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Abstract

In this paper we investigate distributed computation inaigic networks in which the
network topology changes from round to round. We considepestacase model in which
the communication links for each round are chosen by an adwgrand nodes do not know
who their neighbors for the current round are before thegdicast their messages. The model
allows the study of the fundamental computation power ofagigic networks. In particular,
it captures mobile networks and wireless networks, in windbility and interference render
communication unpredictable. In contrast to much of thetexg work on dynamic networks,
we do not assume that the network eventually stops changieg;equire correctness and
termination even in networks that change continually. Wiotiuce a stability property called

-interval connectivityfor ), which stipulates that for every consecutive rounds there
exists a stable connected spanning subgraph. For this means that the graph is connected
in every round, but changes arbitrarily between rounds.oAfgms for the dynamic graph
model must cope with these unceasing changes.

We show that in 1-interval connected graphsit is possibladales to determine the size of
the network and compute any computable function of theliahinputs in rounds using
messages of size , where is the size of the input to a single node. Further, if the
graphis -interval connected for , the computation can be sped up by a factor pand
any function can be computedin rounds using messages of size . We
also give two lower bounds on the gossip problem, which meguthe nodes to disseminate
pieces of information to all the nodes in the network. We show bound on gossip
in 1-interval connected graphs against centralized atyos, and an bound on
exchanging pieces of information in -interval connected graphs for a restricted class of
randomized distributed algorithms.

The T-interval connected dynamic graph model is a novel hedech we believe opens
new avenues for research in the theory of distributed comgin wireless, mobile and dy-
namic networks.



1 Introduction

The study of dynamic networks has gained importance andladfyuover the last few years.
Driven by the growing ubiquity of the Internet and a plethofanobile devices with communica-
tion capabilities, novel distributed systems and appbeet are now within reach. The networks
in which these applications must operate are inherenthahye; typically we think of them as
being large and completely decentralized, so that each caxdave an accurate view of only its
local vicinity. Such networks change over time, as nodes, jleave, and move around, and as
communication links appear and disappear.

In some networks, e.g., peer-to-peer, nodes participate fona short period of time, and
the topology can change at a high rate. In wireless ad-hagank$, nodes are mobile and move
around unpredictably. Much work has gone into developiggrthms that are guaranteed to work
in networks that eventually stabilize and stop changinig;dbstraction is unsuitable for reasoning
about truly dynamic networks.

The objective of this paper is to make a step towards undwetistg the fundamental possibili-
ties and limitations for distributed algorithms in dynamitworks in which eventual stabilization
of the network is not assumed. We introduce a general dynaatiwork model, and study com-
putability and complexity of essential, basic distributagks. Under what conditions is it possible
to elect a leader or to compute an accurate estimate of ta@bthe system? How efficiently can
information be disseminated reliably in the network? To tMdydent does stability in the commu-
nication graph help solve these problems? These and siguikstions are the focus of our current
work.

The dynamic graph model. In the interest of broad applicability our dynamic networkdel
makes few assumptions about the behavior of the networkyarsiudy it from the worst-case per-
spective. In the current paper we consider a fixed set of nibdé®perate in synchronized rounds
and communicate by broadcast. In each round the commumcgtaph is chosen adversarially,
under an assumption of-interval connectivity throughout every block of consecutive rounds
there must exist a connected spanning subgraph that restabis.

We consider the range from l-interval connectivity, in whibe communication graph can
change completely from one round to the next, teinterval connectivity, in which there exists
some stable connected spanning subgraph that is not knotlva twdes in advance. We note that
edges that do not belong to the stable subgraph can stilgeharbitrarily from one round to the
next, and nodes do not know which edges are stable and whéamoar We do not assume that a
neighbor-discovery mechanism is available to the nodes; tlave no means of knowing ahead of
time which nodes will receive their message.

In this paper we are mostly concerned with deterministioitigms, but our lower bounds
cover randomized algorithms as well. The computation madas follows. In every round, the
adversary first chooses the edges for the round; for thisehibcan see the nodes’ internal states
at the beginning of the round. At the same time and indepdnalethe adversary’s choice of
edges, each node tosses private coins and uses them totgetsenaessage for the current round.
Deterministic algorithms generate the message based onténel state alone. In both cases the
nodes do not know which edges were chosen by the advesarl. niegsage is then delivered to



the sender’s neighbors, as chosen by the adversary; the tradeition to new states, and the next
round begins. Communication is assumed to be bidirectidmalthis is not essential. We typically
assume that nodes know nothing about the network, not evsizé, and communication is limited

to bits per message.
To demonstrate the power of the adversary in the dynamidgregulel, consider the problem of
local token circulation each node has a local Boolean variable , and if , hode

is said to “have the token”. In every round exactly one nodéénetwork has the token, and it
can either keep the token or pass it to one of its neighbore.gblal is for all nodes to eventually
have the token in some round. This problem is impossible liceso 1-interval connected graphs:
in every round, the adversary can see which nottas the token, and provide that node with only
one edge . Node then has no choice except to eventually pass the token tafter
receives it, the adversary can turn around and remove alsadges except , so that has
no choice except to pass the token back tdn this way the adversary can prevent the token from
ever visiting any node except .

Perhaps surprisingly given our powerful adversary, evet-interval connected graphs it is
possible to reliably compute any computable function ofittigal states of the nodes, and even
have all nodes output the result at the same time (simutignei

The dynamic graph model we suggest can be used to model salymamic networks. Perhaps
the most natural scenario is mobile networks, in which comigation is unpredictable due to the
mobility of the agents. There is work on achieving contincahnectivity of the communication
graph in this setting (e.g., [12]), but currently little isdwn about how to take advantage of such a
service. The dynamic graph model can also serve as an ahlmstréar static or dynamic wireless
networks, in which collisions and interference make it difft to predict which messages will be
delivered, and when. Finally, dynamic graphs can be usedtiehiraditional communication net-
works, replacing the traditional assumption of a boundedlmer of failures with our connectivity
assumption.

Although we assume that the node set is static, this is not@aimental limitation. We defer
in-depth discussion to future work; however, our technggaee amenable to standard methods
such as logical time, which could be used to define the peitiessutputs for a computation with
a dynamic set of participants.

Contribution. In this paper we mainly study the following problems in thetext of dynamic
graphs.

Counting in which nodes must determine the size of the network.

-gossip in which  pieces of information, calletbkens are handed out to some nodes in
the network, and all nodes must collect allokens.

