Resilience of Mutual Exclusion Algorithms to
Transient Memory Faults

Thomas Moscibroda
Microsoft Research
_Redmond, WA
moscitho@microsoft.com

ABSTRACT

We study the behavior of mutual exclusion algorithms in tresp
ence of unreliable shared memory subject to transient mefaolts.
It is well-known that classical 2-process mutual exclusago-
rithms, such as Dekker and Peterson’s algorithms, are mitt fa
tolerant; in this paper we ask what degree of fault toleraracebe
achieved using the same restricted resources as Dekkereaed P
son’s algorithms, namely, three binary read/write regsste

We show that if one memory fault can occur, it is not possible
to guarantee both mutual exclusion and deadlock-freedanyg us
three binary registers; this holds in general when fewer #yat 1
binary registers are used arfdmay be faulty. Hence we focus
on algorithms that guarantee (a) mutual exclusion and atian-
freedom in fault-free executions, and (b) only mutual egidn in
faulty executions. We show that using only three binarystegs
it is possible to design an 2-process mutual exclusion #kgor
which tolerates a single memory fault in this manner. Furthe
replacing one read/write register with a test&set registar can
guarantee mutual exclusion in executions where one varatpe-
riences unboundedly many faults.

In the more general setting where upfteegisters may be faulty,
we show that it is not possible to guarantee mutual exclussimg
2f + 1 binary read/write registers if each faulty register canilgikh
unboundedly many faults. On the positive side, we show that a
n-variable single-fault tolerant algorithm satisfying tzén condi-
tions can be transformed into détn — 1) f + 1)-variable f-fault
tolerant algorithm with the same progress guarantee agitjiaa.

In combination with our three-variable algorithm, this illeg that
there is a2 f + 1)-variable mutual exclusion algorithm tolerating a
single fault in up tof variables without violating mutual exclusion.

Categories and Subject Descriptors:

D.4.1 [Operating Systems]: Process Managenmantdal exclu-
sion

D.4.5 [Operating Systems]: Reliabilitiault tolerance

General Terms: Algorithms, Theory

Keywords: mutual exclusion, fault tolerance, transient memory
faults

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC’11,June 6-8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0719-2/11/06 ...$10.00.

Rotem Oshman
Computer Science and Al Laboratory, MIT
Cambridge, MA
rotem@mit.edu

1. INTRODUCTION

Mutual exclusion is among the most important and well-stddi
problems in distributed computing. It is used in concurnerd-
gramming to avoid the simultaneous use of shared data gtesct
by pieces of computer code called critical sections. In aesha
memory environment, synchronization among processesgtiyi
access a critical section is achieved via a small set of dhaag-
ables that can be accessed by the processes. Existing rextiual
sion algorithms are based on the underlying assumptiorthae
shared variables are reliable: if a process sets a sharedbleato
a certain valuer, any subsequent read access to the variable will
returnz, until some other process overwrites the value.

In this paper we study the implications of relaxing this asgu
tion, and consider mutual exclusion algorithms in the preseof
unreliable shared memory. Our motivation for this releatis
the observation that due to faster clock rates, increasmghip
transistor density, decreasing voltages and smaller faelfea-
ture sizes, the likelihood of encounteritrgnsient memory faulis
non-negligible in today’s computer systems, and is boumdplly
increase in future systems. A transient memory fault, atsmua
as asoft error, is a temporary hardware failure that alters a signal
transfer, a register value, or some other processor compon&n-
sient faults can occur due to many reasons; there are segeest
examples where they have caused substantial reliabilitylems,
leading to costly failures in industrial high-end systems.

In the context of mutual exclusion algorithms, the posgibof
sudden changes to shared memory variables is particulesty p
lematic, since it could result in a violation of the mutuatksion
property. Indeed, none of the well-known existing mutuatlex
sion algorithms (e.g., Dekker's algorithm, Peterson’®etgm, or
Lamport’s Bakery algorithm) is designed to tesilientto transient
faults. Each of these algorithms may fail to maintain muaxalu-
sion if a shared variable used for communication among tbe pr
cesses suddenly changes. In fact, this holds even whensgexe
always execute the entry and exit sections of the mutuausian
algorithms all by themselves (that is, no other processalendteps
when some process is in the entry or exit section).

Motivated by these observations, this paper investigte£x-
tent to which 2-process mutual exclusion algorithms cahsténd
transient memory faults. The paper is divided into thregspdn
the first part (Section 4) we give a basic characterizatiofaoif-
resilient 2-process mutual exclusion algorithms. Onedabser-
vation is that anyf-fault-resilient 2-process mutual exclusion algo-
rithm must satisfy the following structural property: wheprocess
p; executes the critical section by itself while the other paxis
in the remainderp; must changef + 1 shared variables before it
enters the critical section. We use this observation to ghaivany

algorithm that use8f + 1 binary read/write registers must exhibit

either deadlock or mutual exclusion violationfirfault executions.

2. BACKGROUND & RELATED WORK

In the second part of the paper (Sections 5-7), we show that aTrgnsjent faults.Transient faults (or “soft errors”) can occur in

certain level of fault-resilience to transient faults canifor free”.
We present a new starvation-free algorithm that, like Dekkear
Peterson'’s algorithms, uses three binary read/write dhagables;
unlike Dekker and Peterson’s algorithm, our algorithm guéees

mutual exclusion even in the presence of a single memory. faul

The algorithm only guarantees progress in fault-free exeas; it

may deadlock in executions where memory faults occur. Hewev

given the above impossibility result, this is in some sehseliest

one can do. Given the choice between guaranteeing mutual ex-

clusion or guaranteeing deadlock-freedom in faulty exeast we

different parts of the hardware stack in a computer systathasse
for various reasons, such as energetic particles thaesirtkansis-
tor and cause it to change its state. In memory, for instaalpba
particles emitted by traces of radioactive elements ptesetihe

packaging materials of the device can penetrate the dieemetgte
a high density of holes and electrons in its substrate, fiyereeat-
ing an imbalance in the electrical potential distribution @ausing
stored data to be corrupted. A single alpha particle thasgsses
enough energy can cause a soft error all by itself. Transaeitts

are usually random and non-recurring, and their rate of venge

choose the former in this paper. This seems to be the moreahatu depends on circuit sensitivity and the alpha flux emittedheyde-

choice in the context of mutual exclusion algorithms, anchamy
systems, deadlocks are arguably easier to detect and kardk,
their consequences less severe than mutual exclusiorioia

In fact, this is the best we can do in more than one sense. In

Section 6 we prove a lower bound showing that}- 1 binary vari-
ables are not sufficient to guarantee mutual exclusion whefi
the variables can experience unboundedly many faults.slted
to the 3 variable case, this implies that no algorithm thasibi-
nary read/write registers can tolerate a single “Byzaniaréable”
which can flip unboundedly many times.

Given this gap, it is natural to ask if there is some relaxatb
the model that would allow us to achieve unbounded faultieese.
In Section 7, we give an answer to this question, by presgrain
mutual exclusion algorithm which uses test&set registsteiad of
one of the read/write registers, and is able to withstandunbed
faults to one variable. Both this and the above algorithmnae
trivial, and their structure is quite different from that existing
mutual exclusion algorithms.

