Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Finding Similar Users in Social Networks

Aviv Nisgav - Boaz Patt-Shamir

Received: date / Accepted: date

Abstract We consider a system where users wish to find similar users. To model
similarity, we assume the existence of a set of queries, and two users are deemed
similar if their answers to these queries are (mostly) identical. Technically, each user
has a vector of preferences (answers to queries), and two users are similar if their
preference vectors differ in only a few coordinates. The preferences are unknown to
the system initially, and the goal of the algorithm is to classify the users into classes of
roughly the same preferences by asking each user to answer the least possible number
of queries. We prove nearly matching lower and upper bounds on the maximal num-
ber of queries required to solve the problem. Specifically, we present an “anytime”
algorithm that asks each user at most one query in each round, while maintaining a
partition of the users. The quality of the partition improves over time: for n users and
time T, groups of O (n/T) users with the same preferences will be separated (with
high probability) if they differ in sufficiently many queries. We present a lower bound
that matches the upper bound, up to a constant factor, for nearly all possible distances
between user groups.

Keywords recommendation systems - collaborative filtering - randomized algo-
rithms - user classification - market segmentation

1 Introduction

Classical research in social networks tries to analyze their structure and evolution
from the observer’s viewpoint [16, 7]. Recently, with the emergence of Internet-based
social networks such as Facebook [6], MySpace [12], and many others, social net-
work systems include additional mechanisms to facilitate evolution. In particular, the
system may try to help users to find other “compatible” users. Compatibility usually
means having similar taste, where taste is broadly interpreted as preferences in a spe-
cific domain (such as musical taste, professional expertise, town of origin etc.), or a

Aviv Nisgav - Boaz Patt-Shamir
School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

combination of them. While some users are network-savvy and can find their similar
peers on their own, there are other users who can’t navigate the net well enough to
do it. It is therefore quite useful for social networks to have an automated tool which
helps the interested users to classify themselves into groups of similar characteris-
tics. However, while users may be willing to cooperate, such cooperation is limited:
users are typically reluctant to answer too many intimate questions, even if privacy is
unequivocally promised.

In this paper we study this premise from the theoretical perspective. We propose
a simple model, prove a lower bound on the least possible number of queries required
by any classification algorithm, and present a randomized algorithm which is guar-
anteed (with high probability) to classify the users in groups of similar taste at a cost
that nearly meets the lower bound.

Specifically, we model the user classification problem as follows. We assume that
there are n users and m possible queries. Each user has an answer for each query,
but these answers are not known when the algorithm starts. The answers of each user
are modeled as a preference vector, where coordinates correspond to queries and
entries correspond to answers. The queries are abstract in that the only thing assumed
about them is that they have a finite set of answers (say, a query is a multiple-choice
question). Algorithms are assumed to operate in rounds, where in each round some
users are presented with queries determined by the algorithm based on past answers,
with the possible help of coin tosses. The output of the algorithm is a label for each
user, which serves as that user’s “type identifier.”

The quality of an algorithm is measured by two criteria. First, performance is
judged by the quality of the output partition (in a way defined precisely in Section
2 below). And second, cost is measured by query complexity, namely the maximal
number of queries the algorithm asks any particular user.

In this paper, we present the following results. Say that a user belongs to a type
of popularity ¢ if at least an of the users share his preference vector. We give an al-
gorithm that continuously refines the user partition by separating types that are either
sufficiently popular or sufficiently different. For example, at time 7', with high prob-
ability, users whose type popularity is at least O(k}%) are separated if their opinions
differ on at least d queries, for 1 < d < /logn. We also prove bounds for d > +/logn:
A precise statement is provided in Theorem 1 in Section 2. We also present a lower
bound that shows that our results are optimal (up to a constant factor) for nearly all
values of d. A precise statement of the lower bound is provided in Theorem 2 in
Section 2. A schematic summary of our results is presented in Figure 1.

Related Work. Our model is closely related to models of recommender systems [4, 5,
3]. Recommender systems are motivated by e-commerce websites such as Amazon
and Netflix. It is assumed that there is a user-product matrix, where each entry is the
grade a user gives to a product, and the goal is to find which product the user will like.
Some variants of recommender systems assume that the matrix entries are partially
known (say, they reflect past activity of the user), and the task of the algorithm is to
predict unknown entries based on the given data. Other models assume that all entries
are unknown, and the task of the algorithm is to direct the users which products to try

I
lower bound | |
= = = upper bound
Q
£
on
g
=
f=]
=]
il —
A
A Y
A
.
.
.
~
~
~
S
| | | |
%4 % %4
7 O, (o) O, o
V%)\Z &, d’\f/i Q“é

distance between types

Fig. 1 Schematic representation of the results, showing the running time as a function of the separation
distance for fixed popularity o and m = n (ignoring constant factors). The solid line shows the lower
bound; the dashed line shows the upper bound (visible where it differs from the lower bound,).

(thereby revealing some entries of the matrix) so that the algorithm can recommend
a good product more effectively [14].

