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Abstract 
One of the fundamental problems in distributed computing 
is how identical processes with identical local memory can 
choose unique IDsprovided they canpip a coin. The variant 
considered in this paper is the asynchronous shared memory 
model (atomic registers). and the basic correctness require- 
ment is that upon termination the processes must always have 
unique IDS. 

We study this problem from several viewpoints. On the 
positive side, we present the first hs-Vegas protocol that 
solves the problem. The protocol terminates in (optimal) 
O( log n) expected time, using O( n) shared memory space, 
where n is the number of participating processes. On the 
negative side, we show that there is no Las-Vegas protocol 
unless n is known precisely, and that nofinite-state Us-Vegas 
protocol can work under schedules that may depend on the 
history of the shared variable. For the case of arbitrary 
adversary, we present a Lus-Vegas protocol that uses O( n)  
unbounded registers. 

1 Introduction 

Background and Problem Statement. In the course of 
designing a distributed algorithm, one has often to confront 
the problem of how to distinguish among the different par- 
ticipating processes. One attractive (and sometimes realis- 
tic) solution is simply to deny the existence of a problem 
altogether: assume that each process is fabricated with a 
unique identifier. This assumption seems especially reason- 
able where the processes are physical processors, and an ID 
which is guaranteed to be unique is “hardwired” in them (see, 
for example, the IEEE 48 Bit Standard [Tan81]). In some 

‘E-mail: kutten@watson.ibm.com. 
tE-mail: rafail@melody.berkeley.edu. Supported by an NSF 

postdoctoral fellowship and ICSI. Research partly done while visiting IBM 

cases, however, one cannot get away with this approach. For 
instance, the processes might be virtual (i.e., software) pro- 
cesses that are spawned using the same code, and thus they 
are created identical. In this setting. the processes typically 
run on the same physical machine, and the communication 
among them is realized via shared memory space. The prob- 
lem of giving distinct names to identical processes in such an 
environment is known by the name “Processor Identity Prob- 
lem” [LP90]. In the sequel we denote it by PIP for short. We 
remark that PIP, due to its fundamental role, has applications 
in some of the most basic distributed tasks, including mutual 
exclusion, choice coordination, and resource allocation. 

The formal specification of the problem is as follows. We 
have a system with n processes, and for each process there is 
some designated private output register. We assume that the 
output register is capable of storing N 2 n different values. 
A protocol for PIP must satisfy the following conditions. 

Symmetry: The processes execute identical protocols with 
identical initial state. 

Uniqueness: Upon termination, all the values in the output 
registers are distinct. 

In this paper, we shall study the problem mainly in the read- 
write registers model [Lam86], where in a single action, a 
processor can either read or write the contents of a single 
register and perform some local (probabilistic) computation. 
(This model is also known by the name of “atomic reg- 
isters”.) Clearly, in this model no deterministic protocol 
can solve PIP. For randomized protocols, we need a refined 
correctness requirement. Consider, for instance, the Monte- 
Carlo model, where the algorithm may fail with some low 
probability. If we are willing to tolerate erroneous termina- 
tion, then there exists a trivial solution that does not require 
any communication: each process chooses independently a 
random ID; the error probability is controlled by the size of 
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the ID space. Many applications, however, cannot tolerate 
any probability of error. In this paper we focus exclusively 
on the case where erroneous termination is outlawed. For 
this variant, a Monte-Carlo solution may guarantee that with 
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high probability, the protocol terminates and provides unique 
IDS; in the case of failure, the protocol may never terminate. 

The most restrictive probability model is the Lus-Vega 
model, in which not only the protocol is required to produce 
a correct answer always, but also its running time should 
have finite expected value. In this paper we shall study the 
necessary and sufficient conditions for the existence of Las- 
Vegas protocols for PIP. 

Previous Work. Symmetry breaking is one of the well- 
studied problems in the theory of distributed systems. For 
example, see [Bur81. JS85. CIL87, ABD+87]. The Pto- 
cessor Identity Problem where errors are forbidden was first 
defined by Lipton and Park in [LBO]. Their formulation has 
two additional requirements. F’t. that the initial state of 
the shared memory is arbitrary (the “dirty memory” model); 
and second, that upon termination, the IDS constitute exactly 
the set { 1, . . . , n}. In [LBO], Lipton and Park also give a 
Monte-Carlo solution that for any given integer L 2 0 uses 
O(Ln2) shared bits and terminates in O(Ln2) time with 
probability 1 - cL, for some constant c < 1. This proto- 
col is Monte-Carlo, since failure results in an execution that 
never terminates. The protocol of [LP90] was subsequently 
improved by Teng Fen901. His protocol uses O(n log2 n) 
shared bits, and gets, with probability 1 - l / nc  (for any con- 
stant c > 01, running time of O(n log2 n). AS in [LPWI, 
however. in the event of failure, the protocol never termi- 
nates. Recently. Egecioglu and Singh [U921 have obtained 
independently a Las-Vegas protocol for PIP that works in 
O(n7) expected time using O(n4) shared bits. 

