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1. INTRODUCTION

Coordinating the actions of distributed computing devimesio-

works. We assume a synchronous model, where the communica-bile agents is an essential distributed task. Applicatminsoordi-

tion graph for each round is chosen by a worst-case adverEagey
network topology is always connected, but can change cdeiple
from one round to the next. The model captures mobile and-wire
less networks, where communication can be unpredictable.

In this setting we study the fundamental problems of evéntua
simultaneous, and\-coordinated consensus, as well as their rela-
tionship to other distributed problems, such as determittie size
of the network. We show that in the absence of a good initipeup
bound on the size of the network, eventual consensus is dsabar
computing deterministic functions of the input, e.g., th@imum
or maximum of inputs to the nodes. We also give an algorithm
for computing such functions that is optimal in every examut
Next, we show that simultaneous consensus can never beveghie
in less tham — 1 rounds in any execution, whereis the size of
the network; consequently, simultaneous consensus isrdsasa

computing an upper bound on the number of nodes in the network

nation abound in robotics and swarm protocols, where marpjlmo
agents cooperate to jointly accomplish some global objectin
such examples, nodes must jointly agree to execute some aomm
action (movement, data collection, or even something splsiias
resetting their clocks or starting a protocol) at the samalmiost
the same time.

Global coordination is a challenging task, made all the naiifre
ficult in dynamic settings, where the agents move around laad t
communication links between them can behave unpredictdbly
this paper we study the problems of consensus, simultareous
sensus, and\-coordinated (i.e., “almost simultaneous”) consensus
in dynamic networks. Our goal is to characterize the timepert
ity of these tasks, as well as to investigate the relatigngtat they
bear to higher-level tasks, such as computing functionspfts to
the nodes and determining the number of nodes.

We study the above problems in the dynamic network model of

For A-coordinated consensus, we show that if the ratio between [18]. The model is round-based; in each round, the commtioita

nodes with inpud and inputl is bounded away from, it is possi-
ble to decide in time, — ©(/nA), whereA bounds the time from
the first decision until all nodes decide. If the dynamic grbps di-
ameterD, the time to decide imin {O(nD/A),n - Q(nA/D)},
even if D is not known in advance. Finally, we show that (a) there
is a dynamic graph such that for every input, no node can dédxgd
fore timen— O(A®2%n°%7%); and (b) for any diamete = O(A),
there is an execution with diameté&r where no node can decide
before timeQ(nD/A). To our knowledge, our work constitutes
the first study ofA-coordinated consensus in general graphs.
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network is an adversarially-chosen graph over a vertek s#tsize

n. The set of network nodes is assumed to be fixed throughout an

execution, although we do not assume that the participanus &k

(or evenn, in some cases). The communication graph is assumed

to be connected, but it can change completely from one roond t

the next. Nodes communicate by broadcasting messagesito the

immediate neighbors. Similar dynamic network models haee p

viously been considered in, e.g. [1, 16, 17, 22], and mangrsth
Our main objective in this paper is to understand the coniigiex

of consensus and of coordinating actions and decisionsrardic

networks. We begin by studyireyentual consenspis which each

node receives an initial input, and all nodes must eventagtee

on the input to one of the nodes. We show that eventual consens

is closely related to knowing when a node has been causdilly in

enced by all nodes in the graph; namely, in certain settimyspde

can decide on an output value until it has been causally infleg

by all nodes. Although the decision value in a consensuopobt

is not a deterministic function of the inputs, our result liep that

in many settings it is equivalent in difficulty to computingleter-

ministic function such as the minimum or maximum of inputee W

also give an optimal criterion for determining when a nodevks

it has been causally influenced by all nodes, and so can decide
Next we turn our attention to the problem sifnultaneous con-

sensuswhere nodes are required to output their decision value si-

multaneously. Simultaneous coordination is a useful pgivmi as

many distributed protocols assume that all nodes beginuéixec

the protocol at the same time; without simultaneous coatdin,

it is not possible to execute such a protocol soon after saher o



protocol completes (that is, the protocols cannot be sdiglign
composed). It is known that achieving simultaneous conseiss
tightly related to obtaining common knowledge in a disttéalisys-
tem [8, 15]. Informally, a factp is common knowledge whenever
o is known to all nodes, and everyone knows that everyone knows
¢, and (everyone knows)p, and so on (a more rigorous definition
is presented in Section 2). When nodes must execute an attion
the same time, the fact that the action is being performed bais
common knowledge. We show that achieving common knowledge
is costly in dynamic networks: it always requines 1 rounds. This
holds even in executions where the communication graph lis we
behaved, e.g., when it is static and has a small diametesarticp
ular, this result implies that simultaneous consensus easrrbe
achieved before time — 1, even ifn is knowna priori. (Compare

to eventual consensus, which can be solved in two round=if th
graph is fully-connected.) If the number of nodesat known a
priori, thenn rounds are required. This implies that solving simul-
taneous consensus in this model is as hard as computing &n upp
bound on the size of the network: given a protocol for simétaus
consensus, we can obtain an upper bounc: day simply having
each node output the round number in which it decides.

In light of the cost of simultaneous consensus, it is dekiréd
find a trade-off between the time it takes to achieve cootitina
and the quality of coordination achieved. We show that such a
trade-off exists by considering-coordinated consenspa variant
of consensus in which all nodes are required to output tlesiistbn
values withinA rounds of each other. In particular, simultaneous
consensus is equivalent @scoordinated consensus, and eventual
consensus teo-coordinated consensus.

One might initially expect that a protocol fdt-coordinated con-
sensus would not be able to improve upon the running time of a
simultaneous consensus protocol by more tharounds, and in-
deed we show that this is true in the worst-case: for sometinpu
and some execution)-coordinated consensus requires A — 1
rounds. However, surprisingly, there are many cases iniwéen
1-coordinated consensus can decide significantly fastardimaul-
taneous consensus. For example, we give a protocol thaihalt
©(v/nA) rounds if the ratio of the number of zeroes to the number
of ones in the input is bounded away frdmand we give another
protocol that halts imin {O(nD/A),n - Q(nA/D)} rounds in
graphs where each message takes no more fhaounds to tra-
verse the network (we cald thedynamic diameteof the network).
Hence, for the purpose of achieving coordinated consehswing
a small-diameter network does help significantly, whereassi
multaneous consensus it does not help at all.

On the negative side, we show that there is a static netwatk su
that for everyA-coordinated consensus algorithm and every input
assignment, no node decides before timeO(A%2$1n° 7). The
network we construct in this lower bound has a diamete® 61),
which makes it inherently “difficult”. To complete the picty we
also show that for everyp = O(A), there is a static network of
diameterD such that for all algorithms and inputs, no node decides
before timeQ2(nD/A). Both lower bounds use a novel variation
on the standard proof technique used in, e.g., [8] to obtairet
bounds on the time to acquire common knowledge. In [8], one
freely moves between indistinguishable points (configona); in
contrast, here we pay a cost each time we move to some new indis
tinguishable point, and our goal is to minimize the total emof
points involved in the proof.

