
The Las-Vegas Processor Identity Problem
(How and When to Be Unique)

EXTENDED ABSTRACT

Shay Kutten* Rafail Ostrovskyt Boaz Patt-Shamis
T.J. Watson Research Center UC Berkeley and

IBM ICSI MlT
Lab for Computer Science

Abstract
One of the fundamental problems in distributed computing
is how identical processes with identical local memory can
choose unique IDsprovided they canpip a coin. The variant
considered in this paper is the asynchronous shared memory
model (atomic registers). and the basic correctness require-
ment is that upon termination the processes must always have
unique IDS.

We study this problem from several viewpoints. On the
positive side, we present the first hs-Vegas protocol that
solves the problem. The protocol terminates in (optimal)
O(log n) expected time, using O(n) shared memory space,
where n is the number of participating processes. On the
negative side, we show that there is no Las-Vegas protocol
unless n is known precisely, and that nofinite-state Us-Vegas
protocol can work under schedules that may depend on the
history of the shared variable. For the case of arbitrary
adversary, we present a Lus-Vegas protocol that uses O(n)
unbounded registers.

1 Introduction

Background and Problem Statement. In the course of
designing a distributed algorithm, one has often to confront
the problem of how to distinguish among the different par-
ticipating processes. One attractive (and sometimes realis-
tic) solution is simply to deny the existence of a problem
altogether: assume that each process is fabricated with a
unique identifier. This assumption seems especially reason-
able where the processes are physical processors, and an ID
which is guaranteed to be unique is “hardwired” in them (see,
for example, the IEEE 48 Bit Standard [Tan81]). In some

‘E-mail: kutten@watson.ibm.com.
tE-mail: rafail@melody.berkeley.edu. Supported by an NSF

postdoctoral fellowship and ICSI. Research partly done while visiting IBM

cases, however, one cannot get away with this approach. For
instance, the processes might be virtual (i.e., software) pro-
cesses that are spawned using the same code, and thus they
are created identical. In this setting. the processes typically
run on the same physical machine, and the communication
among them is realized via shared memory space. The prob-
lem of giving distinct names to identical processes in such an
environment is known by the name “Processor Identity Prob-
lem” [LP90]. In the sequel we denote it by PIP for short. We
remark that PIP, due to its fundamental role, has applications
in some of the most basic distributed tasks, including mutual
exclusion, choice coordination, and resource allocation.

The formal specification of the problem is as follows. We
have a system with n processes, and for each process there is
some designated private output register. We assume that the
output register is capable of storing N 2 n different values.
A protocol for PIP must satisfy the following conditions.

Symmetry: The processes execute identical protocols with
identical initial state.

Uniqueness: Upon termination, all the values in the output
registers are distinct.

In this paper, we shall study the problem mainly in the read-
write registers model [Lam86], where in a single action, a
processor can either read or write the contents of a single
register and perform some local (probabilistic) computation.
(This model is also known by the name of “atomic reg-
isters”.) Clearly, in this model no deterministic protocol
can solve PIP. For randomized protocols, we need a refined
correctness requirement. Consider, for instance, the Monte-
Carlo model, where the algorithm may fail with some low
probability. If we are willing to tolerate erroneous termina-
tion, then there exists a trivial solution that does not require
any communication: each process chooses independently a
random ID; the error probability is controlled by the size of

T.J. Watson Research Center.
#E-mail: boaz@theory.lcs.mit .edu. Supported in part by

DARPA contracts “14-92-J-4033 and NO(W)14-92-J-1799, ONR wn-
tract ”14-91-J-1046, and NSFcontract x ~ ~ ~ ~ (M c c R . R ~ ~ ~ ~ I ~ partly
done while visiting 1BMT.J. Watson Research Center.

the ID space. Many applications, however, cannot tolerate
any probability of error. In this paper we focus exclusively
on the case where erroneous termination is outlawed. For
this variant, a Monte-Carlo solution may guarantee that with

150
0-8186-3630-0193 $3.00 0 1993 IEEE

__ -

mailto:kutten@watson.ibm.com
mailto:rafail@melody.berkeley.edu

I l l I I ! I

high probability, the protocol terminates and provides unique
IDS; in the case of failure, the protocol may never terminate.

The most restrictive probability model is the Lus-Vega
model, in which not only the protocol is required to produce
a correct answer always, but also its running time should
have finite expected value. In this paper we shall study the
necessary and sufficient conditions for the existence of Las-
Vegas protocols for PIP.

Previous Work. Symmetry breaking is one of the well-
studied problems in the theory of distributed systems. For
example, see [Bur81. JS85. CIL87, ABD+87]. The Pto-
cessor Identity Problem where errors are forbidden was first
defined by Lipton and Park in [LBO]. Their formulation has
two additional requirements. F’t. that the initial state of
the shared memory is arbitrary (the “dirty memory” model);
and second, that upon termination, the IDS constitute exactly
the set { 1, . . . , n}. In [LBO], Lipton and Park also give a
Monte-Carlo solution that for any given integer L 2 0 uses
O(Ln2) shared bits and terminates in O(Ln2) time with
probability 1 - cL, for some constant c < 1. This proto-
col is Monte-Carlo, since failure results in an execution that
never terminates. The protocol of [LP90] was subsequently
improved by Teng Fen901. His protocol uses O(n log2 n)
shared bits, and gets, with probability 1 - l / nc (for any con-
stant c > 01, running time of O(n log2 n). AS in [LPWI,
however. in the event of failure, the protocol never termi-
nates. Recently. Egecioglu and Singh [U921 have obtained
independently a Las-Vegas protocol for PIP that works in
O(n7) expected time using O(n4) shared bits.

