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A Theory of Clock SynchronizationbyBoaz PattSubmitted to the Department of Electrical Engineering and Computer Scienceon October 17, 1994, in partial ful�llment of therequirements for the degree ofDoctor of PhilosophyAbstractWe consider the problem of clock synchronization in a system with uncertain message delaysand clocks with bounded drift. To analyze this classical problem, we introduce the con-cept of synchronization graphs, and show that the tightest achievable synchronization atany given execution is characterized by the distances in the synchronization graph for thatexecution. Synchronization graphs are derived from information which is locally availablefor computation at the processors (local time of events and system speci�cation), and cantherefore be used by distributed algorithms. Using synchronization graphs, we obtain the�rst optimal on-line distributed algorithms for external clock synchronization, where thetask of all processors is to estimate the reading of the local clock of a distinguished proces-sor. The algorithms are optimal for all executions, rather than only for worst cases. Thealgorithm for systems with arbitrarily drifting clocks has high overhead; we prove that thisphenomenon is unavoidable, namely any optimal general algorithm for external synchro-nization has unbounded space complexity. For systems with drift-free clocks (i.e., clocksthat run at the rate of real time), we present a particularly simple and e�cient algorithm.We also present results for internal synchronization, where the task of the processors in thesystem is to generate a synchronized \tick." Our approach is robust in the sense it encom-passes various system models, such as point-to-point or broadcast channels, communicationlinks that may lose, duplicate and re-order messages, and crashing processors. In addition,synchronization graphs can be used to detect corrupted information.Thesis Supervisor: Nancy A. LynchTitle: Cecil H. Green Professor Of Computer Science and EngineeringThesis Supervisor: Baruch AwerbuchTitle: Associate Professor of Computer Science, Johns Hopkins University
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Chapter 1Introduction1.1 BackgroundClock synchronization is one of the most fundamental problems of distributed computing.Roughly speaking, the goal of clock synchronization is to ensure that physically dispersedprocessors will acquire a common notion of time, using local physical clocks (whose ratesmay vary), and message exchange over a communication network (with uncertain trans-mission times). The discrepancy between clock readings is called the tightness of synchro-nization. There are numerous applications for synchronized clocks in computer networks.For example, in database systems, version management and concurrency control usuallydepend on the ability to consistently assign timestamps to objects. Many distributed ap-plications use timeouts (e.g., communication protocols, resource allocation protocols), andtheir performance depends to a large extent on the quality of synchronization between re-mote processors. From the theoretical perspective, having synchronized clocks enables oneto use distributed algorithms that proceed in rounds, thus considerably simplifying theirdesign and analysis. For an excellent discussion of the importance of clock synchronization,see Liskov's keynote address at the 9th PODC [18].The basic di�culty in clock synchronization is that timing information tends to deteri-orate over the temporal and spatial axes. More speci�cally, when the rate of local clocksis not known precisely in advance, the tightness of synchronization loosens as time passes;and when a processor is communicating timing information to remote processors, there issome inherent cumulative timing uncertainty, unless message transmission times are knownprecisely. Practically, ideal clocks and communication links do not exist. However, there9
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local time = T’Figure 1-1: Processor v send a message m to processor s, s sends a message m0 back to v.A distinguished event, marked by a cross, occurs at s after m is received and before m0 issent.are always some a priori guarantees about the timed behavior of the system: usually it isassumed that local clocks have known lower and upper bounds on their rate of progress withrespect to real time. We call these bounds drift bounds. In addition, it is assumed that thereare known lower and upper bounds on the time required to transmit a message. We callthese bounds message latency bounds. The essence of all clock synchronization problems ishow to use these bounds to obtain tight synchronization.In this thesis we present a theoretical study of clock synchronization problems. Ourstarting point is an elementary variant of the problem, described informally as follows.Obtain bounds on the reading of the local clock when some distinguished remoteevent occurs in the execution.Example. Consider a system that consists of two processors s and v, connected by abidirectional communication link. Suppose that processor v sends a message m to s whenthe local clock at v shows T ; processor s then responds by sending a message m0 to v,which is received at v when its local clock shows T 0. See the time-space diagram in Figure1-1. (A brief explanation of time-space diagrams is given in Appendix A.) Suppose furtherthat some distinguished event occurs at processor s after m is received and before m0 issent. Clearly, when m0 is received, processor v can deduce that the distinguished eventoccurs within its local time interval [T; T 0]. The di�erence (T 0 � T ) is the tightness ofsynchronization. 10



To study synchronization problems, we de�ne a system model, and analyze it at anabstract graph-theoretic level. Using the results we obtain for graphs, we analyze clocksynchronization problems that are more practical than the elementary variant above. Specif-ically, we give results for two kinds of clock synchronization tasks, motivated by the followingsettings.External Synchronization: There exists a distinguished processor called source in thesystem. The task for each other processor is to obtain, at each time, the smallestinterval [a; b] such that the current reading of the source clock is in [a; b].1Internal Synchronization: Keep all clocks in the system as close to each other as possi-ble, running at the rate of their physical hardware clocks, except for isolated pointswhere clock values are reset.Before we describe our results, we �rst describe what was known prior to this work. Weremark that much previous work was done for fault-tolerant clock synchronization, whichis beyond the scope of this thesis.1.2 Previous WorkDi�erent variants of the clock synchronization problem have been the target of a vastamount of research from both practical viewpoint (e.g., [26, 6, 24, 28, 1, 15]) and theoreticalviewpoint (e.g., [16, 19, 7, 13, 33, 3], surveys [31, 30] and references therein); the exactde�nition of the problem depends both on the intended use of the clocks and on the speci�cunderlying system. The large number of variants is justi�ed by the wide spectrum ofapplications.One of the popular variants studied theoretically is internal synchronization in the casewhere all clocks in the system are assumed to run exactly at the rate of real time (we callsuch clocks drift-free hereafter). Lundelius and Lynch [19] consider the case in which thereis a communication link between each pair of processors, and message latency bounds areidentical for all links in the system. For this case, they present a synchronization algorithm1In this thesis, numbers range over R [ f1;�1g unless explicitly indicated otherwise. Square bracketsare used to denote intervals, including the case of in�nite intervals.11



that gives optimal tightness in the worst possible scenario allowable by the system speci-�cations. Halpern et al. [13] generalized the results of [19] to networks whose underlyingtopology is arbitrary, and whose message latency bounds may be di�erent for each link.The main idea in the analysis of [13] is to formulate the problem as a linear program; solv-ing this program, they �nd the worst case scenario, and an algorithm is presented so thatoptimal tightness is guaranteed in this case. In [3], Attiya et al. observe that the algorithmof [13] always gives the best worst-case tightness, even if the actual execution happens tobe more favorable for synchronization than the worst possible. This observation motivatesthem to generalize the results of [13]; speci�cally, in [3] they present an algorithm whichgives optimal tightness for each speci�c execution of their system.The focus in all the above papers [19, 13, 3] is on obtaining bounds in a centralizedo�-line fashion. Typically, the algorithms can be viewed as consisting of two stages. In the�rst stage, timing information is gathered at the processors by sending messages over thelinks. Then a second stage begins, where all the information is sent to one processor; thatprocessor makes the necessary computation, and distributes the results back to the otherprocessors. Only then can each processor adjust its clock.Practical work is typically more focused on on-line distributed algorithms. Usually,loosely coupled systems use external synchronization algorithms, and tightly coupled sys-tems use internal synchronization. One important protocol for external synchronization isNTP [25, 26], used over the Internet. Another prominent technique in practice is \proba-bilistic clock synchronization" proposed by Cristian [6]. In this approach, the transmissiontime of messages is assumed to adhere to some probability distribution, and the transmis-sion times of di�erent messages are assumed to be independent. Under these assumptions,some stochastic guarantees can be made by the synchronization protocol.1.3 Contents of This ThesisOur chief objective in this thesis is to acquire better theoretical understanding of clocksynchronization. Our �rst step towards this goal is to de�ne a mathematical model, inwhich we state our system assumptions precisely, and de�ne the performance criterion bywhich we measure the quality of the synchronization algorithm. We then abstract executionsof systems using a graph theoretic formulation. Using graphs, we state and prove our main12



characterization of tightness of clock synchronization. From these results, we derive newoptimal external synchronization algorithms and a new lower bound on the tightness ofinternal synchronization. Moreover, we give evidence that indicates that there is no e�cientoptimal synchronization algorithm that works for arbitrary clock drift bounds and messagelatency bounds.In the remainder of this section, we give a more detailed overview of the thesis.1.3.1 The SettingBased on the model of timed input/output automata of Lynch and Vaandrager [20], wede�ne in Chapter 2 a new formal model, called mixed automata. This model enables usto describe systems with local clocks. Using the formalism of mixed automata, we de�nein Chapter 3 the environment we consider. Intuitively, the main assumptions expressed byour de�nitions are the following. First, each message, when received (if at all), has a knownlatency lower bound which is a �nite non-negative real number, and a known latency upperbound which is at least the lower latency bound, but it may be in�nite. Secondly, eachlocal clock has known �nite non-negative lower and upper drift bounds. And thirdly, eachexecution that satis�es these bounds is possible. We remark that our assumptions includemany cases, such as communication links that may lose, re-order, or duplicate messagesarbitrarily; systems with broadcast channels; and the case of processor and link crashes.To facilitate these properties, we assign to the clock synchronization modules a somewhat\passive" part in the system. Our formulation is such that clock synchronization algorithmsdo not initiate nor delay message transmission and delivery; rather, in our model, messagesending is initiated solely by abstract send modules, and the clock synchronization algorithmis allowed to pass information only by \piggybacking" on existing message tra�c, wherewe assume that piggybacking is done instantaneously. Thus, the role of a synchronizationalgorithm can be viewed as limited to the interpretation of executions of the environmentas they unfold. (Technically, since our de�nition of executions contains also the real timeof occurrence of events, only a local view of the execution, which contains just local timesof occurrence, is available for computation.) We remark that our model can be viewed as adistributed version of the model considered in [3].To evaluate the quality of a synchronization algorithm, we de�ne in Chapter 4 a newmeasure, which may be of independent interest in its own right. Intuitively, our approach is13



a combination of the execution-speci�c approach of [3], the competitive analysis approach[32, 23], and the causality partial order of Lamport [16]. Loosely speaking, we call aclock synchronization algorithm locally K-competitive if the tightness of its output at anypoint at any execution is at most K times the best possible tightness among all correctalgorithms, given the local view at that point. An algorithm is called optimal if it is locally1-competitive.1.3.2 A General TheoryThe heart of this thesis is a new analysis of clock synchronization problems. Intuitively, weshow that even though clock synchronization problems can be formulated as linear programs[13], fortunately they have a much simpler structure, namely distances in a certain graph.More speci�cally, in Chapter 5 we introduce a new concept, which we call synchroniza-tion graphs. Synchronization graphs are weighted, directed graphs derived from systemspeci�cations and local views of executions. Since these quantities are locally available forprocessing, synchronization graphs can be computed by distributed algorithms. The mainresult of the theory is a characterization of the achievable tightness of synchronization atany execution in terms of distances in the corresponding synchronization graph. An impor-tant property of this result is that these distances can be computed on-line in a distributedfashion, thereby giving rise to new algorithmic techniques for optimal synchronization.Synchronization graphs provide us with a simple and robust concept that deals in auniform manner with both the uncertainty of transmission times and the uncertainty dueto clock drifts. In Chapter 9 we show how to incorporate additional timing information ofcertain simple types in synchronization graphs. Moreover, we show a simple property ofsynchronization graphs which is equivalent to the consistency of views with system speci�-cations. This idea can be used to detect faults.1.3.3 ApplicationsAfter proving the general results in Chapter 5, we turn to derive results for speci�c synchro-nization tasks. In Chapter 6 we de�ne and analyze the external synchronization problem.In external synchronization, there is a distinguished source processor whose clock is drift-free; each other processor in the system is required to provide, at all times, bounds on thecurrent reading of the source processor. The di�erence between the bounds is called the14



external tightness of the synchronization at that point. In Chapter 6, we prove a lowerbound on the tightness of synchronization at any point, and present a distributed on-linealgorithm that meets this bound at all points. This characterization is done for the generalsetting, where clock drift bounds and message latency bounds are arbitrary. The algorithmfor the general case is ine�cient. By contrast, we present an e�cient algorithm for optimalexternal synchronization, under the assumption that all clocks in the system are drift-free.We compare our approach with the popular technique of round-trip probes, and explainwhy our approach is superior.In Chapter 7, we consider the internal clock synchronization problem, where each pro-cessor is required to generate a single \tick," and the internal tightness of synchronizationin an execution is a bound on the length of real time interval that contains all ticks. Us-ing synchronization graphs, we obtain a lower bound on the achievable internal tightnessof synchronization. Our lower bound generalizes known lower bounds for drift-free clocks[19, 13, 3] to the case of drifting clocks. Moreover, our derivation is relatively simple andintuitive.In Chapter 8, we show a somewhat surprising result regarding the space complexity ofoptimal synchronization algorithms. We de�ne a certain computational model, in whichoutput values are restricted to be expressed as linear combination of the inputs with integercoe�cients (all known algorithms can be expressed this way). In that model, we show thatfor any external synchronization algorithm there are scenarios that require unbounded spacecomplexity in order to produce optimal output.The latter result provides strong evidence to the e�ect that no single algorithm can bee�cient, general and optimal at the same time. Practical algorithms must be e�cient; thenew algorithms we suggest are optimal.1.4 Signi�cance of the ResultsWe believe that this thesis contributes to the understanding of clock synchronization in anumber of ways.First, it suggests a new way of looking at the problem, and presents a constructivecharacterization of achievable tightness. Even though our results indicate that there is no\ultimate solution" for clock synchronization, i.e., an algorithm that is general, e�cient15



and optimal, we believe that using the techniques presented in this thesis, better practicalalgorithms can be developed, by compromising generality or optimality.We also believe that the discovery of synchronization graphs is an important contributionto the research of timing-based systems. In some sense, synchronization graphs can beviewed as the extension of Lamport's graphs [16], used to describe executions of completelyasynchronous systems, to the case where processors have clocks.In addition, we think that our approach of local competitiveness can be used for problemsin di�erent settings, as it captures an intuitive notion of 
exible algorithms that guaranteeoutput close to the best possible for each possible scenario.1.5 Critique of the ResultsInformally, the usefulness of synchronization graphs relies on a few strong assumptions.(1) The system speci�cation is such that if an event may occur at either of two points,then this event may occur at any point between them.(2) Processors and communication links follow the system speci�cation.(3) All executions that satisfy the system speci�cations are possible.These assumptions are restrictive. Assumption (1), for example, rules out the case thatlocal clocks run at a �xed but unknown rate. It also rules out systems where messagetransmission time can be a point in either of two disjoint intervals (this may be the case, forexample, when using links that divide the communication into discrete frames). Assump-tion (2) seems even more problematic: even if the speci�cation allows for some limited kindof faults, it is hardly ever the case that one can guarantee operation of distributed systemswithout unpredictable faults. Clocks are particularly volatile, as the many papers aboutfault-tolerant clock synchronization can testify. Assumption (3) seems unrealistic as well:intuitively, it means that all possible timing information is given in the system speci�ca-tion. In many cases, however, additional information can be obtained, e.g., from a humanoperator.Let us defend our thesis. The �rst assumption is absolutely essential for our analysis;the whole theory breaks down if the timing speci�cation is such that there are events thatmay not occur between points in which they are allowed to occur. We claim, however,that our formulation is appropriate in many cases. For example, when the uncertainty of16



message transmission times is relatively high, the e�ect of discrete communication framesis negligible. Also, while conventional quartz clocks (such as the ones used in most CPUs)usually maintain a �xed rate, this rate may change abruptly, thus making the rate look asif it takes values from a continuous range. Hence we argue that assumption (1) seems to bea reasonable abstraction.Consider assumption (2). For systems with faults, our analysis provides a partial solutionin the form of fault detection. Even though we do not know how to use synchronizationgraphs directly to correct errors, we know how to use synchronization graphs to detectthem. Moreover, when computing distances over synchronization graphs (as our techniquessuggest), the detection comes \for free." It is also conceivable that synchronization graphscan be used in conjunction with some fault tolerance scheme that uses redundancy toeliminate erroneous information.Assumption (3) is required only for the optimality claims, that is, we use it to obtainlower bounds on the achievable tightness of synchronization. Our algorithms work just as�ne if this assumption is removed: it might be the case, however, that additional informationcan be used to improve performance. Some cases of additional timing information can bemodeled by clock synchronization graphs: we give a few simple examples in Chapter 9.Finally, let us address the validity of our assumption that clock synchronization algo-rithms are \passive," i.e., that they do not initiate message sending by themselves. Weargue that this assumption is not really restrictive; it is used as a convenient theoreticalabstraction that enables us to compare di�erent algorithms. Using this model, we viewclock synchronization algorithms as if their role is merely to interpret the execution; if analgorithm is optimal in our sense, then it gives the tightest results for any execution, andcan be used under any pattern of message tra�c.1.6 Structure of this ThesisThe organization of this thesis is as follows. Each chapter begins with a short description ofits contents, and ends with an intuitive summary of the main ideas. In Chapter 2 we de�nethe mixed automaton model, which provides us with the formalism we use in describingthe systems considered in this thesis. In Chapter 3 we describe the architecture of theclock synchronization systems studied in this thesis, and de�ne the basic notions of views17



and patterns. In Chapter 4 we de�ne the synchronization tasks we consider, and the waywe evaluate their quality, namely the concepts local competitiveness and optimality forsynchronization algorithms. In Chapter 5 we de�ne the concept of synchronization graphs,and present our main results. In Chapter 6 we consider the external clock synchronizationproblem. We give matching bounds on the tightness for general systems, and an e�cientoptimal algorithm for systems with drift-free clocks. In Chapter 7 we give a lower bound onthe achievable tightness for internal synchronization. In Chapter 8 we prove a space lowerbound for optimal external synchronization algorithms for general systems. In Chapter 9 wepresent a few extensions to the concept of synchronization graphs. We conclude in Chapter10 with a few critical remarks about the results, subsequent work, and open problems.In Appendix A, we describe the standard method of time-space diagrams. An index isgiven at the end of the thesis, to aid the reader in tracing de�nitions of concepts.
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Chapter 2The Mixed Automaton ModelIn this chapter we de�ne the mixed automatonmodel, which is the underlying computationalmodel we consider in this work. Our goal is to formalize the notion of a distributed systemwith clocks. The development in this chapter is elementary: some readers may wish to skipdirectly to the more speci�c de�nitions of clock synchronization systems in Chapter 3, andrefer to the general de�nitions of this chapter when appropriate.The mixed automaton model is based on the timed I/O automata model of Lynch andVaandrager [22, 20], abbreviated TIOA henceforth. An important feature of the model isthat simple modules, under certain compatibility conditions, can be combined to obtain amore complex module.1 The main idea in our model, as described in this chapter, is thatstates of the system contain a component called now , which describes the (formal) real timein which the state exists, and components called local time, which describe the readings ofthe local clocks in that state. (In TIOA, there are no special components for local times.)Time passage is formalized using a special action denoted �. The now and the local timecomponents are changed only by the time-passage action, which means that the local timesrepresent local clocks that cannot be reset.We open this chapter in Section 2.1 with the de�nition of mixed automata, and alsode�ne a few particular properties of mixed automata that we shall use later. In Section2.2 we de�ne the notions used to describe how an automaton \runs," namely executionsand timed traces. We conclude this chapter by describing composition of mixed automata,which tells us how distinct submodules communicate within a larger module.1We shall use the terms \automaton" and \module" interchangeably throughout this thesis.19
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t1 t2<Figure 2-1: Illustration of De�nition 2.1. The N function maps elements of S to realnumbers. The trajectory ! is an inverse of N , and maps the \<" relation to a \!" relation.2.1 De�nition of Mixed AutomataOur �rst step is to give a de�nition of trajectories (adapted from [20]), which have turnedout to be a key concept in the formal analysis of real-time systems (see, e.g., [10, 21]).Intuitively, a trajectory for a given interval will be used to describe an \evolution" of a non-deterministic system when only time passes through that interval of time. The de�nitionbelow is stated in general terms; the specialization for our purposes is done later. Figure2-1 gives an illustration of the following de�nition.De�nition 2.1 Let S be a set, let N be a function N : S 7! R, and let \!" be a binaryrelation over S.2 Given a (possibly in�nite) interval I of R, a trajectory for I; S;N and !is a function ! : I 7! S, such that N(!(t)) = t for all t 2 I, and such that for all t1; t2 2 Iwith t1 < t2, we have !(t1)! !(t2).The interpretation of the abstract notion of trajectory becomes clearer when we de�neautomata. Intuitively, a mixed automaton is a formal representation of a non-deterministicsystem in a framework of real time, which is represented by non-negative real numbers. Inthis context, S in Def. 2.1 is used to represent the set of system states; each state s containsthe single time point of its existence, which given by a now(s) mapping (corresponding to Nin Def. 2.1); a trajectory of an interval is the way the states change while time values rangeover that interval. Assuming that ! is a relation (rather than a function) corresponds tothe non-deterministic nature of the system.2 Throughout this thesis we denote the set of real numbers by R, and the non-negative reals by R+.20



We now proceed with the de�nition of mixed automata. In addition to the now at-tribute of states which represents real time (as in the TIOA model [20]), a state of a mixedautomaton may also have local times attributes, for each local clock. The locations of clocksare represented by special objects called sites. Formally, we have the following de�nition.De�nition 2.2 (Mixed I/O Automata) A mixed I/O automaton A is de�ned by the fol-lowing components.� A �nite, possibly empty set of sites sites(A).� A set of states states(A) with the following mappings:now : states(A) 7! R+T : sites(A)� states(A) 7! Rjsites(A)jThe value now(s) is called the real time of s. For a site v 2 sites(A), we use thenotation local timev(s) = T (v; s). T (s) is used as a function from sites to R.� A nonempty set of start states start(A) � states(A).� A set acts(A) of actions. One of the actions is a special time-passage action, denoted�; the other actions are called discrete. The actions are partitioned into external andinternal actions, where time passage is considered to be external. The visible actionsare the discrete external actions. Visible actions are partitioned into input and outputactions.� A transition relation trans(A) � states(A) � acts(A) � states(A). We also use theshorthand s �!As0 for (s; �; s0) 2 trans(A); when the context is clear, we sometimeswrite s �!s0. For an action � and a state s, if there exists a state s0 such that s �!s0,then we say that � is enabled in s.We require that A satisfy the following axioms.C1 For all s 2 start(A), now(s) = 0.C2 For all s �!s0 with � 6= �, now(s) = now(s0) and T (s) = T (s0).C3 For all s �! s0, now(s0) > now(s).C4 If s �! s0 and s0 �! s00, then s �! s00.21



C5 For all s �! s0, there exists a trajectory ! for [now(s); now(s0)], the state set,the now mapping and the time passage subrelation f(s; �; s0) 2 trans(A)g, such that!(now(s)) = s and !(now(s0)) = s0.When we talk about more than a single automaton, we use subscripts to denote the context.For example, local timeA;v denotes the local time function of automaton A at site v.We remark that timed I/O automata, as de�ned in [20], are a special case of mixedautomata, where the site set is empty.3Example: the sender automaton. Let us illustrate the concept of a mixed automatonwith a toy example, which we shall return to later. We de�ne an automaton, called sender,that has a single input action called Receive Message, and a single output action calledSend Message. The sender automaton is equipped with a local clock that runs at the rateof real time; the behavior of sender is very simple: it may output Send Message only ifthere was at least one Receive Message input since the previous Send Message output. Thefollowing is a formal description of sender.� There is a single site, which we choose to call v (any other name can do as well).� The state set is �(t; T; pend) : t 2 R+; T 2 R; pend 2 ftrue; falseg�. For a states = (t; T; pend), we have now(s) = t, T (s) = (T ), and local timev(s) = T . In words,the real time of (t; T; pend) is t, and the local time of (t; T; pend) at site v is T . TheBoolean 
ag pend will be used to indicate whether there is a \pending output" (seebelow).� The set of start states is f(0; T;true) : T 2 Rg, i.e., all states with real time 0 andpend = true. This de�nition means that the initial local time at v is arbitrary, andthat Send Message may be the �rst action of sender.� The set of actions is f�;Receive Message; Send Messageg, where � is the time passageaction, Receive Message is a discrete input action, and Send Message is a discreteoutput action. Hence both Receive Message and Send Message are external andvisible.3The converse is also true: given a mixed automaton, one can model it as a particular kind of TIOA.22



Sites: a single site vState:now: a non-negative real number, initially 0local time: a real number, initially arbitrarypend: a Boolean 
ag, initially trueActions:Receive Message (input)Pre: noneE�: pend  trueSend Message (output)Pre: pend = trueE�: pend  false� : (time passage)Pre: b > 0E�: now  now + blocal time  local time + bFigure 2-2: sender: an example of a mixed automaton.� The transition relation is as follows.First, for all t � 0, T 2 R, pend 2 ftrue; falseg and b > 0, we have (t; T; pend) �!(t + b; T + b; pend). This means that time passage is always enabled, and that thelocal time is increased exactly by the amount of real time that passes.Secondly, for pend 2 ftrue; falseg, ((t; T; pend);Receive Message; (t; T;true)) is atransition. This means that the Receive Message action is always enabled, and itse�ect is to set pend to true.Finally, we have that ((t; T;true); Send Message; (t; T; false)) is a transition, whichmeans that the Send Message action is enabled exactly at all states where pend =true, and its e�ect is to set pend = false.Formal description of automatawill usually be done in this thesis using the \precondition-e�ect" notation given in Figure 2-2. This more structured representation will be su�cientto describe the algorithms we study. When the \Pre" clause is omitted from the descriptionof a transition, the interpretation is that the action is always enabled.23