Our Results and Organization of the Paper. In this work, 
we give tight positive and negative results describing the con- 
ditions under which the Las-Vegas Processor Identity Prob- 
lem can be solved. Fist, we show how to solve the problem: 
in Section 3 we give the first Las-Vegas protocol for PIP in 
the read-write registers model. This protocol improves on all 
known protocols simultaneously in termination probability, 
running time. and shared space requirement. Specifically, 
the protocol terminates in O(1ogn) expected time. using 
O( n) shared memory space.’ As in the original formulation 
of PIP, the protocol has the nice features that it works in the 
dirty memory model, and that upon termination the given 
names constitute exactly the set (1, . . . , n}. The protocol 
works under the assumptions that n, the number of partici- 
pating processes, is known. and that the schedule is oblivious 
(i.e.. the order in which processes take steps does not depend 
on the actual execution). We also consider the dynamic case, 
where processes may join and leave the system dynamically. 
Here, we relax the problem specification and require only 
that if no process joins the system for sufficiently long time, 
then eventually the IDS stabilize on unique values. We give a 

We remark that the protocol presented in this papex uses registers of 
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simple variant of our protocol for this case, which stabilizes 
in O(log n) expected time. 

Next, we prove that the assumptions of Section 3 are 
actually necessary to obtain a Las-Vegas protocol for PIP. 
Specifically, in Section 4 we prove the following results. 
First, we prove that there is no Las-Vegas protocol that solves 
PIP if only a bound an n is known in advance, even if 
the schedule is oblivious. We also show that any protocol 
for PIP must run in R(1ogn) expected time if errors are 
disallowed. Most interestingly, we show that even if n is 
known, there is no finite-state Las-Vegas protocol for PIP 
when the schedule is allowed to be adaptive. i.e.. when an 
adversary can decide which process moves next based on 
the history of the shared variables. This impossibility is 
complemented with a protocol for PIP that works for any 
fair scheduler - using unbounded space. The interpretation 
of these results is that in the Las-Vegas model, one can 
have either a bounded space protocol, or a protocol which is 
resilient to arbitrary adversaries, but not both. 

Finally. in Section 5, we consider the read-modi>-write 
model, in which a processor can, in a single indivisible step, 
access a register and update its value in a way that may 
depend on the current contents of that register. We show 
some similarities and some deep differences between this 
model and the model of read-write (i.e.. atomic) registers. 
Specifically, we show that in this model PIP can be solved 
deterministically using only 3 shared bits under any fair ad- 
versary, if the system is initialized properly. On the other 
hand, there is no finite-memory randomized protocol that 
solves PIP if the initial state is arbitrary and the adversary is 
adaptive. 

We start with a brief description of the models we consider 
in Section 2. 

2 TheModel 

Our basic model is the asynchronous shared-memory dis- 
tributed system. Such a system is characterized by a set of n 
processes denoted by p1,  . . . , p,,, and m shared registers. or 
variables, denoted by rl,  . . . , r,. The processes are mod- 
eled as probabilistic state machines, and the shared registers 
may hold values from some specified domain. All processes 
can read and write all the shared registers. A slate of the 
system is completely determined by the states of the individ- 
ual processes and of the shared registers. The state may be 
altered by processor actions. We assume that in every state, 
at most one action is enabled in each process. 

Action Models. In this paper we shall be concemed 
mainly with the read-write model, where each action consists 
of an access to the shared memory (which is either aread or a 
write of a shared variable), and some (possibly randomized) 
local computation. We shall also discuss the reud-modify- 
write model, where a process can, in a single indivisible step, 
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obtain the value of a shared variable, rewrite that variable as 
a function of the process local state and the current value, 
and perform some local (probabilistic) computation. 

Asynchronous Executions and Adversaries. Following 
the IO Automata model of Lynch and Tuttle. we model an 
execution of a system as an altemating sequence of states 
and actions, where in each step, one process makes an action 
to yield the next state (cf. [LT89]). To model asynchrony, 
we assume that the choice of which process takes the next 
step is under the control of an adversary. There are two 
types of adversaries we consider in this work. The oblivious 
adversary is simply an infinite sequence of processes names. 
The adaptive adversary is defined by a function that takes 
a finite sequence of shared memory states, and produces a 
process name. Intuitively, the oblivious adversary commits 
itself to the order in which processes are scheduled to take 
steps oblivious to the actual execution, while the adaptive 
adversary may observe the shared memory andchoose which 
process to schedule next based on this knowledge. The only 
general restriction we impose on the adversaries is that they 
must be fair. i.e.. (in our context) each process must be 
scheduled to take steps infinitely many times. 

Time Complexity. To measure time in the asynchronous 
model, we assume that all processes take at least one step 
(either aread or a write) in each time unit. The executions are 
completely asynchronous, i.e., the processes have no access 
to clocks, and the “real time” notion is assumed here only 
for the purpose of analysis. 

3 A Solution for the Processor Identity 
Problem 

In this section we give a protocol that solves the Proces- 
sor Identity Problem in the asynchronous shared memory 
model. Our protocol uses o( n) shared bits, and terminates 
in O(1ogn) expected time, where n is the number of par- 
ticipating processes. We solve the problem in its original 
formulation [LP90], i.e.. assuming the dirty memory model, 
and producing as the final names exactly the set { 1, . . . , n}. 
We remark that our protocol relies on the assumptions that 
n is known in advance, and that the schedule is oblivious. 
(We show in Section 4 that both assumptions are necessary 
to ensure termination with probability 1.) 

