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Abstract

This paper concerns the behavior of an SINR diagram of wireless systems, composed of a set
S of n stations embedded in Rd, when restricted to the corresponding Voronoi diagram imposed
on S. The diagram obtained by restricting the SINR zones to their corresponding Voronoi cells
is referred to hereafter as an SINR+Voronoi diagram.

The study of SINR+Voronoi diagrams is motivated by the following two facts. (1) Uniform
SINR diagrams (where all stations transmit with the same power) are simple and nicely struc-
tured. In particular, the reception zone of each station is convex and “fat”; this can be used to
devise an efficient algorithm for the fundamental problem of point location [3]. (2) In contrast,
nonuniform SINR diagrams (where transmission energies are arbitrary) might be complex; the
reception zone of each station might be fractured and its boundary might contain many singular
points [9]. This makes it harder to understand the geometry of nonuniform SINR diagrams, as
well as to design efficient point location algorithms for this setting.

In this paper, we establish the (perhaps surprising) fact that a nonuniform SINR+Voronoi
diagram is topologically almost as nice as a uniform SINR diagram. In particular, it is convex
and effectively1 fat. This holds for every power assignment, every path-loss parameter α and
every dimension d ≥ 1. The convexity property also holds for every SINR threshold β > 0, and
the affective fatness holds for any β > 1. These fundamental properties provide a theoretical
justification to engineering practices basing zoneal tessellations on the Voronoi diagram, and
helps to explain the soundness and efficacy of such practices.

We then consider two algorithmic applications. The first concerns the Power Control with
Voronoi Diagram (PCVD) problem, where given n stations embedded in some polygon P, it is
required to find the power assignment that optimizes the SINR threshold of the transmission
station si for any given reception point p ∈ P in its Voronoi cell Vor(si). The second application
is approximate point location; we show that for SINR+Voronoi zones, this task can be solved
considerably more efficiently than in the general non-uniform case.
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1 Introduction

1.1 Background and motivation

A common method for designing a cellular or wireless network in a plane is by computing the
Voronoi diagram of the base-stations, and making each base-station responsible for its own Voronoi
cell. This choice is natural, since it ensures that the distance from every point p in the plane to
the station responsible for it is minimal. Yet what affects the performance of a wireless network
is not just the distance. Rather, reception at a given point in a given time is governed by a
complex relationship between the reception point and the set of stations that transmit at that
time. This relationship is described schematically by the SINR formula, which also dictates the
reception zones around each transmitted station. Hence the areas in the intersection between SINR
reception regions and their corresponding Voronoi cells deserve particular attention, and are the
focus of the current paper.

We consider the Signal to Interference-plus-Noise Ratio (SINR) model, where given a set of
stations S = {s0, . . . , sn−1} in Rd concurrently transmitting with power assignment ψ, and back-
ground noise N , a receiver at point p ∈ Rd successfully receives a message from station si if and

only if SINR(si, p) ≥ β, where SINR(si, p) = ψi·dist(si,p)−α∑
j 6=i ψj ·dist(sj ,p)−α+N

for constants α and β ≥ 1, and

where dist() denotes Euclidean distance.
To model the reception zones we use the convenient representation of an SINR diagram, intro-

duced in [3], which partitions the plane into n reception zones, one per station, and a complementary
zone where no station can be heard. The topology and geometry of SINR diagrams was studied
in [3] in the relatively simple setting of uniform power, where all stations transmit with the same
power level. It was shown therein that uniform SINR diagrams are particularly simple: the re-
ception zone of each station is convex, fat and strictly contained inside the corresponding Voronoi
cell.

SINR diagrams under the general nonuniform setting (i.e., with arbitrary power assignments)
were studied in [9]. The topological features of general SINR diagrams turn out to be much more
complicated than in the uniform case, even for small networks. In particular, the reception zones
are not necessarily fat, convex or even connected, and their boundaries might contain many singular
points.

In this paper, we explore the behavior of the reception zones of SINR diagrams when restricted
to Voronoi diagrams. The resulting diagram, referred to as SINR+Voronoi diagram, consists
of n reception zones, one per station, obtained by the intersection of the SINR reception zones
with their corresponding Voronoi cells. Studying SINR+Voronoi diagrams is motivated by the
complexity of general nonuniform SINR zones and, perhaps more importantly, by the abundant
usage of hexagonal networks in practice; cellular networks are commonly designed as hexagonal
networks, where each node serves as a base-station to which mobile users must connect. A mobile
user is normally connected to the nearest base-station, hence each base-station serves all users that
are located inside its hexagonal grid cell (which is in fact its Voronoi cell). Due to the disk shape of
the sensing range of the sensor devices, using a hexagonal tessellation topology is the most efficient
way to cover the whole sensing area, and indeed many routing, location management and channel
assignment protocols are based on it [6, 12, 13, 14, 15].
It is thus intriguing to ask whether the reception zones of nonuniform SINR diagrams enjoy some
desirable properties (e.g., assume a convenient form) when restricted to their corresponding Voronoi
cells.
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𝑠0 

Figure 1: The overlay of an SINR diagram of a nonuniform wireless network on the corresponding
Voronoi diagram. (a) Hexagonal Voronoi cells; the intersection between the reception region of station
s0 and the Voronoi cell around it is highlighted in bold. (b) Slight random perturbation to a hexagonal
network. (c) Random positions.

In this paper, it is shown that while in general the reception zones in the nonuniform setting
might be fractured and their boundaries might contain many singular points, the restriction of a
reception zone to its Voronoi cell (e.g., hexagonal cell in the grid) behaves almost as nice as uniform
zones: it is convex, and its fatness measure depends only on parameters typically bounded by a
constant, and in particular is independent of the number of stations in the network.

For an illustration see the reception zone of station s0 in Figure 1(a). These fundamental
properties provide a theoretical justification to engineering practices basing regional tessellations
on the Voronoi diagram, and helps to explain the soundness and efficacy of such practices.