One reason we are interested in understanding the posesili
and limitations of fault-resilience in the 3-variable, duft setting
is that these results have implications for the ratio oftfaubri-
ables that can be tolerated in general. It is reasonablegecex
that the number of faults will increase with the amount of rogm
used, and hence this ratio is interesting to study. In threl {hart
of the paper (Section 8), we show that our results for ther@bke
case imply more general results fer-variable algorithms tolerat-
ing f faults. We show that using: — 1) f + 1 variables, of which
f can be faulty, one can simulate a “well-behavedVariable al-
gorithm that tolerates one fault. “Well-behaved” here nsetrat
the algorithm contains no data races, and that if one progess
tempts to read from a variable, the other process eventstilys
writing to it. This property, which is satisfied by many ekist
mutual exclusion algorithms (including Dekker’s algonitland the
algorithms we present in this paper), allows us to use a sirzapt
lightweight simulation of: variables with one faulty variable from
(n—1) f+1 variables of whichf can be faulty. In conjunction with
the 3-variable algorithm from Section 5, this implies théstence
of a mutual exclusion algorithm usirity + 1 variables and toler-

ating f faulty variables, each of which can flip once. Moreover,

the same simulation can be used to transform Dekker’s atgori
into a3(f + 1)-variable algorithm tolerating “Byzantine” faulty
variables, which can each flip unboundedly many times.

Due to lack of space, the full proofs for some of the claims in

the paper are omitted here. The algorithms presented imo8s&

and 7 were model-checked using the NuSMV2 finite-state mode

checker (in addition to a manual proof of correctness), tafwe
both starvation-freedom in fault-free executions and ralgxclu-
sion in faulty executions.

vice. Such faults have led to costly failures in high-endeys in
recent years. For example, they are known to have causdtesras
Sun’s major customer sites including America Online andygBh
and HP’s Los Alamos Labs supercomputers [21].

Unfortunately, while transient errors already cause sutbitl
reliability problems, current trends in hardware desigggast that
fault rates will further increase in the future. Faster kloates, in-
creasing transistor density, decreasing voltages andesmedture
sizes all contribute to increasing fault rates, e.g. [3, 28] fact,
fault rates in modern processors have been increasing & afra
approximately 8% per generation [5]. To counter soft erroosn-
puter architects and compiler researchers have proposiedsao-
lutions, which usually involve adding redundancy to conagions
in one way or another. For instance, there are proposalévingo
hardware-only solutions such as error-correcting codeschdog
co-processors or redundant hardware threads (e.g. [1D6ad well
as software-only techniques that use both single and nreittgres
(e.g. [20, 18]). These solutions are typically “heavy-vitigand
quite costly in terms of memory and performance.

Resilient algorithmsin the area of algorithms, designing re-
silient algorithms for unreliable memories has also ate@dénter-
est. Problems such as fault-resilient selection, soréngl, matrix
computations in various failure models have attracted aflotter-
est in recent years (see [10] for a survey). Faulty memoryalss
been studied in multiprocessors. There is significant rekea the
parallel computing literature devoted to deliver genenalugation
mechanisms of fully operational parallel machines on tfaiity
counterparts, e.g. [7, 8].

Fault-tolerant simulationsin the shared memory distributed
computing literature, the problem of implementing faalierant
registers (and other objects) from faulty objects undeiovarfault
models was studied, e.g. in [1, 2, 13]. With regard to our &mu
tion in Section 8, the most relevant results are the onesdgivl]
and [13] on implementing various read/write registers fifamity
registers in the arbitrary, responsive failure moédBor example,
in combination with earlier work [19, 24], it is shown thatesafe
read/write register can be implemented frai+- 1 safe faulty reg-
isters, and onatomicread/write register usingf + 3 (8 f +4) safe
registers an@4 f + 12 (16 f + 8) safe binary registers, respectively,
if the f faulty registers can have infinitely many faults. A relevant
result from [1] shows that one reliable atomic register caimtple-

| mented fron20 f + 8 atomic registers if at mogtare faulty. In our
context, however, the simulation in Section 8 serves ardiffepur-
pose; we do not seek to mask faults completely, as the higit-le

IMuch better results are known for more benign failure modes,
e.g. [13, 11]

mutual exclusion algorithm that uses the objects can tdesame
degree of faulty behavior. Instead, we seek to reduéaults to a
single fault, which can then be handled by the algorithm.eTogr
with the fact that we make assumptions about the behavibedadlt
gorithm and do not require liveness in faulty executionis, daflows
us to get away with a very lightweight simulation, whexg + 1

low-level registers simulate three high-level registefrsvbich at
most one is faulty.

Fault-tolerant mutual exclusionThe issue of fault-tolerance
in mutual exclusion algorithms was one of the principal thsrof
Lamport’s paper on non-atomic algorithms [14]. Severdufai
models are considered. Among many other malfunctions, aike f
ure type studied are transient faults, which allows arhjtchanges
to the shared memory (and local) variables of the algoritArmu-
tual exclusion algorithm tolerating all these types ofuegls was
presented in [25], but it requiretl’ binary shared variables. This
was subsequently improved to 8 binary variables for 2-meceu-
tual exclusion in [23]. These algorithms require more sthaai-
ables than the algorithms we present here, but they do ndtatda
in faulty executions.

3. MODEL & DEFINITIONS

Mutual exclusion algorithmswe represent a 2-process mu-
tual exclusion algorithm as follows. LélCy, PC; be the control
locations (code lines) for processes 0 and 1 respectivaly,let

Var be the set of shared variables (in the current paper we assume

that the shared variables are binary). We assumeRidat, PC
each include two distinguished locatioNs C, representing the re-
mainder and the critical section, respectivély.

A configurationof the algorithm is a triple(4o, ¢1,v), where
ly € PCy andf; € PC; are the control locations g, and
p1 respectively, and € 2V*" represents the state of the shared
variables Var. A stepof the algorithm is a transition from one
global configuration to another, in which some progessxecutes
either aread(z) or awrite(x, v) operation on some shared variable
z, and transitions to a new control location. If the contradtion
of a process igV or C, it can also take null-transitions, in which its
location and the values in shared memory do not change.

An executionof the algorithm is a sequenego; . .. of config-
urations, starting from the initial configuratiary, in which each
configuration is obtained from the previous configuratioretiier
a step ofpo or p1, or by amemory faultin which the value of some
shared variablec € Var changes from 0 to 1 or vice-versa. In
an (f, c)-fault executionat mostf shared variables experience at
mostc memory faults each; in ault-free executiorthere are no
memory faults. We are concerned only wattimissibleexecutions,
in which both processes take infinitely many steps. (Thikuaes
idle steps in which a process that is currently in the remeisthys
in the remainder.)

The algorithms we present in this paper atarvation-free for
each procesg;, if p; begins executing the entry section, then
eventually enters the critical section. For our lower bawve typi-
cally assumeleadlock-freedorma weaker progress condition which
asserts that if some processis in the entry section, then eventu-
ally some process (eithgt or p;_;) enters the critical section.

