
Yishay Mansour

Department of Computer Science

Tel-Aviv University

mansour@math. tau. ac. 11

Abstract

Many-to-One Packet Routing on Grids

EXTENDED ABSTRACT

We study the general many-to-one packet routing

problem in a grid-topology network, where the num-

ber of packets destined at a single node may be ar-

bitrary (in contrast to the permutation and h – h

routing models), and the semantics of the packets is

unknown (thus disallowing packet combining). The

worst case time complexity of the problem may be

very high, due to the possible existence of “hot spots”

in the network (regions with small boundary, which

contain destinations of many packets). We there-

fore aim at algorithms that route all packets at the

best time possible for each instance (rather than al-

gorithms that do as well as the worst case on all

instances). We present a few results for this prob-

lem. First, we give an algorithm that finds a routing

schedule, such that the time to complete the rout-

ing is a constant factor away from optimal, and only

0(1) buffer space is needed at each node. The al-

gorithm runs in deterministic polynomial time, but

it is centralized. Our second main result is a dis-

tributed on-line algorithm, which is more practically

appealing. Given an instance with maximal source-

destination distance D, this algorithm finds a sched-

ule whose time complexity is at most O(log D) factor

away from the best possible for that instance, using

O(log D) buffer space at each node. In addition, we

present an algorithm which ensures good average de-

livery time for the sets of packets with similar source-

destination distance.

permission 10copy without fee all or part of this material is
granted provided that the copies are not made or dktributed for
direct commercial advanta$e, the ACM copyright notice and the
title of the pubfiiation and M date appear, and notice is given
that copym ISby permission of the Association of Computing
Machinery. o cop otfwrwis~, or to republish, requires

ua fee ancf/or speo c permissmn.
STOC’ 95, Las V as, Nevada, USA

Y01995 ACM O-89 91-718-9/95/0005..$3.50

Boaz Patt-Shamir

College of Computer Science

Northeastern University

boazOccs. neu. edu

1 Introduction

It is widely believed that due to physical considera-

tions, the ultimate model for massively parallel com-

puters is a (two- or three-dimensional) grid of pro-

cessing elements (see, for example, surveys and ar-

guments in [3, 4, 15]). Packet routing is one of the

critical tasks that affect the performance of parallel

computers dramatically. The focus of most research

in packet routing on grids has been on permutation

rouhng, where each node is the source and the desti-

nation of one packet. For a fixed dimensional grid, for

example, it is known how to route any permutation

deterministically with constant-size buffers in nearly

diameter time. Another popular variant of grid rout-

ing is the h – h problem, where each of the processors

is the source, and the destination, of at most h pack-

ets. (An extensive survey of routing on grids can be

found in [9].)

The general problem, where the number of packets

destined at the same node is unrestricted, is called

many-to- one routing. Some applications deal with

the naturally arising many-to-one instances by allow-

ing the routing algorithm to “combine” packets head-

ing for the same destination. However, packet com-

bining can be done only in the special case when the

semantics of packet contents is known to the routing

algorithm, and when this semantics allows for efficient

combining. In [9], Leighton comments regarding the

general case that “... not much is known about opti-

mal on-line algorithms for many-to-one packet rout-

ing on arrays ~.e., grids], and much of what is known

is negative.” Our paper attempts to remedy this state

of affairs.

The pessimistic view of many-to-one routing is

based on the observation that there are instances for

which all routing schedules have high time complex-

ity. More specifically, there may be a region (tra-

ditionally called a hot spot) with a small boundary

such that many packets are destined to it, resulting

258

in an unavoidable bottleneck. If worst-case perfor-

mance is the objective to be optimized by routing al-

gorithms, then general many-to-one-routing is hope-

less. In this paper we take a more positive viewpoint

of the many-to-one routing problem. Instead of drop-

ping the problem altogether because of horrible worst

cases, we suggest to strive to get the best achievable

performance for each given routing instance. Intu-

itively, we would like to get flexible algorithms, which

perform well on “easy” instances and not too badly

on “hard” instances, or in general, algorithms that

always perform close to the best possible. We remark

that in the same spirit, there are several permutation

routing algorithms (e. g., [13, 14]) whose time com-

plexity depend on the largest source-destination dis-

tance in the given instance, rather than on the largest

possible distance, i.e., the diameter of the network.

Our Results. To evaluate the performance of a

many-to-one routing algorithm on a given instance,

one has not only to upper-bound the complexity of

the schedules produced by the algorithm, but also to

lower-bound the inherent complexity of the instance

(i.e., what is the best complexity any schedule can

get for the given instance). Loosely speaking, there

are two basic techniques to lower bound the inherent

complexity of a routing instance: length and width.

The length argument, which we call the dwtance lower

bound, simply says that the time to complete delivery

of all packets can never be smaller than the largest

source-destination dist ante of any packet in the given

instance. The width argument, which we call the

bandwtdth lower bound, says that if n packets need

to enter a region which has z incoming links, then

any schedule takes at least n/z time units to deliver

all packets. In many-to-one routing, hot spots induce

non-trivial bandwidth lower bounds.

In this paper we show that these trivial lower

bounds are asymptotically tight, and present efficient

algorithms which are nearly optimal. Intuitively, our

results prove that “nearly full pipelining” is always

possible. Specifically, given a many-to-one routing

instance I, let D1 denote its distance lower bound,

and let WI denote its bandwidth lower bound. Our

first major result is the following asymptotic charac-

terization of the many-to-one routing problem.