3.1 A Las-Vegas Protocol for PIP 

We begin with an intuitive description of the protocol. In the 
execution of the protocol, each process proceeds in a loop as 
follows. At every given point in the execution of the loop, 
each process claims some “tentative” ID, which it repeatedly 
checks to verify that no other process claims. If a process 
detects a competitor for its claimed ID (we call this case a 
collision). the process chooses a new ID at random. The 

loop terminates once the process can safely deduce that all 
processes claim distinct IDS. 

The protocol is based on a few implementation ideas, 
designed to solve the problems of collision detection and 
termination detection. To ease exposition, we first assume 
that the memory is initialized with a special value A. We 
then explain the extensions that enable the algorithm to work 
with dirty memory, and get the final IDS to be { 1, . . . , TI}. 
The full protocol is presented in Figure 1. 

Collision detection (lines 1-8). To detect an ID claimed 
by more than a single process, the protocol executes repeated 
checking as follows. We have in the shared memory a vector 
of N registers, where N = c . n for some constant c > 1. 
Each register corresponds to a particular tentative ID. namely 
the index of that register. During a checking phase, a process 
either reads the register corresponding to its tentative ID. or 
writes it. The choice between the altematives is random. If 
the process writes, it writes a random signature: a signature 
is simply a random bit, which is drawn independently anew 
whenever the process signs. The value of the last signature 
is recorded in the local memory. If the process chooses to 
read, it examines the contents of the register to see if some 
other process has changed it since its last own write. If a 
different signature is detected, then the process concludes 
that its claimed ID gives rise to a collision. In this case 
the process chooses a new tentative ID uniformly at random 
from { 1, . . . , N } .  and then proceeds with this new ID to the 
next iteration. If no change was detected, then the process 
proceeds to the next iteration. 

Enninafion detecfion (lines 9-18) It is important to ob- 
serve that once an ID is claimed, it will remain claimed: at 
any point, the last process to write a random signature at 
the corresponding register claims that ID. In other words, 
the set of claimed IDS is monotonically increasing. This 
property of the algorithm facilitates the termination detec- 
tion mechanism, that works parallel to the collision detection 
mechanism. The idea is to count the number of claimed IDS; 
the monotonicity property ensures that a process can only 
underestimate the number of claimed IDS, and thus, when 
the estimate is n, the collision detection can stop. We shall 
also guarantee that after the set of claimed IDS has stabilized, 
eventually all the claimed IDS will be detected as such. The 
basic idea in counting the number of claimed IDS is to fan- 
in the local sums is a “tree addition” fashion. Specifically. 
we use the following implementation strategy. The vector of 
registers used for the collision detection is treated as “level 0” 
(i.e., the leaves) of a tree, denoted D [ i ,  01. where 1 5 i 5 N 
is the index that corresponds to a tentative ID. The other 
levels are defined in the natural way as follows. For each 
“leaf‘ register D [ i ,  01 we define its ancestor register at level 
j ,  for all 0 5 j 5 log N ,  by 
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Shared Variables 
V : a complete binary tree of height [log NI;  registers are indexed by location and level 

Local Variables 
tent-ID : tentative ID, initially random((1,. . . , N } )  
sagnaiure : takes values from { 0,  1 ,  A}, initially A 
ID : output value 
level : takes values from 0.. log N ,  initially 0 
seg -left. 
seg-right. 
seg-tot : take values from O..N 
M-image : local view of the status of the sharedmemory locations, initially all dirty 

(retains state of claimed register) 

(current level of responsibility for summation) 

Cfor counting number of claimed IDS in segment) 

Shorthand 
random(S) : 

= {  0, i f v = A  

E 

returns a random element of S under the uniform distribution. 
1 ,  if level = 0 and v # A 
U ,  iflevel # Oandv # A  (4 

WRITE(T, v )  E [M-image(r) + clean; contents(r) t v]  
READ(r) [if M-image(r) = dirty then WRITE(r, A)]; [return contents(r)] 

(write v in register r )  

- Code 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
I1 
12 
13 
14 
15 
16 
I7 
18 
19 

mpecrt 
either, with probability 1/2, do 

or, with probability 1/2, do 

(write and record random signature) 

(read and check for collision) 
D[tent-ID, 0] t signuture t random((0 ,  I}) 

ifD[tent-ID, 01 4 {signature,A} then 
tent-ID + random({ 1 , .  . . , N } )  
signature t A 
level c 0 

if level > 0 then 

i f  level < log N then 

(write sum of entries from lower level segment) 

(read the segment in the current level) 
ancestor(ten2-ID, level) + seg-tot 

seg-left c left entry of segment of ancestor(tent-ID, level) 
seg-right + right entry of segment of ancestor( tent-ID, level) 

seg-tot t (seg-right) + (seg-Iefl) 
level t (level + 1) mod [log N + 11 

i f  ancestor(tent-ID, level) is thefirst non-A entry in the segment and level < log N then (verify responsibility) 
(sum up number of claimed IDS in segment) 

(start summing from the leaf again) 
(termination predicate) 

(compute rank of tent1D by parallel prep) 

else level t 0 
until D[1,  log NI = n 
ID + I {i : D[i,  01 # A and i 5 tent-lD) I 

