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Abstract. Bounded model-checking is a technique for finding bugs in
very large designs. Bounded model-checking by itself is incomplete: it
can find bugs, but it cannot prove that a system satisfies a specification.
A dynamic completeness criterion can allow bounded model-checking to
prove properties. A dynamic completeness criterion typically searches for
a “beginning” of a bug or bad behavior; if no such “beginning” can be
found, we can conclude that no bug exists, and bounded model-checking
can terminate. Dynamic completeness criteria have been suggested for
several temporal logics, but most are tied to a specific bounded model-
checking encoding, and the ones that are not are based on nondetermin-
istic Büchi automata. In this paper we develop a theoretic framework for
dynamic completeness criteria based on alternating Büchi automata. Our
criterion generalizes and explains several existing dynamic completeness
criteria, and is suitable for both linear-time and universal branching-time
logic. We show that using alternating automata rather than nondeter-
ministic automata can lead to much smaller completeness thresholds.

1 Introduction

Bounded model-checking (BMC) is a model-checking method that has gained
popularity due to its ability to handle large industrial designs [4],[5]. Bounded
model-checking is an iterative process in which one searches for a bug of in-
creasing bounded length. In each iteration, one searches for a bug of size k, by
constructing a Boolean formula which is satisfiable iff such a bug exists. A SAT
solver is then used to determine whether or not the formula is satisfiable. If it is,
then a bug has been found; otherwise, one increases the bound k and searches
for a bug of greater size.

There are many BMC encodings for various fragments of linear-time logic
and automata on words; e.g., [4] for LTL, [10] for PLTL, [11] for weak alter-
nating Büchi automata. Many are based, directly or indirectly, on the idea of
constructing a product automaton M × A for the model M in question and an
automaton A which describes all the undesirable behaviors. Any accepting run
of the product automaton M × A corresponds to a bad behavior of the model;
thus, to check if the model contains a bug, we can search for an accepting run of
the product automaton. Using automata as specification mechanisms can lead to
simple and generic encodings. Even encodings based on temporal logic (e.g., [10]
and [12]) can often be viewed as simulating the run of the product automaton,
although they do not construct it directly.
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Bounded model-checking is typically a semi-decision procedure: it is able to
find bugs, but not to prove the correctness of properties. A completeness threshold
is an upper bound on the size of k, such that if no bug has been found when the
bound reaches k, then no bug exists. Thus, if a completeness threshold for the
property and model in question is known, bounded model-checking can halt if
the completeness threshold is reached and no bug was found, and conclude that
the model satisfies the property.

Completeness thresholds can be broadly divided into two classes, although
the division is not clear-cut. Static completeness thresholds ([5], [6]) attempt to
over-approximate the size of the “longest shortest bug” the system can contain.
For example, if a model does not satisfy an invariant p, then there exists a
shortest path from an initial state of the model to a state that does not satisfy
p. A static completeness threshold for invariant properties is therefore given by
the length of the longest shortest path in the model (the diameter).

In contrast, dynamic completeness thresholds are based on a dynamic com-
pleteness criterion, which attempts to determine whether the current bound is
already large enough to allow full exploration of the relevant part of the model.
Dynamic completeness criteria typically check for the existence of a “beginning”
of a counter-example (or bug). If such a beginning of size k cannot be found,
then there cannot exist a counter-example of size greater than k, and there is no
need to increase the bound. For example, the LTL property ϕ = pUq describes
a path in which q holds at some point, and until that point, p holds. Suppose ϕ
describes the bad behaviors of a system. A dynamic completeness criterion for
ϕ might check if there exists a simple (loop-free) path of length k, such that all
states along the path are labeled with p. Such a path represents a “beginning” of
a witness for ϕ. If we cannot find a witness of length k for ϕ, and we cannot find
a simple path of length k as described above, then there cannot exist a witness
of length greater than k for ϕ. Therefore, in this case bounded model-checking
can terminate and conclude that the system contains no path that satisfies ϕ.

The effectiveness of dynamic completeness criteria has been shown in exper-
imental results ([10], [22], [24]). However, designing completeness criteria that
are both sound and effective can be challenging. For instance, the completeness
criterion in [22] contains a subtle flaw: a constraint introduced to cause earlier
termination and increase the effectiveness of the criterion causes the criterion to
be unsound. For details, see [17]. In addition, existing completeness criteria are
often custom-designed to fit one particular encoding. For example, the dynamic
completeness criteria of [22], [18] and [24] are all based on ideas similar to the
ones on which the current paper is based, but they each develop the completeness
criterion anew to fit the particular encoding.