Theorem 1.1 For any instance I of the many-to-

one routing problem, there exists a schedule that deliv-

ers all packets in @(DI + Wr) time units, using 0(1)

buffer space at each node, Moreover, such a schedule

can be found in deterministic polynomial time.

A key ingredient in the proof of Theorem 1.1 is the

result of Leighton et al, [10, 11], which shows that for

a grven set of paths with path lengths O(d) and such

that at most O(c) paths cross each edge, there is a

schedule that delivers all packets in O(c + d) time,

using constant-size buffers. Our main task is finding a

set of paths with small d and c, which we can feed

into the algorithm of [1 1].

The algorithm used in proving Theorem 1,1 is cen-

tralized, and thus it is useful mainly in cases where

the complete routing instance is known in advance.

Distributed routing algorithms are more desirable in

practice. Call a routing algorithm local if actions

taken at a node depend only on the previous local

state and incoming messages. Our second major re-

sult is a nearly-optimal local algorithm.

Theorem 1.2 There exists a local algorithm for

the many-to-one routing probiem, such that for any

anstance I, all packets are delivered in O(D1 +

WI log DI) time units, using O(log DI) buffer space

at each node.

The algorithms described in the proofs of Theorems

1.1 and 1.2 guarantee that the last packet is delivered

relatively quickly. Using a third algorithm, we can

also guarantee good average delivery time on each in-

stance, where the average is taken over sets of packets

with similar source-destination distance. (Note the

distinction from good expected behavior on a random

instance.) Specifically, we have the following result.

Theorem 1.3 Given a many-to-one routing tn-

stance I, let PI(d) denote the set of packets

whose source-destination distance is in the interval

[21h d] , 21@ dj +1). Then there exists a local algo-

rithm such that for all d < D1, the vackets in

PI(d) are delivered in average time which is at most

O(log dlog DI) factor away from the best possible, us-

ing O(WI log DI) buffer space at each node.

Remark. After the completion of this work, the ex-

istence of a closely related paper by auf der Heide et

al. [2] has been brought to our attention. In [2], the

token distribution problem is studied; the token dis-

tribution problem [12] is the following: starting with

tokens arbitrarily placed at nodes in a given network,

find a schedule (where at most one token may cross

each link at a step), such that by the end of the sched-

ule, the tokens are evenly distributed among the net-

work nodes. For this problem, it is proven in [2] that

the bandwidth lower bound is attainable for any in-

stance in any network. In addition, [2] give a local

algorithm for token distribution on grids, whose time

complexity for any instance is a logarithmic factor

times the best possible. In the context of many-to-

one packet routing [12], one can combine these algo-

259

rithms with a permutation routing algorithm to ob-

tain routing schedules with the same time complexity

guaranteed in this paper by Theorems 1.1 and 1.2.

Hoppe and Tardos [7] study a generalization of the

token distribution problem. Combining the results [2]

and of [7], it is easy to derive the following theorem

for general graphs (see Section 3.2).

Theorem 1.4 Assume that any permutation can be

routed on a given graph G in time Tn using Bn > 1

bufler space at each node. Then for any instance I

of the many-to-one routing problem on G there exists

a schedule that delivers all packets in WI + Tn time

untts, using Bn bufler space at each node.

The remainder of this paper is organized as fol-

lows. In Section 2 we formalize the problem, state

the immediate lower bound, and make a preliminary

simplification regarding the size of the graph. In Sec-

tion 3 we sketch the proof of Theorem 1.1 and discuss

Theorem 1.4. In Section 4 we prove Theorem 1.2. In

Section 5 we prove Theorem 1.3, using a variant of

the algorithm used in the proof of Theorem 1.2.

2 Preliminaries

Problem Statement. We are given a graph G =

(V, E), where nodes model processors, and edges

model bidirectional communication links. G is as-

sumed to be a k-dimensional grid for some fixed con-

stant k. We use the standard definitions of grid, sub-

grid and side-iength of a given dimension.

A routang instance is defined by a set of packets

P, and two functions source and dest, which map

P to V. The source of a packet p is source(p), and

its destination is dest (p). We assume that source is

injective, i.e., each node is the source of at most one

packet. There is no restriction on the destination

mapping dest.

The packet routing problem is to find a schedule for

any given routing instance. A schedule defines an ad-

missible way to route all packets from their source to

their destination. Intuitively, the admissibility y con-

ditions below state that executions progress in syn-

chronous steps, where packets start at their sources

and arrive at their destinations by crossing links, sub-

ject to the constraint that at most one packet may

cross each link in each direction at each step. For-

mally, a schedule is a function loc that maps packets

and non-negative integers (denoting time) to nodes,

such that the following conditions are satisfied.

(1) For each p, loc(p, O) = source(p), and there exists

some TP, such that loc(p, TP) = dest (p).

(2)

(3)

The

For all p and t, if loc(p, t) # loc(p, t + 1), then

(loc(p, t), IOC(P, t + 1)) is an edge of G.