2For convenience we assume that the algorithm is memoryess,
each process has a single control location that it returnehin-
ever it goes into the remainder. However, this assumptiarots
necessary for our lower bounds.

Fault-tolerant mutual exclusionn the current paper we
are concerned with algorithms that guarantee mutual excitia
the face of memory faults. We say that an algorithn(fsc)-
resilientif it guarantees mutual exclusion {if, c)-fault executions,
and deadlock-freedom (or starvation-freedom) in admisddult-
free executions. In the remainder of the paper, when we tefer
deadlock- or starvation-freedom, these are restrictedut-free
executions (unless otherwise stated).

Notation and terminologyA scheduleis a finite sequence
a € ({po,p1} U {flip(z) |z € Var})" of process identifiers, in-
terspersed with memory faulfisp (=) in which a variabler changes
its value. A schedule ig;-only if it does not contain any steps of
p1—i. We useezec(o, o) to denote the execution fragment obtained
by letting the system take the stepsdrstarting from configura-
tion o, and we useconfig(o, o) to denote the final configuration
reached irezec(o, o).

A common lower bound technique is to maneuver the system
into a configuratiors where the next step of some processs to
write to a register, obliterating whatever value was stored there
previously. In this case we say thatcoversz in o.

A configuratione = ({9, ¢1,) is indistinguishable tg; from
o' = (£5,41,0"), denoteds ~,, o', if £; = ¢; andv = ¥'. It can
be shown by induction on the length of the schedule thatf,,

o', then for anyp;-only schedulex we also haveronfig(o, o) ~p,

config(o’, o).

4. BASIC IMPOSSIBILITY RESULTS

In this section, we derive a set of results that charactehee
resilience of mutual exclusion algorithms to a single mgniauilt.
These results have implications throughout the remainfi¢heo
paper. We begin by observing that afly, 1)-resilient algorithm
must have the following property.

DEFINITION 4.1 (HAMMING DISTANCE 2 PROPERTY HD2).
Suppose that = (£o,41,%) ando’ = (£, ¢},%") are reachable
configurations such that is an idle configurationfy = ¢1 = N)
and for some € {0,1}, ¢; = C and¢;_; = N. Then the Ham-
ming distance betweeanand?’ must be at least 2.

Algorithms that do not have thdD2 property can violate mutual
exclusion when a single memory fault occurszifinds’ are con-
figurations as in the definition above, whose Hamming digtasc
smaller than 2, then we can flip a single bibihto obtain a config-
urationr that is indistinguishable tp; _; from o. Sinceo is idle,
when we letp; _; run by itself fromr (which p;_; cannot distin-
guish fromo) it must eventually enter the critical section, violating
mutual exclusion.

If there are only two shared variables, then in order to fetie
HD2 property each process must modify both variables when it ex-
ecutes its entry section by itself; it can be shown that norétlym
can accomplish this.

THEOREM 4.1. No deadlock-free mutual exclusion algorithm
that uses two binary variables can satisfy thB2 property.

This result is similar in spirit to the lower bound of [6], vahi
shows that: shared variables are necessary#egprocess mutual
exclusion; in other words, each process must have a varibhte

it “owns” in some sense. Technically, however, the proof b&T
orem 4.1 shares very little with the lower bound of [6], besgin
our case the number of shared variables does match the nafber
processes. The proof is quite similar to the proof of TheoBetrin
Section 6, and it is omitted here. In general, fibinary variable

mutex algorithm can satisfy tHéD- f property (the proof is again
similar to that of Theorem 6.1).

It follows from Theorem 4.1 that two binary variables canbet
used to guaranted, 1)-resilience, even if only deadlock-freedom
is required, and even in executions where the steps of theteso
cesses are never interleaved while one of the two is in thg ent
exit section. In Section 5 we show that three binary varbldfice
to guaranted1, 1)-resilience and starvation-freedom in fault-free
executions.

Impossibility of achieving both safety and livenessr
definition ofresiliencefocuses on algorithms that guarantee mutual
exclusion, but sacrifice liveness in faulty executions; ornght ask
whether it is possible to guarantee mutual exclusiod deadlock-
freedom or even starvation-freedom. Unfortunately, ferdhse of

3 variables and one fault, the answer is negative. The fatigw
theorem shows that in general, when fewer tBdn+- 1 registers
are used, liveness in faulty executions comes at the codolaftv
ing mutual exclusion. If starvation-freedom is desiredanlt-free
executions, thegf + 1 registers are also insufficient. This result
motivates our definition of resilience. Unlike the other adee re-
sults in this paper, the following theorem is not restridiztdinary
registers, if one assumes that in the multi-valued caselty faag-
ister's value can flip to any other value.

THEOREM 4.2. Let A be anm-variable deadlock-free mutual
exclusion algorithm. Ifn < 2f, orif m < 2f + 1 and A is
also starvation-free, then fails to satisfy either deadlock-freedom
or mutual exclusion in somgf, 1)-fault execution where process
steps are never interleaved while some process is in thg entr
exit section.

PROOF Consider an execution fragment in which starting from
the initial configurationo(, we letpy run solo until it enters the
critical section. Let ¢ be the resulting configuration. h < 2f,
then for any two states, o' € {0,1}™ of the shared memory, there
is a third statez whose Hamming distance from bothand v’ is
at mostf. Thus, we can flip no more thah registers fromoc,
and obtain a configuration whose Hamming distance from both
oo ando¢ is no more thary (see Fig. 1).

Because the Hamming distance of the shared memaryfriom
that inoo is no more thary, p1 cannot distinguish from a config-
urationt’ obtained fromzg by flipping no more thary variables.

In 7’ both processes are idle, so if the algorithm satisfies dekédlo
freedom in(f, 1)-fault executions where processes are not inter-
leaved in the entry and exit sections, when wepletun by itself
from 7’ it will eventually enter the critical section. But~,, 7/,

so the same is true for, and mutual exclusion is violated.

Next, suppose that the algorithm guarantees starvatemdéim
in fault-free executions, and < 2f + 1. Leto be a reachable idle
configuration such that when runs by itself fromo, eventuallyo
occurs again. Then there must exist some registleatp, does not
write to in its solo run fronv: if there is no such register, then we
can letp; begin the entry section as well, but each timecovers
some registey, we letpo run until it coversy as well. Then we let
p1 write to y, followed immediately byy. All evidence thatp is
in the entry section is erased from the shared memony, annot
distinguish this execution from the one in which it runs sffm
o. We can continue this way to construct an infinite admissible
execution in whichp; remains in the entry section forever. Thus
there must be some register to whighdoes not write.

