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—— Abstract

Preservers and additive spanners are sparse (hence cheap to store) subgraphs that preserve the
distances between given pairs of nodes exactly or with some small additive error, respectively.
Since real-world networks are prone to failures, it makes sense to study fault-tolerant versions of
the above structures. This turns out to be a surprisingly difficult task. For every small but arbit-
rary set of edge or vertex failures, the preservers and spanners need to contain replacement paths
around the faulted set. Unfortunately, the complexity of the interaction between replacement
paths blows up significantly, even from 1 to 2 faults, and the structure of optimal preservers and
spanners is poorly understood. In particular, no nontrivial bounds for preservers and additive
spanners are known when the number of faults is bigger than 2.

Even the answer to the following innocent question is completely unknown: what is the worst-
case size of a preserver for a single pair of nodes in the presence of f edge faults? There are
no super-linear lower bounds, nor subquadratic upper bounds for f > 2. In this paper we make
substantial progress on this and other fundamental questions:

o We present the first truly sub-quadratic size fault-tolerant single-pair preserver in unweighted
(possibly directed) graphs: for any n node graph and any fixed number f of faults,
O(fn*>1/ 2f) size suffices. Our result also generalizes to the single-source (all targets) case,
and can be used to build new fault-tolerant additive spanners (for all pairs).

e The size of the above single-pair preserver grows to O(n?) for increasing f. We show that this
is necessary even in undirected unweighted graphs, and even if you allow for a small additive
error: If you aim at size O(n?~%) for € > 0, then the additive error has to be Q(ef). This
surprisingly matches known upper bounds in the literature.

e For weighted graphs, we provide matching upper and lower bounds for the single pair case.
Namely, the size of the preserver is ©(n2) for f > 2 in both directed and undirected graphs,
while for f = 1 the size is ©(n) in undirected graphs. For directed graphs, we have a
superlinear upper bound and a matching lower bound.

Most of our lower bounds extend to the distance oracle setting, where rather than a subgraph

we ask for any compact data structure.
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1 Introduction

Distance preservers and additive spanners are (sparse) subgraphs that preserve, either exactly
or with some small additive error, the distances between given critical pairs P of nodes. This
has been a subject of intense research in the last two decades [18, 11, 4, 3, 15, 6, 1, 34].
However, real-world networks are prone to failures. For this reason, more recently (e.g.
[16, 14, 17, 32, 30, 9, 33, 8, 21, 27, 19, 28]) researchers have devoted their attention to
fault-tolerant versions of the above structures, where distances are (approximately) preserved
even in the presence of a few edge (or vertex) faults. For the sake of simplicity we focus here
on edge faults, but many of these results generalize to the case of vertex faults where F* C V.

» Definition 1. Given an n-node graph G = (V, E) and P CV x V, a subgraph H C G is
an f-fault tolerant (f-FT) p-additive P-pairwise spanner if

diStH\F(S7t) < distG\F(37t) + 57 V(S7t) € P7VF - Ev |F| < f
If =0, then H is an f-FT P-pairwise preserver.

Finding sparse FT spanners/preservers turned out to be an incredibly challenging task.
Despite intensive research, many simple questions have remained open, the most striking of
which arguably is the following:

» Question 1. What is the worst-case size of a preserver for a single pair (s,t) and f > 1
faults?

Prior work [31, 32] considered the single-source P = {s} x V unweighted case, providing
super-linear lower bounds for any f and tight upper bounds for f = 1,2. However, first,
there is nothing known for f > 2, and second, the lower bounds for the {s} x V case do not
apply to the single pair case where much sparser preservers might exist. Prior to this work,
it was conceivable that in this case O(n) edges suffice for arbitrary fixed f.

Our first result is a complete answer to Question 1 for weighted graphs. For f =1 and
undirected graphs, we show that a O(n) size preserver exists. Our result is achieved by
proving the following interesting fact: for any replacement path P; .. protecting against a
single edge fault e, there is an edge (z,y) € Ps . such that there is no shortest path from
s to x in G that includes e, and there is no shortest path from ¢ to y in G that includes e.
Therefore it is sufficient to build shortest path trees from s and to t, and then add one extra
edge per possible fault e along the shortest path from s to ¢. With a trivial union bound,
we get that any set P of node pairs can be preserved using O(min(n|P|,n?)) edges. It is
natural to wonder if one can improve this union bound by doing something smarter in the
construction. Surprisingly, the answer is NO: we are able to provide a matching lower bound.

» Theorem 2. For any undirected n-node weighted graph G and any set P of p pairs of
nodes, there exists a P-pairwise 1-FT preserver of size O(min(np,n?)). Furthermore, for
any integer 1 < p < (g), there exists an undirected weighted graph G and a set P of p node
pairs such that every 1-FT P-pairwise preserver of G contains Q(min(n|P|,n?)) edges.

