1

e ≈ 0.63 from the optimum (see [14, 12]). This ratio holds even in the

more general case of nonnegative, nondecreasing, submodular set function maximization [15, 10]. (A

function f is called submodular if f(T)+ f(T ′) ≥ f(T ∪T ′)+ f(T ∩T ′) for every two sets T, T ′ in the

domain of f .)

Khuller, Moss and Naor [13] show that budgeted set cover can be approximated to within e
e−1 ,

and cannot be approximated to within any smaller factor unless NP ⊆ DTIME(nO(log logn)). This

hardness result holds for Maximum Coverage as well. Sviridenko [16] extended the result from [13]

to maximization of a nondecreasing submodular set function subject to a budget constraint. Ageev

and Sviridenko [1] presented an approximation algorithm for budgeted set cover with unit costs whose

approximation ratio is 1− (1− 1
d)

d, where d is the maximum size of a set.

Another generalization of the budgeted set cover problem is the “group budget constraint” [6],

where the sets are assumed to be partitioned into disjoint “groups” and at most one set from each

group may be selected to the output. The task is to maximize the size of the union of the output sets,

subject to a budget constraint. In [6] it is shown that if all sets have unit cost then approximation

to within 2 is possible; if sets have different costs, then the approximation factor jumps to 12. We

note that the problem we consider is a strict generalization of both variants of the budgeted set cover

4

problem mentioned above.

The work by Awerbuch, Azar, and Plotkin [3] is also closely related to this paper. In [3] the

question is whether to admit calls into a network (and how to route them), so as to maximize overall

throughput subject to link capacity constraints. One important difference between the models is that

in our case, the utility of a stream depends on the algorithm (which users receive the stream), whereas

the “profit” of a call in [3] is part of the input.

1.3 Solution overview and paper organization

The algorithm which proves Theorem 1.1 applies a series of transformations as follows.

1. First, the multi-budget (mmd) instance is transformed into a single-budget (smd) instance. This

transformation may increase the local skew, but only by a multiplicative factor of mc.

2. Second, we show how to transform a general smd instance with skew α > 1 into multiple smd

instances with unit skew each, and produce a result whose approximation ratio is blown up (with

respect to the unit-skew solution) by a factor of O(log α).

3. Finally, we solve the smd problem for unit skew by a constant-factor approximation algorithm.

We describe the algorithm in a bottom-up fashion: In Section 2 we describe an O(1)-approximation

algorithm for smd with unit skew, the reduction from arbitrary to unit skew is described in Section 3,

and in Section 4, we describe the transformation of mmd to smd.

The algorithm for Theorem 1.2 is based on ideas from [3]. It is described and analyzed in Section 5.

2 The smd Problem: Single Budget Constraint

In this section we consider the case of a single budget constraint and a single capacity constraint per

user with unit skew α = 1. Equivalently, each stream has a (single) cost at the server, and each

user can generate bounded utility. We give constant factor approximation algorithms for this case.

Our general approach, following the work of Khuller et al. [13], is to use a greedy algorithm for this

case, namely to iteratively allocate the most cost-effective stream to all possible users. This part is

described in Section 2.1. However, as in [13] the greedy algorithm is not good enough: In Section 2.2,

we explain the problem and show how to fix it so as to yield a constant approximation factor.

We present an O(n2)-time algorithm which produces utility at least (e− 1)/2e times the optimal

utility, if we increase the capacity of every user u by Ku + k̄u, where k̄u = maxS ku(S). This is the

resource augmentation model. Without resource augmentation, the algorithm guarantees approxima-

tion factor of 3e
e−1 . For completeness, we present in Section 2.3 another algorithm whose approximation

factors are better: e
e−1 with resource augmentation, and 2e

e−1 without resource augmentation. However,

the latter algorithm requires more running time (albeit polynomial).

Preliminaries. When the local skew is 1, either wu(S) = ku(S) or wu(S) = 0, for every u and S.

Hence, in the remainder of this section, for each user u, we only consider his utility function wu and

his utility bound Wu.

5

In our algorithm, we may allocate a stream S to a user u even if the residual utility of the user is

less than wu(S) so as to saturate the user (this happens at most once for each user). Such assignments,

that satisfy the server constraints, but may violate the users’ constraints are called semi-feasible. We

extend the definition of w(A) to semi-feasible assignments as follows:

w(A)
def
=

∑

u

min {Wu, wu(A)} .

This means that the utility that a user u contributes is never more Wu. In a similar way we define the

fractional residual utility of a user u for a stream S with respect to an assignment A to be the utility

that S adds to u if it is added to A. Formally, w̄A
u (S) = 0 for S ∈ S(A); if S 6∈ S(A), then

w̄A
u (S) = min {wu(S),max {Wu − wu(A), 0}} =















wu(S) Wu − wu(A) ≥ wu(S) ,

Wu − wu(A) 0 ≤Wu −wu(A) < wu(S) ,

0 Wu − wu(A) < 0 .

The fractional residual utility of S is w̄A(S) =
∑

u w̄
A
u (S).

Finally, we define the cost effectiveness of a stream S. Given a cost function c, the cost effectiveness

of S with respect to a given assignment A is defined as w̄A(S)/c(S).