To prove convexity, we extend the proof for the uniform setting of [3] to the nonuniform setting2.
Apart from the theoretical interest, this result is of considerable practical significance, as obviously,
having a convex reception zone inside each hexagonal cell may ease the development of protocols
for various design and communication tasks such as scheduling, topology control and connectivity.
We note that convexity within a Voronoi cell is important also in the mobile setting where no fixed
tessellation can be assumed. For example, in the setting of Vehicular ad-hoc network (VANET)
[17], the stations are mobile but each user is still mapped to the closest base-station. Hence,
although the hexagonal tessellation is no longer preserved, the convexity within the (dynamic)
Voronoi tessellation is still relevant (for an illustration, see Fig. 1(b)-(c)).

As an application for the convexity property, we consider the problem where one wishes to cover
the entire area of a given bounded polygon P by using a base-station network embedded in P. One
natural way to do that is by assigning each base-station an area of coverage. Usually the base-
station needs to cover the area of its Voronoi cell up to where it intersects with P. Assuming the
power with which each base-station transmits can be controlled, it is desirable to increase the SINR
ratio as much as possible in order to increase the capacity of the cellular network. The problem
of determining the transmission energy of each base-station so as to maximize the capacity of the
entire network is called the Power Control Voronoi Diagram (PCVD) problem. We show that
although PCVD is a non-convex and non-discrete problem, it can be solved in a nearly optimal
manner.

Our algorithm is especially useful in the mobile setting where the positions of base-stations vary

2Note that in the uniform setting too, convexity is guaranteed only inside the Voronoi cell, but since the entire
reception zone is restricted to the Voronoi cell, this implies that the entire zone is convex. In contrast, in the
nonuniform setting, the reception zone of a station with a high transmission energy might exceed its Voronoi cell.
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with time. This scenario can happen in sudden-onset disasters and ad-hoc vehicle networks, since
in these cases, the network structure is not fixed and it is not clear how to divide the coverage
areas between the base-stations. Although it is natural to use the Voronoi diagram, it is not
clear how to assign the transmission energies in a way that guarantees a full coverage of the area of
interest. The solution proposed in this paper for this problem has the advantage that it can adapted
to a dynamic setting quite efficiently since it depends upon the Voronoi tessellation that can be
maintained efficiently in a dynamic setting [8, 5]. By exploiting the convexity property in Voronoi
cells, we propose a discrete equivalent formulation of the PCVD problem. Specifically, thanks to
the convexity guarantee, we show that it is sufficient to insist on achieving the optimal threshold
β only on the vertex set of each Voronoi cell (where unbounded Voronoi cells are bounded by
using a bounding polygon P that contains the entire coverage area). Computing power assignment
for maximizing the coverage within Voronoi cells has been considered also in [16] from the game
theoretic point of view; yet no analytic result has been known so far for this problem.

We then turn to consider the fatness property. In [9], it was shown that the fatness of nonuniform
zone can be bounded by some function of the maximum transmission power ψmax, the ambient
noise N , the SINR threshold β, the path-loss exponent α, the distance κ to the closest interfering
station and the number of stations in the network. The SINR+Voronoi zones are shown to have
a fatness bound that is independent of n. In particular, since the network parameters α, β, κ,N
and ψmax are bounded in practice (i.e., unlike the number of stations), the SINR+Voronoi zones
are effectively fat. Finally, using [4], the convexity and the improved fatness bound imply an
efficient approximate point location scheme for SINR+Voronoi zones whose preprocessing time and
memory requirements are significantly more efficient than those obtained in [9]. For a recent work
on batched point location tasks, see recent work of [1].

1.2 Geometric notions and wireless networks

Geometric notions. We consider the d-dimensional Euclidean space Rd (for d ∈ Z≥1). The
distance between points p and point q is denoted by dist(p, q) = ‖q− p‖. Denote the ball of radius
r centered at point p ∈ Rd by Bd(p, r) = {q ∈ Rd | dist(p, q) ≤ r}. Unless stated otherwise, we
assume the 2-dimensional Euclidean plane, and omit d. The basic notions of open, closed, bounded,
compact and connected sets of points are defined in the standard manner.

We use the term zone to describe a point set with some “niceness” properties. Unless stated
otherwise, a zone refers to the union of an open connected set and some subset of its boundary. It
may also refer to a single point or to the finite union of zones.

The point set P is said to be star-shaped with respect to point p ∈ P if the line segment p q is
contained in P for every point q ∈ P . In addition, P is said to be convex if it is star-shaped with
respect to any point p ∈ P , see [7].

For a bounded zone Z 6= ∅ and an internal p ∈ Z, denote the maximal and minimal diameters
of Z w.r.t. p by δ(p, Z) = sup{r > 0 | Z ⊇ B(p, r)} and ∆(p, Z) = inf{r > 0 | Z ⊆ B(p, r)}, and
define the fatness parameter of Z with respect to p to be ϕ(p, Z) = ∆(p, Z)/δ(p, Z). The zone Z is
said to be fat with respect to p if ϕ(p, Z) is bounded by some constant.

Wireless networks and SINR Diagrams. We consider a wireless networkA = 〈d, S, ψ,N , β, α〉,
where d ∈ Z≥1 is the dimension, S = {s0, s1, . . . , sn−1} is a set of transmitting n ≥ 2 radio stations
embedded in the d-dimensional space, ψ is an assignment of a positive real transmitting power ψi
to each station si, N ≥ 0 is the background noise, β ≥ 0 is a constant reception threshold, and
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α > 0 is the path-loss parameter. The signal to interference & noise ratio (SINR) of si at point p
is defined as

SINRA(si, p) =
ψi · dist(si, p)

−α∑
j 6=i ψj · dist(sj , p)−α + N

. (1)

Observe that SINRA(si, p) is always positive since the transmission powers and the distances of the
stations from p are always positive and the background noise is non-negative. In certain contexts,
it may be more convenient to consider the reciprocal of the SINR function,

SINR−1A (si, p) =
1

ψi

(∑
j 6=i

ψj

(
dist(si, p)

dist(sj , p)

)α
+ N · dist(si, p)

α
)
.