The lower bound part obtained by adapting the lower bound of [32] to the weighted case;
this allows us to a lower bound graph whose number of edges is a function of the number of
pairs.
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For f =1 and directed graphs, we achieve the following. Let DP(n) denote a tight bound
for the sparsity of a pairwise distance preserver in directed weighted graphs with n nodes
and O(n) pairs.

» Theorem 3. For every directed weighted n-node graph G = (V, E) and for every pair of
nodes s,t € V, there is a 1-FT (s,t) preserver with O(DP(n)) edges. For every m, there exists
a directed weighted n-node graph G = (V, E) and a node pair s,t € V such that any 1-FT
(s,t) preserver for G has Q(DP(n)) edges.

Coppersmith and Elkin [18] show that Q(n*/?) < DP(n) < O(n%/?). Tt is a major open
question to close this gap, and we show that the no-fault n-pair distance preserver question
is equivalent to the 1-fault single pair preserver question, thereby fully answering the latter
question, up to resolving the major open problem for n-pair preservers.

We show that the situation dramatically changes for f > 2.

» Theorem 4. There exists an undirected weighted graph G and a single node pair (s,t) in
this graph such that every 2-FT (s,t) preserver of G requires Q(n?) edges.

For unweighted graphs, we achieve several non-trivial upper and lower bounds concerning
the worst-case size of (s,t) preservers and spanners. First of all, we address the following
question.

» Question 2. In unweighted graphs, is the worst-case size of an f-FT (s,t) preserver
subquadratic for every constant f > 27

Prior work showed that the answer is YES for f = 1,2 [31, 33], but nothing is known for
f > 3. We show that the answer is YES. Indeed, our result is more general. First, it extends
to the single-source case (i.e., P = {s} x V) and even to a small enough set of sources (i.e.,
P =S x V for small |S|). Second, the same result holds for any fixed number f of vertex
faults. Prior work was only able to address the simple case f = 1 [30]. We also remark that
our preserver can be computed very efficiently in O(fmn) time, and its analysis is relatively
simple (e.g., compared to the cumbersome case analysis in [31]).

» Theorem 5. For every directed or undirected unweighted graph G = (V| E), integer f > 1
and S CV, one can construct in time O(fnm) an f-FT S-sourcewise (i.e. P =S8 xV)
preserver of size O(f - |S|1/2f -nzfl/zf), both in the case of edge and vertex faults.

By standard techniques, we can exploit our S-sourcewise preserver to build an additive
spanner (for all pairs): Let L be an integer parameter to be fixed later on. A vertex u is
low-degree if it has degree less than L, otherwise it is high-degree. Let S be a random sample
of ©(% - flogn) vertices. Our spanner H consists of the f-VFT S-sourcewise preserver from
Theorem 5 plus all the edges incident to low-degree vertices. This way we achieve:

» Theorem 6. For every undirected unweighted graph G = (V, E) and integer f > 1, there
exists a randomized O(fnm)-time construction of a +2-additive f-FT spanner of G of size
O(f - n> Y@ 4D that succeeds w.h.p.".

In the above result the size of the preserver grows quickly to O(n?) for increasing f. This
raises the following new question:

! The term w.h.p. (with high probability) here indicates a probability exceeding 1 — 1/n¢, for an
arbitrary constant ¢ > 2. Since randomization is only used to select hitting sets, the algorithm can be
derandomized.
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» Question 3. Does there exist a universal constant € > 0 such that all unweighted graphs
have an f-FT (s,t) preserver of size Op(n?>=¢)? What if we allow a small additive error?

The only result with strongly sub-quadratic size in the above sense is an O(f - n4/3) size
spanner with additive error ©(f) [14, 8]. Can we remove or reduce the dependence of the
error on f?7 We show that the answer is NO:

» Theorem 7. For any two integers q,h > 0 and a sufficiently large n, there exists an
unweighted undirected n-node graph G = (V, E) and a pair s,t € V such that any 2hq-FT
(2g — 1)-additive spanner for G for the single pair (s,t) has size Q((%)2_2/(h+1)),

» Corollary 8. For any fixed constants € > 0 and f, there exists an unweighted undirected
n-node graph G = (V, E) and a pair s,t € V such that any f-FT additive spanner for G for
the single pair (s,t) of size O(n®~¢) must have additive error Q(ef).

Proof. This follows from Theorem 7 by choosing proper h = O(1/¢) and ¢ = O(cf). <

Hence the linear dependence in f in the additive error in [14, 8] is indeed necessary. We
found this very surprising.

In Section 3 we present other related lower bounds which exploit the same basic construc-
tion plus ideas in [1, 10]: see Theorems 18, 19, and 20. In particular, we are able to achieve
super-linear lower bounds for any f > 2, even if we allow for a small enough polynomial
additive error n°.