2.1 Basic Algorithm: Greedy

Algorithm Greedy, specified formally below, starts with the empty assignment, and iteratively adds

to the solution a stream with maximum cost effectiveness with respect to the current assignment. The

algorithm uses fractional residual utilities. This allows the algorithm to assign a stream S to a user u

even if
∑

S′∈A(u) wu(S
′) > Wu−wu(S). (The semi-feasible assignment is a useful intermediate step in

the analysis, but in the final solution, the assignment is feasible.)

Algorithm 1 - Greedy(U,S, c, w,W,B)

1: A(u)← ∅, for every u

2: C ← S
3: while C 6= ∅ do

4: Let S be a stream that maximizes w̄A(S)/c(S)

5: if c(A) + c(S) ≤ B then

6: A(u)← A(u) ∪ {S} for every u such that w̄A
u (S) > 0.

7: end if

8: C ← C \ {S}

9: end while

10: return A

Complexity Analysis. We first consider the implementation of Algorithm Greedy, and explain

how to get time complexity of O(|S|n) = O(n2). In each iteration, we find the stream S of maximum

cost effectiveness. Given the stream residual utilities this can be done in O(|S|). If S is too expensive

it is dropped. Otherwise, we assign S to the users that are not yet saturated. We then remove S and

all users whose residual utility became 0. We also need to update the residual utility of the remaining

6

streams. In a straightforward implementation all the above updates are done in O(n) time. We update

the residual utility of O(|U |) users due to the assignment of S, and then the residual utility of each

remaining stream S′ is updated according to the residual utility of all users u for which wu(S
′) > 0.

Since the total number of iterations is O(|S|), the total running time is O(|S|n).

Performance Analysis. We analyze the utility of the solution computed by Algorithm Greedy by

comparing it to the utility of any semi-feasible assignment SF (including the best such assignment).

The performance guarantee of Algorithm Greedy follows from the observation that the utility

of semi-feasible assignments is a submodular function. More precisely, let us consider an assignment

just by the set of streams provided by the server. The utility of a set of streams T ⊆ S provided

by the server for a given user u is defined by wu(T)
def
= min

{

Wu,
∑

S∈T wu(S)
}

. We also define

w(T)
def
=

∑

uwu(T). Note that this definition ignores the actual assignment of streams to users, but

it coincides with the utility achieved by semi-feasible assignments. Thus defined, it is not hard to see

that the utility of a semi-feasible assignment is submodular.

Lemma 2.1. The utility function w : 2S → R is nonnegative, nondecreasing, submodular, and poly-

nomially computable.

Proof. It is not hard to verify that w is nonnegative, nondecreasing, and polynomially computable. It

remains to prove that w is submodular.

We show that for any user u, and for any two stream sets T ,T ′,

wu(T) + wu(T
′) ≥ wu(T ∪ T

′) + wu(T ∩ T
′) .

Without loss of generality, assume that wu(T) ≥ wu(T
′). Now, if wu(T) < Wu, then

wu(T) + wu(T
′) =

∑

S∈T

wu(S) +
∑

S∈T ′

wu(S)

=
∑

S∈T ∪T ′

wu(S) +
∑

S∈T ∩T ′

wu(S)

≥ wu(T ∪ T
′) +wu(T ∩ T

′) .

Otherwise, if wu(T) = Wu, then

wu(T) + wu(T
′) = Wu + wu(T

′) ≥ wu(T ∪ T
′) + wu(T ∩ T

′) .

It follows that w(T) + w(T ′) ≥ w(T ∪ T ′) + w(T ∩ T ′), for any two stream sets T ,T ′.

We can therefore apply the result of Sviridenko [16] to obtain a performance guarantee.

First we need to define some notation. Let Si denote the ith stream considered by the algorithm,

i.e., Si is considered in the ith iteration. Let k be the number of iterations that were executed by

Algorithm Greedy until the first stream Sk+1 from S(SF) \ S(A) is considered, but not used by A

(because its addition violates the budget constraint). For i ≤ k, let Ai denote the assignment A after

the ith iteration, i.e., after considering Si (A0 is the empty assignment). Also, denote by Ak+1 the

(infeasible) assignment that is obtained by adding Sk+1 to Ak. With this notation, and the observation

that the utility function of semi-feasible assignments is submodular, we obtain the following result.

7

Lemma 2.2. w(Ak+1) = w(Ak) + w̄Ak(Sk+1) ≥ (1− 1
e) · w(SF).

Next, we provide a complete proof in our terminology which does not rely on [16].

Lemma 2.3. For every i ≤ k + 1, either Ai = Ai−1 or w(Ai)− w(Ai−1) ≥
c(Si)
B (w(SF)− w(Ai−1)).

Proof. We assume that Ai 6= Ai−1 and prove that w(Ai) − w(Ai−1) ≥
c(Si)
B (w(SF) − w(Ai−1)). Let

Ui−1 = {u : wu(Ai−1) < Wu}, namely Ui−1 is the set of users that are not saturated by Ai−1. Observe

that directly from definitions, we have

w(SF)− w(Ai−1) =
∑

u∈U

wu(SF)−
∑

u∈U

wu(Ai−1) ≤
∑

u∈Ui−1

(wu(SF)− wu(Ai−1)) .