In the former model, where a partial matrix is given, it is common to assume a
linear model for user taste and product features, and apply algebraic techniques such
as principal component analysis [8] or singular value decomposition (SVD) [15] to
predict the missing entries. Papadimitriou et al. [13], and Azar et al. [4] rigorously
prove conditions under which SVD is effective. Other generative user models that
were considered include simple Markov chain models [10, 11], where users randomly
select their “type,” and each type is a probability distribution over the objects.

Drineas et al. [5] were the first to propose a competitive model, where the algo-
rithm directs the users which products to try and the results of the tries are fed back
to the algorithm. In [3] it was shown that in this model, a user can find a product he
likes in O(logn/a) tries, where ¢ is the popularity of that user’s taste.

The paper most closely related to our current work is the one by Awerbuch et
al. [2]. In that paper, each user has an unknown preference vector, and the task is
to reconstruct these vectors. Obviously, an algorithm solving this task also solves
the user classification problem as a by-product: one can use the computed prefer-
ence vectors as user labels. It is therefore interesting to compare the performance
of the algorithms. Put in our terminology, the algorithm in [2] has query complex-
ity ©(logn/a), which is always worse than our algorithm, whose query complexity
depends on the distance between the preference vectors to be separated.

Alon et al. [1] present an algorithm where user preference vectors are computed
approximately using similar users in a competitive way. In that algorithm, the number
of queries to a user with on similar users is O(log® n/a?), which is worse than ours.

Organization. The remainder of this paper is organized as follows. In Section 2 we
present the model and state the main results. In Section 3 we present the algorithm.
In Section 4 we prove the lower bound.

2 Formal Statements of the Problem and Results

The user classification problem is defined as follows. There are n users and m queries.
Each user has a binary answer for each query. The vector of a given user’s answers on
all queries is called that user’s preference vector. Users that have the same preference
vector are said to belong to the same type. The popularity of a given type is said to
be o for some 0 < o < 1 if an of the users belong to that type.

The input to an algorithm is the number of users n and the number of queries m
(the preference vectors are not part of the input); the output is an assignment of a label
to each user. The algorithm proceeds in rounds, where in each round, the algorithm
may ask some users to answer some queries: the algorithm may present at most one
query to each user in a round. The maximal number of queries a user is requested to
answer is the query complexity of the algorithm.

The goal of the algorithm is that the output labels will induce a good partition on
the users, while keeping the query complexity as small as possible. We now define
more precisely the notion of “good” partitions. To this end, we use the standard con-
cept of Hamming distance: Let & be an arbitrary domain, and let m > 0 be an integer.
The distance between two vectors vi,vy € 2™, denoted dist(vy,v2), is the number of
coordinates in which they differ.

Definition 1 Let V C 2™ be a set of vectors where & is some domain, and let L :
V — £ be alabeling function mapping each vector in V to a label from a set .Z. Then
L is an g-separating partition for a given real number 0 < € < 1, if for all vi,v, € V
it holds that

— dist(vy,v2) = 0 implies L(v;) = L(v7), and
— dist(vy,v2) > em implies L(v;) # L(vz).

Intuitively, we would like € to be small: vectors that differ in d coordinates for some
d < em may or may not get the same label by an €-separating partition.

A trivial 1-separating partition that labels all users by the same label always ex-
ists. Also, a perfect O-separating partition can be attained by asking each user all m
queries, allowing us to label each user by its complete users preference vector. Much
better performance is guaranteed by Algorithm D in [2], which finds, using query
complexity O([2]logn/a), a O-separating partition of the users with type popular-
ity at least ¢ (that algorithm may fail with probability n—20)).

By contrast, the main result of this paper is the following.

Theorem 1 Let n be the number of users, and let m be the number of queries. De-
note Z = m/n. Then after O(T) steps, with probability at least 1 —n=?") Algorithm

5

Sep_Any of Section 3 finds a %—sepamting partition for all users whose type popu-
larity is at least a(d), where

[Z] . logn 1 <d< /logn
a(d) = @\/@ Viogn <d < (logn)3/?
) A e (1600)32 < d < (logn)?
T d g = g
@ (logn)?* <d

Note that for a given running time, Algorithm Sep_Any provides better separation
guarantees for larger types. Figure 1 shows the running time as a function of the
separation distance for fixed popularity.

On the other hand, we have the following lower bound.

Theorem 2 Let 10% <a<l1/2and § > 3-an/2, Any algorithm which separates,
with probability at least 1 — 8, users whose preference vectors differ in d coordinates

. . 1 |logl/é
for d < an, and whose type popularity is ¢, has query complexity (a {T-‘)
The upper and lower bounds, for § = n (1>, coincide (to within a constant factor)
for d < \/logn and d > log” n: see Figure 1 for illustration.

3 Algorithms

In this section we present our main result, namely a labeling algorithm which gives
d /m-separation partition for users of large enough types. First, we present Algorithm
Sep_Close which is most effective when the distance between users is @ (/% logn).
We use this “sweet spot” for larger distances in Algorithm Sep_Any, which uses Al-
gorithm Sep_Close as a black box.

