
Noname manuscript No.
(will be inserted by the editor)

Distributed Discovery of Large Near-Cliques

Zvika Brakerski · Boaz Patt-Shamir

the date of receipt and acceptance should be inserted later

Abstract Given an undirected graph and 0 ≤ ε ≤ 1,

a set of nodes is called an ε-near clique if all but an ε

fraction of the pairs of nodes in the set have a link be-

tween them. In this paper we present a fast synchronous

network algorithm that uses small messages and finds

a near-clique. Specifically, we present a constant-time

algorithm that finds, with constant probability of suc-

cess, a linear size ε-near clique if there exists an ε3-near

clique of linear size in the graph. The algorithm uses

messages of O(log n) bits. The failure probability can

be reduced to n−Ω(1) by increasing the time complexity

by a logarithmic factor, and the algorithm also works if

the graph contains a clique of size Ω(n/(log log n)α) for

some α ∈ (0, 1). Our approach is based on a new idea of

adapting property testing algorithms to the distributed

setting.

1 Introduction

Discovering dense subgraphs is an important task both

theoretically and practically. From the theoretical point

of view, clique detection is a fundamental problem in

the theory of computational complexity; and for dis-

tributed systems, computing useful constructs of the

underlying communication graph is one of the central

goals. Let us elaborate a little about that.

Dense graph detection is a key issue in clustering

and hierarchical decomposition of large systems for ad-

ministrative purposes, for routing and possibly other

Supported in part by the Israel Science Foundation grant
1372/09, and by Israel Ministry of Science and Technology.

Dept. of Computer Science and Applied Mathematics, Weizmann

Institute of Science, Rehovot 76100. Israel · Dept. of Electrical
Engineering, Tel Aviv University, Tel Aviv 69978, Israel.

purposes [4]. Another reason to consider dense sub-

graphs is conflicts in radio ad-hoc networks [12]. On top

of these low-level communication-related tasks, dense

subgraph detection has recently also attracted consid-

erable interest for Web analysis: as is well known, the

ranking of results generated by search engines such as

Google’s PageRank [5] is derived from the topology of

the Web graph; in particular, it can be heavily influ-

enced by “tightly knit communities” [15], which are

essentially dense subgraphs. Hence, to understand the

structure of the web, it is important to be able to iden-

tify such communities. Another dimension where dense

subgraphs are interesting for the Web is time: it has

been observed [14] that evolution of links in blogs is,

to some extent, a sequence of significant events, where

significant events are characterized as dense subgraphs.

Thus, considering the web as a dynamic graph, identi-

fying large dense subgraphs is useful in understanding

its temporal aspect.

Our Contribution. In this paper we give an efficient

randomized distributed algorithm that finds large dense

subgraphs. Obviously, our algorithm does not decide

whether there exists a large clique in the graph: that

would be impossible to do efficiently unless NP ⊆ BPP.

Instead, our algorithm solves a relaxed problem. First,

we find near-cliques, defined as follows. Given a graph

and a constant ε ≥ 0, a set of nodes D is said to be

an ε-near clique if all, except perhaps an ε fraction, of

the pairs of nodes of D have an edge between them.

For example, using this definition, a clique is a 0-near

clique. Second, our algorithm only identifies a large

near-clique, and it is only guaranteed that the density

of the output is close to the best possible. For exam-

ple, given a graph G and a sufficiently small constant

ε > 0 such that G contains an ε-near clique with a linear

2

number of nodes, our algorithm finds at least one ε1/3-

near clique of linear size in G. (Our algorithm can also

discover dense subgraphs of sublinear size for smaller

values of ε.) Our algorithm is extremely frugal: the out-

put is computed, with constant probability of success,

in a constant number of rounds, and all messages are

O(log n) bits long. Given any q > 0, it is possible to

amplify the success probability to 1 − q by increasing

the time complexity by an O(log(1/q)) factor.

In addition to the direct contribution of the algo-

rithm, we believe that our methodology is interesting

in its own right. Specifically, our work extends ideas

presented in [10] in relation to property testing of the

ρ-clique problem (defined below). Even though our con-

struction does not use the property tester of [10] as a

black-box, our approach of deriving a distributed algo-

rithm from graph property testers seems to be an inter-

esting idea to consider when approaching other prob-

lems as well. In a nutshell, property testers do very

little overall work but have a “random access” probing

capability, namely they can probe topologically distant

edges; distributed algorithms, on the other hand, can

do a lot of work (in parallel), but information flow is

local, i.e., an algorithm which runs for T rounds allows

each node to gather information only from distance at

most T . However, quite a few graph property testers ex-

hibit some locality that can be exploited by distributed

algorithms.

Related work. We are not aware of any previous dis-

tributed algorithm that finds large dense subgraphs ef-

ficiently. Maximal independent sets, which are cliques

in the complement graph, can be found efficiently dis-

tributively [16,2]. In this case, there can be no non-

trivial guarantee about their size with respect to the

size of the largest (maximum) independent set in the

graph. But on the positive side, the sets output by these

algorithms are strictly independent.

Much more is known about dense subgraphs in the

centralized setting. The fundamental result is that find-

ing the largest clique (i.e., fully connected subset of

nodes) in a graph, or even approximating its size to

within a factor of n1−ε for any constant ε > 0, is com-

putationally hard [13]. Problems that are closely related

to ours have been studied in the centralized model and

in the property testing model. In the centralized model,

the Dense k-Subgraph (DkS) problem was studied. In

DkS, the input consists of a graph and a positive inte-

ger k, and the goal is to find a subset of k nodes with

the largest number of edges between them. Feige, Peleg

and Kortsarz [8] present a centralized algorithm ap-

proximating DkS within a factor of O(nδ) for a certain

δ < 1/3, and it is also possible to approximate DkS to

within roughly n/k [7]. Abello, Resende and Sudarsky

[1] presented a heuristic for finding near-cliques (which

they refer to as “Quasi-Cliques”) in sparse graphs.