In these two lower bounds we exhilsitatic networks in which
solving A-coordinated consensus is hard (i.e., it requires many
rounds). The hardness arises from pgwential for dynamic be-
havior: although in practice the network topology does matnge

during the execution, the nodes do not know in advance tliat th
will be the case, and informally, they must assume the waase
dynamic behavior. We note also that the three lower bounds we
give in this paper are in some sense incomparable with e&eln. ot

e Then — A - 1 lower bound asserts, in a non-constructive
manner, the existence of a particular combination of dynami
network and input assignment for whictrcoordinated con-
sensus is hard.

e Inthen — O(A%2n% ™) lower bound we construct a spe-
cific network in whicheveryinput assignment is hard. This
network has diameted(n).

TheQ(nD/A) lower bound also gives a specific network in
which every input assignment is hard. While the bound is
smaller than the previous one, it applies to every diameter
D =0(A).

1.1 Redated work

Consensus and knowledgeonsensus is a central topic in
distributed computing, initiated by the seminal paper byadee
Shostak and Lamport [23]. Most of the literature on the stuthje

the context of message-passing systems assumes that warknet
is a complete graph, with direct channels connecting evaiyqf
nodes. For more general networks, there has been work owthe ¢
nectivity requirements for reaching consensus under vaffiailure
models (see, e.g., [7]), as well as work on implementing ensss

in bounded-degree networks with special properties, sgcexa
panders [14, 9]. We are not aware of a study of the efficiency of
consensus protocols in general graphs. The current papsideo
ers an even weaker network model, where the graph can ppssibl
change completely from one round to the next.

While most of the literature on consensus is concerned with t
erating node failures, in the dynamic network model that we-c
sider here the nodes themselves are assumed to be reliabtkeb
protocol must overcome potentially drastic changes inltapobe-
tween rounds. Santoro and Widmayer studied consensusdnihe
text of edge failures [24], and showed that it is unsolvablaadre
thann — 2 (arbitrarily chosen) edges can be down in every round.
The dynamic network model allows a much broader set of execu-
tions, since almost all (in fact, all but - 1) edges can be down in
every round, and their choice is almost arbitrary. The oatyuire-
ment is that the network in each round be connected.

Some of our results concern cases in which the number of nodes
in the network is unknown, or in which there is a rough but amx
bound on the number of nodes. These are unusual assumptions i
the context of consensus. A number of standard consenste pro
cols (e.g., [2]) can easily be modified to handle such assomgt
but this is only due to the fact that the network there is a detap
graph, so that a node hears from all correct nodes in evendrou

Simultaneous coordination has been shown to be closeliecela
to the notion of common knowledge [15, 10]. Thus, for examiple
a simultaneous consensus protocol [8, 21], when the nodedede
on v, it must be common knowledge that some initial value.is
This is much stronger than for regular consensus, in whichdz n
decidingv must (individually) know that one of the initial values
waswv. It has been shown that deciding in simultaneous consensus
(and in a large class of simultaneous coordination tasks)bea
reduced to the problem of computing when facts (and whictsfac
are common knowledge at any given point in an execution. For
simultaneous tasks, this enables the design of protocaistball-
caseoptimal: foreverybehavior of the adversary, in the execution
of the all-case optimal protocol, nodes decide as fast asdbéor



that behavior under any other protocol. (All-case optityadioes
not exist for eventual consensus, as shown in [21].)

Part of our analysis centers on the problemfofcoordinated
consensus, in which decisions must be taken at mosbunds
apart. In the standard literature, many protocols for exedragree-
ment are 1-coordinated in this sense: because the netwerdk is
sumed to be fully-connected, once some correct nodiecides, all
other correct nodes find out abowis decision in the next round;
it is then safe for all correct nodes to decides well. For net-
works that are general graphs, we know of no work developing
coordinated consensus protocols. As in the case of sinadten
coordination, the property oh-coordination has a natural coun-
terpart in knowledge theory, callel-common knowledge. Very
roughly speaking, if. knows that a fact ie\-common knowledge,
then within A rounds everyone will know that this is the case. In
order to decide, a node must know that the decision valuk-is
common knowledge [15, 10]; the analysis in Section 6 is ttst fir
case in which such coordination is analyzed and nontriveaiiols
are obtained as a result.

Dynamic networksin an increasingly networked world, in
which various kinds of computing devices of all sizes arenemted

to form large networks, understanding dynamic networksheas
come all the more important. It is thus not surprising thaeicent
years there has been a significant amount of work on dynantic ne
work algorithms, for a large variety of different dynamictwerk
models. Our discussion here is restricted to models sirtoldne
one we consider in the current paper; we refer the interestater

to [19] for a discussion of a few alternative models.

Some initial results on distributed computations in cortglle
adversarial dynamic networks were obtained in [22]. The @had
studied in this paper was introduced in [18], where the cexipt
of basic computation and communication tasks such as digterm
ing the size of the network or exchanging information amolhg a
the nodes was studied. In [1], Avin et al. study the behavifor o
random walks in a very similar dynamic network model. Some
basic information dissemination tasks, such as globalhaticast-
ing a message, have also been considered in a probabikstion
of the graph model in which edges are independently formed an
removed according to a simple random process; e.g., [3, B\r6]
other problem related to distributed coordination is clegkchro-
nization. In [16, 17], the problem of clock synchronizatiwas in-
vestigated in a partially-synchronous variant of the dyicagnaph
model we study here. Related dynamic network models weee als
considered in, e.g., [4, 11, 12, 13], and others.

2. MODEL AND DEFINITIONS

We now formally introduce the dynamic graph model, original
introduced in [18]. As explained above, we consider a syorobus-
round based model of computation, in which the set of nodes (p
cesses) is not knowa priori. The set of nodes that participate in a
given execution is, however, fixed for the duration of thecesien,
and each of them has a unique identifier (UID). The nodes share
global clock, which starts at 0 and advances in unit steps.

Communication proceeds in synchronous rounds; we think of
round k& (for k = 1,2,...) as taking place between tinfe- 1
and timek. Roundk proceeds as follows: first, each node gen-
erates a single message to broadcast, based on its loeahfstane

k — 1. The adversary then selects a communication graph (i.e., a

set of edges) for rounk, and delivers each message to the sender’s
neighbors in accordance with the edges it chose. The communi
cation graph for each round is assumed to be connected,ibus th

the only constraint on the adversanifter messages are delivered,
each node processes the messages it received, and tragitia
new state (its state at tini§. Then the next round begins.