For notational convenience, our algorithms represent user partitions by the ex-
plicit user subsets rather than by labels. The labeling required by the problem speci-
fication can be done by labeling all users in a subset by the same unique label.

3.1 Algorithm Sep_Close

We now describe Algorithm Sep_Close, which is most effective for types that differ
in d = O(,/% logn) queries, where m is the number of queries and 7 is the number
of users. (We note that we later use Algorithm Sep_Close as a subroutine within
Algorithm Sep_Any, and the number of queries and users may vary there.) Recall
that we denote Z = m/n. The algorithm ensures (with high probability) that users of
any two types of a sufficiently large popularity o which are distance d apart end up
at different subsets, while users of the same type are never separated. The algorithm
is an “anytime” algorithm in the sense that it continuously refines its output partition:
at time 7\, it ensures separation of types with popularity a/(d,T) = Q (% (Z%" +
d)). In particular, types at distance d = @ (/Zlogn) are separated at time T if their

popularity is at least @ = .Q(

Algorithm 1 Sep_Close(U,I) U is a set of users and I is a set of queries
1. 7/« {U}
2: loop
3: foralluecU do
4 Ask user u to answer a randomly chosen query in /
5 end for
6 for all S .7 do
7: S+ S\ {S}UProc_Set(S,I) // Proc_Set(S,I) is a partition of S
8.
9
0:

end for
The output (at all times) is the partition .7

10: end loop

Given two user types, define their distinguishing queries to be the queries on
which their users disagree. The main idea is to try to find, for each yet-unseparated
subset of users, a distinguishing query and ask each user in the subset to answer it
(initially all users belong to the same subset).

Conceptually, the algorithm operates in two stages: first, each user answers a few
random queries so as to ensure “coverage” of the queries by users. In the second
stage, the algorithm asks users to answer “controversial” queries, namely queries
many users disagree on. Based on their answers to a query, users are split into two
subsets, then another controversial query is presented (a different one in each subset),
and so on.

Intuitively, the idea in the algorithm is that queries distinguishing between “large”
types can be detected as controversial after asking a random sample of the users to
answer them. When a query is answered by sufficiently many users, the distribution
of the answers in the sample is similar to the true distribution in the entire user pop-
ulation.

However, this idea alone is not sufficient: even if many users disagree about a
certain query, this does not necessarily mean that this query distinguishes between
two “large” types: it could be the case that users of a large type happen to agree
that the answer to that query is ‘0’, and all users of many small types think that the
answer to that query is ‘1’. Nevertheless, we show that answering a controversial
query partitions the subset into two relatively large subsets, and hence the algorithm
tries such non-distinguishing queries only a bounded number of times.

In an “anytime” algorithm, we cannot run the two conceptual stages of the algo-
rithm (namely of covering all queries by a sample of users, and of posing controver-
sial queries to all users) in serial fashion: instead, the algorithm runs these two tasks
in parallel. Consider running the algorithm for 7' query rounds: after the first T'/2
rounds, 7' /4 random queries are presented to each user, which ensures a good sample
for each query. Therefore, in the following 7' /2 steps, the algorithm can present the
T /4 most controversial queries, which ensure, with high probability, that users from
types which are large enough and far enough will be separated.

Pseudocode of the algorithm is given in Algorithm 1. It works as follows. Ini-
tially all users are in the same subset. At odd rounds each user answers one query at
random, and at even rounds, the subsets are partitioned using the routine Proc_Set,
whose pseudocode is presented in Algorithm 2. Specifically, partitioning a subset

Algorithm 2 Proc_Set(S,I) S is a set of users, I is a set of queries

1: Consider only users in S.

2: forallicIdo

3 Let Zeros(i) and Ones(i) be the number of times query i was answered ‘0’ and ‘1°, respectively.
4 Let m} = min{Zeros(i),Ones(i)}

5: end for

6: Let controversial(S) = argmax; (m;})
7: forall u € S do

8: Ask user u to answer query controversial(S).

9: end for

0: Let Sp and S; be the sets of users who answer controversial(S) with ‘0’ and ‘1°, respectively.
1: return {So,S;}.

of users is done according to their opinion on the query with the maximal minority
(maxmin), defined as follows. Given a set of users and some of their answers to a set
of queries, for each query define the majority and minority answers to be the most
and, respectively, the least popular answer to the query among the given users. The
maxmin query is the query with the largest number of users answering the minority
answer. Note that the definition of the maximal minority query ignores the size of the
majorities and the total number of users answering a query.

The output of the algorithm, for each user at any time, is the subset it belongs
to. Note that even if two users answer differently on a query at Step 4 in Sep_Close
they still might end up in the same subset if this query is not “controversial” enough
and therefore never presented by routine Proc_Set. On the other hand, all users in a
subset have answered exactly the same set of controversial queries, and they agreed
on all of them.

We now analyze Algorithm 1. The following theorem shows the main property
of the algorithm: At time T the algorithm labels differently users of types which are
sufficiently big and distinct.