When the network A is clear from the context, we may omit it and write simply SINR(si, p). The
fundamental rule of the SINR model is that the transmission of station si is received correctly at
point p /∈ S if and only if its signal to noise ratio at p is not smaller than the reception threshold
of the network, i.e., SINR(si, p) ≥ β. In this case, we say that si is heard at p. We refer to the set
of points that hear station si as the reception zone of si, defined as

HA(si) = {p ∈ Rd − S | SINRA(si, p) ≥ β} ∪ {si} .

(Note that SINR(si, ·) is undefined at points in S and in particular at si itself, and that HA(si) is
not is not necessarily connected or restricted to the Voroni cell Vor(si)). The null zone is the set
of points that hear no station si ∈ S (due to the background noise and interference), HA(∅) = {p ∈
Rd−S | SINR(si, p) < β, ∀si ∈ S}. An SINR diagram H(A) = {HA(si), 0 ≤ i ≤ n−1}∪{HA(∅)}
is a “reception map” partitioning the plane into the stations reception zones and the null zone.
The following important technical lemma from [3] will be useful in our later arguments.

Lemma 1.1 [3] Let f : Rd → Rd be a mapping consisting of rotation, translation, and scaling by a
factor of σ > 0. Consider some network A = 〈d, S, ψ,N , β, α〉 and let f(A) = 〈d, f(S), ψ,N /σ2, β, α〉,
where f(S) = {f(si) | si ∈ S}. Then f preserves the signal to noise ratio, namely, for every station
si and for all points p /∈ S, we have SINRA(si, p) = SINRf(A)(f(si), f(p)).

Avin et al. [3] discuss the relationships between an SINR diagram on a set of stations S with uniform
transmission powers and the corresponding Voronoi diagram on S. Specifically, it is shown that the
n reception zones HA(si) around each point si are strictly contained in the corresponding Voronoi
cells Vor(si) where

Vor(si) = {p ∈ Rd | dist(si, p) ≤ dist(sj , p) for any j 6= i} . (2)

In contrast, the reception zone of a nonuniform SINR diagram is not necessarily contained within
the Voronoi cell of the corresponding station (e.g., a strong station with high transmission energy
may be successfully received in zones outside its Voronoi cell). Kantor et al. [9] showed that
nonuniform SINR diagrams are related to a weighted variant of Voronoi diagrams [2].

SINR+Voronoi Diagrams. Consider a wireless network A = 〈d, S, ψ̄,N , β, α〉. Let Vor(si) be
the Voronoi cell of station si (see Eq. (2)). Define VHA(si) be the reception zone of si restricted
to its Voronoi cell, where

VHA(si) = HA(si) ∩Vor(si) .

The SINR+Voronoi diagram consists of the n restricted reception zones VH = 〈VHA(s0), . . . ,VHA(sn−1)〉.
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2 Convexity of SINR+Voronoi Zones

Without loss of generality, throughout we fix a station s0 and show the following (for an illustration
see Fig. 2).

Theorem 2.1 For every wireless network A = 〈d, S, ψ,N ≥ 0, β > 0, α〉, VHA(s0) is convex.

𝑉ℋ(𝑠0) 

Figure 2: The reception region of s2 is non-convex but it is convex restricted to its Voronoi cell.

The following technical lemma from [11] plays a key role in our analysis. Denote the origin point
by q = (0, 0), let pL = (1, 0), pR = (−1, 0) and define ρi = dist2(si, q), for every i = 0, ..., n− 1.

Lemma 2.2 ([11]) Let A be a noise-free network (N = 0) and let q /∈ S. Then

max{SINR−1A (s0, pL) , SINR−1A (s0, pR)} ≥
∑n−1

i=1
ψi
ψ0
·
(
ρ0+1
ρi+1

)α/2
.

Our proof scheme for Lemma 2.1 is as follows. For simplicity, consider the two-dimensional
case. Using [3], the proof naturally extends to any dimension d ≥ 2. Consider a pair of reception
points p1, p2 ∈ VHA(s0). We classify such pairs into two types. The first type is where s0 ∈ p1 p2.
This case is handled in Lemma 2.3, where it is shown that VHA(s0) is star-shaped with respect
to s0. The complementary case, where s0 6∈ p1 p2 is handled in two steps. First, in Lemma 2.4,
we consider the simplified case where there is no background noise (i.e., N = 0) and use Lemma
2.2 to establish the claim. Finally, we consider the general noisy case where N > 0 and establish
Theorem 2.1.

Lemma 2.3 VHA(s0) is star-shaped with respect to s0.

Proof: In fact, we prove a slightly stronger assertion. Consider some point p ∈ Vor(s0). We show
that SINR(s0, q) > SINR(s0, p) for all internal points q in the segment s0 p. By Lemma 1.1, we
may assume without loss of generality that s0 = (0, 0) and p = (−1, 0). Consider some station
si, i > 0. If si is not located on the positive half of the horizontal axis, then it can be relocated
to a new location s ′i on the positive half of the horizontal axis by rotating it around p so that
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dist(s ′i, p) = dist(si, p) and dist(s ′i, q) ≤ dist(si, q) for all points q ∈ s0 p (see Fig. 3). This process
can be repeated with every station si, i > 0, until all interfering stations si 6= s0 are located on
the positive half of the horizontal axis without decreasing the interference at any point q ∈ s0 p.
Therefore it is sufficient to establish the assertion under the assumption that si = (ai, 0), where
ai > 0, for every i > 0. Let q = (−x, 0) for some x ∈ (0, 1]. To show that SINR(s0, q) > SINR(s0, p),
we consider the reciprocal of the SINR function,

f(x) = SINR−1(s0, q) =
n−1∑
i=1

[
ψi
ψ0

(
x

ai + x

)α]
+
xα

ψ0
·N ,

and prove that f(x) < f(1) for all x ∈ (0, 1). This follows since the derivative df(x)
dx = αx

ψ0
·(∑n

i=1
ψi·ai

(ai+x)(α+1) + N
)

is positive for x ∈ (0, 1].

Figure 3: Relocating stations. All stations are mapped to the positive x-axis, so that the SINR value
at point p with respect to the station s0, is preserved.