Now, since the users in Ui−1 are not saturated, it follows that Ai−1 gains
∑

u∈Ui−1
wu(S) utility, for

every S ∈ S(Ai−1), due to assigning it to users in Ui−1. Clearly SF cannot gain more from assigning

streams from S(Ai−1) to users in Ui−1. Hence,

∑

u∈Ui−1

(wu(SF)− wu(Ai−1)) ≤
∑

u∈Ui−1

∆i−1(u)

where ∆i−1(u) is the utility gained by SF by assigning streams from S(SF)\S(Ai−1) to a user u ∈ U ′.

The cost effectiveness of each stream S ∈ S(SF) \ S(Ai−1) is at most w̄Ai−1(Si)/c(Si), since Si

maximizes this ratio. Since c(S(SF) \ S(Ai−1)) ≤ c(S(SF)) ≤ B, the total utility of users covered by

streams in S(SF) \ S(Ai−1) is at most B · w̄Ai−1(Si)/c(Si). Therefore,

∑

u∈Ui−1

∆i−1(u) ≤ B ·
w̄Ai−1(Si)

c(Si)
.

It follows that

w(SF)− w(Ai−1) ≤ B ·
w̄Ai−1(Si)

c(Si)
.

Since w̄Ai−1(Si) = w(Ai)− w(Ai−1), we have that

w(Ai)− w(Ai−1) ≥
c(Si)

B
· (w(SF)− w(Ai−1)) .

The lemma follows.

Lemma 2.4. For every i ≤ k + 1, we have w(Ai) ≥



1−
∏

S∈S(Ai)

(1−
c(S)

B
)



 · w(SF) .

Proof. We prove the lemma by induction on i. The base case is i = 1, and we need to prove

that w(A1) = w̄A0(S1) ≥
c(S1)
B · w(SF). This inequality holds because for any assignment SF,

w(SF)/c(SF) ≤ w̄A0(S1)/c(S1) (since S1 maximizes the ratio w̄A0(S)/c(S) over all streams S), and

because w(SF)/c(SF) ≥ w(SF)/B (since SF is semi-feasible).

8

For the inductive step, assume that the lemma holds for i − 1, and consider i. If Ai = Ai−1 then

we are done. Otherwise, using Lemma 2.3 we get

w(SF)− w(Ai) = w(SF)−w(Ai−1)− (w(Ai)−w(Ai−1))

≤ w(SF)− w(Ai−1)−
c(Si)

B
(w(SF)− w(Ai−1))

=

(

1−
c(Si)

B

)

· (w(SF)− w(Ai−1))

≤

(

1−
c(Si)

B

)

·
∏

S∈S(Ai−1)

(

1−
c(St)

B

)

· w(SF)

=
∏

S∈S(Ai)

(

1−
c(St)

B

)

· w(SF) ,

and the induction step is complete.

And now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. By Lemma 2.4 we have that

w(Ak+1) ≥



1−
∏

S∈S(Ak+1)

(1−
c(St)

B
)



 · w(SF) .

Observe that if γ1, . . . , γq ∈ R
+ satisfy

∑

i γi ≤ Γ, then the maximum of the function
∏q

i=1(1−
γi
Γ) is

at γi = Γ/q for every i. Hence,

∏

S∈S(Ak+1)

(1−
c(St)

B
) ≤

∏

S∈S(Ak+1)

(1−
c(St)

c(Ak+1)
) ≤

(

1−
1

|S(Ak+1)|

)|S(Ak+1)|

≤
1

e
,

where the first inequality holds because c(Ak+1) > B. It follows that w(Ak+1) ≥ (1− 1
e) · w(SF).

We note that the use of the stream Sk+1 is essential for the analysis, as otherwise, the ratio between

the optimum utility and the utility of the solution computed by greedy may be unbounded. As an

immediate corollary to Lemma 2.2, we state below the performance guarantee of Algorithm Greedy

by comparing the output of the algorithm with an optimal solution that has a smaller budget.

Theorem 2.5. Let A be the solution computed by Algorithm Greedy, and let OPT− denote the

utility of the optimal solution with reduced budget B − cmax, where cmax = max {c(S) | S ∈ S}. Then

w(A) ≥ (1− 1/e) ·OPT−.

2.2 Fixing the Greedy Algorithm

In Theorem 2.5, the performance of the algorithm was guaranteed only after adding the stream Sk+1.

We now show how to modify Algorithm Greedy to obtain approximate assignments without resource

augmentation.

9

First, let us explain what is the weakness of the greedy algorithm. Roughly speaking, the problem

with a greedy solution is that it may assign a stream S1 with large cost-effectiveness but low absolute

utility, and S1 may block from inclusion another stream S2 whose cost effectiveness is slightly smaller,

but whose absolute utility is much larger. For example, S2 may require the whole bandwidth budget,

so even a tiny stream S1 that was assigned will block S2 from being assigned.

This “hole” in the behavior of Greedy is handled by the following trick: we find the best single-

stream solution, compare it to the greedy solution, and pick the best.

More formally, let Smax = argmax {w(S) | S ∈ S}, and let Amax be the assignment that assigns

the single stream Smax to all possible users. The modified algorithm computes assignment AG by

Algorithm Greedy, computes assignment Amax, and outputs the better one. We denote the latter

assignment by Ã. Note that Ã may still be semi-feasible. However, it is (2e
e−1)-approximate:

Lemma 2.6. w(Ã) ≥ e−1
2e ·OPT.