We are especially interested in the variant efjossip where the number of tokens is equal to the
number of nodes in the network, and each node starts withtlgxae token. This variant of
gossip allows any function of the initial states of the nottebe computed. However, it requires
counting, since nodes do not know in advance how many tokeysteed to collect. We show that
both problems can be solved in rounds in -interval connected graphs. Then we extend the
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algorithm for -interval connected graphs with known , obtaining an -round
protocol for counting or all-to-all gossip. Whenis not known, we show that both problems can
be solved in rounds.

We also give two lower bounds, both concerning token-fodivey algorithms for gossip. A
token-forwarding algorithms one that does not combine or alter tokens, only stores@mwafds
them. First, we give an lower bound on -gossip in 1-interval connected graphs. This
lower bound holds even against centralized algorithms, hiclveach node is told which token
to broadcast by some central authority that can see theeestéite of the network. We also give
an lower bound on -gossip in -interval connected graphs for a restricted class
of randomized algorithms, in which the nodes’ behavior delgseonly on the set of tokens they
knew in each round up to the current one. This includes therigihgns in the paper, as well as
other natural strategies such as round robin, choosingemtiwkbroadcast uniformly at random, or
assigning a probability to each token that depends on ther ardvhich the tokens were learned.

For simplicity, the results we present here assume thatoakés start the computation in the
same round. It is generally not possible to solve any namatrproblem if some nodes are initially
asleep and do not participate. However, if 2-interval catinigy is assumed, it becomes possible
to solve -gossip and counting even when computation is initiatedr®y/mode and the rest of the
nodes are asleep.

Related work. For static networks, information dissemination and basitwork aggregation
tasks have been extensively studied (see e.g. [5, 16, 29]paitticular, the -gossip problem is
analyzed in [35], where it is shown thattokens can always be broadcast in time in
a static graph. The various problems have also been studidtkicontext of alternative com-
munication models. A number of papers look at the problemrodicasting a single message
(e.g. [8, 23]) or multiple messages [11, 26] in wireless meks. Gossiping protocols are an-
other style of algorithm in which it is assumed that in eaameach node communicates with a
small number of randomly-chosen neighbors. Various infdiom dissemination problems for the
gossiping model have been considered [17, 19, 21]; gossgggregation protocols that can be
used to approximate the size of the system are described,i8]2. The gossiping model differs
from our dynamic graph model in that the neighbors for eaaterare chosen at random and not
adversarially, and in addition, pairwise interaction igallyy assumed where we assume broadcast.
A dynamic network topology can arise from node and link fag) fault tolerance, i.e., re-
silience to a bounded number of faults, has been at the codéstibuted computing research
from its very beginning [5, 29]. There is also a large body mévous work on general dy-
namic networks. However, in much of the existing work, tagyl changes are restricted and
assumed to be “well-behaved” in some sense. One populamasisn is eventual stabilization
(e.q.,[1, 6, 7, 36, 18]), which asserts that changes eviynatap occuring; algorithms for this set-
ting typically guarantee safety throughout the executimn,progress is only guaranteed to occur
after the network stabilizes. Self-stabilization is a us@foperty in this context: it requires that
the system converge to a valid configuration from any anlyitstarting state. We refer to [13] for
a comprehensive treatment of this topic. Another assumpsimdied for example in [22, 24, 30],
requires topology changes to be infrequent and spread eutiaowe, so that the system has enough
time to recover from a change before the next one occurs. SWrtiese algorithms use link-
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reversal [14], an algorithm for maintaining routes in a dyii@atopology, as a building block.

Protocols that work in the presence of continual dynamicigka have not been widely studied.
There is some work on handling nodes that join and leave roaaity in peer-to-peer overlay
networks [15, 27, 28]. Most closely related to the probleimslied here is [32], where a few basic
results in a similar setting are proved; mainly it is showattim -interval connected dynamic
graphs (the definition in [32] is slightly different), if ned have unique identifiers, it is possible to
globally broadcast a single message and have all nodesiellgrgtop sending messages. The time
complexity is at least linear in the value of the largest nideeatifier. In [2], Afek and Hendler give
lower bounds on the message complexity of global computdticasynchronous networks with
arbitrary link failures.

A variant of -interval connectivity was used in [25], where two of thehes studied clock
synchronization irsynchronouslynamic networks. In [25] it is assumed that the networks§ias

-interval connectivity for a small value of, which ensures that a connected subgraph exists
long enough for each node to send one message. This is analtgd-interval connectivity in
synchronous dynamic networks.

The time required for global broadcast has been studied iolzapilistic version of the edge-
dynamic graph model, where edges are independently formeéaemoved according to simple
Markovian processes [9, 10]. Similar edge-dynamic gragve lalso been considered in control
theory literature, e.g. [33, 34].

Finally, a somewhat related computational model is poparaprotocols, introduced in [3],
where the system is modeled as a collection of finite-stagatagvith pairwise interactions. Pop-
ulation protocols typically (but not always) rely on a stgofairness assumption which requires
every pair of agents to interact infinitely often in an infinéxecution. We refer to [4] for a sur-
vey. Unlike our work, population protocols compute somection in the limit, and nodes do not
know when they are done; this can make sequential composifiprotocols challenging. In our
model nodes must eventually output the result of the contiputaand sequential composition is
straightforward.

2 Network Model

2.1 Dynamic Graphs

A synchronous dynamic network is modelled by a dynamic graph , Where is a static
set of nodes, and is a function mapping a round number  to a set of undirected
edges . Here is the set of all possible undirected edges over

Definition 2.1 ( -Interval Connectivity) A dynamic graph is said to be -interval
connectedor if for all , the static graph is connected. If
is -interval connected we say thatis always connected

Definition 2.2 ( -Interval Connectivity) A dynamic graph is said to be -interval
connectedf there exists a connected static graph such that for all ,



Note that even though in an -interval connected graph there is some stable subgraph tha
persists throughout the execution, this subgraph is notvkrin advance to the nodes, and can be
chosen by the adversary “in hindsight”.

Although we are generally interested in the undirected,case also interesting to consider
directed dynamic graphsvhere the communication links are not necessarily symmethe -
interval connectivity assumption is then replaced binterval strong connectivitywhich requires
that be strongly connected (where is defined as before). In this very weak model, not
only do nodes not know who will receive their message befoey broadcast, they also do not
know who received the messagéer it is broadcast. Interestingly, all of our algorithms foeth
undirected case work in the directed case as well.