The adversary’s behavior in a given execution is descrilyed b
dynamic graphG = (V, E,o), where|V| > 2 is a set of nodes
(or processes)E : N* — (V) is adynamic edge functiowhich
assigns to each rounda setE(r) of undirected edges ovéf, and
o is thesignatureof the execution. The signature is an assignment
of a unique identifier (UID) and an input (or initial value) ¢éach
node inV. If nodes have access to an upper bound on the count
|V, this upper bound is also part of the signatuteln particular,
if o always includes the exact number of nodes, then we say that
the count is knowra priori. We are frequently concerned only with
the dynamic network topology; in this case we omit the sigret
o from our notation.

A dynamic graphGG = (V, E) induces acausal order denoted
(u,t) ~g (v,t"), where(u,t) and (v,t’) aretime-nodesrep-
resenting the states of nodesand v at timest andt’, respec-
tively. Informally, the causal order captures the idea théime-
node(u,t) can only influence another time-no(e t') in a given
execution if there is a chain of messages starting feoat time
t and ending at at timet’. Formally, the causal order is de-
fined in the usual way: it is the transitive and reflexive ctesof
the order(u,t) —¢ (v,t + 1), which holds iff eitheru = v or
{u,v} € E(t+1). We omit the subscript’ when it is clear from
the context.

At time ¢, nodew has direct information only about the states
of nodeswv at timet’ such that(v,t') ~ (u,t). This motivates
the next definition, which defines all the information a node c
possibly acquire about an execution.

DEerINITION1 (VIEW). Theview of nodew at timet in dy-
namic graphG, denotedview ¢ ., ¢), iS defined as the restriction
of G to the time-nodes and edges along paths from time O nodes
to (u,t) in G (see Fig. 1). In particularyiew g, 1) includes the
states of all nodes at timet’ such that(v,t') ~¢ (u,t).

In particular, nodeu cannot know the input value of any node
v such that(v,0) + (u,t). A common strategy in consensus
lower bounds and impossibility proofs is to create a sitratvhere
(v,0) 4 (u,t), and then flip the input value af, without nodeu
being able to tell the difference (at least until tifje Thus we
are often interested in the set of nodes whose input valuesn
potentially know at time (see Fig. 1 for an illustration.)

DEFINITION 2 (PAST SET). Thepast sebf atime-nod€w,t)
from timet’ in graph G is defined by

past(G’u’t)(t') ={v|(v,t") ~ (u,t)}.

If v e pastg,.)(0) (e, if (v,0) ~¢ (u,t)), then we say that
at timet nodeu hasheard fromnodewv. As usual, we omit the
subscript& from our notation where it is clear from the context.

In static networks, the performance of distributed aldwni$ of-
ten depends on ttliameterof the network. In a dynamic network,
the diameter of the communication graph can change fromdroun
to round, and is not a good measure of the amount of time redjuir
for information to spread through the network (see [19] f@-d
cussion). Thus, we use a more general definition, which expli
captures the amount of time required for any node to hear &ayn
other node:

DEFINITION3 (DYNAMIC DIAMETER). We say that dynamic
graphG = (V, E) has a dynamic diameter @ up to timet if for
all t' <tandu,v € V we have(u, max {0,t' — D}) ~ (v,t').

This assumption was callddinterval connectivityn [18].
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Figure 1: 4 rounds of a 6-node dynamic graph: The nodes aresddghe gray area together foxiew . 4, the 4 nodes inside the dashed

ellipse are the nodes in the gaist . 4)(1).

(In other words, for any tim¢’ < ¢ and any node: € V, we have
past(u,t;)(t’ - D) = V.)

In our lower bounds and knowledge analysis we assume that

nodes execute full information protoco] where the state of each
nodeu at timet is exactlyview(, ;). This state is then broadcast
by u at timet, allowingu’s neighborsy to combine the views they
receive and computeiew, ¢.1y. Any lower bound on full infor-
mation protocols extends, of course, to protocols that ateuil
information. Our upper bounds typically require nodes tadsat
least the inputs of all the nodes they have heard from, anésom
times more information as well.

2.1 Knowledge and Common Knowledge

Knowledge theory, and specifically the notion of common kirRow
edge and its variants, is central to the study of coordinatsidns.
This connection has been developed and described in [18, 20,
20]. that simultaneous coordination is closely relatedammon
knowledge. In this section we review the basic definitioosus-
ing on the elements needed for our analysis of dynamic n&swor
For a more complete exposition of knowledge theory see [10].

Given a distributed protocadP, let R = R(P) be the set of all
runs (executions) of. A point of R is a pair(G,t), represent-
ing the global state of the execution at tihevhen protocolP is
executed in dynamic grap.

The fundamental notion underlying the concept of knowleidge
indistinguishablityamong points. We writéG,t) ~, (G',t) and
say that the two points aiadistinguishable to node, if nodeu’s
view is the same in both runs, that i8ew g ..¢) = View(gr,u,1)-
(Recall from Section 2 that a node’s view represents all tifieri
mation it can possibly acquire about the execution.) Notitze
two points may be indistinguishable to even though the runs
are quite different; for example, the number of nodes mafedif

fact is true. We now formalize this intuition with a minimahaunt
of logical notation.

Given a systenR = R(P) (that is, a collection of all runs of
some protocolP), we start out with some s@ of basic factsof
interest; each basic fact is associated with a set of p¢@ts) in
which it is satisfied. We uséR,G,t) £ ¢ to denote the satisfac-
tion of facty in (G, ).

Now let K, stand for the fact thatodeu knows thatp holds
We call K, aknowledge formulaand its satisfaction is formally
defined as follows:

(R,G,t) e Kup iff
(R,G',t) E ¢ holds for all(G',t) ~, (G,t).
Note thaty does not have to be a basic formula; it can itself be a
knowledge formula. For example, the formuta, K, v asserts that
“nodeu knows that node knows)”.
It is convenient to define additional knowledge operat@rand

C, which can also be combined and nested. The opefa&iands
for everyone knowsand it is formally defined by

iff
(R,G,t) = Kup holds forallu € V,

(R,G,t) E Ep

whereV is the node set ofs.

The operatoC' stands forommon knowledge facty is com-
mon knowledge ifp holds, and everyone knows thatholds, and
everyone knows that everyone knows thatolds, and so on. The
C operator can be formally defined as a fixpoint (see [10]), bt h
we give a more semantic definition, in terms of the similagitgph:

(R,G,)ECp  iff
(R,G',t) E ¢ holds for all(G',t) ~ (G, ).

between the two runs, as well as the inputs and UIDs of some According to this definition, a facp is not common knowledge

of the nodes. The point§G,t) in a systemR, and the individ-
ual indistinguishability relations.,, for all nodes that appear in

the runs of R, define an undirected, edge-labelled graph that is ...

called thesimilarity graphfor R. We are particularly interested
in the connected components of the similarity graph; we tieno
(G,t) ~ (G',t) if points (G,t) and (G',t) are in the same con-
nected component, that is, there is a sequemge. . , ux such that
(G,t) = (Go,t) ~up (G1,t) ~uy -vv ~uy (Grar,t) = (G',1).
(Note that fori = 0,...,k — 1 we must have:; € V; n Vi;1, where

V; is the node set of7;.)