2.1.1 Projections, Equivalent AutomataIn this section we de�ne the technical notions of projection and equivalent automata.Intuitively, a projection of an automaton on one of its sites is the restriction of theautomaton to describe only the clock of that site.De�nition 2.3 The projection of a mixed automaton A on a site v 2 sites(A), or the clockof A at v, denoted by Ajv, is the mixed automaton de�ned as follows.� sites(Ajv) = fvg.� acts(Ajv) = f�g.� For a state s 2 states(A), let sjv be the pair (nowA(s);TA(v; s)). With this notation,we have{ states(Ajv) = fsjv : s 2 states(A)g, and we setnowAjv(sjv) = nowA(s)TAjv(v; sjv) = TA(v; s){ start(Ajv) = fsjv : s 2 start(A)g.{ trans(Ajv) = f(sjv; �; s0jv) : (s; �; s0) 2 trans(A)g.We have the following lemma.Lemma 2.1 For any mixed automaton A, for all v 2 sites(A),Ajv is a mixed automaton.Proof: By inspection of the axioms.We conclude this section with a de�nition of equivalent automata. Intuitively, twoautomata are equivalent if they are the same, up to renaming and multiplicity of equivalentstates. Formally, we have the following de�nition.De�nition 2.4 A mixed automaton B is said to extend a mixed automaton A if sites(A) �sites(B), acts(A) � acts(B), and there exists a mapping f : states(B) 7! states(A) suchthat the following conditions hold for all s 2 states(B).� nowA(f(s)) = nowB(s). 24



� For all v 2 sites(A), local timeA;v(f(s)) = local timeB;v(s).� f(s) 2 start(A) i� s 2 start(B).� For all � 2 acts(A), we have (f(s); �; f(s0)) 2 trans(A) i� (s; �; s0) 2 trans(B).A and B are said to be equivalent, denoted A � B, if A extends B and B extends A.2.1.2 Clock TypesIn this work, we shall study automata where local clocks have bounded drifts, as de�nedbelow.De�nition 2.5 Let v be a site of a given mixed automaton A. If there exist 0 < % � % <1such that for all all s �! s0,%(now(s0)� now(s)) � local timev(s0)� local timev(s) � %(now(s0)� now(s)) ;then Ajv is called a (%; %)-clock. A clock Ajv is called a bounded-drift clock if it is a (%; %)-clock for some 0 < % � % <1. A (1; 1)-clock is also said to be drift-free.Alternatively, one can think of a clock as a collection of real-valued \clock functions"fT (t)g, where t denotes real time. In this representation, a (%; %)-clock consists of functionsT (t) such that %(t� t0) � T (t)�T (t0) � %(t� t0) for all t � t0 � 0 (which also means that allclock functions of a bounded drift clock are continuous), and a drift-free clock is a functionof the type T (t) = t+ a for some constant a. We formalize this interpretation in De�nition2.12, after we de�ne executions.2.1.3 Real Time BlindnessIn our model, real time is a part of the state of the system. In many systems, access to realtime is restricted to occur only via special physical devices, such as clocks. To model thisproperty, we introduce the notion of real-time blindness in the following de�nition. Thede�nition is specialized for bounded-drift clocks.De�nition 2.6 Let A be a mixed automaton such that each v 2 sites(A) is a (%v; %v)-clock.A is said to be real-time blind for (%v; %v) if there exists an equivalent automaton A0 � A, with25



a set B(A0) and a mapping basic : states(A0) 7! B(A0) such that the following conditionsare satis�ed.� For all b 2 B(A0), all mappings T : sites(A0) 7! R and all t 2 R+, there exists s 2states(A0) such that basic(s) = b, now(s) = t and T (v; s) = T (v) for all v 2 sites(A0).� For all s1 �! s2, basic(s1) = basic(s2).� For all s1; s2; s01; s02 2 states(A0): if (s1; �; s2) 2 trans(A0) for � 6= �, andT (s1) = T (s01)basic(s01) = basic(s1)basic(s02) = basic(s2)then (s01; �; s02) 2 trans(A0).� For all s1; s2; s01; s02 2 states(A0): suppose (s1; �; s2) 2 trans(A0), and let � = now(s0)�now(s). If for all v 2 sites(A0) we havebasic(s01) = basic(s1)T (s01) = T (s1)T (s02) = T (s2)T (v; s02)� T (v; s01) 2 h%v �� ; %v ��ithen (s01; �; s02) 2 trans(A0).Intuitively, an automaton is real-time blind if each of its states can be decomposed intothree components, called the real time, the local times, and the basic component. Werequire that this decomposition is such that time passage action has no e�ect on the basiccomponent, and that the enabledness of actions is independent of the real time component.The time passage action is special, since the clock drift bounds imply that the local timescomponent and the real time component are related. In this case we therefore require thatall amounts of real time passage allowed by the drift bounds are possible by a real-timeblind automaton. 26



Example. It is easy to verify that sender is real time blind for (1; 1): the decompositionof its states is readily given. Speci�cally, a state (t; T; pend) has real time component t,local time component T , and basic component pend . Let us verify the properties of thisdecomposition:� The state set is R+ �R � ftrue; falseg.� The value of pend is never changed by time passage.� Changes in the value of pend depend only its value and the type of action taken.� Time passage does not depend on the value of the now component neither in beingenabled nor in the amount of time that passes, except for that the real time may beincreased exactly by the amount local time is increased by.2.1.4 Quiescent StatesThe following de�nition formalizes the notion of \idle state," in which nothing happens,and nothing will happen, unless some input occurs.De�nition 2.7 A state s 2 states(A) for some mixed automaton A is called quiet if theonly actions enabled in s are input actions and time-passage actions. A quiet state s0 issaid to be quiescent if the following conditions hold.(1) For all t > 0 there exists a transition s0 �! s such that now(s0) = now(s) + t.(2) For all states s such that s0 �! s, s is quiet.Intuitively, a state is quiet if the automaton is not poised at doing something at present,and a state is quiescent if the automaton is not intending to do something at the future.An important consequence of quiescence will be proved in Lemma 3.1, in the next chapter.Example. Examining sender once again, we see that all the states of the form (t; T; false)are quiescent: only input and time-passage actions are enabled in them, and only otherstates of the same form are reachable from them by time passage.27



2.2 Executions and Timed TracesIn this section we formalize the concept of system execution and its derivative notions. Weremark that the de�nition of executions of mixed automata we give here is a straightforwardextension of the de�nition of timed executions in [20]. We shall use the following notations(cf. De�nition 2.1 and Figure 2-1).Notation 2.8 Let I be a (possibly in�nite) interval of R+, and let A be a mixed automaton.A trajectory on I of A is a trajectory for I, states(A), the now mapping, and the time-passage relation f(s; �; s0) 2 trans(A)g. Let ! be a trajectory on I of A. Denote f now(!) =inf(I), and l now(!) = sup(I). If I is left-closed, let f state(!) denote !(f now(!)), and ifI is right-closed, let l state(!) denote !(l now(!)).We start with the de�nition of execution fragments.De�nition 2.9 Let A be a mixed automaton. An execution fragment of A is an alternating(�nite or in�nite) sequence h!0�1!1�2!2 : : :i such that(1) Each !j is a trajectory, and each �j is a discrete action.(2) If the sequence is �nite, then it ends with a trajectory.(3) If !j is not the last trajectory in the sequence, then its domain is a closed interval.If there is a last trajectory, then its domain is left-closed.(4) If !j is not the last trajectory, then l state(!j) �j+1�! f state(!j+1).The duration of a �nite execution fragment h!0�1!1�2!2 : : :!Ni is the (possibly in�nite) in-terval [f now(!0); l now(!N )]. The duration of an in�nite execution fragment h!0�1!1�2!2 : : :iis the interval [f now(!0); supi l now(!i)].De�nition 2.10 An execution of a mixed automaton A is an execution fragment h!0�1!1�2!2 : : :iof A such that f state(!0) 2 start(A).Call an execution admissible if its duration is in�nite. In this work we consider onlyfeasible automata, de�ned by the condition that each �nite execution of a feasible automatoncan be extended to an admissible execution.Given an execution fragment h!0�1!1 : : :i, we de�ne for each event �i its times of occur-rence, T (�i) = T (l state(!i�1)) (thus T (�i) is a mapping that assigns to each site a local28



time). Sometimes actions will be associated with a single site. If a step � is associated witha site v, we refer to the local time of occurrence of �, de�ned by local time(�) = T (�)(v).The real time of occurrence is de�ned to be now(�i) = now(l state(!i�1)).Next, we de�ne the notion of timed traces.De�nition 2.11 Given a �nite execution fragment e = h!0�1!1 : : :!N i, the timed traceof e is a triple ((ts;T s); �; (tf ;T f )), where the start time is T s = T (f state(!0)) and ts =now(f state(!0)); the �nish time is T f = T (l state(!N)) and tf = now(l state(!N));4 and� is a sequence of triples (�i; ti; T i), where �1; �2 : : : is the sequence of all visible eventsin the execution, and for each i, ti is the real time of occurrence of �i, and T i is thetimes of occurrence of �i. For an in�nite execution fragment, �nish time is given by tf =sup!i;t(now(!i(t))), and T f (v) = sup!i;t(local timev(!i(t))) for each site v.We close this section with a de�nition of the natural concept of clock function.De�nition 2.12 (Clock Functions) Let e = h!0�1 : : :i be an execution of an automatonA, and let v 2 sites(A). The clock function of v in e is a mapping local timev : R+ 7! Rsuch that for all t � 0, if t 2 [f now(!i); l now(!i)], then local timev(t) = T (!i(t); v).Recall that the notation local time is also de�ned as a function from states to the reals; theinterpretation being used should be clear from the context.Finally, given an automatonA and a site v 2 sites(A), we de�ne the set of clock functionsof v to consists of all clock functions of the projected automaton Ajv.2.3 Composition of Mixed AutomataWe now proceed to de�ne the composition of mixed automata. First, we de�ne compositionof states.De�nition 2.13 Let A and B be mixed automata. Two states sA 2 states(A) and sB 2states(B) are compatible if now(sA) = now(sB) and local timev(sA) = local timev(sB) forall v 2 sites(A)\ sites(B). The composition of two compatible states sA and sB, is the pair(sA; sB), which has the following attributes.4Again, note that T s and T f are mappings that assign a local time to each site.29



� now(sA; sB) = now(sA).� For each site v 2 sites(A) [ sites(B),T (v; (sA; sB)) = local timev(sA; sB) = 8><>: local timev(sA); if v 2 sites(A) ;local timev(sB); if v 2 sites(B) :For a composed state (sA; sB), we denote (sA; sB)jA = sA, and (sA; sB)jB = sB.Note that by the compatibility condition, local timev(sA � sB) is well de�ned for v 2sites(A) \ sites(B).We now de�ne a necessary condition for composing mixed automata. We use the notionof projection here (cf. De�nition 2.3).De�nition 2.14 Let A;B be two mixed I/O automata. A and B are said to be compatibleif their output actions are disjoint, the set of internal actions of A is disjoint from the setof all actions of B, and the set of internal actions of B is disjoint from the set of all actionsof A. In addition, we require that for all v 2 sites(A) \ sites(B), we have that Ajv � Bjv.We are now ready to de�ne composition of automata.De�nition 2.15 (Mixed Automata Composition) Let A and B be two compatible mixedI/O automata. The composition A � B of A and B is a mixed I/O automaton de�ned asfollows.� The sites of A�B are sites(A� B) = sites(A) [ sites(B).� The states of A � B is the set of all compatible pairs of states from states(A) andstates(B).� The start set of A �B is the set obtained by composing all compatible pairs of statesfrom start(A) and start(B).� The set of actions of A�B is the union of acts(A) and acts(B). A discrete action isexternal in A � B exactly if it is external at either A or B, and likewise for internalactions of A�B. A visible action of A�B is an output action if it is an output actionof exactly one of either A or B, and it is input otherwise.30



� For any action � 2 acts(A� B) and states s; s0 2 states(A� B), we have (s; �; s0) 2trans(A�B) i� both the following hold.(1) If � 2 acts(A) then (sjA; �; s0jA) 2 trans(A), otherwise sjA = s0jA.(2) If � 2 acts(B) then (sjB ; �; s0jB) 2 trans(B), otherwise sjB = s0jB.Composition de�nes the way two automata interact: this is done by shared actions. Thecompatibility condition prohibits shared output actions, or interfering with internal actionsof each other, and requires that shared portions of the state have the same underlyingstructure.Below we state the basic property of composition.Lemma 2.2 If A and B are compatible mixed I/O automata, then A � B is a mixed I/Oautomaton.Proof: Straightforward.Notice that we can compose any �nite number of compatible automata, by applying thebinary composition operator de�ned above iteratively. The set of executions of the resultingautomaton is essentially the same (up to a natural isomorphism), regardless of the order ofcomposition.We now turn to look at executions of composed automata. The following two lemmasestablish connections between executions of a composed automaton and the execution ofits constituent automata. First, for an execution e of a composed automaton A � B, letejA denote the sequence obtained from e by mapping each state s of e into sjA, omitting allactions of B from e, and for each action �i of B in e, we merge the resulting trajectories !iand !i+1. Analogously we de�ne ejB. The sequences ejA and ejB are called the projectionof e to A and B, respectively. We have the following simple property for projection ofexecution of a composed automaton.Lemma 2.3 Let e be an execution of a composed automaton A�B. Then ejA and ejB areexecutions of A and B, respectively.Proof: Immediate from the de�nitions.We now prove a converse for Lemma 2.3. To be able to state it, we have to makea few technical de�nitions. Fix a mixed automaton A. A times form for a set of sites31



V � sites(A) is a mapping F : V 7! R. A timed sequence for A is a sequence � =h(�1; now(�1);F �1); (�2; now(�2);F �2i, where each �i is a visible action of A, now(�i) is anon-negative number, and F �i is a times form. We require that the sequence hnow(�i)ii�1 isnon-decreasing. A form for A is a triple ((ts;F s); �; (tf ;F f)), where � is a timed sequence ofA; ts and tf are non-negative real numbers called the start and �nish real time, respectively;and F s and F f are times forms, called the start and �nish times forms, respectively. Noticethat for a given automaton, every timed trace is a form; the converse, however, is not truein general, since a form for A need not be obtained from an execution of A.Let F be a times form for a site set V . The projection F jV 0 of F for V 0 � V is obtainedby restricting the domain of F to sites in V 0 only. Given a timed sequence for a composedautomaton A � B, its projection �jA is de�ned as the subsequence of actions of A, wherethe times form for each action is projected on sites(A). Finally, the projection of a form fora composed automaton is obtained by projecting the start times form, the timed sequence,and the �nish times form, i.e, ((ts;F s); �; (tfF f ))jA = �(ts;F sjsites(A)); �jA; (tf ;F f jsites(A))�.In the following lemma we prove that a converse to Lemma 2.3 is also true, i.e., if wehave executions of A and of B that are compatible in a certain sense, then there exists anexecution of A � B that, after projections, looks like either of the given executions (of Aand of B).Lemma 2.4 Let A � B be the composition of compatible mixed automata A and B, andlet ((ts;T s); �; (tf ;T f )) be a form for A� B. Suppose that there exist execution fragmentsof A and B whose timed traces are the projection of ((ts;F s); �; (tf ;F f )) on A and onB, respectively, and such that for all v 2 sites(A) \ sites(B) we have local timeA;v(t) =local timeB;v(t) for all t 2 [ts; tf ]. Then there exists an execution fragment of A�B whosetimed trace is ((ts;F s); �; (tf ;F f)).Proof: Suppose � = h�1; �2; : : :i, �jA = h�i1; �i2; : : :i, and �jB = h�j1 ; �j2; : : :i. By theassumption, we can \�ll in" trajectories !il and !jm such that the following properties hold(see Figure 2-3 for an example).(1) The alternating sequence eA = h!i0�i1!i1�i2 : : :i is an execution fragment of A, andthe alternating sequence eB = h!j0�j1!j1�j2 : : :i is an execution fragment of B.(2) The timed trace of eA is ((ts;F s); �; (tf ;F f))jA, and the timed trace of eB is ((ts;F s); �; (tf ;F f))jB.(3) For all sites v 2 sites(A)\ sites(B) and t 2 [ts; tf ], local timeA;v(t) = local timeB;v(t).32
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Figure 2-3: An example for the scenario considered in the proof of Theorem 2.4. While� is a form for A � B, eA and eB are executions of A and B whose timed traces are((ts;F s); �; (tf ;F f))jA and ((ts;F s); �; (tf;F f ))jB, respectively.Using these trajectories, we construct an execution of A�B in a piecewise fashion. Forease of notation, let us de�ne rk = now(�k), and r0 = ts. We now show how to construct atrajectory !k for the time interval [rk; rk+1], where k � 0. Let il; jm be the greatest indicessuch that �il and �jm occur before �k+1 in �, or 0 if no such events exist. De�ne ril to bethe now value of �il , or ts if il = 0; de�ne rjm analogously. (Notice that rk is the maximumof ril and rjm .) For example, in Figure 2-3 and with k = 3, we have il = i2 and jm = j1.We de�ne !k using !il and !jm using state composition, namely !k(t) = !il(t)�!jm (t).We claim that !k is a trajectory on [rk; rk+1] forA�B. We prove this as follows. First, for allt 2 [rk; rk+1], nowA(!il(t)) = nowB(!jm(t)) = t, and for all v 2 sites(A) \ sites(B) we haveby assumption that local timeA;v(t) = local timeB;v(t). It follows that !il(t) � !jm(t)) 2states(A � B) for all t in the interval. Secondly, let rk � t1 < t2 � rk+1. By theproperties of A and B, respectively, we have that (!il(t1); �; !il(t2)) 2 trans(A), and(!jm(t1); �; !jm(t2)) 2 trans(B). Also, for all v 2 sites(A) \ sites(B) we have by assump-tion that local timeA;v(t1) = local timeB;v(t1) and local timeA;v(t2) = local timeB;v(t2). Ittherefore follows that (!il(t1)� !jm(t1) ; �; !il(t2)� !jm(t2)) 2 trans(A�B), showing that!k is a trajectory for A �B.To complete the construction, we need to combine the trajectories by the visible ac-tions of �. But this immediately follows since for k > 0, (l state(!k�1); �k; f state(!k)) 2trans(A�B) by de�nitions. We conclude by noting that the execution fragment constructedabove agrees with the time forms (ts;F s) and (tf ;F f ).33



Corollary 2.4.1 Let A1 � A2 � � � �An be the composition of compatible mixed automataA1; : : : ; An, and let ((ts;T s); �; (tf ;T f)) be a form for A1 � A2 � � � �An. Suppose that fori = 1; : : : ; n there exist execution fragments of Ai whose timed traces are the projection of((ts;F s); �; (tf ;F f)) on Ai. Suppose further that if v 2 sites(Ai) \ sites(Aj) for some i; j,then we have local timeAi;v(t) = local timeAj;v(t) for all t 2 [ts; tf ]. Then there exists anexecution fragment of A1 � A2 � � � �An whose timed trace is ((ts;F s); �; (tf ;F f )).Proof: By applying Theorem 2.4 to A1 and A2, and then to A1 �A2 and A3 etc.
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SummaryIn this chapter we de�ned the mixed automaton model, which is the underlying computa-tional model we shall consider in the remainder of this work. The mixed automaton modelis based on the timed I/O automata model of Lynch and Vaandrager [22, 20]. Our modelformalizes the notion of a system with local clocks. We de�ned the basic notions of execu-tions and their timed traces, which roughly are the sequences of input and output events inexecutions. We made a few notational conventions, described intuitively as follows.� Clock locations are called sites.� The real time of occurrence of an event � is denoted by now(�).� For a site v and an event �, local timev(�), is the local time of occurrence of �, de�nedby the value of the clock of v when � occurs.� A bounded-drift clock is a clock whose rate of progress with respect to real time isbounded by a drift lower bound and a drift upper bound. A (%; %)-clock is a boundeddrift clock with drift bounds 0 � % � %. A (1; 1)-clock is called a drift-free clock.� An automaton is real-time blind if it cannot access the real time component of thestate. (It may access the local time component.)� A state is quiescent if no locally-controlled action is enabled in it, and no such actionwill become enabled by time passage alone.An important feature of the model is that simple modules, under certain compatibilityconditions, can be combined to obtain a more complex module.
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Chapter 3Clock Synchronization SystemsIn this chapter we use the formalism developed in Chapter 2 to describe the clock syn-chronization systems we shall be studying. The main idea in the system de�nition in thischapter (�rst introduced by Attiya et al. [3]) is to partition the system into two: an activepart (called environment) that generates messages and delivers them, and a passive part,played by the clock synchronization algorithm, whose role is to interpret the resulting com-munication patterns. This is in contrast to conventional viewpoints, where synchronizationalgorithms may initiate the sending of a message. Intuitively, in our framework algorithmshave to work with any possible message tra�c generated by the environment.This chapter in organized as follows. In Section 3.1 we carefully de�ne the system, bydescribing each of its basic components and the way they interact. This modeling is intendedto be reasonably close to the way systems are constructed, e.g., it includes de�nitions ofprocessors and communication links.In Section 3.2 we shift our standpoint to a more conceptual one: we isolate the role ofthe synchronization algorithm versus an adversarial environment, which controls the localclocks, and message send and receive events. We de�ne the key notions of the view and thepattern of an execution of a clock synchronization system, which describe the informationin the execution which is relevant for clock synchronization tasks. These notions are de�nedwith respect to an execution of the system. To capture the properties of distributed on-linesystem (discussed in Chapter 4), we also de�ne the notion of local view of an execution,which is the part of the view which can be known at a processor at a time point.We conclude the system model chapter in Section 3.3, where we prove the basic property36
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Figure 3-1: The automata and interfaces at one node of a clock synchronization system.Each processor has a local clock; only the send modules initiate message sending. The clocksynchronization modules must work using piggybacking on existing tra�c.used in lower-bound arguments in this thesis. Intuitively, this property is that (1) allexecutions that satisfy the timing speci�cation of the system are possible, and (2) theoutput of a synchronization algorithm depends only on the view of the execution, whichcontains local times of events, but no real times.3.1 Speci�cations of System ComponentsThe system has an underlying graph, which is a directed graph whose nodes representprocessors and whose edges represent unidirectional communication links. We call thenodes of the underlying graph processors, to avoid confusion with nodes of other kinds ofgraphs de�ned later.Roughly speaking, the system we describe is as follows (see Figure 3-1). Each processorhas a bounded-drift clock (cf. De�nition 2.5). Processors communicate by sending messagesover the links. Message sends are initiated only by the send modules, in an arbitraryfashion (i.e., a send action can be taken at any time). The clock synchronization algorithm(abbreviated CSA henceforth) can only piggyback messages on the existing tra�c in order37



to carry out the speci�c synchronization task at hand.In our notation, send modules output Send Message(m) actions. For each Send Message(m)action at a processor v, the CSA at v must immediately output a Send Aug Message(m;m0)action, where m0 is a message added by the CSA for communication with other CSAs. Thenetwork may duplicate, lose, and reorder messages arbitrarily (but not corrupt their con-tents). A message is received in a Receive Aug Message(m;m0) action, which is taken bythe network. For each Receive Aug Message(m;m0) action, the CSA at the receiving pro-cessor \strips" m0 o�, and outputs Receive Message(m) to the send module. The contentsof the m0 �eld of messages is the sole way communication between di�erent CSA is realized.We assume that when a message is received, lower and upper bounds on its time oftransit (which may be 0 and 1, respectively) are available to the CSA, as functions of themessage contents (e.g., its length) and the system speci�cation. The system is de�ned sothat all events are local, i.e., each event is an action of exactly one processor.In the remainder of this section we de�ne formally speci�c automata for links and sendmodules, and give certain conditions that any clock synchronization algorithm must meet.3.1.1 Send AutomatonIntuitively, the role of a send automaton Av at processor v is to determine when to sendmessages and to which neighbor. In general, these decisions may be based (perhaps non-deterministically) on the local history and/or the local time (e.g., timeouts). In this thesis,we concentrate on the highly unstructured automaton, in which messages may be sent atany time to any neighbor.We assume that send modules have bounded-drift clocks (cf. Def. 2.5). In Figure 3-2we give a formal speci�cation of a send module. The de�nition uses the following notation.For each processor v, N (v) denotes the set of neighbors of v in the underlying graph; �denotes a (possibly in�nite) message alphabet. In Figure 3-2, as we do in the rest of thisthesis, we follow the convention that the actions are subscripted by processor names. Aswe shall see, this is possible since every action in the system is associated with exactly oneprocessor. We usually omit subscripts when the context is clear.Remark. The basic action of a send module is a point-to-point send. Our de�nition ofsend modules includes all possible behaviors of message sends. In particular, a broadcastor a multicast of a message to many processors can be modeled by many send actions taken38



Sites: a single site vState:now: a non-negative real number, initially 0local time: a real number, initially arbitraryActions:Receive Messageuv (m), for m 2 � and u 2 N (v) (input)Pre: noneE�: noneSend Messageuv (m), for m 2 � and u 2 N (v) (output)Pre: noneE�: none�: (time passage)Pre: b > 0% � r � %E�: now  now + blocal time  local time + r � bFigure 3-2: Speci�cation of a send module Av at site v with a (%; %)-clock
39