For all p and t,if loc(p, t) # loc(p, t + 1), then

there is no p’ # p such that loc(p’, t) = IOC(P, t)

and loc(p’, t + 1)= loc(p, t + 1).

delivery time of a packet p is the minimum T such

that IOC(P, ?) = dest (~). The maximal delivery time

over all packets is the time complexity of the sched-

ule, denoted Tloc. The ioad of node v at time t is

Lo(f) = I {p : loc(p, t) = v, dest(p) + v} 1, i.e., L.(t)

is the number of packets still in transit stored in

v at time t. The space complexity of a schedule is

maxv,~(LV (t)).

More Definitions and Notation. Throughout

this paper, we use the following concepts. Let H =

(VH, EH) be any subgraph of G, and let I be a routing

instance.

●

●

●

●

●

●

H is a cube if it is a grid with equal side-lengths.

V(H) = lV~l, the number of nodes in H.

Z(H) = l{(v,u)EE:vcV~,u@V~}l, the

number of edges of G with exactly one endpoint

in H.

N1(H) = I {p : dest(p) c V~} 1, the number of

packets of I with destination in H.

D1 = maxP~p (dist(source(p), dest (p))), the

maximal source-destination distance of packets

in I.

WI = max~(iV1(H)/Z(H)), where H ranges

over all subgraphs” of G.

(We shall omit subscripts when the context is clear.)

A Preliminary Simplification. We make the sim-

plifying assumption that given a routing instance I,

DI is known. It is not hard to see that under this con-

dition, we may assume w.1.o.g. that the given grid G

is partitioned into cubes of side-length D, such that

all packets destined at a cube are stored in that cube.

This assumption amounts to a transformation, which

can be done by a local algorithm at the cost of a

constant factor blowup in the time complexity of the

schedule.

In the remainder of thw paper, toe therefore con-

sider many-to-one routing instances on a single lc-

dimensiona! cube G of side-length D (whose size is

(D+l)x... x(D+1)).

We conclude this section with the basic lower

bound on the time complexity of schedules.

Theorem 2.1 Any schedule loc for a routing in-

stance I satisfies Tloc = $2(DI + WI).

260

3 An Optimal Offline Algo-

rithm

In this section we present an algorithm that soIves

the many-to-one routing problem on a cube G with

side-length D. For each routing instance, the time

complexity of the schedule produced by the algorithm

is O(D + W), and its space complexity is O(l). The

algorithm is centralized, and it runs in polynomial

deterministic time, thus proving Theorem 1.1. Notice

that Theorem 1.1, in conjunction with Theorem 2.1,

shows that the algorithm is optimal, up to constant

factors.

For ease of exposition, we prove the result for a two-

dimensional grid; the extension to arbitrary fixed di-

mension is straightforward (albeit notationally cum-

bersome).

3.1 The Algorithm

Overview. The algorithm finds a two-stage schedule

in three steps as follows.

%..
\\\.%%\\
\ \ __~A:-K ________

\~

\ “:7; “ ‘\~ (0,0)\ (O,l)=(o,lr (0,0)’

‘r .-
‘i

g ~ ~1+.) .–-—-----:._.-
I‘ (1,0,.(,,0)’ “ ‘ .(,,,p,

‘1
(1,1).(1 1)’ (l,O)’.(1,0)’., I

I \
~[__ _:%_. {z...-.I _ _ ,~:,,,~

~,

(0,0), ,,,\
l’, \

(O,ly’=(o.l),,, – (0,0)’

-.. _

‘“ 4
‘/-----. ----- ‘-,. ,,._ ‘—--—~. .— \--.=._———— ---

“ -.F=— ----
-+..

G, G, t

Figure 1: The j70w network F for a 2 x 2 cube G.

All extended grid nodes are connected to the sink t by

edges with capacity 2 (hght arrows), and the source

s is connected to each node of Go by an edge whose

capacity is the number of packets destined at that node

(dashed arrows).

(1)

(2)

(3)

Find second stage paths, between the final desti-

nations and intermediate destinations.

Find second stage schedule using the paths found

at Step 1.

Find first stage schedule, from the sources to the

intermediate destinations.

In some sense, the algorithm works backwards,

from the destinations to the sources. The key to the

algorithm is Step 1, which finds paths with some use-

ful properties from the final destinations to some in-

termediate destinations. Specifically, the set of paths

chosen at Step 1 enables us, at Step 2, to complete

the schedule for the second stage, so that the time

complexity of the second stage is O(D + W), and the

intermediate destinations chosen at Step 1 are such

that at Step 3, we can find an O(D) -time schedule for

the first stage. The schedules for both stages require

only 0(1) buffer space. The crux of our analysis is to

show that such a desirable set of paths always exists.

Moreover, these paths can be found efficiently, using

flow techniques. Steps 2 and 3 are more standard:

Step 2 is done by applying an algorithm of Leighton

et al. [10, 11], which finds a good timing assignment

when the paths are given; and Step 3 is done using

a standard optimal permutation routing as a subrou-

tine. Let us describe each step in more detail.

Step 1: Finding paths for the second stage.

Step 1 finds intermediate destinations, and a set

of paths between the final destinations and these

intermediate destinations. Intuitively, our goal is

that these paths will not be too long, not too con-

gested, and that the intermediate destinations will

form something close to a permutation. Formally,

Step 1 produces for each packet P a path RP such

that

(1) the start point of RP is dest(p),

(2) the length of R, is bounded by O(D),

(3) the maximal number of paths over any link

(called path congestion) is O(W), and

(4) for each node v, the number of paths that end at

v is bounded by O(l).