Intuitively, nodeu will knowa facty at (G, t) exactly if o holds
at all points(G’,t) such that(G,t) ~, (G',t). In other words, a
fact is known byu if u's view implies that the fact must be true.
odewu knows a given fact iff the node’s information implies tha¢ th

at (G,t) whenever there is a graf’, ¢) such that(G’,t) # ¢,
and a chainu, ..., ux such that( G, t) = (Go,t) ~uy (G1,t) ~u,
~uy (Gre1,t) = (G',t). Informally this means thap is not
common knowledge if some nodg suspects that some node
suspects that. .. some nodgsuspects that might not hold. (Here
“u; suspects)” is to be formally understood ask., -, that is,
u; does not know tha is not true.)

Common knowledge is known to be closely related to simuktane
ous coordination. For example, in simultaneous conseiasosgde
cannot decidey before it is common knowledge thatis the in-
put to some node. In general, any actiothat must be performed
simultaneously can only be performed when it is common knowl
edge that is being performed. The simultaneity @implies that
wheneverqa is performedeveryone knowshat a is performed; a



straightforward induction on the length of paths in the &nity
graph shows that is common knowledge, that is,is performed
at all points in the connected component of the similaritspir.
We review the argument relating common knowledge and sanult
neous consensus in Section 6.1.

3. CAUSALITY IN DYNAMIC GRAPHS

As we saw in the previous section, at timha nodeu can only
know the input of another nodeif v € past,, (0), i.e., if (v,0) ~
(u,t). Globally-sensitive functions, such as the minimum or max-
imum of inputs to all nodes, require a node to know when it has
heard from everyonenodeu is only guaranteed that it has the true
answer at time if past,, ;)(0) = V.2 In this section we give an
optimal condition that allows a node to test when it has hé&am
all nodes in the graph, even if it does not knavpriori how many
nodes there are.

The problem of determining when a node has heard from every-
one was already considered in [18], and@fn )-round algorithm
was presented. While(n) is a trivial lower bound on the problem,
the algorithm of [18] has the drawback alfivaysrequiring©(n)
rounds, even when the network has small dynamic diametee He
we give an algorithm which is all-case optimal, and in partc,
requiresO(D) time in networks with dynamic diameté.

The test is surprisingly simple; it only requires the nod&eep
track of its past sets from time 0 and from time 1.

LEMMA 3.1. Nodeu knows at time that past,,, ,,(0) = V' iff
past(, )(0) = past(, ,(1).

PROOF. First, suppose thatast,, ;)(0) = past, ,(1). This
implies thatpast,, ;)(1) = V@ if V \ past(, ,,(1) is non-empty,
connectivity in round 1 implies that there is some edgew} ¢
E(1) such thatv e past, ,,(1) andw ¢ past, ;,(1). But this
means thatw,0) ~ (v,1) ~ (u,t), and hencev € past,, ,,(0)
andpast,, +)(0) # past(, ,,(1). Thus,past, ,,(1) = V, which
also implies thapast,, ,,(0) = V.

For the other direction, suppogest, ;)(0) # past(, , (1).
This does not necessarily imply thadst, ,,(0) # V; however,
there is some node ¢ past, ;)(0) \ past, (1) thatu has not
heard from since time 0. At tim& no communication rounds have
occurred yet, s@ does not yet know who its neighbors will be.
The adversary can conceal arbitrarily many nodes ffant) by
connecting them only to node throughout the execution. Since
u never hears fromy from time 1 onwards, it cannot distinguish
(for example, in the graph from Fig. 1, node (c) cannot teléthler
node (f) is part of the network or not). Therefore nadeannot
knowit has heard from everyone (even if in fact it has). ([l

We remark that ibast,, ,,(0) # V andu has noa priori upper
bound on the count, them has no upper bound di'| at timet:
as we saw above, any noddrom whichu has not heard could be
“concealing” arbitrarily many other nodes that are coneédb the
rest of the graph only through. Thus, ifpast, ;) (0) # V, then
at timet¢ nodew cannot know the value of a wide class of func-
tions, including majority, minimum or maximum with unbowed
inputs, and in general any functigh: (U;~, D") — D (whereD
is the data domain) satisfying the following condition: &ty in-
put assignment € D™ there exists a size’ > n and an extension

I' e D™ of I, such thatf(I) # f(I'). For each such function,

2This assumes that inputs are unbounded. If inputs are bdunde
from above or below, then a node knows it has the true minimum o
maximum if it has heard the smallest or largest possibleevéier
spectively). However, if this smallest or largest valueas present
then the node cannot halt until it hears from everyone.

Lemma 3.1 yields an all-case optimal algorithm: by forwagdall
input values (or sufficient information about them to allgwto be
computed), and stopping as soonpast,,, ,(0) = past, ,(1),
we obtain an algorithm that cannot be beaten by any other algo
rithm in any execution.

In fact, it turns out that knowing whepest,, ,,(0) = V' is cru-
cial not only for computing deterministic functions of thrput but
also for eventual consensus, as we show below.

4. CONSENSUSAND CAUSALITY

In this section we show that when nodes do not have an initial
upper bound on the count that is tight to within a factor of 2 of
the true count, eventual consensus is in some sense equitale
knowing whenpast,, ,,(0) = V. Specifically, for either the all-
zero or all-one input assignment (or both), no node can dagidil
it hears from all the other nodes.

For simplicity, the statement we include here applies only t
comparison-basealgorithms, in which nodes can only compare
UIDs to each other (but they cannot, e.g., execute a diffqrent
gram based on the UID they are assigned).

Fori e {0,1}, letoy,; denote the signature where all noded/in
receive; as their input, and the upper bound on the couBhis

THEOREM 4.1. If nodes are given an upper bound on the count
that is loose to a factor of at least 2, then for any comparibased
algorithm there is ani € {0,1} such that in any executio& =
(V, E,ov,;), no nodeu can decide at timeif past ¢ ,, +)(0) # V.

PROOF SKETCH Suppose nhot. Then there exist executiéhs
(Vi, E;,04) fori = 0,1, such that; assigns to all nodes df; in-
put ¢, the sets of UIDs used iay ando; are disjoint, and there
exist nodes.;, v; and times; such thatu; decides at time;, even
thoughw; ¢ past(g, ., +,)(0) (that is,u; does not hear from;
before it decides).