Sincem < 2f +1, po writes to at mos2 f registers when it runs
solo fromo. We can repeat the argument we usedifo< 2f to
show again that either deadlock-freedom or mutual exafusiast

(o) ac
(N, N,) po-only (C,N, ")
flip < f bits flip < f bits
T T
(N7 N7 u) Npl (C,]V7 u)
p1-only p1-only
(N, C,*) (C,C, %)

Figure 1: lllustration for the proof of Thm. 4.2

be violated in soméf, 1)-fault execution where process steps are
not interleaved when a process is in the entry or exit section

5. A (1,1)-RESILIENT THREE-VARIABLE
ALGORITHM

In this section we give a starvation-free mutex algorithnfy, A
gorithm HANDSHAKE, that uses three binary read/write registers
and guarantees mutual exclusion in the face of one memoly fau
The algorithm satisfies the Hamming Distance 2 property: whe
a process executes the entry section solo, it sets two ohtred
variables to 1.

As in the Peterson and Dekker algorithms, two of the shared va
ables,co and ¢, serve as flags indicating whethey andp; are
active. However, the function of the third variable is diéfat. The
Peterson and Dekker algorithms achieve starvation-fradupus-
ing the third shared variable as a “turn variable”, but thentang
Distance 2 property precludes this strategy; the thirdamde must
now be used more like l|ack processes set it to 1 when they en-
ter the critical section by themselves and reset it to 0 whewy t
leave. Thus, if procesg; executes its entry section by itself, be-
fore it enters the ciritical section it sets both its flagand the third
variablelock to 1, protecting itself by two bits in case of a single
memory fault. We use a different mechanism to guaranteedss
(see below).

One major difficulty &1, 1)-resilient algorithm must face is the
following. Suppose that the two processes begin execukiag t
entry section in lockstep, until the first time they write he tshared
memory. Assume they write to different variables (as ewahtu
they must); now the state of the shared memorilis Both pro-
cesses are in the entry section, but neither process camgdish
this configuration from the one in which the other processis i
the critical section and the third variabléodk) has flipped to 0.
Therefore neither process can enter the critical sectidihithas
verified that the other process is not in the critical sectipninter-
acting with the other process in a sequence of reads andsvini
we call ahandshake The handshake is designed so that even if a
memory fault occurs, a process can never reach the end oéttak h
shake if the other process is in the critical section. Thactsieved
by having each procegs go through a sequence of writes to shared
memory, leaving a unique footprint in shared memory thaeigen
encountered elsewhere in the algorithm; in particularaitrot be
“faked” by the adversary using a memory fault, or by havingo
in and out of the critical section.

The handshake comprises lines 008—010gp&and lines 104—
106 for p1. At the end of the handshakey enters the critical

Algorithm HANDSHAKE: code for proces8

001 ¢o :=1

002 wait until lock = 0

003 while c; = 1do

004 L if co = 0then goto009

005 lock : =1

006 if c; = 1 then

007 lock :=0

008 wait until co =0
009 co:=1

010 waituntil ¢; =0

(enter critical section)

011 co:=0

012 c1 =1

013 | lock =1

014 else

015 if ¢co = 0then// A fault occurred

016 lock :=0
017 goto 002
(enter critical section)
018 co:=0
019 | lock:=0

Algorithm HANDSHAKE: code for process$

101 ¢c1 :=1
102 wait until lock = 0
103 if co = 1 then

104 co:=0

105 wait until ¢ =1
106 c1:=0

107 waituntil ¢c; =1
108 wait until lock =1
109 else

110 lock =1

111 if co = 1then

112 lock :=0

113 L goto 104

114 if ¢; = 0then// A fault occurred
115 lock :=0

116 L goto 102

(enter critical section)
117 lock := 0
118 ¢1 := 0

section, ancp; waits in line 107 for a signal fronpo. Whenpo
exits the critical section, it hands the critical sectiomiotop; by
setting bothe; andlock to 1. Notice that (a1 must observe both
c1 andlock change to 1 in order to enter the critical section, so that
a single memory fault cannot cause it to enter; and (b) wesaehi
starvation-freedom, because wheneweandp; contend in the en-
try section, eventually both processes enter the criteatien.

The overall strategy for both processes is as follows:

(1) Setthe flagg; (lines 001 and 101).

(2) Check if the other process is present (lines 003 and H0R),
if so, try to engage in a handshake with it.

(3) If the other process is not around, gtk (lines 005, 110).

(4) Check again if the other process is present (lines 008) if1
so, releaséock and engage in a handshake.

(5) Ifthe other process is still not around, enter the ailtgection.

The reason we require (4) is thatyf_; begins the entry section
when p; is executing (2) or (3)p1—; may see eithefock = 0

or lock = 1 when it executes its second line (line 002 or 102),
depending on the specific interleaving of process stepkckf =

1, thenpi_,; becomes stuck in the second line;lékk = 0 then
p1—; falls through the second line and attempts to participate in
a handshake. Significantly, cannot tell whatp; —; saw when it
checkedlock. Thus, to make sure that_; does not get stuck
waiting for a handshake that is never reciprocatedeleasesock,
allowing p: —; to fall through the second line (if it has not done so
already). Then both processes engage in a handshake.

There are a few subtleties beyond this basic pattern. FRiosg,
thatpo does not necessarily engage in a handshake if itseesl
in line 003 (it can fall through to line 005), byt always executes
a handshake if it sees = 1 in line 103. This ties in to the dif-
ferent order of writes in the processes’ exit sections slio#3-019
and 117-118: whep, exits, it releases first its flag and th&rk,
whereag; releasesock first and there;.

Informally, we wantp, to releaselock last to make sure that
p1 cannot get past line 102 ungb has finished the exit section,
otherwise the sequence “obsemte = 1, setcy := 0, observe
co = 1", which getsp; through lines 103-105, can also be created
by po being in the exit section (having already released) and
later beginning the entry section again and setting= 1. That
creates mis-coordination from which the algorithm canecbwer.

On the other hand, if; were to seflock to 0 after it setsc; to 0,
then we would have a dangerous situation in whigthas already
setc; to 0, erasing this evidence of its presence, and is covering
lock, about to write0. If ¢ experiences a memory fault and flips
to 0, this situation can arise whem is in the entry section, has
already setock, and believes that it is protected by bath = 1
andlock = 1. But when we lep; take its next step, it write@ to
lock, erasing all evidence qgfy’s presence and freeing to enter
the critical section even though is already critical. Consequently
we must ensure that whenevyaris about to setock to 0, we allow
po to see that this may be the case by having= 1.

As a consequence of the different write order, whesees:;
1 in line 003, there are two cases: eithgris in the entry section
(but has either not sdbck yet, or has selock and later released
it), or p; is in the exit section, about to execute line 118. Thus,
waits to see whap; does: ifp; setsco to 0 then it is in the entry
section and wants to execute a handshake, apd #fetsc; to 0
then itis in the exit section. In this last cgsecontinues as though
it never sawe; = 1 when it executed line 003. As for;, because
it cannot get past line 102 (where it waits to $e€: = 0) until po
has finished the exit section and gone into the remainder,s€es
co = 1in line 103 then there is only one possibility; is in the
entry section and will engage in a handshake.

Finally, when the processes believe they are about to emger t
critical section uncontended (line 015 fos and line 114 forp,),
they perform one final test, which is to check that their owg fla
has not flipped after they set it in the first line of the entrgtige.