Our Results and Organization of the Paper. In this work,
we give tight positive and negative results describing the con-
ditions under which the Las-Vegas Processor Identity Prob-
lem can be solved. Fist, we show how to solve the problem:
in Section 3 we give the first Las-Vegas protocol for PIP in
the read-write registers model. This protocol improves on all
known protocols simultaneously in termination probability,
running time. and shared space requirement. Specifically,
the protocol terminates in O(1ogn) expected time. using
O(n) shared memory space.’ As in the original formulation
of PIP, the protocol has the nice features that it works in the
dirty memory model, and that upon termination the given
names constitute exactly the set (1, . . . , n}. The protocol
works under the assumptions that n, the number of partici-
pating processes, is known. and that the schedule is oblivious
(i.e.. the order in which processes take steps does not depend
on the actual execution). We also consider the dynamic case,
where processes may join and leave the system dynamically.
Here, we relax the problem specification and require only
that if no process joins the system for sufficiently long time,
then eventually the IDS stabilize on unique values. We give a

We remark that the protocol presented in this papex uses registers of
size O(1og n) bits, whaeas the protocol of m921 u.w single bit registers.

simple variant of our protocol for this case, which stabilizes
in O(log n) expected time.

Next, we prove that the assumptions of Section 3 are
actually necessary to obtain a Las-Vegas protocol for PIP.
Specifically, in Section 4 we prove the following results.
First, we prove that there is no Las-Vegas protocol that solves
PIP if only a bound an n is known in advance, even if
the schedule is oblivious. We also show that any protocol
for PIP must run in R(1ogn) expected time if errors are
disallowed. Most interestingly, we show that even if n is
known, there is no finite-state Las-Vegas protocol for PIP
when the schedule is allowed to be adaptive. i.e.. when an
adversary can decide which process moves next based on
the history of the shared variables. This impossibility is
complemented with a protocol for PIP that works for any
fair scheduler - using unbounded space. The interpretation
of these results is that in the Las-Vegas model, one can
have either a bounded space protocol, or a protocol which is
resilient to arbitrary adversaries, but not both.

Finally. in Section 5, we consider the read-modi>-write
model, in which a processor can, in a single indivisible step,
access a register and update its value in a way that may
depend on the current contents of that register. We show
some similarities and some deep differences between this
model and the model of read-write (i.e.. atomic) registers.
Specifically, we show that in this model PIP can be solved
deterministically using only 3 shared bits under any fair ad-
versary, if the system is initialized properly. On the other
hand, there is no finite-memory randomized protocol that
solves PIP if the initial state is arbitrary and the adversary is
adaptive.

We start with a brief description of the models we consider
in Section 2.

2 TheModel

Our basic model is the asynchronous shared-memory dis-
tributed system. Such a system is characterized by a set of n
processes denoted by p1, . . . , p,,, and m shared registers. or
variables, denoted by rl, . . . , r,. The processes are mod-
eled as probabilistic state machines, and the shared registers
may hold values from some specified domain. All processes
can read and write all the shared registers. A slate of the
system is completely determined by the states of the individ-
ual processes and of the shared registers. The state may be
altered by processor actions. We assume that in every state,
at most one action is enabled in each process.

Action Models. In this paper we shall be concemed
mainly with the read-write model, where each action consists
of an access to the shared memory (which is either aread or a
write of a shared variable), and some (possibly randomized)
local computation. We shall also discuss the reud-modify-
write model, where a process can, in a single indivisible step,

151

obtain the value of a shared variable, rewrite that variable as
a function of the process local state and the current value,
and perform some local (probabilistic) computation.

Asynchronous Executions and Adversaries. Following
the IO Automata model of Lynch and Tuttle. we model an
execution of a system as an altemating sequence of states
and actions, where in each step, one process makes an action
to yield the next state (cf. [LT89]). To model asynchrony,
we assume that the choice of which process takes the next
step is under the control of an adversary. There are two
types of adversaries we consider in this work. The oblivious
adversary is simply an infinite sequence of processes names.
The adaptive adversary is defined by a function that takes
a finite sequence of shared memory states, and produces a
process name. Intuitively, the oblivious adversary commits
itself to the order in which processes are scheduled to take
steps oblivious to the actual execution, while the adaptive
adversary may observe the shared memory andchoose which
process to schedule next based on this knowledge. The only
general restriction we impose on the adversaries is that they
must be fair. i.e.. (in our context) each process must be
scheduled to take steps infinitely many times.

Time Complexity. To measure time in the asynchronous
model, we assume that all processes take at least one step
(either aread or a write) in each time unit. The executions are
completely asynchronous, i.e., the processes have no access
to clocks, and the “real time” notion is assumed here only
for the purpose of analysis.

3 A Solution for the Processor Identity
Problem

In this section we give a protocol that solves the Proces-
sor Identity Problem in the asynchronous shared memory
model. Our protocol uses o(n) shared bits, and terminates
in O(1ogn) expected time, where n is the number of par-
ticipating processes. We solve the problem in its original
formulation [LP90], i.e.. assuming the dirty memory model,
and producing as the final names exactly the set { 1, . . . , n}.
We remark that our protocol relies on the assumptions that
n is known in advance, and that the schedule is oblivious.
(We show in Section 4 that both assumptions are necessary
to ensure termination with probability 1.)