Because., andu; do not hear from all the nodes in their respec-
tive executions, we can “stitch togethe®, andG; without these
nodes noticing. Consider the executiin= (VouVi, Ex, ooUo1),
where for alls > 1 we setEg (s) := Eo(s) U E1(s) u{vo,v1}. In
H, nodes are provide2i as an upper bound on the count. Because
uo anduy do not hear fromyy andv; respectively, they cannot dis-
tinguish H from Gy andG, respectively, and they each decide the
same as they would in the original execution. Butin all nodes
must decide), including uo, and inG; all nodes must decidg,
includingu, ; therefore agreement is violated ih. O

The assumption that the upper bound provided to the nodes is
loose to within a factor of 2 is nearly tight: if nodes have esx
to an upper boundV < 2(n - 1), then the claim no longer holds,
and nodes can halt without being causally influenced by every
on both the all-zeroes and all-ones input assignments. ®me s
ple protocol illustrating this is the one where nodes decid¢he
majority input. To know that it has the true majority valugit is
sufficient for a node to hear ¢fV/2| + 1 copies ofv in the input;
whenN < 2(n —1) we have| N/2| + 1 < n, SO a node can some-
times decide before it has heard from all the nodes, evereinake
of the all-zeroes or the all-ones input assignment.

5. COMPUTING COMMON KNOWLEDGE

As noted in Section 2, simultaneous coordination is closely
lated to common knowledge: a simultaneous action can only be
performed when itis common knowledge that it is being penfed.

To understand simultaneous consensus in dynamic netwmks,
characterize the time required to achieve common knowledge



The results in this section hold for common knowledge in gen-
eral; see Section 6.1 for a discussion of how they apply tailsén
neous consensus. Roughly speaking, we prove the following:

e Even ifn is knowna priori, it takesn — 1 rounds to acquire
common knowledge of any fact that is not “trivially common
knowledge™

e If n is not knowna priori, then it takes: rounds to acquire
common knowledge of any fact about time 0 that is not ini-
tially common knowledge (such asitself).

For simplicity, we focus here on facts pertaining to timewlsas
the inputs to consensus. However, the result holds for ditmes
as well; any fact about timecannot become common knowledge
until time ¢+ n — 1.

Recall that a fact is common knowledge(i@¥, ¢) iff it holds at
all points (H,t) ~ (G,t) in the similarity component ofG, ).
To prove the result above, we show that we can change anytaspec
of the dynamic graplG at times0,...,n — 2 (and in particular,
in rounds1, ..., n - 2) while still remaining inside the similarity
component of G, t). Formally, we show the following.

THEOREM 5.1. For any full-information protocol,
1. (G,t)~(H,t)forall t <n-2;and

2. If n is not known a priori then in addition(G,n — 1) ~
(H,n-1).

PROOF SKETCH The main concept in the proofleding: given
asetX c V, timest’ <t and a node: € V, we say thatX at time
t' can be hidden fron{u,t) if there is a point(G',t) ~ (G,t)
such thatpast s/, 1 (t') N X = @. Hiding X at timet’ means
that we move inside the similarity component(@f, ¢) to a point
(G',t) ~ (G, t) where nodew knows nothing about the states of the
nodes inX from timet’ onwards. Once we have done this, we can
add or remove any edges adjacent only to node¥ im roundt’,
while still remaining in the similarity component 6, ¢), because
u does not learn of these changes by time

To prove the theorem, we show by induction/or n -2 that for
any setX of size at most: — k — 1 and for any node: ¢ X, setX
at timet — k can be hidden fronfu, t), without altering any round
preceding time& — k — 1. We hide sets oflecreasing sizas we
go back in time; essentially, we “use up” one node for eacimdou
we go back. The case wheke= n — 2 yields the theorem, since it
shows that we can hide any single node at timén —2), and then
change its state. In particular, we can hide any node at tifnend
any other node at time — 2, so the state of no node is common
knowledge at timex — 2. Moreover, ifn is not knowna priori, then
we can hide any node at time 1 from some node # w at time
n—1 and proceed to add more nodes to the network, as in the proof
of Lemma 3.1. By adding more nodes we can increase the dynamic
diameter of the network to more than- 1, which again shows that
the state of no node is common knowledge (nor is the size of the
network common knowledge).

To hide a seX attimet—k we must remove all edges from nodes
in X to nodeu and to other nodes thatis causally influenced by
inroundst -k + 1,t -k +2,...,t. (“Removing” here means that
we move to a poinfG’, t) ~ (G, t) where these edges do not exist,
by first hiding both endpoints of the edge at time k + 1 from
some node at tim¢.) To ensure that connectivity is preserved,
before we remove edges we choose some negeX u {u} and

3For example, the current round number is trivially common
knowledge.

add edges betwean and all nodes in the graph. Then we remove
all edges from nodes iX to all nodes excepX u {w}. In the
resulting graph, only nodes i u {w} hear from nodes iX in
round¢ — k + 1. Our final step is to use the induction hypothesis
to hide X u {w} at timet - k + 1 from (u,t), so that we have
past(, ,(t-k)n X = @. o

An immediate consequence of Theorem 5.1 is that all initd v
ues become common knowledge precisely at time 1 if n is
known a priori. Thus, a simultaneous consensus protocol that is
all-case optimal can be designed. It decides at time1 in all
executions, and no protocol for this task can ever decideeedn
fact, Theorem 5.1 implies that simultaneously acting basedny
nontrivial function of the initial values can be done at time 1
(whenn is known), and this is all-case optimal.

We also note that Theorem 5.1 implies that solving simuttase
consensus is as hard as computing an upper bound on the count,
because a simultaneous consensus protocol can only déticea
t if t > n represents an upper bound on the count.

6. A-COORDINATED CONSENSUS

Since simultaneous consensus is expensive and requireb
rounds even in very well-behaved executions, it is inténgsto
consider a trade-off between the performance of the conseais
gorithm and the degree of coordination it achieves. To thiswee
consider the following problem:

DEFINITION4 (A-COORDINATED CONSENSUS. A protocol
solvesA-coordinated consensifsit solves consensus, and in ad-
dition, all nodes decide no later thaf rounds after the first node
decides.

In the sequel we assume, unless stated otherwise, that tin¢ iso
initially known. (An upper bound on the count can be usediadt
or one can combine the algorithm in this section with theecign
from Section 3.)

One might expect that\-coordinated consensus should not be
much easier than simultaneous consensus. For example, Avken
1, we require all nodes to decide within one round of each other
it seems that if we can achieve this, then simultaneous auord
tion can be achieved at not much extra cost (a cot efiditional
rounds, perhaps). Indeed, in the worst case this expettatimrne
out by the following theorem.

THEOREM 6.1. For any A-coordinated consensus algorithm,
there exists an execution in which no node decides beforedrou
n — A -1, even whem is knowna priori.

PROOF. Suppose that there exists/&coordinated consensus
algorithm.A, such that in every execution some node decides before
time R <n-A-1. TheninA, all nodes decide no later than time
R+ A < n—1in every execution. We can obtain an algorithm
for simultaneous consensus in fewer than 1 rounds by simply
having each node rud and outputA'’s decision value at timé& +
A < n -1, contradicting the lower bound from Section 5. [

This result shows the existence of only one “bad” executibens

no node can decide until time—- A — 1. Given the general similar-

ity betweenA-coordinated consensus and simultaneous consensus,
one might expect that A-coordinated consensus protocol would
neverbe able to decide before time— A - 1 (just as simultane-

ous consensus can never decide before timel). However, we

now show that even in 1-coordinated consensus, nodes cag som
times decide significantly earlier than time- A — 1. Consider the
following protocol.