If the test succeeds, it guarantees that the process hagethta
secure bothe; andlock before the other process started its entry
section, so that if one of the two variables were to flip, theeot
variable would remain non-faulty and block the other predesm
entering the critical section. If the test fails, then a meyrfault
has occurred; the process releakes and starts the entry section
from the beginning.

THEOREM 5.1. There is a two-procesgl, 1)-resilient mutual
exclusion algorithm that uses three binary read/write s¢giis, and
guarantees starvation-freedom in fault-free executions.

The correctness proof of algorithmANDSHAKE is quite te-
dious, and we do not include it here. In addition to the manual
proof, the NuSMV2 model-checker was used to verify that the a
gorithm is starvation-free and, 1)-resilient.

6. IMPOSSIBILITY OF (f,oc0)-RESILIENCE
WITH 2f + 1 REGISTERS

We have shown that using three binary registers it is passibl
to achieve(1, 1)-resilience; next we show that it is not possible to
guaranted 1, co)-resilience using three variables. More generally,
we show that no algorithm usir@)f + 1 binary registers can be
(f, o0)-resilient.

We begin by giving a characterization pfresilience that is sim-
ilar to theHD2 property defined in Section 4; we show that in a
(f, 1)-resilient algorithm, each process must ifse 1 variables to
protect itself whenever it enters the critical section. Séheariables
must be written when the process enters the critical sebtjoit-
self, and restored to their initial value when the procests ¢ke
critical section by itself.

DEFINITION 6.1 (F.AG REGISTERY. We say that register
is aflag register fop; in o if
(a) ois anidle configuration,
(b) Whenp; runs by itself fronv in a fault-free execution it even-
tually writes both0 and1 to z, and

(c) Whenp; runs by itself fronv in a fault-free execution, the sys-
tem eventually returns to configuration

As with the HD2 property we saw in Section 4, in any algorithm
that toleratey' faulty variables (even restricted to a single fault in
each variable), each process that enters the criticabseli itself
must protect itself byf + 1 bits.

LEmMMA 6.1. Inany(f, 1)-resilient algorithm, for each process
p; there is an idle configuration that is reachable in a fault-free
execution, such that; has at leastf + 1 flag registers ins.

PrRoOFR From any idle configuration, if we let p; run by itself
until it enters the critical section, it must change the ealof at
leastf + 1 shared registers; otherwise, ongeenters the critical
section, we could flip the values of all shared registerspthatod-
ifies back to their values is, and obtain a configuratios. that is
indistinguishable t@:_; from o. If we let p;_; run by itself from
o¢, iteventually enters the critical section as well, viatgtmutual
exclusion.

Since there are only finitely many configurations, theretexas
idle configurationo, reachable by a fault-free execution fragment,
such that if we lep; run by itself in a fault-free execution from
then eventually configuratios occurs again. Bup; changes the
values of at leasf + 1 registers from their values i on its way
into the critical section, and when we return¢athese registers
have returned to their values én Thereforep; must write both)
and1 to each of thes¢ + 1 registers at some point in its solo run
from o befores occurs again. [

THEOREM 6.1. No 2-process mutex algorithm usigg -+ 1 bi-
nary read/write registers i§f, co)-resilient.

PROOF Suppose for the sake of contradiction that(gnoo)-
resilient algorithm that uses at madf + 1 registers does exist.

Let o be the idle configuration whose existence is guaranteed by
Lemma 6.1, such that; has at leasf + 1 flag registers irr. Let
Y denote the set gf; s flag registers im.

If we let po run solo fromo it must eventually enter the critical
section. Letlpl ... L, € PC§, wherely = N andl,, = C, be
the sequence of control locations tipatpasses through on its way
into the critical section in a solo run from We show by induction
onk that for all0 < k& < m, there is a configuratioa;, such that

(a) Inoy, we havepc, = lk,

(b) oy is reachable frona in an execution fragment where all the
register inY” are non-faulty, and

(©) ok ~p, 0.

In other words, we can “sneal into the critical section” step by

step, withoutp; being able to distinguish any step from the idle

configurations. The contradiction follows immediately.

The base of the induction & = 0, for which the claim holds
trivially. For the step, suppose that we have already shdwan t
there is a reachable configuratieg in which pc, = ¢, and such
thato, ~p,, o. Consider the step thab takes to reach location
L1 from location/;,. We will show that this step can be simulated
by an execution fragment fromy, in which we do not corrupt any
register inY” (see Fig. 2 for an illustration).

There are two types of steps thatcan take. The first is arite;
this operation has no return value, and control always passe
Lr+1 (i.e., the code does not branch/éa). In this case we must
ensure thap; does not observgy’s write. On the other handy
can execute ead operation, and then branch on the result. In this
case we must ensure that the valyeeads is the “right” value, the
one that will cause it to readh. ;1.

Let us first handle the cases whexgaccesses a variabteZ Y,
which we are allowed to corrupt. If the step igead(z) step which
is expected to returm, then we simulate the step by flipping
to v (if its value is not already), letting po take itsread step,
and flippingz back to its previous value. Similarly, if the step is
a write(x, v), then we letp, take the step, and then flip back
to its previous value before therite. Let 041 be the resulting
configuration. In both cases the values in shared memoryhare t
same inoy, and inok4+1, andp, does not take any steps between
Ok andO'k+1, S00k+1 ~py, Ok ~ 0.

Now suppose that some variabje € Y is accessed. If the
step is aread(y) step expected to return, then we simulate the
step as follows. Becauseis a flag register op; in o, we know
that there is some;-only schedulen such that the last step in
exec(o, a) is write(y,v), and there is anothes;-only schedule
B such thatconfig(o,) = o (that is, 8 returns us to config-
urationo). Becauses, ~p, o, the last step irezec(ox, @) is
also awrite(y,v) by p1. Now we letpy take itsread(y) step,
which returnsv, and does not change the shared memory. Because
config(or, a) ~p, config(or, apo), if we appends to the sched-
ule apo, we obtain a configuration,1 in which pcy = fi41,
such thabr11 ~p, 0.

Finally, if the step is awrite(y, v) such thaty € Y, then we
proceed as follows. Sincgis a flag register op; in o, there is a
p1-only schedulex such that inconfig(o, a), p1 coversy. Since
ok ~p, 0,the same holds fatonfig (o,). Thus, fromoy, we let
p1 run until it coversy; then we lefpo take itswrite(y, v) step, fol-
lowed byp1’s step, which overwriteg. The resulting configuration
o, is indistinguishable tg; from config(o, ap1), so there is some
p1-only schedules which returng, to o (config(o, ap18) = o).
We haveconfig(ok, apop18) ~p, o, as required.