2.1 Convexity without background noise

We now complete the proof for the noise free case where N = 0.

Lemma 2.4 For every wireless network A0 = 〈d, S, ψ̄,N = 0, β, α〉, VHA(si) is convex for every
si ∈ S.

Proof: By Lemma 2.3, it remains to show that p1 p2 ⊆ VHA0(s0) for any every points p1, p2 ∈
VHA0(s0) such that s0 /∈ p1 p2. Note that by the convexity of a Voronoi cell, p1 p2 ⊂ Vor(si). Thus,
there is no station si on this segment, concluding that the SINRA0(s0, p) function is continuous on
the p1 p2 segment. It remains to prove that p1 p2 ⊆ HA0(s0), i.e., that SINRA0(s0, q) ≥ β for any
q ∈ p1 p2. We now show that for every q ∈ p1 p2,

SINRA0(s0, q) ≥ min{SINRA0(s0, p1), SINRA0(s0, p2)}.
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Specifically, we show that the dual statement holds, namely, that

SINR−1A0
(s0, q) ≤ max

{
SINR−1A0

(s0, p1),SINR−1A0
(s0, p2)

}
. (3)

By Lemma 1.1 and by the continuity of the SINRA function in the segment p1 p2, it is sufficient
to consider the case where p1 = (−1, 0), p2 = (1, 0) and q = (0, 0), the middle point between p1
and p2 on the segment. By applying Lemma 2.2, we have

max{SINR−1A0
(s0, p1) , SINR−1A0

(s0, p2)} ≥
n−1∑
i=1

ψi
ψ0
·
(
ρ0 + 1

ρi + 1

)α/2
. (4)

On the other hand, by Eq. (2),

SINR−1A0
(s0, q) =

n−1∑
i=1

ψi
ψ0
·
(
ρ0
ρi

)α/2
. (5)

As q ∈ Vor(s0), we have that ρi > ρ0 and hence ρ0/ρi < (ρ0+1)/(ρi+1) for every i ∈ {1, ..., n−1}.
This, together with Eq. (4) and (5), implies Ineq. (3).

2.2 Convexity with background noise

We now consider the general case where N ≥ 0.
Proof: [Theorem 2.1] Consider two points p1, p2 ∈ VHA(s0). We need to show that p1 p2 ⊆
VHA(s0). By Lemma 1.1, we may assume without loss of generality that p1 = (−1, 0) and p2 =
(1, 0). Let dN = max{dist(s0, p1),dist(s0, p2)}.

Let A∗ be a noise-free (n + 1)-station network obtained from A by replacing the background
noise with a new station sN located in (0, dN ) with transmission power ψN = N · (d2N +1)α/2. That
is, A∗ = 〈d = 2, S∗, ψ̄∗,N = 0, β, α〉, where S∗ = S ∪ {sN} and ψ̄∗ = (ψ0, ..., ψn−1, ψN ). It is easy
to verify that ψN · dist(sN , pi)

−α = N and ψN · dist(sN , q)
−α ≥ N , for every q ∈ p1 p2. Thus, on

the one hand,

SINRA∗(s0, pi) = SINRA(s0, pi), for i ∈ {1, 2}, (6)

and on the other hand, for all points q ∈ p1 p2,

SINRA(s0, q) ≥ SINRA∗(s0, q). (7)

We now show that p1, p2 ∈ VHA∗(s0). We first claim that p1, p2 ∈ Vor∗(s0) where Vor∗ is the
Voronoi diagram of the set S∗. Since p1, p2 ∈ VHA(s0), in particular p1, p2 ∈ Vor(s0). This
implies that dist(s0, pi) ≤ dist(sj , pi), for every i ∈ {1, 2} and j ∈ {1, ..., n − 1}. In addition,
dist(sN , pi) > dN ≥ dist(s0, pi), implying that p1, p2 ∈ Vor∗(s0) as needed. It remains to show
that p1, p2 ∈ HA∗(s0). Since p1, p2 ∈ HA(s0), SINRA(s0, pi) ≥ β for i ∈ {1, 2}. Thus, by Eq. (6),
SINRA∗(s0, pi) ≥ β as well, and p1, p2 ∈ HA∗(s0). Finally, since p1, p2 ∈ VHA∗(s0) where A∗ is a
noise free network, by Lemma 2.4 it holds that SINRA∗(s0, q) ≥ β, for all points q ∈ p1 p2. Thus,
by Ineq. (7), also SINRA(s0, q) ≥ β, for all points q ∈ p1 p2, are required. The lemma follows.

Theorem 2.1 is established.
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3 Fatness of SINR+Voronoi Zones

In this section we develop a deeper understanding of the shape of SINR+Voronoi reception zones by
analyzing their fatness. Consider a nonuniform power network A = 〈d, S, Ψ̄,N , β, α〉 with positive
background noise N > 0, where S = {s0, . . . , sn−1}, and α ≥ 0 and β > 1 are constants3.

We focus on s0 and assume that its location is not shared by any other station (otherwise,
H(s0) = {s0}). Let κ = minsi∈S\{s0}{dist(s0, si)} denote the distance between s0 and the closest
interfering station. The following fact summarizes the known fatness bounds for uniform and
nonuniform reception zones.

Fact 3.1 Let Au (resp., Anu) be an n-station uniform (resp., nonuniform) network. Then
(a) ϕ(s0,HAu(s0)) = O(1), and
(b) ϕ(s0,HAnu(s0)) = O(ψmax/κ ·

√
n/N ) for α = 2.

We now show that in the SINR+Voronoi setting, the fatness of VHA(s0) with respect to s0, can be
bounded as a function of ψmax, κ, α, β and N , namely, it is independent of the number of stations
n.

Theorem 3.2

ϕ(s0,VH(s0)) ≤
α
√
β + 1

α
√
β − 1

·max

{
1 ,

3

κ
· α
√

ψ0

N · β
·max{1, α

√
β − 1}

}
.

In certain cases, tighter bounds can be obtained. An SINR+Voronoi zone VHA(s0) is well-bounded
if the minimal enclosing ball of VHA(s0) is fully contained in the Voronoi cell Vor(s0). We next
claim that the fatness of well-bounded zones is constant.