Sites: noneStatenow: non-negative real number, initially 0Q: a multiset of triples (m1;m2; t) 2 � ��0 �R+, initially ;TransitionsSend Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (input)E�: choose an arbitrary integer i � 0do i timesput (m1;m2; t) in Q, where t is an arbitrary number in [L(m1);H(m1)]Receive Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (output)Pre: (m1;m2; 0) 2 QE�: remove a triple (m1;m2; 0) from Q� : (time passage)Pre: 0 � b � t for all (m1;m2; t) 2 QE�: Q f(m1;m2; t� b) j (m1;m2; t) 2 Qgnow  now + bFigure 3-3: Speci�cation of a link automaton Lvu.at the same real time. Notice also that a send automaton may stop sending messages atsome point, thus behaving like a process that crashed.Example. Consider once again the sender automaton de�ned in Figure 2-2. It has thesame action signature as the general send module of Figure 3-2, but it is slightly morestructured: the Send Message action is not always enabled in sender. It is therefore clearthat the set of timed traces of sender is a strict subset of the set of timed traces of thegeneral send automaton of Figure 3-2.3.1.2 NetworkThe network is modeled as a collection of links which facilitate communication amongthe processors. Each link from a processor v to a processor u has Send Aug Messageuv inputaction (generated by processor v), and Receive Aug Messagevu output action, (generated atprocessor u).1 We assume very little about the faithfulness of the links: messages may be1The interface between links and processors is sketched in Figure 3-1; a formal description is given inSection 3.1.4, after we de�ne the CSA modules in Section 3.1.3.40



lost, duplicated, or re-ordered. We only require that any message received was indeed sent(i.e., no corruption of message contents). We also require that the transmission time of eachmessage received is within some (possibly in�nite) interval which is known at the receivepoint.More precisely, we associate with each directed link (v; u) a link automaton Lvu whichis responsible for the delivery of messages from v to u. The messages have the form(m1; m2), where m1 2 � and m2 2 �0, for some message alphabeta � and �0. Lvu hasno sites (i.e., no local clocks), but it satis�es the following timing speci�cation. For anyReceive Aug Message(m1; m2) step of the system we assume the existence of two num-bers 0 � L(m1) � H(m1) � 1, such that if the receive event occurs at real time t,then the (unique) send event of this message must have occurred within the time interval[t � H(m1); t � L(m1)]. The number L(m1) is called the latency lower bound of m1, andH(m1) is called the latency upper bound of m1. Note that the latency bounds for a message(m1; m2) may depend only on m1.A complete description of a Lvu-automaton is is given in Figure 3-3.Remarks.1. In the formal description of Figure 3-3, latency bounds are determined when amessageis input into the link. This is done for convenience only. In an equivalent formalization,the latency bounds are determined only when a message is output. (The latter formulationmay seem more realistic in the sense that transmission time can be better estimated upondelivery than upon sending.) The fact that we shall use in the sequel is that when amessage is received, one can determine, from the system speci�cations and the contents ofthe message, what are the latency time bounds for that message.2. Note that the speci�cation of the link is very general. In particular, a link may stopdelivering messages starting from some point, thus behaving like a crashed link. However,the link speci�cation guarantees that if a message is received, then it was sent, i.e., there isno corruption of messages.Example. Let us de�ne a particular kind of links we call perfect asynchronous links. Forthese links, the sequence of messages received is exactly the sequence of messages sent,i.e., message are never lost, created, duplicated, nor re-ordered. The timing speci�cationof these links, however, is the loosest possible: the latency bounds are 0 (lower bound)41



Sites: noneStatenow: non-negative real number, initially 0Q: a queue of triples (m1;m2) 2 ���0, initially emptyTransitionsSend Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (input)E�: enqueue (m1;m2) in QReceive Aug Messagevu(m1;m2), where m1 2 �, m2 2 �0 (output)Pre: (m1;m2) is in the head of QE�: remove head of Q� : (time passage)Pre: b � 0E�: now  now + bFigure 3-4: Speci�cation of a perfect asynchronous link from v to u.and 1 (upper bound) for all messages (see formal description in Figure 3-4). A perfectasynchronous link is just a special case of the general link of Figure 3-3, in the sense thatthe set of timed traces of a perfect asynchronous link is a subset of the set of timed tracesof general links.3.1.3 Clock Synchronization Algorithm (CSA)The CSA uses the readings of the local clock, and the messages sent and received, in orderto carry out some synchronization task (the de�nition of particular tasks is deferred to laterchapters). In this subsection we specify requirements that must be met by any CSA, andpoint out what remains unspeci�ed.InterfaceCSA modules use two message alphabets for communication, � and �0, where � is used bythe send automaton, and �� �0 is used by the links. The CSA module at processor v hasthe action signature described in Figure 3-5.For output, CSA modules may have additional variables or actions. The de�nitions de-pend on the speci�c synchronization task considered, which in turn depend the on de�nition42



Input actionsSend Messageuv (m), for m 2 � and u 2 N (v).Receive Aug Messageuv (m1;m2) for (m1;m2) 2 ���0 and u 2 N (v).Output actionsSend Aug Messageuv (m1;m2) for (m1;m2) 2 �� �0 and u 2 N (v).Receive Messageuv (m), for m 2 � and u 2 N (v).Figure 3-5: Interface of a CSA at processor vof the full clock synchronization systems. We therefore defer them to Section 4.1.Non-Interfering FilteringThe CSA modules use piggybacking on the messages generated by the send modules inorder to communicate among themselves. A CSA is not allowed to interfere with messagetra�c by delaying messages or by deleting parts of their contents. Informally, we think ofthe CSA as a �lter that relays incoming and outgoing messages instantaneously betweenthe send and the link modules (see Figure 3-1), while \sticking" a few extra bytes on eachoutgoing message, and \stripping" the corresponding bytes from incoming messages. Wecall this property non-interfering �ltering.To capture this property formally, we de�ne an auxiliary notion of a generic CSA inFigure 3-6. There, time passage is blocked when there is some message to be processed bythe CSA. Using the speci�cation of the generic CSA, we de�ne non-interfering �ltering.De�nition 3.1 A CSA is said to have the non-interfering �ltering property if its set of timedtraces is a subset of the set of timed traces of the generic CSA of Figure 3-6.Remark. Notice that in an execution of an automaton with the non-interfering �l-tering property, there is a natural correspondence between the Receive Message and theReceive Aug Message events, and between the Send Message and the Send Aug Messageevents. 43



Sites: a single site vStatenow: non-negative real number, initially 0local timev: real number, initially arbitraryQi: queue for symbols of �, initially ;Qo: queue for symbols of ���0, initially ;active: Boolean 
ag, initially falseActionsSend Messageuv (m) (input)E�: enqueue m in Qoactive  trueSend Aug Messageuv (m1;m2) (output)Pre: m1 is at the head of QoE�: remove head of Qoif Qo = Qi = ; then active  falseReceive Aug Messageuv (m1;m2) (input)E�: enqueue m1 in Qiactive  trueReceive Messageuv (m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0% � r � %E�: now  now + blocal time  local time + r � bFigure 3-6: Code for a generic CSA with (%; %)-clock.44



Admissible CSAsWe now de�ne formally the requirements of clock synchronization algorithms. In additionto formalizing our requirement that CSAs are allowed to use only piggybacking for commu-nications, we impose a couple of additional technical requirements; these rule out algorithmswhich are possible in our formal model, but are usually infeasible in practice.First, we rule out the possibility that a CSA senses time passage directly: time passageis con�ned to a�ect directly only the local clocks, and the CSAs are a�ected only by changesin the local clocks. This requirement is formalized by the concept of real-time blindness (cf.De�nition 2.6). Recall that the state of a real-time blind automaton can be decomposed toreal time, local times, and basic components. We remark that unless a CSA is trivial, itsoutput is de�ned in terms of its basic state.Secondly, notice that in our model, the initial state provides an arti�cial synchronizationpoint for all processors in the system. Speci�cally, it is possible that upon initialization,all CSA modules will record the initial value of their local time, thereby getting an accu-rate snapshot of the local clocks in a perfectly synchronized manner. We rule out suchalgorithms since the synchronous initialization point is only a convenient abstraction, andcannot usually be implemented in practice. Formally, we require all start states of a CSAautomaton to be quiescent (see De�nition 2.7 for details). Intuitively, the implication ofhaving a quiescent initial state is that the automaton cannot \tell" how much time haselapsed since the (abstract) initialization until the �rst local input action. Technically, nolocally-controlled actions are enabled at a quiescent state: only time passage and inputactions are enabled. Formally, we have the following lemma.Lemma 3.1 Let e = h!0�1!1 : : :i be an execution fragment of an automaton A. If for somei and t we have that the state !i(t) is quiescent, then the action �i+1 (if it exists) is an inputaction.Proof: If �i+1 does not exist, there is nothing to prove. Otherwise, we have that either!i(t) = l state(!i) or else !i(t) �! l state(!i). In both cases, by De�nition 2.7, it must bethe case that l state(!i) is quiet, i.e., only time passage and input actions are enabled inl state(!i). Since e is an execution fragment, �i+1 is enabled in l state(!i) and �i 6= �, andthe lemma follows. 45



We summarize formally all the requirements a CSA has to satisfy in the following de�-nition.De�nition 3.2 A mixed automaton is called an admissible CSA if it has the external in-terface speci�ed in Figure 3-5, it has the non-interfering �ltering property as speci�ed byDe�nition 3.1, it is real-time blind as speci�ed in De�nition 2.6, and all its initial statesare quiescent as in De�nition 2.7.Henceforth, we restrict our attention to admissible CSAs only.Latitude in CSA Speci�cationDe�nition 3.2 imposes a few severe limitations on CSAs. Let us explain roughly whatremains to be de�ned in a particular implementation of a CSA. First, the de�nition ofan admissible CSA does not specify how to compute the output. Secondly, by the non-interfering �ltering property, whenever a Send Message(m1) occurs, a CSA must output aSend Aug Message(m1; m2) action, but m2 is not speci�ed.The intuition is that CSA modules have to produce some output (which may be eithersome values, or some special action). To this end, CSA modules may have additional basicstate components, and they can communicate among themselves by using the \m2" �eld ofthe messages.3.1.4 Clock Synchronization SystemsHaving de�ned the individual components, we are now in a position to de�ne the concept ofclock synchronization system. A clock synchronization system is de�ned by the compositionof a collection of send automata, link automata, and CSA automata. Formally, we �rstcompose pairs of send automata and CSAs that share a site. As mentioned before, we callthe resulting single-site mixed automaton a processor. We require that for each site there isexactly one send module and one CSA (see Figure 3-1). To create the system automaton,we compose the processors with the link automata.In our de�nition of systems, each non time-passage action has a naturally associated siteof occurrence (there are no internal actions of the link automata). We use this association tode�ne the local time of occurrence for each step in an execution. E.g., the local time of occur-rence of a Send Messageuv(m) step in a given execution is local timev(Send Messageuv(m)).46



A clock synchronization system (excluding the CSAs) is thus speci�ed up to clock driftbounds and message latency bounds. We shall refer to these as the real-time speci�cationof the system (a formal de�nition is given later). We assume that the real-time speci�cationof the system can be used by the CSA modules. In other words, the code for a CSA canrefer to clock drift bounds and message latency bounds. We argue that this assumptionis reasonable. For clocks, one usually has some bounds provided by the manufacturer.For messages, some universal latency bounds are always valid: in all physical systems, thetransmission time of any message is at least 0 and at most 1. In many cases sharperbounds are known. As we shall see, even using the universal bounds some non-trivialsynchronization can be attained by the CSAs. Sharpening the bounds may only result intighter synchronization.3.1.5 Example: the Simpli�ed Network Time Protocol (SNTP)In this section we give a concrete example of a clock synchronization system. Our exampleis based on NTP (Network Time Protocol), the clock synchronization algorithm used overthe Internet [26]). We present a simpli�ed version of an NTP system, which we call belowSNTP.In SNTP, we have only two processors, s and v, connected by a bidirectional communi-cation link. Both processors have drift-free clocks. The particular synchronization task weconsider is that v needs to bound, at all times, the current reading of the clock of s. (Thisis a special case of the \external synchronization" task, studied in Chapter 6.) Formally,we require that the CSA module at v maintains two output variables, denoted ext L andext U , such that at any state x, local times(x) 2 [ext L; ext U ].The send and the link automata of SNTP are more structured than the general modulesde�ned in Section 3.1. Speci�cally, the system architecture is as follows.The send modules in SNTP are such that periodically, v sends a message to s, whichin turn responds by sending a message back to v.2 The link automata in an SNTP system(Lsv and Lvs) are perfect asynchronous links (cf. Figure 3-4), i.e., all messages are deliveredin order, exactly once with latency bounds 0 (lower bound) and 1 (upper bound).Before we describe the way the CSAs work in SNTP, notice that since the clocks of v and2The sender automaton of Figure 2-2 can serve as a speci�cation for the send module of v; the sendmodule of s can be speci�ed as a slight variant of sender, where the pend 
ag is initially false.47
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Figure 3-7: The total transit time of m and m0, TT , is the length of the shaded interval onv's axis in (a). In (b), m is in transit TT time units, and in (c) m0 is in transit TT timeunits.s are drift-free, the di�erence between them is the same at all states of a given execution.Therefore, in order to obtain bounds on the local time of s, it is su�cient to have the localtime at v, and bounds on the di�erence between the local time of v and of s at any state.We now describe the CSA modules of SNTP with the aid of a concrete example (a formaldescription is given in Figures 3-8 and 3-9). Consider the scenario depicted in Figure 3-7(a),where v sends a message m to s, and s responds by sending m0 to v. The CSA moduleswork as follows. When m is sent by v (point q), the CSA at v records the local time of thesend event in the variable LT1, i.e., it sets LT1 = local time(q). When m is received by thesource processor (point p), it records the local time of that event in the variable LT2, i.e.,LT2 = local time(p). When the source sends m0 (point q0), m0 contains the values of LT2and of the local time of the send event, denoted LT3 = local time(q0).When m0 is received at v (point p0), v calculates TT , the total transit time of bothmessages: denoting LT4 = local time(p0), this can easily seen to be TT = (LT4 � LT1) �(LT3 � LT2) (see Figure 3-7 (a)).Finally, bounds on the di�erence between v's clock and s's clock are obtained by bound-ing the local time at the source, at the point at which m0 is received at v. The idea is asfollows. Let x denote the state of the system immediately after m0 is received. Since m0 isin transit at least 0 time units (Figure 3-7 (b)), it must be the case that the local time atthe source when m0 is received at v is at least LT3, i.e., local times(x) � LT3. On the otherhand, since m0 was in transit at most TT time units (Figure 3-7 (c)), it must also be the48



case that the local time at the source when m0 is received at v is at most LT3 + TT , i.e.,local times(x) � LT3 + TT . Since the local time of v at x is LT4, and since the di�erencein local times between v and s is �xed throughout the execution, we have, for any state yin the executionlocal times(y)� local timev(y) = local times(x)� local timev(x)2 [LT3 � LT4 ; LT3 + TT � LT4] ;and hence,local times(y) 2 [local timev(y) + LT3 � LT4 ; local timev(y) + LT3 + TT � LT4] :When m0 is received the local time at v is LT4, and hence, at that time v sets ext L = LT3and ext U = LT3 + TT . Whenever the local time increases at v, the variables ext L andext U are increased by the same amount.It is easy to verify that the CSAs in SNTP are admissible in the sense of Def. 3.2. First,the CSA modules have the interface of Figure 3-5. Secondly, the CSA modules satisfy thenon-interfering �ltering property: in fact, their code is based on the code of the genericCSA in Figure 3-6. Thirdly, the CSA modules are easily seen to be real-time blind: theirstate readily has now and local time components, and the rest is the basic component.(Notice that the output variables are part of the basic component.) It is simple to verifythat the transitions depend only on the basic and the local time components of the clockspeci�cation. Finally, the initial state of the CSA modules are quiescent, as the only actionsenabled at any state reachable from the initial states by time passage are inputs and timepassage.3.2 Environments and Bounds MappingIn this section we take the �nal step in modeling clock synchronization systems. We dividethe system into two parts, one consists of the CSA modules, and the remainder is called theenvironment. Intuitively, the idea is to view the aggregate of all send and link automata asa single environment automaton (see Figure 3-10), where the goal of the CSA modules is totry to get the tightest possible logical time for each observable behavior of the environment.49



Sites: a single site vStatenow: non-negative real number, initially 0local time: real number, initially arbitraryext L: real number, initially �1ext U : real number, initially 1Qi: queue for symbols of �, initially ;Qo: queue for symbols of ��R2, initially ;active: Boolean 
ag, initially falseLT1: a real number, initially unde�nedActionsSend Messagev(m) (input)E�: enqueue m in Qoactive  trueLT1  local timeSend Aug Messagev(m1; 0; 0) (output)Pre: m1 is at the head of QoE�: remove head of Qoif Qo = Qi = ; then active  falseReceive Aug Messagev(m1; hLT2; LT3i) (input)E�: enqueue m1 in Qiactive  trueLT4  local timeTT  (LT4 � LT1)� (LT3 � LT2)ext L LT3ext U  LT3 + TTReceive Messagev(m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0E�: now  now + blocal time  local time + bext L ext L+ bext U  ext U + bFigure 3-8: Code of the CSA module in SNTP for processor v (single round-trip).50



Sites: the source site sStatenow: non-negative real number, initially 0local time: real number, initially arbitraryQi: queue for symbols of �, initially ;Qo: queue for symbols of ��R2, initially ;active: Boolean 
ag, initially falseLT2: a real number, initially unde�nedActionsReceive Aug Messages(m1; 0; 0) (input)E�: enqueue m1 in Qiactive  trueLT2  local timeReceive Messages(m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  falseSend Messages(m) (input)E�: enqueue m in Qoactive  trueSend Aug Messages(m1; LT2; LT3) (output)Pre: m1 is at the head of QoLT3 = local timeE�: remove head of Qoif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0E�: now  now + blocal time  local time + bFigure 3-9: Code of the CSA module in SNTP for processor s.51
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ENVIRONMENTFigure 3-10: The conceptual arrangement of the automata at a clock synchronization systemfor the local competitiveness model.In Section 3.2.1 we isolate the relevant information in executions of environments in thenotions of pattern and views. A pattern contains all the events with their real and local timeof occurrence, while a view does not contain the real time of occurrence. In Section 3.2.2 wede�ne the concept of local view at a point in the execution, which is the portion of the viewthat can be known at that point. In Section 3.2.3 we formalize the real-time speci�cationof a system in the de�nition of bounds mapping. This de�nition allows us to treat messagelatency bounds and clock drift bounds in a uniform way. The bounds mapping derived fromthe real-time speci�cation of the system is called the standard bounds mapping.3.2.1 Environments, Patterns, ViewsWe start with a formal de�nition of the notion of environment. Recall that the de�nition of asend automaton includes the de�nition of the clock at its site. The environment automatonde�ned below, therefore, controls the local clocks, message generation, and message deliveryin a clock synchronization system.De�nition 3.3 (Environments) Given a clock synchronization system, the environmentis the mixed automaton de�ned by the composition of all send and link automata.Our main interest is in executions of environments. The notion of execution containsa great deal of information: for example, at any given time, the state of a link describesprecisely, how many copies of each message are in transit and when will they be delivered.For synchronization purposes, however, it seems su�cient to match receive events withsend events, ignoring the interim. The concepts of patterns and views de�ned below getrid of information in executions which is irrelevant for synchronization. Intuitively, a viewcontains a set of points (which may be actions or just \placeholders" called null points),with a graph structure which describes their order of occurrence, and a local time attribute52



for each point; a pattern contains also a real-time attribute for each point. The graphstructure is essentially the one described by Lamport [16]. Let us recall the followingstandard graph-theoretic de�nitions.De�nition 3.4 Let G = (V;E) be a directed graph. A sequence p0; p1 : : : ; pk is a path fromp0 to pk in G if pi 2 V for i = 0; 1; : : : ; k, and (pi�1; pi) 2 E for i = 1; 2; : : : ; k. A path fromp0 to p0 is a cycle. A point p is said to be reachable from a point q if there is a path from qto p.Before we make the de�nition, recall that in an execution, each event has its real timeof occurrence; since in clock synchronization systems each event has a unique processor inwhich it occurs, we also have a unique local time of occurrence for each event.De�nition 3.5 (Patterns and Views) Given an environment automaton A, a view is apair (G; local time), where:� G = (V;E) is a directed graph. Each point p 2 V is either an action of a sendautomaton in A, or a null point that is said to occur at some processor. The arc setE is such that for each processor v, the subgraph induced by the set of all points thatoccur at v is a directed path; in addition, for each Receive Messageuv(m) point in Vthere is an arc �Send Messagevu(m);Receive Messageuv(m)� 2 E.� local time is a mapping from the point set V to R. For a point p 2 V , local time(p)is called the local time of p.A pattern is a triple (G; local time ; now), where (G = (V;E); local time) is a view, and nowmaps the points of V to R+. For a point p 2 V , now(p) is called the real time of p.Note that views and patterns contain only actions of the send automata. This informationis su�cient, since by the non-interfering �ltering property, CSAs must relay messages in-stantaneously between the send automata and the links. In addition, recall that actionsof the links contain the messages \piggybacked" by the CSA modules, and therefore themessage contents depend on the speci�c CSAs in the system. In our de�nition, the view orthe pattern of an execution of an environment automaton is independent of the CSAs.53
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Figure 3-11: An example of a scenario (a) with its pattern (b). Without the now attributesof the points, the pattern is a view.Example. Let us exemplify the concepts of views and patterns using a scenario that wasmentioned in the Introduction. We have a system that consists of two processors s and v,connected by a bidirectional communication link. In Figure 3-11 (a) we give a time-spacediagram of the following scenario. At real time 0, processor v, whose local clock shows �1,sends a message m to s; processor s receives m at real time 2, when its local clock shows 1.Some distinguished event occurs at s at real time 2:5, when its local clock shows 2. (Thisevent may be an internal event such as 
ipping a bit, or just the fact that the local clockshows 2.) At real time 3:5, when the local clock of s shows 3, s sends a message m0 to v;m0 is received at v at real time 9, when its local clock reads 8.In Figure 3-11 (b) we give an illustration of the pattern based on this scenario, with anull point for the distinguished event. If we remove the now attributes of the points in thepattern, the result is a view.Remarks.1. Null points in views have only two attributes, namely site of occurrence and localtime of occurrence. (In patterns, they also have real time of occurrence.) Null points willbe used to enable us to refer to points in which there is no action of the environment.2. Notice that given an execution of the environment automaton (or a clock synchro-nization system), its pattern and its view (without null points) are naturally de�ned, wherefor each event there is a point, and for each point there is an outgoing arc connecting itto the point that corresponds to the next event that occurs at the same processor (if sucha point exists), and each receive point has an incoming arc from the the send point of thecorresponding message. Similarly, we can speak about the view of a pattern.54



3. The reachability relation in views and patterns of executions is essentially the \hap-pened before" relation described by Lamport [16]: a point p is reachable from a point q inthe graph of a view of an executions if and only if q \happened before" p.Introducing null points into views and patterns. We shall introduce null points intoviews (and patterns) by stating their processor of occurrence and local time (for patterns,we shall also state their real time). We use the following convention: when introducing intoa view V a null point pv that occurs at a processor v at local time Tv, the resulting viewcontains a new point only if there is no other point in V that occurs at v at local time Tv.In case V is extended, the modi�cation of the arc set is naturally given: let p0 be the pointthat occurs at v with highest local time such that local time(p0) < Tv, and let p1 be thepoint that occurs at v with smallest local time such that local time(p0) > Tv. In the viewthat contains the null point pv, we have the additional edges (p0; pv) if p0 exists, and (pv; p1)if p1 exists, and we delete the arc (p0; p1) if both p0 and p1 exist.We follow the same procedure when introducing null points into patterns.3.2.2 Local ViewsThe motivation for the de�nition of a view is algorithmic: CSA modules have access onlyto the information contained in views, as opposed to patterns. (A precise statement ofthis intuition is formalized in Theorem 3.4.) However, views are de�ned with respect to acomplete execution, while we shall usually require CSA modules to produce output beforean (in�nite) execution is over... To capture this idea, we de�ne the concept of local view ata point.De�nition 3.6 (Local View) Given a view V = (G; local time) and a point p0 2 V, thelocal view of V at p0, denoted prune(V ; p0), is the restriction of V to the points p0 such thatp0 is reachable from p0 in G. The local view of V at processor v at time T is de�ned to beprune(V ; pv), where pv is a null point that occurs at v at local time T .For clock synchronization systems, as de�ned in this chapter, we have the importantproperty that any local view of an execution may actually be the view of the full execution.We prove this formally in Theorem 3.2 below.First, we de�ne a notion of pruned execution. Informally, the pruned execution of anautomaton A in a clock synchronization system with respect to some point p is the portion55



of the execution of A that \happened before" p. An additional complication in the de�nitionis due to the fact that in a view, only actions of the send automata are present; the actionsof the link and CSA modules are inferred by the the non-interfering �ltering property ofthe CSAs, which matches Receive Message and Send Message events (of send modules andCSAs) with Receive Aug Message and Send Aug Message events (of links and CSAs).De�nition 3.7 Let e be an execution of a clock synchronization system S, and let p be anypoint in e. The pruned execution of an automaton A with respect to p, denoted prune(ejA; p),is de�ned as follows.� If A is a send automaton, then prune(ejA; p) is the pre�x of ejA up to the last eventq such that p is reachable from q in V.� If A is a CSA automaton at a processor v, then prune(ejA; p) is the pre�x of ejA up tothe event which corresponds to the last event in prune(ejBv ; p), where Bv is the sendmodule at v.� If A is a link automaton connecting processors u and v, then prune(ejA; p) is the pre�xof ejA up to the last event in either prune(ejCv ; p) or prune(ejCu; p), where Cv and Cuare the CSA modules at v and u, respectively.Note that if p is an event of A, then the last action in prune(ejA; p) is p.We can now state and prove the property of local views.Theorem 3.2 Let V be a view of an execution e of a clock synchronization system, and letp be any point (possibly a null point) in V. Then there exists an execution e0 of the systemwhose complete view is prune(V ; p), and such that for each CSAmodule Cv, prune(ejCv ; p) =prune(e0jCv ; p).Proof: We start by de�ning executions for each component of the system separately.Consider an arbitrary send module Av. By the speci�cation of send modules, it is clearthat prune(ejCv ; p) can be extended to a full execution e0Av of Av with no events other thanthe ones in prune(ejCv ; p). Furthermore, this can be done in a way such that ejAv and e0Avhave the same clock functions (cf. Def. 2.12).Next, consider a link automaton Lvu. Since link automata can drop messages arbitrarily,we have that for any execution eLvu of Lvu and for any point qv, there exists an execution56



e0Lvu, such that e0Lvu and eLvu have the same view up to point qv, and such that in e0Lvu thereare no Receive Aug Message events after qw. We thus get executions of e0Lvu for all linksLvu whose views agree with V for all points up to the last point in prune(ejLvu; p).Using Corollary 2.4.1, we can obtain from the executions e0Av of all send modules Av,and from the executions e0Lvu of all links Lvu, an execution e0E of the environment, that hasview prune(V ; p), and such that e0E and e have the same clock functions.Consider now a CSA module Cv at a processor v. We can extend prune(ejCv ; p) to a fullexecution e0Cv of Cv that has the same clock function as in ejCv , and in which no further inputactions are taken. Since all the output actions Cv may take, by the non-interfering �lteringproperty, are in e0Cv , it must be the case that e0Cv has the same view as prune(ejCv ; p).By construction, the execution e0A of the environment and the executions e0Cv of the CSAmodules Cv agree on the actions and the clock functions of the sites they share. Hence,using Corollary 2.4.1 once again, we can obtain an execution e0 of the system, whose viewis prune(V ; p).3.2.3 Representation of Real-Time Speci�cationOur next step is to give a more convenient representation for the real-time speci�cation of anenvironment automaton. Recall that we have modeled real-time speci�cations using clockdrift bounds (denoted % and %) and message latency bounds (denoted L(m) and H(m)). Inthis section we state these speci�cations as bounds on the di�erence between the real timeof occurrence of pairs of points.We shall make frequent use of the following concepts.De�nition 3.8 (Actual and Virtual Delays) Let p and q be two points of a given pat-tern P. The actual delay of p relative to q in P, and the virtual delay of p relative to q inP, are de�ned by3 act delP(p; q) = nowP(p)� nowP(q) ;virt delP(p; q) = local timeP(p)� local timeP(q) :3Throughout this work, we use the following rule when de�ning a di�erence of two quantities: F (x;y) =f(x)� f(y), i.e., subtract the second quantity from the �rst.57