Proof. By Lemma 2.2, w(Ak) + w̄Ak(Sk+1) ≥
e−1
e ·OPT. Since w̄Ak(Sk+1) ≤ w(Sk+1) ≤ w(Smax), we

get that w(Ak) + w(Amax) ≥
e−1
e ·OPT, and the lemma follows.

A performance guarantee with resource augmentation follows directly:

Corollary 2.7. There exists an algorithm that computes (2e
e−1)-approximate solutions that may use a

capacity of Ku + k̄u for every user u, where k̄u = max {ku(S) | S ∈ S}.

We are also able to obtain an approximation algorithm that does not rely on resource augmentation.

A crude lower bound can be obtained as follows.

Theorem 2.8. There exists an O(n2) time (3e
e−1)-approximation algorithm for the smd problem.

Proof. Consider the assignment A that was computed by the greedy algorithm. Let Su be the last

stream that was assigned to u by the greedy algorithm. Define A1(u) = A(u)\{Su} and A2(u) = {Su},

for every user u. (A1(u) = A2(u) = ∅ if Su does not exist.) Clearly, A(u) = A1(u) ∪ A2(u) for

every u. Both A1 and A2 are feasible assignments and w(A1) + w(A2) ≥ w(A). It follows that

w(A1) + w(A2) + w(Amax) ≥ (1 − 1/e) · OPT, which means that one of A1, A2, and Amax achieves

approximation factor of a most 3e
e−1 .

2.3 Better Approximation Factor for smd

In this section we present an algorithm that computes (e
e−1)-approximate solutions with resource

augmentation, or (2e
e−1)-approximate solutions without resource augmentation. Our approach is based

on the (e
e−1)-approximation algorithm for maximization of nondecreasing submodular set functions

subject to a budget constraint by Sviridenko [16]. This algorithm consists of partial enumeration

combined with a greedy algorithm.

Observe that when considering semi-feasible solutions Lemma 2.1 implies that smd is a maximiza-

tion problem of nonnegative, nondecreasing, submodular and polynomially computable set functions

subject to a budget constraint. It follows that

10

Theorem 2.9. There exists a polynomial time algorithm that computes (e
e−1)-approximate solutions

for smd that may use a capacity of Ku + k̄u for every user u, where k̄u = maxS ku(S).

The proof of the next theorem is similar to the proof of Theorem 2.8.

Theorem 2.10. There exists an polynomial-time (e−1
2e)-approximation algorithm for the smd problem.

3 Instances with Arbitrary Skew

In this section we explain how to deal with instances of smd with arbitrary local skew. The idea is to

use the “classify and select” approach: we reduce an instance of smd with arbitrary skew to a set of

instances of smd where each of the new instances has O(1) skew, and pick the best solution over the

sub-instances.

Before we present the reduction, we formally define the local skew. Given an mmd instance, scale

the kui functions and their corresponding capacities so that for every user u and cost measure i we

have wu(S)
kui (S)

≥ 1 for any stream S for which ws(S) > 0, with equality for at least one stream. Given

this normalization, the local skew of the instance is defined by

α
def
= max

u,S,i

{

wu(S)

kui (S)
: wu(S) > 0

}

.

Notice that α ≥ 1 always, and equality holds if and only if all capacity functions of each user u are

proportional to his utility wu.

Now, suppose that we are given an smd instance I with local skew α. We construct t smd instances

I1, . . . , It, where t = 1 + ⌊logα⌋, where Ii is defined as follows. The streams and users are the same

as in the original instance, and so are the cost function c and the budget B. We define a new utility

function wi
u for every user u:

wi
u(S) =

{

ku(S) 2i−1 ≤ wu(S)
ku(S) < 2i,

0 otherwise.

That is, the ith utility function wi
u of u only considers sets whose utility per capacity ratio is between

2i−1 and 2i. We also set W i
u = Ku.

Theorem 3.1. There exists an O(n2) time algorithm that computes O(log(2α))-approximate solutions

for any instance smd with skew α.

Proof. Let I be a smd instance of skew α, and let I1, . . . , It be the smd instances that are obtained as

above. Clearly, each user-stream pair appears with non-zero utility in exactly one of the smd instances

I1, . . . , It. Hence,
∑

iOPTi ≥
OPT
2 , where OPTi the optimum value of Ii. It follows that there exists

i such that OPTi ≥
OPT
2t . Hence, by finding an approximate solution for every smd instance Ii, and

choosing the one with maximum utility, we get an O(log(2α))-approximate solution for I.

As for the running time, let G = (S, U,E) be the bipartite graph that corresponds to the problem

instance I, namely where (S, u) ∈ E if wu(S) > 0. The reduction places each edge from E in exactly

one of the instances I1, . . . , It. Hence,
∑

i ni = O(n), where ni is the size of the instance Ii. By

Theorem 2.8, an O(1)-approximation can be computed in O(n2
i) for every smd instance Ii. It follows

that the total running time is O(
∑

i n
2
i) = O(n2).