Figure 1: Terminating algorithm for PIP in the dirty memory model, with IDS in the range { 1, . . . , n}. Accesses to the shared 
memory in lines 1-18 are interpreted by the READ and WRITE definitions. 
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The ancestor relation defines, in the obvious way, a directed 
tree whose root is D[1, log NI. The semantics of this tree is 
that each entry D[i,  level] is intended to contain the number 
of claimed IDS in the subtree rooted at that entry (i.e., all the 
JD~intherange(i-1)2’“”~’+1 . . . i .2 leUer) .  ForlevelO, any 
random signature counts as 1; only A counts as 0 (see the (.) 
notation). This is done by the following rule. The registers at 
each level j < log N are paired by the sibling relation, that 
is, pairs of entries with common ancestor in level j + 1. Call 
these pairs segments; a segment is said to be active at a given 
state if it contains an ancestor of some claimed ID. The 
tree summation proceeds by assigning the “responsibility” 
for each active segment to the “left-most” process in its 
subtree. The responsible process fills the parent entry with 
the total number of claimed IDS rooted in that parent. More 
specifically, each process reads the entry corresponding to its 
ancestor and its ancestor’s sibling (lines 12-13); the process 
deems itselfresponsible if either its ancestor’s sibling is A, or 
if the ancestor’s index is smaller than the sibling’s (line 14). If 
the process determines that it is responsible for that segment, 
then in the next iteration it will write the sumof the entries in 
that segment in the parent, and will proceed to find whether 
it is responsible for the higher segment. Notice that due 
to the asynchrony. many processes may claim responsibility 
of the same segment, thus overwriting the same entry. To 
overcome this problem, the processes refresh their entries 
in a cyclic manner: once a process reaches the level for 
which it is no longer responsible, it start working again all 
the way from level 0 up (line 17). and thus the values under 
its responsibility are re-written at least once every O(log n)  
time units. We shall show that this procedure guarantees that 
once all the collisions disappear, eventually the root of the 
tree (in our notation, D[l, log NI) will contain n. Moreover, 
at any point before all the collisions has been resolved, no 
process reads D[1, log N] = n. 

Renaming the processes (line 19). After the algorithm has 
created n distinct IDS, it is straightforward to rename the 
processes so that their names constitute the set { 1, . . . , n}  in 
additional O(log n )  time. To do that, notice that ifthe root of 
the summation tree becomes n. then clearly all the accessed 
values in the tree have stabilized to their intended meaning. 
Our method is simply to assign to each process the rank of 
its tentative ID, i.e., its index in the sorted list of the claimed 
IDS. This can be done easily using the existing tree: apply 
some kind of standard parallel “prefix sums” algorithm (see, 
e.g., [Lei91]). We remark that the processes need only work 
on active segments, and hence the running time is always 
O(log N), even if n << N (cf. dynamic protocols). 

Read when clean (shorthand notations). The algorithm 
as described above works under the assumption that all the 
memory entries are initialized with a special value A. One 
naive approach to make the algorithm work in the dirty mem- 
ory model is to first let all processes initialize the whole 
memory with A, and disregard A values while computing 
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(e.g.. detecting A is not considered a collision in line 5) .  
Informally. the correctness is maintained since each mean- 
ingful value is re-written periodically in the main loop. This 
method, although correct. is clearly much too wasteful: ev- 
eryone erase all locations, resulting in Q(n)  running time. 

A simple fix, however, reduces the time complexity dra- 
matically: We introduce a rule called “read when clean”, 
defined as follows. Each process. locally, keeps track of 
the status of each register of the shared memory. Initially, 
all registers are marked dirv at all the processes; whenever 
a process writes, it updates its local record by marking the 
written register clean . The rule observed by the algorithm 
is that a process reads only clean registers; this rule is main- 
tained by erasing the contents of a dirty register when it is to 
be read. More specifically, whenever a register needs to be 
read, its status is checked; if it is dirly, then the special value 
A is written, and only then the register is read. This rule is 
used only in the main loop; after the values have stabilized 
(i.e.. in line 19). no erasures are made. 

The basic property of the read-when-clean rule is that a 
register is erased only if it is necessary. For example, if a 
subtree does not contain any claimed ID. then none of its 
nodes (except the root, possibly) is accessed. 

3.2 Analysis 

We now state the correctness of the protocol given in Figure 
1. Due to lack of space, we only sketch the main arguments 
of the proof. 

Theorem 1 The algorithm in Figure I produces, upon ter- 
mination, unique IDS in the range { 1, . . . , n}. Moreover. it 
terminates with probabilily 1, and its expected termination 
time is O(1og n). 

We call a tentative ID value unique if at most one process 
claims it. For the following lemma, recall that N = c . n.  

Lemma 1 Whenever a process chooses a new value for 
t e n l - I D ,  this value is unique withprobabiliryat feast 1 - t. 

The next lemma states the essential property that guaran- 
tees the correctness of the termination detection mechanism. 

Lemma 2 Ifan ID is claimed at some state of the execution, 
then it remains claimed from that point on. 

Proof Sketch: The lemma is immediate for IDS that are 
unique for the remainder of the execution. Now suppose 
that two or more processes claim some ID. Observe that by 
the code, whenever a collision is detected, the value in the 
register is not changed, and that a process may change its 
tenrJD only after reading. Therefore, at any time, the last 
process to write the register claims that ID. 

The following lemma shows that when a process exits the 
main loop, there are n distinct claimed IDS. 
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Lemma 3 I f a  process rea& some value U at some D[i,  j ]  
for j 1 1, then the number of claimed IDS in the range 
( i  - 1). 2j + 1,. . . , i .2J at that time is at kustu. 