Clear-Majority Protocol. Fix some integekmax, and for each
k=1,... kmax, letty :=n—k-A - 1. In each round the nodes
forward the set of all node UIDs they have heard from so fangl
with the input to each node. At timg, an undecided node decides
v iff it has heard of at leastn/2] + 1 + (¥)A inputs equal tov.
Finally, at timen — 1, all the nodes know all the inputs; at this point
any undecided node decides on the majority input (breali@sgn
some consistent way if there is no majority).

LEMMA 6.2. The clear-majority protocol solves-coordinated
consensus. Furthermore, when the fraction of identicalisjis at
least(1/2 + €)n for some constant, and if A < (en —1)/2, all
nodes can decide after— ©(v/nA) rounds.

PrRoOOFR Agreement and validity follow immediately from the
fact that nodes always decide on the majority value (or,afé¢hs
no majority value, all nodes reach time- 1 and decide in some
consistent way). To show that the protocolAscoordinated, sup-
pose that in some execution, the earliest nodkecides on value
at timet,. We must show that all nodes decide no later than time
tr + A= tre_1.

that is, if it is known that everyone will decide no later than
timen - 1.

e Decidev attimen — 2A -1 if
(R(A),Gyn—2A 1)k KB D ECCD (4 =),

that is, if it is known that everyone will know at time— A - 1
that everyone will decide no later than time, — 1.

Ingeneral, attime.—k-A -1, a node decidesif it has not decided
already and

(R(A"),Gyn-k-A-1) & K, Eem(k-Da-1)
EOCATD EROD (47 2y,

It is easy to see that any instantiation of this scheme sgiafi
coordinated consensus; this is in some sense the optinatdgr
However, it requires nodes to keep track of information altbe
full dynamic graph, and to evaluate complex knowledge g&te
the clear-majority protocol uses less precise rules, tayt #ne sim-

Because the communication graph in every round is connected pler and easier to evaluate. In general, any approximatiothe

for all s < n -1, at timen — s — 1 in the execution each node
has heard all but at most of the inputs. In particular, by time
ty-1 = n - (k—1)A -1 each node has heard all bit - 1)A
of the inputs. Since: decidesv at timety, the input assignment
contains at leagtn/2| + 1 + (’;)A values equal t@, and hence by
timet_1 each node hears at leds/2] + 1 + (5)A - (k- 1)A =
[n/2] + 1+ (*3')A inputs equal ta. Thus, all nodes that do not
decide at time;. decidev at timetx_; = tx + A, as required.

Now suppose that for some constantthe input assignment
contains at leasf1/2 + ¢)n copies of some value. By time
tr =n —k-A -1 each node hears all biat A of the input values,
i.e.,atleas{1/2 +¢)n - k- A copies ofv. If A < (2en—1)/4, we
setkmax = [/(2en —1)/A - 1], and then simple algebra shows
that (1/2 + €)n — kmax - A > ("3%) + [n/2] + 1; thus, by time
temax » €aCh node hears sufficiently many copies & decide. For
this value Ofkmax We havety, . =n - 0(v/nA). O

knowledge criteria above can be used, as long as the samaxappr
imation is applied consistently at each decision peintk - A — 1.

ApproximateA-Ladder. Let A be an eventual consensus al-
gorithm with round complexity at most— 1, let kmax € N, and fix

: k,v -
a collection{®; }uEV,ke[kmax],ve{O,l} of local knowledge formu

las, such that: can evaluate the satisfaction @ﬁ’” based on its
local state. These formulas represent the decision rutestrey
must satisfy:

(a) Consistency: for all u,
R(A) £ ®%° - (A=0)andR(A) £ %' —» (A=1).
(b) Timeliness: for all executions,

(R(A),G,n—1) = ®%° v 51

The clear-majority protocol can be viewed as an instance of a (c) Coordination: forall 1 < k < kmax andv € {0,1}, if

more general scheme, in which nodes decide as soon as thay kno

that everyone else will decide the same value withirounds. Us-
ing this abstract scheme, any eventual consensus algocihrbe
transformed into a\-coordinated consensus protocol as follows.
Let“A = v" stand for the formula that asserts tlfat, ¢ ) is v-valent
with respect to algorithrd (that is, in any possible extension of the
first ¢ rounds ofG, all nodes decide). Let K2ty denote the for-
mula that means “node knows that at time fact  will hold”, and

let E®p = Ay K. Now we can state the protocol:

The A-Ladder. Given an eventual consensus algoritbnin
which all nodes decide no later than round- 1, we first trans-
form A into a full-information algorithmA’. Nodes executed’,

but do not immediately output its decisions. Instead, eaufeu
cided nodeu evaluates the following decision rules at each decision
pointt, = n — A -k -1 (the rules are given here in reverse order
w.r.t. the time each rule is evaluated):

e Decidev attimen-1if (R(A"),G,n-1) E Ky (A" =v), that
is, if it is known that the run is-valent for.A".

e Decidev attimen - A -1 if
(R(A,),G,Tl -A- 1) = KuE@(nil) (A’ = 'U) N

(R(A), Gyn—k-A~1) = K@}, then
(R(A).Gn = (k=)A= 1) = Aoy Kol

Then a protocol forA-coordinated consensus is given by the fol-
lowing: the nodes simulate algorithmd with their local inputs,
but do not outputd’s decisions immediately. Instead, for each
= Kkmax, - - - , 1, @a nodeu (which has not decided already) decides
vattimen—-k-A-1if (R,n-k-A-1) e K, 5",

LEMMA 6.3. Any instantiation of the\-ladder protocol solves
A-coordinated consensus.

Finally, let us give another instantiation of the approxienaA-
ladder, which decides quickly in graphs where all nodes frear
everyone quickly.

Dynamic Diameter-Based Protocalet f : {0,1}" —
{0,1} be any function that satisfie(0") = 0 and f(1") = 1.
Nodes always forward their full view of the execution so fat
timen — k- A — 1, a node decideg () if it knows that the input
assignment i, and it knows that there exists somiesuch that
the dynamic graph had a diameter of at mbatintil time (k—1) D
(where(k-1)D<n-k-A-1).



To see that this decision rule is consistent with the requars,
suppose that the rule for deciding at time- & - A — 1 holds at
nodew, i.e.,u knows the input assignment and dynamic diameter
of the graph is at mosb until time (k - 1)D. If k > 2, then for
any two nodesw,w’ we have(w, (k - 2)D) ~ (w’,(k - 1)D);
consequently at timé¢k — 1) D, all nodes know that the dynamic
graph had diameter at most up to time(k — 2) D and all nodes
know the input assignment. When time- (k—1)A -1 arrives the
decision rule fork — 1 is satisfied. Ifk = 1, then the decision rule
fortimen — (k- 1)A -1 = n — 1 holds trivially, because it only
requires nodes to know the input assignment.