In this work we present an automata-theoretic dynamic completeness crite-
rion for alternating Büchi automata. Our criterion generalizes several existing
completeness criteria by formalizing the notion of a “beginning” of an accepting
computation. The criterion we suggest is independent of a particular encoding;
in addition to serving as a theoretical framework for existing completeness crite-
ria, it can be instantiated to fit automata-based BMC encodings for which there
is currently no dynamic completeness criterion, such as [11].
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To our knowledge, the criterion we suggest is the first completeness criterion
that can handle alternating automata. The choice of alternating Büchi automata
as a specification mechanism is motivated by two factors. First, alternating Büchi
automata are powerful enough to express all ω-regular properties. [11] developed
an encoding for weak alternating Büchi automata, and showed that the increased
expression power did not carry significant performance penalties.

The second factor is the succintness of alternating automata. It is well-known
that an alternating automaton can be exponentially smaller than any equiva-
lent nondeterministic automaton [20]. In this paper we show another compelling
reason to use alternating automata as a specification mechanism: they can have
much smaller completeness thresholds than the corresponding nondeterminis-
tic automata. This result is related to, but does not follow directly from, the
exponential gap in the number of states.

In addition to linear-time logic, several BMC encodings and accompanying
completeness criteria have been suggested for universal branching-time logic
([19], [23], [22], [18]). Our completeness criterion is based on automata on infinite
words, which express linear-time properties. However, the criterion is also appli-
cable to universal automata on infinite trees, which express universal branching-
time properties. This is because our criterion is based on the product of the
model and the automaton. The product of a model and a alternating automaton
on infinite trees is an alternating automaton on infinite words [14]; thus, our
dynamic completeness criterion, which is based on alternating automata on infi-
nite words, is applicable to branching-time logic as well. Note, however, that in
a branching-time setting, a Büchi acceptance condition is not expressive enough
to express all ω-regular tree properties. Our criterion can therefore only handle
the alternation-free fragment of universal μ-calculus.

The rest of the paper is organized as follows. In Section 3 we review the
automata-theoretic approach to linear-time logic and define notation and ter-
minology. In Section 4 we present the dynamic completeness criterion and the
resulting completeness threshold. We show that the criterion is sound, and char-
acterize its completeness. In Section 5 we show that there is an exponential
ratio between the completeness thresholds of alternating and nondeterministic
automata. We conclude in Section 6.

2 Related Work

In the original work on BMC ([4], [5]), the diameter of the model is suggested
as a completeness threshold for formulas of the form EFp (“p is reachable”). [5]
also shows a pessimistic completeness threshold of |M | × 2|ϕ| for general LTL
formulas ϕ. In [6], tighter completeness thresholds are shown for various classes
of temporal properties, among them the class of all ω-regular properties, based
on automata-theoretic methods. The completeness threshold suggested in [6]
for general ω-regular properties is an over-approximation of the length of the
shortest lasso-shaped accepting run of the product automaton. Our own work is
based on similar ideas; however, the automata we consider are alternating, while
[6] bases its threshold on nondeterministic automata. As we show in Section 5,
using nondeterministic automata as a specification mechanism can increase the



278 R. Oshman

completeness threshold significantly. In addition, the completeness threshold of
[6] does not take the form of a dynamic completeness criterion which is evaluated
at different bounds to determine whether or not the completeness threshold has
been reached. In [2], the authors apply similar ideas to [6], this time in a form
closer to a dynamic completeness criterion: to check whether the completeness
threshold has been reached, one can check the satisfiability of several Boolean
formulas, which roughly speaking describe the existence of loop-free fragments
of an accepting run in the product automaton. Unlike our own work, the com-
pleteness criteria of [2] check for the existence of both a “beginning” and an
“ending” of an accepting run (forward and backward traversal). However, [2] is
still restricted to nondeterministic automata. In [3], the authors of [2] extend
their termination criterion to generalized nondeterministic Büchi automata, in
which the acceptance criterion can consist of several accepting sets, and show
that using generalized automata can lead to smaller completeness thresholds.
The completeness threshold we suggest in this paper is easily extended to gen-
eralized Büchi automata.

In [10], an incremental encoding is presented for PLTL, along with a dynamic
completeness criterion based on the idea of searching for a “beginning” of a
witness. In an incremental scheme, the encoding is composed of two parts –
a k-invariant part, containing constraints that are retained when the bound
is increased, and a k-dependent part containing constraints that are discarded
when the bound is increased. The formula used in [10] to determine whether
the completeness threshold has been reached is obtained from the formula used
to search for a witness by removing the k-dependent constraints and adding a
simple-path constraint. Removing the k-dependent constraints has the effect of
dropping eventuality requirements (e.g., when searching for a witness for Fp, the
requirement that p be satisfied at some point along the path is a k-dependent
constraint). The completeness formula of [10] is highly specific to the incremental
scheme and the particular encoding used in [10]. Our completeness criterion can
be extended to handle temporal logic with past operators by extending it to
two-way automata on words [21].