Lemma 3.3 Let VHA(s0) be a well-bounded zone, then ϕ(s0,VHA(s0)) = O(1).

The proof of Thm. 3.2 is provided in Appendix A. Its overall structure is similar to that of
Thm. 4.2 in [3], but requires delicate adaptations for the nonuniform setting. Bounding the
radius ∆(s0,VHA(s0)) is easily obtained by considering the extreme case where s0 is the solitary
transmitting stations. Our main efforts went into bounding the small radius δ(s0,VHA(s0)) as a
function that is independent in n. The proof consists of three main steps. First (in Subsec. A.1) we
bound the fatness of SINR+Voronoi zones in a setting of two stations in a one-dimensional space.
Then (in Subsec. A.2), we consider a special type of nonuniform power networks called positive
collinear networks. Finally (in Subsec. A.3), the general case is reduced to the case of positive
collinear networks.

4 Applications

In this section, we present two applications for the properties established in the previous sections.
In Subsec. 4.1, we present an application for the convexity property and describe a new variant of
the power control problem. In Subsec. 4.2, we exploit the convexity and the improved bound on
the fatness of SINR+Voronoi zones to obtain an improved approximate point location scheme for
SINR+Voronoi diagram.

3Note that the convexity proof presented in Section 2 holds for any β ≥ 0.
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4.1 The Power Control Voronoi Diagram (PCVD) Problem

In the standard power control problem for wireless networks, one is given a set of n communication
links L = {`0, . . . , `n−1}, where each link `i represents a communication request from station si to
receiver ri. The question is then to find an optimal power assignment for the stations, so as to
make the reception threshold β as high as possible and ease the decoding process. As it turns out,
this problem can be solved elegantly using the Perron–Frobenius (PF) Theorem [18]. Essentially,
since every station is required to satisfy a fixed number of receivers (in the standard formulation,
there is actually one receiver per station), the system can be represented in matrix form that has
some useful properties.

We now consider a new variant of the problem in which every station has to satisfy a continuous
zone rather than a fixed number of points. The motivation for this formulation is that it allows one
to attain an optimal complete coverage of the reception map. We now define the problem formally.

In the Power Control for Voronoi Diagram (PCVD) problem, one is given a network of n
stations S = {s0, . . . , sn−1} embedded in some d-dimensional bounded polygon4 P and the task is
to find an optimal power assignment for the stations, so as to make the reception threshold β as
high as possible such that SINRA(si, p) ≥ β for every si and every point p ∈ Vor(si) ∩ P.

Note that without the convexity property within VHA(si) zones, established in the previous
section, it is unclear how to formulate this problem by using a finite set of inequalities. This is
because each Voronoi cell consists of infinitely many reception points, each of which must satisfy
an SINR constraint. Due to the convexity property, we can provide the following succinct represen-
tation of the problem. For every station si ∈ S, let Vi be the vertex set5 of the bounded polytope
Vor(si) ∩ P. Let m =

∑n−1
i=0 |Vi|. The optimization task consists of m inequalities and n + 1

variables (n variables corresponding to the power assignment and β). This yields the following
formulation.

maximize β subject to: (8)

SINR(si, p) ≥ β for every si ∈ S and p ∈ Vi .

We first claim that this is a correct formulation for the Power Control for Voronoi Diagram problem.
Let β∗ be the optimum solution of Program (8). By the feasibility of this solution, SINR(si, p) ≥ β∗
for every p ∈ Vi. Since the reception zone is convex within its Voronoi cell, we get that SINR(si, p) ≥
β∗ for every p ∈ Vor(si) (in particular, in the optimum β, the reception zone contains the Voronoi
cell of the station).

To solve Program (8), note that for any fixed β, the inequalities are linear in the n transmission
power variables and hence the resulting set of m linear inequalities is solvable in polynomial time.
A nearly optimum power assignment can then be found by searching for the best β via binary
search up to some desired approximation.

4.2 The Closest Station Point Location Problem

In the Closest Station Point Location Problem, one is given a nonuniform power network A with
n transmitting stations, S = {s0, . . . , sn−1}. Given a query point p ∈ R2, it is required to answer
whether sp is heard at p where sp is the closest station to p (i.e., p ∈ Vor(sp)).

4the role of P is to guarantee that all Voronoi cells restricted to P are bounded.
5Note that the Vi sets are not disjoint and hence vertices are counted multiple times
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Since nonuniform SINR zones are not convex and non-fat, the preprocessing as well as the
memory required in the approximate point location scheme of [10] are polynomial but costly. In
this section, we show that one can solve approximate point location tasks for nonuniform networks
with the effectively the same bounds as obtained for uniform (i.e., in case where ψmax and the
N are bounded by some constant) as long as the query point p belongs to the Voronoi cell of the
target station that should be heard at p. By Lemma 5.1 of [3], we have the following.

Theorem 4.1 For every n-station nonuniform power network with SINR+Voronoi reception zones
〈VHA(s1), . . . ,VHA(sn)〉, it is possible to construct, in O((ψmax/(κ ·N ))3/α ·n2 · ε−1) preprocessing
time, a data structure DS requiring memory of size O((ψmax/(κ·N ))3/α ·n·ε−1) that imposes a (2n+

1)-wise partition ṼH = 〈VH+
A(s1), . . . ,VH+

A(sn), . . . ,VH?
A(s1), . . . , ReceptionZoneV or

?
A(sn),VH−A〉.

of the Euclidean plane, such that for every i ∈ {0, . . . , n− 1}

(a) VH+
A(si) ⊆ VHA(si).

(b) VHA(si) ∩ VH−A = ∅.

(c) VH?
A(si) is bounded and its area is at most an ε-fraction of the area of VHA(si).

Furthermore, given a query point p, it is possible to extract from DS in time O(log n), the zone

in ṼH to which p belongs, hence the closest station point location query can be answered with
approximation ε with query time of O(log(ψmax · n/(N · κ))) where κ = mini,j dist(si, sj).