So far we have focused on sparse distance preserving subgraphs. However, suppose that
the distance estimates can be stored in a different way in memory. Data structures that store
the distance information of a graph in the presence of faults are called distance sensitivity
oracles. Distance sensitivity oracles are also intensely studied [20, 7, 38, 26, 22, 23]. Our
main goal here? is to keep the size of the data structure as small as possible, leading to the
following question.

» Question 4. How much space do we need to preserve (exactly or with a small additive
error) the distances between a given pair of nodes in the presence of f faults?

Clearly all our preserver/spanner upper bounds extend to the oracle case, however the
lower bounds might not: in principle a distance oracle can use much less space than a
preserver/spanner with the same accuracy. Our main contribution here are the following
incompressibility results:

» Theorem 9. There exists an undirected weighted graph G and a single node pair (s,t)
in this graph such that every 2-FT distance sensitivity oracle for the single pair (s,t) in G
requires 2(n?) bits of space.

Note that the optimal size for f = 1 is ©(n) by simple folklore arguments, so our result
completes our understanding in this setting.

We are able to achieve a super-linear lower bound for 3 faults even in the case of a small
enough polynomial additive error: see Theorem 21 in Section 3.

2 Other typical goals are to minimize preprocessing and query time - we will not address these.
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1.1 Related Work

Fault-tolerant spanners were introduced in the geometric setting [27] (see also [28, 19]).
FT-spanners with multiplicative stretch are relatively well understood: the error/sparsity for
f-FT and f-VFT multiplicative spanners is (up to a small polynomial factor in f) the same
as in the nonfaulty case. For f edge faults, Chechik et al. [16] showed how to construct f-FT
(2k — 1)-multiplicative spanners with size O(fn“‘%) for any f,k > 1. They also construct
an f-VFT spanner with the same stretch and larger size. This was later improved by Dinitz
and Krauthgamer [21] who showed the construction of f-VFT spanners with 2k — 1 error
and O (fQ’%nH%) edges.

FT additive spanners were first considered by Braunschvig, Chechik and Peleg in [14]
(see also [8] for slightly improved results). They showed that FT ©(f)-additive spanners can
be constructed by combining FT multiplicative spanners with (non-faulty) additive spanners.
This construction, however, supports only edge faults. Parter and Peleg showed in [33] a
lower bound of Q(n'*¢8) edges for single-source FT 3-additive spanners. They also provided
a construction of single-source FT-spanner with additive stretch 4 and O(n4/ 3) edges that is
resilient to one edge fault. The first constructions of FT-additive spanners resilient against
one vertez fault were given in [30] and later on in [8]. Prior to our work, no construction of
FT-additive spanners was known for f > 2 vertex faults.

As mentioned earlier, the computation of preservers and spanners in the non-faulty case
(i.e. when f = 0) has been the subject of intense research in the last few decades. The
current-best preservers can be found in [18, 11, 12]. Spanners are also well understood, both
for multiplicative stretch [4, 25] and for additive stretch [3, 15, 6, 39, 1, 11, 15, 34, 2]. There
are also a few results on “mixed” spanners with both multiplicative and additive stretch
[24, 36, 6]

Distance sensitivity oracles are data structures that can answer queries about the distances
in a given graph in the presence of faults. The first nontrivial construction was given by
Demetrescu et al. [20] and later improved by Bernstein and Karger [7] who showed how
to construct O~(n2)—space, constant query time oracles for a single edge fault for an m-edge
n-node graph in O(mn) time. The first work that considered the case of two faults (hence
making the first jump from one to two) is due to Duan and Pettie in [22]. Their distance
oracle has nearly optimal size of O(n?) and query time of O(1). The case of bounded
edge weights, and possibly multiple faults, is addressed in [38, 26] exploiting fast matrix
multiplication techniques. The size of their oracle is super-quadratic.

The notion of FT-preservers is also closely related to the problem of constructing replace-
ment paths. For a pair of vertices s and ¢ and an edge e, the replacement path P;; . is the
s-t shortest-path that avoids e?. The efficient computation of replacement paths is addressed,
among others, in [29, 35, 38, 37]. A single-source version of the problem is studied in [26].
Single-source FT structures that preserve strong connectivity have been studied in [5].

1.2 Preliminaries and Notation

Assume throughout that all shortest paths ties are broken in a consistent manner. For
every s,t € V and a subgraph G’ C G, let 7/ (s,t) be the (unique) u-v shortest path in G’
(i.e., it is unique under breaking ties). If there is no path between s and ¢ in G’, we define

3 Replacement paths were originally defined for the single edge fault case, but later on extended to the
case of multiple faults as well.
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e (s,t) = (. When G’ = G, we simply write 7(u,v). For any path P containing nodes
u, v, let Plu ~~ v] be the subpath of P between v and v. For s,t € V and F C E, we let
Pyt r = T\ p(s,t) be the s-t shortest-path in G'\ F. We call such paths replacement paths.
When F = {e}, we simply write Ps ;.. By m we denote the number of edges in the graph
currently being considered.