3.1 A Las-Vegas Protocol for PIP

We begin with an intuitive description of the protocol. In the
execution of the protocol, each process proceeds in a loop as
follows. At every given point in the execution of the loop,
each process claims some “tentative” ID, which it repeatedly
checks to verify that no other process claims. If a process
detects a competitor for its claimed ID (we call this case a
collision). the process chooses a new ID at random. The

loop terminates once the process can safely deduce that all
processes claim distinct IDS.

The protocol is based on a few implementation ideas,
designed to solve the problems of collision detection and
termination detection. To ease exposition, we first assume
that the memory is initialized with a special value A. We
then explain the extensions that enable the algorithm to work
with dirty memory, and get the final IDS to be { 1, . . . , TI}.
The full protocol is presented in Figure 1.

Collision detection (lines 1-8). To detect an ID claimed
by more than a single process, the protocol executes repeated
checking as follows. We have in the shared memory a vector
of N registers, where N = c . n for some constant c > 1.
Each register corresponds to a particular tentative ID. namely
the index of that register. During a checking phase, a process
either reads the register corresponding to its tentative ID. or
writes it. The choice between the altematives is random. If
the process writes, it writes a random signature: a signature
is simply a random bit, which is drawn independently anew
whenever the process signs. The value of the last signature
is recorded in the local memory. If the process chooses to
read, it examines the contents of the register to see if some
other process has changed it since its last own write. If a
different signature is detected, then the process concludes
that its claimed ID gives rise to a collision. In this case
the process chooses a new tentative ID uniformly at random
from { 1, . . . , N } . and then proceeds with this new ID to the
next iteration. If no change was detected, then the process
proceeds to the next iteration.

Enninafion detecfion (lines 9-18) It is important to ob-
serve that once an ID is claimed, it will remain claimed: at
any point, the last process to write a random signature at
the corresponding register claims that ID. In other words,
the set of claimed IDS is monotonically increasing. This
property of the algorithm facilitates the termination detec-
tion mechanism, that works parallel to the collision detection
mechanism. The idea is to count the number of claimed IDS;
the monotonicity property ensures that a process can only
underestimate the number of claimed IDS, and thus, when
the estimate is n, the collision detection can stop. We shall
also guarantee that after the set of claimed IDS has stabilized,
eventually all the claimed IDS will be detected as such. The
basic idea in counting the number of claimed IDS is to fan-
in the local sums is a “tree addition” fashion. Specifically.
we use the following implementation strategy. The vector of
registers used for the collision detection is treated as “level 0”
(i.e., the leaves) of a tree, denoted D [i , 01. where 1 5 i 5 N
is the index that corresponds to a tentative ID. The other
levels are defined in the natural way as follows. For each
“leaf‘ register D [i , 01 we define its ancestor register at level
j , for all 0 5 j 5 log N , by

152

Shared Variables
V : a complete binary tree of height [log NI; registers are indexed by location and level

Local Variables
tent-ID : tentative ID, initially random((1,. . . , N })
sagnaiure : takes values from { 0, 1 , A}, initially A
ID : output value
level : takes values from 0.. log N , initially 0
seg -left.
seg-right.
seg-tot : take values from O..N
M-image : local view of the status of the sharedmemory locations, initially all dirty

(retains state of claimed register)

(current level of responsibility for summation)

Cfor counting number of claimed IDS in segment)

Shorthand
random(S) :

= { 0, i f v = A

E

returns a random element of S under the uniform distribution.
1 , if level = 0 and v # A
U , iflevel # Oandv # A (4

WRITE(T, v) E [M-image(r) + clean; contents(r) t v]
READ(r) [if M-image(r) = dirty then WRITE(r, A)]; [return contents(r)]

(write v in register r)

- Code
1
2
3
4
5
6
7
8
9
10
I1
12
13
14
15
16
I7
18
19

mpecrt
either, with probability 1/2, do

or, with probability 1/2, do

(write and record random signature)

(read and check for collision)
D[tent-ID, 0] t signuture t random((0 , I})

ifD[tent-ID, 01 4 {signature,A} then
tent-ID + random({ 1 , . . . , N })
signature t A
level c 0

if level > 0 then

i f level < log N then

(write sum of entries from lower level segment)

(read the segment in the current level)
ancestor(ten2-ID, level) + seg-tot

seg-left c left entry of segment of ancestor(tent-ID, level)
seg-right + right entry of segment of ancestor(tent-ID, level)

seg-tot t (seg-right) + (seg-Iefl)
level t (level + 1) mod [log N + 11

i f ancestor(tent-ID, level) is thefirst non-A entry in the segment and level < log N then (verify responsibility)
(sum up number of claimed IDS in segment)

(start summing from the leaf again)
(termination predicate)

(compute rank of tent1D by parallel prep)

else level t 0
until D[1, log NI = n
ID + I {i : D[i, 01 # A and i 5 tent-lD) I

Figure 1: Terminating algorithm for PIP in the dirty memory model, with IDS in the range { 1, . . . , n}. Accesses to the shared
memory in lines 1-18 are interpreted by the READ and WRITE definitions.