Theorem 3 Let D = O(logn). At any time T > 0 users of the same type are in the

same subset. Furthermore, with probability 1 —n=2W) any two types at distance d >

D from each other and with popularity oc = (ZlTogn + %) are in different subsets.

Informally, Theorem 3 says that as time progresses, the algorithm distinguishes be-
tween distinct types of smaller and smaller popularity.
Before we prove Theorem 3, we state a useful corollary.

Corollary 1 At any time T > 0 users of the same type are in the same subset. Fur-
thermore, with probability 1 —n=2W), for 7 = O(logn) and aT = Q (1 + \/Zlogn),
the algorithm separates any two types of popularity o at distance d > /Zlogn.
Proof The corollary follows directly from Theorem 3 with D = [\/Zlogn 1 . O

We now commence with the proof of Theorem 3. Fix T and D, and let o¢ =

c (Z})‘)%" + ?), for a constant ¢ we define later. In our proofs, we focus on any two
a-types, denoted A and B henceforth. We abuse notation slightly and use A (or B)

to refer both to the set of users and to their common preference vector. The theorem
follows from Lemmas 1 and 3.
First we show the easy direction of Theorem 3.

Lemma 1 Users of the same type are always in the same subset.

Proof All users start at the same set and are separated only if they disagree on some
query. As all users of a specific type agree on all queries, they are never separated by
Proc_Set. O

We now turn to show separation. We will use the following notation. At any
step of the algorithm, for each query i and subset S of users, mls is the number
of users in § who answered i with minority answer in Step 4 of Algorithm 1 (the
random sampling step). Further, let opinionS(i) and opinion] (i) be the total num-
ber of users in S whose ith coordinate in the preference vector is O and 1, respec-
tively (these numbers are the true distribution of opinions in the population of S). Let
M? = min{opiniong (i), opinion} (i) }. (Note that M5 # my, because nz; is the result of
a random sample of the users in S, while Mis is the true value over the complete user
population in S.)

Our strategy to prove the theorem is as follows. Suppose users of A and B belong
to the same subset S at time 7. If enough users answer each query, then for at least
one distinguishing query i*, m; is large. If a non-distinguishing query j is chosen at
Step 6 of Proc_Set, then m; > m;+ which should imply that M is large, which in turn
ensures that many users are removed from § at Step 10 of Proc_Set. As this removal
repeats over and over, after some number of rounds, users of types A and B cannot
belong to the same subset.

The analysis is complicated by the fact that the samples are quite small, so we
cannot ensure high probability that a particular distinguishing query will be selected;
similarly, we cannot ensure that a query with a large minority in the sample indeed
reflects a large minority in the actual population. However, we can prove that the
desired events occur, if we try sufficiently many times.

The following lemma shows that at time 7'/2, m; is large for at least one distin-
guishing query i.

Lemma 2 Suppose two types with popularity & are in the same subset S at time
t > T /2. Then with probability 1 — n=2W) there exists a distinguishing query i* such
that m}. > %% (1 —¢€) for any constant 0 < € < 1.

Proof Fix a subset S containing two ¢-types A and B at time 7. Let a;, for 1 <i <mbe
random variables representing the total number of users of type A that have answered
query i by time ¢. Similarly, let b; be the total number of users of type B that answered
query i by time ¢. Let I denote the set of d queries distinguishing A from B. Fori € I,
if both @; and b; are larger than $2(1 — &) then m; > 5% (1 —€). We show that with
high probability there is at least one such query.

Consider a;. There are at least on users of type A in S, and each of these users
has answered #/2 randomly chosen queries by time 7. There are m = Zn queries in
all, and hence a; is a binomial random variable with at least % trials and success

9

probability -+-. Using Chernoff bound and the assumption that & = ¢ (le;)]%" + %),

we obtain that for any i

at at €
P(i A=) _ae
ra<zz(£) <exp< 57 2>

(logn 682)
sexp{~p %)

Similarly, for any i the probability that b; < $% (1 — €) is less than exp (710% . %) .
The choices made by players in type A are independent from the choices made by
players of type B hence

ot ot ot
P<i>—1— >>P(<>—1— b X-)
r(m _2Z(€))>Pr al_zz(€) _ZZ(€)

logn ceg? 2
> (1‘6"1’ (‘5'8»

logn cé&?
>1-2 — —] .
exp (en e)
For any D < Sclizz logn and d > D we obtain that the probability m; < $% (1 —€)

for all queries i € [is

Pr <ﬂ(m,»<g‘zt(1—e))> =TI(1-Pe(mi= 2 (1-9)))

icl

Hence for D = O(logn) the lemma holds for any constant ¢ > % : % . O

Lemma 2 gives a bound on mf whenever the algorithm chooses query j at Step 6 in
Proc_Set. The next lemma gives bound on M; whenever j is a non-distinguishing
query, and hence a lower bound on the number of users removed from the subset after

each user in S answer this query.

Lemma 3 Let t > T /2 and types A and B be a-types at distance D in the same
subset S. If after D invocations of Step 10 in Proc_Set,A and B are in the same
subset S, then |S| — |S'| > an(1 — €)? with probability at least 1 —n=?") for any
positive constant € < 1/2.