Several bounded model-checking encodings have been suggested for universal
branching-time temporal logic [18], [19], [22], [23]. [22] and [18] show accompany-
ing dynamic completeness criteria for their respective encodings, and a dynamic
completeness criterion for the encoding of [19] is presented in [24]. The criteria
of [22], [18] and [24] are again highly encoding-specific, and all use a similar idea
of searching for a “beginning” of a witness.

A related SAT-based technique which can prove properties is temporal in-
duction [7], which can prove invariants. General safety and liveness properties
can be transformed into invariants, but such translations increase the size of the
model and may increase the depth necessary for bounded model-checking.

Our work is also closely related to [8], which discusses extensions of LTL
that can be used to reason about truncated paths. Our notion of a partial run
corresponds to the weak semantics of LTL for truncated paths described in [8],
and can be taken as an automata-theoretic formulation of the weak semantics.
We are interested in investigating this connection.
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3 Preliminaries

Given a setX , we denote by B+(X) the set of positive Boolean formulas obtained
by applying the connectives ∧ (conjunction) and ∨ (disjunction) to elements of
X , as well as the formulas true and false. We say that a subset Y ⊆ X satisfies
a formula α ∈ B+(X), and denote Y |= α, if the assignment vY , defined by
vY (x) = 1 if x ∈ Y and vY (x) = 0 if x �∈ Y , satisfies the formula α.

An alternating Büchi automaton on infinite words is a tuple A = (Σ,Q, q0,
δ, F ), where Σ is the automaton’s alphabet, Q is the set of automaton states,
q0 ∈ Q is the initial state of the automaton, δ : Q×Σ → B+(Q) is a transition
relation, and F ⊆ Q is the set of accepting (or fair) states. A nondeterministic
automaton is an alternating automaton which has only disjunctions in all its
transitions. We use Σω to denote the set of infinite words over the alphabet Σ,
and we use xω to denote the infinite word obtained by iterating the finite word
x infinitely often.

To model the runs of A we use Q-trees. A Q-tree is a pair t = (N, �), where
N ⊆ N

∗ is a prefix-closed set of tree nodes, and � : N → Q labels each node
of the tree with an automaton state. The root of the tree is the empty word
ε, and given a node n ∈ N , the set of children of n in the tree is given by
children(n) = {n′ | n′ = n · i for some i ∈ N}. We denote by |n| the length of
the finite word n, and for an infinite word n we denote |n| = ω. For a tree node
n, the length |n| is also the distance of n from the root of the tree (ε). A branch of
the tree is a maximal sequence n0n1n2 . . . (which can be either finite or infinite),
such that n0 = ε, and for all i ≥ 0, ni+1 ∈ children(ni). If t = (N, �) is a finite
tree, the front of t is defined by front(t) = {n ∈ N | children(n) = ∅}, and the
height of t is the length of the longest branch in t. Note that we measure height
by the number of edges, not the number of nodes.

A run (or run-tree) of an automaton A on an infinite word w = w0w1w2 . . . ∈
Σω is a Q-tree r = (N, �), such that for all n ∈ N , children(n) |= δ(�(n), w|n|).
We say that a run r is accepting if for every branch n0n1n2 . . . of r, some ac-
cepting state q ∈ F appears infinitely often on the branch (that is, �(ni) = q for
infinitely many values of i). If A has some accepting run on a word w, we say
that A accepts w. The language of A, denoted L(A), is the set of words w ∈ Σω

such that A accepts w. Note that runs can be finite or infinite trees, and even
in an infinite run there can be finite branches. However, finite branches must
always end in a node n such that δ(n,w|n|) = true.

To model programs, we use Kripke structures. Given a set AP of atomic
propositions, a Kripke structure (or model) over AP is a tuple M = (S, s0, R, L),
where S is the state-space of the model, s0 ∈ S is the initial state, R ⊆ S×S is a
transition relation, and L : S → 2AP is a labeling function which assigns to each
model state a set of atomic propositions from AP . A path of M is a maximal
sequence π = s0s1s2 . . . starting at s0, such that for all i ≥ 0, (si, si+1) ∈ R.
The labeling of a path π = s0s1s2 . . . is the word L(π) = L(s0)L(s1)L(s2) . . ..

Two parameters are often used to measure the complexity of a Kripke struc-
ture. The diameter dM of a structure M is the length of the longest shortest
path in M . The recurrence diameter rM is the length of the longest loop-free
path in M . The diameter of a model is no greater than its recurrence diameter,
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since a shortest path is always loop-free, but the recurrence diameter is easier
to compute than the diameter.