The value we choose fGfmax should satisfy(kmax — 1)D <
n — kmax - A — 1, otherwise the decision rule for tintg_,  would
be unsatisfiable. If we choo#g,.x > [n/(D+A)], nodes can stop
as early astime—kmax-A-1 <n(1-A/(D+A))+A =nD/(D+
A) + A. For example, if the communication graph is always a
clique, then the running time is slashed by a factoAofNote that
the algorithm does not commit in advance to some diamBter
nodes always evaluate the stopping condition with respeat D,
and check if some bound satisfies the requirement.

6.1 Lower Bounds

In the following, we prove two lower bounds that complement
the upper bounds from the previous section.

In Section 5 we proved a lower bound on common knowledge.
Viewed through the lens of simultaneous consensus, we can in
terpret our strategy as follows: to show that simultanearsen-
sus cannot decide if7,¢), we showed that there exist two points
(Go,t) and(G1,t) such that

(@) In Go the input to all nodes is 0, and i@i; the input to all
nodes in 1; and

(b) (Go,t) ~ (G,t) ~ (G1,t).
To briefly review the argument, suppose that some node decide

in (G,t). Consider the path betwedr,t) and (G1-,,t) in the
similarity graph; denote this path by
(G,t) = (Ho,t) ~uy (H1,t) ~uy .. ~uy (Heyt) = (Groo, ).
We show that some node decidesn (Gi1-.,t), violating valid-
ity, by employing the following argument at each step1,...,¢
along the path:
1. Some nodev decidesv in (H;,t); therefore,
2. From simultaneity and agreement, nedelecides in (H;,t);
therefore,
3. Nodew; also decides in (H;+1,t), because it cannot distin-
guish(H;.1,t) from (H;,t).

This argument hinges on simultaneity, and we cannot emplag-i

is to prove lower bounds oi-coordinated consensus. However,

A-coordination allows us to make the following weaker argoime

1. Some nodev decidesv in (H;,t); therefore,

2. From A-coordination and agreement, node u; decides v in
(H;,t+ A);* therefore,

3. If (Hiyt + A) ~y, (Hiv1,t + A), nodew; also decides in
(His1,t+A), because it cannot distingui$liZ; .1, ¢ + A) from
(Hi t+ A).

The key difference is that unlike before, now we have to pay fo

each step we take in the similarity graph; our lower boundaakw

ened byA rounds at each step, as we move forward in time.

“Technically, there exists soméx< t + A such that:; decidesv in

(H;,t"). The essential property is that by time A nodeu; has
already decided in H;.

This reasoning, applied repeatedly, yields the followieigina.

LEMMA 6.4. LetG,Go,G1 be runs, where irGp and G all
nodes receive input 0 and 1, respectively. Assume that foeso
£ > 1 and timet, the following two sequences of steps (i.e., edges)
exist in the similarity graph:

(Gt + A) ~yy (Hi,t+A),
(Hy,t+2A) ~yy (Ha,t +2A),

(He-1,t +LA) ~y, (Go,t +LA)
and
(G,t+A) ~yr (Hi b+ A),
(Hy,t+24) ~u (Hj,t +240),

(Hp1, t +LA) vy (Gryt +EA);

Then in anyA-coordinated consensus algorithm, no node can de-
cide by timef in G.

PrROOF SKETCH As outlined above, if some node decidem
(G,t), we show by induction on the path leng#) that some node
decidesv in (G1-,,t + ¢A), violating validity. o

The condition of Lemma 6.4 involves many different times;
Ajt+2A, ... t+LA. Asimpler condition that implies the lemma
can be obtained by replacing all times with the last time/A (to
still obtain a lower bound for timée). We show the existence of the
following two walks in the similarity graph:

(G, t+LA) = (Ho,t + LA) ~yy (Hi,t +LA) ~yy ...
~uy (H(,t+£A) = (Go,t+€A), and

(Gt +EA) = (Ho,t + LA) ~yr (Hi t+LA) ~y
Nl (Hg,,t+£A) = (G1,t+€A).

This only strengthens the condition, sine&, ¢) ~. (G',t) implies
(G,t") ~, (G,t") for all t’ < t. Thus the existence of these walks
is sufficient to apply Lemma 6.4.

When a full-information protocol is used, all informatiohaaut
the input becomes common knowledge at time 1; therefore we
cannot hope to have+ /A > n — 1 when we apply (the simpli-
fied version of) Lemma 6.4. In order to maximizand obtain the
strongest possible lower bound, we must minimizehat is, we
must find short walks in the similarity graph. Since our ulitm
goal is to span betweaf and two runs where the inputs @reand
1 (respectively), the walk should allow us to flip the inputsagf
many nodes as possible in each step.

Lower bound for static pathsae now apply the strategy
described above to obtain an—- O(A°2#1%72) lower bound in
static paths of lengtlh. A path is a natural candidate for proving
strong lower bounds: we can flip the inputs of nodes at one end
of the path, and the nodes at the other end do not find out for a
long time. However, to use Lemma 6.4, we must be able to flip
the inputs ofall the nodes in the network, not just the nodes at
the ends of the path. Thus, we start with some path .., u,,

and flip the inputs in some prefix, ..., ug of the path; node:,
cannot distinguish the two cases until time roughly 5. Then

we find a short walk in the similarity graph from our originalth

Ui, ..., un t0 @ new pathugii,...,un+p (i.€., we preserve the
order of nodes, but we rotate the path so that now it starig.at;
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Figure 2: lllustration of Lemma 6.5. The shaded arcs indicat

which nodes can distinguisty from G’. Switching from P, to
Py “cuts off” the spread of information about the missing edge,
and prevents it from reaching node- s — 1.

note that here and in the sequel, node indices are given madul
The parametep will be fixed later). Now we can flip the inputs
of nodesug.1,...,u2s; Nodeug = u,+s, located at the end of the
new path, cannot distinguish until time roughly- 3. We require

at most[n/8] such steps to flip any input assignment into either
the all-zero or the all-one input assignment.

The strength of the lower bound is determined by the length
of the walk from one pathi;.g+1,...,un+:.3, 10 the next path,
U(i+1)-B+15 - - - » Un+(i+1)-3- 1O construct the walk we use an intri-
cate recursion. During the walk between paths we do not ehang
any input values; in the sequel we focus on the dynamic gragh a
assume some fixed signature for all the executions we canside

Let Px := ug+1,-- -, un+k denote the path starting at nodg, 1,
and letC denote the cycles, ..., u,,u1. Itis convenient to use

the cycleC to bridge between paths: we cannot remove any edge

of a path without violating connectivity, but a cycle is 2rex con-
nected, so we can drop any of its edges. Intuitively, to mogmf

a pathP;, to a different pathPy.s (for s # 0), we first closeP;, to
form the cycleC, then drop edg€vi.s, vi+s+1} 0 obtain Pp..s.
The following lemma shows how we can move from a path to the
cycle while ensuring that some node cannot distinguishvtioeei-
ecutions; it represents an intermediate step which willseldater

to move between two paths.