11

4 Multiple Budget Constraints

In this section we show how to reduce mmd to smd. If the server has m finite budget constraints,

and a user has at most mc budget constraints, then the reduction results in losing an approximation

factor of O(mmc). The local skew may also increase by a factor of at most mc. We remark that our

technique can be used to maximize arbitrary submodular functions under multiple budget constraints,

extending the results of Sviridenko [16].

4.1 Reduction from Multiple Constraints to Single Constraint

The main idea in the reduction is to normalize and add all cost measures to single cost, and similarly

to normalize and add all capacity measures to single capacity for every user. Specifically, given an

instance IM of mmd, we apply the following transformation to construct an instance IS of smd. The

users, streams, and utility functions in IS are just the same as in IM . The single server cost function

in IS is defined by c(S) =
∑m

i=1
ci(S)
Bi

for each stream S ∈ S, and the single budget in IS is B = m.

Similarly, we define in IS the single capacity constraint of each user u by ku(S) =
∑

i
kui (S)
Ku

i
and

Ku = mc. This concludes the description of the input transformation. The output transformation is

described later.

We first bound the skew of transformed instance.

Lemma 4.1. Let αS and αM denote the skews of IS and IM , respectively. Then αS ≤ mc · αM .

Proof. Assume that IM is normalized. We compute the local skew of IS . First,

wu(S)

ku(S)
=

wu(S)
∑

i
kui (S)
Ku

i

≤
wu(S)
kui (S)
Ku

i

=
Ku

i · wu(S)

kui (S)
≤ Ku

i · αM

for every user and every i. Hence, wu(S)
ku(S) ≤ Ku

min · αM , where Ku
min = mini K

u
i . On the other hand,

wu(S)

ku(S)
=

wu(S)
∑

i
kui (S)
Ku

i

≥
wu(S)

∑

i
kui (S)
Ku

min

=
Ku

min · wu(S)
∑

i k
u
i (S)

≥
Ku

min

mc
.

It follows that the local skew of IS is at most mc · αM .

Next we relate a solution to IS to a solution to IM .

Lemma 4.2. Let A be an r-approximate assignment to IS. Then (1) ci(A) ≤ m · Bi, for every i,

(2) kui (A) ≤ mc ·K
u
i , for every u and i, and (3) w(A) ≥ OPTM

r , where OPTM is the optimum for IM .

Proof. To prove 1 and 2, note that the cost of a stream S is c(S) =
∑m

i=1
ci(S)
Bi

, therefore

ci(A)

Bi
=

∑

S∈S(A)

ci(S)

Bi
≤

∑

S∈S(A)

c(S) = c(A) ≤ m .

12

S1
2 S2

2 S3
2 S4

2 S5
2 S6

2

0 1 2 3

· · ·

Figure 3: Decomposition of S2. Shaded areas represent S2ℓ2 sets, and white areas represent S2ℓ−1
2 sets.

The dotted lines are boundaries between streams that belong to the same subset.

It follows that ci(A) ≤ m ·Bi for every i. Similarly, kui (A) ≤ mc ·K
u
i for every u and i. We now prove

3. Let A∗ be an optimal solution for IM . We claim that A∗ is a feasible assignment to IS. First,

c(A∗) =
∑

S∈S(A∗)

m
∑

i=1

ci(S)

Bi
=

m
∑

i=1

ci(A
∗)

Bi
≤

m
∑

i=1

Bi

Bi
= m .

Similarly, for every user u,

ku(A∗) =
∑

S∈A∗(u)

mc
∑

i=1

kui (S)

Ku
i

=

mc
∑

i=1

kui (A
∗)

Ku
i

≤
mc
∑

i=1

Ku
i

Ku
i

= mc .

Hence, w(A∗) = OPTM ≤ OPTS, where OPTS is the optimum of IS . If A is an r-approximate

assignment for IS , then w(A) ≥ OPTS/r ≥ OPTM/r, and we are done.

Output transformation. We now explain how to transform a solution A for IS into a feasible

solution for the original IM . Let A be an assignment for IS. Divide S(A) into two sets: S1 contains

all streams whose (single) cost is larger than 1 (i.e., S1 = {S ∈ S(A) | c(S) ≥ 1}), and S2 contains the

rest of the streams. Each stream in S1 is a possible complete solution: such assignment is feasible

since ci(S) ≤ Bi for every S. Formally, for each S ∈ S1 we define the assignment A|{S}, where

A|C(u) = A(u) ∩ C. These are the assignments we consider from S1. Note that
∑

S∈S1
c(S) ≥ |S1|,

and therefore
∑

S∈S2
c(S) ≤ m− |S1|.

To define the assignments based on S2, divide S2 into subsets Si2 as follows (see example in Fig-

ure 3). Let each set Sj ∈ S2 be represented by an interval of length c(Sj), and order these intervals

consecutively along the real line starting from 0 in arbitrary order. Now consider the integer points

of the real line. For each such point ℓ, there is at most one stream whose interval contains ℓ; this

stream (if exists) constitute the set S2ℓ2 . The streams that lie to the right of ℓ − 1 and to the left of

ℓ constitute S2ℓ−1
2 . Notice that since we have that

∑

S∈S2
c(S) ≤ m − |S1|, our partition induces at

most 2m− 1 subsets of S.