The de�nition of virtual delays extends naturally when we are given only a view.We also use the following notion.De�nition 3.9 (Adjacent Points) Two points p; q in a given view V = (G; local time)are called adjacent points if there is a directed arc between them in G.More intuitively, the above de�nition (in conjunction with Def. 3.5) says that two pointsare called adjacent if they occur one after the other in the same processor, or if one is asend event and the other is the corresponding receive event.Using the above de�nitions, we de�ne the key concept of bounds mapping.De�nition 3.10 (Bounds Mapping) A bounds mapping for a view V is a function Bthat maps every pair p; q of adjacent points in V to a number such that �1 < B(p; q) � 1.A pattern with view V is said to satisfy B if for all pairs of adjacent points p; q we haveact del(p; q) � B(p; q).The general notion of bounds mapping as de�ned above is not necessarily related tothe real-time speci�cation of the environment. The connection is made in the notion ofstandard bounds mapping, de�ned as follows.De�nition 3.11 Let B be a bounds mapping for a view V of an execution of a clock syn-chronization system. B is said to be the standard bounds mapping for V if the followingholds.� For a message m with send point p, receive point q, and latency bounds L(m) andH(m), we have B(q; p) = H(m) and B(p; q) = �L(m).� Let p be the immediate predecessor of q at a processor with (%; %)-clock. Then B(q; p) =virt del(q; p)=%, and B(p; q) = virt del(p; q)=%.The following lemma can be thought of as the \soundness" of the standard boundsmapping.Lemma 3.3 All patterns of executions of an environment satisfy their standard boundsmapping. 58



Proof: By de�nitions.Remarks.1. It is clear from De�nition 3.10 that the notion of bounds mapping is in fact moregeneral than the notion of real time speci�cation used so far: using bounds mapping, wecan model clocks with drift bounds that are not �xed.2. The standard bounds mapping has the property of being stated in terms of quantitiesthat are available to the CSA, either as system speci�cation (i.e., L(m); H(m); %; %), or asthe local times. Consequently, we may assume without loss of generality that given anenvironment, the standard bounds mapping can be used in specifying CSA modules.3.3 The Completeness of the Standard Bounds MappingIn this section we state and prove the main property of the system we shall use for provinglower bound results. First, we show that if a given pattern has a view of some executionof the system, and if it satis�es the timing speci�cation of the system, then in fact thereexists an execution with that pattern. This can thought of as a richness property of theset of executions of the system. In addition, the theorem below says that regardless ofthe underlying execution, the basic state of CSA modules (which determines the output)depends only on the view of the execution. To this end, we introduce the following de�nition.De�nition 3.12 Two executions e = !0�1!1 : : : and e0 = !00�01!01 : : : of a CSA are said tobe equivalent if the following conditions hold.(1) For all i, we have �i = �0i and local time(�i) = local time(�0i).(2) For all i, for any state s in the range of !i and any state s0 in the range of !0i, wehave basic(s) = basic(s0).Condition (1) says that for all i, the ranges of local times in the corresponding trajectories!i and !0i are the same. Also, recall that by the real time blindness of CSAs, the basiccomponent of the state is constant over a trajectory, and hence Condition (2) above saysthat for all i, the basic components of the state in the corresponding trajectories !i and !0iare the same.The following theorem can also be viewed as a converse to Lemma 3.3. In a sense, weshow that the standard bounds mapping is complete with respect to a view.59



Theorem 3.4 Let V be a view of an execution e of a clock synchronization system S, andlet B be the standard bounds mapping for V. Let P be any pattern of the environmentautomaton with view V. If P satis�es B, then there exists an execution e0 of S with patternP. Moreover, for each CSA module Cv, the executions of Cv in e and e0 are equivalent.Proof: The proof is straightforward, but somewhat tedious. Our strategy to construct e0 isas follows. We �rst construct individual executions for the send modules, the link automataand the CSA modules of S, based on P 0 and on e. Then we apply Corollary 2.4.1 and getan execution e0 of S with the required properties. The idea is that pairs of real and localtimes given in P can be used { by interpolation { to de�ne complete clock functions for thedesired execution e0. With these clock functions, we get executions of the send automataand the CSA module quite easily, since they are real-time blind. For the link automata,some extra work is needed, because their state is a�ected directly by time passage.De�ning clock functions. We de�ne a function local time0v : R+ 7! R for each site v 2sites(S). These functions describe the local times at the sites as a function of real time.(Whereas a clock function is usually de�ned in terms of an execution, here we �rst de�nethe clock function and then proceed to construct the execution.) Some values of the clockfunction are already speci�ed by the pattern; intuitively, our construction simply connectsthese values by linear interpolation, with (possibly) some special treatment of the �rst andlast segments. Formally, for each site v, we de�ne a local clock function local time 0v(t) forall t � 0 using the given pattern P and the following rule.1. If there exists in P some point pi that occurs at v with now(pi) = t, we set local time 0v(t)to be local timeP(pi).2. Otherwise, let p0 be the point in P with maximal real time such that p0 occurs at vand now(p0) < t. Let t0 = now(p0) and T0 = local time(p0). If there is no such point,t0 and T0 are unde�ned. Similarly, let p1 be the pont in P with minimal real timesuch that p1 occurs at v and now(p1) > t. Let t1 = now(p1) and T1 = local time(p1).If there is no such point, t1 and T1 are unde�ned. We distinguish among the followingcases. 60



(a) If both p0 and p1 are unde�ned (i.e., no point occurs at v), we de�ne for all t � 0,local time0v(t) = c � t ;where c is any constant in the range [%v; %v].(b) If only p0 is unde�ned (i.e., t is smaller than the real time of the �rst point thatoccurs at v), we de�ne local time0v(t) = T1 � c0 � (t1 � t) ;where c0 is any constant in the range [%v; %v].(c) If only p1 is unde�ned (i.e., t is larger than the real time of the last point thatoccurs at v), we de�ne local time0v(t) = T0 + c00 � (t� t0) ;where c00 is any constant in the range [%v; %v].(d) If both p0 and p1 are de�ned (i.e., there are points that occur at v with real timestrictly less and strictly more than t), we de�nelocal time 0v(t) = T0 + (t� t0) � T1 � T0t1 � t0 :Notice that local time0v is well de�ned in case (2d) since t0 < t < t1. It is straightforwardto verify that the local clock functions thus de�ned are continuous. Also, since % > 0 andsince P satis�es the standard bounds mapping, we get that the local clock functions are andmonotonically increasing. Therefore, local time0v is invertible (at least) on [T sv ;1], whereT sv is the local time of the �rst point in P that occurs at v (if it exists). We denote theinverse function by by local time�1v .This concludes the de�nition of the local clock functions. Using these functions, we nextde�ne executions of the individual components of the system. The idea is to use the originalexecution e, keep the local times of the points, but \shift" and \stretch" the real times sothat they agree with P . 61



Send modules. We now construct an execution e0Av of a send module Av that agrees withP . Most of the work was already done in the de�nition of the local clocks, since the state ofa send module consists merely of local and real times. More speci�cally, let the subsequenceof actions of Av in P be PAv = h�S1 ; �S2 : : :i. Since Av has no internal actions, all its steps arespeci�ed by PAv . To get a complete description of the desired execution e0Av = h!S0 �S1 !S1 : : :iof Av, we need only to specify the trajectories !Si . Recall that the state of a send module isa pair (now ; local time) of real and local time. Let i � 0, and let now(�i) � t � now(�i+1),where we de�ne now(�S0 ) = 0, and if there is no �i+1, we de�ne now(�i+1) = 1. Then wede�ne the trajectory !Si by !Si (t) = (t; local time 0v(t)).It is straightforward to see that e0Av thus constructed is an execution of Av: we �rstneed to check that !Si is a trajectory for all i � 0. This is easy, since the only restrictionon time passage steps is that they observe the drift bounds, and this is guaranteed by theconstruction. Since the discrete actions have no e�ect on the state, all that remains to beveri�ed is that !S0 (0) is a start state, which is true because now(!S0 (0)) = 0 by construction.CSA modules. Consider a CSA module at site v, and let ejCSA = hw0�C1 w : : :i be theprojection of e on that module. By Lemma 2.3, ejCSA is an execution of the CSA. We nowconstruct another execution e0CSA = h!C0 �C1 !C1 : : :i of the CSA, which agrees with P on thevisible actions. The �rst step in the construction is to �x the sequence of actions in e0CSAto be the same as in ejCSA. To complete the speci�cation of e0CSA, we need to de�ne thetrajectories.It is convenient to �rst de�ne local and real times for the steps. For the visible steps ine0CSA, we have local and real times already speci�ed by P . For internal steps, the idea isto keep the local times as in e, and to set the real time to be in accordance with the localclock functions de�ned above. Speci�cally, let �Ci be an internal step of the CSA. We abusenotation slightly and denote by local timeejCSA local clock function in e at site v. We de�nelocal timee0CSA(�Ci ) = local timeejCSA(�Ci ) :To set the now component, we use the inverse of the local clock function as follows:now e0CSA(�Ci ) = local time�1v (local timeejCSA(�Ci )) ; (3.1)62



i.e., the real time of occurrence of an action �C is given by the unique t such that local time 0v(t)is the local time of occurrence of �C in ejCSA (we shall see later that this number is wellde�ned).We now de�ne the trajectories !Ci in e0CSA for all i � 0. Again, we use ejCSA. Morespeci�cally, to de�ne a trajectory !Ci in e0CSA, we use the parallel trajectory wi in ejCSA asfollows. Let t 2 [now(�Ci ); now(�Ci+1)] for any i � 0 (where we de�ne now(�C0 ) = 0 and if�Ci+1 does not exist, we de�ne now(�Ci+1) =1). The trajectory !Ci is de�ned bynow e0CSA(!Ci (t)) = tlocal timee0CSA(!Ci (t)) = local time 0v(t)basice0CSA(!Ci (t)) = basicejCSA(wi(t0)) ; (3.2)where t0 is any number in the domain of wi.Let us show that our construction is well de�ned. First, note that since ejCSA is an execu-tion of a CSA, its initial state must be quiescent, and hence, by Lemma 3.1, �C1 is not an in-ternal action of the CSA. Therefore, there is a step of the send module in P whose local timeis local time(�C1 ), which implies that local time�1v is de�ned over [local timeejCSA(�C1 );1].This, in turn, implies that Eq. (3.1) is well de�ned. Finally, note that by real-time blindness,the basic component of the state of a CSA is �xed throughout a trajectory, and thereforeEq. (3.2) is not ambiguous.Next, notice that conditions (1) and (2) in the statement of the theorem are satis�ed bythe construction. This is true since for all i � 0, all the states in the range of !Ci have thesame basic component, which is the same as the basic component of all states in the rangeof wi; in addition, for i � 1, the intervals of local times in !Ci and wi are the same.We now show that e0CSA is an execution of the given CSA. To show that we use heavilythe real-time blindness property. First, we prove that !Ci is a trajectory of the CSA forall i � 0. Let s1 = !Ci (t) and be s2 = !Ci (t0) be two states, where t < t0. Let s�1 and s�2be the states in the corresponding trajectory wi that satisfy local time(s�1) = local time(s1)and local time(s�2) = local time(s2). This is possible since by construction, wi and !Li agreeon the local time in their endpoints, and since the local clock function is continuous. Alsoby construction, basic(s1) = basic(s�1) and basic(s2) = basic(s�2); moreover, it is easy to seethat local time(s2)� local time(s1) 2 [%(t0� t); %(t0� t)] by the assumption that P satis�es63



the standard bounds mapping. Since s�1 �! s�2, we get from the real-time blindness of theCSA and that s1 �! s2, as required in this case.Consider now a discrete action �Ci . Let s1 = l state(!Ci�1), s2 = f state(!Ci ), s�1 =l state(wi�1), and s�2 = f state(wCi ). By construction we have that s1 and s�1 may di�eronly in their now component, and similarly s2 and s�2. From the construction we also havethat now(s1) = now(s2) and local time(s1) = local time(s2). Since we know that s�1 �Ci! s�2,we get from real-time blindness that s1 �Ci! s2, as required for this case. This completes theproof that e0CSA is an execution of the CSA.Link automata. Consider now a link automaton Luv. By the non-interfering �ltering prop-erty, in e there exist natural bijections between the Send Aug Messagevu actions of Luv andthe Send Messagevu actions of Au, and between the Receive Aug Messageuv actions of Luvand the Receive Messageuv actions of Av. Since all the actions of Au and Av appear also inP , using these bijections we can de�ne a sequence PLuv = h�L1 ; �L2 : : :i which contains allthe actions of Luv that correspond to actions of Av in P . Notice also that using these bijec-tions, each event in PLuv inherits a now component, and that the causality mapping 
 canbe extended so that for each Receive Aug Message event p there is a Send Aug Messageevent q satisfying q = 
(p). We use these extended notions in the construction below.Our goal is to construct an execution e0Luv = h!L0 �L1 !L1 : : :i of Luv that agrees with PLuv.Similarly to the case of send modules, Luv has no internal steps, and hence all the steps �Liare already speci�ed by PLuv . It remains to specify the trajectories of e0Luv . We shall usethe following notation.Notation 3.13 The contents of the multiset Quv at state s is denoted Q(s).We de�ne Q((!L0 (0)) = ;, and now(!L0 (0)) = 0. The rest of the construction is doneinductively. Suppose that f state(!Li ) is de�ned. For t in the domain of !Li , we de�nenow(!Li (t)) = t, and Q(!Li (t)) is de�ned by a bijection from Q(f state(!Li )) using thefollowing rule:Q(f state(!Li )) 3 (m1; m2; t0)  ! (m1; m2; t0 � t+ f now(!Li )) 2 Q(!Li (t)) : (3.3)In other words, the third component t0 in each triple (m1; m2; t0) stored in Quv at the startof !Li is reduced by the amount of time that has elapsed since the start of !Li . To de�ne64



the start state of trajectories !Li with i > 0, we de�ne Q(f state(!Li )) as a modi�cation ofQ(l state(!i�1)), with the help of the (extended) causality function 
. Speci�cally, suppose�rst that �Li = Send Aug Message(m1; m2). Then we de�neQ(f state(!Li )) = Q(l state(!i�1)) [ n(m1; m2; act del(�Lj ; �Li )) : 
(�Lj ) = �Li o : (3.4)In words, Quv is augmented by one triple for each copy of (m1; m2) that will be received inthe future, as speci�ed by 
.If �Li = Receive Aug Message(m1; m2), we de�neQ(!Li (t)) = Q(l state(!i�1)) n f(m1; m2; 0)g : (3.5)In words, one copy of (m1; m2; 0) is removed from Quv. We show below that (m1; m2; 0) 2Q(l state(!i�1)) in this case. This concludes the con of e0Luv .We now have to show that e0Luv is an execution of Luv. The key to the proof is a certaininvariant; to state it, we introduce another piece of notation.Notation 3.14 For a state s in e0Luv, R(s) is the set of all Receive Aug Message eventsthat occur after state s and such that for all p 2 R(s), 
(p) occurs before s.With this notation, we state the following invariant, parameterized by a state s of e0Luv :Invariant I(s): There exists a bijection R(s)$ Q(s) that maps each (m1; m2; t) 2Q(s) to a step �Lk 2 R(s) such that �Lk = Receive Aug Message(m1; m2) andnow(�Lk )� now(s) = t.As a preliminary observation, notice that I(s) implies that for all (m1; m2; t) 2 Q(s) wehave t � 0, which implies that s 2 states(Luv).Our �rst step is to prove that if I(f state(!Li )) holds for some i � 0, then !Li is atrajectory for Luv. Consider two states s = !Li (t) and s0 = !Li (t0) where t < t0, and supposeI(s) holds. We argue that for all (m1; m2; t) 2 Q(s), we have that t � now(s0) � now(s):for suppose not, i.e., there exists a triple M = (m1; m2; t) with t < now(s0)�now(s). Thenby I(s), the corresponding Receive Aug Message(m1; m2) event �Lj occurs after s, and forthat event we have now(�Lj ) = now(s) + t < now(s0). It follows that now(s) � now(�Lj ) <now(s0), contradicting the assumption that s and s0 are states on the same trajectory, i.e.,65



that there is no discrete action that occurs between them. Using this fact, it is easy toverify that (s; �; s0) 2 trans(Luv) according to the construction above.Next, we show that if I(s) holds, and s �! s0, then I(s0) holds. Let h be the bijectionbetween R(s) and Q(s) that satis�es the requirement of I(s). Let g be the bijection inducedby the construction between the elements of Q(s) and Q(s0). More speci�cally, g is thebijection de�ned in Eq. (3.3). We thus de�ne h0 to be the composition of h and g. It isstraightforward to verify that h0 satis�es the requirements of I(s0).We have proven that if I(f state(!Li )) holds, then I(!Li (t)) holds for all t for which!Li (t) is de�ned, and in particular, I(l state(!Li )) holds, if it exists. We now show, byinduction on i, that I(f state(!Li )) holds for all i � 0. Trivially, I(f state(!L0 )) holdsbecause Q(!L0 (0)) = ;. For the inductive step, let i > 0. By the previous claim and theinduction hypothesis, I(s) holds for s = l state(!Li�1). Let h denote the bijection thatsatis�es I(s). Let s0 = f state(!Li ). To show that I(s0) holds, we de�ne a bijection h0 for s0.Suppose �rst that �Li = Send Aug Messagevu(m1; m2). Then by construction Q(s0) �Q(s). Furthermore, by Eq. (3.4), there exists a bijection f between Q(s0) n Q(s) andR(s0) n R(s). We can therefore de�ne h0 to be the extension of h by f , and I(s0) in thiscase.Suppose now that �Li = Receive Aug Messageuv(m1; m2). Notice that by the de�nitionof R(s), we have �Li 2 R(s). Also, by I(s), we have M = (m1; m2; 0) 2 Q(s). Moreover,it must be the case that h(M) = �Li . By Eq. (3.5), we have that Q(s0) = Q(s) n fMg,and by de�nition, we have that R(s0) = R(s) n f�Li g. We can therefore de�ne h0 to be therestriction of h on Q(s0) and R(s0), and h0 satis�es the requirements of I(s0). This completesthe inductive step.Finally, note that the fact that I(l state(!Li )) holds for all i � 0 implies that by con-struction, �l state(!Li ); �Li+1; f state(!Li+1)� 2 trans(Luv) :We conclude the argument that e0Luv is an execution of Luv by observing the trivial factthat !L0 (0) is a start state of Luv.Concluding argument. To conclude the proof of the theorem, we argue that there exists anexecution e0 of S such that its projections on the send automata, link automata, and CSAautomata are the executions constructed above. To do that, we �rst extend P to be a form66



for S. This is straightforward: we insert into P all visible actions of the sub-executions weconstructed, and for each point, we extend the local time to be a times form using the localclock functions. Also, we de�ne a form for S with start real time ts = 0 and �nish real timetf = 1; for all v 2 sites(S) we de�ne local start times T s(v) = local time 0v(0), and local�nish times T f(v) = 1. Now, to apply Corollary 2.4.1 all that remains is to verify thatthe local times in the sub-executions constructed above agree on shared sites; but this isimmediate, since for each site we used the same local clock function. Therefore, there existsthe desired execution e0.
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SummaryIn this chapter we de�ned clock synchronization systems, using the mixed I/O automataformalism. Our model is geared towards the local competitiveness analysis presented inChapter 4. Intuitively, the basic assumptions of the model are as follows.� The system has an underlying communication graph over which messages are com-municated.� Each processor has a local clock with known bounds on the rate of progress, calledclock drift bounds.� When a message is received, there are known bounds on its time of transit, calledmessage latency bounds. However, messages may be lost, duplicated, and deliveredarbitrarily out of order.� Send events are generated arbitrarily by a send module at each processor.� The clock synchronization algorithm at each processor, abbreviated CSA, may onlyappend information to outgoing messages, and strip the corresponding informationthat arrives on incoming messages. CSAs may not interfere with message tra�cotherwise, and their only access to time is via the local clocks.We also de�ned the following concepts.� An environment is the composition of all send modules and communication links.Thus an environment controls send and receive events.� A pattern of an execution of an environment is a directed graph that describes theexecution, where each event is a point, and for each point we have local and real timeof occurrence.� A view is a pattern without the real time attribute for points. Views of executions ofenvironments contain information that can be used by CSAs for computation, whilethe real time information in patterns is available only for analysis.� a local view at a point p is the restriction of the view to all the points that \happenedbefore" p (as de�ned by Lamport [16]). We proved that any local view of an executionmay be the view of a full execution of the system.68



� The virtual delay of a pair of points, denoted virt del , is the local time of occurrenceof the �rst point minus the local time of occurrence of the second point.� The actual delay of a pair of points, denoted act del , is the real time of occurrence ofthe �rst point minus the real time of occurrence of the second point.� Two points are called adjacent if either they occur at the same processor one after theother, or they correspond to the send and receive event of the same message.� A bounds mapping for a view speci�es time upper bounds for the actual delays ofadjacent points. Bounds mapping describes lower bounds as well, by reversing theorder of the points.� The standard bounds mapping is the \o�cial" bounds mapping, derived from messagelatency bounds, clock drift bounds, and local times.We also proved the fundamental theorem of our model, which says that all the patternswith a given view which satisfy the standard bounds mapping, are possible patterns ofexecutions of the system. The theorem also implies that the output of CSAs depends onlyon the view of the execution.
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Chapter 4Problem Statements and QualityEvaluationIn this chapter we de�ne the synchronization tasks considered in this thesis, and the waywe evaluate the performance of synchronization algorithms. As we shall see, there is anatural concept of tightness of synchronization for the clock synchronization problems wede�ne; the tightness is measured in non-negative real numbers, and an output will beconsidered \good" if its tightness is small. However, it is not clear a priori what is theinput for synchronization algorithms. One classical answer for this question is that theinput is the system speci�cation. A typical example for this approach is the paper byHalpern et al. [13], where designing a synchronization algorithm is viewed as a \gameagainst nature:" an algorithm is called optimal if it produces the best output under theworst-case scenario allowable by the system speci�cation. This approach has the appealingproperty of robustness, but it may give rise to algorithms that produce the best worst-caseresult always, even if the actual execution does not happen to be the worst possible (thealgorithm given in [13] has this property). This is a disadvantage if the environment is notnecessarily adversarial, as may be the case for clock synchronization systems.Another approach, developed by Attiya et al. [3], is that the input for a synchroniza-tion algorithm is not only the system speci�cation, but also the actual execution, or moreprecisely, the view of the execution.1 In this approach, an algorithm is called optimal if it1Recall that views consist of the events and their local times of occurrence, while executions contain alsothe real times of occurrence, which is not available for computation (see Def. 3.5). We remark that Attiyaet al. used the term execution to denote the concept we call view.70



produces the best possible output for each given input, i.e., for each possible view of an ex-ecution (and the system speci�cation for that view). The latter approach is more attractivesince an optimal algorithm in this sense has a stronger guarantee of output quality thanthe guarantee made by an optimal algorithm in the former sense.Both approaches of [3] and [13], however, su�er from an important disadvantage, whichis that the algorithms they consider are centralized and o�-line. More speci�cally, thealgorithms are based on the implicit assumption that all input has been gathered and it isavailable at a single processor for computation. This is clearly a drawback, since the outputof clock synchronization algorithms typically needs to be available all the time, i.e., on-line.For example, in the approach of [3], the input is a view of the execution, which containcertain messages. Notice that this view can be made available at a single processor onlyif more messages are sent, in which case the view is necessarily extended. Thus an outputconsidered optimal for a view may not be optimal when that view is extended to enablecomputation.The approach we present in this chapter can be viewed as a combination of the optimalitynotion of [3] with the well-known concept of competitive analysis of on-line algorithms[32, 23], using Lamport's causality relation [16]. More speci�cally, in competitive analysisthe quality of the output produced by an on-line algorithm is evaluated at each point withrespect to the input known at that point. In the centralized on-line setting, all past inputis known, and the future input is unknown. In the distributed setting, even past input isunknown if it is remote and has not been communicated. We therefore de�ne the inputat a point to consist of what can be known locally (called local view in Def. 3.6). Wemeasure the quality of the output of an algorithm A with respect to the quality of the bestpossible output for the given local view. We call the ratio between these quantities the localcompetitiveness of algorithm A.The remainder of this chapter is organized as follows. In Section 4.1 we give formalde�nitions for the synchronization tasks considered in this thesis. The de�nition of locallycompetitive algorithms is given in Section 4.2. In Section 4.3 we discuss the concept of localcompetitiveness in a more general setting. 71