We have now shown that from, which is reachable in a fault-
free configuration, there is an execution fragment in whizhayis-

terinY is corrupted, and mutual exclusion is violated. Sifice>
f+1, the number of faulty variables isat ma@st+1—(f+1) = f.
Hence the algorithm is ndtf, co)-resilient. [

We remark that the proof of Theorem 6.1 does not extend to
registers that can take more than two values. The majorithef
proof relies only on the fact that the algorithm must haveHiie
(f + 1) property, i.e., any process that enters the critical sectio
uncontended must write to at legbt+- 1 registers; this holds for
multi-valued registers as well as for binary ones. The onegfa
the proof that fails is the case in the induction step whegreeads
avariabley € Y, which we cannot corrupt. In the proof we handle
this case by maneuvering into writing the value thap, expects
to read fromy. In the multi-valued case we cannot do this, as there
is no necessity for a process to write all possible valuesitatflag
variables (it still must write at least two different valudsit now
there can exist values it does not write at any point). In factan
detectp:’s presence by writing some unigque value which is never
written byp;: into a flag registey € Y. On its way into the critical
section (and possibly back oug); must then write some different
value intoy. If po later checkg, again, it can detect that it is not
alone, because its value has been overwritten. Thus it is2bnt
conceivable that aff, co)-resilient algorithm usin@f + 1 multi-
valued registers does exist.

7. A(1,00)-RESILIENT THREE-VARIABLE
ALGORITHM USING TEST&SET

As we saw above, there does not exigtlaco)-resilient algo-
rithm that uses three binary read/write registers. In paldr, Algo-
rithm HANDSHAKE also does not tolerate more than a single fault
in any variable. To see why, consider an execution where

1. po runs by itself until it enters the critical section.

. p1 begins the entry section, and becomes stuck in line 102.
. The value ot flips from1 to 0.

. po exits the critical section.

. p1 progresses to line 105, where it waits far to begin its
part of a handshake by settingto 1.

6. po Starts the entry section again, settifagto 1 in line 001.
This is mis-interpreted by, as the start of a handshake.

7. po continues to run until it enters the critical section (récal
thatc; has flipped t®), andp; runs until it reaches theait
statement in line 107.

8. The value ofc; flips from 0 to 1, freeingp; to enter the
critical section and violate mutual exclusion.

We can resolve such error scenarios by (a) including as jpart o
the handshake a changelotk from 1 to 0, rather than fron® to
1 (a value oflock = 1 generally indicates that the other process
is interested in the critical section, whileck = 0 indicates that
it is not); and (b) replacindgock with a test&set register, as shown
below. Instead of writind to lock, the two processes always ex-
ecute a test&selfck); if the test&set fails, then a fault must have
occurred, because in fault-free executions no procesgsirito
lock when lock is alreadyl. In this case the process returns to
the beginning of its entry section and starts over. We callribw
algorithm T&S-HANDSHAKE; the code is given below.

Originally in Algorithm HANDSHAKE, after a handshake, en-
ters the critical section without settidgck to 1. Then, after the
handshake, one of the signals tpatuses to decide it can enter the
critical section is that it observes the valudafk change td. The
reason we could get away with not settigk is that when only
one fault can occur, we are guaranteed that at the end of a hand

a b~ wpN

po readse ¢ Y and expects to see

00 I.H. Ok flipx towv .
(N,N,T)o) (fk,N,ﬂo)
N~e__ -7 lporeadm
N ~p1
\\
TS lﬂip x back
~p1 S~
_ Ok+1
(Zk_H,N, T)())
po Writes tox ¢ Y:
00 I.H. Ok po Writes tox .
(N,N,@o) (fk,N,T}o)
S~ -7 \flipxback
\\\:“m
Te——__ Ok+41
~p1 T (&H—l,Nﬂ_)O)

po readsy € Y and expects to see

p1 runs alone until

oo ILH. ok itwritesvtoy
—_— —_—
(N, N, 7o) 4k, N, To)
\?___/// po readsy
\ ~py
\\ (ék+17 *, *)
\\ p1 runs
So alone,
AN becomes
N\ ~_ idle
P11~
T~ Ok+1
(€k+17 N? /UO)

po Writes toy € Y p1 runs alone until

oo I.H. o, itcoversy
LN _——n
(N, N, o) (€, N, vo)
I~ 7 .
W S~ -7 po Writes toy
\ ~p1
\ (ZkJrl» *, *)

\ p1 writes toy

\ []
N p1runs
~p1 N alone,
N becomes
> ~ idle

~__ Ok+1
(£k+17 Na 50)

Figure 2: The induction step in the proof of Thm. 6.1. The fig-
ures illustrates the four possibilities for the step thatp, takes to
move from location ¢, in its code to locationé,. Here, “l.H.”
stands for the execution fragment whose existence is guaran
teed by the induction hypothesis.

shakep; is also in the entry section, at the end of its part of the ~Algorithm T&S-HANDSHAKE: code for process8

handshake, waiting for a very specific signal frpm

With unbounded faults, this is no longer true:ifis faulty, p1
could be in the remainder whei completes its handshake and en-
ters the critical section. Consequently, we cannot ajlgwo enter
the critical section without first settinigck (to protect itself by an
additional bit in casey is faulty). Achieving this requires a new 005 if test&set(ock) = O then
and more involved handshake procedure. In the new handshakeoé L goto 001
whenp, exits the critical section, it first setsck to 0 to releasey; 007 if ¢; = 1 then

001 ¢ :=1

002 wait until lock = 0

003 while ¢c; = 1do

004 L if co = 0then goto010

from its wait. Thenpo waits forp; to setiock to 1, to ensure that gpg lock := 0

p1 is protected by 2 bits whepo leaves the exit section and goes oo | wait until ¢ = 0
into the remainder. Hence, replacing one read/write regisith a o109 | ¢ :=1

test&set register is not the only price we pay for the extrgrée o117 | wait until ¢; = 0

of resilience; the(1, co)-resilient algorithm also does not have a
wait-free exit section.

Finally, the algorithm also incorporates a number of furtisan-
ity checks” in which processes verify that a variable’s edhas not
changed since they last wrote to it, as that may indicatettieat
other process is not where they expect it to be.

012
013

if test&set(ock) = 0then
| gotooo1

014 if co = 0then

015 lock :==0
016 goto 002
017

if c; = 1then

THEOREM 7.1. There is a two-procesd, oo)-resilient mutual 018 L lock :==0
019

exclusion algorithm that uses two binary read/write vatéband goto 002
one test&set variable, and guarantees starvation-freedofault- (enter critical section)
free executions. 020 lock == 0

021 co:=0

The code uses the test&sef@tomic instruction. Ifc = 0, the
instruction sets to 1 and returnd ; otherwisez is left unchanged
and a value oD is returned. We assume that in addition to the

022 wait until lock =1
023 c1:=1

024 else

test&set operation, test&set registers can be read antewtike a g
read/write register. 025 if co = 0 then// A fault occurred
026 L lock :=0
8. TRANSFORMING 1-RESILIENCEINTO % (90‘0_"92| on
enter critical section
f-RESILIENCE . . 028 | om0
So far we have focused on algorithms that tolerate a singleyfa 559 lock =0

variable, using as few variables as possible. We now turrote c —

sider the more general case pffaulty variables. We show that
under a certain “well-behavedness” condition on the atborj a
(1, ¢)-resilient algorithm using: variables (forc € N U {co}) im-
plies an(f, c¢)-resilient algorithm usingn — 1) f + 1 registers. Fur-
ther, even a non-resilient (but correct) mutual exclusigor@thm
that is “well-behaved” can be transformed into (@ oco)-resilient

z using f low-level registerscy, . . .
exhibits a fault ifzq, . . .