Property testing was defined by Rubinfeld and Su-

dan [21] for algebraic properties, and extended by Gol-

dreich, Goldwasser and Ron [10] to combinatorial graph

properties. The relevant concepts are the following. In

the dense graph model, the basic action of a property

tester is to query whether a pair of nodes is connected

by an edge in the graph. An n-node graph is said to

have the ρ-clique property if it contains a clique of size

ρn, for some given parameter 0 ≤ ρ ≤ 1. The ρ-clique

tester of [10] gets (a query access to) an n-node graph G

and constants ρ, ε as input, and decides, using Õ
(
1/ε6

)
queries and with constant probability of being correct,

whether the input graph has a ρ-clique or whether no

set of ρn nodes in G is an (ε/ρ2)-near clique. They

further present an “approximate find” algorithm that,

with high probability, and provided that the property

tester answers in the affirmative, finds an ε-near clique

of size ρn in the graph in O(n) time. Our algorithm

is a new variant of the ideas of [10] and, using a new

analysis, gets a better complexity result in the case of

the relaxed assumption of existence of a near-clique.

This relaxation is a special case of tolerant prop-

erty testing [19], which in our case can be defined as

follows. An (ε1, ε2)-tolerant ρ-clique tester takes param-

eters ρ, ε1 and ε2 where ε1 < ε2, and decides whether

the graph contains an ε1-near clique or whether no set

of ρn nodes is an ε2-near clique. The general results

of [19] imply that the property tester of [10] is in fact

(ε6, ε)-tolerant (our construction is (ε3, ε)-tolerant). Fis-

cher and Newman [9] prove a general result (for any
property testable in O(1) queries), whose implication

to our case is that it is possible to find the smallest ε

for which a graph has an ε-near clique of size ρn, but

the query complexity is an exponent-tower of height

poly(ε−1).

A relation between distributed algorithms and prop-

erty testers was pointed out by Parnas and Ron in [18],

where it is shown for Vertex Cover how to derive a good

property tester from a good distributed algorithm (the

reduction goes in the direction opposite to the one we

propose in this paper). Recently, techniques from prop-

erty testing were used, along with other techniques by

Nguyen and Onak [17], to present constant-time ap-

proximation algorithms for vertex-cover and maximum-

matching in bounded-degree graphs. Their techniques

also yield constant-time distributed algorithms for these

problems. Saks and Seshadhri [22] show how to devise

a parallel algorithm that “reconstructs” a noisy mono-

tone function, again using ideas from property testing.

3

Paper organization. The problem and main results are

stated in Section 2. In Section 3 we explain why simple

approaches fail in solving the problem. The algorithm

is presented in Section 4 and analyzed in Section 5. We

conclude in Section 6.

2 Definitions, Model, Results

Graph concepts. In this paper we assume that we are

given a simple undirected graph G = (V,E). We denote

n
def
= |V |. For any given set U ⊆ V of nodes, Γ (U) de-

notes the set of all neighbors of nodes in U . Formally,

Γ (U)
def
= {v | ∃ u ∈ U. (u, v) ∈ E}. We also use the no-

tation G[U] to denote the subgraph of G induced by U :

G[U]
def
= (U, {(u, v) | u, v ∈ U, (u, v) ∈ E}).

For counting purposes, we use a slightly unusual ap-

proach, and view each undirected edge {u, v} as two

anti-symmetrical directed edges (u, v) and (v, u). Using

this approach, we define the following central concept.

Definition 1 Let G = (V,E) be a graph. A set of

nodes D ⊆ V is called an ε-near clique if∣∣∣{(u, v) | (u, v) ∈ D ×D and {u, v} ∈ E
}∣∣∣

≥ (1− ε) · |D| · (|D| − 1).

The density of a node set is the number of edges con-

necting nodes in the set divided by the number of node-

pairs of the set.

Distributed Algorithms. We use the standard synchronous
distributed model CONGEST as defined in [20]. Briefly,

the system is modeled by an undirected graph, where

nodes represent processors and edges represent com-

munication links. It is assumed that each node has a

unique O(log n) bit identifier. An execution starts syn-

chronously and proceeds in rounds: in each round each

node sends messages (possibly different messages to dif-

ferent neighbors), receives messages, and does some lo-

cal computation. By the end of the execution, each

processor writes its output in a local register. A key

constraint in the CONGEST model is that the mes-

sages contain O(log n) bits, which intuitively means

that each message can describe a constant number of

nodes, edges, and polynomially-bounded numbers. The

time complexity of the algorithm, also referred to as

round complexity, is the maximal number of rounds

required to compute all output values. We note that

we assume no processor crashes, and therefore any syn-

chronous algorithm can be executed in an asynchronous

environment using a synchronizer [3].

Problem Statement. In this paper we consider algorithms

for finding an ε-near clique. The input to the algo-

rithm is the underlying communication graph and ε.

Each node has an output register, which holds, when

the algorithm terminates, either a special value “⊥” or

a label. All nodes with the same output label are in the

same ε-near clique, and ⊥ means that the node is not

associated with any near-clique. Note that there may

be more than one near-clique in the output.

Results. The main result of this paper is given below

(see Theorem 2 for a detailed version).

Theorem 1 Let ε, δ > 0. If there exists an ε3-near

clique D ⊆ V with |D| ≥ δn, then an O(ε/δ)-near clique

D′ with |D′| = |D| · (1 − O(ε)) can be found by a dis-

tributed algorithm with probability Ω(1), using messages

of O(log n) bits, in 2O(ε−4δ−1 log(ε−1δ−1)) rounds.

We stress that the message length is a function of n and

is independent of ε, δ.

Let us list a few immediate corollaries to our result.

Our asymptotic statements are made with respect to

n, i.e., we think of graphs with whose number of nodes

is sufficiently large. First, we consider the case where

there are near-cliques of linear size (i.e., δ = Ω (1)).

Corollary 1 Let ε > 0. If there exists an ε3-near clique

D ⊆ V with |D| = Θ(n), then an O(ε)-near clique D′

with |D′| = |D| ·(1−O(ε)) can be found by a distributed

algorithm with probability Ω(1), in 2poly(1/ε) rounds and

using messages of O(log n) bits.

Second, we consider the case where there are strict
cliques of (slightly) sublinear size.

Corollary 2 If there exists a clique D with n/ logα log n

nodes for some a sufficiently small constant α > 0,

then an o(1)-near clique D′ with |D′| ≥ (1− o(1)) · |D|
can be found by a distributed algorithm with probability

1−o(1), in polylogarithmic number of rounds and using

messages of O(log n) bits.

3 Simple Approaches

In this section we consider, as a warm-up, two simplis-

tic approaches to solving the near-clique problem, and

explain why they fail.