The causal order for dynamic graphs is defined in the stangayd

Definition 2.3 (Causal Order) Given a dynamic graph , we define an order

, where iff and . The causal order

is the reflexive and transitive closure of. We also write if there exists
some such that
Definition 2.4 (Influence Sets)We denote by the set

of nodes whose state in roundtausally influences nodein round . We also use the short-hand

2.2 Communication and Adversary Model

Nodes communicate with each other usampnymous broadcastvith message sizes limited to

. At the beginning of round, each node decides what message to broadcast based on
its internal state and private coin tosses; at the same tithéa@ependently, the adversary chooses
a set of edges for the round. For this choice the adversary carheasodes’ internal states at
the beginning of the round, but not the results of their cossés or the message they have decided
to broadcast. (Deterministic algorithms choose a messaggdonly on the internal state, and this
is equivalent to letting the adversary see the messageebiéfanooses the edges.) The adversary
then delivers to each nodeall messages broadcast by nodesich that . Based on
these messages, its previous internal state, and possily coin tosses, the node transitions to a
new state, and the round ends. We call this anonymous brsidoieeause nodes do not know who
will receive their message prior to broadcasting it.

2.3 Sleeping Nodes

Initially all nodes in the network are asleep; computati@gibhs when a subset of nodes, chosen
by the adversary, is woken up. Sleeping nodes remain inithigal state and do not broadcast any
messages until they receive a message from some awake nadewoken up by the adversary.
Then they wake up and begin participating in the computatiomever, since messages are deliv-
ered at the end of the round, a node that is awakened in rosedds its first message in round

We refer to the special case where all nodes are woken up atassgnchronous start
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2.4 Initial Knowledge

Each node in the network starts execution of the protocohimgial state which contains its own
ID, its input, and possibly additional knowledge about tleéwork. We generally assume one of
the following.

No knowledge: nodes know nothing about the network, anéallyitcannot distinguish it
from any other network.

Upper bound on size: nodes know some upper bournah the size of the network. The
upper bound is assumed to be bounded by some function ofubsitze, e.g.,

Exact size: nodes know the sizeof the network.

2.5 Computation Model

We think of each node in the network as running a specialia&ih@ machine which takes the
node’s UID and input from its input tape at the beginning & first round, and in subsequent
rounds reads the messages delivered to the node from thietamau In each round the machine
produces a message to broadcast on an output tape. On asepdpat tape, it eventually writes
the final output of the node, and then enters a halting state.

The algorithms in this paper are written in pseudo-code. ¥é& u  to denote the value of
node ’s local variable at the beginning of round, and to denote the input to node

3 Problem Definitions

We assume that nodes have unique identifiers (UIDs) from samespace . Let  be a problem

domain. Further, let denote the set of all partial functions fromto

A problemover is a relation , such that if then is
finite and . Each instance induces a set of
nodes, and we say that an algoritlsalvesinstance if in any dynamic graph , When
each node starts with as its input, eventually each node outputs a value such
that

We are interested in the following problems.

Counting. In this problem the nodes must determine the size of the mktwBormally, the
counting problem is given by

is finite and

-Verification. Closely related to counting, in theverification problem nodes are given an inte-
ger and must determine whether or not , eventually outputting a Boolean value. Formally,

- and iff



-Committee. In this problem the nodes must form sets (“committees”), nelEach committee
has a unique identifier that is known to all its members. Eaxten outputs a value ,
and we require the following properties.

1. (“Safety”) The size of each committee is at mosthat is, for all
we have

2. (“Liveness”) If then all nodes in the graph join one committee, that is, for al
we have

-Gossip. The gossip problem is defined over a token domairEach node receives in its input
a set of tokens, and the goal is for all nodes to output allnisk&ormally,

- is finite and
We are particularly interested in the following variantdfoé problem.
All-to-All gossip: instances where for all we have

-gossip with known : in this variant nodes know, i.e., they receive as part of the input.

Leader Election. In weak leader election all nodes must eventually outputta,bsuch that
exactly one node outputs . In strong leader election, all nodes must output the same ID
of some node in the network.

4 Relationships

A problem isreducibleto if whenever all nodes start the computation in initial stateat
represent a solution to , there is an algorithm that computes a solution taand requires linear
time in the parameter to the problem) (

41 -Committee -Verification
Claim 4.1. -verification reduces to-committee.

Proof. Suppose we start from a global state that is a solutiondcommittee, that is, each node
has a local variable such that at most nodes belong to the same committee, and if

then all nodes belong to one committee. We can verify whetheot as follows. For

rounds, each node maintains a Boolean flaghich is initially set to . In rounds where ,
the node broadcasts its committee 1D, and when the node broadcasts. If a node receives a
committee ID different from its own, or if it hears the spécsialue , it sets to . Atthe end of
the rounds all nodes output
First consider the case where . In this case all nodes have the same committee 1D, and

no node ever sets itsflag to . At the end of the protocol all nodes outpytas required. Next,



suppose that ,and let be some node. There are at most nodes in 's committee. In
every round, there is an edge between some nodéinommittee and some node in a different
committee (because the communication graph is conne@ed)therefore at least one node i
committee sets its flag to . After at most rounds no nodes remain, and in particulaitself
must have . Thus, at the end of the protocol all nodes output O

Claim 4.2. -committee reduces to-verification.

Proof. Again, suppose the nodes are initially in a state that reptesa solution to -verification:
they have a Boolean flagwhich is set to 1 iff . We solve -committee as follows: if ,
then each node outputs its own ID as its committee ID. Thivaid solution because when

the only requirement is that no committee have more thawodes. If , then for rounds
all nodes broadcast the minimal ID they have heard so far,aatide end they output this ID as
their committee ID. Since indicates that , after rounds all nodes have heard the
ID of the node with the minimal ID in the network, and they véll join the same committee, as
required. O

4.2 Counting vs. -Verification

Since we can solve-verification in timein -interval connected graphs, we can find
an upper bound on the size of the network by checking whether for values of starting from

1 and doubling with every wrong guess. We know how to verifyethler in

time, and hence the time complexity of the entire procedsire i . Once we establish
that for some value of , to get an actual count we can then go back and do a binaryhsearc
over the range (recall that , otherwise we would not have reached the current
value of ).

In practice, we use a variant ofcommittee where the 1D of each committee is the set con-
taining the IDs of all members of the committee. Theerification layer returns this set as well,
so that after reaching a value of at node , we simply return the size of's committee as
the size of the network. Since implies that all nodes join the same committee, nodeill
output the correct count.

4.3 Hierarchy of Problems

There is a hardness hierarchy among the problems consigetieid paper as well as some other
natural problems.

[EEN

. Strong leader election / consensus (these are equivalent
2. Decomposable functions such as Boolean AND / OR
3. Counting.
4

-gossip (with unknown ).



The problems in every level are reducible to the ones in tielaeel, and we know that-gossip
can be solved in timein -interval connected graphs for , or assuming
synchronous start. Therefore all the problems can be satved time, even with no
prior knowledge of the network, and even when the commuioicdinks are directed (assuming
strong connectivity).