Proof Sketch By induction on the levels. Consider D[i ,  11. 
for 1 5 i 5 N / 2 .  If a process reads some value U at that 
location. then the “read when clean” rule ensures that some 
process wrote that value U. For level 1, this means that 
some process has detected that U of the IDS { 2i - 1,2i} are 
claimed. By lemma 2 and the “read when clean” rule, there 
are indeed at least U claimed IDS at that segment at any point 
after U was written at D[i,  11. A similar argument can be 
applied to higher levels as well. 1 

We now state the main lemma needed for the correctness 
of the collision detection mechanism. 

Lemma 4 Suppose k > 1 processes claim the same ID at 
some state at time t 2 1. Then there exist constants p, p > 0 
such that in the following 18 time units, at least pk of these 
processes choose a new tent-ZD with probability at least 

Proof Sketch If one of the processes has terminated, then 
by Lemma 3 we are done. So suppose now that none of the 
processes has terminated. Notice that a process completes 
a loop in at most 9 time units (counting read as two steps, 
due to the read-when-clean mechanism). Consider the time 
interval [t + 9, t + 181. Let k’ be the number of processes 
that claimed the ID and accessed its register in that interval. 
If k’ 5 (1 - p)k, we are done. 

We now focus on the case where k’ > (1 - p)k processes 
accessed the variable in [t + 9, t + 181. Denote the sequence 
of accesses to the claimed variable in this time interval by 
a1 ,a2, . . . , and denote the first access ofprocess pj by a i j ,  

for 1 5 j 5 k’. Consider the pairs of events a i j ,  aij-1, for 
all j such that ai,- 1 is defined. In other words, we consider 
the first access of pj and the access immediately preceding 
it. Note that Uij-1 is an action of some process other than 
pj, by definition of ai j .  Now, consider the following events: 

1 -pk. 

ai,-1,f%,ai,-llai,, . * . , a i , ~ k , / 2 , - l I a i 2 ~ k , / ~ ,  . 

We first claimthat all these events are distinct. This is easy to 
see since between aiaj and ai2(j+,) there must occur ai,+, . 
We now argue that Pzj chooses a new t e n t A I  with some 
constant probability p’ > 0, for 1 5 j 5 Lk’/2J. To see this 
first notice thatpzj does not perform anerasure action since it 
has already accessedthe the register in the previous iteration 
of its main loop. Also, with some positive probability ai,, - 
is done by another process, that wrote a random signature 
different thanp2j’s. andyzj reads it. The crucial observation 
here is that the obliviousness of the protocol guarantees that 
all these occur independently, and therefore the probability 
of the intersection is a positive constant. Finally, we argue 
that the [k’ /2J  events of processes p2j detecting a collision 

are also independent, which follows from the fact that all the 
events involved are distinct. The result follows by applying 
Chemoff bound (see. e.g.. [AS91]). 

Using Lemma 4. we obtain the following result. 

Lemma 5 @er O(1og n)  expected time units, the number 
of claimed IDS is n. 

Theorem 1 is a direct corollary of Lemmas 5. 3 and the 
following easy lemma. 

Lemma 6 I f  the protocols reaches a state with n claimed 
IDS, then in O(1og n)  time units all processes exit the main 
loop with correct values in accessed tree registers. 

To conclude the analysis of Algorithm 1, we remark that 
the size of the shared space (in bits) is 

2 N +  E - 
level=l  

The first term is for the level 0 registers (each of size 2 bits). 
Each register at level leuel, for leuel > 0. needs to hold 
values in the range 0..2’eve1, which implies size of level + 1 
bits. The number of registers at level level is N/2lever. 

3.3 Dynamic Protocols 

Consider the dynamic setting. where processes may join and 
leave the system dynamically. In this case, the protocol only 
has a bound on the number of processes that may be active 
simultaneously. As proved in Section 4, such a protocol 
cannot terminate (Theorem 3). We therefore relax the cor- 
rectness requirement as follows. We require that if processes 
stop joining the system, then the IDS in the output registers 
will eventually stabilize on distinct values. 

The algorithm of Figure 1 can serve as the basis for ef- 
ficient dynamic protocols as follows. First, we can simply 
repeat the main loop forever, and interleave in it repeated 
rank calculation (i.e.. performing one step of the parallel 
prefix computation in each iteration of the main loop). This 
yields a dynamic protocol that stabilizes in O(log N )  time 
on the names { 1, . . . , n}, for the actual number n of active 
processes so long as N 2 c . n for some c > 1. 

Another simplification can be done if we do not care that 
the iDs will be exactly the set { 1, . . . I n}. Specifically, we 
can get rid of the counting mechanism altogether. Moreover, 
there is no need for the “read when clean” rule any more. The 
algorithm then reduces only to an infinite collision detection 
procedure. The simplified algorithm is given in Figure 2. We 
remark that the algorithm is. in fact, self-stabilizing: the IDS 
will eventually stabilize on unique values regardless of the 
initial state of the system. The correctness of the algorithm 
is stated in the theorem below. 
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Theorem 2 The algorithm in Figure 2 stabilizes in 
O( log N )  expected time units with all IDS unique, assuming 
that N 2 c .  n forsomec > 1. 

The detailed analysis of the algorithm uses ideas similar 
to the analysis of the algorithm of Figure 1 and is omitted. 