We say that a model M = (S, s0, R, L) satisfies an (existentially-interpreted)
automaton A = (2AP , Q, q0, δ, F ), and denote M |= A, if there is a path π of
M such that L(π) ∈ L(A). The path π is then called a witness. In bounded
model-checking (and linear-time model-checking in general), the automaton A
describes the bad behaviors of the system, and a witness, if one exists, represents
a bug in the system.

One way to check if M |= A is to construct the product of M and A [20],
an alternating automaton which, informally, describes all the runs that A can
have on paths of M . The product automaton is defined by M × A = ({a} , S ×
Q, (s0, q0), δM , S × F ). The transition relation δM of the product automaton is
defined by δM ((s, q), a) =

∨
s′:(s,s′)∈R αq,s,s′ , where αq,s,s′ is the formula obtained

from δ(q, L(s)) by replacing every atom q′ ∈ Q with (s′, q′). (For example, if
δ(q, {b}) = q1 ∧ q2, L(s) = {b}, and the only transitions from s are to s1 and to
s2, then δM ((s, q), a) = ((s1, q1) ∧ (s1, q2)) ∨ ((s2, q1) ∧ (s2, q2)).)

It can be shown that M |= A iff L(M ×A) �= ∅. Therefore, to check if M |= A,
we can construct M × A and check whether or not its language is empty [20].
Note that the product automaton M×A is over a unary alphabet {a}, and thus,
if L(M ×A) �= ∅, then M ×A must accept the word aω.

Throughout the paper we will be interested in prefixes of words and trees.
We denote x ≺ y if x is a prefix of y. Given a finite or infinite word x =
x0x1 . . . and a number h ≤ |x|, we denote prefh(x) = x0 . . . xh. We use pref(x)
(witout the subscript) to denote the set of prefixes of x, that is, pref(x) =
{prefh(x) | 0 ≤ h ≤ |x|}. Similarly, given a finite or infinite tree t = (N, �), we use
prefh(t) to denote the tree prefh(t) = (Nh, �h) defined byNh = {n ∈ N | |n| ≤ h}
and �h(n) = �(n) for all n ∈ Nh. We also denote pref(t) = {prefh(t) | h ∈ N}.
Finally, for an automaton A, we denote by prefh(A) = {prefh(r)|r is a run of A}
the set of all prefixes of height h of runs of A. For a model M , we denote
prefh(M) = {prefh(π) | π is a path of M}.

4 A Dynamic Completeness Criterion for Alternating
Automata

In this section we define a dynamic completeness criterion, which checks whether
the automaton has a “beginning” of an accepting computation of length k. If
there is no such “beginning”, bounded model-checking can terminate and return
M �|= A when the bound reaches k.

To formalize the notion of a “beginning” of an accepting computation, we
define canonical partial runs of the automaton. Informally, a partial run is a
truncated run-tree; it is a finite tree in which only the inner nodes are required
to satisfy the transition relation. A canonical partial run is a partial run that
contains no “useless” loops. We will later discuss another restriction on partial
runs that may lead to smaller completeness thresholds.

Fix an alternating Büchi automaton on infinite words A = (2AP , Q, q0, δ, F ).

Definition 1. A partial run of height h of A on a word w = w0w1 . . . is a Q-tree
r = (N, �) of height h satisfying the following conditions.
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1. �(ε) = q0.
2. For all n ∈ N such that |n| < h, children(n) |= δ(�(n), w|n|).

The definition of a partial run of height h is distinguished from the definition
of an accepting run of the same height by the requirement on the leaves (nodes
n with |n| = h): in an accepting run, if n is a leaf then δ(n,w|n|) = true; in a
partial run, there is no such requirement. Consequently, every accepting run is
also a partial run, but the converse is not true.

Lemma 1. If r is an accepting run on w, then for all h ∈ N, prefh(r) is a
partial run of height h on w.

Clearly, if A has an accepting run of height h or greater on a word w, then A
has a partial run of height h′ on w for all h′ ≤ h. However, there may exist
partial runs of height h for all h ∈ N even if there is no accepting run, as in the
following example.

Example 1. Consider the nondeterministic automaton A shown in Fig. 1(a). A
accepts the language of words over the alphabet Σ = {∅, {a}} which contain a
finite number of occurrences of the letter {a}. A run of A stays in q0 until A
“guesses” it has seen the last {a}, and then moves to q1, which is an accepting
state; if an {a} is read from state q1, the run gets stuck (that is, the transition
is false).