153

The ancestor relation defines, in the obvious way, a directed
tree whose root is D[1, log NI. The semantics of this tree is
that each entry D[i, level] is intended to contain the number
of claimed IDS in the subtree rooted at that entry (i.e., all the
JD~intherange(i-1)2’“”~’+1 . . . i .2 leUer) . ForlevelO, any
random signature counts as 1; only A counts as 0 (see the (.)
notation). This is done by the following rule. The registers at
each level j < log N are paired by the sibling relation, that
is, pairs of entries with common ancestor in level j + 1. Call
these pairs segments; a segment is said to be active at a given
state if it contains an ancestor of some claimed ID. The
tree summation proceeds by assigning the “responsibility”
for each active segment to the “left-most” process in its
subtree. The responsible process fills the parent entry with
the total number of claimed IDS rooted in that parent. More
specifically, each process reads the entry corresponding to its
ancestor and its ancestor’s sibling (lines 12-13); the process
deems itselfresponsible if either its ancestor’s sibling is A, or
if the ancestor’s index is smaller than the sibling’s (line 14). If
the process determines that it is responsible for that segment,
then in the next iteration it will write the sumof the entries in
that segment in the parent, and will proceed to find whether
it is responsible for the higher segment. Notice that due
to the asynchrony. many processes may claim responsibility
of the same segment, thus overwriting the same entry. To
overcome this problem, the processes refresh their entries
in a cyclic manner: once a process reaches the level for
which it is no longer responsible, it start working again all
the way from level 0 up (line 17). and thus the values under
its responsibility are re-written at least once every O(log n)
time units. We shall show that this procedure guarantees that
once all the collisions disappear, eventually the root of the
tree (in our notation, D[l, log NI) will contain n. Moreover,
at any point before all the collisions has been resolved, no
process reads D[1, log N] = n.

Renaming the processes (line 19). After the algorithm has
created n distinct IDS, it is straightforward to rename the
processes so that their names constitute the set { 1, . . . , n} in
additional O(log n) time. To do that, notice that ifthe root of
the summation tree becomes n. then clearly all the accessed
values in the tree have stabilized to their intended meaning.
Our method is simply to assign to each process the rank of
its tentative ID, i.e., its index in the sorted list of the claimed
IDS. This can be done easily using the existing tree: apply
some kind of standard parallel “prefix sums” algorithm (see,
e.g., [Lei91]). We remark that the processes need only work
on active segments, and hence the running time is always
O(log N), even if n << N (cf. dynamic protocols).

Read when clean (shorthand notations). The algorithm
as described above works under the assumption that all the
memory entries are initialized with a special value A. One
naive approach to make the algorithm work in the dirty mem-
ory model is to first let all processes initialize the whole
memory with A, and disregard A values while computing

154

(e.g.. detecting A is not considered a collision in line 5) .
Informally. the correctness is maintained since each mean-
ingful value is re-written periodically in the main loop. This
method, although correct. is clearly much too wasteful: ev-
eryone erase all locations, resulting in Q(n) running time.

A simple fix, however, reduces the time complexity dra-
matically: We introduce a rule called “read when clean”,
defined as follows. Each process. locally, keeps track of
the status of each register of the shared memory. Initially,
all registers are marked dirv at all the processes; whenever
a process writes, it updates its local record by marking the
written register clean . The rule observed by the algorithm
is that a process reads only clean registers; this rule is main-
tained by erasing the contents of a dirty register when it is to
be read. More specifically, whenever a register needs to be
read, its status is checked; if it is dirly, then the special value
A is written, and only then the register is read. This rule is
used only in the main loop; after the values have stabilized
(i.e.. in line 19). no erasures are made.

The basic property of the read-when-clean rule is that a
register is erased only if it is necessary. For example, if a
subtree does not contain any claimed ID. then none of its
nodes (except the root, possibly) is accessed.

3.2 Analysis

We now state the correctness of the protocol given in Figure
1. Due to lack of space, we only sketch the main arguments
of the proof.

Theorem 1 The algorithm in Figure I produces, upon ter-
mination, unique IDS in the range { 1, . . . , n}. Moreover. it
terminates with probabilily 1, and its expected termination
time is O(1og n).

We call a tentative ID value unique if at most one process
claims it. For the following lemma, recall that N = c . n.

Lemma 1 Whenever a process chooses a new value for
t e n l - I D , this value is unique withprobabiliryat feast 1 - t.

The next lemma states the essential property that guaran-
tees the correctness of the termination detection mechanism.

Lemma 2 Ifan ID is claimed at some state of the execution,
then it remains claimed from that point on.

Proof Sketch: The lemma is immediate for IDS that are
unique for the remainder of the execution. Now suppose
that two or more processes claim some ID. Observe that by
the code, whenever a collision is detected, the value in the
register is not changed, and that a process may change its
tenrJD only after reading. Therefore, at any time, the last
process to write the register claims that ID.

The following lemma shows that when a process exits the
main loop, there are n distinct claimed IDS.

I

Lemma 3 I f a process rea& some value U at some D[i, j]
for j 1 1, then the number of claimed IDS in the range
(i - 1). 2j + 1,. . . , i .2J at that time is at kustu.

Proof Sketch By induction on the levels. Consider D[i , 11.
for 1 5 i 5 N / 2 . If a process reads some value U at that
location. then the “read when clean” rule ensures that some
process wrote that value U. For level 1, this means that
some process has detected that U of the IDS { 2i - 1,2i} are
claimed. By lemma 2 and the “read when clean” rule, there
are indeed at least U claimed IDS at that segment at any point
after U was written at D[i, 11. A similar argument can be
applied to higher levels as well. 1

We now state the main lemma needed for the correctness
of the collision detection mechanism.