The neighbors’ neighbors algorithm. The first

idea is to let each node inform all its neighbors about

all its neighbors. This way, after one communication

round, each node knows the topology of the graph up

to distance 2, and can therefore find the largest clique

it is a member of. It is easy to disqualify cliques that

4

intersect larger cliques (using, say, the smallest ID of a

clique as a tie-breaker), and so we can output a set of

locally largest cliques in a constant number of rounds.

Indeed, one can develop a correct algorithm based on

these ideas, but there are two show-stopper problems

in this case. First, the size of a message sent in this

algorithm may be very large: a message may contain

all node IDs. (This is the LOCAL model [20].) And

second, the algorithm requires each node to locally solve

the largest clique problem, which is notoriously hard

to compute. We thus rule out this algorithm on the

basis of prohibitive computational and communication

complexity.

The shingles approach. Based on the idea of shin-

gles [6], one may consider the following algorithm. Each

node picks a random ID (from a space large enough so

that the probability of collision is negligible), sends it

out to all its neighbors, and then selects the smallest

ID it knows (among its neighbors and itself) to be its

label. All nodes with the same label are said to be in the

same candidate set. Each candidate set finds its density

by letting all nodes send their degree in the set to the

set leader (the namesake of the set label), and only sets

with sufficient size and density survive. Conflicts due to

overlapping sets are resolved in favor of the larger set,

and if equal in size, in favor of the smaller label. Call

this the “shingles algorithm.”

Clearly, if there is a clique of linear size in the graph,

then with probability Ω(1) the globally minimal ID will

be selected by a node in the clique, in which case all

nodes in the clique belong to the same candidate set.

Unfortunately, many other nodes not in the clique may

also be included in that candidate set, “diluting” it sig-

nificantly. Formally, we claim the following.

Claim For any constant δ ∈ (0, 1) there exists an infi-

nite family of graphs {Gn} such that Gn has n nodes

and it contains a clique of size δn, but for all ε <

min
{

1−δ
1+δ , 1/9

}
and for sufficiently large n, the shin-

gles algorithm cannot find an ε-near clique with at least

(1− ε)δn nodes in Gn.

Fig. 1 Crosses represent full connectivity.

Proof Fix δ ∈ (0, 1) and consider, for simplicity, n such

that both δn and n are even.1 The graph Gn is defined

as follows. The nodes of Gn are partitioned into four

sets denoted C1, C2, I1, I2, where |C1| = |C2| = δn/2,

|I1| = |I2| = (1 − δ)n/2. The sets C1, C2 are complete

subgraphs and I1, I2 are independent sets (see Figure

1). The pairs of sets (I1, C1), (C1, C2), (C2, I2) are con-

nected with complete bipartite graphs (i.e., every node

in I1 is connected to every node in C1 and similarly for

the other pairs). The resulting graph contains a clique

C = C1 ∪ C2 of size δn.

Let vmin denote the node with the globally minimal

ID in Gn, as drawn by the shingles algorithm. We pro-

ceed by case analysis.

Case 1: vmin ∈ C1∪C2. W.l.o.g assume that vmin ∈ C1.

Then vmin’s candidate set contains exactly C1∪C2∪I1,

a set whose density is(|C1|+|C2|
2

)
+ |I1| · |C1|(|C1|+|C2|+|I1|
2

) =

(
δn
2

)
+ δ(1− δ)n2/4(
(1+δ)n/2

2

) =
2δ

1 + δ
,

and for ε < 1−δ
1+δ the density is less than 1 − ε. Clearly

in this case all other candidates are subsets of I1 ∪ I2
and thus have density 0.

Case 2: vmin ∈ I1 ∪ I2. W.l.o.g assume that vmin ∈ I1.

Then vmin’s candidate set is exactly C1 ∪ {vmin} and

thus has size δn/2 + 1 which is asymptotically smaller

than (1− ε)δn for any constant ε < 1/2.

Finally, consider the other candidate sets in this case.

Clearly all nodes in C2 belong to the same candidate

set. Let A denote the set of vertices from I1 ∪ I2 be-

longing to C2’s candidate set. If |A| < δn/4 then the

candidate set size is |C2| + |A| < 3δn/4 which is less

than (1 − ε)δn for all ε ≤ 1/4. If |A| ≥ δn/4 then the
candidate set density is at most(|C2|

2

)
+ |C2| · |A|(|C2|+|A|

2

) ≤ 1− 1− 4/δn

3 · (3− 4/δn)

which is asymptotically less than 1− ε for any ε smaller

than 1/9. The remaining candidate sets are subsets of

I1 ∪ I2 and thus have density 0.

Summary. The simple approaches demonstrate the

basic difficulty of the distributed ε-near clique problem:

looking to distance 1 is not sufficient, but looking to

distance 2 is too costly. The algorithm presented next

finds a middle ground using sampling.

4 Algorithm

In this section we present the algorithm for finding

dense subgraphs. Its analysis is presented in Section 5.

1 Otherwise consider δ′ = 2 bδn/2c/n to obtain the same

asymptotic performance.

5

Algorithm DistNearClique

Input : Graph G = (V,E), ε > 0, p ∈ (0, 1).

Output : A label labelv ∈ V ∪ {⊥} at each node v, such that u and v are in the same near clique iff labelv = labelu 6= ⊥.

Sampling stage. Each node joins a set S with probability p (i.i.d).

Exploration stage: Finding near-clique “candidates”.

(1) Construct a rooted spanning tree for each connected component of G[S]. By the end of this step, each node v ∈ S has a variable
parent(v) that points to one of its neighbors (for the root, parent(v) = NULL).

(2) Each node in S finds the identity of all nodes in its connected component and stores them in a variable Comp(v).

(3) Each node v ∈ S sends Comp(v) to all its neighbors Γ (v). A node u ∈ Γ (S) may receive at this step messages from several nodes,
that may or may not be in different components of S. Each node u ∈ Γ (S) sets a parent pointer parentSi (u) for each connected

component Si of G[S] that u is adjacent to (choosing arbitrarily between its neighbors from the same Si).

(4) Let u ∈ Γ (S). Let S1, . . . , S` be the different connected components which are adjacent to u. For each Si where 1 ≤ i ≤ `, the
following procedure is executed.

(4a) For all subsets X ⊆ Si, u determines (using the information received in Step 3) if u ∈ K2ε2 (X).