Shared Variables 
D : a vector of N bits 

Local Variables 
signature : a bit 
ID : ourput value 

code 
1 repeat forever 
2 
3 
4 or. withprobability 1/2, do 
5 
6 
7 signature + D[ID]  

either, with probability 1/2, do 
D[ID] +- signuture + rundom((0 , l ) )  

if signature # D[ID] then 
ID +- r u n d o m ( ( 1 , .  . . , N } )  

Figure 2: Simple dynamic algorithm for PIP. 

4 Necessary Conditions for Solving PIP 
In this section we show that in the read-write model, no ter- 
minating algorithms exist for PIP if either n is not known 
in advance, or if the schedule is adaptive. We shall also 
argue that there is no protocol for PIP that terminates in 
o(1og n )  time. All these impossibility results are based on 
the observation that at least one of the processes needs to 
“communicate” (not necessarily directly) with all the other 
processes before termination. We remark that this observa- 
tion translates fairly easily into rigorous proofs of the time 
lower bound and the necessity of knowledge of n; the proof 
of impossibility for adaptive adversaries is more involved. 

We analyze the protocols for PIP in terms of Markov 
chains [Fe168]. Consider a single process taking steps ac- 
cording to a given PIP protocol. (Even though we might have 
n > 1, we consider only one process taking steps without 
interference of other processes.) That process can be viewed 
as a Markov chain, whose state is characterized by its local 
state and the state of the shared memory. We shall represent 
that Markov chain as a directed graph, whose nodes are the 
states of the Markov chain, and a directed edge connects two 
nodes iff the probability of transition from one to the other 
is positive. Given a protocol P for PIP, this Markov chain 
is completely determined. Note that the symmetry condition 
implies that all processes have identical Markov graphs. In 
the sequel, we denote the graph corresponding to a protocol 

P by Gp,  and we shall use the terms ‘‘states” and “nodes” 
interchangeably. This graph has possibly many nodes with 
no incoming edges (called hereafter source nodes), that cor- 
respond to the possible initial states of the system. All these 
states have the same local portion, but they may differ in 
the state of the shared memory, due to the dirty memory 
assumption. 

We start with a general lemma for PIP in the read-write 
model. 

Lemma 7 Let s be any reachable node in Gp. and let s* 
be the global state of the n-process system with the same 
shared state portion (IS in s, and such that the local states 
of all processes are identical to the local state portion in 
s. Then there exists an oblivious schedule under which the 
system reaches s* with positive probability. 

Proof: We shall show that the “round robin” schedule works. 
Let SO be a source node in Gp from which s is reachable. 
We prove the lemma by induction on the distanced of s from 
so in Gp.  The base case, d = 0, follows (with probability 
1) from the symmetry requirement for PIP: s* is the state 
where the shared memory is in the same state as in s, and 
all the processes are in the same state as in s. For the 
inductive step, suppose that s is at distance d + 1 from SO. 

Let s’ be the node in Gp which is reachable in d steps from 
the S O ,  and such that s is reachable in one step from s’. 
By the inductive hypothesis, the global state corresponding 
to the symmetric combination of the s’ nodes is reachable 
with some probability U > 0. By the definition of Gp.  s is 
reachable in a single step of process pi. with some probability 
p > 0, for all 1 5 i 5 n. Now consider scheduling exactly 
one step of each process. Since the processes take their steps 
when they are in identical local states, it must be the case that 
they either all read or all write in their respective additional 
step. Hence, their steps cannot influence one another, which 
means that the probability distributions of their next state 
are independent. Therefore, with probability ap” > 0, the 
global state S * ,  is reached, and the inductive step is complete. 

Notice that Lemma 7 holds even for infinite state protocols 
(so long as no zero probability transitions are ever taken). 

Using Lemma 7, we can now prove the first necessary 
condition for Las-Vegas PIP protocols. We shall prove a 
slightly stronger result, namely that even termination with 
probability 1 is impossible in these conditions. 

Theorem 3 There is noprotocolfor PIP that terminates with 
probability 1 and works with unknown number of processes, 
even for oblivious schedules. 

I 

Proof: By contradiction. Suppose, for simplicity, that P 
works for n = 1 and n = 2. (The argument extends directly 
to arbitrary different values of n.) We argue that in this case, 
P cannot terminate when run with a single process. For 



I 

I I 

suppose not: let p be any terminating execution in which 
only one process takes steps. By Lemma 7, there exists 
an execution p‘ of positive probability with two processes 
such that both processes reach the same state as in the end 
of p. But since the last state in p is a terminating state, we 
conclude that both processes terminate in p‘, and since they 
are in identical local state, they must have the same output 
value. a contradiction to the uniqueness requirement. 

Again, we remark that Theorem 3 holds also for infinite 
memory protocols. 

We now turn to consider the case of adaptive adversary. 
Intuitively. the adaptive adversary picks the processes to take 
step based on the history of the system. or more precisely 
on the history of the shared portion of the system. (The ad- 
versary has no access to in local state of the processes.) The 
following theorem implies that there is no finite-state Las- 
Vegas protocol for adaptive adversaries. Again, we prove 
that no protocol for PIP can terminates with probability 1 
under these conditions. 

I 

Theorem 4 There is no finite protocol for the Processor 
Zdentity Problem that terminates with probability 1 if the 
schedule is adaptive, even i f  n is known. 

P m f i  By contradiction. Suppose that a given protocol P 
terminates with probability 1. Then for all E > 0 there exists 
Tf such that the probability of P terminating in T, or less 
time units is at least 1 - E. We shall derive a contradiction 
by showing that there exists EO > 0 (that depends only on 
P and n). such that for any given time T. there exists an 
adaptive schedule in which P cannot terminate in T time 
units with probability greater than 1 - EO. 