This task is accomplished as follows. For D < 2,

the empty paths suffice. Suppose from now on that

D ~ 3. We create a flow network F = (N, A), where

the digraph F is defined as follows (see Figure 1 for

a simple example). We take four copies of G, called

Go, G3, and “glue” them to each other as follows.

Denote the nodes of Go by (i, j), for O < i, j < D.

Similarly, the nodes of G1 are (i, j)’, the nodes of G2

are (i, j)”, and the nodes of G3 are (i, j)’”. Now, for

all O ~ i < D, we identify the nodes

(i, D) = (i, D)’ (D, i)’” = (D, i)’

(D, i) = (D, i)” (i, D)’” = (i, D)”

We call this part of F the extended grid. The edges

of the extended grid are oriented as follows. All edges

of Go are oriented from (i, j) to (i, j + 1) and to (i +

1, j), the edges of GI are oriented from (i, j)’ to (i, j–

1)’ and to (i+ 1, j)’, the edges of GZ are oriented from

261

(i, j)” to (i, j + l)” and to (i – l,j)”, and the edges

of G3 are oriented from (i, j)’” to (i, j – l)’” and to

(i – 1, j)’”. (In Figure 1, all extended grid edges point

right or down.) The way we determine the capacity of

the extended grid edges is described later. Beside the

extended grid, F also contains a source node s and a

sink node t. The source s has only outgoing edges,

one for each node of Go. The capacity of an edge

(s, v) is defined to be the number of packets destined

at the node corresponding to v in the given routing

instance. The sink node t has an edge of capacity

two incoming from each extended-grid node in F. To

complete the description of F, we now specify how

the capacity of extended-grid edges is determined.

Let F(u) denote the network F with capacity u

assigned to each extended-grid edge. Step 1 of the al-

gorithm proceeds by computing a maximal flow ~ in

F(2i), fori=l,2,..., until 1~1 = IV(G). Any polyno-

mial time max-flow algorithm can be used (e.g., [6]).

The key to the correctness of the algorithm—and to

the proof of Theorem 1. l—is the following theorem

(whose proof is omitted).

Theorem 3.1A For u > 2W, the maxtmal flow value

of F(u) iS N(G).

The implication of Theorem 3.1 is that 0(log(2 W)) =

O(log D) iterations of max-flow computations are suf-

ficient to find a flow ~ with 1~1 = N(G). Next,

the algorithm decompos~s ~ into IV(G) unit-capacity

chains, i.e., we find N(G) directed paths from s to t,

such that the number of paths crossing any edge e is

exactly ~(e) (all paths are simple since F is acyclic).

Chain decomposition can be done in linear time us-

ing the greedy algorithm (see, e.g., [1]). Finally, the

chains in F are used to obtain paths in the original

graph G, by mapping nodes (~, j), (i, j)’, (i, j)”, (i, j)’”

in F to the original node (i, j) in G and eliminating

cycles. It is straightforward to verify that conditions

(l-4) hold for the resulting set of paths: (1) assign to

each packet p a distinct path that starts at clest (p);

(2) the length of any path is at most 4D, since this is

the length of the longest path in the extended grid;

(3) the path congestion is at most 0(W), since each

edge of G hosts four extended grid edges, and each

extended grid edge is part of at most u < 4W chains

(the extra 2 factor is due to the repeated doubling

procedure); and finally, (4) the number of packets for

which the same node serves as an intermediate desti-

nation is at most 8, since at most two chains end at

each extended grid node.

Step 2: Finding a schedule for the second

stage. In the second stage of the schedule, all pack-

ets are to be routed

To do that, we use

along the paths found in Step 1.

the powerful result of Leighton

ei ai. [10, 11]. Specifically, given a set of paths

with maximal path length d and path congestion at

most c, the algorithm of [11] finds, in deterministic

polynomial time, a schedule whose time complexity

is O(d + c) and whose space complexity is 0(1) .By

Properties (2,3) of the paths generated at Step 1, we

have that d = O(D) and c = O(W), and hence we

get a schedule whose time complexity is O(D + W).

(We stress again that the algorithm of[11] finds only

timing assignments for the packets, when the paths

for the packets are given as input.)

Step 3: Finding a schedule for the first stage.

In the first stage of the schedule, packets are routed

from their sources to their intermediate destinations.

Recall that by Property (4) of the paths generated at

Step 1, each node is an intermediate destination for

only O(1) packets. Hence, the goal of the first stage of

the schedule is to route “nearly -a-permutation.” This

problem can be solved using any O(D)-time, O(l)-

space permutation routing algorithm (e.g., [8]), by

partitioning the set of packets into O(1) sets, such

that in each set only a partial permutation needs to

be solved. This way, the first stage is completed in

O(D) steps, using 0(1) buffer space at each node.

Remark. The algorithm described above can be

easily extended to deal with many-to-many packet

routing instances, where each node may be the source

of many packets. For example, when the total number

of packets is O(V(G)), a many-to-many instance can

be solved by doing Steps (l–2) twice: from the sources

to an intermediate “nearly -permutation,” and from

the destinations to another “nearly -permutation.”