(4b) u sends the results of the computations (2|Si| bits) to parentSi (u).
(4c) This information is sent up to the root of Si, summing the counts for each X along the way, so that the root of Si knows

the value of |K2ε2 (X)| for each X ⊆ Si.
(4d) The root sends the values of |K2ε2 (X)|, for all X ⊆ Si, down back to all nodes in Γ (Si).
(4e) Each node v ∈ Γ (Si) notifies all its neighbors whether it is a member of K2ε2 (X), for all X ⊆ Si.
(4f) Each node u ∈ Γ (Si) finds whether u ∈ Kε(K2ε2 (X)) for each X ⊆ Si, and thus determines whether u ∈ Tε(X) for each X.

Decision stage: Conflict resolution.

(1) For each connected component Si, the size of Tε(X) is computed for each X ⊆ Si similarly to Steps 4b–4c of the exploration
stage. Let X(Si) be the subset that maximizes |Tε(X)| over all X ⊆ Si.

(2) The root of each component Si sends |Tε(X(Si))| out to all nodes in Γ (Si).

(3) After receiving |Tε(X(Si))| for all relevant connected components, each node sends an “acknowledge” message to the component
reporting the largest |Tε(X(Si))|, breaking ties in favor of the largest root ID, and an “abort” message to all other components.

(4) If no node in Γ (Si) sent an “abort” message to Si, the root sends back X(Si) to all nodes in Tε(X(Si)). The label of a node in

Tε(X(Si)) is the root ID of Si. If no message is received from the root, the default label ⊥ is adopted.

Fig. 2 Algorithm DistNearClique.

The basic idea. Let V ′ ⊆ V be a set of nodes. Define

K(V ′) to be the set of all nodes which are adjacent to

all nodes in V ′, i.e., K(V ′)
def
= {v | Γ (v) ∪ {v} ⊇ V ′}.

Further define T (V ′) to be the set of nodes in K(V ′)

that are adjacent to all nodes in K(V ′), i.e.,

T (V ′)
def
= {v ∈ K(V ′) | Γ (v) ⊇ K(V ′) \ {v}} .

Our starting point is the following key observation (es-

sentially made in [10]). If D is a clique, then D ⊆ K(D),

and also, by definition, D ⊆ T (D). Furthermore, T (D)

is a clique since each v ∈ T (D) is adjacent to all vertices

in K(D) and in particular those in T (D).

The algorithm finds a set which is roughly T (D),

where D is the existing near-clique, by random sam-

pling. Suppose that we are somehow given a random

sample X of D. Consider K(X): it is possible that

K(X) 6⊆ K(D), because K(X) is the set of nodes that

are adjacent to all nodes in X, but not necessarily to all

nodes in D. We therefore relax the definitions of K(X)

and T (X) to approximate ones, denoted by Kε(X) and

Tε(X). Finally, we overcome the difficulty of the inabil-

ity to sample D directly (because D is unknown), by

taking a random sample S of V , trying all its subsets

X ⊆ S (|S| is polynomial in 1/ε), and outputting the

maximal T (X) found.

Description and implementation details. We now present

the algorithm in detail. We shall use the following nota-

tion. Let X ⊆ V be a set of nodes, and let 0 ≤ ε ≤ 1. We

denote by Kε(X) the set of nodes which are neighbors

of all but an ε-fraction of the nodes in X, i.e.,

Kε(X)
def
= {v ∈ V | |Γ (v) ∩X| ≥ (1− ε)|X|} . (1)

Using the notion of Kε, we also define

Tε(X)
def
= Kε(K2ε2(X)) ∩ K2ε2(X) . (2)

The algorithm, presented in Figure 2, works in stages

as follows. In the sampling stage, a random sample

of nodes S is selected; the exploration stage gener-

ates near-clique candidates by considering Tε(X) for all

X ⊆ Si s.t. Si is a connected component of the induced

6

subgraph G[S]; and the decision stage resolves con-

flicts between intersecting candidates. A detailed expla-

nation of the distributed implementation of Algorithm

DistNearClique follows.

The sampling stage is trivial: each node locally

flips a biased coin, so that the node enters S with prob-

ability p (p is a parameter to be fixed later). This step

is completely local, and by its end, each node knows

whether it is a member of S or not.

The exploration stage is the heart of our algo-

rithm. To facilitate it, we first construct a spanning tree

for each connected components of G[S] (Step 1 of the

exploration stage). This construction is implemented

by constructing a BFS spanning tree of each connected

component Si, rooted at the node with the smallest ID

in Si. This is a standard distributed procedure (see,

e.g., [20]), but here only the nodes in S take part, and

all other nodes are non-existent for the purpose of this

protocol.

In Step 2 of the exploration stage, all nodes send

their IDs to the root. Once the root has all IDs, it sends

them back down the tree.

In Step 3 of the exploration stage, each node in Si
sends the identity of all nodes in Si to all its neighbors.

In addition, we effectively add to each spanning tree

all adjacent nodes. This is important so that we avoid

over-counting later. Note that a node of S is a member

of a single tree (the tree of its connected component),

but a node in V \ S may have more than one parent

pointer: it has exactly one pointer for each component

it is adjacent to.

Step 4 of the exploration stage determines for each

node its membership in Tε(X) for each subset X of each
connected component. Consider a node u ∈ Γ (Si). Af-

ter Step 3, u knows the IDs of all members of Si, so

it can locally enumerate all 2|Si| subsets X ⊆ Si, and

furthermore, u can determine whether u ∈ K2ε2(X) for

each such subsetX. Thus, each such node u locally com-

putes 2|Si| bits: one for each possible subset X ⊆ Si.

We assume that the coordinates of the resulting vec-

tor are ordered in a well known way (say, lexicograph-

ically). These vectors are sent by each node u ∈ Γ (Si)

to all its neighbors, and in particular to its parent in

Si. This is done by u for each Si it is adjacent to. Step

4c is implemented using standard convergecast on the

tree spanning Si: the vectors are summed coordinate-

wise and sent up the tree, so that when the information

reaches the root of Si, it knows the size of K2ε2(X) for

each X ⊆ Si. Finally, using the size of K2ε2(X), and

knowing which of its neighbors is in K2ε2(X), each node

u can determine whether u ∈ Kε(K2ε2(X)), and thus

decide whether it is in Tε(X) for each of the possible

subsets X.