Lemma 4 Suppose k > 1 processes claim the same ID at
some state at time t 2 1. Then there exist constants p, p > 0
such that in the following 18 time units, at least pk of these
processes choose a new tent-ZD with probability at least

Proof Sketch If one of the processes has terminated, then
by Lemma 3 we are done. So suppose now that none of the
processes has terminated. Notice that a process completes
a loop in at most 9 time units (counting read as two steps,
due to the read-when-clean mechanism). Consider the time
interval [t + 9, t + 181. Let k’ be the number of processes
that claimed the ID and accessed its register in that interval.
If k’ 5 (1 - p)k, we are done.

We now focus on the case where k’ > (1 - p)k processes
accessed the variable in [t + 9, t + 181. Denote the sequence
of accesses to the claimed variable in this time interval by
a1 ,a2, . . . , and denote the first access ofprocess pj by a i j ,

for 1 5 j 5 k’. Consider the pairs of events a i j , aij-1, for
all j such that ai,- 1 is defined. In other words, we consider
the first access of pj and the access immediately preceding
it. Note that Uij-1 is an action of some process other than
pj, by definition of ai j . Now, consider the following events:

1 -pk.

ai,-1,f%,ai,-llai,, . * . , a i , ~ k , / 2 , - l I a i 2 ~ k , / ~ , .

We first claimthat all these events are distinct. This is easy to
see since between aiaj and ai2(j+,) there must occur ai,+, .
We now argue that Pzj chooses a new t e n t A I with some
constant probability p’ > 0, for 1 5 j 5 Lk’/2J. To see this
first notice thatpzj does not perform anerasure action since it
has already accessedthe the register in the previous iteration
of its main loop. Also, with some positive probability ai,, -
is done by another process, that wrote a random signature
different thanp2j’s. andyzj reads it. The crucial observation
here is that the obliviousness of the protocol guarantees that
all these occur independently, and therefore the probability
of the intersection is a positive constant. Finally, we argue
that the [k’ /2J events of processes p2j detecting a collision

are also independent, which follows from the fact that all the
events involved are distinct. The result follows by applying
Chemoff bound (see. e.g.. [AS91]).

Using Lemma 4. we obtain the following result.

Lemma 5 @er O(1og n) expected time units, the number
of claimed IDS is n.

Theorem 1 is a direct corollary of Lemmas 5. 3 and the
following easy lemma.

Lemma 6 I f the protocols reaches a state with n claimed
IDS, then in O(1og n) time units all processes exit the main
loop with correct values in accessed tree registers.

To conclude the analysis of Algorithm 1, we remark that
the size of the shared space (in bits) is

2 N + E -
level=l

The first term is for the level 0 registers (each of size 2 bits).
Each register at level leuel, for leuel > 0. needs to hold
values in the range 0..2’eve1, which implies size of level + 1
bits. The number of registers at level level is N/2lever.

3.3 Dynamic Protocols

Consider the dynamic setting. where processes may join and
leave the system dynamically. In this case, the protocol only
has a bound on the number of processes that may be active
simultaneously. As proved in Section 4, such a protocol
cannot terminate (Theorem 3). We therefore relax the cor-
rectness requirement as follows. We require that if processes
stop joining the system, then the IDS in the output registers
will eventually stabilize on distinct values.

The algorithm of Figure 1 can serve as the basis for ef-
ficient dynamic protocols as follows. First, we can simply
repeat the main loop forever, and interleave in it repeated
rank calculation (i.e.. performing one step of the parallel
prefix computation in each iteration of the main loop). This
yields a dynamic protocol that stabilizes in O(log N) time
on the names { 1, . . . , n}, for the actual number n of active
processes so long as N 2 c . n for some c > 1.

Another simplification can be done if we do not care that
the iDs will be exactly the set { 1, . . . I n}. Specifically, we
can get rid of the counting mechanism altogether. Moreover,
there is no need for the “read when clean” rule any more. The
algorithm then reduces only to an infinite collision detection
procedure. The simplified algorithm is given in Figure 2. We
remark that the algorithm is. in fact, self-stabilizing: the IDS
will eventually stabilize on unique values regardless of the
initial state of the system. The correctness of the algorithm
is stated in the theorem below.

155

Theorem 2 The algorithm in Figure 2 stabilizes in
O(log N) expected time units with all IDS unique, assuming
that N 2 c . n forsomec > 1.

The detailed analysis of the algorithm uses ideas similar
to the analysis of the algorithm of Figure 1 and is omitted.

Shared Variables
D : a vector of N bits

Local Variables
signature : a bit
ID : ourput value

code
1 repeat forever
2
3
4 or. withprobability 1/2, do
5
6
7 signature + D[ID]

either, with probability 1/2, do
D[ID] +- signuture + rundom((0 , l))

if signature # D[ID] then
ID +- r u n d o m ((1 , . . . , N })

Figure 2: Simple dynamic algorithm for PIP.

4 Necessary Conditions for Solving PIP
In this section we show that in the read-write model, no ter-
minating algorithms exist for PIP if either n is not known
in advance, or if the schedule is adaptive. We shall also
argue that there is no protocol for PIP that terminates in
o(1og n) time. All these impossibility results are based on
the observation that at least one of the processes needs to
“communicate” (not necessarily directly) with all the other
processes before termination. We remark that this observa-
tion translates fairly easily into rigorous proofs of the time
lower bound and the necessity of knowledge of n; the proof
of impossibility for adaptive adversaries is more involved.