4.1 Synchronization TasksIn this section we de�ne the speci�c synchronization tasks we consider in this thesis, namelyexternal and internal synchronization. For each problem we give a re�ned speci�cation ofthe system architecture, a correctness requirement, and a de�nition of tightness.4.1.1 De�nition of External SynchronizationThe motivation for external clock synchronization is systems where one of the clocks isassumed to show the standard time, and the goal is that all clocks in the system will showthis standard time as accurately as possible. The name \external synchronization" stemsfrom the assumption that the designated clock serves as a source of the external standardtime into the system. Formally, we shall use the following de�nition.An external synchronization system is a clock synchronization system with the followingproperties. There exists a distinguished processor s, called the source processor, whose localclock is drift-free. A CSA module at each processor v has two output variables, denotedext Lv and ext U v.For any given state x, let source time(x) denote the local time at the source in x. Thecorrectness requirement of an external CSA at any processor v is that at every reachablestate x, the output variables at v satisfy source time(x) 2 [ext Lv; ext U v].The external tightness of synchronization at processor v at some state is the di�erence(ext U v � ext Lv) at that state.Remark. An alternative formulation of the problem would be to require the CSAs toproduce one number T as an estimate of the current source time, and another number "that bounds the current di�erence between the estimate and the source time. While the twospeci�cations are equivalent if ext L and ext U are both �nite or both in�nite, we preferthe (ext L; ext U ) formulation, since it is slightly more re�ned: in the case where exactlyone of the numbers ext L or ext U is �nite, the output according to the (T; ") formulationis the same as for the case where both ext L and ext U are in�nite.4.1.2 De�nition of Internal SynchronizationWe use a variant of the elegant de�nition of Dolev et al. [7] and Halpern et al. [13], whichwe formulate as follows. (A discussion of the de�nition is given in Chapter 7.)72



An internal synchronization system is a clock synchronization system, such that eachCSA module has a special internal action called �rev, where v is the site of the module.The correctness requirement of the internal synchronization task is that �rst, each pro-cessor v takes a �rev action exactly once during an execution of the system. And secondly,the CSA at each processor maintains output variables called int Lv and int U v, such thatat all states, the real time interval [now(�rev) + int Lv; now(�rev) + int U v] contains allthe �re events in the execution. Intuitively, the output variables provide local guaranteesfor the tightness in which all �re actions are produced in the system. Initially, we will haveint L = �1 and int U = 1, and during the execution, int L may get larger and int Umay get smaller.The internal tightness at processor v in some state is the di�erence (int U v � int Lv)at that state. The internal tightness of an execution at a processor v is the in�mum of theinternal tightness at v, over all states of the execution. The internal tightness of v in anexecution e is denoted tightnessv(e).4.2 Local CompetitivenessLocal competitiveness is our measure of quality of synchronization algorithms. Intuitively,an algorithm is said to be locally K-competitive if its output at any point is at mostK timesworse than the best possible for the local view at that point. We formalize this intuitionfor CSAs as follows.Fix a synchronization problem. As described in Section 4.1, each problem has a predicatethat classi�es CSAs as \correct" and \incorrect." More speci�cally, the correctness predicateclassi�es executions as correct and incorrect; a CSA is correct if all its executions are correct.In Section 4.1 we also de�ned, for each synchronization problem, a function called tight-ness, that maps states of CSAs to R+ [ f1g. By real-time blindness, the tightness is afunction only of the basic component of the state. Recall that by Theorem 3.4, the ba-sic component of a state of a CSA module in an execution depends only on the view ofthe execution. Hence, given a CSA module (in either an internal or an external synchro-nization system), the tightness of the view at a given point is well de�ned. (If the CSAis not deterministic, then the tightness is a non-deterministic function of the local view.)Using the notions of correct CSAs and tightness of views, we de�ne the key concept of local73



competitiveness as follows.De�nition 4.1 Let A be the set of all correct CSAs for a given environment. Let �A;v(V ; T )be the tightness of synchronization in executions with local view V of a processor v at localtime T , for a system with a CSA module A 2 A. An algorithm A is said to be locallyK-competitive if for all views V, processors v and local times T ,�A;v(V ; T )� K � inf f�A0;v(V ; T ) : A0 2 Ag :The least number K such that A is K-competitive is the local competitive factor of A. Alocally 1-competitive algorithm is also called optimal.Remarks.1. Recall that our model de�nitions allow for nondeterministic CSAs, i.e., CSAs whoseoutput is not a deterministic function of the view. In this case, the correctness requirementis that all possible executions are correct. On the other hand, we can de�ne the tightness ofa view to be the least tightness over all executions with the given view, which means thatwe consider the best possible choices made at the non-deterministic choice points, so longas they produce correct results.2. It is important to notice that in principle, there always exists a full informationprotocol which is optimal: in this algorithm, the processors send their complete view inevery message; how to determine the output depends on the speci�c problem being solved,but clearly optimal output can be computed since all the relevant information is availablelocally at each processor, simply because all possible information is there! It is also clear,however, that the full information protocol is usually not practical. From the communicationperspective, the message size blows up rapidly to fantastic lengths; and from the processingperspective, it may well be the case that extracting the output from the \full information"is computationally infeasible. The goal of the designer of a locally competitive algorithm,therefore, is to �nd what is the relevant information that must be communicated, and howto process it e�ciently to obtain the desired output.74



4.3 DiscussionThe local competitiveness setting described above is specialized for the two clock syn-chronization problems given. It is straightforward to generalize it for other optimizationproblems along the following lines. The analog for local clock would be some source thatgenerates inputs; local time at a point would be replaced by the cumulative input up tothat point. The non-interfering �ltering property remains unchanged, which means on onehand that a locally competitive algorithm works for any given view, and on the other handthat it does not generate messages on its own. The local competitiveness de�nition canbe generalized using any positive valued target function that measures the quality of theoutput.Approaches similar to local competitiveness were used in the past. For example, see the\best e�ort" algorithm of Fischer and Michael [9] for database management. (It may beinteresting to note that the algorithm in [9] uses synchronized clocks.) Some other work wasdone by Ajtai et al. [2], after our preliminary paper was published [29]. Loosely speaking,in [2] they consider a shared memory system, where an execution is a sequence of processoraccesses to the shared memory. The order by which processors take steps is given by anarbitrary schedule. A task is de�ned as a predicate over the output values, and a task is saidto be completed when this predicate is satis�ed. In the formulation of [2], the competitivefactor of an algorithm is the maximum, over all schedules, of the total number of stepstaken by the algorithm until the task is completed, divided by the minimal number of stepsrequired by any correct algorithm to complete the task, under the same schedule. Ourapproach di�ers in a few technical aspects. First, our model is message passing and notshared memory; hence the analog of their \schedule" is our \view." Secondly, we consideran optimization problem, where output must be produced at all times. Hence the quantityof interest for us is a target function de�ned over the output values, whereas in [2], theoutput values are of no interest (provided they are correct), and the implicit target functionis the number of steps required to produce the output.Nevertheless, the local competitiveness approach is not widely accepted. One possiblereason to reject it is that a locally competitive algorithm does not give an absolute guaran-tee but only a relative one. For example, in our formulation a locally competitive algorithmnever initiates transmission of a message by itself. If no message is sent by the send module,75



then the optimal algorithm may be trivial since the best possible output is trivial. Thisexample points to a deeper problem in system design (shared also by the classical competi-tiveness model of [32, 23]): the question is to determine what is the input for the algorithm,and what is under the control of the algorithm.The reader should note, however, that a locally competitive algorithm must do wellon all cases. In addition, the local competitiveness approach enables us to compare theperformance of algorithms on equal grounds. For example, consider a system which is aring of processors, and one algorithm that sends messages only clockwise, and another thatsends messages only counterclockwise. It seems that the two algorithms are incomparable ona per-view basis, since e�ectively they run on di�erent systems. However, if the algorithmsare locally competitive, they must give good results on both cases.Another possible objection to the concept of local competitiveness is the validity of the\non-interfering �ltering" assumption. This assumption says, among other things, thatthe transmission time of a message is independent of the message added by the CSA, andthat CSAs relay messages between the send module and the network links instantaneously.Strictly speaking, this assumption is false in any physical system. Nevertheless, we arguethat the non-interfering �ltering assumption can serve as a reasonable approximation ofreality so long as the blowup in message size, and the computation resources required bythe CSA are negligible.We believe that the philosophy behind the concept of local competitiveness best suitsnetwork-maintenance protocols, e.g., topology update, or other routing protocols, wherethere is always something to be done. It is interesting to observe that in real networks, themessage delivery system appends \headers" to messages to facilitate delivery. Ideal locallycompetitive algorithms would use such headers, extending them only slightly.
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SummaryIn this chapter we de�ned the synchronization tasks we consider in this thesis and the waywe evaluate the performance of algorithms that solve them.We de�ned the problem of external synchronization, in which all processors are trying toacquire tight bounds on the reading of one designated processor whose clock is drift-free. Inthe problem of internal synchronization, all processors need to make a distinguished actionin the smallest possible interval of real time. For each problem we de�ned the systemarchitecture, correctness requirement, and the measure of tightness.The quality of a synchronization algorithm is measured by its local competitiveness.The local competitiveness of an algorithm is the maximal ratio between the tightness itproduces at any point, and the best possible tightness for the given local view at that point.The concept of local competitiveness can be viewed as a combination of the per-executionevaluation approach of [3], competitive analysis [32, 23], and the causality partial order [16].We argued that this approach can be of independent interest as a method for evaluatingdistributed optimization tasks. We compared the concept of local competitiveness with theapproach of [2], and we discussed some of its advantages and disadvantages.
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Chapter 5The Basic ResultThe starting point for this chapter is the following problem: given two points in an executionof a clock synchronization system, �nd the tightest bounds on the real time that elapsesbetween their occurrence. The means by which this task is to be accomplished is the CSAmodules. The \input" available to the CSA modules consists of the events that occurredin the system with their local time of occurrence (i.e., the view of the execution), and thestandard bounds mapping that represents the system timing speci�cation for that view.Hence the task can be solved if we can �nd the set of executions with the given view.Our strategy to solve this problem is to reformulate the setting in graph-theoretic lan-guage, and solve a more general abstract problem. We �rst abstract views as labeleddirected graphs, which we call v-graphs ; the only attribute a point has in a v-graph is itslocal time. We also abstract patterns as labeled directed graphs, which we call p-graphs ;in p-graphs, a point has both local and real time. Bounds mapping is now an abstractfunction that maps pairs of adjacent points in v-graphs to numbers. Using bounds mappingand v-graphs, we obtain weighted directed graphs we call synchronization graphs. Then,in Theorems 5.4 and 5.5, we prove a characterization of the set of p-graphs that have agiven v-graph and satisfy a given bounds mapping, in terms of distances in the derivedsynchronization graph. These results are independent of the particular interpretation, butto aid intuition, our development is accompanied with an an example of an execution of aclock synchronization system.Then, in the main results of this chapter, we specialize to the case of views and patternsof clock synchronization systems. In Theorems 5.6 and 5.7, we use Theorems 5.4 and 5.578



in conjunction with Theorem 3.4, and prove that the relation proven for p-graphs andsynchronization graphs holds for patterns of executions of synchronization systems and thesynchronization graphs derived from the views and bounds mapping. Using Theorem 3.2,we also derive a corollary for local views (Theorem 5.8).Philosophically, synchronization graphs can be viewed as an extension of the graphs usedby Lamport to describe executions of completely asynchronous systems [16]. Lamport'sgraphs are unweighted, and the main property of interest regarding a pair of points iswhether one is reachable from the other. Reachability expresses the fact that in all possibleexecutions which have that graph, one point occurs before the other. By contrast, weconsider systems with clocks, and de�ne graphs which are weighted. The main property ofinterest regarding two points is the distance between them: this distance expresses boundson the real time that elapsed between their occurrence which is satis�ed by all executionswith that synchronization graph.This chapter is organized as follows. In Section 5.1 we present the notions of v-graphs,p-graphs, synchronization graphs and prove a relation between these abstract concepts. InSection 5.2 we derive the results for clock synchronization systems.5.1 Synchronization GraphsIn this section, we de�ne the notions of v-graphs, p-graphs, and synchronization graphs.V-graphs and p-graphs are abstractions of views and patterns, respectively. We give anatural correspondence between the abstract graphs concepts and their counterparts inclock synchronization systems.We de�ne the key concept of synchronization graphs, which are weighted directed graphs,derived from v-graphs and bounds mappings for these graphs; synchronization graphs willbe our main tool in analyzing executions of clock synchronization systems. The main resultsin this section relate p-graphs to the synchronization graph. The development in this sectionis self-contained; to help the reader in understanding the motivation for the concepts, wegive a running example from our intended application domain, namely clock synchronizationsystems.We start by de�ning the notion of v-graphs.De�nition 5.1 A v-graph is a pair (G; local time), where G = (V;E) is a directed graph79
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local_time=8local_time=3Figure 5-1: An example of a v-graph.with (p; q) 2 E if and only if (q; p) 2 E, and local time is a function that associates a �nitereal number with each point p 2 V . For any two points p; q 2 V , we de�ne virt del(p; q) =local time(p)� local time(q). A bounds mapping for a v-graph is a function that assigns anumber B(p; q) 2 R [ f1g to each arc (p; q) 2 E.The natural correspondence: views and v-graphs. Before we proceed to analyzeview graphs, we describe the way v-graphs can be obtained from views of clock synchro-nization systems. Recall that a view V , as de�ned in Def. 3.5, is a graph, where each pointis labeled by an action name and local time of occurrence. Notice that by adding for eacharc (p; q) in a view another arc (q; p), we obtain a v-graph. In the resulting v-graph thereis some additional information attached to each point (i.e., the name of the associated ac-tion or null point), but this is irrelevant for our treatment of v-graphs. We call the abovemapping from views to v-graphs the natural correspondence. In the sequel, points will beused to denote both points in view graphs and in views, where the interpretation is clearby the context.The natural correspondence enables us to use bounds mappings for views as boundsmapping for v-graphs (recall that a bounds mapping for a view is a function that assignsan upper bound to the di�erence in real time between the occurrence of any two adjacentpoints in V , see Def. 3.10). Under the natural correspondence, a bounds mapping for a viewV applies also to pairs of adjacent points in the v-graph of V .Example. Consider a system with two processors u and v, and suppose that u has adrift-free clock, and v has a (0:5; 1:5)-clock. Consider the following scenario.80



(1) u sends a messagem1 to v at local time �1, such thatm1 is guaranteed to be deliveredwithin no less than 2 time units, and no more than 3 time units.(2) m1 is received at v at local time 1.(3) v sends a message m2 to u at local time 3, such that m2 is guaranteed to be deliveredwithin no less than 5 time units, and there is no upper bound on its transmissiontime.(4) m2 is received at u at local time 8.The short description above provides su�cient detail to de�ne a view, a v-graph, anda bounds mapping. Let s1; s2 denote the send points of m1 and m2, respectively, and letr1; r2 be their respective receive points. The corresponding v-graph is depicted in Figure5-1. Also, we have thatvirt del(s1; r1) = �2 virt del(r1; s1) = 2virt del(s2; r2) = �5 virt del(r2; s2) = 5virt del(s1; r2) = �9 virt del(r2; s1) = 9virt del(s2; r1) = 2 virt del(r1; s2) = �2Let B0 denote the standard bounds mapping for the given view. Using Def. 3.11 we calculatethe values of B0. We getB0(s1; r1) = �2 B0(r1; s1) = 3B0(s2; r2) = �5 B0(r2; s2) = 1B0(s1; r2) = �9 B0(r2; s1) = 9B0(s2; r1) = 4 B0(r1; s2) = �4=3We shall return to this example as we develop the analysis.For the remainder of this section, we �x a v-graph � = (G; local time) where G = (V;E),and a bounds mapping B for �.Our next step is to de�ne the concept of a p-graph as an extension of a v-graph, analogousto the way a pattern is an extension of a view.De�nition 5.2 A p-graph with view � is a triple � = (G; local time ; now�), where (G; local time) =�, and now� is a function that associates a non-negative �nite real number with each81



point p 2 V .1 A p-graph � with view � is said to satisfy B if for all (p; q) 2 E we haveact del�(p; q) def= now�(p)� now�(q) � B(p; q).For a given p-graph, we de�ne the key concepts of o�sets.De�nition 5.3 (O�set) Let p be a point in a p-graph � = (G; local time ; now�). Theabsolute o�set of p is ��(p) = now�(p)� local time(p) :For any other point q in �, the relative o�set of p from q is��(p; q) = ��(p)� ��(q) :We omit subscripts when no confusion arises.The natural correspondence: patterns and p-graphs. The natural correspondencede�ned above for views applies also for patterns. This way, given a pattern P as de�nedin Def. 3.5, its p-graph � is naturally de�ned. Moreover, using the natural correspondence,the notions of absolute and relative o�sets, de�ned over the points of �, are also de�nedover the points of P , and we have that �P(p) = ��(p) and �P(p; q) = ��(p; q) for all pointsp; q. As an aside, notice that if we know local time of two points in an execution, thenbounding the real time that elapses between their occurrences is equivalent to boundingtheir relative o�set.Before we proceed, we state two properties of relative o�sets.Lemma 5.1 Let p; q; r be any three points of a given p-graph. Then1. �(p; q) = ��(q; p) (antisymmetry).2. �(p; q) = �(p; r) + �(r; q) (chain rule).Proof: Immediate from de�nitions.1The v-graph � and the bounds mapping B are �xed in this section; since we shall be dealing with manypossible patterns, the now function is subscripted by the pattern's name.82
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Notice that the distances are not well de�ned if � has cycles with negative weights. Thenext lemma gives a su�cient condition for � to have no negative-weight cycles.Lemma 5.3 If there exists a p-graph � with v-graph � such that � satis�es B, then � hasno negative weight cycles.Proof: Let � = hp0; p1; : : : ; pk�1; pk = p0i be any directed cycle in �. Thenw(�) = Pki=1w(pi�1; pi)� Pki=1 ��(pi�1; pi) by Lemma 5.2= ��(p0; p0) by Lemma 5.1= 0 : by de�nitionWe now arrive at the �rst result for the problem of determining the set of p-graphs thatsatisfy B and have v-graph �. The following theorem characterizes these p-graphs in termsof all distances in the synchronization graph.Theorem 5.4 A p-graph � with v-graph � satis�es B if and only if for any two pointsp; q 2 V in the synchronization graph, ��(p; q) � d(p; q).Proof: Let � be a p-graph with v-graph �. Assume �rst that � satis�es B, i.e., for any(p; q) 2 E we have act del�(p; q) � B(p; q). We show that ��(p; q) � d(p; q) for anyp; q 2 V . In case that there is no path connecting p and q, we have d(p; q) =1 and we aredone trivially. Otherwise, consider any shortest path p = p0; : : : ; pk = q from p to q. Thenwe have that ��(p; q) = Pk�1i=0 ��(pi; pi+1) by Lemma 5.1� Pk�1i=0 w(pi; pi+1) by Lemma 5.2= d(p; q) by de�nitionproving the \only if" part of the theorem.Conversely, assume that for any two points p; q 2 V , we have that ��(p; q) � d(p; q). Weprove that � satis�es B. Let (p; q) 2 E. By de�nitions of arc weights and distances, we havethat B(p; q) � virt del(p; q) = w(p; q) � d(p; q). Hence, by assumption, we get B(p; q) �85



virt del(p; q) � d(p; q) � ��(p; q) = act del�(p; q)� virt del(p; q). Adding virt del(p; q) toboth sides, we get B(p; q) � act del�(p; q), as desired.Example (continued). The distances in the synchronization graph of Figure 5-3 aregiven by d(s1; r1) = 0 d(r1; s1) = 2=3d(s1; s2) = 2=3 d(s2; s1) = 0d(s1; r2) = 0 d(r2; s1) = 0d(s2; r1) = 0 d(r1; s2) = 2=3d(s2; r2) = 0 d(r2; s2) = 2=3d(r2; r1) = 0 d(r1; r2) = 2=3As the reader may verify, for the pattern of Figure 5-2 we have that �(p; q) 2 [�d(q; p); d(p; q)]for all points p; q in the view.Before we state the next theorem (which is the major result of this section), we de�ne thefollowing technical terms. The complicated-looking de�nition is due to the fact distancesmay be in�nite.De�nition 5.6 Suppose � has no negative weight cycles. Let � be a p-graph with v-graph�, let p0 2 V , and let N > 0.(1) � is an N -p-graph from p0 if for all q 2 V : if d(p0; q) <1 then ��(p0; q) = d(p0; q),and otherwise ��(p0; q) > N .(2) � is an N -p-graph to p0 if for all q 2 V : if d(q; p0) < 1 then ��(q; p0) = d(q; p0),and otherwise ��(q; p0) > N .The o�sets in an N -p-graph from p0 are the distances from p0, with in�nite distancesreplaced by o�sets larger than N , and analogously for an N -p-graph to p0. Using thesenotions, we state the following theorem.Theorem 5.5 Suppose � has no negative-weight cycles. Then for any point p0 2 V , andfor any �nite number N > 0, there exist p-graphs �0 and �1, such that both have view �,both satisfy B, and such that �0 is an N -p-graph to p0, and �1 is an N -p-graph from p0.Proof: To prove the theorem, we �rst construct a related graph �� in which all distancesare �nite. Based on ��, we de�ne p-graphs �0 and �1, and then show that �0 and �1 havethe required properties. 86



To construct ��, we �rst choose a number M that is su�ciently large so as to satisfyM > N + X(p;q)2E0<w(p;q)<1w(p; q) � X(p;q)2E�1<w(p;q)<0w(p; q) :Using M , we augment � with extra arcs as follows. For each pair of points p; q such thatd(p; q) = 1, we add an arti�cial arc (p; q) with weight M . Call the resulting augmentedgraph ��, and denote its distance function by d�. The following claim shows the connectionbetween the distances in ��, the distances in �, and N .Claim A. For all p; q 2 V , if d(p; q)<1, then d�(p; q) = d(p; q), and if d(p; q) =1, thenN < d�(p; q) <1.Proof of Claim A: We start (for future reference) with an inequality that follows directlyfrom the choice of M . Let X and Y denote arbitrary subsets of the arcs of � with �niteweights. Then M +X(p;q)2Xw(p; q) > max8<:N ;X(p;q)2Yw(p; q)9=; (5.1)Next, we argue that the augmented graph �� has no negative weight cycles. Suppose,for contradiction, that there exists some negative weight cycle in ��. Then one of arcs ofthe cycle, say (p; q), must be an arti�cial arc, and there must be a simple directed pathZ in �� from q to p with total weight wZ such that M + wZ < 0. Let wZ be the sum ofnegative weight arcs of Z. Clearly, wZ � wZ. Also, by Eq. (5.1), we have that the sumof M and the weights of any subset of arcs of � is at least N . Since all arti�cial arcs havepositive weight, we know that wZ is the sum of weights of arcs from �. Therefore we havethat M + wZ �M + wZ > N > 0, a contradiction.To show that the �nite distances in � remain invariant in ��, we �rst note that since� is a subgraph of ��, it must be the case for all p; q 2 V that d�(p; q) � d(p; q). Supposefor contradiction that for some p; q 2 V with d(p; q) <1 we have d�(p; q) < d(p; q). Since,as we showed above, �� has no negative-weight cycles, we may assume that there exists asimple path in �� with length d�(p; q). Clearly, one of its arcs is arti�cial. However, by Eq.(5.1), this means that the total weight of that path is larger than the total weight of any�nite-weight simple path in �, a contradiction.Finally, let p; q 2 V be such that d(p; q) = 1. Clearly d�(p; q) < 1 by virtue of the87



arti�cial arc (p; q). To see that d�(p; q) > N , consider any simple path from p to q. Asbefore, this path contains at least one arti�cial arc, and therefore its total weight is at leastM plus all negative weights of �. Using Eq. (5.1), we get that the total weight of the pathis greater than N .We now de�ne the p-graphs �0 and �1 explicitly. Since their view is given, the eventsand their local times are already �xed; we complete the construction by specifying the nowmappings of the p-graphs. Let L be a number such thatL > minq2V flocal time(q) + d�(q; p0); local time(q)� d�(p0; q)g :For all q 2 V , we set now�0(q) = L+ local time(q) + d�(q; p0)now�1(q) = L+ local time(q)� d�(p0; q)(The additional term L guarantees that all now values are positive.) By the construction,for all q 2 V we have��0(q) = now�0(q)� local time(q)= L+ (d�(q; p0) + local time(q))� local time(q)= L+ d�(q; p0) : (5.2)Since d�(p0; p0) = 0, we have that ��0(p0) = L, and therefore ��0(q; p0) = ��0(q)� ��0(p0) =d�(q; p0). Similarly, we obtain that ��1(p0; q) = �d�(p0; q). Therefore, by Claim A, �0 is anN -p-graph to p0 and �1 is an N -p-graph from p0. The following claim completes the proofof the theorem.Claim B. The p-graphs �0 and �1 de�ned above satisfy the bounds mapping B.Proof of Claim B: By Theorem 5.4, it is su�cient to prove that for all p; q 2 V , ��0(p; q) �d(p; q). So let p and q be arbitrary points in the synchronization graph. In what follows, weconsider ��, the graph de�ned above. Since d�(p; q) � d(p; q), it is su�cient to prove that��0(p; q) � d�(p; q).Let R be any shortest path from p to q. Consider the path obtained by following the88
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r 2s2

r 1 s1
local_time=1
now=2

local_time=−1
now=0

local_time=8
now=9

local_time=3
now=8/3 r 2s2

r 1 s1
local_time=1
now=1

local_time=−1
now=0

local_time=8
now=9

local_time=3
now=3.5

(a) (b)