When the decision stage of DistNearClique starts,

each connected component Si of G[S] first, in Step 1,

selects a “candidate” near-clique. It remains to choose

the largest Tε(X) over all X’s. The difficulty is that

there may be more than one set that qualifies as a near-

clique, and these sets may overlap. Just outputting the

union of these sets may be wrong because in general, the

union of ε-near cliques need not be an ε-near clique. The

decision stage resolves this difficulty by allowing each

node to “vote” only for the largest subset it is a member

of. This vote is implemented by disqualifying all other

subsets using ‘abort’ messages, which are routed to the

root of the spanning tree constructed in the exploration

stage. This ensures that from each collection of overlap-

ping sets, the largest one survives. Some small node sets

may also have non-⊥ output: they can be disqualified

if a lower bound on the size of the dense subgraph is

known.

4.1 Wrappers

To conclude the description of the algorithm, we explain

how to obtain a deterministic upper bound on the run-

ning time, and how to decrease the error probability.

• Bounding the running time. As we argue in Section

5.1, the time complexity of the algorithm can be bounded

with some constant probability. If a deterministic bound

on the running time is desired, one can add a counter

at each node, and abort the algorithm if the running

time exceeds the specified time limit.

• Boosting the success probability. The way to decrease

the failure probability is not simply running the algo-

rithm multiple times. Rather, only the sampling and

exploration stages are run several times independently,

and then a single decision stage is applied to select the

output. More specifically, say we want to achieve suc-

cess probability of at least 1−q for some given q > 0. Let

λ
def
= log1−r q (r being the original success probability).

To get failure probability at most q, we run λ indepen-

dent versions of the sampling and exploration stages (in

any interleaving order). These λ versions are run with a

deterministic time bound as explained above. When all

versions terminate, a single decision stage is run, and in

Step 3 of the decision stage, nodes consider candidates

from all λ versions, and choose (by sending “acknowl-

edge”) only the largest of these candidates. This boost-

ing wrapper increases the running time by a factor of

λ: the sampling and exploration stages are run λ times,

and the decision stage is slower by a factor of λ due to

congestion on the links.

7

5 Analysis

In this section we analyze Algorithm DistNearClique
presented in Section 4. The round complexity analy-

sis appears in Section 5.1, then correctness is proven

in Section 5.2. A formal statement of the result and

summary is provided in Section 5.3.

5.1 Complexity

We first state the time complexity in terms of the sam-

ple size, and then bound the sample size.

Lemma 1 Let S be the set of nodes sampled in the

sampling stage of Algorithm DistNearClique. Then the

round complexity of the algorithm is O
(
2|S|
)
.

Proof The sampling stage requires no communication.

Consider now the exploration stage. The BFS tree con-

struction of Step 1 uses messages of O(log n) bits (each

message contains an ID and a distance counter), and

its running time is proportional to the diameter of the

component, which is trivially bounded by |S|. The num-

ber of rounds to execute Step 2 is proportional to the

number of IDs plus the height of the tree, due to the

pipelining of messages: the number of hops each ID

needs to travel is at most twice the tree height, and a

message needs to wait at most once for each other ID.

It follows that the total time required for this step in

O(|S|) rounds. Step 3 takes at most maxi {|Si|} ≤ |S|
rounds. Step 4a requires no communication. Step 4b

requires a node u to send 0 or 1 for each subset of

each component of S it is adjacent to. Since there may

be at most 2|S| such subsets (over all components),

this step takes at most O(2|S|) rounds. In Step 4c,

the messages are vectors of 2|S| numbers, where each

entry of a vector is a count between 0 and n, and

hence the total number of bits in a vector is at most

2|S| log n; using pipelining once again, we can there-

fore bound the number of rounds required to execute

Step 4c by O(2|S| + |S|) = O(2|S|). Similarly for Steps

4d–4e. Step 4f is local; In the decision stage, Step 1

takes, again, at most O(2|S|) rounds. The remaining

steps take at most O(maxi |Si|) ≤ O(|S|) rounds. Thus

the total round complexity of Algorithm DistNearClique
is at most O

(
2|S|
)
.

Lemma 2 Pr[|S| ≤ 2pn] ≥ 1− e−
pn
3 .

Proof Follows from the Chernoff Bound, since in the

sampling stage, each of the n nodes join S indepen-

dently with probability p.

5.2 Correctness

In this section we prove that Algorithm DistNearClique
finds a large near-clique. We note that while the algo-

rithm appears similar to the ρ-clique algorithm in [10],

the analysis of Algorithm DistNearClique is different. We

need to account for the fact that the input contains a

near-clique (rather than a clique), and we need to es-

tablish certain locality properties to show feasibility of

a distributed implementation.

For the remainder of this section, fix G = (V,E),

ε > 0, and δ > 0. Let |V | = n. Assume that D ⊆ V

is an ε3-near clique satisfying |D| ≥ δn. Recall that

G[S] denotes the subgraph of G induced by S. For the

analysis, it turns out that we need to assume w.l.o.g.

that ε < 2/13 (i.e., given any ε > 0, the effective ε we

use is min(2/13, ε)).

Let D′ denote the set of nodes output by Algorithm

DistNearClique. Clearly, D′ = Tε(X) for some X. We

first show that every Tε(X) is n
t ε-near clique where t =

|Tε(X)|. In the decision stage, the algorithm selects the

largest Tε(X). In Lemma 6, we prove our main techni-

cal result, namely that with constant probability, there

exists a subset X∗ ⊆ Si with |Tε(X∗)| ≥ (1−O(ε)) |D|.

All large Tε(X) are near-cliques. The following lemma

proves that any Tε(X) is a near-clique with a parameter

relating to its size.

Lemma 3 Let X ⊆ V , and denote t = |Tε(X)|. Then

Tε(X) is nε
t -near clique.

Proof By counting. Recall that each undirected edge

is viewed and counted as two anti-symmetrical directed

edges. Define Y = K2ε2(X). Consider a node v ∈ Tε(X).

By definition of Tε(X), v ∈ Kε(Y), i.e.,

|Γ (v) ∩ Y | ≥ (1− ε) |Y | . (3)

Since Tε(X) ⊆ Y , we have, by Eq. (3), that

|Γ (v) ∩ Tε(X)| = t− |Tε(X) \ Γ (v)| ≥ t− |Y \ Γ (v)|
≥ t− ε|Y | . (4)

Since |Y | ≤ n, we can conclude that |Γ (v) ∩ Tε(X)| ≥
(1− n

t ε)t. It follows that the total number of (directed)

edges in Tε(X) is at least (1− n
t ε)t(t− 1), as required.

Existence of a large Tε(X). We prove that w.h.p., there

exists a connected set X∗ ⊆ S such that Tε(X
∗) is large.