The two intermediate configurations are then con-

nected using a permutation routing algorithm. The

resulting schedule is optimal (under an extended def-

inition of the bandwidth lower bound, which includes

the possibility of hot-spots due to sources).

3.2 Discussion

Consider the second stage of the schedule computed

by the algorithm described in Section 3.1. The sched-

ule starts with a “near-permutation” of the pack-

ets, and ends with the packets at their destinations,

i.e., the (arbitrary) configuration specified by the in-

put. Viewed backwards, the schedule starts with

an arbitrary configuration and ends with a “near-

permutation.” This reverse formulation is a variant

of the token distribution problem [12]. It follows that

the general optimal token distribution algorithm of

[2] can be used to prove a generalized version of The-

orem 1.1: the time complexity of many-to-one routing

on any network is no more than the bandwidth lower

262

bound plus the maximal time to route a permutation.

A further generalization of the token distribution

problem is the quickest transshipment problem. A re-

cent result by Hoppe and Tardos [7] gives a poly-

nomial algorithm for quickest transshipment. (We

remark that the special case of token distribution

is solvable in polynomial time using the classical

pseudo-polynomial algorithm [5].) However, there is

no known general characterization for the length of

the resulting schedules in terms of the distance and

bandwidth bounds. Theorem 1.1 and the result of [2]

prove that the time for our special case is, in fact, the

bandwidth bound.

An interesting consequence of the algorithm of [7]

is that the optimal time for transshipment can be

achieved by schedules which delay the tokens only

at their sources. Assuming that the space complex-

ity to route a permutation is at least one, we can

deduce that the space complexity of the complete

many-to-one schedule can be upper-bounded solely

by the space complexity of the first stage (i.e., the

permutation routing). The combined result is stated

in Theorem 1.4.

4 A Nearly-Optimal Local Al-

gorithm

In this section we describe and analyze a local al-

gorithm whose time complexity is O(D + W log D),

and whose space complexity is O(log D), thus proving

Theorem 1.2. The basic idea of the algorithm is to ap-

ply a recursive procedure, that partitions the routing

problem on a k-dimensional cube of size Dfl x . . . x DL

into 2k independent routing problems on subcubes of

size De/2 x . . . x D1/2 each. The main difficulty in

implementing this simple idea is to keep the space re-

quirement small. To this end, one has to be careful

when choosing the input to the recursive calls and

their precise timing. (To gain some intuition regard-

ing these subtleties, the reader is referred to Section 5,

where a simpler, closely related procedure with worse

space complexity is presented.)

Before we describe the algorithm, let us explain the

basic notion of hierarchical partition into subcubes.

To avoid trivial complications, assume that the size

of the given grid G is D x . . . x D, where D is a

power of 2. We hierarchically partition G (which is

a k-dimensional cube) into subcubes in the following

natural way: the only level O cube is G, and each level

Z – 1 subcube, for O < t s log D, is partitioned into

2k level e cubes, each of size D/2t x . . . x D/2L. We

denote DL = D/2t.

4.1 The Algorithm

The algorithm consists of a recursive procedure called

ret-route activated in cubes. The input to rec.-route

at cube H is a set of packets that are currently located

in H, O(1) packets per node, where the destinations

of all packets are in H. When the procedures returns,

all packets in the input set have been routed to their

destinations, The important property of ret-route is

that its execution time, without the recursive calls, is

linear in the side length of H, regardless of the input

set; efficiency is maintained by carefully managing

the calls so that the number of packets in the input

set of each invocation at a subcube H is @(V(H)).

The rec_route procedure, when activated at level

log D (i.e., a single node) returns immediately. When

activated at level 1 < log D, rec_route works in the

following general structure.

(,2)

Route input packets to the leve! / + 1 subcubes of

their destinations.

Do tn parallel, at each leve[1 + 1 subcube:

(2. 1) Sort packets by destination address.

(g..2) Partition packets into batches.

(2.3) Repeatedly, call rec.route with a single

batch as input, until all batches are done.

Return.(3)

Let us now elaborate some more about each step.

Step 1: Approximate routing. In Step 1, the

input is a set of O(1) packets per node, on a cube of

size Dl x... x D1, and all the packets destinations are

in the cube. When Step 1 terminates, each packet of

the input is stored in one of the 2k subcubes (of size

De/2 x... x D1/2), which contains its destinations.

It is an easy matter to do this in O(D/) time using

O(1) buffer space. In ret-route, the algorithm forces

all app-route invocations at level 1 to take the same

fixed predetermined amount of time.

Step 2.1: Sorting. The sorting in Step 2.1 is

done according to the following order.

Definition 4.1 Let v = (cl,..., c~) be a node of

a given k-dimensional cube of side length 2m, and

let the binary representation of each Ci be ci =

~rn=~’ bi,j2j. The linearized address of v, denoted

R~v), is the km-bits binary number obtained by first

listing all k most significant bits of the coordinates,

then all k second most significant brts of the coordi-

nates and so forth, ending with the k least significant

bits of the coordinates. Formally:

77-1 k

R(v) = ~ ~ b~,32~k+@1J

j=o ;=1

263

When sorting is invoked, each node stores O(1) input

packets. Upon termination of sorting, the number of

packets stored at different nodes differ by at most 1,

and each node contains a consecutive segment of the

total order. In other words, if R(v) s R(u), and by

the end of the sorting p is stored at v and q is stored

at u, then R(dest (p)) s R(dest (q)). Using minor

modifications of standard sorting techniques, Step 2.1

can be done in O(Dl) time units, using 0(1) buffer

space at each node (see [9] for details.) Similarly to

Step 1, we force the sorting procedure to take a fixed

predetermined amount of time.