The structure of the paper is as follows. In Sec. 2, we describe an efficient construction
for FT-preservers and additive spanners with a subquadratic number of edges. Then, in Sec.
3, we provide several lower bound constructions for a single s-t pair, both for the exact and
for the additive stretch case. All the proofs which are omitted due to lack of space appear in
the full version of the paper (see [13]).

2 Efficient Construction of FT-Preservers and Spanners

In this section we prove Theorem 5. We next focus on the directed case, the undirected
one being analogous and simpler. We begin by recapping the currently-known approaches
for handling many faults, and we explain why these approaches fail to achieve interesting
space/construction time bounds for large f.

The limits of previous approaches: A known approach for handling many faults is by
random sampling of subgraphs, as introduced by Weimann and Yuster [38] in the setting
of distance sensitivity oracles, and later on applied by Dinitz and Kraughgamer [21] in the
setting of fault tolerant spanners. The high level idea is to generate multiple subgraphs
G1,...,G, by removing each edge/vertex independently with sufficiently large probability
p; intuitively, each G; simultaneously captures many possible fault sets of size f. One can
show that, for a sufficiently small parameter L and for any given (short) replacement path
P, ;. r of length at most L (avoiding faults F'), w.h.p. in at least one G; the path Ps; p is
still present while all edges/vertices in F' are deleted. Thus, if we compute a (non-faulty)
preserver H; C G, for each ¢, then the graph H = J, H; will contain every short replacement
path. For the remaining (long) replacement paths, Weimann and Yuster use a random
decomposition into short subpaths. Unfortunately, any combination of the parameters p,r, L
leads to a quadratic (or larger) space usage.

Another way to handle multiple faults is by extending the approach in [32, 33, 30] that
works for f € {1,2}. A useful trick used in those papers (inspired by prior work in [35, 37])
is as follows: suppose f =1, and fix a target node t. Consider the shortest path m(s,t). It
is sufficient to take the last edge of each replacement path P;: . and charge it to the node
t; the rest of the path is then charged to other nodes by an inductive argument. Hence,
one only needs to bound the number of new-ending paths — those that end in an edge that
is not already in m(s,t). In the case f = 1, these new-ending paths have a nice structure:
they diverge from (s, t) at some vertex b (divergence point) above the failing edge/vertex
and collide again with 7(s,t) only at the terminal ¢; the subpath connecting b and ¢ on the
replacement path is called its detour. One can divide the s-t replacement paths into two
groups: short (resp., long) paths are those whose detour has length at most (resp., at least)
/n. Tt is then straightforward enough to show that each category of path contributes only
a(nl/ %) edges entering ¢, and so (collecting these last edges over all nodes in the graph) the
output subgraph has 5(713/ %) edges in total. Generalizing this to the case of multiple faults
is non-trivial already for the case of f = 2. The main obstacle here stems from a lack of
structural understanding of replacement paths for multiple faults: in particular, any given
divergence point b € 7(s,t) can now be associated with many new-ending paths and not
only one! In the only known positive solution for f = 2 [31], the approach works only for
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edge faults and is based on an extensive case analysis whose extension to larger f is beyond
reasonable reach. Thus, in the absence of new structural understanding, further progress
seems very difficult.

A second source of difficulties is related to the running time of the construction. A priori,
it seems that constructing a preserver H should require computing all replacement paths
P, + r, which leads to a construction time that scales exponentially in f. In particular, by
deciding to omit an edge e from the preserver H, we must somehow check that this edge
does not appear on any of the replacement paths P, ; p (possibly, without computing these
replacement paths explicitly).

Our basic approach: The basic idea behind our algorithm is as follows. Similar to
[32, 33, 30], we focus on each target node ¢, and define a set E; of edges incident to ¢ to be
added to our preserver. Intuitively, these are the last edges of new-ending paths as described
before. The construction of E;, however, deviates substantially from prior work. Let us
focus on the simpler case of edge deletions. The set Ej is constructed recursively, according
to parameter f. Initially we consider the shortest path tree T' from the source set S to ¢,
and add to E}; the edges of T incident to ¢ (at most |S| many). Consider any new-ending
replacement path P for ¢t. By the previous discussion, this path has to leave T' at some node
b and it meets T again only at ¢: let D be the subpath of P between b and ¢ (the detour of
P). Note that D is edge-disjoint from T, i.e. it is contained in the graph G' = G\ E(T).
Therefore, it would be sufficient to compute recursively the set E; of final edges of new-ending
replacement paths for ¢ in the graph G’ with source set S’ given by the possible divergence
points b and w.r.t. f — 1 faults (recall that one fault must be in E(T'), hence we avoid that
anyway in G’). This set E} can then be added to F;.