First, let C denote the set of all nodes in the ε3-near

clique D that are also adjacent to all but ε2 fraction

of D. Formally: C
def
= Kε2(D) ∩ D where D is ε3-near

clique.

We use the following simple property.

8

Lemma 4 |C| ≥ (1− ε) |D| − 1
ε2 .

Proof Denote c
def
= |C| and d

def
= |D|. Since D is an

ε3-near clique in G, we have that

|E∩(D×D)| ≥ (1−ε3)d(d−1) ≥ (1−ε3)d2−d . (5)

By definition of C, if v ∈ D \ C, then

|E ∩ ({v} ×D)| < (1− ε2)d . (6)

Now, if we assume that c < (1− ε− 1
ε2d)d, we arrive at

a contradiction to Eq. (5), since

|E ∩ (D ×D)| = |E ∩ (C ×D)|+ |E ∩ ((D \ C)×D)|
≤ c · d+ (d− c)(1− ε2)d

(by Eq. (6))

= (1− ε2) · d2 + ε2 · c · d

< (1− ε2) · d2 + ε2
(

(1− ε)d− 1

ε2

)
d

(if c < (1− ε)d− 1
ε2)

≤ (1− ε3)d2 − d .

Second, we structure the probability space defined

by the sampling stage of Algorithm DistNearClique as

follows. In the algorithm, each node flips a coin with

probability p of getting “heads” (i.e., entering S). We

view this as a two-stage process, where each node flips

two independent coins: coin1 with probability p1
def
= p/2

of getting “heads” and coin2 with probability p2
def
=

p−p1
1−p1 > p/2 of getting “heads.” A node enters S iff at

least one of its coins turned out to be “heads.” The

idea is that the net result of the process is that each

node enters S independently with probability p, but
this refinement (akin to decoupling of Markov chains)

allows us to define two subsets of S: let S(1) be the set

of nodes for which coin1 is heads, and let S(2) be the

set of nodes for which coin2 is heads.

Combining the notions, we define X∗
def
= S(1) ∩ C,

i.e., X∗ is a random variable representing the set of

nodes from C for which coin1 is heads. X∗ is effectively

a sample of C where each node is selected with proba-

bility p/2. We have the following.

Lemma 5 X∗ resides within a single connected com-

ponent of G[S] with probability at least 1− e−Ω(δpn).

Proof We analyze the probability of a strictly stronger

property, namely that the distance in S between any

two nodes of X∗ is at most 2. By definition, X∗ ⊆ C,

i.e., X∗ ⊆ Kε2(D). It follows from the pigeonhole prin-

ciple that every two nodes u, v ∈ X∗ have at least (1−
2ε2) |D| common neighbors. The probability that none

of these common neighbors is in S(2) (i.e., that none of

them has outcome heads for coin2) is therefore at most

(1 − p2)(1−2ε
2)|D| ≤ e−(1−2ε

2)p2|D| ≤ e−
7
18p|D| for ε ≤

1/3, and because p2 > p/2 by definition. We now apply

the union bound to obtain that Pr [diameter(X∗) > 2] ≤(|X∗|
2

)
· e− 7

18p|D|. Since X∗ is a random sample of C, it

follows that E[|X∗|] = p2 · |C| ≤ pδn. Using a Cher-

noff bound, we obtain that Pr[|X∗| > 2pδn] ≤ e−δpn/3.

Therefore, by the union bound we obtain that the prob-

ability that the diameter of X∗ is more than 2 is no

more than

Pr
[
diameter(X∗) > 2 | |X∗| ≤ 2pδn] + Pr[|X∗| > 2pδn

]
≤ 2(δpn)2 · e−7δpn/18 + e−δpn/3

= e−Ω(δpn) .

We now arrive at our main lemma.

Lemma 6 With probability at least 1− 1
ε2δ e

−Ω(ε4δ·pn)

over the selection of S, there exists a connected com-

ponent Si of G[S] and a set X∗ ⊆ Si s.t. |Tε(X∗)| ≥
(1− 13

2 ε) |D| − ε
−2.

Proof Let X∗ be defined as above. It remains to show

that Tε(X
∗) is large. Intuitively, X∗ is a random sample

of C, and since C contains almost all of D, X∗ is also, in

a sense, a sample of D. Thus K2ε2(X∗) should be very

close to both K(·)(C), and K(·)(D) for an appropriately

selected (·). This would complete the proof since Tε(C)

contains almost all of C which, in turn, contains almost

all of D. Formally, we say that X∗ is representative if

the following hold.

1. |Kε2(D) \K2ε2(X∗)| < ε |C|.
2. |K2ε2(X∗) \K3ε2(C)| < ε2 |C|.

That is, if K2ε2(X∗) is almost fully contained in Kε2(D)

and almost fully contains K3ε2(C).

To complete the proof, we use two claims presented

below. Claim 5.2 shows that if X∗ is representative,

then |C \ Tε(X∗)| ≤ 11
2 ε · |C|. Claim 5.2 shows that

X∗ is representative with probability 1− 1
ε2δ e

−Ω(ε4δpn).

Given these claims, the proof is completed as follows.

By Lemma 5 and the claims, we have that with proba-

bility 1− 1
ε2δ e

−Ω(ε4δpn), X∗ resides in a connected com-

ponent of G[S]. Using also Lemma 4, the proof is com-

plete, because

|Tε(X∗)| ≥
(

1− 11

2
ε

)
|C|

≥
(

1− 11

2
ε

)(
(1− ε) |D| − 1

ε2

)
≥
(

1− 13

2
ε

)
|D| − 1

ε2
.

Claim Suppose thatX∗ is representative. Then we have

that |C \ Tε(X∗)| ≤ 11
2 ε · |C|.

9

Proof By definition,

|C\Tε(X∗)|
≤ |C \K2ε2(X∗)|+ |C \Kε(K2ε2(X∗))| . (7)

We bound each term in Eq. (7) in turn.