5 Upper Bounds

In this section we give algorithms for some of the problemsoifuced in Section 3, always with
the goal of solving the counting problem. Our strategy isallgwas follows:

1. Solve some variant of gossip.
2. Use (1) as a building block to solvecommittee,

3. Solving -committee allows us to solveverification and therefore also counting (see Sec-
tion 4).

We initially focus on the case of synchronous start. The fications necessary to deal with
asynchronous start are described in Section 5.5.

5.1 Always-Connected Graphs
5.1.1 Basic Information Dissemination

It is a basic fact that in 1-interval connected graphs, alsipgece of information requires at most

rounds to reach all the nodes in the network, provided that fiborwarded by all nodes
that receive it. Formally, let denote the set of nodes thathas
“reached” by round. If knows atoken and broadcasts it constantly, and all othezsbrbadcast
the token if they know it, then all the nodes in ~ know the token by round.

Claim 5.1. For any node and round we have

Proof. By induction on . For the claim is immediate. For the step, suppose that
, and consider round f then the claim is trivial, because
. Thus, suppose that . Since is connected, there is some edge
in the cut . From the definition of the causal order we have ,
and therefore . O

Note that we can employ this property even when there is niiane dne token in the network,
provided that tokens form a totally-ordered set and nodegdia the smallest (or biggest) token
they know. Itis then guaranteed that the smallest (respesity token in the network will be known
by all nodes after at most rounds. Note, however, that in this case nodes do not nedgssa
knowwhen they know the smallest or biggest token.



5.1.2 Counting in linear time with -bit messages

We begin by describing a linear-time countinggossip protocol which uses messages of size
. The protocol is extremely simple, but it demonstrates sofrike ideas used in some

of our later algorithms, where we eliminate the large messagsing a stability assumption {
interval connectivity) which allows nodes to communicatévat least one of their neighbors for
at least rounds.

In the simple protocol, all nodes maintain a setontaining all the IDs (or tokens) they have
collected so far. In every round, each node broadcastsd adds any IDs it receives. Nodes
terminate when they first reach a round which

for do

broadcast

receive from neighbors

if then terminate and output
end

Algorithm 1: Counting in linear time using large messages

Claim 5.2. For any node and rounds we have
Proof. By induction on . For the claim is immediate.
Suppose that for all nodesand rounds  such that and we have
. Let be two rounds such that .
If then we are done, because . Thus, assume that
. Since the communication graph in rounds connected, there is some
edge such that and . We have
, and consequently and . Also,
from the induction hypothesis, . Together we obtain
, as desired. O
Claim 5.3. For any node and round we have
Proof. It is easily shown that for all we have . From the previous claim we
have for all , and the claim follows. O

The correctness of the protocol follows from Claim 5.3: suggpthat for some round and
node we have . From Claim 5.3, then, . Applying the claim again, we see
that , and since for all , we obtain . This shows that nodes
compute the correct count. For termination we observe tigasize of never exceeds, so all
nodes terminate no later than round
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5.1.3 -committee with -bit messages

We can solve -committee in rounds as follows. Each nodestores a local variable
in addition to . A node that has not yet joined a committee is calletive and a node
that has joined a committee iisactive Once nodes have joined a committee they do not change
their choice.

Initially all nodes consider themselves leaders, but thhout the protocol, any node that hears
an ID smaller than its own adopts that ID as its leader. Théopobd proceeds in cycles, each
consisting of two phasepplling andselection

1. Polling phase: for rounds, all nodes propagate the ID of the smallest active dd
which they are aware.

2. Selection phase: in this phase, each node that considelfsa leader selects the smallest
ID it heard in the previous phase and invites that node toijsicommittee. An invitation
is represented as a pair , where is the ID of the leader that issued the invitation, and
is the ID of the invited node. All nodes propagate the smallegtation of which they
are aware for (invitations are sorted in lexicographic order, so thattations issued
by the smallest node in the network will win out over otheritations. It turns out, though,
that this is not necessary for correctness; it is sufficienefch node to forward an arbitrary
invitation from among those it received).

At the end of the selection phase, a node that receives aatiowi to join its leader’'s com-
mittee does so and becomes inactive. (Invitations issuedbbs that are not the current
leader can be accepted or ignored; this, again, does not afferectness.)

At the end of the cycles, any node that has not been invited to join a committee outputs
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for do
/1 Polling phase

if then
| _ ; /] The node nominates itself for selection
else
| _
end
for do
broadcast _
receive from neighbors
end

/1 Update | eader

/1 Selection phase

if then

/'l Leaders invite the smallest ID they heard
else

/!l Non-leaders do not invite anybody

end
for do
broadcast
receive from neighbors
; /1 (in |exicographic
order)
end
[/ Join the |leader’s committee, if invited
if then
|
end
end
if then
|
end

Algorithm 2: -committee in always-connected graphs

Claim 5.4. The protocol solves the-committee problem.

Proof. We show that after the protocol ends, the values of the local variables constitute
a valid solution to -committee.
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1. In each cycle, each node invites at most one node to joicpitsmittee. After cycles at
most nodes have joined any committee. Note that the first nodéeh\by a leader to
join 's committee is always itself. Thus, if after cycles node has not been invited to
join a committee, it follows that did not invite any other node to join its committee; when
it forms its own committee in the last line of the algorithie ttcommittee’s size is 1.

2. Suppose that , and let be the node with the smallest ID in the network. Following
the polling phase of the first cycle, all nodeshave for the remainder of
the protocol. Thus, throughout the execution, only nodssues invitations, and all nodes
propagate s invitations. Since rounds are sufficient for to hear the ID of the
minimal active node in the network, in every cycle nodsuccessfully identifies this node
and invites it to join 's committee. After cycles, all nodes will have joined.

O

Remark. The protocol can be modified easily to solvegossip if . Let be the token
node received in its input (or if node did not receive a token). Nodes attach their tokens to
their IDs, and send pairs of the form instead of just . Likewise, invitations now contain the
token of the invited node, and have the structure . The min operation disregards
the token and applies only to the ID. At the end of each s@eqgihase, nodes extract the token
of the invited node, and add it to their collection. By the efidhe protocol every node has been
invited to join the committee, and thus all nodes have sddolans.