Proof Let J be the D queries all users of type A answer at Step 10 of Proc_Set
at the time interval [z, +2D] (J is well defined by Lemma 1). Denote S; as the
input to Proc_Set whenever query j is chosen for users of type A at Step 6. We
show that if after D invocations of Step 10 of Proc_Set, subset S’ contains both

10

type A and type B users, then with probability 1 — 202 there exists Jj* € J such
that Mf;’* > an(1 — €)? and since |§'| < max{MfJ*,\S| —Mf;f*} and by definition
S
M <|Sj|/2 <S]/2, the lemma follows.
Let ¢; be the time when query j is chosen for users of type A. By Lemma 2, with

probability 1 —n~2()_at any time t > T /2 there exists a query i* between A, B such
that my > §% (1 —€), and hence whenever a non-distinguishing query j is chosen at

Step60fProc Set,m; > 5 k] = (1 —¢).

Next we bound the probability that for all j € J we have m; Si Z (1 — &) when
Mj’ <an(l—¢g)%

For any j € J, let X; be a random variable defined as follows: Consider the exe-
cution of Proc_Set on §; and let

) Zeros(j) If opinion(j) < opinion; ()
~ | Ones(j) Otherwise '

Note that X; is a binomial random variable with %’|S ;| trials while each trial is a
S
J

. . . L S tiM;
success if a user chgse query j and his opinion is M j’ . Hence E[X;] = ’272 and by
linearity of expectation, we have

Y X, |p) <an(1—£)21 = ZE[‘M I < an(1—¢)?

jeJ jeJ

1—8 Z] (1)

jeJ
aD(t+D/2)

= T(l—e)z .

Now, if n; denotes the total number of users in §; who answer query j € J then
m; = min{X;,n; — X;} and since Pr(m; > x) = Pr(x < X; < nj —x) < Pr(X; > x)
for all 0 <x < n;/2 we have that the probability m; > at’ = (1 —¢) for all j whenever
M <an(l—e)is

Pr <m (mj > g(l&‘))) < Pr (Zml > W(le))

jeJ jel

(ZX > ”;D/Z) (1_s)> .

jeJ

To follow standard notation, let us define

. def oD(t+D/2)

1—
27 (1—¢€)
wEE|Y XM < an(l—e)?
=
§L
u

Note that § > 157 > & by Eq. (1). Therefore we obtain that

S H

S e
Pr X'ZzM-’<Oml—€2 < | ——F
(;,f M ()> ((1+5)“+5>>

Hite)

The first inequality follows from the Chernoff bound; the second inequality holds
since z > 0 and 0 < € < §. The third inequality is true since In(1 +x) > x — % for

0 < x < 1, and the last one follows from the assumption that ot = ¢ (Zg)f" + ?) In

summary, the probability that the algorithm chooses D non-distinguishing queries j €
J for which Mf'i < an(1 —¢€)? is at most 27~ and hence |S| — || > an(1 —€)?
with probability at least 1 —2n~ 2, O

Using Lemmas 1 and 3 we now present the proof of Theorem 3.

Proof of Theorem 3 The claim that users of the same type are in the same subset
follows directly from Lemma 1. To show separation, consider a type A, and let B be
a type of popularity «, such that the vectors of A and B differ in at least D queries.
If a query distinguishing A from B is selected at Step 6 of Proc_Set by time 7T,
the types are separated and we are done. Otherwise, suppose for contradiction that
users of type A and B are not separated by time 7', and let S(¢) denote their common
subset at any time r < T. By Lemma 3, with high probability we have for; =T /2 +
2D, that |S(t;)| < |S(T/2)| — (1 — €*)an. Similarly, applying Lemma 3 inductively,

12

Algorithm 3 Sep_Any

1: Foreach 0 < < [loglogn], let I; be a randomly selected subset of the queries of size |I;| = m2~".
2: for all 0 <! < [loglogn]| do

3: Run an independent instance of Sep_Close on J;. For / > 0 instance [is scheduled

2l/2

2):iogllog n9if2
fraction of the rounds; instance 0 is scheduled half of the rounds.

4: Let S7/ € .#/ be the subset that includes user p by instance /.

5: end for

6: The global output by user p is S” = N[0 joglogn 7' -

we have (w.h.p.) that for k = 1,2,... L%J, it holds that at time # = T /2 + 2kD,
1S(t)| < |S(T/2)| — k(1 — €2)oen. Therefore, at time T > T /2 +2D- 1/, we have
that [S(T')| < 0, contradiction. O

3.2 Algorithm Sep_Any

The query complexity of Algorithm Sep_Close is linearly dependent on the sepa-
ration distance d, and thus it is useful only for small values of d. In this section we
extend Algorithm Sep_Close to an algorithm which is useful for larger separation
distances as well.