First, note that |Kε2(D) \K2ε2(X∗)| < ε |C|, be-

cause X∗ is representative. It follows that

|C \K2ε2(X∗)| < ε |C| , (8)

because C ⊆ Kε2(D). Note that Eq. (8) also implies for

ε ≤ 1/3 that

|K2ε2(X∗)| ≥ (1− ε) |C| ≥ 2 |C|
3

. (9)

We now turn to the second term of Eq. (7). X∗ is

representative, and therefore |K2ε2(X∗) \K3ε2(C)| <
ε2 |C|, i.e., all but ε2 |C| vertices of K2ε2(X∗) are neigh-

bors of at least (1 − 3ε2)|C| nodes of C. Let Y =

C\Kε(K2ε2(X∗)), y = |Y |, and z = |K2ε2(X∗)|. Count-

ing the number of edges between C and K2ε2(X∗) we

conclude that y ·(1−ε)z+(|C|−y)·z ≥
(
z − ε2 |C|

)
(1−

3ε2) |C|, and plugging in Eq. (9) we obtain

y · (1− ε)z + (|C| − y) · z ≥ z · (1− 3ε2

2
)(1− 3ε2) |C|

≥ (1− 9ε2

2
) · z |C| .

Rearranging, we have y ≤ 9ε
2 ·|C|, and the claim follows.

Claim Pr [X∗ is representative] ≥ 1− 1
ε2δ · e

−Ω(ε4δpn).

Proof Since E[|X∗|] = p1 |C|, and since membership in

X∗ is determined independently for each node, we can

apply the Chernoff Bound to obtain that

Pr

[∣∣∣ |X∗| − E
[
|X∗|

]∣∣∣ >ε2
4
· E
[
|X∗|

]]

< 2 exp

(
−1

3

(
ε2

4

)2

E
[
|X∗|

])

≤ 2 exp

(
−ε

4p1 |C|
48

)
.

Assume that
∣∣∣|X∗| − E

[
|X∗|

]∣∣∣ ≤ ε2

4 E
[
|X∗|

]
, and let us

consider the definition of a representative set.

For item 1, let v ∈ Kε2(D). Then |Γ (v) ∩ C| ≥
|C| − ε2 |D| ≥ |C| − ε2

1−ε |C| ≥ (1 − 3
2ε

2) |C|. Since

Γ (v)∩X∗ is a random sample of Γ (v)∩C, where each

member is chosen with probability p1, we have that

E [|Γ (v) ∩X∗|] = p1 · |Γ (v) ∩ C| ≥ (1 − 3
2ε

2)p1 |C| =

(1 − 3
2ε

2)E[|X∗|]. Denote Yv = |Γ (v) ∩X∗|. Then we

have just shown that E[Yv] ≥ (1 − 3
2ε

2)E[|X∗|], and

therefore

Pr[v /∈K2ε2(X∗)] = Pr[Yv < (1− 2ε2) |X∗|]

≤ Pr
[
Yv < (1− 2ε2)

(
1 +

ε2

4

)
E[|X∗|]

]
≤ Pr

[
Yv − E[Yv] < (1− 2ε2)

(
1 +

ε2

4

)
E[|X∗|]

−
(

1− 3

2
· ε2
)
E[|X∗|]

]

≤ Pr
[
Yv − E[Yv] < −

ε2

4
E[|X∗|]

]
< exp

−1

2

(
ε2

4 E[|X∗|]
E[Yv]

)2

E[Yv]


≤ exp

(
− ε

4

32
E[|X∗|]

)
≤ exp

(
− ε

4

32
· p1 |C|

)
,

and therefore

E[|Kε2(C) \K2ε2(X∗)|] < exp

(
− ε

4

32
· p1 |C|

)
· n .

Using Markov’s Inequality we obtain

Pr
[
|Kε2(C) \K2ε2(X∗)| ≥ ε |C|

]
≤ n

ε |C|
·e−ε

4·p1|C|/32.

A similar argument applies to item 2. Consider a

node v 6∈ K3ε2(C). Denote Yv = |Γ (v) ∩X∗|. Then

E[Yv] < (1− 3ε2)E[|X∗|], and therefore

Pr[v ∈K2ε2(X∗)] = Pr[Yv ≥ (1− 2ε2) |X∗|]

≤ Pr
[
Yv ≥ (1− 2ε2)

(
1− ε2

4

)
E[|X∗|]

]
≤ Pr

[
Yv − E[Yv] ≥ (1− 2ε2)

(
1− ε2

4

)
E[|X∗|]

− (1− 3ε2)E[|X∗|]

]

≤ Pr
[
Yv − E[Yv] ≥

3ε2

4
E[|X∗|]

]
< exp

−1

3

(
3ε2

4 E[|X∗|]
E[Yv]

)2

E[Yv]


≤ exp

(
−3ε4

16
· E[|X∗|]

)
≤ exp

(
−3ε4

16
· p1 |C|

)
,

i.e., E[|K2ε2(X∗) \K3ε2(C)|] < exp
(
− 3

16ε
4 · p1 |C|

)
· n,

which implies, as above, that

Pr
[
|K2ε2(X∗) \K3ε2(C)| ≥ ε2 |C|

]
≤ n

ε2 |C|
·e− 3

16 ε
4·p1|C|.

10

Finally, we apply the Union Bound to deduce that X∗

is not a representative with probability at most

2e−ε
4p1|C|/48 +

n

ε |C|
· e−ε

4·p1|C|/32 +
n

ε2 |C|
· e−3ε

4·p1|C|/16

≥ n

ε2 |C|
· e−Ω(ε4·p|C|) .

5.3 Summary

Our main result is summarized in the following theo-

rem. (Theorem 1 is obtained from the following state-

ment by setting p = 1
n ·O

(
log(1

εδ)

ε4δ

)
.) We assume w.l.o.g.

that 0 < ε < 2/13.

Theorem 2 Let G = (V,E), |V | = n. Let D ⊆ V be an

ε3-near clique in G of size |D| ≥ δn. Then with probabil-

ity at least 1− 1
ε2δ ·e

−Ω(ε4δ·pn), Algorithm DistNearClique,

running on G with parameters ε, p, finds, in O
(
22pn

)
communication rounds, a subgraph D′ such that

(1) D′ is
(

1
(1− 13

2 ε)
· εδ
)

-near clique.2

(2) |D′| ≥ (1− 13
2 ε) |D| − ε

−2.

Proof By Lemmas 1 and 2, the probability that the

round complexity exceeds 2O(2pn) is bounded by e−
pn
3 .

By Lemma 3, whenever assertion (2) holds, assertion

(1) holds as well. Assertion (2) holds by Lemma 6 with

probability at least 1− 1
ε2δ e

−Ω(ε4δ·pn). The theorem fol-

lows from the union bound.