For comparison, the general point location scheme of [10] requires preprocessing time ofO(n10ψ4
max/ε

2)
and memory of size O(n8ψ4

max/ε
2).

5 Conclusion

The Voronoi diagram of the base stations is a natural model for wireless networks in the plane.
In this paper, we show that the restriction of the nonuniform reception zone to the corresponding
Voronoi region is as nice almost as uniform reception zones. The increasing demand for mobile
networks and high performance networks has created a need to dynamically determine the power
each base station should transmit in order to optimize the capacity of the network. A common
approach is to assign each base station its own Voronoi cell. Once the network is dynamic, the
Voronoi cell is no longer fixed and one can no longer compute, in advance, the parameters required
for optimal network performance. We consider a fundamental problem, named as the Power Control
for a Voronoi Diagram problem. The convexity property within Voronoi regions enables us to
discretize the PCVD problem while maintaining optimality. In addition, we showed the point
location queries for SINR+Voronoi zones can be solved with almost the same bounds as for the
uniform case. We believe that this approach would pave the way for designing additional algorithms
for dynamic mobile networks
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Figure 4: The embedding of s0 and s1 in a one-dimensional space.

APPENDIX

A Fatness

A.1 Two stations in a one-dimensional space (without noise)

Let A = 〈1, {s0, s1}, (ψ0, ψ1),N = 0, β > 1, α ≥ 1〉 be a nonuniform network consisting of two
stations s0, s1 embedded in the one-dimensional space R with no background noise (i.e., N = 0).
By Lemma 1.1, we can assume without loss of generality that s0 is located at a0 = 0 and s1 is
located at a1 = κ > 0. Let µr = min{κ/2,max{p > 0 | SINRA(s0, p) ≥ β}} and let µl = min{p <
0 | SINRA(s0, p) ≥ β} (see Figure 4), if ψ0/ψ1 ≥ β and µl = −∞, otherwise. It is easy to verify
that H(s0) = [µl, µr] if ψ0/ψ1 ≥ β and H0 = (−∞, µr], otherwise. Thus, δ = δ(s0,VH(s0)) = µr
and ∆ = ∆(s0,VH(s0)) = −µl.

Lemma A.1 The network A satisfies the following:

1. δ(s0,VH(s0)) = min{κ/2, κ

1+ α
√
βψ1/ψ0

} ,

2. If ψ1 ≥ ψ0, then ∆(s0,H(s0)) = κ

1−1 α
√
βψ1/ψ0

, and ϕ(s0,VH(s0)) = ∆/δ ≤
α√β+1
α√β−1 , with

equality when ψ1 = ψ0.

Proof: Let begin by showing assertion (1) of the lemma. Let (x, 0) for x > 0 be the boundary
point of H(s0) on the x-axis, i.e., satisfying the linear equation

ψ0/x
α

ψ1/(κ− x)α
= β,

leading to κ−x
x = (βψ1/ψ0)

1/α, or, x+ (βψ1/ψ0)
1/αx = κ. Solving this linear equation for positive

x yields,

µr = min{κ
2
,

κ

1 + α
√
βψ1/ψ0

} ,

as needed for assertion (1).
Now, we prove that assertion (2) holds. So, suppose that ψ1 ≥ ψ0. In this case, by part (1),

µr = κ/(1 + α
√
βψ1/ψ0). Similarly to the boundary point µr, the boundary point µl of H(s0) is

obtained by solving the equation ψ0/(−x)α
ψ1/(κ−x)α = β, for negative x, yielding

µl =
κ

1− α
√
βψ1/ψ0

.
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Figure 5: A positive collinear network.

Therefore the ratio ∆/δ satisfies

∆

δ
=
−µl
µr

=
α
√
βψ1/ψ0 + 1

α
√
βψ1/ψ0 − 1

≤
α
√
β + 1

α
√
β − 1

,

where the last inequality holds since α > 0, β > 1 and ψ1/ψ0 ≥ 1. The Lemma follows.

A.2 Positive collinear networks

In this section we turn to the Euclidean plane R2 and consider a special type of nonuniform power
networks. A network A = 〈2, {s0, . . . , sn−1}, Ψ̄,N , β, α〉 is said to be positive collinear if s0 = (0, 0)
and si = (ai, 0) for some ai > 0 for every 1 ≤ i ≤ n−1. Positive collinear networks play an important
role in the subsequent analysis due to the following lemma. See Figure 5 for an illustration.

Lemma A.2 Let A be a positive collinear nonuniform power network with positive background
noise N > 0. Fix κ = mini∈{1,...,n−1} dist(s0, si), µr = min{κ/2,max{r > 0 | SINRA(s0, (r, 0)) ≥
β}} and µl = min{r < 0 | SINRA(s0, (r, 0)) ≥ β}. Then

1. δ(s0,VH(s0)) = µr,

2. ∆(s0,VH(s0)) = −µl,

3. ϕ(s0,VH(s0)) = − µl
µr
≤ max

{
α√β+1
α√β−1 ,

α

√
ψ0

N ·β ·
α√β+1
κ

}
, and

4. if ∆(s0,VH(s0)) ≥ κ, then δ(s0,VH(s0)) ≥ κ
α√β+1

·min
{
α
√
β − 1 , 1

}
.

Proof: First, we argue that the SINR+Voronoi zone VH(s0) of s0 in the network A is contained
in the infinite vertical strip defined by µl ≤ x ≤ µr. To see why this is true, suppose, towards con-
tradiction, that the point (x, y) ∈ VH(s0) for some x > µr or x < µl. By symmetry considerations,
the point (x,−y) is also in VH(s0). By the convexity of VH(s0), it follows that (x, 0) ∈ VH(s0), in
contradiction to the definitions of µr and µl. We thus have the following.

Claim A.3 If (x, y) ∈ VH(s0), then µl ≤ x ≤ µr.