The idea of the simulation is to implement one high-levelsty
, ¢, insuch away that only
,x¢ all experience a memory fault. In the

using (f + 1)n registers. The property we require of the original
1-resilient or non-resilient algorithm is the following. i€ results
in this section apply to generab-process mutual exclusion algo-
rithms, but for simplicity we present the results for two gesses.)

DEFINITION 8.1 (BOUNDEDINTERFERENCH. An algorithm
is said to have théounded-interference propeiifyin all configu-
rations reachable in a fault-free execution,

(a) Both processes never cover the same register, and
(b) If one procesy; is about to read from a register;, then the

other proces®,_; can only write tox; a bounded number of
times beforey; executes its read.

Many mutual exclusion algorithms (e.g., Dekker and Burigoa
rithms) enjoy the bounded-interference property; howewet all
do. For example, Peterson’s algorithm and Lamport’s fasuaiu
exclusion algorithm both contain a data race, violatinginegment
(a) (we are not aware of examples in which requirement (b)-is v
olated). The algorithms we present in this paper do havedeulin
interference, and this allows us to use a simple simulatitstgad
of, e.g., a linearizable snapshot object, which would neqgmiuch
more memory and may itself be vulnerable to memory faults).

sequel we us®ead andWrite to denote high-level operations on
x (as opposed to low-level operations®en ..., z§).

To be useful, our implementation should lxeearizable [12]:
the operations invoked on should appear to take place instanta-
neously, as though the algorithm were accessing an atomliy fa
read/write register. However, unlike many fault-toleraimula-
tions (see Section 2), the simulation we give here expose® so
subset of the low-level faults, instead of masking them detefy.
The standard notion of linearizability does not completetar-
acterize the behavior we require. A linearizable impleraton
takes high-level operations as external input, and maps th&o
low-level operations. In contrast, with memory faults, wishwto
take thelow-levelfaults ofz1, . .., x ¢ as (adversarially controlled)
input and generatkigh-levelfaults of z as output. To complicate
matters further, we wish to expose only a subset of faultscapm
ture this behavior we introduce the following definitidn.

%It is also possible to take a more ad-hoc approach and uststhe s
dard definition of linearizability, treating low-level fts as high-
level operations and high-level faults as low-level operat. A
low-level fault that is not exposed on the high level can ewad
as an invoked operation that never returns, and is therafarkn-
earized.

Algorithm T&S-HANDSHAKE: code for proces$

101 ¢y =1

102 wait until lock =0
103 if c; = 0 then

104 | goto101

105 if ¢cg = 1 then

106 co:=0

107 wait until ¢ =1

108 c1:=0

109 wait until ¢ =1

110 if test&set{ock) = 0then
111 | goto101

112 wait until ¢; =1
113 else

114 if test&set{ock) = 0then
115 | goto1o01

116 if co = 1then

117 lock :=0

118 goto 106

119 if ¢; = 0then// A fault occurred
120 L lock :=0

121 goto 102

(enter critical section)
122 lock :=0
123 ¢; :=0

DEFINITION 8.2 (FAULT LINEARIZABILITY). Animplemen-
tation of a high-level objec® from low-level objectg)’ is fault
linearizablef in every execution, one can

(@) Embedlinearization pointsfor all the operations on® that

complete and some subset of the operations that do not COM-tars s,

plete, and

(b) Insert high-leveFlip events fol© coinciding with some subset
of low-levelflip events of)’,

such that the following conditions are satisfied:

(a) Each high-level operation @ is linearized at some point be-
tween its invocation and its return (or after its invocatidor
operations that do not complete);

(b) If ¢ high-levelFlip events are inserted, then each low-le¢|
object experiences at leasfaults in the execution; and

(c) The sequential history obtained by the linearizatiomgmand
Flip events represents a valid history of a faul®ypobject.

LEMMA 8.1. There is a fault linearizable implementation of a
faulty read/write register frony faulty read/write registers, such
that when used in an fault-free execution of a bounded-fertence
algorithm, all operations of the high-level register coetg!.

PROOF SKETCH The implementation is very simple: to write
a valuev to the high-level register, a process writes to each
of the low-level registers:,...,xzy. To read fromz, a process
readszy, . ..
value is returned as the result of tRead. Otherwise the process
reads again, until it makes a full pass owgs . ..,z in which all
registers are observed to have the same value. This valberis t
returned as the result of thread.

To show that the implementation is fault linearizable, fixoa

each segment ends when flips for the first time inside the seg-
ment. We linearize each high-level operation at the poirgnelit
last accesses; (or at the only point where it accesses in case

of a Write). Note that the value associated with each high-level
operation is the value it reads from or writesitofor the last time;
sincex; does not flip inside each segment, the linearization points
of all the operations linearized in a particular segmennfarvalid
sequential history fragment. To complete the picture werina
high-level Flip at the end of each segment. It is not hard to ver-
ify that the sequential history thus obtained is valid. Nalso that
the number oflips inserted is exactly the number of times that
flips. If we chooser; to be a register that experiences the mini-
mum number of faults in the execution, we obtain a lineaidrat
that satisfies condition (b).

A linearization can be viewed as a mapping from low-level ex-
ecutions to high-level executions, which annotates easHdwel
configuration with a configuration of the high-level algbrit (for-
mally, the linearization induces a trace simulation betwtbe low-
level implementation to the high-level algorithm. The tela-
ship between linearizability and refinement was alreadyoezp
in [12], where the notion of linearizability was first intnecked, and
it has also been extensively studied in the formal methods-co
munity recently, e.g., [9, 15]). We saw above that we can shoo
any register and linearize all operations when they lasésgd.

In particular, we can choose the last register accessgdWhen
we embed linearization points using, any low-level configura-
tion where aWrite(z, v) operation is in progress corresponds to a
high-level configuration where the invoking process cowers

The implementation does not, in general, guarantee ligeaks
any sort. However, when the implementation is used by a bednd
interference algorithm in a fault-free execution, we arargateed
that no twoWrite operations overlap: if they did, then the config-
uration where the secorrite is invoked corresponds to a con-
figuration of the algorithm where both processes cawerThis
guarantees that wheneveVdrite completes, all low-level regis-
...,z contain the same value. Furthermore, if a process
invokes aRead(x), we are guaranteed that eventually the other pro-
cess will cease writing to. Therefore all operations completel]

Using the implementation above we can transforth,a)-resilient
algorithm usingn registers into ar f, c)-resilient algorithm using
(n — 1)f + 1 registers. In conjunction with Algorithm AND-
SHAKE, we obtain the following general result.

CoOROLLARY 1. Foranyf > 1, thereis a starvation-fregf, 1)-
resilient mutual exclusion algorithm usi2g + 1 binary read/write
registers.