We analyze the protocols for PIP in terms of Markov
chains [Fe168]. Consider a single process taking steps ac-
cording to a given PIP protocol. (Even though we might have
n > 1, we consider only one process taking steps without
interference of other processes.) That process can be viewed
as a Markov chain, whose state is characterized by its local
state and the state of the shared memory. We shall represent
that Markov chain as a directed graph, whose nodes are the
states of the Markov chain, and a directed edge connects two
nodes iff the probability of transition from one to the other
is positive. Given a protocol P for PIP, this Markov chain
is completely determined. Note that the symmetry condition
implies that all processes have identical Markov graphs. In
the sequel, we denote the graph corresponding to a protocol

P by Gp, and we shall use the terms ‘‘states” and “nodes”
interchangeably. This graph has possibly many nodes with
no incoming edges (called hereafter source nodes), that cor-
respond to the possible initial states of the system. All these
states have the same local portion, but they may differ in
the state of the shared memory, due to the dirty memory
assumption.

We start with a general lemma for PIP in the read-write
model.

Lemma 7 Let s be any reachable node in Gp. and let s*
be the global state of the n-process system with the same
shared state portion (IS in s, and such that the local states
of all processes are identical to the local state portion in
s. Then there exists an oblivious schedule under which the
system reaches s* with positive probability.

Proof: We shall show that the “round robin” schedule works.
Let SO be a source node in Gp from which s is reachable.
We prove the lemma by induction on the distanced of s from
so in Gp. The base case, d = 0, follows (with probability
1) from the symmetry requirement for PIP: s* is the state
where the shared memory is in the same state as in s, and
all the processes are in the same state as in s. For the
inductive step, suppose that s is at distance d + 1 from SO.

Let s’ be the node in Gp which is reachable in d steps from
the S O , and such that s is reachable in one step from s’.
By the inductive hypothesis, the global state corresponding
to the symmetric combination of the s’ nodes is reachable
with some probability U > 0. By the definition of Gp. s is
reachable in a single step of process pi. with some probability
p > 0, for all 1 5 i 5 n. Now consider scheduling exactly
one step of each process. Since the processes take their steps
when they are in identical local states, it must be the case that
they either all read or all write in their respective additional
step. Hence, their steps cannot influence one another, which
means that the probability distributions of their next state
are independent. Therefore, with probability ap” > 0, the
global state S * , is reached, and the inductive step is complete.

Notice that Lemma 7 holds even for infinite state protocols
(so long as no zero probability transitions are ever taken).

Using Lemma 7, we can now prove the first necessary
condition for Las-Vegas PIP protocols. We shall prove a
slightly stronger result, namely that even termination with
probability 1 is impossible in these conditions.

Theorem 3 There is noprotocolfor PIP that terminates with
probability 1 and works with unknown number of processes,
even for oblivious schedules.

I

Proof: By contradiction. Suppose, for simplicity, that P
works for n = 1 and n = 2. (The argument extends directly
to arbitrary different values of n.) We argue that in this case,
P cannot terminate when run with a single process. For

I

I I

suppose not: let p be any terminating execution in which
only one process takes steps. By Lemma 7, there exists
an execution p‘ of positive probability with two processes
such that both processes reach the same state as in the end
of p. But since the last state in p is a terminating state, we
conclude that both processes terminate in p‘, and since they
are in identical local state, they must have the same output
value. a contradiction to the uniqueness requirement.

Again, we remark that Theorem 3 holds also for infinite
memory protocols.

We now turn to consider the case of adaptive adversary.
Intuitively. the adaptive adversary picks the processes to take
step based on the history of the system. or more precisely
on the history of the shared portion of the system. (The ad-
versary has no access to in local state of the processes.) The
following theorem implies that there is no finite-state Las-
Vegas protocol for adaptive adversaries. Again, we prove
that no protocol for PIP can terminates with probability 1
under these conditions.

I

Theorem 4 There is no finite protocol for the Processor
Zdentity Problem that terminates with probability 1 if the
schedule is adaptive, even i f n is known.

P m f i By contradiction. Suppose that a given protocol P
terminates with probability 1. Then for all E > 0 there exists
Tf such that the probability of P terminating in T, or less
time units is at least 1 - E. We shall derive a contradiction
by showing that there exists EO > 0 (that depends only on
P and n). such that for any given time T. there exists an
adaptive schedule in which P cannot terminate in T time
units with probability greater than 1 - EO.

The our strategy, as in the proof of Theorem 3, is to keep
the processes “hidden” from each other. For simplicity of
presentation, let us consider the case of n = 2. The proof
can be extended to an arbitrary number of processes in a
straightforward way.

Our first step is to decompose the corresponding Markov
chain into irreducible chains. In graph theoretic language,
consider the Markov graph Gp: it is a directed graph; we
decompose it into strongly-connected components. That
is, we partition the nodes into equivalence classes (“strong
components”), such that two nodes s and s‘ are in the same
class if and only if there is a directed path in Gp from s to
s‘ and from s‘ to S. Given this decomposition, we define
a terminal component to be a strong component such that
no other component is reachable from it. (We remark that
terminal components are the irreducible components of the
given Markov chain.) Notice that the existence of terminal
components in the Markov graphs is guaranteed by the fact
that the number of nodes in Gp (Le., the number of states of
the protocol P) is finite. We now use a simple fact from the
theory of Markov chains.

Lemma 8 Let s be a state in a terminal component of Gp,
and let s* be any global state that extendr s with respect
to some process pi. Then for all 7 < 1 there exists a
positive integer M,. such that in an execution that starts at
s* and consists of M, steps of pi alone, s* occurs again
with probability at least 7 .