The problem with this approach is that S’ can contain Q(n) many divergence points
(hence E; Q(n) many edges), leading to a trivial Q(n?) size preserver. In order to circumvent
this problem, we classify the divergence points b in two categories. Consider first the nodes b
at distance at most L from ¢ along T, for some parameter L. There are only O(]S|L) many
Sshort wwhich is sublinear for |S| and L small enough. Therefore we can safely
add STt to S’. For the remaining divergence points b, we observe that the corresponding
detour D must have length at least L: therefore by sampling O(n/L) nodes S we hit all
such detours w.h.p. Suppose that o € S!°" hits detour D. Then the portion of D from o to
t also contains the final edge of D to be added to E;. In other terms, it is sufficient to add
Slon9 (which has sublinear size for polynomially large L) to S’ to cover all the detours of

such nodes

nodes b of the second type. Altogether, in the recursive call we need to handle one less fault
w.r.t. a larger (but sublinear) set of sources S’. Our approach has several benefits:

It leads to a subquadratic size for any f (for a proper choice of the parameters);

It leads to a very fast algorithm. In fact, for each target ¢t we only need to compute a
BF'S tree in f different graphs, leading to an O(fnm) running time;

Our analysis is very simple, much simpler than in [31] for the case f = 2;

It can be easily extended to the case of vertex faults.

Algorithm for Edge Faults: Let us start with the edge faults case. The algorithm
constructs a set F; of edges incident to each target node t € V. The final preserver is simply
the union H = (J,y £ of these edges. We next describe the construction of each E; (see
also Alg. 1). The computation proceeds in rounds ¢ = 0, ..., f. At the beginning of round &
we are given a subgraph G; (with Go = G) and a set of sources S; (with Sy = 5).

XX:7
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Algorithm 1 Construction of E; in our f-FT S-Sourcewise Preserver Algorithm.

1: procedure ComputeSourcewiseFT(t, .S, f, G)

Input: A graph G with a source set S and terminal ¢, number of faults f.
Output: Edges F; incident to ¢ in an f-FT S-sourcewise preserver H.

2: Set Go =G, Sg =S, E; = 0.

3 for i€ {0,...,f} do

4 Compute the partial BFS tree T; = (g, 7a, (s, 1)

5: E; = By U {LastE(7r,(s,t)) | s € Si}.

6: Set distance threshold d; = y/n/|S;| - flogn.

T: Let Short = {v € V(T;) | distr,(v,t) < d;}.

8 Sample a collection S/°™ C V(G;) of ©(n/d; - flogn) vertices.

9 Set S;1 =S¢t U S™ and Gy = Gi \ E(Ty).

We compute a partial BFS tree T; = |J,cg, 7a,(s,t)* from S; to t, and add to E;
(which is initially empty) the edges {LastE(wr,(s,t)) | s € S;} of this tree incident to
t. Here, for a path m where one endpoint is the considered target node t, we denote
by LastE(r) the edge of 7 incident to t. The source set S;;; is given by Sshert ( glong,
Here Sghort = {v € V(T;) | distr,(v,t) < d;} is the set of nodes at distance at most
d; = \/n/|S;]- flogn from t, while $°" is a random sample of ©(n/d; - flogn) vertices.
The graph G, is obtained from G; be removing the edges E(T;)5.

Adaptation for Vertex Faults: The only change in the algorithm is in the definition of
the graph G; inside the procedure to compute F;. We cannot allow ourselves to remove all
the vertices of the tree T; from G; and hence a more subtle definition is required. To define
Giy1, we first remove from G;: (1) all edges of Sghort x Sshert (2) the edges of E(T;), and
(3) the vertices of V(T3) \ S, Finally, we delete all remaining edges incident to Sghort
which are directed towards any one of these vertices (i.e., the incoming degree of the Sghort
vertices in G;11 is zero).

Analysis: We now analyze our algorithm. Since for each vertex ¢, we compute f (partial)
BFS trees, we get trivially:

» Lemma 10 (Running Time). The subgraph H is computed within O(fnm) time.

We proceed with bounding the size of H.

» Lemma 11 (Size Analysis). |E;| = O(|S|V/? - (fn)'=1/2") for every t € V, hence |E(H)| =
O(f|S|"/* n2=1/2").

Proof. Since the number of edges collected at the end each round i is bounded by the number
of sources S;, it is sufficient to bound |S;| for all i. Observe that for every i € {0,..., f — 1},

Si1] < |81 + |Sghort| < d; -S| + ©(n/d; - flogn) = O(d; - |Si)).
By resolving this recurrence starting with |Sy| = |S| one obtains
|Si] = O(IS|"/* (fnlogn)'=1/%).
The claim follows by summing over i € {0, ..., f}. <
4 If mg, (s,t) does not exist, recall that we define it as an empty set of edges.