For simplicity of presentation and to reduce the number of parameters, we present
the results in this section for the case m = @ (n), i.e., the number of queries is roughly
equal to the number of users. Extension to the general case is straightforward: If n =
©(m), the algorithm works essentially as presented. If n >> m, add (n —m) “dummy
queries” on which all users answer ‘0, say; and if n < m, we can replicate each user
m/n times, blowing up the number of queries each user has to answer by a factor of

The idea in Algorithm Sep_Any is as follows (see pseudocode in Algorithm 3). If
the separation distance d was known to satisfy logn < d < log?n, then we could apply

Algorithm Sep_Close on a random subset of m 03" queries. It is not hard to see that

after Q2 (:%) rounds, we get a separation between o-types at distance d from each

other, because with high probability, ® (logn) distinguishing queries are included in
the randomly chosen queries, and separation follows from Corollary 1. If d > log® n,
then we can use the version that works for d = log2 n, because, as we show later, at
d = log® n we already hit the lower bound. Since d is unknown, we apply algorithm
Sep_Close loglogn times: At instance [for I € [1,loglogn], a random subset of

|| &l ! queries is used. We run these loglogr instances in parallel, with different
speeds of execution: instance / runs at a speed faster by a factor of v/2 form the
speed of instance / — 1. An additional instance, which looks at all queries, is used for
separation distance smaller than logn.

In Theorem 1 we summarize the performance of Algorithm Sep_Any. For con-
venience, we reproduce the theorem below. As explained above, we prove it for the
case m = 0O(n).

Theorem 1 Let n be the number of users, and let m be the number of queries. De-
note Z = m/n. Then after O(T) steps, with probability at least 1 —n=?") Algorithm

13

Sep_Any of Section 3 finds a %—sepamting partition for all users whose type popu-
larity is at least a(d), where

2. logn <d < logn
o(d) = E . ‘(l/olong);l \/log <d < (logn)*?
e (logn)3/? <d < (logn)?

@ (logn)? <d
Proof of Theorem 1 Consider Algorithm Sep_Any at some time 7. Let p and g be
any two users, and let
2
4 1}) .

1 1
a=0 (Tmin{osn—&—\/logn,

For any / € [0,loglogn], let T; be the number of steps taken by instance /, and let S/
and S be the subsets to which users p and g, respectively, belong at instance /. Let
the output of the algorithm for users p and g be S” and S? respectively.

If users p and ¢ belong to the same type, then S?! = S for every [by Theorem
3 and hence S” = §7 at all times. So suppose p and g belong to two distinct types of
popularity o each. We proceed by case analysis, according to the distance d between
the types of p and q.

We proceed by case analysis. Consider first the case where logn < d < log®n.

Letl* = [log (lognﬂ .Then |Ij| =m2~" = w . Let m;+ be the number of queries

in this subset on which p and g answer differently By the random choice of [+,
my+« is a hypergeometric random variable with mlofn selections from population of
m queries, of which d distinguish p from ¢g. Therefore (see [9]), we can bound the
tail probability of m;+ using bounds for a binomial random variable with m Og" trials
and success probability %. It follows that with probability 1 — (1) the subset e

includes ® (logn) queries on which p and ¢ answer differently. At time 7', instance [+

o %2 - Tf) L (mﬂ) .
has executed Tj+ = Tizz:j"gl‘)g” = (0] (logn steps. As aTp = Q 7) it follows

from Corollary 1 that p ¢ $%*" with high probability, and hence p ¢ S9.
Consider now the case d > log? n. Focus on iteration [loglogn]. Similarly to the
previous case, Ijogl0gn] inCludes at least O (logn) queries on which p and ¢ answer

differently, and aTjiog108n] > €2 (1 + 1?") =Q(1). By Corollary 1, p ¢ §4»[loglogn]

with high probability, and hence p ¢ S9.
If d < logn, then at time T, instance 0 has executed Tp = T /2 steps and hence

aly = Q (lo% —i-\/logn). Therefore by Theorem 3, for d’ = min{d,/logn}, we
have that p ¢ S99 w.h.p., implying p ¢ §9. O

4 A Lower Bound

In this section we prove Theorem 2, namely a lower bound on the query complexity of
the user classification problem. For convenience, we reproduce the statement below.
The proof of Theorem 2 follows directly from Lemmas 4, 5 and Lemma 6.

14

Theorem 2 Let 10% <a<1/2and § > 37%/2. Any algorithm which separates,
with probability at least 1 — 8, users whose preference vectors differ in d coordinates

for d < an, and whose type popularity is ¢, has query complexity Q (é {%—‘)

To prove the theorem, we use the following variant of Yao’s minimax principle
[17] which is useful for anytime algorithms. (Yao’s principle is usually stated for
running time: we apply it to success probability.)

Lemma 4 Consider a problem with input domain 2 and let T > 0. If there exists
a constant 8, and probability distribution p over 9, such that for any T-time deter-
ministic algorithm A with input I € 9 drawn randomly according to p it holds that
Pr,[A solves I| < 1 — 6, then for any T-time randomized algorithm R there exists an
instance Ig € 9 with Pr[R solves Ig] < 1 — 8, where the latter probability is over the
coin tosses of R.