PnmC: The state of a process pi in an execution that starts
from a state in a terminal component, and in which only
pi takes steps, is an irreducible Markov chain. The lemma
follows from the fact that for a finite irreducible Markov
chain, the expected recurrence time of any state is finite.

Lemma 8 gives rise to the following immediate corollary.
I

Corollary 9 Let s be a state in a terminal component of Gp.
let s* be any global state that extends s with respect to some
process p i . and let ii be the state of the shared portion of
s*. Then for all 7 < 1 there exists a positive integer M,,
such that in an execution that starts at s* and consists of M,
steps of pi alone, ii occurs again with probability at least 7 .

We now continue with the proof of Theorem 4. by de-
scribing a complete strategy of an adaptive adversary, given
a protocol P and a time bound T. First, an arbitrary reach-
able state s in a terminal component of Gp is chosen. (This
can be done since the protocol completely characterizes Gp.)
The adversary then uses the round-robin schedule outlined
in the proof of Lemma 7. which guarantees, with some prob-
ability a > 0. that the corresponding symmetric global state
s*. in which all the processes are in the same local state
as in s. and the shared memory is in the same state as the
shared portion of s. We shall show that for any given time T.
there is an adaptive schedule such that the protocol fails to
terminate in T time units with probability greater than a/5.

We do this as follows. Let 7 = 1 - 1/2T. Denote
the state of the shared portion in s* by 6. The adversary
now lets p1 take steps (at least one) until the values of the
shared variables are again as specified by ii. or until M,
steps (as obtained from Corollary 9) have been taken. This
can be done since by our assumption that the adversary is
adaptive, the adversary can “see” when 6 recurs. Moreover,
Corollary 9 guarantees that this process will succeed with
probability at least 7. When ii recurs, the adversary lets p2
take steps (again, at least one and no more than M,), until
the configuration of the shared memory is ii again. This can
be done by the same reasoning as for p1. Notice that now,
p1 and p2 are not necessarily in the same state; however, p2
is completely “hidden” from p1, since the shared memory is
in exactly the same state in which p1 stopped taking steps.
Therefore, the adversary can resume p l now, and p1 must
act as if it is the only process in the system.

Observe that this procedure of letting one process take
steps until 6 is reached and then switch to the other process,

157

can be repeated 2T times (thus resulting in a schedule with
running time T). with probability of success at least

We can now complete the proof of Theorem 4. We argue
that for any given T > 0, using the schedule specified above
we get. with probability at least EO = a/5. an execution in
which neither p l nor p2 can terminate in T time units. This
is since with probability at least a. S* is reached, and with
probability greater than 1/5, once s* is reached, p1 and y2
remain “hidden” from each other for T time units. Now we
claim that termination of any of the processes in this execu-
tion implies a contradiction: since p1 (say) did not observe
any action of p2, it follows that from the point of view of p1 ,
there exists an indistinguishable execution p in which p2 is
advancing in “lockstep” with p l , maintaining symmetrical
local state. If p1 terminates in the given execution, then in p
p l and p2 terminate also, violating the uniqueness require-
ment. Since the uniqueness property must be met always,
we have reached a contradiction.

To show the necessity of the bounded space condition in
Theorem 4, we have the following theorem.

Theorem 5 There exists an unbounded-space algorithm for
PIP that terminates with probability 1 under any fair adver-
sary.

1

Shared Variables
2) : a vector of N integers. initially all 0

Local Variables
ID
signature : an integer, initially 0

: output value, initially 7(171d0m({ I , . . . , N })

1 repeat
2
3
4
5 signature t 0
6 or. with probability 1/2, do
7 V [I D] t signature c

8 until I {i : D[i] # 0) I = n
9 ID c I {i : D[i] # 0 andi 5 tfxt-ID} I

either, with probability 112 do
if signature # D[ZD] then
ID + r a n d o m ({ l , . . . , N })

c (2 . siynuture + ru71d07n({O, I}))

Figure 3: Unbounded space algorithm for PIP under any
adversary.

The proof consists of an unbounded protocol; the protocol
is a simple variant of our basic protocol, where the contents

of each register is simply a complete history of all the random
signatures. We present a simplified version of it in Figure 3.

Our last result for this section is the simple observation
that any protocol for PIP requires Q(log n) time units.

Theorem 6 There is no protocol for PIP (including Monte-
Carlo protocols) that terminates in o(1og n) expected time.

Proof Sketch We shall show that for any protocol there
exists a schedule such that the expected running time under
this schedule is at least log n. First, for any given execution
of a protocol, we define the set of influencing processes for a
processp; atstatest.denotedSi(t),foralli andt. Thesetis
defined inductively as follows. At the initial state, we define
Si (0) = {pi} for all i. Suppose now that Si (1’) is defined
for all the processes and all steps t’ < t , and consider the
action at leading to state st . If at is a write action, then
Si (t) = S;(t - 1) for all i. If ai is a read action of a process
p k . say, let y j the last process that wrote that register (if
such p j exists), and suppose this write occurred at action
u w . InthiscasewedefineSk(t) = S k (t - l)USj(w),and
Si(t) = Si(t - 1) for all i # k. If no suchpj exists, define
Si(t) = Si(t - 1) for all z. Intuitively, the influencing set
of a process at a state is the set of all processes that have
communicated with that process directly or indirectly.

We claim that in any given execution p of a protocol for
PIP, a process may terminate only when its influencing set is
{ 1, . . . , n}. For suppose not, i.e.,pi terminates at stept with
p j 4 Si(t). Then there exists another positive-probability
execution p‘. indistinguishable from p for p i , in which p j
has the same random choices as y; has, and in which pi and
p j advance in lockstep. Clearly, yi andpj maintain identical
local state in p’. which in turn is identical to the state of y;
in p. Hence termination of pi in p implies termination of pi
and p j in p’ with the same output value, a contradiction to
the uniqueness requirement.