Given these 2m−1 subsets of S1∪S2, let Ai be the restriction of the smd assignment to the set with

largest utility. By construction, Ai satisfies the server constraints (as we show), but not necessarily

the user constraints. To satisfy the user constraints, we use the same approach again. Namely, for

every user u, we decompose the set Ai(u) into at most 2mc − 1 subsets that satisfy the user capacity

constraints, and remove from Ai the streams that do not belong the subset of Ai(u) of maximum

utility. This completes the specification of the output transformation.

We summarize in the following theorem.

13

Theorem 4.3. An r-approximation algorithm for smd implies an O(mmcr)-approximation algorithm

for mmd.

Proof. Let A be an r-approximate assignment with respect to IS , and consider the transformed output.

We first argue that the output is feasible. At the server’s side, if the solution is from S1 then it is

feasible being a single stream, and if the solution is from S2 then it is feasible because its single cost is

at most 1, and therefore its normalized cost in any measure is at most 1. Similarly, no user capacity

constraint is violated.

Regarding the approximation factor, since the number of assignments we consider is bounded by

2m− 1, the assignment Ai we choose has utility which is at least a 1
2m−1 fraction of the utility in the

solution to IS . In the last stage, we discard streams from users to obtain assignments that adhere to

user constraints, and by the same argument, we get from each user at least a 1
2mc−1 fraction of the

remaining utility. The theorem follows.

We note that the analysis of Theorem 4.3 is tight up to a constant factor (see Section 4.2).

Theorem 4.3 leads us to the following result:

Theorem 4.4. There exists an O(n2) time O(mmc log(2αmc))-approximation algorithm for mmd,

where α is the local skew of the instance, m is the number of cost measures, mc is the maximal number

of capacity constraints at a user, and n is the input length.

Note that if each user has only a single budget constraint with local skew α = 1 (which means

that the user is only limited by the maximal utility it can generate), then our algorithm guarantees

an O(m) approximation. Note further that if all costs and utilities are polynomial in the input length

n, then the approximation ratio is O(mmc log n).

As a final remark for this section, we note that our approach can be used to maximize nonnegative,

nondecreasing, submodular, and polynomially computable set functions under m budget constraints,

obtaining an O(m) approximation ratio. The idea is to execute the reduction from multiple constraints

to single constraint. This will result in a single budget constraint without changing the properties of the

set function. An approximate solution for this instances can be found using Sviridenko’s algorithm [16],

and this solution can be transformed into an O(m)-approximate solution for the original multiple

constraints instance.

4.2 Tightness of Theorem 4.3

In this section we present an mmd instance with unit skew on which Theorem 4.3 causes a deterioration

by a factor of m ·mc in the utility of the solution.

Consider the following linear mmd instance IM with m budget constraints and one user with mc

capacity constraints. There are m+mc − 1 streams, where

ci(Sj) =















1
2 + ε i = j < m
1
2
+ε

mc
i = m and j ≥ m,

0 otherwise,

14

where ε is a small enough, e.g., ε = 1
m2 . Also, Bi = 1 for every i ∈ {1, . . . ,m}. There is only one user

with mc capacity functions, where

kui (Sj) =

{

1
2 + ε′ j = m+ i− 1

0 otherwise,

where ε′ is a small enough, e.g., ε′ = 1
m2

c
. Also, Ku

i = 1 for every i ∈ {1, . . . ,mc}. Finally,

wu(Sj) =

{

1 j < m
1
mc

j ≥ m .

First, observe that A(u) = {S1, . . . , Sm+mc−1} is an optimal solution. This is because ci(A) =
1
2+ε

for every i ∈ {1, . . . ,m}, and kui (A) =
1
2 + ε for every i ∈ {1, . . . ,mc}. Hence, OPT = m.

Now consider the smd instance IS obtained by the reduction. The cost function is:

c(Sj) =

{

1
2 + ε j < m
1
2
+ε

mc
j ≥ m,

and the budget is B = m. The user capacity function is:

ku(Sj) =

{

1
2 + ε′ j ≥ m

0 otherwise,

and the capacity bound is Ku = mc.

The decomposition of A that is outlined in the proof of Theorem 4.3 may put the streams

Sm, . . . , Sm+mc−1 in a single set S12 and every stream Sj for j < m in a different set Sj2 , and only one

of the sets will survive. Say that S12 survives. In this case, we now turn to the decomposition of A1(u).

Since ku(Sj) = 1
2 + ε for every Sj ∈ A1(u), it follows that only one stream S from A1(u) survives.

Since wu(S) =
1
mc

it follows that the utility of the computed stream is OPT
mmc

.

5 Allocating Small Streams

In this section we present an approximation algorithm for small streams. Specifically, when all numbers

in the input are polynomial in n, the algorithm provides O(log n)-approximate assignment for the case

where each stream has cost which is at most a O(1/ log n) fraction of each budget, and at most

O(1/ log n) fraction of each capacity. The algorithm we present is an online algorithm: it considers

streams one by one as they arrive, and decides whether to supply the stream and to which users,

without knowledge about future arrivals. Our algorithm is based on the work of Awerbuch, Azar, and

Plotkin [3].

We focus on the special case of mmd where mc = 1. The extension to the case of mc > 1 is

straightforward.