The our strategy, as in the proof of Theorem 3, is to keep 
the processes “hidden” from each other. For simplicity of 
presentation, let us consider the case of n = 2. The proof 
can be extended to an arbitrary number of processes in a 
straightforward way. 

Our first step is to decompose the corresponding Markov 
chain into irreducible chains. In graph theoretic language, 
consider the Markov graph Gp: it is a directed graph; we 
decompose it into strongly-connected components. That 
is, we partition the nodes into equivalence classes (“strong 
components”), such that two nodes s and s‘ are in the same 
class if and only if there is a directed path in Gp from s to 
s‘ and from s‘ to S. Given this decomposition, we define 
a terminal component to be a strong component such that 
no other component is reachable from it. (We remark that 
terminal components are the irreducible components of the 
given Markov chain.) Notice that the existence of terminal 
components in the Markov graphs is guaranteed by the fact 
that the number of nodes in Gp (Le., the number of states of 
the protocol P) is finite. We now use a simple fact from the 
theory of Markov chains. 

Lemma 8 Let s be a state in a terminal component of Gp, 
and let s* be any global state that extendr s with respect 
to some process pi.  Then for all 7 < 1 there exists a 
positive integer M,. such that in an execution that starts at 
s* and consists of M, steps of pi alone, s* occurs again 
with probability at least 7 .  

PnmC: The state of a process pi in an execution that starts 
from a state in a terminal component, and in which only 
pi takes steps, is an irreducible Markov chain. The lemma 
follows from the fact that for a finite irreducible Markov 
chain, the expected recurrence time of any state is finite. 

Lemma 8 gives rise to the following immediate corollary. 
I 

Corollary 9 Let s be a state in a terminal component of Gp. 
let s* be any global state that extends s with respect to some 
process p i .  and let ii be the state of the shared portion of 
s*. Then for all 7 < 1 there exists a positive integer M,, 
such that in an execution that starts at s* and consists of M, 
steps of pi alone, ii occurs again with probability at least 7 .  

We now continue with the proof of Theorem 4. by de- 
scribing a complete strategy of an adaptive adversary, given 
a protocol P and a time bound T. First, an arbitrary reach- 
able state s in a terminal component of Gp is chosen. (This 
can be done since the protocol completely characterizes Gp.) 
The adversary then uses the round-robin schedule outlined 
in the proof of Lemma 7. which guarantees, with some prob- 
ability a > 0. that the corresponding symmetric global state 
s*. in which all the processes are in the same local state 
as in s. and the shared memory is in the same state as the 
shared portion of s. We shall show that for any given time T. 
there is an adaptive schedule such that the protocol fails to 
terminate in T time units with probability greater than a/5. 

We do this as follows. Let 7 = 1 - 1/2T. Denote 
the state of the shared portion in s* by 6. The adversary 
now lets p1 take steps (at least one) until the values of the 
shared variables are again as specified by ii. or until M, 
steps (as obtained from Corollary 9) have been taken. This 
can be done since by our assumption that the adversary is 
adaptive, the adversary can “see” when 6 recurs. Moreover, 
Corollary 9 guarantees that this process will succeed with 
probability at least 7. When ii recurs, the adversary lets p2 
take steps (again, at least one and no more than M,), until 
the configuration of the shared memory is ii again. This can 
be done by the same reasoning as for p1.  Notice that now, 
p1 and p2 are not necessarily in the same state; however, p2 
is completely “hidden” from p1,  since the shared memory is 
in exactly the same state in which p1 stopped taking steps. 
Therefore, the adversary can resume p l  now, and p1 must 
act as if it is the only process in the system. 

Observe that this procedure of letting one process take 
steps until 6 is reached and then switch to the other process, 
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can be repeated 2T times (thus resulting in a schedule with 
running time T). with probability of success at least 

We can now complete the proof of Theorem 4. We argue 
that for any given T > 0, using the schedule specified above 
we get. with probability at least EO = a/5.  an execution in 
which neither p l  nor p2 can terminate in T time units. This 
is since with probability at least a. S* is reached, and with 
probability greater than 1/5, once s* is reached, p1 and y2 
remain “hidden” from each other for T time units. Now we 
claim that termination of any of the processes in this execu- 
tion implies a contradiction: since p1 (say) did not observe 
any action of p2,  it follows that from the point of view of p1 ,  
there exists an indistinguishable execution p in which p2 is 
advancing in “lockstep” with p l  , maintaining symmetrical 
local state. If p1 terminates in the given execution, then in p 
p l  and p2 terminate also, violating the uniqueness require- 
ment. Since the uniqueness property must be met always, 
we have reached a contradiction. 

To show the necessity of the bounded space condition in 
Theorem 4, we have the following theorem. 

Theorem 5 There exists an unbounded-space algorithm for 
PIP that terminates with probability 1 under any fair adver- 
sary. 

1 

Shared Variables 
2) : a vector of N integers. initially all 0 

Local Variables 
ID 
signature : an integer, initially 0 

: output value, initially 7(171d0m( { I ,  . . . , N } )  

1 repeat 
2 
3 
4 
5 signature t 0 
6 or. with probability 1/2, do 
7 V [ I D ]  t signature c 

8 until I {i : D[i]  # 0) I = n 
9 ID c I {i : D[i] # 0 andi 5 tfxt-ID} I 

either, with probability 112 do 
if signature # D[ZD] then 
ID + r a n d o m ( { l , .  . . , N } )  

c ( 2 .  siynuture + ru71d07n({O, I})) 

Figure 3: Unbounded space algorithm for PIP under any 
adversary. 