5.2 -interval Connected Graphs

We can count in linear time in -interval connected graphs using the following algoritheach
node maintains two sets of IDs,and . s the set of all IDs known to the node, ands the
set of IDs the node has already broadcast. Initiallgontains only the node’s ID and is empty.
In every round, each node broadcasts and adds this value to. (If , the node
broadcasts nothing.) Then it adds all the IDs it receivesfits neighbors to .
While executing this protocol, nodes keep track of the aurreund number (starting from

zero). When a node reaches a round which , it terminates and outputs as the
count.
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for do

if then

broadcast

end

receive from neighbors

if then terminate and output
end
return

Algorithm 3: Counting in  -interval connected graphs

5.2.1 Analysis

Let denote the shortest-path distance betweand in the stable subgraph , and let
denote the -neighborhood of in , that s, . We use
and to denote the values of local variablesand at node in the beginning of

round . Note the following properties:

1. forall and .
2. If and are neighbors in , then for all , because every value sent by
is received by and added to
3. and are monotonic, that is, for all and we have and
Claim 5.5. For every two nodes and round such that , either
or
Proof. By induction on . For the claim is immediate.
Suppose the claim holds for round , and consider round. Let be nodes such that
; we must show that either or .
If , then the claim holds: is broadcast in the first round, and thereafter we have
for all
Otherwise, let be a neighbor of along the shortest path fromto in ; thatis, isa
neighbor of such that . Since we have
From the induction hypothesis onand in round , either or

. Applying property 2 above, this implies the following.
() Either or

14



If or then we are done, because . Suppose

then that and . It is sufficient to prove that :
this shows that in round node broadcasts and adds it to , yielding
and proving the claim.
We show this using . If , then , because we assumed that
. Otherwise states that , and since we assumed that
, this again shows that . O
Claim 5.6. If , then for all nodes we have
Proof. Let . For any node , Claim 5.5 shows that either or
. Thus, either or .
Since and is connected we have , and therefore in both cases we have

U
Claim 5.7. The algorithm terminates in linear time and outputs the eotrcount at all nodes.

Proof. Termination is straightforward: the setonly contains IDs of nodes that exist in the net-
work, so its size cannot exceed All nodes terminate no later than round

Correctness follows from Claim 5.6. Suppose that in roundde has , and
let . We must show that
From Claim 5.6, if then . By definition of we have and
hence from Property 3 we obtain , Which is not the case. Thus, and
Applying the same reasoning as in Claim 5.6 to roundve see that either
or . Since the first cannot occur it must be the case that
, and we are done. O

5.3 Finite-Interval Connected Graphs

Next we generalize the protocol above, in order to solh@mmittee in  -interval connected
graphs. The general protocol requires rounds (and assumes thatis known in
advance). The idea is the same as for always-connectedsyreptept that instead of selecting
one node at a time to join its committee, each leader selduédéch of nodes and disseminates
their IDs throughout the network. We generalize and refir@ntb.5 for the case where there are
initially up to  tokens, but only the smallesttokens need to be disseminated.

5.3.1 -gossipin -interval connected graphs

The “pipelining effect” we used in the -interval connected case allows us to disseminatekens

in  rounds, given that the graph is -interval connected. The idea is to use a similar protocol to
the -interval connected case, except that the protocol isdreesd” every  rounds: all nodes
empty the set (but not ), which causes them to re-send the tokens they already ftarting
from the smallest and working upwards. Thesmallest tokens will thus be propagated through
the network, and larger tokens will “die out” as they are masent.
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This is captured formally by the following protocol. The ésils are now assumed to come from
a well-ordered set . The input at each nodeis an initial set of tokens. In addition,
it is assumed that all nodes have a common gueks the size of the network. The protocol
guarantees that the smallest tokens in the network are disseminated to all nqufesided that
the graph is -interval connected and that

for do
for do
if then

broadcast

end
receive from neighbors

end

end
return

Function di sseni nat e( )

We refer to each iteration of the inner loop aglase Since a phase lasts rounds and the
graphis -interval connected, there is some connected subgrapkxtsis throughout the phase.

Let be aconnected subgraph that exists throughout phése . We use
to denote the distance between nodes in .
Let denote the set of nodes that know tokeby the beginning of round, that is,
. In addition, let be the set of smallest tokens in
Our goal is to show that when the protocol terminates we have for all
For a node , a token , and a phase we define to be the distance of

from the nearest node in that knows at the beginning of phase

Here and in the sequel, we use the convention that . For convenience, we use
to denote the value of in round of phase. Similarly we denote
and

The following claim characterizes the spread of each tokerach phase. It is a generalization
of Claim 5.5, and the proof is similar.

Claim 5.8. For any node , token and round such that

, either or includes at least tokens that
are smaller than.

Proof. By induction on . For the claim is immediate.
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Suppose the claim holds for round of phase , and consider round

If , then and the claim holds trivially. Thus, suppose that
. Hence, , and the induction hypothesis applies: either
or includes at least tokens that are smaller thanln the first case we
are done, since ; thus, assume that , and includes at least
tokens smaller than However, if includes at least
tokens smaller than then so does , and the claim is again satisfied; thus we assume that
includesexactly tokens smaller than
It is sufficient to prove that . if this holds, then in round node
broadcasts , Which is either or a token smaller thar thus, either
or includes at least tokens smaller than, and the claim

holds.

First we handle the case where . In this case, . Since we
assumed that we have , wWhich implies that

Next suppose that . Let be a node such that
(such a node must exist from the definition of ), and let be a neighbor of along the
pathfrom to in ,suchthat . From the induction hypothesis,
either or includes at least tokens that
are smaller than. Since the edge betweenand exists throughout phase node receives
everything sends in phase and hence . Finally, because we assumed that
contains exactly tokens smaller than and does not includeitself, we have

, as desired. O

Claim 5.9. For each ofthe smallesttokens  and phases, we have

Proof. The proof is by induction on. For the claim is immediate. For the induction step,
suppose that , and consider phase

Let denote the -neighborhood of , that is,
From Claim 5.8 applied to round of phase, for all , either or
includes at least tokens smaller than. Since is one of the smallest tokens in
the network, this latter case is impossible. Thus, everyenod has

, Which implies that . In addition, , because nodes

never forget tokens they have learned.