The model M shown in Fig. 1(b) is not accepted by the automaton: the only
path in M is π = (s0)ω, whose labeling, L(π) = ({a})ω, contains infinitely many
occurrences of {a}. However, for all h ∈ N, the sequence rh = qh

0 represents a
partial run of height h of A on π.

q0 q1
∅, {a}

∅, {a} ∅

(a) The automaton A

a
s0

(b) The model M

Fig. 1. The automaton and model from Example 1

Notice that for h > 2, rh is not a “good” partial run on π: after one step we
enter a loop in both r and π in which no accepting state of A appears. Thus, rh
for h > 1 contains unnecessary padding which increases its height. Intuitively,
a “good” partial run will contain no unnecessary loops. We now formalize this
notion.

Definition 2. Given a partial run r = (N, �) of height h,

1. A loop in r is a pair (n1, n2) ∈ N2 such that n1 ≺ n2 and �(n1) = �(n2).
2. We say that an automaton state q ∈ Q occurs in (n1, n2) if there is a node

n ∈ N such that n1 ≺ n ≺ n2 and �(n) = q.
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3. A loop (n1, n2) is said to be useless if no state q ∈ F occurs in (n1, n2).
4. We say that r is canonical if there are no useless loops in r.

Lemma 2. If an automaton A over a unary alphabet {a} accepts the word aω,
then A has a canonical accepting run on aω.

Proof sketch. The existence of a canonical accepting run follows from the ex-
istence of a memoryless winning strategy, shown in [9] for alternating parity
automata, a more general class of automata than alternating Büchi automata.
The accepting run that corresponds to a memoryless winning strategy for the
word aω has no useless loops: if it had a useless loop, then the run-tree would
contain a branch along which the loop repeats forever, because each time the
automaton would reach each state in the loop it would be obliged by the mem-
oryless strategy to make the same move. Since the loop contains no accepting
state, this branch would contain only finitely many accepting states, and the run
would not be accepting. �

The definition of a canonical partial run captures the notion of a “beginning” of
a counter-example used in the dynamic completeness criteria of, e.g., [2], [22],
[24]. The threshold we suggest is as follows.

Definition 3. Given an automaton A and a model M , the dynamic complete-
ness threshold CT(M,A) is the minimal number h such that M × A does not
have a canonical partial run of height h (on aω), or ∞ if there is no such number.

Next we show that the dynamic completeness threshold is sound — that is, it
does not cause termination too early.

Theorem 1. If M |= A, but for all h′ < h the product automaton M × A has
no accepting run of height h′, then CT(M,A) ≥ h.

Proof. From Lemma 2, since M |= A, the product automaton M × A has a
canonical accepting run r on aω. The run r is of height at least h, because
M ×A has no accepting runs of height smaller than h. Let r′ = prefh(r). From
Lemma 1, r′ is a partial run, and since r has no useless loops, neither does r′.
Thus, r′ is a canonical partial run of height h of M ×A, and CT(M,A) > h.

Remark 1. Consider the case of a nondeterministic automaton A. A canonical
partial run of A is a sequence of states — that is, a tree with a single branch.
If the run contains a loop, then an accepting state must appear in the loop,
implying the existence of an infinite accepting run of A.

Thus, for a nondeterministic automaton, the existence of a canonical partial
run of height k indicates the existence of either an accepting run or a loop-free
run of height k. However, the dynamic completeness criterion is only applied
after we fail to find an accepting run at the current bound k; thus, we can rule
out the first case, and simply search for a loop-free run of length k. This yields
the length of the longest loop-free path in the product automaton as an upper
bound on the completeness threshold of nondeterministic automata, as already
observed in [6]. This is also the basis for the forward-traversal termination criteria
of [2].
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Table 1. The transition of the automaton from Example 2

q δ(q, a) δ(q, b) δ(q, c)

q0 q0 ∧ qa q0 ∧ qb q0

qa qa qa true
qb qb qb false

4.1 Eliminating Bad Prefixes

As a consequence of Theorem 1, if no accepting run of M × A has been found
when the bound reaches CT(M,A), then bounded model-checking can halt and
return M �|= A. Conversely, we would expect that while k < CT(M,A) — that
is, if there exists a canonical partial run of height k — then there should be “a
reason” to increase the bound and search for an accepting run of height greater
than k. However, the following example shows that this is not always the case.

Example 2. Consider the automaton A = ({a, b, c} , {q0, qa, qb} , q0, δ, {q0, qb}),
where the transition relation δ is given in Table 1. A accepts only words that do
not contain both an a and a b: when an a is read, A moves to state qa, where it
waits to read a c; and when a b is read, A moves to state qb, in which it must not
read a c. Thus, any word in which both an a and a b appear will not be accepted.
However, A still has a canonical partial run r of height 1 on any word w which
has pref1(w) = ab. The partial run r cannot be extended into an accepting run
regardless of the rest of w, but its existence may cause BMC not to terminate
with a bound of 1 if the termination criterion from Definition 3 is used.