Step 2.2: Partition into batches. Sorting in-

duces a partition into batches as follows. At each

node, the algorithm maintains “global” variables

called h(l), for 1 = 1, log D. The variables h(l)

are global in the sense that they are set once (for each

1), and then they retain their values throughout the

execution, at all subsequent invocations. A variable

h(l) is set when the first sorting terminates in the

level / subcube in which the node resides; the value it

takes is the maximal load after sorting, over all nodes

in that subcube (recall that after sorting, the load at

different nodes differ by at most 1). Given h(l + 1),

the partition into batches at Step 2.2 is done by pick-

ing every “h(l + 1)-th packet” in the sorted order: for

a packet p, let s(p) be the number of packets with lin-

earized destination address smaller than R(dest (p)).

Then forj= l,... h(l + 1), batch j consists of all

packets p such that s(p) = j – 1 (mod h(l + l)).

Step 2.3: Recursive calls. The rec_route proce-

dure is invoked recursively at a level (1+ 1)-st sub cube

for h(l+ 1) consecutive times (all nodes have the same

h(l + 1) value), where the input for the j-th invoca-

tion is the j-th batch. We prove later that each batch

contains 0(1) packets per node.

Step 3: Termination. A level 1 invocation of

rec.route returns only after all its recursive calls have

returned, at all its level (1 + 1)-st subcubes.

4.2 Sketch of the Analysis

In this section we sketch the analysis of the algorithm

specified in Section 4.1. In the analysis that fol-

lows, we say that a ‘(subcube H was invoked” and

‘Lrec-route was invoked in H“ interchangeably.

Define ezecution tree be the tree whose nodes are

invocation of ret-route, such that a node a is a parent

of a node b iff the invocation corresponding to a called

the invocation corresponding to b. For an invocation

z of rec_route and any subcube H, let n~(z) denote

the number of packets in z that are destined for H.

Our first step is to prove the following property of

two “cousin” invocations of the same subgrid.

Lemma 4.1 Let H be a level (1 – 1)-subcube that

contains H’ of level 1. Then the number of packets

destaned to any gtven subcube H’(~ H’ zn any two

sibling invocations of H’ dtfler by at most one.

Using Lemma 4.1 we can prove the following impor-

tant property of cube invocations.

Lemma 4.2 Let H be any subcube. Then the number

of packets destined to any subcube H’ ~ H in different

invocations of H difler by at most one.

We can now prove the following key lemma.

Lemma 4.3 The number of packets in each invoca-

tion of the algorithm at subcube H is at most 2V(H).

Proof: By induction on the levels. For the level O

subcube, the lemma follows from the assumption that

the input to the routing problem consists of no more

than one packet per node. Consider now a subcube H

of level 1 > 0, with parent subcube H’ 0 H. Let nl

be the maximum number of packets destined for H

in invocations of H’. If nl ~ 1 we are done trivially.

Suppose now that nl ~ 2. From Lemma 4.2 it follows

that the number of packets in the first invocation of

the algorithm in H’ is at least nl – 1. Hence, by the

algorithm, h(l) ~ [(nl – 1)/V(H)l. By definition

of nl, we have that the number of packets in any

invocation of H is at most

< nlV(H)

[(n, - ;j/V(H)] - nl -1 s 2V(H) “ 1

Call an invocation active at a given time if at that

time, it has been called, hasn’t returned yet, and the

control is not at a recursive call it spawned. From

Lemma 4.3, we get the following corollary.

Corollary 4.4 Any level ! invocation M acttve

O(D1) ttme unzts.

Next, we define the timing behavior of an invoca-

tion. Intuitively, timing behavior describes the way

the execution subtree rooted at the given invocation

evolves in time. Formally, it is a mapping that as-

signs to every node of the tree the time in which the

corresponding invocation started, where the root in-

vocation is mapped to O. Since we force steps 1 and

2.1 of each invocation to take the same amount of

time in each invocation, and since the h variables have

fixed values throughout the execution, we get that all

invocations of the same subcube have the same tim-

ing behavior. This nice regularity of the structure of

executions gives rise to the concept of criticai path,

defined as follows.

264

Definition 4.2 ‘The critical path of a given eze-

cutton of the algorithm is a sequence of subcubes

PO, PI, P2, ..., l’log D > where P. M the ievel (1 cube,

and for 4 > 0, Pt M the subcube of level 1 that re-

turns last at the invocation of PL_l (ties are broken

arbitrarily).

The following lemma (proven using by backwards in-

duction on the levels), says that it is sufficient to an-

alyze the time in which critical path subcubes are

active.

Lemma 4.5 At any point in the executton, one of

the subcubes of the critical path as acttve.

Before we proceed, we introduce a few additional def-

initions.

●

●

●

PI, ..., PIOgD is the sequence of critical path sub-

cubes, where PI is in level 1.

me is the total number of times PL was invoked,

i.e., rno = 1, and rnl+l = rnlh(l+ 1).