5 Note that for f = 1, the algorithm has some similarity to the replacement path computation of [35].
Yet, there was no prior extension of this idea for f > 2.
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We next show that the algorithm is correct. We focus on the vertex fault case, the edge
fault case being similar and simpler. Let us define, for t € V and i € {0,..., f},

Pri =A{ngar(s,t) | s€ 8, FCV(Gy), |F| < f—i}.
» Lemma 12. For everyt € V and i € {0,..., f}, it holds that
LastE(m) € E; for every m € Py.

Proof. We prove the claim by decreasing induction on i € {f,...,0}. For the base case
i=f, Py =A{na,(s,t) | s € Ss}. Since we add precisely the last edges of these paths to
the set Ey, the claim holds. Assume that the lemma holds for rounds f, f —1,...,i+ 1 and
consider round 4. For every mg,\r(s,t) € Py, let P, p = g, \r(s,1). 6 Consider the partial
BFS tree T; = U,eg, 7G.(s,t) Tooted at t. Note that all (interesting) replacement paths
P, p in G; have at least one failing vertex v € F'N V(T}) as otherwise P, ; » = 7, (s,1).

We next partition the replacement paths m € Py ; into two types depending on their last
edge LastE(w). The first class contains all paths whose last edge is in T;. The second class
contains the remaining replacement paths, which end with an edge that is not in 7;. We
call this second class of paths new-ending replacement paths. Observe that the first class
is taken care of, since we add all edges incident to ¢ in 7;. Hence it remains to prove the
lemma for the set of new-ending paths.

For every new-ending path P, r, let bs ¢ r be the last vertex on P;, p that is in V(T;)\ {t}.
We call the vertex by ¢ the last divergence point of the new-ending replacement path. Note
that the detour D, p = Ps',t,F[bs,t,F ~> t] is vertex disjoint with the tree T; except for the
vertices b, ; p and t. From now on, since we only wish to collect last edges, we may restrict
our attention to this detour subpath. That is, since LastE(D; ¢, r) = LastE(P;, ), it is
sufficient to show that LastE(Ds ¢ ) € Ey.

Our approach is based on dividing the set of new-ending paths in P;; into two classes
based on the position of their last divergence point bs ; . The first class Pgport consists of new-
ending paths in P;; whose last divergence point is at distance at most d; = v/n/|S;| - flogn
from ¢ on T;. In other words, this class contains all new-ending paths whose last divergence
point is in the set S, We now claim the following.

» Claim 13. For every P, tF € Pshort, the detour Dy p is in Py iy1.

Proof. Since D, r is a subpath of the replacement path PS’At’F, D, + ¢ is the shortest path
between b, p and ¢ in G; \ F. Recall that Dy, p is vertex disjoint with V(T;) \ {bs.i,7,t}

Since bs 1, is the last divergence point of P, p with 7}, the detour D;; r starts from
a vertex by, p € S3h" and does not pass through any other vertex in V(T;) \ {t}. Recall
that in the construction of G;11 we delete from G; the edges directed towards th"”. In
particular, the outgoing edge connecting by ; p to its neighbor « on Dy ¢ p[bs ., r ~> t] remains
(i.e., this vertex z is not in V(T;) \ {t}), this implies that the detour D, p exists in G;y1.
In particular, note that the vertex bs; p cannot be a neighbor of ¢ in T;. Indeed, if (bs ¢ r,?)
were an edge in 7T}, then we can replace the portion of the detour path between b, ; r and ¢
by this edge, getting a contradiction to the fact that P‘ft r is a new-ending path”.

Next, observe that at least one of the failing vertices in F' occurs on the subpath
76, [bs..r,t], let this vertex be v € F. Since v € S| all the edges incident to v are

5 We denote these replacement paths as P;L  as they are computed in G; and not in G.
7 For the edge fault case, the argument is much simpler: by removing E(T;) from G;, we avoid at least
one of the failing edges in Git1.
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directed away from v in G4 and hence the paths going out from the source b5+ r in G4
cannot pass through v. Letting F' = F \ V(T;), it holds that (1) |F'| < f —i—1 and (2)
since the shortest path ties are decided in a consistent manner and by definition of G;41, it
holds that Dy r = 7q,, \p(bs,t,F,t). As bsip € Sghort it holds that Dy € Priv1. <

Hence by the inductive hypothesis for i + 1, LastE(P, , ) is in E; for every P, p € Psnort-
We now turn to consider the second class of paths Pj,,y which contains all remaining new-
ending paths; i.e., those paths whose last divergence point is at distance at least d; from ¢ on
T;. Note that the detour D ¢ r = P, ; p[bs,.,r ~ t] of these paths is long — i.e., its length is
at least d;. For convenience, we will consider the internal part D} ; p = Ds .7 \ {bst,r,t} of
these detours, so that the first and last vertices of these detours are not on T;.