A prefix which cannot be extended into a word in the language, like ab in Ex-
ample 2, is called a bad prefix [8]. One way to avoid bad prefixes is to construct
a prefix automaton Apref for A — an automaton which accepts a finite word iff
it can be extended into an infinite word in the language of A — and to use it
in the completeness criterion. This option is suitable for criteria based on non-
deterministic automata (e.g., [2]), where a prefix automaton is constructed by
simply removing any states from which there is no accepting run on any word
and making all remaining states accepting. For alternating automata, however,
this option is not suitable: [1] shows that for alternating automata the size of a
prefix automaton can be exponential in the size of the original automaton. Next
we present an alternative, which does not require the use of the prefix automaton
in the dynamic criterion.

Definition 4. Given an automaton A = (Σ,Q, q0, δ, F ), a set of automaton
states Q′ ⊆ Q is said to be A-consistent if

⋂
q∈Q′ L(Aq) �= ∅, where the automa-

ton Aq is defined by Aq = (Σ,Q, q, δ, F ) (with q replacing q0 as initial state).

Now we augment the definition of canonical partial runs as follows.

Definition 5. A partial run r of M × A is said to be prefix-canonical if r is
canonical and the set R = {q ∈ Q | there exists s ∈ S such that (s, q)∈ front(r)}
is A-consistent.
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To compute the sets of A-consistent (or A-inconsistent) sets in an automaton A,
we can build an equivalent nondeterministic automaton A′ using the Miyano-
Hayashi construction [16], which is a modified subset construction, and check
which states of A′ have some accepting computation. We do not go into the
details of the construction for lack of space. The construction is exponential in
the size of A, but it involves only the automaton and not the model. In addition,
identifying the A-consistent sets is a preprocessing step which only needs to
be performed once per automaton, and does not need to be repeated in every
iteration of BMC.

The completeness threshold can be strengthened by adding the new require-
ment, and defining the prefix completeness threshold CTP (M,A) to be the small-
est number h such that M × A does not have a prefix-canonical partial run of
height h. It is easy to show the equivalent of Theorem 1 for CTP (M,A). In
addition, we can now also show the following lemma and corollary, which give
us a a reason why bounded model-checking should continue if the threshold has
not been reached.

Lemma 3. If A has a prefix-canonical partial run on a finite word w ∈ Σh,
then there exists an infinite word w′ ∈ L(A) such that prefh(w′) = w.

Corollary 1. If M �|= A and CTP (M,A) ≥ h, then there exists a model M ′
such that prefh(M ×A) ⊆ prefh(M ′ ×A) and M ′ |= A.

Corollary 1 shows that as long as the threshold has not been reached, there is
a model M ′ which does satisfy A, such that any computation of M × A is also
a computation of M ′ × A. Informally, the fragment of M that A “can see” to
depth h also exists in M ′, but M ′ |= A, and so we cannot stop searching for a
witness just yet.

4.2 The Limitations of Existential Dynamic Completeness Criteria

It might seem better to require, instead of Corollary 1, that if CTP (M,A) ≥ h
then there should exist a model M ′ such that prefh(M × A) = prefh(M ′ × A)
(equality instead of containment) and M ′ |= A. This stronger requirement, if
satisfied, would imply that the completeness threshold uses all the information
that is available in prefh(M): if the threshold has not been reached, then there
is a model which is indistinguishable from M to a depth of h as far as A is
concerned, which A accepts. However, the following example shows that no sound
completeness criterion of the form “there exists a path π ∈ prefh(M) which
satisfies ψ”, where ψ is some condition on paths of length h, can satisfy the
stronger requirement.

Example 3. Consider the model M shown in Fig. 2(b) , and the nondeterministic
automaton A shown in Fig. 2(a). A accepts paths in which there is exactly one
state labeled with b, and all the states before that state are labeled with a.
M �|= A, since all infinite paths of M contain at least two states labeled with b.