For the sake of brevity, we assume that for every user capacity function ku, there exists a virtual

cost function cu such that cu(S) = ku(S) for every S, and a virtual budget Bu = Ku. We denote the

15

original set of budgets by M and we abuse notation by treating U as a set of users and also as a set

of budgets.

We first generalize the local skew as follows. Given an mmd instance, normalize the costs such that

1 ≤
1

m+ |U |
·

∑

u∈X wu(S)

ci(S)
≤ γ , (1)

for any stream S ∈ S, user set X ⊆ {u : wu(S) > 0}, and cost function i ∈ M ∪ U , such that

ci(S) > 0, where γ is as small as possible. The upper bound γ is called the global skew of the instance.

The global skew γ bounds the ratio between the best and the worst streams, in terms of utility for

each unit cost. Note that γ ≥ α for all instances of mmd. Finally, we define

µ
def
= 2γ(m+ |U |) + 2 .

Given an assignment A, the normalized load on budget i ∈ M incurred by A is LA(i)
def
=

1
Bi

∑

S∈S(A) ci(S), and similarly, for u ∈ U , the normalized load is LA(u)
def
= 1

Bu

∑

S∈A(u) cu(S). We

also define the exponential cost function of budget i ∈M ∪ U by CA(i)
def
= Bi(µ

LA(i) − 1).

Let S1, . . . , Sn be an arbitrary order of the streams. Algorithm Allocate, given formally below,

starts with the empty assignment A0(u) = ∅ for every u. Then for every stream Sj, it decides

whether to allocate it and to which users, according to the exponential cost functions. Note that the

maximal subset Uj may be obtained by starting with U and removing clients in decreasing order of
cu(Sj)
Bu
· CAj−1

(u)/wu(Sj).

Since the order in which the algorithm considers streams is arbitrary, and since decisions are never

revoked, the algorithm can be applied in an on-line scenario, where future requests are unknown.1

Algorithm 2 - Allocate(U,S, c, B,w)

1: A0(u) = ∅ for every u

2: for j = 1 to n do

3: Let CAj−1
(i) = Bi[µ

LAj−1
(i) − 1] for every i ∈M ∪ U .

4: if there exists a maximal (inclusion wise) subset ∅ Uj ⊆ U such that

∑

i∈M∪Uj

ci(Sj)

Bi

· CAj−1
(i) ≤

∑

u∈Uj

wu(Sj)

then

5: Assign Sj to the users in Uj: if u ∈ Uj then Aj(u) = Aj−1(u) ∪ {Sj}; otherwise Aj(u) = Aj−1(u).

6: else

7: Aj = Aj−1

8: end if

9: end for

We start out analysis by showing that the algorithm computes feasible assignments.

Lemma 5.1. If ci(S) ≤
Bi

logµ for all i and S, then no budget constraints are ever violated.

1The algorithm can also be extended to scenarios where streams have dynamic resource requirements, so long as their

requirements are known when they arrive. This includes, for example, streams of finite duration. Details are similar to

the algorithm of [3].

16

Proof. By contradition. Let Sj be the first stream that caused the normalized load on some budget i

to exceed 1. This means that LAj−1(i) > 1−
ci(Sj)
Bi
≥ 1− 1

log µ . It follows that

CAj−1(i)

Bi
= µ

LAj−1
(i) − 1 > µ1− 1

log µ − 1 = 2log µ−1 − 1 =
µ

2
− 1 = γ(m+ |U |) .

Hence, by the RHS of (1) we get that

ci(Sj)

Bi
· CAj−1

(i) > γ(m+ |U |) · ci(Sj) ≥
∑

u∈Uj

wu(Sj)

which means that stream Sj could not have been assigned to Uj.

We show that the approximation ratio of the algorithm is O(1 + 2 log µ) if ci(S) ≤
Bi

log µ for every

stream S and i ∈ M ∪ U . Let Cj =
∑

i∈M∪U CAj
(i) for every j. Below we first show that the utility

gained by the algorithm is an Ω(1
logµ) fraction of Cn, and then we show that the additional utility

gained by any assignment is at most Cn.

Lemma 5.2. Let A be the assignment that is computed by the algorithm. Then Cn ≤ 2 log µ · w(A).

Proof. We prove that Cj ≤ 2 log µ · w(Aj) by induction on j. The base case of j = 0 is trivial. For

the inductive step, let Sj be a stream that was assigned to the users in Uj . Using induction, suffices

to prove that

Cj − Cj−1 ≤ 2 log µ ·
∑

u∈Uj

wu(Sj) .

Clearly,

Cj − Cj−1 =
∑

i∈M∪Uj

(

CAj
(i)− CAj−1

(i)
)

.

Now, if the normalized load of budget i was not changed due to Sj, then CAj
(i) = CAj−1

(i). Otherwise,

CAj
(i) − CAj−1

(i) = Bi ·
(

µ
LAj

(i)
− µ

LAj−1
(i)
)

= Bi · µ
LAj−1

(i)
(

2log µ·ci(Sj)/Bi − 1
)

.

Since ci(Sj) ≤
Bi

logµ and 2x − 1 ≤ x for x ∈ [0, 1], it follows that

CAj
(i)−CAj−1

(i) ≤ Bi · µ
LAj−1

(i)
(

log µ ·
ci(Sj)

Bi

)

= log µ · µLAj−1
(i)
ci(Sj)

= log µ

(

CAj−1(i) ·
ci(Sj)

Bi
+ ci(Sj)

)

.