We exploit the lengths of these detours Dy, r and claim that w.h.p, the set Sfong is
a hitting set for these detours. This indeed holds by simple union bound overall possible
O(nf*2) detours. For every P., p € Piong, let werp € V(DL p) N Sl°"9 (By the hitting
set property, w.h.p., ws ¢ r is well defined for each long detour). Let Wy, r = P, p[ws r,t]
be the suffix of the path P, .. starting at a vertex from the hitting set ws; r € Sﬁ‘mg. Since
LastE(P;t’F) = LastE(Ws, r), it is sufficient to show that LastE(W,, ) is in E;.

» Claim 14. For every P, p € Plong, it holds that Wy r € Py 1.

Proof. Clearly, Wy, s is the shortest path between w,, r and t in G; \ F. Since Wy p C
D}, p is vertex disjoint with V(7}), it holds that W, r = 7g,, \r(ws,eF,t) for F' =
F\ V(T;). Note that since at least one fault occurred on T;, we have that |F'| < f—i — 1.
As we s € S, it holds that Wy, p € P;i11. The lemma follows. <

By applying the claim for i = 0, we get that LastE(PS”t’F) is in F; as required for every
Ps”th € Piong- This completes the proof. <

» Lemma 15. (Correctness) H is an f-FT S-sourcewise preserver.

Proof. By using Lemma 12 with ¢ = 0, we get that for every t € V, s € Sand F C V,
|F| < f, LastE(P, 4 r) € E; (and hence also LastE(P,;r) € H). It remains to show
that taking the last edge of each replacement path P;, r is sufficient. The base case is
for paths of length 1, where we have clearly kept the entire path in our preserver. Then,
assuming the hypothesis holds for paths up to length k& — 1, consider a path Ps;r of
length k. Let LastE(Ps; ) = (u,t). Then since we break ties in a consistent manner,
P,y p = P, poLlastE(Ps;.). By the inductive hypothesis P, , r is in H, and since we
included the last edge, P, r is also in H. The claim follows. |

Theorem 5 now immediately follows from Lemmas 10, 11, and 15.

3 Lower Bounds for FT Preservers and Additive Spanners

In this section, we provide the first non-trivial lower bounds for preservers and additive
spanners for a single pair s-t.

We start by proving Theorem 7. The main building block in our lower bound is the
construction of an (undirected unweighted) tree T", where h is a positive integer parameter
related to the desired number of faults f. Tree T" is taken from [31] with mild technical
adaptations. Let d be a size parameter which is used to obtain the desired number n of
nodes. It is convenient to interpret this tree as rooted at a specific node (though edges in
this construction are undirected). We next let 7¢(T") and L(T") be the root and leaf set
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of T", respectively. We also let £(h) and n(h) be the height and number of nodes of 7",
respectively.

Tree T" is constructed recursively as follows. The base case is given by 7° which consists
of a single isolated root node 7t(7°). Note that £(0) = 0 and n(0) = 1. In order to construct
Th, we first create d copies Té“l, e ,T;:ll of T"~!. Then we add a path vy, ...,v4_1 of
length d — 1 (consisting of new nodes), and choose rt(T") = vy. Finally, we connect v; to
rt(T]hfl) with a path (whose internal nodes are new) of length (d — j) - (¢(h — 1) + 3). Next
lemma illustrates the crucial properties of T".

» Lemma 16. The tree T" satisfies the following properties:

1. n(h) < 3(h+1)(d+ )"

2. |L(Th)| = d"

3. For every { € L(T"), there exists Fy C E(T), |Fy| = h, such that distom p,(s,0) <
distyn g, (s, £') + 2 for every ¢/ € L(T")\ {'}.

We next construct a graph S" as follows. We create two copies T, and T; of T". We
add to S" the complete bipartite graph with sides L(Ty) and L(T}), which we will call the
bipartite core B of Sh. Observe that |L(Ts)| = |L(T;)| = d", and hence B contains d*" edges.
We will call s = sr(S") = rt(Ts) the source of S, and t = tg(S") = rt(T}) its target.

» Lemma 17. Every 2h-FT (s,t) preserver (and I1-additive (s,t) spanner) H for S* must
contain each edge e = ({s,4;) € B.