Since is connected, . Combining with the induction hypothesis we
obtain , and the claim follows. O

Proceduradi ssemi nat e terminates at the end of phase , or, equivalently, at the
beginning of phase . By this time, if the guess for the size of the network was ectrall
nodes have learned thesmallest tokens.
Corollary 5.10. If , then for each of the smallest tokens
Proof. The claim follows from Claim 5.9, because : O
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5.3.2 -committee in  -interval connected graphs

We can solve the -committee problem in rounds using Algorithm 5. The idea is
similar to Algorithm 2, except that leaders invitenodes to join their committee in every cycle

instead of just one node. Each node begins the protocol withigue ID which is stored in the

local variable
for do
if then
| X /! The node nominates itself for selection
else
|
end
di ssem nate
if then
/] Leaders invite the smal l est 1 Ds they collected
[l (or less in the final cycle, so that the total does not
exceed )
if then
| smallest- ( )
else
smallest- ( )
end
else
/] Non-leaders do not invite anybody

end

di ssem nat e

[/ Join the |leader’s conmmittee, if invited

Claim 5.11. The protocol above solvescommittee in

if then

|

end
end
if then
|
end

Algorithm 5: -committee in  -interval connected graphs

rounds.
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5.3.3 Counting in Graphs with Unknown Finite-Interval Connectivity

The protocol above assumes that all nodes know the degrageofal connectivity present in the
communication graph; if the graph is not -interval connected, invitations may not reach their
destination, and the committees formed may contain less thedes even if . However,
even when the graph is not -interval connected, no committee contam®rethan nodes,
simply because no node ever issues more thiawitations. Thus, if nodes guess a value foand
use the -committee protocol above to solveverification, their error is one-sided: if their guess

for istoo large they may falsely conclude that  when in fact , but they will never
conclude that when
This one-sided error allows us to try different values fand without fear of mistakes. We
can count in time in graphs where is unknownusing the following
scheme. | assume the version e¥erification that returns the set of all nodes if , or the
special value if
for do
for do
if -verification assuming -interval connectivity returns then
return
end
end
end
Algorithm 6: Counting in in -interval connected graphs where
is unknown
The time required for -verification assuming -interval connectivity is

for all , and thus the total time complexity of theh iteration of the outer loop is
If the communication graph is-interval connected, the algorithm terminates the firsetine
reach values of and such that and . Let  be the smallest power of 2 that
is no smaller than ; clearly . Let us show that the algorithm terminates when we reach

First consider the case where , and hence . When we reach
the last iteration of the inner loop, where , We try to solve -verification assuming
-interval connectivity. This must succeed, and the alporiterminates.
Next, suppose that . Consider the iteration of the inner loop in which . In
this iteration, we try to solve -verification assuming -interval connectivity. Since
, this again must succeed, and the algorithm terminates.
The time complexity of the algorithm is dominated by the Issgttion of the outer loop, which

requires rounds.
The asymptotic time complexity of this algorithm only impes upon the original al-
gorithm (which assumes only l-interval connectivity) when . However, it is possible

to execute both algorithms in parallel, either by doubling tessage sizes or by interleaving the
steps, so that the original algorithm is executed in evendsand Alg. 6 is executed in odd rounds.
This will lead to a time complexity of , because we terminate
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when either algorithm returns a count.

5.4 Exploiting Expansion Properties of the Communication Gaph

Naturally, if the communication graph is always a good exiganthe algorithms presented here
can be made to terminate faster. We consider two examplesaphg with good expansion. As
before, when the expansion is not known in advance we carsguesying a factor.

5.4.1 -Connected Graphs

Definition 5.1. A static graph is -connectedor if the removal of any set of at most
nodes from does not disconnect it.

Definition 5.2 ( -interval -connectivity) A dynamic graph is said to be -interval
-connectedor if for all , the static graph is -

connected.

Definition 5.3 (Neighborhoods) Given a static graph and a set of nodes,

the neighborhoodof in is the set . The -

neighborhoof is defined inductively, with and for

We omit the subscript when it is obvious from the context.

In -connected graphs the propagation speed is multiplied, bbecause every neighborhood
is connected to at leastexternal nodes (if there are fewer thamemaining nodes, it is connected
to all of them). This is shown by the following lemma.

Lemma 5.12(Neighborhood Growth)If is a static -connected graph, then for any
non-empty set and integer , We have

Proof. By induction on . For the claim is immediate. For the step, suppose that
. Suppose further that , otherwise the claim is immediate. This
also implies that , because . Thus the induction hypothesis states that

Let denote the “new” nodes in the -neighborhood of . Itis
sufficient to show that , because then , and we
are done.

Suppose by way of contradiction that , and let be the subgraph obtained
from by removing the nodes in. Because is -connected and , the subgraph is
connected. Consider the cut in . Because and , we have

, and because and , we also have
However, the cut is empty: if there were some edge such that and

, then by definition of we would have . This in turn would imply
that , and thus , a contradiction. This shows that is not connected, contradicting
the -connectivity of . O
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Now we can modify Procedurdi ssem nat e to require only phases. Claim 5.8
still holds, since it is only concerned with a single phaske Key change is in Claim 5.9, which
we now re-state as follows.

Claim 5.13. For each of the smallesttokens  and phaseswe have

Proof. Again by induction on, with the base case being trivial. For the step, assume that
. As argued in the proof of Claim 5.9, at the end of phase we have :

where . FromLemma5.12, ,
and the claim follows. O
Corollary 5.14. If , then for each of the smallest tokens

Proof. Because . O

By substituting the shortenedi ssemni nat e in Algorithm 5, we obtain an algorithm that
solves -Committee in timein -interval -connected graphs.

5.4.2 \ertex Expansion

In this section, we show that if the communication graphwsgk an expander, tlth ssem nat e
procedure requires phases to disseminate thesmallest tokens.

Definition 5.4. A static graph is said to have vertex expansion if for all :
if — then—
Definition 5.5 ( -interval vertex expansion)A dynamic graph is said to have -

interval vertex expansion for if for all , the static graph
has vertex expansion

Lemma 5.15. Let : be a fixed undirected graph. If has vertex expansion
, for any non-empty set and integer , we have
if
if
Proof. The case is trivial, the case follows directly from Definition 5.4. For
, let and let . Note that any two nodes and
are at distance at least . It therefore holds that . Consequently, we have
and certainly also and thus by Definition 5.4, :
Together, this implies that as claimed. O

Analogously to -interval -connected graphs, we can modify Procediiraseni nat e to
require only phases. Again, Claim 5.8 still holds and the key is to restate
Claim 5.9, which now has to be adapted as follows.
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Claim 5.16. We define . For each of the smallest tokens and
phases, we have

for
for

Proof. As in the other two cases, the proof is by induction pwith the base case being trivial.
Again, for the step, as argued in the proof of Claim 5.9, aeiine of phase ~ we have

, Where . The claim now immediately follows from
Lemma 5.15. O
Corollary 5.17. If , for each of the smallest tokens

O

Consequently, in dynamic graphs withinterval vertex expansion, -gossip can be solved
in rounds.

5.5 Asynchronous Start

So far we assumed that all nodes begin executing the pratotsé same round. It is interesting to
consider the case where computation is initiated by somsesulh nodes, while the rest are asleep.
We assume that sleeping nodes wake up upon receiving a mesgagever, since messages are
delivered at theendof each round, nodes that are woken up in roursgnd their first message in
round . Thus, nodes have no way of determining whether or not thegsages were received
by sleeping nodes in the current round.