To prove assertion (1) of the lemma, we show that the ball of radius µr centered at s0 is
contained in VH(s0). In fact, by the convexity of VH(s0), it is sufficient to show that the point
p(θ) = (µr cos θ, µr sin θ) is in VH(s0) for all 0 ≤ θ ≤ π. Since the network is positive collinear, it
follows that IA(s0, p(θ)) attains its maximum for θ = 0. Therefore the fact that p(0) = (µr, 0) ∈
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H(s0) implies that p(θ) ∈ VH(s0) for all 0 ≤ θ ≤ π as desired. Assertion (1) follows. Next, we show
that ∆ is realized by the point (µl, 0). Indeed, by the triangle inequality, all points at distance k
from s0 are at distance at most k+ai from si = (ai, 0), with equality attained for the point (−k, 0).
Thus the minimum interference to s0 under A among all points at distance k from s0 is attained
at the point (−k, 0). Therefore, by the definition of µl, there cannot exist any point p ∈ VH(s0)
such that dist(p, s0) > −µl. Assertion (2) follows.

It remains to establish assertions (3) and (4). Recall that the leftmost station other than s0
is located at (κ, 0). By definition, µr < κ/2. Denote the energy of station si at (µr, 0) by Ei =
E(si, (µr, 0)) = ψi · (ai− µr)−α. We construct a new (n+ 1)-station network A′ = 〈2, S′, ψ′, 0, β, α〉
consisting of s0 and n new stations s ′0, . . . , s

′
n−1, all located at (κ, 0). We set the transmission power

ψ′i of the new stations s ′i to

ψ′i =

{
Ei · (κ− µr)α for 1 ≤ i ≤ n− 1; and
N · (κ− µr)α for i = n.

This ensures that the energy produced by these stations at (µr, 0) is

E(s ′i, (µr, 0)) =

{
Ei for 1 ≤ i ≤ n− 1, and
N for i = n.

Let ∆ = ∆(s0,VHA(s0)), ∆′ = ∆(s0,VHA′(s′0)). The small radii δ and δ′ are defined analogously.
Note that the Voronoi cell of s0 is the same in both networks A and A′.

The network A′ falls into the setting of Subsec. A.1: the stations s ′1, . . . , s
′
n share the same

location, thus they can be considered as a single station ŝ1 with transmission power ψ̂1 =
∑n

i=1 ψ
′
i.

Define µ′r = min{κ/2,max{r > 0 | SINRA′(s0, (r, 0)) ≥ β}}

µ′l =

{
min{r < 0 | SINRA′(s0, (r, 0)) ≥ β} if ψ̂1 ≥ βψ0

−∞ otherwise.

The restriction of the VHA′(s0) to the x-axis is thus [µ′l, µ
′
r]. In addition, it is easy to verify

that ∆′ ≤ α
√
ψ0/N · β (i.e., this is attained when only s0 transmits). By A.1, −µ′l/µ′r ≤

α√β+1
α√β−1 , if

ψ̂1 ≥ ψ0 and δ′ ≤ κ
1+ α√β otherwise.

The remaining of the proof relies on establishing the following two bounds.

(A1) SINRA′(s0, (r, 0)) ≤ SINRA(s0, (r, 0)) for all µr ≤ r < κ; and

(A2) SINRA′(s0, (r, 0)) ≥ SINRA(s0, (r, 0)) for all r ≤ µr, r 6= 0.

By combining bounds (A1) and (A2), we conclude that µ′r ≤ µr and µ′l ≤ µl . Thus, ∆′ ≥ ∆
and δ′ ≤ δ. Assertion (3) of the lemma holds, by combining this together with the facts that (i)

∆/δ ≤ ∆′/δ′ ≤
α√β+1
α√β−1 , if ψ̂1 ≥ ψ0, and (ii) δ ≥ κ/(1 + α

√
β) and ∆ ≤ ψ0/(β ·N ), otherwise.

For showing assertion (4), we consider two cases. If ψ̂1 < ψ0, then as mention above, we have
that δ ≥ δ′ ≥ κ

α√β+1
as needed for assertion (4). Otherwise, suppose that ψ̂1 ≥ ψ0 and that

∆ ≥ κ (the second inequality is the condition of that assertion). Combining this with the facts
that ∆′ ≥ ∆, δ′ ≤ δ and with Assertion (2) of Lemma A.1,

κ/δ ≤ ∆/δ ≤ ∆′/δ′ ≤
α
√
β + 1

α
√
β − 1

,
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which completes the proof of Assertion (4).
To establish Inequalities (A1) and (A2), consider some point p = (r, 0), where r < κ, r 6= 0.

For every 1 ≤ i ≤ n− 1, we have

E(si, p) = ψi · (ai − r)−α , while E(s ′i, p) = ψ′i · (κ− r)−α =
ψi · (κ− µr)α

(κ− r)α(ai − µr)α
.

Comparing these two expressions, we get E(si, p) ≥ E(s ′i, p), or equivalently, (κ − r)(ai − µr) ≥
(κ− µr)(ai − r). Rearranging, κai − κµr − air + rµr ≥ κai − κr − aiµr + rµr, or

µr(ai − κ) ≥ r(ai − κ) ,

Note that the inequality holds with equality if and only ai = κ, which, by definition, implies that
E(si, p) = E(s ′i, p). Therefore, the contribution of s ′i to the total interference at p = (0, r) is not
larger than that of si as long as r ≤ µr and not smaller than that of si as long as µr ≤ r < κ. On
the other hand, the energy of s ′n at p = (r, 0) satisfies E(s ′n, p) ≤ N for all κ ≤ µr and E(s ′n, p) ≥ N
for all µr ≤ r < κ. Inequalities (A1) and (A2) follow.

A.3 General uniform power networks in d-dimensional space

We are now ready to prove Thm. 3.2.
Proof: [Proof of Theorem 3.2.] Consider an arbitrary nonuniform power network A = 〈d, S, Ψ̄,N >
0, β, α〉, with positive noise, where S = {s0, . . . , sn−1} and β > 1 is a constant. We employ
Lemma 1.1 to assume without loss of generality that s0 is located at (0, ..., 0) and that max{dist(s0, q

′) |
q′ ∈ VHA(s0) is realized by a point q′ = (−∆, 0, ..., 0) on the negative x-axis. Let

q =

{
(−∆, 0, ..., 0) if ∆ ≤ κ/3
(−κ/3, 0, ..., 0).