Proof Define an indicator random variable x4 which takes the value 1 if algorithm
A succeeds to solve the problem and 0 otherwise. Clearly, E,[xa] = Pr,[A solves I].
Given the results of coin tosses, a T-time randomized algorithm is a 7T-time deter-
ministic algorithm, and therefore, denoting by ¢ the distribution over coin tosses, we
have that

=Y Pr,[l|E,[xr | instance I]

1e9

= Z Pr,[1] Z Pr,[T]E[xr | instance /, tosses 7]
€9 tosses T

= Y Prylt]) Pr,[I]E[xx | instance I, tosses 1]
tosses T €9

< Y Prlr)(1-9)
tosses T

=1-4,

and hence for each T-time randomized algorithm R there exists an instance Iz € ¥
such that Pry[R solves Ig] < 1 —4. O

As in Section 3.2, we assume for convenience that n is both the number of users
and queries. First we show the bound holds for cases where d is small compared to
log1/d.

Lemma 5 Let a, 8 be as in Theorem 2 and suppose that d < (log; 1/8)/2. Let A be
a deterministic algorithm for the classification problem with query complexity T <
%. There exists a distribution over the instances of A such that the probability

that A separates two o-types at distance d is less than 1 — d.

Proof Assume for simplicity that 1/c¢ is an integer. In the instances we construct
there is a query set that consists of three disjoint subsets denoted X, Y and W, where
|X|=d,|Y|=1/a—2and |W|=n—|X|—|Y|. The users are partitioned in 1/ ¢t types
with popularity o each. The types, denoted as C1,(2,C3, ... ,Cy /g, are defined by the
following preference vectors (see Figure 2).

d é*Z nfdfé+2
AN

C 1---100---00 0---0
G 0---000---00 0---0
G = 0---010---00 0---0

1

1
Cijg 0---000---01 0---0
e ———
X Y w

Fig. 2 Typical example of preference vector for Lemma 5

— Users of type C; answer ‘1’ to queries in X and ‘0’ to all other queries.

— Users of type C, answer ‘0’ to all queries.

- LetY = {y37y4,...,y1/a}. For i > 2, users of type C; answer ‘1’ to y; and ‘0’ to
all other queries.

Finally, the probability distribution over the instances is defined by randomly permut-
ing the identities of users and of queries.

In order to bound the probability that an arbitrary deterministic algorithm A sep-
arates users of type C; from users of type C,, we may assume that A knows in ad-
vance the answer of every user to all queries in Y. Clearly, the probability of success
does not decrease due to this extra knowledge. As all answers of users in the types
{C3,...,Cy)4} are defined by their answers to queries in Y, we henceforth focus on
answers by users of types C| and C, only, and ignore all other users and their answers.

Consider the prefixes of executions of algorithm A in which users from types C;
answer only ‘0’. Clearly, so long as these answers are only ‘0’, the algorithm cannot
separate users of type C; from users of type C, due to the random permutation of the
users. Moreover, since all queries are answered in the same way (namely, ‘0’), any
deterministic algorithm can be represented, during that prefix, by a fixed list of user-
query index pairs: since the answers are fixed, they have no effect on the unfolding
of the algorithm.

We now bound the probability that the algorithm gets only ‘0’ answers, fix any
users permutation and assume that the queries are ordered by a given permutation ¢
(the conditional probability is over the random permutation of the gueries).

Let X(0) be the d queries distinguishing C; from C, (namely, X (o) is the set
of queries in X under o). Let w, be the number of answers to query g, and define
Wx (o) = Lqex (o) Wq- The probability that a fixed list of user-query pairs gets ‘0" an-
swers by users of C; and C; for all queries is at least

"o ok
Prlall 0] > —_— 2
r[all answers are 0] > kIJU ran—k (2)
because the kth user has probability at least 2%[""’_",{ of being of type C, and answer ‘0’

at the query, and there are wy) responses to these queries.

LetJ = { jEXUW | wji < 0‘"} Intuitively, J is the set of queries (without Y') that
received “not too many” answers. Note that J is large: at time 7, the total number of
answers is at most 2onT’, and the number of queries for which w; > g—:; is at most

4dT < log* 1/ 8 < n/4 by assumption on 7. It therefore follows that
|| > |XUW|—4dT >n/2. 3)

Now, if X (o) C J, then Wx(o) < %, so in that case we have, by Eq. (2) and Eq. (3)

Prlall answers are 0 | X (o) C J] > H

an \"O @
2an WX()

> 37"

Considering the case of X (o) C J, since the total number of query permutations is

(”7]{1‘”2) < (%), we may conclude from Eq. (4) that

Pr[all answers are 0] = Z (Pr[permutation ois chosen}z - Pr[all answers are O | 0'])
(o) (e

1
> @ | Z Pr(all answers are 0 | X(0) C J]
1

Y

; 370)
[o
5)

Eq. (5) means that in order to prove an upper bound on the probability of success of
the algorithm, it is sufficient to prove a lower bound on }.s.x(5)cs 37"X(), This can
be done using Lagrange multipliers as follows. Assume without loss of generality,

thatJ = {1,2,...,|J|}, and define (p(wl,...,wm) ZGXCJZ% "X(o), We seek a lower
bound on ¢ subject to the constraint that }.;c;w; < 2onT. Since ¢ is monotone
decreasing in each of its variables, the minimum is obtained on the boundary, where
Y jcswj = 20nT. In fact, the minimum is obtained when w; = 2anT /|J| forall j € J,
and therefore

Prlall answers are 0] > Z 3‘WX<6>

)

o:X
) 72d(an

v

d)
<”/2—d>d3log3(1/6>/2

V

n—d
3~ log(1/6)/2—d

> 0.