The proof consists of an unbounded protocol; the protocol 
is a simple variant of our basic protocol, where the contents 

of each register is simply a complete history of all the random 
signatures. We present a simplified version of it in Figure 3. 

Our last result for this section is the simple observation 
that any protocol for PIP requires Q(log n) time units. 

Theorem 6 There is no protocol for PIP (including Monte- 
Carlo protocols) that terminates in o(1og n )  expected time. 

Proof Sketch We shall show that for any protocol there 
exists a schedule such that the expected running time under 
this schedule is at least log n. First, for any given execution 
of a protocol, we define the set of influencing processes for a 
processp; atstatest.denotedSi(t),foralli andt. Thesetis 
defined inductively as follows. At the initial state, we define 
Si (0) = {pi} for all i. Suppose now that Si (1’)  is defined 
for all the processes and all steps t’ < t ,  and consider the 
action at leading to state st .  If at is a write action, then 
Si (t) = S;(t - 1) for all i. If ai is a read action of a process 
p k .  say, let y j  the last process that wrote that register (if 
such p j  exists), and suppose this write occurred at action 
u w .  InthiscasewedefineSk(t) = S k ( t -  l)USj(w),and 
Si(t )  = Si(t - 1) for all i # k. If no suchpj exists, define 
Si(t) = Si(t - 1) for all z. Intuitively, the influencing set 
of a process at a state is the set of all processes that have 
communicated with that process directly or indirectly. 

We claim that in any given execution p of a protocol for 
PIP, a process may terminate only when its influencing set is 
{ 1, . . . , n}. For suppose not, i.e.,pi terminates at stept with 
p j  4 Si(t). Then there exists another positive-probability 
execution p‘. indistinguishable from p for p i ,  in which p j  
has the same random choices as y; has, and in which pi and 
p j  advance in lockstep. Clearly, yi andpj maintain identical 
local state in p’. which in turn is identical to the state of y; 
in p. Hence termination of pi in p implies termination of pi 
and p j  in p’ with the same output value, a contradiction to 
the uniqueness requirement. 

Now consider the executions resulting from the round 
robin schedule, where each step takes exactly one time unit. 
An easy induction on time shows that in these executions, 
ISi(t+ 1)1 5 2lS;(t)l for all processespi andstepst. Since 
we must have Is;(t)l = n at the terminating state for all 
processes, we conclude that the expected worst-case running 
time of every protocol for PIP is C?(log n). 1 

5 PIP and the Read-Modify-Write 
Model 

In this section we give positive and negative results for PIP 
in the read-modify-write model. First, we show that in this 
model, PIP can be solved deterministically using constant 
size memory, under any fair schedule. This result should be 
contrasted with the impossibility results of Theorems 3 and 
4 for the read-write model. Our second result for this section 



shows that if the initial state of the protocol is arbitrary (i.e., 
self-stabilization model). then there is no protocol (including 
randomized protocols), that solves PIP with probability 1. 
This result uses the technique of Theorem 4. 

Let us start with an informal description of a protocol for 
PIP that uses log ZV bits. We will then derive our constant- 
space protocol. The protocol using log N bits is trivial: the 
shared variable is used as a counter, or a“ticket dispenser”, 
in the following sense. When a process enters the system, it 
accesses the variable, takes its current value to be its ID, and 
in the same step, increments the value of the variable by 1. It 
is straightforward to verify that this indeed produces unique 
IDS at the processes under any fair schedule. 

In our constant space protocol, we still employ this “serial 
counter” approach. However, to reduce space, we shall use 
the shared variable as a “pipeline” to transmit information 
from one process to another, while the relevant infonna- 
tion is maintained in the local memory of the processes. 
Specifically, there will be some process “in charge” at any 
given time such that this process knows the current value of 
the counter. Whenever a new process enters the system, it 
writes a request message in the shared variable. The process 
in charge responds by transmitting the current contents of 
the counter, bit by bit, with an acknowledgment for each bit. 
By the end of this procedure, the new process has the value 
of the counter, it increments it by 1, takes it to be its ID, and 
becomes the process in charge. This serial style dialog will 
not be interrupted by other processes, by the read-modify- 
write assumption. Also, we assume that the shared variable 
is initialized with a special value, that tells whoever accesses 
the variable first, that it is in charge, and the counter value is 
0. The formal specification of the algorithm is omitted from 
this abstract. We summarize in the following theorem. 

Theorem 7 In the read-mod@-write model, there exists a 
de terminis tic protocol for PIP that requires a shared variable 
of3 bits and works under any fair schedule. 

We now state the impossibility result for Las-Vegas PIP 
protocols in the read-modify-write model. 

Theorem 8 There is no finite state. self-stabilizing proto- 
col that solves PIP in the read-modify-write registers with 
probability 1 ifthe schedule is adaptive and n is unknown. 

The proof is nearly identical to the proof of Theorem 4, 
and we therefore omit it. We remark only that the self- 
stabilization assumption serves as a substitute for Lemma 7, 
which does not hold in the read-modify-write model. 
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