Suppose C is a dynamic completeness threshold of the form: “C(M,A) is the
smallest number h such that there does not exist a path π ∈ prefh(M) satisfying
the condition ψ”, where ψ is some condition on paths of length h. Suppose by
way of contradiction that C also satisfies the following two conditions:



An Automata-Theoretic Dynamic Completeness Criterion 285

q0 q1

q2

{a}

{b} , {a, b}

∅, {a}

∅
∅, {a} , {b} , {a, b}

(a) The automaton A

a b

b

s0 s1

s2 s3 s4

(b) The model M

Fig. 2. The automaton and model from Example 3

1. (Soundness) If M |= A, but M × A has no accepting run of height h′ < h,
then C(M,A) ≥ h,

2. If C(M,A) ≥ h then there exists a model M ′ such that prefh(M × A) =
prefh(M ′ ×A) and M ′ |= A.

In our case, M �|= A. However, for h = 2, there exists a model M ′, obtained from
M by changing the labeling of s4 to L′(s4) = ∅, such that prefh(M) = prefh(M ′)
and M ′ |= A. Any accepting run of M ′ × A must be infinite (since A has no
true transitions). Therefore, for M ′, A, and h = 2, the terms of condition 1 are
satisfied, and hence C(M ′, A) ≥ 2. From our assumption about the structure of
C, there must exist a path π ∈ pref2(M ′) = pref2(M) = {s0s1s0, s0s2s3} which
satisfies the condition ψ. We show that this contradicts condition 2.

If π1 = s0s1s0 satisfies the condition ψ, then the model M1 shown in Fig. 3(a)
also has C(M1, A) ≥ 2, since π1 ∈ pref2(M1). Similarly, if π2 = s0s2s3 satisfies
ψ, then the model M2 shown in Fig. 3(b) has C(M2, A) ≥ 2. However, for both
i = 1, 2, there does not exist a modelM ′

i such that pref2(Mi×A) = pref2(M
′
i×A)

and M ′
i |= A. This is because in both cases, any attempt to extend Mi into a

model satisfying A must add a transition from either s0 (for M1 or M2) or from
s1 (for M1), which will create a new path of length 2 in M and a new partial
run in pref2(M ′

i × A). We thus have that any model M ′
i such that M ′

i |= A
and pref2(Mi × A) ⊆ pref2(M ′

i × A) must also have pref2(M ′
i) �⊆ pref2(Mi),

contradicting condition 2.

a b

s0 s1

(a) The model M1

a

b

s0

s2 s3 s4

(b) The model M2

Fig. 3. The models M1 and M2 from Example 3
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It is easy to extend Example 3 to conditions which talk about the existence of
a path of arbitrary (but predetermined) length satisfying some condition ψ, not
just paths of length h. The limitation we have shown is inherent to dynamic
completeness thresholds based on existentially-interpreted automata.

5 The Gap between the Completeness Threshold for
Alternating and Non-deterministic Automata

It is well known that although alternating automata are equivalent in expression
power to nondeterministic automata, they are exponentially more succint: there
exist languages recognized by an alternating automaton comprising n states,
which cannot be recognized by a nondeterministic automaton that has less than
2n states [20]. In this section we show that the ratio between the completeness
thresholds for alternating and nondeterministic automata can also be exponen-
tial in the number of states of the alternating automaton.

In [16] it is shown that for any alternating automaton A with n states, there
exists an equivalent nondeterministic automaton A′ with n′ = 22n states, such
that L(A) = L(A′). The following upper bound result follows in a straightfor-
ward manner, because an exponential blow-up in the number of states implies
at worst an exponential blow-up in the size of loops in the run-tree.

Theorem 2. For any alternating automaton A with n states and model M with
diameter d, there is a nondeterministic automaton A′ with L(A) = L(A′) such
that CT(A′) ≤ 22n · d · CT(A).

In addition to the upper bound on the number of states, [20] shows a matching
exponential lower-bound: there exists an alternating automaton with n states
such that any equivalent nondeterministic automaton must have at least 2n

states. However, this does not immediately imply a corresponding lower bound on
the completeness thresholds nondeterministic automata, because a large number
of states does not necessarily translate to long loops in the runs of the automaton.
For example, the family of languages used in [20] to show the exponential lower
bound can be recognized by altnernating and nondeterministic automata that
have the same completeness threshold on any given model (even though the
nondeterministic automaton would require exponentially more states than the
alternating automaton).

The lower bound we will show stems from the fact that in an alternating
automaton we require that each branch of the run-tree not contain unnecessary
loops. Thus, we can detect “hopeless situations” as soon as one branch cannot
be extended without creating an unnecessary loop, even if other branches in the
run-tree are loop-free. In contrast, the runs of a nondeterministic automaton
only have one branch, and we show that this branch can be made to grow
exponentially long without closing a loop. Our result is related to the ability of
alternating automata to count to 2n using only n states, while nondeterministic
automata require 2n states to accomplish the same task [13].

Theorem 3. There is a model M over a single atomic proposition AP = {p},
and a family of languages {Ln}∞n=1 over 2AP , such that for all n ≥ 1,
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1. There is an alternating automaton A with O(n) states such that L(A) = Ln

and CT(M,A) = 1, and
2. Any nondeterministic automaton A′ such that L(A′) = Ln must have

CT(M,A′) ≥ 2n − 1.