Now consider the executions resulting from the round
robin schedule, where each step takes exactly one time unit.
An easy induction on time shows that in these executions,
ISi(t+ 1)1 5 2lS;(t)l for all processespi andstepst. Since
we must have Is;(t)l = n at the terminating state for all
processes, we conclude that the expected worst-case running
time of every protocol for PIP is C?(log n). 1

5 PIP and the Read-Modify-Write
Model

In this section we give positive and negative results for PIP
in the read-modify-write model. First, we show that in this
model, PIP can be solved deterministically using constant
size memory, under any fair schedule. This result should be
contrasted with the impossibility results of Theorems 3 and
4 for the read-write model. Our second result for this section

shows that if the initial state of the protocol is arbitrary (i.e.,
self-stabilization model). then there is no protocol (including
randomized protocols), that solves PIP with probability 1.
This result uses the technique of Theorem 4.

Let us start with an informal description of a protocol for
PIP that uses log ZV bits. We will then derive our constant-
space protocol. The protocol using log N bits is trivial: the
shared variable is used as a counter, or a“ticket dispenser”,
in the following sense. When a process enters the system, it
accesses the variable, takes its current value to be its ID, and
in the same step, increments the value of the variable by 1. It
is straightforward to verify that this indeed produces unique
IDS at the processes under any fair schedule.

In our constant space protocol, we still employ this “serial
counter” approach. However, to reduce space, we shall use
the shared variable as a “pipeline” to transmit information
from one process to another, while the relevant infonna-
tion is maintained in the local memory of the processes.
Specifically, there will be some process “in charge” at any
given time such that this process knows the current value of
the counter. Whenever a new process enters the system, it
writes a request message in the shared variable. The process
in charge responds by transmitting the current contents of
the counter, bit by bit, with an acknowledgment for each bit.
By the end of this procedure, the new process has the value
of the counter, it increments it by 1, takes it to be its ID, and
becomes the process in charge. This serial style dialog will
not be interrupted by other processes, by the read-modify-
write assumption. Also, we assume that the shared variable
is initialized with a special value, that tells whoever accesses
the variable first, that it is in charge, and the counter value is
0. The formal specification of the algorithm is omitted from
this abstract. We summarize in the following theorem.

Theorem 7 In the read-mod@-write model, there exists a
de terminis tic protocol for PIP that requires a shared variable
of3 bits and works under any fair schedule.

We now state the impossibility result for Las-Vegas PIP
protocols in the read-modify-write model.

Theorem 8 There is no finite state. self-stabilizing proto-
col that solves PIP in the read-modify-write registers with
probability 1 ifthe schedule is adaptive and n is unknown.

The proof is nearly identical to the proof of Theorem 4,
and we therefore omit it. We remark only that the self-
stabilization assumption serves as a substitute for Lemma 7,
which does not hold in the read-modify-write model.

Acknowledgment
We thank Oded Goldreich for many insightful comments on
an earlier draft of the paper. The third author would like
to thank also Nancy Lynch and Yishay Mansour for many
helpful discussions.

References

[ABD+87] Hagit Attiya, Amotz Bar-Noy. Danny Dolev,
Daphne Koller, David Peleg, and Riidiger Reis-
chuk. Achievable cases in an asynchronous env-
iomment. In 28th Annual Symposium on Fom-
ahtwns of Computer Science, White Plains, New
York, pages 337-346, 1987.

[AS911

[Bur81 J

[c m 7 1

~ 3 9 2 1

[Fe1681

[JS85]

[Lam861

[Lei911

[LP90]

[LT89]

[Tan811

[Ten901

Noga Alon and Joel H. Spencer. The Probabilis-
tic Method. Wiley Interscience, 1991.

James E. Burns. Symmetry in systems of asyn-
chronous processes. In 2lsrAnnual Symposium
on Foundations of Computer Science, Syracuse,
New York, pages 169-174,1981.

Benny Chor, Amos Israeli, andMing Li. On pro-
cessor coordination using asynchronous hard-
ware. In Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Com-
puting, pages 86-97, 1987.

Omer Egecioglu and Ambuj K. Singh. Nam-
ing symmetric processes using shared variables.
Unpublished manuscript. 1992.

W. Feller. An Introduction to Probability The-
ory and its Applications, volume 1. Wiley, 3rd
edition, 1968.

Ralph E. Johnson and Fred B. Schneider. Sym-
metry and similarity in distributed systems. In
Proceedings of the 4th ACM Symp. on Principles
of Distributed Computing. pages 13-22. 1985.

Leslie Lamport. On interprocess communica-
tion (part II). Distributed Computing. 1(2):8&
101, 1986.

Tom Leighton. Introduction to Parallel Algo-
rithms and Architectures. Morgan-Kaufman,
1991.

Richard J. Lipton and Arvin Park. The processor
identity problem. Info. Proc. Lett., 36:91-94.
October 1990.

Nancy A. Lynch and Mark R. Tuttle. An intro-
duction to input/output automata. CWI Quar-
terly. 2(3):219-246, 1989.

Andrew Tannenbaum. Computer Networks.
Prentice Hall. 1981.

Shang-Hua Teng. The processor identity prob-
lem. Info. Proc. Lett.. 34147-154, April 1990.