Claim 5.18. Counting is impossible in 1-interval connected graphs wgknchronous start.

Proof. Suppose by way of contradiction thatis a protocol for counting which requires at most

rounds in 1-interval connected graphs of sizelLet . We will
show that the protocol cannot distinguish a line of lengfiom a line of length .
Given a sequence , let denote the cyclic left-shift of in which the

first symbols ( ) are removed from the beginning of the sequence and appd¢odied end.
Consider an execution in a dynamic line of lengthwhere the line in round is composed of two
adjacent sections , Where remains static throughout the execution, and
is left-shifted by one in every round. The computation isated
by node and all other nodes are initially asleep. We claim that thecation of the protocol in
the dynamic graph is indistinguishable in the eyes of nodes from an
execution of the protocol in the static line of lengththat is, the network comprising section
alone). This is proven by induction on the round number, gugire fact that throughout rounds
none of the nodes in section ever receives a message from a node in section
although one node in sectionis awakened in every round, this node is immediately remeweti
attached at the end of section where it cannot communicate with the nodes in sectioThus,
the protocol cannot distinguish the dynamic graplrom the dynamic graph , and it
produces the wrong output in one of the two graphs. O
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If 2-interval connectivity is assumed, it becomes possiblsolve gossip under asynchronous
start. We begin by defining a version of theommittee and -verification problems that explicitly
address sleeping nodes.

-Commitee with Wakeup. In the modified -committee problem we require, as before, that no
committee have more thannodes. Sleeping nodes are not counted as belonging to anyitie
In addition, if , we require all nodes to be awake and to be in the same comamitte

-Verification with Wakeup. In the modified -verification problem, all awake nodes must
eventually output 1 iff . Sleeping nodes do not have to output anything. (Nodes tleat a
awakened during the execution are counted as awake and oitpsit @ correct value; however,
there is no requirement for the algorithm to wake up all theaso)

5.5.1 -Verification with Wakeup

We modify the -verification protocol as follows. First, each node thawiske at the beginning of
the computation maintains a round counterhich is initialized to 0 and incremented after every
round. Each message sent by the protocol carries the rowmderoof the sender, as well as a tag
indicating that it is a -verification protocol message (so that sleeping nhodesatiamhich protocol
they need to join).

As before, each node has a variable which is initially set to its committee ID. In every
round node broadcasts the message . If hears a different committee ID or the
special value , it sets ; if it hears a round counter greater than its own, it adopigytieater
value as its own round counter. When a nodis awakened by receiving a message carrying the

- tag, itsets and adopts the round counter from the message (if there is than one
message, it uses the largest one).

All awake nodes execute the protocol until their round ceuntaches . At that point they
halt and output iff
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while do
broadcast -
receive - ey - from neighbors

if for some then
|

end

end
if then
| output O
else
| output 1l
end
upon awakening by receipt of messages - yeeey -

upon awakening spontaneously (by the adversary):

Algorithm 7:  -verification protocol with wakeup

Claim 5.19. Algorithm 7 solves the-verification with wakeup problem if all nodes start in a stat
that represents a solution tocommittee with wakeup, and the graph is 2-interval coregkct

Proof. The case where is immediate: as in the synchronous start case, all nodesaake
at the beginning of the protocol, and no node ever hears a dteentD different from its own.

Suppose that . Nodes that are awakened during the protocol set theariable to , so
they will output O; we only need to concern ourselves withesthat are awake at the beginning
and have a committee ID. We show that the size of each conensttenks by at least one node
every two rounds, so that at the end of therounds, all nodes have

Consider a cut between the nodes that belong to some coramitad still have , and
the rest of the nodes, which are either sleeping or have . From 2-interval connectivity, some
edge in the cut exists for the next two rounds. Assume that . If is asleep in the
first round, wakes up when it receives message, and broadcastsn the second round. If is
awake in the first round it broadcasts in the first round. In both cases nodewill change

to by the end of the second round. O

It remains to show that we can solvecommittee with asynchronous start. We can do this using
the same approach as before, with one minor modification:itlis wverification, we maintain a

round counter at every node, and now each nodeses the pair as its UID, instead of
alone. The pairs are ordered lexicographically, watlyer round counters winning out over smaller
ones; that is, iff , or and
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When a node receives a larger round counter than its own irnsaage, it adopts that value as
its own round counter, and jumps to the appropriate part@ptietocol (e.qg., if the round counter
it receives is , in the next round it will execute the fifth round of the intitan phase, because
it knows that the first rounds were taken up by the polling phase and the first fourdeof
the invitation phase have passed already). We use roundereigo that nodes that awaken during
the execution of the protocol will know what the current rdus, and to have the eventual leader
be one of the nodes that woke up first.

Claim 5.20. Algorithm 5, when run with round counters and using pairshefform instead
of UIDs, solves the -committee with wakeup problem.

Proof. First consider the case where , and let be the node with the smallest UID among
the nodes that initiate the computation. The first pollinggghexecuted by lasts rounds,

during which all nodes receive's polling message and forward it, setting their round ceut
match ’s if it does not already. At the end ofs polling phase, all nodes are awake, all have the
same round counter as and all have as their leader. From this point on the execution proceeds
as in the case of synchronous wakeup.

Next suppose that . In this case we only need to show that no committee contaore m
than members. But this, as always, is guaranteed by the fact Huéit @mmittee contains only
nodes invited by the node whose UID is the committee ID, andade ever invites more than
nodes to join its committee. O

When nodes execute the full counting algorithm with asyochus wakeup, different parts of
the graph may be testing different values fat the same time. However, the round counter serves
to bring any lagging nodes up-to-date. When some nofilest reaches , even if other nodes
are still testing smaller values for, the first polling phase of’'s -committee instance will reach
all nodes and cause them to joirs computation. (In fact they will join ’'s computation sooner,
because to reach it had already had to go through at least rounds testing smaller values,
so all nodes will have seen its current round already.)

5.6 Randomized Approximate Counting

We next show that under certain restrictions on the adwersaviding the sequence of graphs,
by using randomization, it is possible to obtain an appration to the number of nodes in time
almost linear in with high probability, even if the dynamic graph is oniinterval connected. The
techniques we use are based on a gossiping protocol desanilpgl]. We assume that the nodes
know some potentially loose upper boundon . When arguing about randomized algorithms,
we need to specify which random choices the dynamic graph can depend on. We
assume an adversary that is oblivious to all random choitd®algorithm.