Figure 5-5: Assuming now(r2) = 9, (a) is a pattern from r2, and (b) is a pattern to r2.Example (conclusion). Using the distances calculated above for the synchronizationgraph of Figure 5-3, we can compute patterns from and to the point r2. Since the de�nitionof these patterns only speci�es relative o�sets, we �x now(r2) = 9 (agreeing with the patternof Figure 5-2 at this point). The resulting pattern from r2 is given in Figure 5-5 (a), andthe resulting pattern to r2 is given in Figure 5-5 (b). It is a simple matter to verify thatboth patterns have the view depicted in Figure 5-1, and they satisfy the bounds mappingB0. One conclusion from these patterns is that an observer located at r2, with access onlyto the view and the bounds mapping, cannot determine the time of occurrence of s1 withtightness greater than 7=2� 8=3 = 5=6 real time units, since both patterns depicted in (a)and (b) describe a possible scenario.5.2 Interpretation in Clock Synchronization SystemsTheorems 5.4 and 5.5 describe a relation between p-graphs and synchronization graphs.In this section we apply these results to executions of clock synchronization systems. Inother words, in this section we deal with views and patterns of executions of clock synchro-nization systems (as de�ned in Section 3.2.1), instead of abstract v-graphs and p-graphs,respectively. We apply, in a straightforward fashion, the theorems of Section 5.1, in con-junction with Theorem 3.4, using the natural correspondence (de�ned in Section 5.1), whichmaps views and patterns to v-graphs and p-graphs, respectively. Before we state and provethe (somewhat technical, albeit straightforward) theorems, we make two comments aboutthe results.1. By our de�nitions of clock synchronization systems, synchronization graphs can90



be used under a wide variety of assumptions. In particular, they can be used to modelexecutions where messages may be lost, delivered out of order, or duplicated by the com-munication links; they can be used to model broadcast channels; they can be used for thecase of processor and link crashes; and by our de�nition of bounds mapping, they can alsobe used to model clock drift bounds that may change over time.2. The essential assumptions in our analysis are the following. First, if an o�set canbe a value a and a value b, then it can also be any value in between. This rules outscenarios in which the o�set might be either a or b (as might be the case for messagesover framed communication links, or clocks with �xed but unknown rate). Removing thisassumption will result in a constraint system which is not even a linear program, and cannotbe represented as distance computation techniques. The second important assumption inour analysis is that \patterns satisfy the bounds mapping," that is to say, the system behavesaccording to its speci�cation. As indicated by Lemma 5.3 (and explained in Chapter 9),synchronization graphs are still useful in some limited sense in the case that executions donot satisfy the bounds mapping.We now proceed with applying the analysis of Section 5.1 to clock synchronizationsystems. We recall that under the natural correspondence, each arc (p; q) in a view isreplaced by a pair of arcs (p; q) and (q; p) in the corresponding v-graph, and that local timeattributes, bounds mapping values (and real times in p-graphs) remain unchanged. Underthe natural correspondence, the notion of o�sets that was de�ned for p-graphs (Def. 5.3)applies to executions and patterns of clock synchronization systems. The o�set betweentwo points p; q in a pattern P is�P(p; q) = �P(p)� �P(q)= (nowP(p)� local timeP(p))� (nowP(q)� local timeP(q))= act delP(p; q)� virt delP(p; q)It follows that if we know the local times of occurrence of p and q, then bounding the realtime that elapses between their occurrences is equivalent to bounding �(p; q). This seemsto capture a useful quantity in any synchronization problem. The theorems in this sectionprovide us with a characterization of the bounds on the o�set in a pattern with a given viewand bounds mapping, and hence they are useful in analyzing synchronization problems.91



First, we state the theorem that is the key in proving correctness of clock synchronizationalgorithms.Theorem 5.6 Let V be a view of an execution of a clock synchronization system S, andlet B be the standard bounds mapping for V. Let � be the synchronization graph generatedby the v-graph of V and B, and let d� be its distance function. Let P be any pattern withview V. Then there exists an execution e0 of S whose pattern is P if and only if for any twopoints p; q in P, we have �P(p; q) � d�(p; q).Proof: Suppose �rst that there exists an execution e0 of S with pattern P , and consider itsp-graph �. Since by assumption e0 is an execution of S, P satis�es B, and hence � satis�esB. Therefore, by Theorem 5.4, for any two points p; q in �, ��(p; q) � d�(p; q), and since��(p; q) = �P(p; q), we are done in this case.Suppose now that for a pattern P with view V , we have �P(p; q) � d�(p; q) for every pairof points p; q in P . It follows that in the p-graph � of P , ��(p; q) � d�(p; q) for every pairof points p; q. Hence, by Theorem 5.4, � satis�es B, and therefore P satis�es B. Finally,since P satis�es the standard bounds B, we may apply Theorem 3.4, and conclude thatthere exists an execution e0 of S whose pattern is P .Next, we present the theorem we shall use for proving lower bounds on the tightnessachievable by synchronization algorithms. We �rst de�ne the notions of N -patterns to andfrom a point. The de�nition is the equivalent of Def. 5.6 under the natural correspondence.De�nition 5.7 Let � be a synchronization graph for a view V, and let P be a pattern withview V. Let � be the p-graph for P under the natural correspondence, and let p0 be a pointin �. For any N > 0, P is an N -pattern from p0 if � is an N -p-graph from p0, and it is anN -pattern to p0 if � is an N -p-graph to p0.The following theorem is the application of Theorem 5.5 to clock synchronization systems.Intuitively, it says that there exist indistinguishable executions of clock synchronizationsystems, where the o�sets between a a given point and any other point are exactly thedistances in the synchronization graph, and hence any synchronization algorithm must takethese extreme cases into account.Theorem 5.7 Let V be a view of an execution e of a clock synchronization system S (pos-sibly including null points), and let B be the standard bounds mapping for V. Let � be the92



synchronization graph generated by the v-graph of V and by B, and let d� be its distancefunction. Let p0 be any point in V. Then for any �nite number N > 0, there exist executionse0 and e1 of S, such that both have view V, and such that the pattern of e0 is an N -patternto p0, and the pattern of e1 is an N -pattern from p0. Moreover, for each CSA module Cv,the executions of Cv in e0 and in e1 are equivalent.Proof: First, note that since � is obtained from an execution of S, its pattern P satis�es thestandard bounds mapping B. From Theorem 5.6 we get that for any two points p; q in P ,�P(p; q) � d�(p; q); in particular, since �P(p; p) = 0 for all points p, we conclude that thereare no negative-weight cycles in �. Hence we can apply Theorem 5.5, and get p-graphs �0and �1 which are N -patterns to and from p0, respectively, such that both satisfy B. Usingthe natural correspondence between V and its v-graph, we obtain from �0 and �1 patternsP0 and P1. Since �0 and �1 satisfy B, P0 and P1 satisfy B too. We can therefore applyTheorem 3.4, and the result follows.We also state a variant of Theorem 5.7 used for locality-oriented bounds.Theorem 5.8 Let V be a view of an execution e of a clock synchronization system S (pos-sibly including null points), and let p0 be any point in V. Let B be the standard boundsmapping for the local view prune(V ; p0), and let � be the synchronization graph generatedby prune(V ; p0) and B, and let d� be its distance function. Then for any �nite numberN > 0, there exist executions e0 and e1 of S, such that both have view prune(V ; p0), andsuch that the pattern of e0 is an N -pattern to p0, and the pattern of e1 is an N -pattern fromp0. Moreover, for each CSA module Cv, the executions of Cv in e0 and in e1 are equivalent.Proof: By Theorem 3.2, there exists an execution e0 whose view is prune(V ; p0) and suchthat for each CSA module Cv, prune(ejCv ; p) = prune(e0jCv ; p). The theorem thereforefollows by applying Theorem 5.7 to e0.
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SummaryIn this chapter we abstracted the notions of views and patterns using the notions of v-graphsand p-graphs. We de�ned the concept of o�sets of points in patterns, which captures anelementary synchronization problem. Using the bounds mapping, we de�ne the basic toolof our analysis, namely the synchronization graphs. Using the o�sets, we proved a simplecharacterization of the patterns which have a given view and bounds mapping, in termsof distances in the synchronization graph derived from the view and the bounds mapping.In particular, our main results in this chapter show that the bounds on synchronizationobtained by the distances in the synchronization graphs are the best bounds possible, inthe sense that there exist patterns that have the given view, satisfy the given boundsmapping, and meet the distance bounds.The concept of synchronization graphs, specialized appropriately, serves as the basis foranalyzing speci�c synchronization problems in Chapters 6, 7 and 8. A few simple variantsof synchronization graphs are described in Chapter 9.
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Chapter 6External SynchronizationIn this chapter we study a particular variant of the synchronization problem, called externalsynchronization. Informally, in the external synchronization problem there is a distinguishedprocessor called the source processor, which is equipped with a drift-free clock. The task ofall other processors is to produce, at all states, an estimate (i.e., an interval) that containsthe current reading of the source clock. The name is motivated by an implicit assumptionthat the source clock serves as a source of real time in the system. The length of the estimateinterval is called the tightness of synchronization at that point.In this chapter, we obtain a few results for the external synchronization task, using Theo-rems 5.6 and 5.8. First, we characterize the achievable tightness of external synchronizationfor any processor at any given time, in terms of distances in the appropriate synchronizationgraph. The general algorithm we present, which achieves optimal tightness always, is a fullinformation protocol, and hence ine�cient. By contrast, for the special case of drift-freeclocks, we present an optimal algorithm which is extremely e�cient (and simple). Thelatter algorithm compares favorably to the so-called round-trip technique, used by manypractical algorithms. In the last section of this chapter, we present the main ideas in theround-trip technique, based on NTP (Network Time Protocol, the external synchronizationprotocol used over the Internet [26]).1 We also explain why our technique is superior to theone used in NTP.This chapter is organized as follows. In Section 6.1 we recall the de�nition of externalsynchronization, and make a few preliminary observations. In Section 6.2 we give lower1We use a simpli�ed version introduced in Section 3.1.5 under the name SNTP.95



and upper bounds on the tightness of external synchronization in a general system, wherethe non-source clocks have arbitrary drift bounds and arbitrary message latency bounds.In Section 6.3 we give an e�cient optimal algorithm for systems with drift-free clocks. Weconclude in Section 6.4 with a description of the round-trip technique, and compare it withour algorithm.6.1 Problem Statement and Preliminary ObservationsWe recall the de�nition of the external clock synchronization problem. There exists in thesystem a distinguished processor s, called the source processor, whose local clock is drift-free. Each CSA module has two output variables, denoted ext Lv and ext U v. For any givenstate x in an execution of an external synchronization system, let source time(x) denotethe local time at the source in x. The correctness requirement for a processor v is thatin every reachable state x, the output variables satisfy source time(x) 2 [ext Lv; ext U v].The tightness of synchronization at processor v in some state is the di�erence between theoutput variables in that state: �v = ext U v � ext Lv :As a preliminary step in our analysis, we state a general property of drift-free clocks.Lemma 6.1 Suppose that processor v has a drift-free clock, and let � = (V;E; w) be asynchronization graph obtained from a view of some execution of the system and the standardbounds mapping. Then the distance in � between any two points that occur at v is 0.Proof: We �rst claim that for any two adjacent points q; q0 that occur in v, we havew(q; q0) = 0. This follows immediately from de�nitions: by Def. 2.5, %v = %v = 1; byDef. 3.11, we have B(q; q0) = virt del(q; q0)=%v = virt del(q; q0); and hence, by Def. 5.4, wehave w(q; q0) = B(q; q0)� virt del(q; q0) = 0.This claim implies that there exists a 0-weight path between any two points occurring atv, and hence, for any two points q1; q2 that occur at v, we have that d(q1; q2) � 0. Supposenow, for the sake of contradiction, that there exists a path P from q1 to q2 with negativeweight. Since there exists a a path Q from q2 to q1 of weight 0, we conclude that the cycleobtained by \gluing" P and Q together has negative weight, contradicting Lemma 5.3.96



The meaning of Lemma 6.1 is as follows. Suppose that a processor v has a drift-freeclock, and let p0 be any point in the synchronization graph. Then the distance to p0 fromany point q that occurs at v, and the distance from p0 to any point q that occurs at vis independent of the particular choice of q, so long as q occurs at v. In other words, allpoints that occur at a processor whose local clock is drift-free are equivalent for the distancefunction in the synchronization graph. It is convenient to refer in this case to a superpointassociated with a drift-free processor v, de�ned formally to be an arbitrary representative ofthe points that occur at v. From the perspective of patterns, we notice that for a processorv whose clock is drift-free, the absolute o�sets of all the points that occur at v are the same,and hence the notion of relative o�set between any point and the superpoint of v is wellde�ned.The source clock, by de�nition, is drift-free. Given a synchronization graph of an ex-ternal synchronization system, we call the superpoint associated with the source the sourcepoint, an denote it by sp throughout this chapter.6.2 Bounds on the Tightness of External SynchronizationIn this section we prove matching upper and lower bounds on the tightness of algorithmsfor external synchronization. The lower bound is derived from Theorem 5.8, and the upperbound follows from Theorem 5.6.We start by �xing the scenario and the notation. Throughout this section we are dealingwith an execution of an external synchronization system; let v be a processor in the system,and let x be a state in the execution. We denote Tx;v = local timev(x), and denote by px;vthe point that occurs at v at local time Tx;v. (If there is more than one such point, we takethe last one; if there is no such point, px;v is a null point we introduce.) Further, we denoteVx;v = prune(V ; px;v) , i.e., Vx;v is the local view of the execution at v at local time Tx;v.Let Bx;v denote the standard bounds mapping for Vx;v. We use the synchronization graph�x;v = (V;E;w) generated by the view graph of Vx;v and Bx;v, and denote the distancefunction of �x;v by dx;v. Finally, recall that sp denotes the source point of �x;v.We start with a simple lemma that bounds the local time at the source in state x, interms of the local time at v, and the distances between px;v and the source point in thecorresponding synchronization graph. 97



Lemma 6.2 For all states x and processors v,source time(x) 2 [Tx;v � dx;v(sp; px;v); Tx;v + dx;v(px;v; sp)] :Proof: Consider the synchronization graph � obtained from the full view and the standardbounds mapping of the execution, and let d be the distance function in �. Since �x;v is asubgraph of �, we have that for every pair of points p; q in �x;vdx;v(p; q) � d(p; q) (6.1)Now, let � be the o�set function of the execution, and let Tx;s = source time(x). Then wehave thatTx;s = (Tx;s � now(x))� (Tx;v � now(x)) + Tx;v= �(sp; px;v) + Tx;v by de�nition of �2 [Tx;v � d(px;v; sp); Tx;v + d(sp; px;v)] by Theorem 5.6� [Tx;v � dx;v(px;v; sp); Tx;v+ dx;v(sp; px;v)] by Eq. (6.1)We now state the lower bound on the tightness of external synchronization.Theorem 6.3 Let x be any state in an execution of an external clock synchronizationsystem, and let v be any non-source processor. Then in x,[ext Lv; ext U v] � [Tx;v � dx;v(sp; px;v) ; Tx;v + dx;v(px;v; sp)] :Proof: Consider �rst the case where x occurs before the �rst action in v. Then clearly inx we have [ext Lv; ext U v] = [�1;1], and since �x;v does not contain the source point, wealso have dx;v(sp; px;v) = dx;v(px;v; sp) = 1, and we are done. Assume for the rest of theproof that x occurs after the �rst action of v.Suppose that dx;v(sp; px;v) < 1 and dx;v(px;v; sp) < 1. By Theorem 5.8 (applied withp0 substituted by px;v), there exist executions e0 and e1 such that both have view Vx;v,and such that for e0 we have �0(px;v; sp) = �dx;v(sp; px;v) and for e1 we have �1(px;v; sp) =dx;v(px;v; sp). Let ST0 and ST1 denote the source time when the local time at v is Tx;vin e0 and e1, respectively. By de�nition, we have that ST0 = Tx;v + �0(px;v; sp) = Tx;v �98



dx;v(sp; px;v), and similarly, ST1 = Tx;v+dx;v(px;v; sp). Moreover, Theorem 5.8 says that thebasic state of the CSA module at v at local time Tx;v is the same in the original execution,in e0 and in e1. Since the output variables of a CSA are part of its basic state component,it follows from the correctness requirement for external synchronization that in x,[ext Lv; ext U v] � [Tx;v � d(sp; px;v) ; Tx;v + d(px;v; sp)] ;and the lemma is proven in this case.To complete the proof, consider the case that either dx;v(sp; q) =1 or dx;v(px;v; sp) =1.Suppose, for example, that dx;v(sp; px;v) =1 (the other case is analogous). In this case weapply Theorem 5.8 and get that for any N > 0 there exists an execution eN with view V inwhich �(px;v; sp) > N . Therefore, in eN , when the local time at v is Tx;v, the source timeis greater than Tx;v + N . Since Theorem 5.7 also says that the output of the CSA at v isidentical for all eN , the correctness requirement implies that in x, ext Lv = �1.The following theorem shows that the lower bound on tightness of Theorem 6.3 is anupper bound too.Theorem 6.4 There exists an external CSA such that for any state x in an execution ofthe clock synchronization system, at any processor v, the output values areext Lv = Tx;v � dx;v(sp; px;v)ext U v = Tx;v + dx;v(px;v; sp) :Proof Sketch: The proof consists of the speci�cation of the algorithm. Below, we outlinea simple algorithm, based on the full information protocol. More speci�cally, the state ofthe CSA at a processor v describes the complete local view of v at that state. Using thestandard bounds mapping (assumed to be built into the algorithm), the synchronizationgraph can be computed, and the output values are given byext Lv = local timev � dx;v(sp; px;v) (6.2)ext U v = local timev + dx;v(px;v; sp) : (6.3)The implementation of the algorithm is straightforward: a description of the completecurrent local view (where each point has a unique name) is sent in every message; whenever99



a message arrives, the view it carries is merged in the natural way with the current localview by performing union over the two graphs. A synchronization graph is then constructedfrom the new view and its standard bounds mapping, and the distances from the currentpoint to the source point and from the source point to the current point are computed, usingany single-source shortest paths algorithm for general graphs (see, e.g., [5]). Using thesedistances, the output variables are updated according to Eqs. (6.2, 6.3). To have updatedoutput values at all states, the output variables are also modi�ed whenever a time-passageaction occurs: if the local time is incremented by b units, we setext Lv  ext Lv + b(%v � 1)=%v (6.4)ext U v  ext Lv + b(1� %v)=%v : (6.5)This completes the description of the algorithm. Let us now explain why is it correct.First, we argue that the algorithm describes admissible CSA modules: it has the requiredinterface, it has the non-interfering �ltering property, it is real-time blind, and its initialstates are quiescent. To show correctness, we apply an easy induction on the steps of theexecution that shows that the algorithms maintains, at each point, a description of the localview from that point, and therefore the output is correct after each receive event. Considernow the synchronization graph at the null point px;v that occurs at v at local time Tx;v. Letp0v be the last receive point that occurs at v before px;v. If p0v does not exist, we are donetrivially, since both the synchronization distances and the output values are in�nite in thiscase. Otherwise, by the de�nitions we get that there is a single path from px;v to p0v withweight virt del(px;v; p0v)(1 � %v)=%v. Similarly, there exists a single path from p0v to px;v,with weight virt del(p0v; px;v)(%v � 1)=%v. Hence, from Eqs. (6.2{6.5) and Lemma 6.2, wehave that the algorithm is correct. Finally, note that the output values satisfy the theoremstatement, by the speci�cation of the algorithm and by the fact that its state at any pointrepresents the local view at that point.Remarks.1. The algorithm above is optimal, as de�ned in De�nition 4.1, i.e., it provides the bestpossible output values at each point.2. It is easy to make the algorithm described above more e�cient without a�ecting theoutput. For example, instead of sending the complete view in each message, it su�ces to100



send only incremental changes. Notice that this modi�cation would reduce the communica-tion overhead signi�cantly, but would not help to save space for storing state (in fact, morespace will be needed at the processors). The property of high space requirement is inherentto optimal algorithms for general systems, as we show in Chapter 8.6.3 An E�cient Algorithm for Drift-Free ClocksIn this section we restrict our attention to the case where all clocks are drift-free. Makingthis simplifying assumption enables us to derive an extremely e�cient algorithm for externalsynchronization that gives optimal tightness. The algorithm is presented in Subsection 6.3.1,and analyzed in Subsection 6.3.2.6.3.1 The AlgorithmThe complete speci�cation of the algorithm given in Figure 6-1 (non-source processors)and Figure 6-2 (source processors). The code lines that are not part of the generic codefor CSAs are numbered. The idea is as follows. As proved in Lemma 6.1, all the pointsthat occur at a processor with a drift-free clock can be thought of as a single superpointfor distance computations. Intuitively, our algorithm computes distances in the graph ofsuperpoints. Since arc weights in the graph of superpoints may only decrease, we use (twoindependent versions of) the distributed Bellman-Ford algorithm for single-source shortestpaths computation [4].More speci�cally, for each link Luv, the CSA at node v maintains estimates for the weightof the lightest arcs from the superpoint of u to v in the state variable ~w(u; v), and of weightof the lightest arcs from v to u in state variable ~w(v; u). To this end, whenever a messagearrives, the weight of the corresponding arcs in the synchronization graph are computed,using a temporary variable ~v which holds the virtual delay, and the message latency bounds;only the minimum estimate is kept (lines 4-6 and 5s-7s). Using these weights, the distancesto and from the source are computed in the variables ~d(v; s) and ~d(s; v), respectively. Lines7-8 in are the Bellman-Ford relaxations. In lines 9-10, the output variables are updated.In addition, whenever a message is sent to a neighbor, the CSA augments it with thecurrent local time, the best known weights for the arcs between them, and the distances toand from the source (lines 3 and 4s). 101



The problem speci�cation also requires that the output variables be updated when timepasses (lines 11-12).6.3.2 Correctness and OptimalityWe now prove that the algorithm above is an optimal external CSA. First we state thefollowing easy fact.Lemma 6.5 The algorithm in Figures 6-1 and 6-2 is an admissible CSA.Proof: We verify the following according to De�nition 3.2.� Clearly, the algorithm has the interface as in Figure 3-5.� It is straightforward to see that the algorithm has the non-interfering �ltering prop-erty: the code is based on the generic CSA of Figure 3-6.� It is also easy to see that the algorithm is real-time blind, since the transitions neverrefer to the now component of the state (lines 11-12 are based on the di�erence inlocal times).� Finally, the initial states of the algorithm above are quiescent: no internal or outputactions are enabled an in initial state, nor in any state reachable by time passage fromthem.We now turn to the less obvious part, namely proving that the algorithm above is anoptimal external CSA. Before we start, we introduce the following notion.De�nition 6.1 Let u; v be two neighbor processors in a clock synchronization system.Given a synchronization graph � = (V;E;w), the set Wuv(�) is de�ned to be the set ofall numbers w(p; q), where p occurs at u, q occurs at v, and (p; q) 2 E.The key for the optimality of the algorithm is the following lemma.Lemma 6.6 Let p be a point in an execution of the system above, and suppose that p occursat processor v. Let � = (V;E;w) be the synchronization graph generated by the local viewof the execution at p and its standard bounds mapping. Let ~w and ~d denote the value of thelocal variables of v at in the state following p. Then the following invariant holds.(1) For all neighbors u of v, ~w(v; u) = min(W vu(�)) and ~w(u; v) = min(W uv(�)).102



Sites: a single non-source site vStatenow: non-negative real number, initially 0local time: real number, initially arbitraryext L: real number, initially �1ext U : real number, initially 1Qi: queue for symbols of �, initially ;Qo: queue for symbols of ��R5, initially ;active: Boolean 
ag, initially false~dv(v; s); ~dv(s; v): real numbers, initially 1 1~w(v; u) and ~wv(u; v) for each u 2 N (v): real numbers, initially 1 2ActionsSend Messageuv (m) (input)E�: enqueue m in Qoactive  trueSend Aug Messageuv (m1;m2) (output)Pre: m1 is at the head of Qom2 = 
local time; ~w(v; u); ~w(u; v); ~d(v; s); ~du(s; v)� 3E�: remove head of Qoif Qo = Qi = ; then active  falseReceive Aug Messageuv (m1; 
local timeu; ~wu(v; u); ~wu(u; v); ~du(s; u); ~du(u; s)�) (input)E�: enqueue m1 in Qiactive  true~v  local time � local timeu 4~w(v; u)  minfH(m1) � ~v ; ~wu(v; u) ; ~w(v; u)g 5~w(u; v)  minf�L(m1) + ~v ; ~wu(u; v) ; ~w(u; v)g 6~d(v; s)  min�~w(v; u) + ~du(u; s) ; ~d(v; s)	 7~d(s; v)  min�~du(s; u) + ~w(u; v) ; ~d(s; v)	 8ext L  local time � ~d(s; v) 9ext U  local time + ~d(v; s) 10Receive Messageuv (m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0E�: now  now + blocal time  local time + b 11ext L ext L+ b 12ext U  ext U + bFigure 6-1: Code of optimal CSA protocol for external synchronization with drift-free clocks:a non-source processor. The non-generic code lines are numbered.103



Sites: the source site sStatenow: non-negative real number, initially 0local time: real number, initially arbitraryext L; ext U : real number, always equal to local time 1sQi: queue for symbols of �, initially ;Qo: queue for symbols of ��R5, initially ;active: Boolean 
ag, initially false~dv(s; s); ~dv(s; s): always 0 2s~w(s; u) and ~w(u; s) for each u 2 N (s): real numbers, initially 1 3sActionsSend Messageus (m) (input)E�: enqueue m in Qoactive  trueSend Aug Messageus (m1;m2) (output)Pre: m1 is at the head of Qom2 = hlocal time; ~w(s; u); ~w(u; s); 0; 0i 4sE�: remove head of Qoif Qo = Qi = ; then active  falseReceive Aug Messageus (m1; 
local timeu; ~wu(s; u); ~wu(u; s); ~du(s; u); ~du(u; s)�) (input)E�: enqueue m1 in Qiactive  true~v  local time � local timeu 5s~w(s; u)  minfH(m1)� ~v ; ~wu(s; u) ; ~w(s; u)g 6s~w(u; s)  minf�L(m1) + ~v ; ~wu(u; s) ; ~w(u; s)g 7sReceive Messageus (m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0E�: now  now + blocal time  local time + bFigure 6-2: Code of optimal CSA protocol for external synchronization with drift-free clocks:a source processor. The non-generic code lines are numbered.104