Proof. Assume that e = ({5, ¢;) ¢ H and consider the case where Fy, fails in Ts and Fy,
fails in Ty. Let G’ := S\ (Fy, U Fy,), and ds (resp., d;) be the distance from s to £, (resp.,
from ¢; to t) in G’. By Lemma 16.3 the shortest s-t path in G’ passes through e and has
length ds + 1 + d;. By the same lemma, any path in G’, hence in H' := H \ (Fy, U Fy,),
that does not pass through ¢ (resp., ¢;) must have length at least (ds + 2) + 1 + d; (resp.,
ds + 1+ (d; + 2)). On the other hand, any path in H' that passes through ¢; and ¢; must
use at least 3 edges of B, hence having length at least ds + 3 + d;. <

Our lower bound graph S(’} is obtained by taking ¢ copies Si,..., S, of graph S" with

d = (300 —
We let s = sr(S1) and t = tg(Sy).

Proof of Theorem 7. Consider Sf]‘. By Lemma 16.1-2 this graph contains at most n nodes,
and the bipartite core of each S; contains d?* = Q((qih)%z/(h“)) edges.

Finally, we show that any (2¢ — 1)-additive (s,t) spanner needs to contain all the edges of
at least one such bipartite core. Let us assume this does not happen, and let e; be a missing
edge in the bipartite core of \S; for each i. Observe that each s-t shortest path has to cross
sr(S;) and tg(S;) for all 4. Therefore, it is sufficient to choose 2h faulty edges corresponding
to each e; as in Lemma 17. This introduces an additive stretch of 2 in the distance between
s and t for each e;, leading to a total additive stretch of at least 2q. |

The same construction can also be extended to the setting of (2h)-FT S x T preservers.

To do that, we make parallel copies of the S graph.

» Theorem 18. For every positive integer f, there exists a graph G = (V, E) and subsets
S, T CV, such that every (2f)-FT 1-additive S x T spanner (hence S x T preserver) of G
has size Q(|S|Y/ D TV THD L (n/ )22/ F+D),

1)#17 and chaining them with edges (tg(S;), sr(Sit1)), for i =1,...,¢— 1.
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Improving over the Bipartite Core: The proof above only gives the trivial lower bound
of Q(n) for the case of two faults (using h = ¢ = 1). We can strengthen the proof in this
special case to show instead that Q(n'T¢) edges are needed, and indeed this even holds in
the presence of a polynomial additive stretch:

» Theorem 19. A 2-FT distance preserver of a single (s,t) pair in an undirected unweighted
graph needs Q(n*/10=°W) edges.

» Theorem 20. There are absolute constants £,0 > 0 such that any +n°-additive 2-FT
preserver for a single (s,t) pair in an undirected unweighted graph needs Q(n'*¢) edges.

Finally, by tolerating one additional fault, we can obtain a strong incompressibility result:

» Theorem 21. There are absolute constants €,6 > 0 such that any +n°-additive 3-FT

distance sensitivity oracle for a single (s,t) pair in an undirected unweighted graph uses
Q(n'™e) bits of space.

The proofs of Theorems 19, 20 and 21 are similar in spirit. The key observation is that
the structure of T, T; allows us to use our faults to select leaves £, f; and enforce that a
shortest /s-¢; path is kept in the graph. When we use a bipartite core between the leaves of
Ts and T3, this “shortest path” is simply an edge, so the quality of our lower bound is equal
to the product of the leaves in Ty and T;. However, sometimes a better graph can be used
instead. In the case h = 1, we can use a nontrivial lower bound graph against (non-faulty)
subset distance preservers (from [10]), which improves the cost per leaf pair from 1 edge

11/10 edges, yielding Theorem 19. Alternatively, we can use a nontrivial lower

to roughly n
bound graph against +n’ spanners (from [1]), which implies Theorem 20. The proof of
Theorem 21 is similar in spirit, but requires an additional trick in which unbalanced trees
are used: we take T, as a copy of T' and T} as a copy of T2, and this improved number of

leaf-pairs is enough to push the incompressibility argument through.

4 Open Problems

There are lots of open ends to be closed. Perhaps the main open problem is to resolve the
current gap for f-FT single-source preservers. Since the lower bound of Q(n?~1/(f+1)) edges
given in [31] has been shown to be tight for f € [1,2], it is reasonable to believe that this
is the right bound for f > 3. Another interesting open question involves lower bounds for
FT additive spanners. Our lower-bounds are super linear only for f > 2. The following
basic question is still open though: is there a lower bound of Q(n3/2+€) edges for some
e € (0,1] for 2-additive spanners with one fault? Whereas our lower bound machinery can
be adapted to provide non trivial bounds for different types of f-FT P-preservers (e.g.,
P ={s,t},P =S5 xT, etc.), our upper bounds technique for general f > 2 is still limited to
the sourcewise setting. Specifically, it is not clear how to construct an f-FT S x S preserver
other than taking a (perhaps wasteful) f-FT S-sourcewise preserver. As suggested by our
lower bounds, these questions are interesting already for a single pair.
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