Proof. We will use the model M = ({s} , s, {(s, s)} , L), where L(s) = ∅. For
simplicity we will represent 2AP = {∅, {p}} by the binary alphabet Σ = {a, b},
where a stands for ∅ and b stands for {p}. We now construct the family {Ln}∞n=1.

Let n ≥ 1. Consider the finitary language Hn =
{
bw | w ∈ Σ2n−1

}
, which

contains words of length 2n that start with b. Hn can be recognized by a nonde-
terministic automaton with 2n states. Consequently, by a result from [15], there
exists an alternating automaton A1 = ({a, b} , Q1, q

1
0 , δ1, F1) with n states which

recognizes the reverse language HR
n =

{
wb | w ∈ Σ2n−1

}
.

Let Gn = {uav | u ∈ Σ∗, v ∈ Σω}, and let Ln = (HR
n · Σω) ∩ Gn. Ln is the

language of infinite words in which the letter b appears in position 2n and the
letter a appears anywhere in the word. Ln can be recognized by an alternating
automaton AL, defined by AL = ({a, b} , Q1 ∪ {q0, qa} , q0, δL, F1), where we
assume w.l.o.g. that q0, qa �∈ Q1, and δL is defined as follows:

– For all q ∈ Q1 and σ ∈ {a, b}, δ(q, σ) = δ1(q, σ). (This part of the automaton
behaves exactly like A1.)

– δ(q0, a) = δ1(q10 , a). (When reading an a from the initial state, the obligation
that amust eventually be seen is discharged immediately, and the automaton
behaves like A1 from that point onward.)

– δ(q0, b) = qa ∧ δ1(q10 , b). (When reading a b from the initial state, the au-
tomaton splits into two parts, one that behaves like A1 and one that waits
to see an a.)

– δ(qa, a) = true and δ(qa, b) = qa. (In qa, the automaton waits to see an
a. Note that since qa �∈ F1, a branch along which only qa appears is not
accepting. Thus, an a must appear eventually in order for the word to be
accepted.)

The automaton AL has n + 2 states. Let r be a partial run of height h of
M × A. The only path in M is π = sω, labeled L(π) = bω. From the definition
of δL, the run r contains a branch of the form (s, q0)(s, qa)h. But qa is not an
accepting state in AL, and therefore (s, qa) is not accepting in M ×AL. Thus, if
h > 1, then the branch (s, q0)(s, qa)h contains an unnecessary loop, and r is not
canonical. Consequently we have that M × AL has no canonical partial run of
length 2 or greater, and CT(M,AL) = 1.

Now suppose that A′ is a nondeterministic automaton which recognizes Ln.
Then A′ accepts the word w = b2

n

aω ∈ Ln. Let t = q0q1 . . . be an accepting run
of A′ on w, and consider the path π = sω in M . Note that pref2n−1(L(π)) =
pref2n−1(w) = b2

n

, and hence it is easy to verify that the sequence tM =
(s, q0)(s, q1) . . . (s, q2n) is a partial run of height 2n − 1 of M ×A′.

Suppose by way of contradiction that CT(M,A′) < 2n−1, that is, M×A′ has
no canonical partial runs of height 2n−1. Then the run tM cannot be canonical,
since its height is 2n − 1. We therefore have that tM contains a useless loop; in
particular, there exist i < j ≤ 2n such that qi = qj . It is easily shown that the run
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t′ = q0 . . . qi−1qjqj+1 . . . is an accepting run of A′ on the word w′ = b2
n−(j−i)aω.

But because i < j, the letter b does not appear in position 2n of w′, and w′ �∈ Ln.
This contradicts our assumption that L(A′) = Ln. �

Note that the completeness threshold of the alternating automaton from The-
orem 3 remains constant as n grows, while the completeness threshold of the
corresponding nondeterministic automaton grows exponentially with n.

6 Conclusion

We developed a dynamic completeness criterion for bounded model-checking,
which we believe explains and generalizes several dynamic completeness criteria
that were developed for various encodings and temporal logics. By using au-
tomata as the specification mechanism we were able to abstract away the details
of the specific temporal logic and encoding, and obtain a notion of a “beginning”
of a bad behavior which is applicable to the full class of ω-regular properties.

We also showed that alternating automata are better suited to serve as a basis
for completeness criteria than nondeterministic automata: alternating automata
can “separate concerns” and track different requirements in different branches
of the run-tree, which can lead to termination as soon as we verify that at least
one of the requirements cannot be fulfilled. We are interested in developing an
encoding for our completeness criterion based on the encoding from [11] for weak
alternating Büchi automata.

Acknowledgements. The author is grateful to Orna Grumberg, Yoram Moses
and Avi Yadgar for many fruitful discussions.
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