PROOF SKETCH We use2f low-level registers to implement
two high-level registers using Lemma 8.1, and the last héykt
register is simulated by the remaining single low-levelstg. Since
f faulty low-level registers are required to corrupt eithkthe first
two high-level registers, the adversary cannot cause rharedne
high-level register to exhibit faulty behavior. Furthdreach low-
level register flips at most once, then the high-level regssalso
do not flip more than once. In fault-free executions the satioh
guarantees liveness, so the overall algorithm is stamdtiee. [

,x¢, and if all registers contain the same value, that Unfortunately we do not obtain a similar result for thk co)-

resilient algorithm, because it uses a test&set registaweder,
if we use more thary low-level registers to simulate each high-
level register, we can use the simulation from Lemma 8.1 tekma
faults completely (though the implementation may stilldleak in
executions that contain memory faults). In conjunctiorhwé.g.,

level registerc;, and divide the execution into segments such that Dekker’s algorithm, we obtain the following result.

COROLLARY 2. Forall f > 1, there is a starvation-fregf, co)-
resilient mutex algorithm using(f + 1) binary registers.

PROOF We usef + 1 low-level registers to simulate each of
the three high-level registers used by Dekker’s algoritfime ad-
versary cannot corrupt any simulated register, becgusé faulty
registers are required to do so. As before, in fault-freecetiens
the simulation is live and starvation-freedom is satisfied]

9. CONCLUSION

There has been a growing interest in various communitiegto u
derstand the impact of increasingly unreliable hardwaresaift
ware in general, and on algorithms in particular. Mutuallesion
is a particularly interesting problem, because the coreseeps of
failure could be dramatic. Off-the-shelf solutions, sushearor-
correcting codes and specialized hardware, tend to be heaight,
and it is not clear that the extra cost is always necessary.

In this paper we have introduced a new variant of fault-tolee,

(8]

9]

[10]

[11]

[12]

B. S. Chlebus, L. Gasieniec, and A. Pelc. Deterministic
Computations on a PRAM with Static Processor and
Memory FaultsFundamenta Informatica€003.

J. Derrick, G. Schellhorn, and H. Wehrheim. Proving
linearizability via non-atomic refinement. In J. Davies and
J. Gibbons, editordFM, volume 4591 of_ecture Notes in
Computer Sciencgages 195-214. Springer, 2007.

I. Finocchi, F. Grandoni, and G. F. Italiano. Designing
Reliable Algorithms in Unreliable Memories. Proceedings
of European Symposium on Algorithms (ES#ges 1-8,
2005.

R. Guerraoui and M. Raynal. From Unreliable Objects to
Reliable Objects: The Case of Atomic Registers and
Consensus. IRroceedings of PaCT007.

M. P. Herlihy and J. M. Wing. Linearizability: a correetss
condition for concurrent object&CM Trans. Program.
Lang. Syst.12:463-492, July 1990.

safefault-tolerance, under which an algorithm must be safe even [13] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant

when memory faults occur, but not necessarily live. The eens
guences of violating liveness are often less sever thare thibgo-
lating safety, and in many cases there are already systepiada
to detect and resolve deadlock. Sacrificing liveness inyaxecu-
tions allowed us to design two-process mutual exclusioorélgns
that tolerate a faulty variable, at the cost of no extra mgmor

It is clear that our work is only a first step; many problems re-

main open. Our results in this paper focus mostly on the two-

process case; in follow-up work we intend to extend the tssul
to n-processes. Also, we focus in this paper primarily on binary
shared variables, i.e., the type of variable used in Peai&rsmd
Dekker's algorithms. Our results show that even in thisrietsd
setting, a significant degree of fault-resilience can bésaeld; nev-
ertheless, it is interesting to consider whether the loveeinid from
Section 6 continues to hold for general multi-valued regist or
whether a2 f + 1)-variable(f, co)-resilient algorithm exists.

Acknowledgement.We are indebted to John Douceur and Karthik

Pattabiraman for fruitful early discussions on the problem

10. REFERENCES
[1] Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.

Computing with Faulty Shared Memory. Rroceedings of

Symposium on Principles of Distributed Computing

(PODC), 1992.

Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld.

Computing with Faulty Shared Objectlmurnal of the ACM

1995.

R. C. Baumann. Soft Errors in Advanced Semiconductor

Devices — Part I: The Three Radiation SourdEEE

Transactions on Device and Materials Reliabii001.

R. C. Baumann. Soft Errors in Commercial Semiconductor

Technology: Overview and Scaling TrendSEE 2002

Reliability Physics Tutorial Notes, Reliability Fundants,

2002.

[5] S. Borkar. Designing Reliable Systems from Unreliable
Components: The Challenges of Transistor Variability and
DegradationlEEE Micro, 2005.

[6] J. E. Burns and N. A. Lynch. Bounds on shared memory for
mutual exclusioninf. Comput, 107:171-184, December
1993.

[7] B. S. Chlebus, A. Gambin, and P. Indyk. Shared-Memory
Simulations on a Faulty-Memory DMM. IRroceedings of
23rd Colloquium on Automata, Languages and
Programming (ICALP)1996.

(2]

(3]

[4]

[14]

[15]

[16]

[17]

wait-free shared objectdournal of the ACM1998.

L. Lamport. The Mutual Exclusion Problem: Part Il —
Statement and Solutiondournal of the ACM1986.

Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking
linearizability via refinement. I®roceedings of the 2nd
World Congress on Formal MethodsM '09, pages
321-337, Berlin, Heidelberg, 2009. Springer-Verlag.
T.N. V. M. Gomaa, C. Scarbrough and I. Pomeranz.
Transient-fault Recovery for Chip Multiprocessors. In
Proceedings of 30th Symposium on Computer Architecture
(ISCA) pages 98-109, 2003.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
Design and Evaluation of Redundant Multithreading
Alternatives. InProceedings of 29th Symposium on
Computer Architecture (ISCApages 99-110, 2002.

18] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error Detatti

[19]

[20]

[21]

[22]

(23]

[24]

[25]

by Duplicated Instructions in Super-Scalar ProcessBisSE
Transactions on Reliability2002.

G. L. Peterson. Concurrent Reading while Writing.
Transactions on Programming Languages and Systems
1983.

G. A. Reis, J. Chang, and D. I. August. Automatic
Instruction-Level Software-Only Recovery MethotiSEE
Micro Top Picks 2007.

N.W. H.B. E. T. S. E. Michalak, K. W. Harris and S. A.
Wender. Predicting the Number of Fatal Soft Errors in Los
Alamos National Labratory’s ASC Q ComputdEEE
Transactions on Device and Materials Reliabi)iB005.

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the Effect of Technology Trends on the
Soft Error Rate of Combinational Logic. Proceedings of
the Conference on Dependable Systems and Netymages
389-388, 2002.

B. K. Szymanski. Mutual Exclusion Revisited. In
Proceedings of 5th Jerusalem Conference on Information
Technology1990.

J. Tromp. How to Construct an Atomic Variable. In
Proceedings of 3rd Workshop on Distributed Algorithms
1989.

K. Truuvert. A Self-Stabilizing First-Come-First-8e
Mutual Exclusion Algorithm with Small Shared Variables.
Technical Note, University of Toront989.