\Y]

17

The first inequality follows from Eq. (5); the second inequality follows from the La-
grange optimization described above and Eq. (3). The remaining inequalities follow
from the assumptions on 7', d and & together with Eq. (3). O

Next we show that the bound holds when d is large compared to log1/3. The
bound is proved by an instance where the Hamming distance between any two types
is greater than d, and showing that a user answering less than 1/ queries cannot be
correctly associated with its type with probability greater than half.

Lemma 6 Let 1/n < a < 1/2, let d < an, and let A be an algorithm which com-
putes, with probability at least 1/2, a d /n-separating partition for users whose type
popularity is at least a.. Then A has query complexity Q(1/a).

Proof The proof uses a simple symmetry argument. Consider a case where users are
partitioned to 1/0 symmetric types, where users answer ‘0’ to all queries, except that
each type has a distinct set of d queries to which it answers ‘1’. Since the Hamming
distance between any two types is 2d any d /n-separating algorithm in fact identifies
the user types precisely. Consider algorithms that actually know all 1/ preference
vectors of the types. Suppose that a user of a random type arrives. Clearly, the prob-
ability that any deterministic algorithm will identify that user’s type correctly in less
than 1/2a queries is less than 1/2, and therefore the result follows from Lemma 4.
O

It is interesting to note that Lemma 5 argues about the total work done until the
first user from the types in question hits a distinguishing query, while Lemma 6 argues
about the number of queries the last user has to answer until his type is determined.

References

1. Alon N, Awerbuch B, Azar Y, Patt-Shamir B (2006) Tell me who I am: an inter-
active recommendation system. In: Proc. 18th Ann. ACM Symp. on Parallelism
in Algorithms and Architectures (SPAA), pp 1-10

2. Awerbuch B, Azar Y, Lotker Z, Patt-Shamir B, Tuttle M (2005) Collaborate with
strangers to find own preferences. In: Proc. 17th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pp 263-269

3. Awerbuch B, Patt-Shamir B, Peleg D, Tuttle M (2005) Improved recommenda-
tion systems. In: Proc. 16th Ann. ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp 1174-1183

4. AzarY, Fiat A, Karlin A, McSherry F, Saia J (2001) Spectral analysis of data. In:
Proc. 33rd ACM Symp. on Theory of Computing (STOC), pp 619-626

5. Drineas P, Kerenidis I, Raghavan P (2002) Competitive recommendation sys-
tems. In: Proc. 34th ACM Symp. on Theory of Computing (STOC), pp 82-90

6. Facebook (2004) www.facebook.com

7. Freeman LC (2004) The Development of Social Network Analysis: A Study in
the Sociology of Science. Empirical Press

8. Goldberg K, Roeder T, Gupta D, , Perkins C (2001) Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval Journal 4(2):133-151

10.

11.

12.
13.

14.

15.

16.

17.

Hoeffding W (1963) Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association 58(301):13-30

Kleinberg J, Sandler M (2003) Convergent algorithms for collaborative filtering.
In: Proc. 4th ACM Conf. on Electronic Commerce (EC), pp 1-10

Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1998) Recommen-
dation systems: A probabilistic analysis. In: Proc. 39th IEEE Symp.
on Foundations of Computer Science (FOCS), pp 664-673, URL cite-
seer.nj.nec.com/kumar98recommendation.html

MySpace (2003) www.myspace . com

Papadimitriou CH, Raghavan P, Tamaki H, Vempala S (1998) Latent semantic
indexing: A probabilistic analysis. In: Proc. 17th ACM Symp. on Principles of
Database Systems (PODS), ACM Press, pp 159-168

Rashid AM, Albert I, Cosley D, Lam SK, McNee SM, Konstan JA, Riedl J
(2002) Getting to know you: learning new user preferences in recommender
systems. In: TUI *02: Proceedings of the 7th international conference on In-
telligent user interfaces, ACM, New York, NY, USA, pp 127-134, DOI
http://doi.acm.org/10.1145/502716.502737

Sarwar B, Karypis G, Konstan J, Riedl J (2000) Analysis of recommendation
algorithms for e-commerce. In: Proc. 2nd ACM Conf. on Electronic Commerce
(EC), ACM Press, pp 158-167, DOI http://doi.acm.org/10.1145/352871.352887
Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applica-
tions. Cambridge University Press

Yao AC (1977) Probabilistic computations: toward a unified measure of com-
plexity. In: Proc. 17th IEEE Symp. on Foundations of Computer Science (FOCS),
pp 222-227