It may also be interesting to analyze the compu-

tational complexity of the vertices running the algo-

rithm. A simple analysis shows that except for step 4f

of the exploration stage, the operation for each node

can be implemented in poly(|S|) computational steps

(on log n bit numbers) per communication round. In

step 4f, however, the nodes need to “inspect” all their

neighbors in order to determine whether they reside in

Tε(X). It is possible to reduce the complexity in this

case by selecting a sample of the neighbors and esti-

mating, rather than determining, membership in Tε(X).

Thus, the computational complexity can be reduced to

poly(|S|) computational steps per round (for our pur-

poses, |S| ≤ O(log log n)). The analysis of this modifi-

cation is omitted.

6 Discussion

On the impossibility of quickly identifying a globally

maximal ε-near clique. Our algorithm (when success-

ful) finds a disjoint collection of near-cliques such that

2 For small enough ε, say ε < 1
13

, this is at most 2 ε
δ

.

at least one of them is large. We note that it is impos-

sible for a distributed sub-diameter time algorithm to

output just one (say, the largest) clique. To see that,

consider a graph containing an n/2-vertex clique A and

an n/4-vertex clique B, connected by an n/4-long path

P . The largest near-clique in this case is obviously A,

and the vertices of B should output ⊥. However, if we

delete all edges in A, the largest near-clique becomes

B, i.e., its output must be non-⊥. Since no node in B

can distinguish between the two scenarios in less than

|P | = n/4 communication rounds, impossibility follows.

Deriving distributed algorithms from property testers.

Our approach may raise hopes that other property testers,

at least in the dense graph model, can be adapted into

the distributing setting. Goldreich and Trevisan [11]

prove that any property tester in the dense graph model

has a canonical form where the first stage is selecting a

uniform sample of appropriate size from the graph and

the second is testing the graph induced by the sample

for some (possibly other) property. Thus, the following

scheme may seem likely to be useful:

1. Select a uniform sample of the nodes.

2. Run a (possibly inefficient) distributed algorithm on

the graph induced by the selected nodes to test it

for the required property.

In the distributed setting, however,it may be the case

that even testing a property for a very small graph is

impossible to do quickly due to connectivity issues. As

the example above shows, there exist properties which

are testable in the centralized setting but do not admit

a fast distributed algorithm. The general method above,

therefore, can only be applied in a “black-box” manner

for some testers.

Specifically, the ρ-clique tester presented in [10] does

not comply with the above requirements (in particu-

lar, the ρ-clique problem is unsolvable in small round-

complexity). It can, however, be converted into a near-

clique finder, in the sense defined in this work, using

similar ideas and with worse parameters.

Acknowledgment

We thank the anonymous referees for their thoughtful

comments.

11

References

1. J. Abello, M. G. C. Resende, and S. Sudarsky. Massive
quasi-clique detection. In LATIN ’02: Proceedings of the

5th Latin American Symposium on Theoretical Informatics,

pages 598–612, London, UK, 2002. Springer-Verlag.

2. N. Alon, L. Babai, and A. Itai. A fast and simple randomized

parallel algorithm for the maximal independent set problem.

J. Algorithms, 7:567–583, 1986.

3. B. Awerbuch. Complexity of network synchronization. J.
ACM, 32(4):804–823, Oct. 1985.

4. S. Basagni, M. Mastrogiovanni, alessandro Panconesi, and

C. Petrioli. Localized protocols for ad hoc clustering and
backbone formation: a performance comparison. IEEE

Trans. Parallel and Dist. Systems., 17(4):292–306, April

2006.

5. S. Brin and L. Page. The anatomy of a large-scale hyper-
textual web search engine. Computer Networks and ISDN

Systems, 30(1–7):107–117, 1998.

6. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In Selected papers from the

sixth international conference on World Wide Web, pages

1157–1166, Essex, UK, 1997. Elsevier Science Publishers Ltd.

7. U. Feige and M. Langberg. Approximation algorithms for
maximization problems arising in graph partitioning. J. Al-

gorithms, 41(2):174–211, Nov. 2001.

8. U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph
problem. Algorithmica, 29(3):410–421, 2001.

9. E. Fischer and I. Newman. Testing versus estimation of

graph properties. In Proc. 37th Ann. ACM Symp. on Theory

of Computing, pages 138–146, New York, NY, USA, 2005.
ACM.

10. O. Goldreich, S. Goldwasser, and D. Ron. Property testing

and its connection to learning and approximation. J. ACM,
45(4):653–750, 1998.

11. O. Goldreich and L. Trevisan. Three theorems regarding test-

ing graph properties. Random Struct. Algorithms, 23(1):23–

57, 2003. Preliminary version in FOCS ’01.

12. R. Gupta and J. Walrand. Approximating maximal cliques

in ad-hoc networks”. In Proc. IEEE Int. Symp. on Personal,

Indoor and Mobile Radio Communications, pages 365–369,
Barcelona, Sept. 2004.

13. J. H̊astad. Clique is hard to approximate within n1−ε. Acta

Mathematica, 182(1):105–142, 1999.

14. R. Kumar, J. Novak, P. Raghavan, and A. Tomkins. On the
bursty evolution of blogspace. World Wide Web, 8(2):159–

178, 2005.

15. R. Lempel and S. Moran. SALSA: the stochastic approach

for link-structure analysis. ACM Trans. Inf. Syst., 19(2):131–
160, 2001.

16. M. Luby. A simple parallel algorithm for the maximal inde-

pendent set problem. SIAM J. Comput., 15(4):1036–1053,
Nov. 1986.

17. H. N. Nguyen and K. Onak. Constant-time approximation

algorithms via local improvements. In FOCS, pages 327–336.

IEEE Computer Society, 2008.

18. M. Parnas and D. Ron. Approximating the minimum vertex
cover in sublinear time and a connection to distributed algo-

rithms. Theoretical Comput. Sci., 381(1-3):183–196, 2007.

19. M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property
testing and distance approximation. J. Comp. and Syst. Sci.,
72(6):1012–1042, 2006. Preliminary version in STOC ’05.

20. D. Peleg. Distributed computing: a locality-sensitive ap-
proach. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2000.

21. R. Rubinfeld and M. Sudan. Robust characterizations of
polynomials with applications to program testing. SIAM J.

Comput., 25(2):252–271, 1996.

22. M. E. Saks and C. Seshadhri. Parallel monotonicity re-
construction. In S.-H. Teng, editor, SODA, pages 962–971.

SIAM, 2008.