BL is the maximum of the average number of

packets destined at PO, Pe. Formally, l?o = 1,

and Bf+l = max(l?l, iV(Pl+l)/V(PZ+l)).

Using the above concepts, we have the following up-

per bound for the total number of invocations of a

subcube on the critical path.

Lemma 4.6 For aiil, BLDL = O(W + D~).

Proof By induction on the levels. For 1 = O the

claim trivially holds, since m. = 1 and BO = 1.

For the inductive step, let t? > 0, and consider the

situation in PI– 1 (that invokes rec.rout e in Pfl). If

h(l) = 1, then ml = ml-1, and we are done by in-

duction, since BI > B1- 1. Otherwise h(l) ~ 2. Then

it follows from the definition of h(t) that the total

number of packets destined for Pi in the first invoca-

tion of PI-1 is at least (h(f) – 1) V (Pt) + 1.Therefore,

by lemma 4.2, the number of packets destined for P1

in any invocation of P~_l is at least (h(l) – l) V(P~),

and hence the number of input packets at each invo-

cation of P~ is at least

(h(l) - l)V(P,) > V(P,)

h(l) – T “

We may therefore conclude that

and the induction is complete. I

Finally, we state the following simple fact.

Lemma 4.7 For alil, BIDI = O(W + DI).

We can now prove Theorem 1.2.

Proof of Theorem 1.2: The space upper bound

follows from the observation that at each node, in

each time step, there are at most 1 + log D levels that

haven’t returned, and each level incurs O(1) load.

To get a time upper bound, note that by Lemma

4.5, it is sufficient to bound the number of time steps

in which subcubes of the critical path are active. Let

T denote the total time in which critical subcubes

are active. By Corollary 4.4, each Pl is active O(D1)

time units at any of its invocations. Therefore, by

the definition of ml, Lemma 4.6, and Lemma 4.7, we

get that

log D log D

1=0 1=0
10ED

5 The Average Delivery Time

In this section we prove Theorem 1.3, which deals

with another variant of the problem, where the objec-

tive is to guarantee average case delivery time which

is close to the best possible for the given instance.

Notice that optimality with respect to individual

packets cannot be guaranteed, since for any given

packet there exists a schedule that delivers it in time

equal to its source-destination distance (possibly at

the expense of delaying other packets). Therefore,

we consider the average transit time for certain sets

of packets.

The basic idea is to handle each class indepen-

dently, by using time multiplexing. More precisely,

we present a routing algorithm that ensures good av-

erage delivery time if all packets have similar source-

destination distances, and run log D independent

“versions” of it, where each version deals exclusively

with one class of packets. This is done by letting each

of the log D versions use the communication links one

time unit every log D time units, and multiplying the

space requirement by log D.

Our basic algorithm is the following recursive pro-

cedure, called bfs.route.

(1) Route input packets to the level f + 1 subcubes of

their destinations.

(2) Do m parallel, at each level t + 1 subcube:

(2.1) Balance the load over the nodes.

(2..$?) Call bfs-.route wzth all packets as input.

265

The main difference between bfs.route and

rec.route (specified in Section 4.1) is that all pack-

ets present at a subcube are sent as input in the re-

cursive call (whereas in rec.route, the input of each

invocation—calleda “batch” in Section 4.1 —consists

of roughly one packet per node). This change elimi-

nates the need for precise sorting, and enables US to

use an elementary load-balancing procedure at Step

2.1, whose only objective is to re-distribute the pack-

ets more-or-less evenly in the subcube (their order

does not matter). We sketch below the analysis of

bfs-route.

First we state a simple fact for Step 2.1. Given an

assignment of packets to a set of nodes S, say that

S is ,8-balanced if the maximal difference in load in

S is no more than ,B; the imbalance of S is ~ if S is

(/3 – 1)-balanced and not ,&balanced. We have the

following easy theorem.

Theorem 5.1 Given a cube of dimension k with side

length Dl and initial load imbalance at most /3, k-load

balancing can be performed in 0(/3Dl) time units,

with maxtmal load never above the initial maxima!

load.

We use the following definition.

Definition 5.1 Given a subgrid H, define A(H) =

max{l, JJ(H)/V(H)}.

The correctness of bfs.route is implied by the follow-

ing straightforward invariant, proved by induction on

levels.

Lemma 5.2 Let H be a subcube of level O ~ 1 <

log D. By the completion of Step 2.1 in H, all pack-

ets with destination in H are in the level (/ + 1)-st

subcubes of their destinations, and each of the level

(f+ 1)-st subcubes H’ has maximal load O(A(H’)).

Lemma 5.2 also provides an upper bound on the

space complexity of the resulting schedule: note that

the maximal load may grow only by a constant factor

in each iteration. This leads to the following result.

Lemma 5.3 The space complexity of the schedule is

o(w).

The idea behind the analysis of the running time

of the algorithm is the following. Call Steps 1 and

2.1 at a level 1 sub cube a phase / of the algorithm.

Note that each packet undergoes phases O, log D

one immediately after the other. (This in contrast

to rec.route, where packets are waiting for other sub-

cubes to complete). We show that each phase of the

algorithm is done optimally in some sense, and thus

the number of steps needed to deliver a packet is close

to optimal.

Formally, we have the following lemma for the al-

gorithm.