Combined with the condition of Line 4 of the algorithm and the LHS of (1), we obtain

Cj − Cj−1 ≤ log µ ·
∑

i∈M∪Uj

(

ci(Sj)

Bi
· CAj−1(i) + ci(Sj)

)

≤ log µ ·





∑

u∈Uj

wu(Sj) +
∑

i∈M∪Uj

ci(Sj)





≤ 2 log µ ·
∑

u∈Uj

wu(Sj) ,

as required.

17

Lemma 5.3. Let A∗ be an optimal assignment. Then w(A∗)− w(A) ≤ Cn.

Proof. Consider the stream Sj and let U∗
j be the set of users u such that Sj ∈ A∗(u)\Aj−1(u). Observe

that if the algorithm did not assign Sj to any user (Uj = ∅), then U∗
j = {u : Sj ∈ A∗(u)}. By the

maximality of Uj,
∑

u∈Uj∪U∗

j

wu(Sj) <
∑

i∈M∪Uj∪U∗

j

ci(Sj)

Bi
· CAj−1

(i) .

If Uj 6= ∅, then by the condition of Line 4 we know that
∑

u∈Uj
wu(Sj) ≥

∑

i∈M∪Uj

ci(Sj)
Bi
· CAj−1

(i).

Hence,
∑

u∈U∗

j

wu(Sj) <
∑

i∈U∗

j

ci(Sj)

Bi
· CAj−1

(i) .

Otherwise, if Sj was disregarded by the algorithm, then

∑

u∈U∗

j

wu(Sj) <
∑

i∈M∪U∗

j

ci(Sj)

Bi
· CAj−1

(i) .

It follows that

w(A∗)− w(A) ≤
∑

j

∑

i∈M∪U∗

j

ci(Sj)

Bi
· CAj−1

(i)

≤
∑

j

∑

i∈M∪U∗

j

ci(Sj)

Bi
· CAn(i)

≤
∑

i∈M

CAn(i)
∑

Sj∈S(A∗)

ci(Sj)

Bi
+

∑

i∈U

CAn(i)
∑

Sj∈A∗(i)

ci(Sj)

Bi

≤
∑

i∈M∪U

CAn(i)

= Cn ,

where the last inequality is due to the fact that the optimal solution A∗ must satisfy the budget

constraints.

Theorem 5.4. Algorithm Allocate computes (1 + 2 log µ)-approximate solutions in the case where

ci(S) ≤
Bi

log µ for every stream S and cost measure i.

Proof. By the previous two lemmas is follows that w(A∗) − w(A) ≤ 2 log µ · w(A). Hence, w(A∗) ≤

(1 + 2 log µ) · w(A).

Note that γ is polynomial in n if all numbers in the input are polynomial in n. In this case the

approximation ratio is O(log n).

Acknowledgments

The authors would like to thank Baruch Awerbuch for very useful discussions, and the anonymous

reviewers who intercepted a few errors in the manuscript.

18

References

[1] A. A. Ageev and M. Sviridenko. Pipage rounding: A new method of constructing algorithms with

proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328, 2004.

[2] N. Alon, D. Moshkovitz, and S. Safra. Algorithmic construction of sets for k-restrictions. ACM

Transactions on Algorithms, 2(2):153–177, 2006.

[3] B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive on-line routing. In 34th IEEE

Symp. on Foundations of Computer Science, pages 32–40, 1993.

[4] N. Benameur, S. Ben Fredj, F. Delcoigne, S. Oueslati-Boulahia, and J. W. Roberts. Integrated

admission control for streaming and elastic traffic. In Quality of Future Internet Services, volume

2156 of LNCS, pages 69–81. Springer, 2001.

[5] C. Bewick, R. Pereira, and M. Merabti. Admission control and routing of smoothed video streams.

International Journal of Simulation, Systems, Science and Technology, 6(3-4):61–68, 2005.

[6] C. Chekuri and A. Kumar. Maximum coverage problem with group budget constraints and

applications. In 7th Intl. Workshop on Approximation Algorithms for Combinatorial Optimization

Problems, volume 3122 of LNCS, pages 72–83, 2004.

[7] Cisco Systems, Inc. Integrated video admission control for the delivery of quality video experience.

Cisco Systems White Paper, 2006.

[8] Cisco Systems, Inc. The evolving IPTV service architecture. Cisco Systems White Paper, 2007.

[9] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652,

1998.

[10] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. Analysis of approximation algorithms for

maximizing submodular set function II. Mathematical Programming Study, 8:73–87, 1978.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W.H. Freeman and Company, San Francisco, 1979.

[12] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problem. PWS Publishing

Company, 1997.

[13] S. Khuller, A. Moss, and J. Naor. The budgeted maximum coverage problem. Information

Processing Letters, 70(1):39–45, 1999.

[14] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley & Sons,

Inc., 1988.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing

submodular set functions I. Mathematical Programming, 14(1):265–294, 1978.

[16] M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint.

Operations Research Letters, 32(1):41–43, 2004.

[17] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin Heidelberg New York, 2001.

19