(2) Let sp be the source point of �. Then d�(sp; p) = ~d(s; v), and d�(p; sp) = ~d(v; s).Proof: The lemma is proven by induction on the steps of e, with the initial state as a basecase. For the base case, we observe that the invariant holds for all processors in the initialstates of the system by lines 1-2 and 2s-3s of the code, since � is empty then.For the inductive step, let p0 be the last event at v before p, or the initial state if no suchevent exists. If p0 is a point, let �0 = (V 0; E 0; w0) be the synchronization graph generatedby the local view of the execution at p0 and its standard bounds mapping, and otherwisede�ne �0 to be the empty graph. To prove the inductive step, we consider two cases.Case 1: p is a send event. In this case, by Def. 5.4, V = V 0[fpg, and if �0 is not empty,then E = E 0 [ f(p; p0); (p0; p)g, w(e0) = w0(e0) for all e0 2 E 0, and by Def. 3.11, w(p; p0) =w(p0; p) = 0. By the inductive hypothesis, the invariant holds at p0. Hence, W vu(�) =W vu(�0) and W uv(�) = W uv(�0). Since by the code, the ~w variables are unchanged bya send event, we have that part (1) of the invariant holds in p. For part (2), note thatthere is only one arc incoming into p, and one arc outgoing from p. Since both arcs haveweight 0, and since they connect p to p0, it follows that d�(p; p0) = d�0(p; p0), and thatd�(p0; p) = d�0(p0; p). Again, since the algorithm does not change the value of the ~d variableswhen a send event occurs, part (2) of the invariant holds in this case.Case 2: p is a receive event. Speci�cally, assume that p is the following event:Receive Aug Messageuv(m1; 
local time ; ~w(v; u);~w(u; v);~d(v; s);~du(s; v)�)Denote the corresponding send event at u by p00, and let �00 = (V 00; E 00; w00) be the synchro-nization graph generated by the local view at p00 and the standard bounds mapping. Byde�nitions, V = V 0 [ V 00 [ fpg, and either E = E 0 [E00 [ f(p; p00); (p00; p)g if �0 is empty, orE = E 0 [E00 [ f(p; p00); (p00; p); (p; p0); (p0; p)g if �0 is not empty. The weights are de�ned byw(e) = 8>>>>>>>>>>><>>>>>>>>>>>: w0(e); if e 2 E 0w00(e); if e 2 E 00H(m1)� virt del(p; p00); if e = (p; p00)�L(m1)� virt del(p00; p); if e = (p00; p)0; if e 2 f(p; p0); (p0; p)g105
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 spFigure 6-3: Scenario considered in the proof of Lemma 6.6. R is a shortest path from sp top with last arc (q; p).Part (1) of the invariant in this case is proven as follows. By de�nitions, W uv(�) = W uv(�0)[W uv(�00) [ fw(p; p00)g, and W vu(�) = W vu(�0) [W vu(�00) [ fw(p00; p)g. Hencemin(W vu(�)) = min�W vu(�0) [W vu(�00) [ fH(m1)� virt del(p; p00)g� ;and min(W uv(�)) = min�W uv(�0) [W uv(�00) [ f�L(m1)� virt del(p00; p)g� ;which, according to the inductive hypothesis applied to p0 and p00, is exactly the calculationin lines 4-6 and 5s-7s. This proves part (1) of the invariant.For the second part of the invariant, let us prove that ~d(s; v) = d�(sp; p). The claim istrivial for v = s, according to line 2s. So suppose v 6= s. Consider a shortest path from spto p that contains no cycles. This is possible since by Lemma 5.3, all cycles in � have non-negative weight. Focus on the last arc of the path in question, i.e., the arc that leads to p(see Figure 6-3). Denote this arc (q; p), where q 2 fp0; p00g, and let �� be the synchronizationgraph at q. By the choice of q, d�(sp; p) = d�(sp; q) +w(q; p). By the induction hypothesis,we have that at q, the ~d variables are equal to the corresponding distances in ��. Also,we have that after line 7, ~w(v; u) = min(W vu(�)) and ~w(u; v) = min(Wuv(�)). Therefore,by Line 9 of the code, it su�ces to prove that d�(sp; q) = d��(sp; q). We do this in twosteps. First, notice that d�(sp; q) � d��(sp; q) since �� is a subgraph of �. Next we arguethat d�(sp; q) � d��(sp; q) by contradiction: suppose that d�(sp; q) < d��(sp; q). Thenall shortest paths from sp to q in � are shorter than the shortest path from sp to q in ��.Consider such a shortest path which is simple (this is possible since � has no negative-weightcycles). This path must end with the arc (p; q), or otherwise it is completely contained in ��.It follows that the shortest path from sp to p goes through p, q, and back to p (see Figure6-3), a contradiction to the choice of the path as simple. Therefore, d�(sp; q) � d��(sp; q),and we conclude that d�(sp; q) = d��(sp; q).106



To show that ~d(v; s) = d�(p; sp), we repeat the symmetrical argument for the �rst arcof a simple shortest path from p to sp, and use line 8 of the code instead of line 9.We can now prove the optimality of the algorithm.Theorem 6.7 The CSA algorithm in Figure 6-1 and Figure 6-2 is an optimal algorithm(in the sense of Def. 4.1) for all external synchronization environments, where all clocksare drift-free.Proof: Clearly, the algorithm may be composed with any environment of externalsynchronization, where all clocks are drift-free. Consider any state x of an execution of thealgorithm, let v be any processor, and let Tx;v = local timev(x). Let � be thesynchronization graph generated by the local view of v at time Tx;v and the standardbounds mapping. Denote the null point in � that occurs at v at local time Tx;v by px;v.Let p0 be the last point that occurs at v before px;v, and let �0 be the synchronizationgraph generated by the local view at p0 and the standard bounds mapping. By Lemma6.1, d�(px;v; sp) = d�0(p0; sp), and d�(sp; px;v) = d�0(sp; p0). Hencesource time(x) 2 [Tx;v � d�(sp; px;v); Tx;v + d�(px;v; sp)] by Lemma 6.2= [ext L; ext U ] by lines 9-12 and Lemma6.6This means that the algorithm is correct. The optimality of the algorithm follows imme-diately from the lower bound of Theorem 6.3.6.4 The Round-Trip TechniqueIt may be interesting at this point to compare our analysis and algorithms with the com-mon clock synchronization technique known as \round-trip probes." For concreteness, wetake the external synchronization system NTP (Network Time Protocol, the clock synchro-nization algorithm used over the Internet [26]) as our prime source for this technique. Weconsider here a simpli�ed variant of NTP, called SNTP, that was introduced in Section3.1.5. In the SNTP system, we have only two processors with drift-free clocks, connectedby perfect asynchronous links. We denote the source processor by s, and the non-sourceprocessor by v. SNTP is rigorously de�ned in Section 3.1.5, with a technique for a single107
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Figure 6-4: Reproduction of Fig. 3-7. (a) A typical round trip technique. (b) m is in transitTT time units. (c) m0 is in transit TT time units.round trip. In this section, we extend the presentation to multiple round-trips, and focuson the way their results are combined. Let us recall brie
y the main ideas.Periodically, v sends a message to s, which in turn responds by sending a message backto v (hence the name \round trip"). Consider the round trip depicted in Figure 6-4(a),where v sends a message m to s, and s responds by sending m0 to v. Let TT denote thetotal transit time of m and m0. The bounds on the source time are obtained by consideringtwo extreme scenarios, in which on message is in transit TT time units and the other isdelivered instantaneously (Figure 6-4 (b,c)). Skipping the details (they can be found inSection 3.1.5), we remark that the bounds generated by the CSA module at v at point q0are [ext L ; ext U ] = [LT3 ; LT3 + TT ] :Clearly, the tightness of the synchronization thus computed is exactly the total transittime. In other words, the faster the messages are delivered, the better synchronization isachieved. This fact leads the designers of NTP to the following conclusion: when thereare many round trips, the one with the least total transit time is chosen as best, and itscorresponding bounds are output. Speci�cally, whenever a round trip is completed, its totaltransit time is compared against the current tightness; if the current tightness is better (i.e.,smaller), that round trip is discarded, and otherwise, the bounds obtained by that round-trip replace the current values of the output variables. The formal speci�cation of the CSAat v for multiple round-trips is given in Figure 6-5 (note the \if then" clause in the e�ect108



of the Receive Aug Message action). The code for the source processor is identical to thecase of a single round-trip (see Figure 3-9).Let us now consider the behavior of the algorithm described in Section 6.3 for this toyenvironment. Note that the patterns generated by the environment of SNTP are a subset ofthe patterns generated by the general environment described in Section 3.1, and thereforeit makes sense to consider the CSAs of Section 6.3 in the context of the environment ofSNTP.Our �rst remark regards the single round-trip scenario depicted in Figure 6-4 (a). Us-ing De�nitions 3.11 and 5.4, we get that the synchronization graph corresponding to thisscenario is the one depicted in Figure 6-6. It is straightforward to verify that the extremescenarios depicted in Figure 3-7 (b,c) are, in fact, the executions whose existence is guaran-teed by Theorem 5.8 for this view and bounds mapping. As a consequence, the output ofthe algorithm of Section 6.3, and the bounds computed by SNTP are identical in this case.However, in a scenario that consists of more than a single round-trip, the algorithm ofSection 6.3 may do much better. By computing the distances in the synchronization graph,our algorithm in e�ect �nds the fastest message delivered over the link in each directionindependently, while SNTP �nds the best round-trip using a pre-speci�ed matching of themessages into pairs.Let us consider a concrete example. In Figure 6-7 (a) we have a diagram of a two-round-trip scenario. Suppose that the total transit time of the �rst round-trip is smallerthan the one in the second, i.e., let TT1 = (LT4 � LT1) � (LT3 � LT2), let TT2 = (LT8 �LT5)� (LT7 � LT6), and assume TT1 < TT2. In this case, the tightness of synchronizationproduced by SNTP after the scenario is TT2. By contrast, the algorithm of Section 6.3�nds the best possible round trip in the execution: in our example, the picture suggeststhat TT � = (LT8 � LT1) � (LT7 � LT2) is the best choice, and in particular, TT � < TT1.Notice that TT � may be arbitrarily smaller than TT1, and hence the local competitive factorof SNTP cannot be bounded even in this simple case.Intuitively, the round-trip technique used by NTP is handicapped since it potentiallypairs a \good" message in one direction with a \bad" message in the other direction. Weremark that in the case of a system of more than one link, the pairing of good and badmessages may be even more severe: consider the set of messages used to establish the boundsof the output variables. These messages correspond to paths (in the synchronization graph)109



Sites: a single site vStatenow: non-negative real number, initially 0local time: real number, initially arbitraryext L: real number, initially �1ext U : real number, initially 1Qi: queue for symbols of �, initially ;Qo: queue for symbols of ��R2, initially ;active: Boolean 
ag, initially falseLT1: a real number, initially unde�nedActionsSend Messagev(m) (input)E�: enqueue m in Qoactive  trueLT1  local timeSend Aug Messagev(m1; 0; 0) (output)Pre: m1 is at the head of QoE�: remove head of Qoif Qo = Qi = ; then active  falseReceive Aug Messagev(m1; hLT2; LT3i) (input)E�: enqueue m1 in Qiactive  trueLT4  local timeTT  (LT4 � LT1)� (LT3 � LT2)if TT < (ext U � ext L) thenext L LT3ext U  LT3 + TTReceive Messagev(m1) (output)Pre: m1 is at the head of QiE�: remove head of Qiif Qo = Qi = ; then active  false� : (time passage)Pre: active = falseb > 0E�: now  now + blocal time  local time + bext L ext L+ bext U  ext U + bFigure 6-5: Code of the CSA module in SNTP for processor v (the best round-trip is chosen).110
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to and from the source. The round trip technique forces both paths to be over the samephysical links, i.e., the messages used in one direction must be transmitted over the samelinks over which the messages used in the other direction were transmitted. Our algorithm,by contrast, chooses messages independently for each direction, and it may well be the casethat the set of messages used to establish a lower bound are transmitted over di�erent linksover which the messages used for the upper bound were transmitted.
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SummaryIn this chapter we de�ned and analyzed the external clock synchronization problem. Inthis problem, a distinguished source processor is assumed to have a drift-free clock, and thetask of all processors is to keep updated bounds on the current value of the source clock.Using synchronization graphs, we derived matching lower and upper bounds on externalsynchronization in general systems, where the clocks of non-source processors may havearbitrary drift bounds and messages may have arbitrary latency bounds.The algorithm used for the upper bound is a full information protocol, and thereforeit is ine�cient. By contrast, we presented an extremely e�cient algorithm for the case ofdrift-free clocks. The latter algorithm is based on the observation that all points associatedwith a drift free clock in the synchronization graph can be collapsed into a single superpoint,and thus it is su�cient to compute distances between superpoints.We have also examined the popular technique of round trips. Using a toy system basedon NTP, we showed that for a single round trip this technique yields the same result as ouralgorithm. In a multiple round-trip scenario, however, the output of our algorithm will beusually better.
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Chapter 7Internal SynchronizationIn this chapter we prove a lower bound on the tightness of another variant of clock synchro-nization, called internal clock synchronization [6]. The goal of internal synchronization isthat all processors generate a \tick," called �re below, such that all �re steps occur in thesmallest possible interval of real time. An algorithm for internal synchronization is requiredto provide bounds on the length of this real time interval, and the smallest di�erence in anexecution is the internal tightness of that execution.The task of internal synchronization has been the target of considerable research (see,e.g., [19, 7, 13, 3] and the survey [31]). However, to the best of our knowledge, the onlyknown non-trivial lower bounds for internal tightness were for the case of drift-free clocks.In this chapter, based on synchronization graphs, we give a lower bound for the internaltightness in a synchronization system with bounded-drift clocks. We remark that the lowerbound presented in this chapter is based on views, rather than local views: lower boundsthat hold for a given view hold a fortiori for its local views.This chapter is organized as follows. In Section 7.1 we de�ne internal clock synchroniza-tion formally, and in Section 7.2 we present the lower bound.7.1 De�nition of Internal SynchronizationIn this section we recall our de�nition of internal synchronization (see Section 4.1). Aninternal clock synchronization system is a clock synchronization system, where each CSAmodule has a special internal action called �re.1 The correctness requirement of the internal1The �re action is internal so as to keep the interface of CSAs standard (see Figure 3-5).114



synchronization task is that(1) each processor v takes a �rev action exactly once during an execution of the system,and(2) the CSA at each processor v maintains output variables called int Lv and int U v,such that at all states, the real time interval [now(�rev) + int Lv; now(�rev) + int U v]contains all the �re events in the execution.The internal tightness of an execution of an internal synchronization system at a processorv, denoted tightnessv(e), is the in�mum over the di�erence (int U v � int Lv) in all statesof the execution.Intuitively, the �re actions represent the event of resetting some logical clock maintainedby the CSAs; the output variables express the synchronization guarantee made by the CSA.By the properties of CSAs (speci�cally, their real-time blindness and their quiescent initialstates), one can show that their initial values must be int L = �1 and int U =1; as theexecution progresses, the CSA modules gather information about the occurrence of remote�re actions that may enable them to reduce the di�erence between their output values.7.1.1 DiscussionIntuitively, the motivation for internal synchronization is to maintain some clock variablesin each processor, such that their values are as close as possible. This requirement aloneis not su�cient, since it allows for the trivial solution where all clock variables alwayshave the same �xed value (say, 0). Dolev et al. discuss this issue in depth [7]. In [19], thisdi�culty is avoided as follows. Each processor v is assumed to have a special output variabledenoted CORRv ; the tightness is measured as the maximal di�erence between the valuesof local timev + CORRv, over all processors v. To rule out the trivial solution of settingCORRv = �local timev, in [19] the executions of synchronization algorithms are requiredto be �nite, i.e., at some point the algorithm enters a terminating state, after which theCORR variable is �xed. The tightness is de�ned to be the maximal di�erence between thelocal timev +CORRv values, measured only when the algorithm is in a �nal state.In [13], the di�culty of problem de�nition is solved di�erently: each processor is requiredto 
ip a special internal bit during the execution of the algorithm; the tightness is de�nedto be the maximal di�erence in real time between two remote bit 
ips. We adopted thisde�nition (the bit 
ip is equivalent to our �re action), and added the output variables for115



ease of exposition.7.2 A Lower Bound on Internal TightnessIn this section we derive a lower bound on the tightness of internal synchronization ingeneral systems with bounded-drift clocks. To state the result, we de�ne the followinggraph-theoretic concept. Recall that for a path � in a weighted graph, w(�) denotes thesum of the weights of arcs in �, and let j�j denote the number of arcs in �.De�nition 7.1 Let G = (V;E;w) be a weighted directed graph. The maximum cycle meanof G, denoted mcm(G), is the maximum average weight of an edge in a directed cycle of G.That is, mcm(G) = max fw(�)=j�j : � is a directed cycle of Gg.We remark that the maximum cycle mean can be computed in polynomial time [14].To analyze internal synchronization systems, the de�nition of patterns and views isextended so that the �re steps are points with the usual attributes (i.e., processor of oc-currence, local time of occurrence, and for patters, real time of occurrence). We extendthe standard bounds mapping too, using Def. 3.11. Synchronization graphs for internalsynchronization systems are thus also naturally de�ned. It turns out that the followingderivative of synchronization graphs is useful for the analysis of internal synchronization.De�nition 7.2 Given a synchronization graph � = (V;E;w) of an internal clock syn-chronization system, the internal synchronization graph is a directed, weighted graph � =(V ;E; w), where the set of points V consists of all the �re points in V ; there is an arcin E between every pair of points of V ; and w(�rev; �reu) = d�(�rev; �reu) for each(�rev; �reu) 2 E.We can now state and prove the lower bound.Theorem 7.1 Let e be an execution of an internal clock synchronization system, and let� be the internal synchronization graph generated by the view of e and the standard boundsmapping. Then tightnessv(e) � mcm(�) for all processors v.Proof: Suppose �rst that mcm(�) = 1. Then, by the de�nition of �, there are someprocessors u; v with d�(�rev; �reu) = 1. Hence, by Theorem 5.7, for any N > 0 there116



exists an execution eN , in which �(�rev; �reu) > N . Moreover, since the output variablesare part of the basic component of the state of CSAs, we have from Theorem 5.7 that theset of output values of the CSA at v are identical in all the eN . Let act delN denote theactual delay function in eN . Since for any two points in any execution we have �(p; q) =act del(p; q)�virt del(p; q), and since virt del(�rev; �reu) is �xed (it is a part of the view ofe), it follows that the set of numbers fact deleN (�rev; �reu) : N > 0g cannot be bounded.Therefore, by the correctness requirement for internal CSAs, we must have tightnessv(e) =1 for all processors v, and the theorem holds in this case.Consider now the case where mcm(�) <1. Let � = hp0; p1; : : : ; pj�j = p0i be an arbitrarydirected cycle in �. Fix an arbitrary processor v. By Theorem 5.7, for each 1 � i � j�j,there exists an execution ei with o�set function �i, such that�i(pi�1; pi) = w(pi�1; pi) : (7.1)Theorem 5.7 also says that the set of output values at v (being part of the basic state ofthe CSA at v), is the same in e and all the ei. We therefore have that for each i,tightnessv(e) = tightnessv(ei)� nowei(pi�1)� nowei(pi) correctness requirement= �i(pi�1; pi) + virt del(pi�1; pi) by de�nition of o�set= w(pi�1; pi) + virt del(pi�1; pi) by Eq. (7.1)Summing the above over all i, we getj�j � tightness(e) � j�jXi=1 w(pi�1; pi) + j�jXi=1 virt del(pi�1; pi)= j�jXi=1 w(pi�1; pi) + j�jXi=1(local time(pi�1)� local time(pi))= w(�) ;because the second sum is cyclic. In other words, for any processor v, tightnessv(e) �w(�)=j�j. Since � was an arbitrary cycle in �, we conclude that tightnessv(e) � mcm(�), asdesired. 117



Theorem 7.1 coincides with known results for the special case of systems with drift-freeclocks. For example, Lundelius and Lynch [19] considered a system of n processors, wherethe underlying communication graph is complete, and the latency bounds of all messagesare �nite and identical (say upper bound H and lower bound L). The corresponding syn-chronization graph consists of n points (one per processor), and between each pair of pointsp; q there are arcs (p; q) and (q; p) with weights satisfying w(p; q)+w(q; p) = H �L. It canbe shown that for these graphs, the maximum cycle mean is (H�L)(n� 1)=n, which is thelower bound proved in [19].Halpern, Megiddo and Munshi [13] extended the result of [19] to the case where theunderlying graph of the system is not complete, and the latency bounds for each link maybe di�erent (i.e., there are di�erent H and L for each link). Again, their lower bound can beviewed as showing that the worst possible scenario under the given constraints is boundedby the maximal cycle mean in the corresponding synchronization graph.Attiya, Herzberg and Rajsbaum [3] re�ned the results of [13] to hold for each executionof the system, rather than for the worst possible executions. Theorem 7.1 generalizes theresult of [3] to the case of bounded-drift clocks. Our result generalizes the previous boundsalso to the case where the latency bounds may be di�erent for each individual message.
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SummaryIn this chapter we discussed the internal clock synchronization problem. Formally, basedon the de�nition of [13]. Using synchronization graphs, we presented a new lower boundfor internal synchronization for system over systems with drifting clocks. This lower boundgeneralizes known lower bounds for systems with drift-free clocks to the general case ofbounded-drift clocks.
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Chapter 8The Space Complexity of OptimalSynchronizationCall a synchronization algorithm general if it works for all possible environments as de�nedin Section 3.1, i.e., for all possible views, all possible message latency bounds, and all possibleclock drift bounds. (For example, the full information protocol used in the proof of Theorem6.4 is a general algorithm for external synchronization, whereas the algorithm described inSection 6.3 is not general, since it works only for drift-free clocks.) In this chapter weprovide strong evidence that suggest that a general CSA for external synchronization whichis optimal must be ine�cient, or more speci�cally, such an algorithm cannot have boundedspace complexity.Recall that in external clock synchronization systems, the CSAs are required to computebounds on the current reading of some designated drift-free clock called the source clock(see Section 4.1 for the full de�nition). In this chapter, we prove that for a certain reason-able computational model, there exist scenarios in which the space complexity required tocompute optimal output cannot be bounded. The result is obtained in a small system (fourprocessors, two of which have drift-free clocks).The �rst problem in formalizing a space lower bound is that our model allows for realnumbers: a real number can be used to encode an unbounded amount of information. Ourstrategy to get around this di�culty is to bound from below the number of \control bits"required to run the program, where we disallow �ddling with the input values.The moral of the result presented in this chapter is that one cannot have a synchro-120



nization algorithm which is simultaneously optimal, general, and e�cient. An algorithmdesigner must decide which of the three is to be sacri�ced. We remark that as a by-product,this chapter indicates that the ine�ciency of the algorithm used in the proof of Theorem6.4 was, in a certain sense, unavoidable, since that algorithm is both general and optimal.The remainder of the chapter is organized as follows. In Section 8.1 we describe thecomputational model in the context of CSAs, and in Section 8.2 we give the space lowerbound proof.8.1 The Computational ModelThe model we use for computations of CSAs is a particular kind of the computation treemodel. First, we de�ne the following algebraic concept.De�nition 8.1 A special linear form for a set X = fx1; : : : ; xNg is a sequence of N in-tegers f = hc1; : : : ; cNi. The value of f under the assignment x1 = a1; : : : ; xN = aN isf(a1; : : : ; aN) =PNi=1 ciai, where ai 2 R[ f�1;1g.1 If b = f(a1; : : : ; aN) for some speciallinear form f , then b is said to be a special linear combination of a1; : : : ; aN .We have the following simple lemma.Lemma 8.1 If b is a special linear combination of a1; : : : ; aN , and for each i = 1; : : : ; Nwe have that ai is a special linear combination of ai1; : : : ; aiKi, then b is a special linearcombination of a11; : : : ; a1K1; : : : ; aN1; : : : ; aNKN .Proof: Since b =PNi=1 ciai for some integers ci, and since for each i we have ai =PKij=1 cijaij,for some integers cij, we can write b as the special linear combinationb = c1c11a11 + � � �+ c1c1K1a1K1 + � � �+ cNcN1aN1 + � � �+ cNcNKNaNKN .We now de�ne the computational model. For simplicity of presentation, we presentbelow a model for deterministic CSAs; the extension to non-deterministic CSAs is straight-forward. A program for a CSA module is speci�ed by a directed labeled tree, where theroot of the tree is called the start node, and the edges are directed away from the start1We use the conventions that for any �nte number r, r +1 =1, r �1 = �1, 0 � 1 = 0 � (�1) = 0,and 1�1 is unde�ned. 121