Note that by definition, q is an internal point in Vor(s0). By the convexity of the VHA(s0), it
holds that q ∈ VHA(s0). We now construct a new positive collinear nonuniform power network
A′ = 〈d, {s0, s ′1, . . . , s ′n−1}, Ψ̄,N > 0, β, α〉, obtained from A by rotating each station si around the
point q until it reaches the Euclidean plane at the positive x-axis (see Figure 6). More formally,
the location of s0 remains unchanged and s ′i = (a′i, 0), where a′i = dist(si, q) − dist(s0, q) for every
1 ≤ i ≤ n − 1. Note that, since q ∈ Vor(s0), it holds that dist(s0, q) < dist(si, q) (and hence
a′i > 0), for every i = 1, ..., n − 1. Thus, A′ is a positive collinear network. In addition, for every
i = 1, ..., n− 1, the following three properties hold.
(P1) dist(s ′i, q) = dist(si, q);
(P2) dist(s′0, s

′
i) ≤ dist(s0, si); and

(P3) dist(s′0, s
′
i) ≥ κ/3.

Property (P1) is trivially holds by the contraction of A′ in which the stations preserves the distance
from q. Property (P2) holds, since dist(s′0, s

′
i) = dist(si, q) − dist(s0, q), whereas dist(s0, si) ≥

dist(si, q)−dist(s0, q). Finally, Property (P3) holds, since (i) dist(s0, q) ≤ κ/3; (ii) dist(s0, si) ≥ κ,
hence, (iii)dist(si, q) ≥ 2κ/3. Property (P3) holds, by combining together (ii), (iii) with (P1).

Let κ′ = mini∈{1,...,n−1} dist(s0, s
′
i) be the distance from s0 to the closest interfering station

in A′. By Property (P2), it follows that κ′ ≤ κ and by Property (P3) it follows that κ′ ≥ κ/3.
We now consider the fatness of VHA′(s0). Let δ′ = max{r > 0 | B(s0, r) ⊆ VHA′(s0)} and
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∆′ = min{r > 0 | B(s0, r) ⊇ VHA′(s0)} be the radii of the maximum (resp., minimum) balls
centered at s0 that bound VHA′(s0). Let µ′r = min{κ′/2,max{r > 0 | SINRA′(s0, (r, 0, ..., 0)) ≥ β}}
and let µ′l = min{r < 0 | SINRA′(s0, (r, 0, ..., 0)) ≥ β} be the extreme points on the x-axis that
belong to VHA′(s0). By Lemma A.2, Assertion 3, δ′ = µ′r and ∆′ = −µ′l and

ϕ(s0,VHA′(s0)) = −∆′

δ′
≤ max

{
α
√
β + 1

α
√
β − 1

, α

√
ψ0

N · β
·
α
√
β + 1

κ′

}
(A.1)

and by Assertion (4) of that lemma, if ∆′ ≥ κ′, then

δ′ ≥ κ′

α
√
β + 1

·min{1 , α
√
β − 1} . (A.2)

The remaining of the proof relies on establishing that

δ ≥ δ′ (A.3)

and that

∆ = ∆′, if ∆ ≤ κ/3. (A.4)

We now consider the following two cases.

Case 1: ∆ ≥ κ/3. By Inequality (A.2) and Inequality (A.3) together with that fact that κ′ ≥ κ/3 we
have, on the one hand, that

δ ≥ κ

3( α
√
β + 1)

·min{1 , α
√
β − 1} .

On the other hand, clearly,

∆ ≤ α

√
ψ0

N · β

(the above inequality is attained with equality when only s0 transmits). Hence, the theorem
follows.

Case 2: ∆ < κ/3. The theorem follows by combining together inequalities (A.1) and (A.3) with
Equality (A.4) with the fact that κ′ ≥ κ/3.

To prove Theorem 3.2, it remains to show that Inequality (A.3) and Equality (A.4) hold. The
former is a direct consequence of Lemma A.2; since if ∆ ≤ κ/3, then q′ = q, SINRA′(s0, q) =
SINRA(s0, q) = β, and it follows that max{dist(s0, p) | p ∈ H′0} is realized at p = q. It remains to
prove that δ′ ≤ δ (Inequality (A.3) holds). We do so by showing that B(s0, δ

′) ⊆ VHA(s0). We
first show that B(s0, δ

′) ⊆ HA(s0) Fix ρi = dist(si, q) for every 1 ≤ i ≤ n − 1. We argue that the
ball B(s0, δ

′) is strictly contained in the ball B(q, ρi) for every 1 ≤ i ≤ n − 1. To see why this is
true, observe that −∆ < 0 < δ′ = µ′r < a′i, hence the ball centered at q = (−∆, 0, ..., 0) of radius
ρi = ∆ + a′i strictly contains the ball of radius δ′ centered at s0 = (0, ..., 0). Next, consider an
arbitrary point p ∈ B(s0, δ

′). We can now rewrite

dist(s ′i, (δ
′, 0, ..., 0)) = a′i − δ′ = min{dist(t, t′) | t ∈ B(s0, δ

′), t′ ∈ ΦB(q, ρi)}
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Figure 6: A′ is obtained from A by relocating each station si on the x-axis.

for every 1 ≤ i ≤ n − 1. Recall that si ∈ Φ(B(q, ρi)), thus dist(si, p) ≥ dist(s ′i, (δ
′, 0, ..., 0)).

Therefore IA(s0, p) ≤ IA′(s0, (δ
′, 0, ..., 0)) and SINRA(s0, p) ≥ SINRA′(s0, (δ

′, 0)) = β. It follows
that p ∈ HA(s0). Finally, it remains to show that B(s0, δ

′) is in the Voronoi cell of s0 in A. Note
that the transformation to A′ cannot decrease the distance between the interfering stations and s0,
i.e., dist(s0, si) ≥ dist(s0, s

′
i). Hence, κ′ ≤ κ. Since δ′ ≤ κ′/2, it holds that also δ′ ≤ κ/2, the claim

follows.
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