Lemma 5.4 Let H be a subgrid of ievel 1 ~ O. Then

phase -? is completed in H in O(A(H)D1) time units.

We can now prove the main result we need for av-

erage delivery time.

Lemma 5.5 Suppose that in a given routing in-

stance, there exists some d > 0 such that for all pack-

ets p, d ~ dist(source(p), dest(p)) < 2d. Then the

average delivery time of a packet under the algorithm

bfs-route above is it most O(log d) factor times the

best possible average ttme for the given instance.

Proof Sketch: We focus on the sum, over

all packets, of “packet steps,” i.e., the time

each packet spent before reaching its destina-

tion. Let p be an arbitrary packet, and de-

note by Ho(p),. . . . Hl~g~(p) the sequence of cubes

that contain its destination, where Hl is at level

t?. By Lemma 5.4, p reaches its destination in

time ~~~o~ O(A(H)DL) = O(JV(Hz(P))/Z(Hl(P))),

and therefore the total number of packet steps

“spent” by the algorithm, over all packets, is

at most o (2P ~f$oD ~(HL(P))/Z(H~(P))) ~ Or

O (EH IV(H) 2)Z(H)), where H ranges over all sub-

cubes in the hierarchical partition of G.

Consider now an arbitrary schedule. First note

that since the distance between the sources and des-

tinations is at least d, it follows that for every sub-

cube H with side length smaller than d, the number

of packets crossing its boundary is at least N(H).

It is easy to see that the average time for a packet

to cross the boundary is !J(IV(H)/Z(H)); summing

over all the IV(H) packets, we get a contribution of

~(lV(H)2/Z(H)) to the total number of packet steps.

Consider now the sum of IV(H) 2/Z(H) over all sub-

cubes H with side length smaller than d. It may be

the case that a single packet step is counted more than

once (intuitively, a packet may “wait” simultaneously

for more than one sub cube boundary). However, ob-

serve that in this sum, each packet step is counted

at most log D times—since a packet step is associ-

ated with at most one subcube for each level (specifi-

cally, the one that contains its destination). We con-

clude that the total number of packet steps spent by

any schedule is at least $2 (~~H~(l+)2/Z’(1-1)),

where H ranges over all subgrids H with side length

smaller than d.

266

To complete the proof, note that the routing of

the packets into the subgrids with side length smaller

than dis completed in O(d) time units, incurring at

most a constant blowup to the average. I

Acknowledgments

We thank Fran~o Preparata, Gianfranco Bilardi, Tom

Leighton and Eva Tardos for helpful discussions and

for providing us with preprints of their manuscripts.

In particular, we thank Tom Leighton for detecting

an error in one of our early algorithms, and Torsten

Suel for referring us to [2].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network Flows. Prentice-Hall, Engelwood Cliffs,

New Jersey, 1993.

F. M. auf der Heide, B. Oesterdiekhoff, and

R. Wanka. Strongly adaptive token distribution.

In Proceedings of the 20th ICALP, 1993.

G. Bilardi and F. Prepaprata. Horizons of par-

allel computation. Research Report CS-93-20,

Department of Computer Science, Brown Uni-

versity, May 1993.

Y. Feldman and E. Shapiro. Spatial machines: A

more realistic approach to parallel computation.

Comm. ACM, 35(10):61-73, 1992.

L. R. Ford, Jr. and D. R. Fulkerson. Flows m

Networks. Princeton U. Press, 1962.

A. V. Goldberg and R. E. Tarjan. A new ap-

proach to the maximum flow problem. J. ACM,

35(4):921-940, Oct. 1988.

B. Hoppe and E. Tardos. The quickest transship-

ment problem. In Proc, of the 6th arm. ACM-

SIAM Symposium on Discrete Algorithms, Jan.

1995. To appear.

M. Kunde. Concentrated regular data streams

on grids: sorting and routing near to the bi-

section bound. In 32nd Annual Symposium on

Foundations of Computer Science, San Juan,

Puerto Rico, pages 141-150, Oct. 1991.

T. Leighton. Introduction to Parallel Algorithms

and Architectures:

Morgan-Kaufman,

Arrays . Trees Hypercubes.

1991.

[10]

[11]

[12]

[13]

[14]

[15]

T. Leighton, B. Maggs, and S. Rae. Univer-

sal packet routing algorithms. In 29th Annua~

Sympostum on Foundations of Computer Sci-

ence, pages 256–269, White Plains,, NY, October

1988.

T. Leighton, B. Maggs, and S. Rae. Fast algo-

rithms for finding O(congestion+dilation) packet

routing schedules. In Proc. 28th Hawaii Interna-

tional Conference on System Sciences, Januray

1995. To appear.

D. Peleg and E. Upfal. The token distribution

problem. SIAM J. Comput., 18, 1!389.

S. Rajasekaran and T. Tsantilas. Optimal rout-

ing algorithms for mesh-connected processor ar-

rays. Algorithmic, 1992(8):21–38, 1992.

J. Sibyen. Algorithms for routing on meshes.

PhD thesis, Department of Computer Science,

Utrecht University, 1992.

P. M. Vitanyi. Nonsequential computations and

the laws of nature. In Aegian Workshop on Com-

puting, pages 108–120, Berlin, 1986. Springer-

Verlag (LNCS 227).

267