LEMMA 6.5. Letke{0,...,n—-1},seZ,and let0 < a < |s]
andb > 0 satisfya + b < n — s. Fixatimeb < t <n — 1. Consider
two graphsG, G’ that agree on the firshax {0, — b — a} rounds,
such that

e Inroundsr € [t-b-a+1,t-b], G(r) = C andG'(r) = Py;
e Inroundsr € [t-b+1,t], G(r) = G'(r) = Prss-
Then(G,t) “Ukts-1 (let)-

PROOF SKETCH Assume that > 0 (the other case is symmet-
ric). Ateachtimer = (t-b-a+1)+ifori=1,...,a, only
nodesuy_;, ..., ur+i+1 Might have learned of the missing edge,
{uk,ur+1}. Thus, at timet — b, only nodeSuk_q, ..., Uk+a+1
can distinguishG' from G’. Next, both graphs switch @,
where the distance between any nade,, ..., uxq+1 and node
Uk+s—1 = Uk—(n—s+1) IS @t l€aSH — s —a. Sinceb < n - s —a, node
uk+s—1 does not learn of the difference by timésee Fig. 2). O

(Our eventual goal is to transform the entire execution fiame
path to another.) Let((G,t),(G’,t)) denote the distance be-
tween(G,t) and(G', t) in the similarity graph.

LEMMA 6.6. Fix atime0 <t <n-1andavaluel < g <
n - 1. LetG, G’ be dynamic graphs that agree up to time (n -
1-p), such thatinrounds € [t - (n—-1-8) + 1,t], G(r) =
Pr and G'(r) = Py (for somek, k’). Thend((G,t),(G’,t)) <
9(n/B)'" 52",

PROOF SKETCH Definels := [log,(n/B)]. We show by in-
duction on/; thatd((G,t),(G’,t)) < 3" — 1. The claim then
follows, because

1
3€B+1 —1< 3log2(n/6)+2 _ 9(%) 0gy 3

Let us denotels := 3¢ + 1. Note that we are transforming the
suffix [t — (n—1- ) +1,t] of the execution; hence, smaller values
of 3 (or equivalently, larger values @g) are “harder” because they
require us to transform a longer suffix.

The induction base is straightforward; it is omitted herer the
step we use Lemma 6.5. Set 8 andb =n -1 - 23. Given static
graphsH1, H., let G[ H1, H2] be the dynamic graph defined by

G(r) r<t—-(n-1-p5),
G[H1, H2](r) =1 Hq t-(n-1-B)<r<t-b,
Ho> t-b<r<t.

Sinceb = n—-1-24 andlsp = £z — 1, the induction hypothesis
shows that for any grapH and for any two path®,, P,; we have
d((G[H, FP,],t),(G[H, Py],t)) < d(28). Further, Lemma 6.5
shows thatd((G[P,, Py+s],t), (G[C, Pgs],t)) = 1 for any ¢q
(because these points are indistinguishable to some nddejs,
we construct the following walk (see Fig. 3):
B
(G,1) = (G[Pw, PiL,t) "% (GIP, Prss) 1) >
d(2p)
(GO, Pesp)st) 7 (GLC, Prsplit) | =

(G[Pkl Pkurﬁ] t) d(iﬁ) (G[Pk’ Pk’] t) - (G t)

The length of the walk is at mogd(28) + 2 = 3(3° - 1) +2 =
3ttt 1. O

THEOREM 6.7. In the static line graph, for any input assign-
ment, noA-coordinated consensus algorithm can decide by time

n - O(ATRES " FR5T ) & 1y — O(A*2072)

PROOF SKETCH Let o be any signature, and let, o1 be the
corresponding signatures where all nodes receive inputl( -
spectively. LetP*™™ denote the dynamic graph definedB§™ (r) =
P for all r, using signature € {c, 00,01 }. Also sett := n-25-1.

Forv € {0,1}, we span betweeP'?t) and(P" 77" t) by
repeating the following step3(n/3) times:

1. Flip the inputs of the leftmost nodes on the path toin one
move (the endpoint of the line cannot distinguish),
2. Applying Lemma 6.6, move from our current po{@@”", ¢) to

(P**P ) in O((n/B)"e2) steps.

The total length of the walk ig = O((n/B) - (n/B)*52°) =
O((n/B)"*'°523). Now, fix 8 such that3 > c- A - (n/B) o8¢,

Next, we show how to use Lemma 6.5 to recursively transform a For this setting of the parameters, Lemma 6. 4 shows that de no

suffix of the execution from one path, to a different pathP. .

decides by time - /A =n - O(A2+10g23n1 O

757,



t—lf—a tl—b 'f

crerd: 1 Q)1 QD]
T T 1) 1LH. (d(28B) steps)

ctrnel | Q1 O
t t { )Lem. 6.5 (one step)

cersl 1 O O
+ } | I.H. (d(28) steps)

clo.pesl: 1 (O 1 O |
} } | Lem. 6.5 (one step)

e} Q1O |
: : : I.H. (d(2p) steps)

G[Py, Pw]: O ! O !

Figure 3: The recursion from Lemma 6.6. The two graphs shown
for each step represent the communication graph for rotnds-
a,...,t—bandforroundg -b+1,...,t.

The final theorem states that the dynamic diameter-baséd-pro
col is asymptotically optimal for diameterd = O(A), even for
static executions. The proof uses Lemma 6.4 with¢{A ~ n/2,
that is, we construct a short walk in the indistinguishapigraph
for time roughlyn/2 (recall thatt is the time for which we wish
to show the lower bound, andis the length of the walk we con-
struct in the similarity graph). We start with an executiohose
firstt rounds are a static graph with diamef2rand the remaining
n/2-t are a static path. Thig:/2 —t)-round suffix means that the
nodes at the end of the path require roughisounds to learn what
the communication graph was in each of the fitg2 — ¢ rounds.

In £ = O(t/D) steps in the similarity graph, we move from this
execution to a static path. Because we need only maintais-ind
tinguishability until time roughlyn/2, once we have reached the
static path we can flip the inputs of nodes. ., /2 on the path in
one step; node does not find out by time/2. By repeating this
process twice we can flip all the inputs. Since we haveD(t/D)
and we are constrained by (A < n/2 (as indistinguishability is
only maintained until time:/2), we can apply Lemma 6.4 to obtain
the lower bound attime= Q(nD/A).

THEOREM 6.8. For everyD = O(A), there is a static graph
H = (V,Eg) with diameter at mosD such that for every\A-
coordinated consensus algorithm, every inp@nd every dynamic
graphG = (V, E, o) with E(r) = Ey for all roundsr until the first
node decides, no node can decide at a time befgreD/A).
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