node. Intuitively, nodes represent control con�gurations of the program, and executions ofthe program proceed by following a directed path in the tree, starting at the start node.Formally, let us call the nodes at even distance from the start node even nodes, and nodesat odd distance from the start node odd nodes. The subtree of depth two rooted at each oddnode corresponds to an input action followed by an output action of the CSA, as dictatedby the non-interfering �ltering condition. Speci�cally, we de�ne the node labels as follows(see Figure 8-1 for an example the �rst three layers of a program tree).� Each odd node is labeled by an input action name and input variables, where theinput variables contain the local time and bounds mapping values (speci�ed later);we call these variables local variables. If the action is Receive Aug Message(m;m0),there are also message variables, which correspond to values in m0. We require thatfor each even node, there is exactly one child node for any possible input action.� Each even node, except for the start node, is labeled by an output action name, acomputation predicate, and some output forms according to the following rules.{ The output action of an odd node corresponds to the input action of its par-ent in the tree according to the non-interfering �ltering property, i.e., if theaction of the parent is Send Message(m), then all its children nodes have anaction of the type Send Aug Message(m;m0), and if the action of the parent isReceive Aug Message(m;m0), then the action of all its children is Receive Message(m).{ For an even node p in the tree, let X(p) denote the set of input variables inlabels on the path from the start node to p. The computation predicate of p isan arbitrary predicate over X(p), and the output forms associated with p arespecial linear forms for X(p).For each even node q, for any possible assignment of values to X(q), we require thatthere is exactly one computation predicate among its children that evaluates to true.An execution of the CSA in this model proceeds by moving a \token" (which representsthe current control con�guration) along the tree according the labels in the following way.Initially, the token is placed at the start node. Whenever an input action occurs, the tokenis moved down the tree to the odd node whose label matches the input action name. Inaddition, the input variables associated with the odd node are instantiated. Next, an even122



start node

action name: 
   Send_Message(m)
input variables:
   {local_time}

action name:
   Receive_Aug_Message(m.<a,b,c>)
input variables:
   {local_time, B(p,q), B(q,p), a, b, c}

action name:
   Send_Aug_Message(m.<x,y>)
computation predicate:
   TRUE
output forms:
   ext_U := local_time
   ext_L := 0
   x := local_time
   y:= 0

action name:
   Receive_Message(m)
computation predicate:
   a−b < local_time
output forms: 
   ext_U := c
   ext_L := local_time−c

action_name:
   Receive_Message(m)
computation predicate:
   a−b >= local_time
output forms:
   ext_U := a
   ext_L := local_time−aFigure 8-1: The �rst three layers of a program: an example. The odd nodes are labeled byinput action names and input variables, and the nodes at depth 2 are labeled by an outputaction name, a computation predicate and output forms.node down the tree is selected by choosing the node whose computation predicate evaluatesto true under the current assignment of the input values. The outcome of the predicatesis well de�ned, as all their variables are instantiated at this stage. The output values arede�ned by instantiating the output forms associated with the chosen even node.Let us now be more speci�c about the input variables and the output values of a programfor a CSA. The input variables associated with an odd node, which in turn corresponds to aninput step p, always include local time(p), and the values of the standard bounds mappingof all the pairs (p; q) and (q; p), for all points q which are adjacent to p in the local viewfrom p (if there are any). In addition, if p is a receive point, then the input also containsall the values that arrive in the incoming message. We restrict the message alphabet usedby CSAs to be strings of R [ f�1;1g. The output forms associated with an even nodewhich corresponds to a point p always contain forms for the mandatory output variables(i.e., ext L and ext U ); if p happens to be a send point, then there is an output formcorresponding to each value to be sent in the outgoing message. The output values of theCSA, at any state of the execution, are generated by instantiating the last output forms bythe input values.When time passage occurs, the local time and bounds mapping values are updated.Since these values may appear in the output forms for ext L and ext U , the output valuesare potentially updated as well. This completes the description of the way CSAs work in123



our model.For lower bound purposes, we de�ne the space complexity of a program in our model tobe the logarithm to base 2 of the maximal degree of a node in the tree. We argue that thismeasure is certainly a lower bound on the number of bits required to distinguish amongthe di�erent possible branches the program may take. We remark that in our proof, thelower bound is derived for the odd nodes, i.e., the number of possible output responses foran input.Before we go into the lower bound proof, we state an important property of our model.First, we de�ne the following concept.De�nition 8.2 Let p be a point in a view V of an execution of a clock synchronizationsystem. The values in the local view of p is the set of all local times of points in the localview prune(V ; p), and all the bound mapping values for arcs prune(V ; p).The important property of values in a local view of a point is that they \span" allpossible outputs at that point, as stated in the following lemma.Lemma 8.2 Any output value of a CSA at a point p in an execution of the system is aspecial linear combination of the values in the local view of p.Proof: By induction on the points in the view, sorted by their order of occurrence in theexecution. The lemma is clearly true in the �rst step of the execution in the system: theonly input value at that point is the local time of occurrence, and by de�nitions, the outputvalue is just a special linear combination of its input values.Assume now that the lemma holds at all points p1; : : : ; pn of the execution, and considerthe point pn+1. By Lemma 8.1, it is su�cient to show that the input values are speciallinear combination of values in the local view of pn+1. If pn+1 is not the �rst action at theprocessor, let pj be the previous action at the processor, and let pj be unde�ned otherwise.We distinguish between two cases.Case 1: pn+1 is a send point. In this case, by our model de�nitions, the input valuesat pn+1 are local time(pn+1), and if pj is de�ned, the input also contain the values of thestandard bounds mapping for (pn+1; pj) and (pj; pn+1). Trivially, all these values are speciallinear combinations of values in the local view of pn+1.Case 2: pn+1 is a receive point. Let pi denote the corresponding send point in theexecution. The input values in this case are the local time of occurrence of pn+1, the124



appropriate bounds mapping values, and the values that arrive in the incoming message.Since a send point always occurs before the corresponding receive point, we have thati < n+ 1, and by de�nition, we also have that the local view of pi is contained in the localview of pn+1. By the inductive hypothesis, the values that arrive in a message are speciallinear combinations of values in the local view of pi, and hence they are also special linearcombinations of values in the local view of pn+1. This completes the inductive step.8.2 The Space Lower BoundIn this section we prove a lower bound on external synchronization in the model de�ned inprevious sections. We shall use the following simple lemma.De�nition 8.3 A function F : D 7! R is said to be covered by a collection of functions Fif for all x 2 D there exists a function f 2 F such that F (x) = f(x).Lemma 8.3 Let x1; : : : ; xM 2 RN be such that for any xi = (xi1; : : : ; xiN) and xj =(xj1; : : : ; xjN) we have that if xik 6= xjk then xik � xjk is an integer. Let F be a functionsuch that F (xi) � F (xj) is an integer only if i = j. If F is a collection of special linearforms covering F , then jFj �M .Proof: By contradiction. If jFj < M and F covers F , then for some f 2 F and i 6= j, wehave that f(xi) = F (xi) and f(xj) = F (xj). Denote f = hc1; : : : ; cNi, xi = (xi1; : : : ; xiN)and xj = (xj1; : : : ; xjN). Suppose, w.l.o.g, that xi1� xj1; : : : ; xiK� xjK are all integers, andthat xin = xjn for n = K + 1; : : : ; N . ThenF (xi)� F (xj) = f(xi)� f(xj)= NXn=1 cinxin � NXn=1 cjnxjn= NXn=1 cin(xin � xjn)= KXn=1 cin(xin � xjn) ;which is an integer, contradicting the assumption that F (xi)� F (xj) is not an integer fori 6= j. 125



We now turn to prove a lower bound on the space complexity of optimal CSAs in ourcomputational model. To simplify presentation, we focus below on the output variableext L.Consider an execution of an external synchronization system, and let � be the syn-chronization graph generated by the local view of the execution at some point p and thestandard bounds mapping. From Theorem 6.4, we know that the optimal value for ext Lat point p is precisely local time(p)� d(sp; p), where sp is the source point of �, and d isthe distance function of �. The lower bound is proven by showing that unbounded space isrequired to compute d(sp; p) for a point p in a certain scenario.Speci�cally, we consider a system whose underlying graph is a line of four processorsdenoted s; u; v; w (see Figure 8-2 (a)). Processor s is the source processor; processors uand v have drifting clocks, and the clock at w is drift-free. We concentrate on the CSAat w. As mentioned above, the optimal value of ext L at a point p of the execution islocal time(p)� d(sp; p). Since local time(p) is an input variable at p, the task we considerreduces, at each point p, to the computation of d(sp; p).The following key lemma describes a scenario in which a single local view may havemany di�erent extensions, depending on the message that arrives next. The output foreach possible extension must be di�erent; the special properties of the input variables atthe receive point are used later to prove the space lower bound.Lemma 8.4 For any integerM > 0 there existM executions e1; : : : ; eM with views V1; : : : ;VMand synchronization graphs �1; : : : ;�M, respectively, and a receive point p that occurs at w,such that(1) p is common to all views.(2) The local views of V1; : : : ;VM at w are identical before p occurs.(3) All values in the message that arrive at p are integers.(4) For each i = 1; : : : ;M , the distance between sp and p in �i is 1=(i+ 1).Proof: We construct the views, and specify the weights of the arcs in corresponding syn-chronization graphs as we go. In our construction, all arc weights are non-negative, andhence there are no negative-weight cycles in all the synchronization graphs we de�ne. There-fore, the proof is completed by observing that by Theorem 5.7, for each i there exists an126
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Figure 8-2: (a) System structure for the proof of Lemma 8.4. Processor s is the source,and processor w also has a drift-free clock. (b,c) An example for graphs constructed in theproof of Lemma 8.4 with M = 3. In (b), the local view at w before p (shared by all Vi) isillustrated (the messages from v are known to be sent). In (c), the local view at w after pis illustrated: in Vi, the selector message is received at point ui.execution ei with view Vi, such that ei satis�es the bounds mapping derived from �i andVi. It remains to de�ne the views and the bounds mapping. We do it as follows (seeFigure 8-2 (c)). In all views Vi for i = 1; : : : ;M , there are M messages from processorv to processor u, with distinct send points denoted v1; : : : ; vM , and distinct receive pointsdenoted u1; : : : ; uM , respectively. The bounds mapping is such that in all the �i we havew(vk; uk) = 0, w(uk; vk) = 1 for k = 1; : : :M , and w(vk; vk+1) = w(vk+1; vk) = w(uk; uk+1) =w(uk+1; uk) = 1 for k = 1; : : : ;M � 1. Also, in all views Vi there are M messages sentfrom v to u with send points denoted v1; : : : ; vM , and receive points denoted w1; : : : ; wM,respectively. In all the �i we have w(wk; vk) = 1 for all k. The weight of the arc (vk; wk) isde�ned to be 1=(k+ 1).In addition, all views Vi have a message m sent from u to v after the last uk point, anda message m0 sent from v to w after m is received at v. The receive point of m0 is the pointp, promised in the statement of the lemma. The weight the four arcs corresponding to mand m0 is 1 in all �i. 127
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execution, it must be the case that ext Lv = local time(p)�d(sp; p), where d and sp are thedistance function and the source point, respectively, in the corresponding synchronizationgraph. By Lemma 8.4, for any M > 0 there are M scenarios with a common point p suchthat at p, the local input variables are the same at all scenarios, the other input valuesare all integers, and such that in scenario i the optimal output is local time(p)� 1=(i+ 1).Letting x1; : : : ; xM denote the input values of these scenarios, and letting F denote theoptimal value of ext L, we can there apply Lemma 8.3, and deduce that there are at leastM distinct output forms associated with p. It follows that the degree of the odd node inthe program corresponding to p is arbitrarily large, and since the space complexity of abranching program is the logarithm of the maximal degree of a node, we conclude that thespace required by the program cannot be bounded as a function of the network size.Remark. The crucial property of the model used in the lower-bound argument is the re-striction that output is represented by special linear combinations. We argue that thisrestriction is reasonable for two reasons. First, we know that optimal output can be com-puted this way: synchronization distances can be expressed as special linear combinationsof local times and bounds. And secondly, as already mentioned above, if we do not imposerestrictions on the computational model, there is no hope for a space lower bound, since anunbounded amount of state information can be encoded in a single real number.
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SummaryIn this chapter we looked at the space complexity required to store the state of optimalCSAs for external synchronization. We de�ned a computational model, where output maybe represented only by linear combination of the input values with integer coe�cient. Theprogram is represented by a tree, and the space complexity is the logarithm of the maximalbranching factor in the tree. We then proved that there are executions of very simplesystems (we used four processors), for which the space complexity of an optimal CSAcannot be bounded. This means that any optimal algorithm for external synchronizationthat works for all environments must have unbounded space complexity. The implicationof this result is that there is no synchronization algorithm which is simultaneously e�cient,optimal and general.
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Chapter 9ExtensionsThe analysis of synchronization graphs, presented in Chapter 5, was developed for themodel of clock synchronization systems, as de�ned in Chapter 3. This model, while beingarguably a reasonable abstraction of real systems, is restrictive. In this chapter we look at afew simple variants of the basic model, and show how using our concept of synchronizationgraph, one can analyze these variants quite easily.Our discussion is presented in three parts. In Section 9.1 we consider the case of addi-tional timing constraints. We show how a few kinds of additional timing constraints canbe incorporated into synchronization graphs. In Section 9.2 we discuss timing faults, i.e.,cases where an execution violates the system speci�cation. We de�ne a natural notion ofdetectable faults, and show that synchronization graphs can be used to detect the existenceof such faults. In Section 9.3 we consider structured send modules, i.e., systems in whichthe message sending pattern has a more regular structure. Using a simple example, weexplain how knowledge of the structure of the send modules can help in generating timinginformation without explicit communication.9.1 Additional Timing ConstraintsThe de�nition of clock synchronization systems in Chapter 3 allows for two sources of timinginformation: the message latency bounds and the clock drift bounds. It is often the casethat we have some additional sources of timing information. For example, the presence ofa human operator at a site may su�ce to insure that the absolute o�set of the local clockat that site is never too big. Another example is a broadcast of a message to a subset of131



the processors, where it is known that the message is delivered at all processors within aperiod of known length (even though the time to deliver any individual message may bearbitrary). Having such additional information may improve the synchronization attainedby CSAs. Below, we describe ways to incorporate a few simple types of such knowledgeinto synchronization graphs. By doing this, the distances in the synchronization graphhave the additional information built into them, and can therefore be used to get bettersynchronization.9.1.1 Absolute Time ConstraintsSuppose we know somehow that \an event p occurs at real time at least a," or that \anevent p occurs at real time at most b." Formally, we may have absolute time constraints,de�ned to be statements of the form now(p) 2 [a; b] ;where p is a point in the view, and [a; b] is a (possibly in�nite) interval of real numbers.Absolute time constraints can be incorporated in the synchronization graph as follows.We introduce a new point into the graph, called the origin and denoted by s0, wherefor analysis purposes we assume that local time(s0) = now(s0) = 0. (Intuitively, theorigin can be thought of as representing the initialization event of the execution.) Foreach absolute time constraint now(p) 2 [a; b], we introduce two arcs (p; s0) and (s0; p) intothe synchronization graph, with weightsw(s0; p) = �a ; and w(p; s0) = b :It is easy to see, using Lemma 5.2 and the attributes of the origin as de�ned above, that thenew arcs and weights express the given constraint. Bounds on relative o�sets of the pointsin the view can now be obtained as usual, by �nding distances between the desired pointsin the extended synchronization graph. In addition, bounds on the absolute o�sets can beobtained by computing the distances to and from the origin: with the real and local timeattributes we assigned to the source point, we have that for any point p, �(p) = �(p; s0),and hence �(p) 2 [�d(s0; p); d(p; s0)].By adding the origin node and its incident edges, the distances in the synchroniza-132



tion graph may drop, resulting in tighter bounds on the o�set between points, i.e., bettersynchronization.9.1.2 Relative Time ConstraintsSuppose that we have information of the type \at least a time units elapse between theoccurrence of an event p until the occurrence of an event q," or \at most b time units elapsebetween the occurrence of an event p until the occurrence of an event q." Formally, we mayhave a pairwise time constraint, given as a statement of the formnow(q)� now(p) 2 [a; b] :Modeling pairwise time constraints is done using the tools we already have: the interpreta-tion of such a statement is simply that the bounds mapping B of the pattern in questionshould be extended to include B(q; p) = b and B(p; q) = �a. To translate this informationinto the distance measure of synchronization graphs, we augment the graph with arcs (p; q)and (q; p), and assign their weights as usual (see Def. 5.4). As before, the introduction ofadditional arcs into the synchronization graph may reduce the distances between points,thus resulting in tighter bounds on synchronization.Another instance of relative time constraints is where a set of events is known to occurwithin a time interval of known length. (Halpern and Suzuki [12] make this assumption forthe set of receive events of a broadcast message.) Formally, we have a set Q of events, suchthat for any pair pi; pj 2 Q we know thatnow(pi)� now(pj) � a ;and the reduction to pairwise time constraints is obvious.Remark. It may be interesting to push further the idea underlying the simple techniquesuggested above for pairwise time constraints. The way we developed our model in Chapter3, we had the natural notion of adjacent points (cf. Def. 3.9), and bounds mapping wasde�ned only for pairs of adjacent points. This de�nition was motivated by the assumptionthat the only source for timing information are the speci�cations of local clocks and networklinks. The idea in the generalization suggested above is that the basic relation is pairwisetime constraints, rather than adjacency. Put in other words, instead of de�ning bounds133



mapping in terms of the classical adjacency relation, we should de�ne the adjacency relationin the synchronization graph in terms of the pairwise time constraints.9.2 Fault DetectionThroughout the discussion of synchronization graphs we relied heavily on its \integrity,"namely the fact that act del(p; q) � B(p; q) for all adjacent points p; q. Since this assump-tion may not always hold | e.g., if some component of the system fails, or if the speci�cationis simply wrong | it is interesting to understand what happens in that case. Fortunately,Theorem 5.4 guarantees a strong fault-detection property. Let us �rst de�ne the a notionof detectable fault.De�nition 9.1 Let V be a view and let B be a bounds mapping for V. V is said to have adetectable fault with respect to B if there is no pattern with view V that satis�es B.Using Theorem 5.5, we derive the following result.Lemma 9.1 Let V be a view of an execution of a clock synchronization system, and let Bbe a bounds mapping for V. Then V has a detectable fault with respect to B if and only ifthe synchronization graph � de�ned by V and B contains a negative weight cycle.Proof: Suppose �rst that � contains a negative cycle. Then it follows from Theorem 5.6that there is no pattern with view V that satis�es B, and hence V has a detectable faultw.r.t.B. Conversely, suppose that � does not contain a negative-weight cycle. If � is empty,then trivially V does not contain a detectable fault w.r.t. B, and we are done. Otherwise,let p0 be any point in �. By Theorem 5.7, there exists at least one pattern P with view Vsuch that P satis�es B, and hence V has no detectable faults w.r.t. B.We remark that algorithms that use our techniques, probably compute distances overthe synchronization graph anyway. Since shortest paths algorithm for general edge weightsusually discover negative weight cycles, we get fault detection \for free." However, weremark that we do not know of a general technique for fault correction using synchronizationgraphs directly. 134



9.3 Structured EnvironmentsThe basic theory studies the case where send modules are completely unstructured (techni-cally, the \send" action is always enabled), and where the link automata may lose messagesarbitrarily. Somewhat surprisingly, it turns out that one may gain timing knowledge alsofrom the absence of a message receive event, in the case of reliable communication.1We now explain how can one add arcs to the synchronization graph for messages whichare guaranteed to arrive, but haven't arrived. Again, the extra arcs may result in shorterdistances and hence better synchronization.In the following lemma, we assume that the drift upper bound of one of the clocks is atleast 1. This can be done without loss of generality since local time readings can be scaledto satisfy this assumption.Lemma 9.2 Suppose that the send module at processor u is such that a message m isalways sent at a point q with known local time, suppose that the link automaton Luv issuch that m is guaranteed to be always received at processor v within H(m) time units, andsuppose further that the drift upper bound of the clock at v satis�es %v � 1. Then for anypoint p at v where m has not yet been received we have �(p; q) � H(m)� virt del(p; q).Proof: Consider the point p0 in which m is received at v. By assumption, %v � 1. Sincep occurs at v before p0, we have local time(p0) � local time(p), and hence virt del(p0; q) �virt del(p; q) and virt del(p0; p) � 0. Therefore, using Def. 3.11 and Lemmas 5.1 and 5.2,we get �(p; q) = �(p; p0) + �(p0; q)� (1� 1=%) � virt del(p0; p) +H(m)� virt del(p0; q)� H(m)� virt del(p; q) :The consequence of Lemma 9.2 is that if communication links do not lose messages andhave �nite latency upper bounds, one can add points and arcs to the synchronization graph,1The place where the fact that messages may be arbitrarily lost was used in the proof of Theorem 3.2,where we proved that any local view at a point is also a complete view of some execution. This theoremdoes not hold in the case where some messages are guaranteed to be delivered: a local view that containsonly the send point of such a message is not the complete view of any execution.135



even if these points are not in the local view. Using the notation of Lemma 9.2, although qis not a part of the local view at p, the synchronization graph at p might as well include qand an arc (q; p) whose weight is w(q; p) = H(m)� virt del(p; q) (since we have a pairwisetime constraint between p and q).
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SummaryIn this chapter we discussed a few simple extensions of the basic model. We showed how toincorporate additional assumptions, such as absolute time constraints an relative time con-straints into the synchronization graph. Such constraints may be known due to unmodeledparts of the system.We also proved a strong fault detection capability for synchronization graphs. Despitethe fact that we do not know how to exploit a synchronization graph directly for errorcorrection, we get fault detection essentially for free.Finally, we showed that if the send module is structured in a certain simple sense,and if communication links are reliable, then some timing information may be derivedeven from absence of messages. We showed how to incorporate such information into thesynchronization graph.These examples demonstrate the robustness of the basic concept of synchronizationgraphs. Many more variants are possible (e.g., �nite granularity clocks, and external syn-chronization systems with multiple sources).
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Chapter 10ConclusionOur hope is that the main contribution of this thesis is improved understanding of the clocksynchronization problem. We believe that the insight developed in this thesis may lead tobetter synchronization protocols. We have suggested a new viewpoint for the problem, andpresented new analytical tools and algorithmic techniques to deal with clock synchroniza-tion. Our results indicate that there is no \ultimate solution" for clock synchronization, butthey leave hope that optimal e�cient algorithms can be found for particular systems, or thatbetter algorithms can be developed for general systems. For example, it seems reasonableto assume that our techniques can be implemented over the Internet, thus improving onthe current version of NTP [26]. In addition, by implementing our methods with boundedspace, one can get algorithms which are optimal with respect to a part of the execution(e.g., an algorithm that guarantees that its output is the best possible output for the lastday).On the theoretical side, we believe that synchronization graphs may prove a useful tool inthe analysis of timing-based systems. In a sense, synchronization graphs can be viewed as aweighted version of Lamport's graphs [16]: Lamport used his unweighted graphs to describeexecutions of completely asynchronous systems; synchronization graphs are weighted, andcan be used to describe executions of systems where processors have clocks.Let us review the main weaknesses of synchronization graphs. Informally, the usefulnessof synchronization graphs relies on a few strong assumptions.(1) The system speci�cation is such that if an event may occur at either of two points,then this event may occur at any time between them.138



(2) Processors follow the system speci�cation.(3) All executions that satisfy the system speci�cations are possible.As we mentioned in this thesis, assumption (1) cannot be compromised by our analysis.Without it, clock synchronization problems cannot even be expresses as linear programs.Regarding assumption (2), we gave a partial answer for the problem of systems that donot adhere to their speci�cation by showing that synchronization graphs can be used forfault detection. We hope the error correction can also be aided by synchronization graphs.Assumption (3) leaves room for specializing the synchronization graphs according to theparticular system being considered. We demonstrated such adaptations with a few simpleexamples.Since clock synchronization is used throughout the spectrum of distributed systems |starting from a single VLSI chip, and ranging up to a global network | it is conceivablethat the e�ect of even a slight improvement in the tightness of synchronization may besweeping. For example, tighter synchronization of the transmitting and receiving endpointsof communication links can lead to better utilization and hence larger throughput of thecommunication network; better synchronization may imply shorter processing time for largedatabases. We hope that despite its weaknesses, this thesis can be used to improve syn-chronization in many cases. This may lead to a slightly more convenient world, and itcan perhaps be translated into �nancial pro�t (for example, Merrill Lynch is using NTP tosynchronize their worldwide network [11]).It may be interesting to note that after our preliminary paper [29] was published, a fewpapers which have considerable overlap with our results have appeared. Speci�cally, Dolevet al. [8] have de�ned the notion of observable clock synchronization which is closely relatedto our notion of optimal clock synchronization. Their analysis is for the special case wherethe communication is done over a broadcast channel. Moses and Bloom [27] look at theproblem of clock synchronization from the knowledge theoretic perspective. They studythe case of drift-free clocks, and their main result can be viewed as a special case of oneof our characterization theorems. Ajtai et al. [2] present an approach for the analysis ofdistributed algorithms which is closely related to our notion of local competitiveness.Let us conclude with some interesting problems that this thesis leaves unsolved.Fault Resilience: It would be interesting to develop a technique that uses synchronizationgraphs in the presence of errors, such that erroneous data can be overcome, more than139



merely detecting the existence of an error.Internal synchronization: We do not know of a good technique for on-line distributedinternal synchronization other than the naive use of external synchronization algo-rithms. Conceivably, synchronization graphs can be used to this end.
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Appendix ATime-Space DiagramsIn this appendix we present Time-Space Diagrams [17]. This representation method isa convenient way to graphically draw and view executions of distributed systems. (SeeFigure A-1 for an example.) The idea is that the x coordinate is used to denote locationin space (which is, in the context of distributed systems, simply a processor name), andthe y coordinate is used to denote real time. Since the physical location of processors isimmaterial, processors are represented by vertical lines labeled by their names. In ourdiagrams we follow the convention that time grows downwards.Given an execution of a system, its time-space diagram is drawn by the following tworules. First, the events of the execution (such as message send and receive) are representedby points, and hence the (x; y) coordinates of each event are determined by its locationand time of occurrence. And secondly, a message is represented by a directed arrow, that
processor u processor v processor w

time

Figure A-1: An example of a time-space diagram.141



connects the point corresponding to its send event to a point corresponding to its receiveevent. We can model in this way many types of communication assumptions, includingbroadcast (for example, in Figure A-1 processor v sends messages simultaneously to u andw), message duplication (in Figure A-1 there are two receive events at v that correspondto a single send event at u), message re-ordering (the messages sent by w in Figure A-1 arereceived in reversed order at v), and message loss (the �rst event at v in Figure A-1 mightbe a send event of a message which is not received).
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