Definition 5.6 (Oblivious Adversary) Consider an execution of a randomized algorithmThe
dynamic graph provided by an oblivious adversary has to be independerit rafradom
choices of .
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In the sequel, we show that in the case of an oblivious admerisds possible to use random-
ization to efficiently compute an arbitrarily good estimafe . In particular, we show that for any
, itis possible to compute an -approximation of with high probability (in ) in time

when using messages of size

if the maximal message size is restricted to bits.

For simplicity, we only describe the algorithm with slightarger message sizes in detail and

merely sketch how to adapt the algorithm if messages anmactest to bits. For parame-
ters and , we define
1)
Initially, each node , computes independent exponential random variables

with rate . Following the aggregation scheme described in [31], wendefi

(@)

If we choose a set independently of the exponential random variables of thoerp isa
good estimate for the size ofas shown by the following lemma, which is proven in [31].

Lemma 5.21([31]). For every that is chosen independently of the random variables
for and , we have

| |-

Before describing the algorithm in detail, we give a brieéosew. In order to obtain a good
estimate for the total number of nodesthe objective of each node will be to compute and

thus for each . In each round, every node broadcasts the minimalalue it
has heard for every . If we assume that the sequence of graphs is chosen by amoabkliv
adversary, for each node and round , is independent of all the exponential

random variables  chosen by nodes . Hence, as a consequence of Lemma5.21,
is a good estimate of forall and . Because forall and (Claim 5.2), each
node can stop forwarding minimal values as soon as the value of exceeds the round
number by a sufficient amount.

Executing the algorithm as described above would requigentides to send exact values of
exponential random variables, i.e., real values that daapoiori be sent using a bounded number

of bits. Therefore, each node computes a rounded value of for each as
follows.

— - 3)
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Hence, is rounded to the next smaller integer power of . Further, we restrict

to be within the range . We will show that with high probability, all
variables will be in this range and thus restricting the range only hasffect with negligible
probability. As is an integer power of , it can be stored using
bits. The details of the algorithm are given by Algorithm 8.
for do
broadcast
receive__ _ from neighbors
for do
end
if then terminate and output
end

Algorithm 8: Randomized approximate counting in linear time, code tmen

Theorem 5.22. For and , with probability at least , every node of

Algorithm 8 computes the same value . Further

Proof. Let be the event that the exponential random variables for all and are

within the range . Foreach , we have

and

As the number of random variables is , we obtain by a union bound.
Consider the state of some node  after rounds. Because all minimal values are

always forwarded, for all , it holds that . In case of the event, for

all and , we have

- and thus _— (4)
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We thus get

(©)

Lemma 5.21

In order to be able to apply Lemma 5.21, we use that with arviobls adversary, for all and ,
is independent of all random variables . By applying a union bound, we obtain that with
probability at least event occurs or

| | (5)

Note that for all and that the union bound therefore is over
events. If (5) holds, we have

for all and . Therefore, in this case no node terminates before round. Hence,
all nodes get the same final valuefor and by (5), it holds that as required.
Because , (5) holds with probability at least which completes the
proof. O

6 Lower Bounds for Token-Forwarding Algorithms

A token-forwarding algorithm for solving the gossip prablés an algorithm that does not manip-
ulate the tokens in any way except storing and forwardingnth8pecifically, the algorithm must
satisfy the following conditions. Let denote the message broadcast by node round |,
when the algorithm is executed in dynamic graph

1. for all round and nodes .

2. Nodes can only learn new tokens by receiving them, eithirdir input or in a message from
another node. Formally, let denote the set of messages
receives in round, and let

We require the following.
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for all nodes and rounds, and
If node terminates in round, then

We omit the superscript when it is obvious from the context.

6.1 Lower Bound for Centralized -Gossip in 1-Interval Connected
Graphs

For this lower bound we assume that in each roungbme central authority provides each node
with a value to broadcast in that round. The centralized algorithm cartlse state
and history of the entire network, but it does not know whidbes will be scheduled in the current
round. Centralized algorithms are more powerful than ithisted ones, since they have access to
more information. To simplify, we begin with each of thetokens known to exactly one node.
This restriction is not essential. The lower bound holdsag las there is constant fraction of the
nodes that still need to learn tokens for some positive constant

We observe that while the nodes only know a small number @ftskit is easy for the algorithm
to make progress; for example, in the first round of the aljoriat least nodes learn a new token,
because connectivity guarantees thaiodes receive a token that was not in their input. As nodes
learn more tokens, it becomes harder for the algorithm teigeothem with tokens they do not
already know. Accordingly, our strategy is to charge a cost o for the -th token learned
by each node: the first token each node learns comes at a cheapnd the last token learned
costs dearly (). Formally, the potential of the system in rounds given by

In the first round we have , because nodes know one token each. If the algorithm
terminates in round then we must have , because all nodes must
know all tokens. We construct an execution in which the potentialeiase is bounded by a
constant in every round; this gives us an bound on the number of rounds required.

Theorem 6.1. Any centralized algorithm for -gossip in 1-interval connected graphs requires
rounds to complete in the worst case.

Proof. We construct the communication graph for each rouimdthree stages.

Stage I: Adding the free edges. An edge is said to bdreeif and
; that is, if we connect and , neither node learns anything new. Let denote the set
of free edges in round; we add all of them to the graph. Let denote the connected
components of the graph . Observe that any two nodesand in different components
must send different values, otherwise we would clearly have and and
and would be in the same component.

We choose representatives from each component arbitrarily. Our task

now is to construct a connected subgraph over and pay only a constant cost. We assume
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that , otherwise we can connect the nodes arbitrarily for a cohsiast. Let
denote the number of tokens nodeoes not know at the beginning of round

Stage Il:  We split the nodes into two sets according to the number of tokens
they know, with nodes that know many tokens “on top”: and
consequently

Since top nodes know many tokens, connecting to them coutkpensive. We will choose
our edges in such a way that no top node will learn a new tokshgach bottom node will learn
at most three new tokens. We begin by bounding the size of

To that end, notice that :forall  such that , either
or , otherwise would be a free edge and would be in
the same component; therefore each pair contributes at least one missing token to the

sum. On the other hand, since each node in is missing at most tokens, it follows that
. Putting the two facts together we obtain :
and consequently also

Stage lll: Connecting the nodes. The bottom nodes are relatively cheap to connect to, so we
connect them in an arbitrary line. In addition we want to axineach top node to a bottom
node, such that no top node learns something new, and navbatide is connected to more than
one top node (see Fig. 1. That is, we are looking for a matchiigg only the edges

and .
Since each top node is missing at most tokens, and each bottom node broadcasts a different
value, for each top node there are at least edges in to choose from. But since
we assume , ; thus, each top node can be connected to a

different bottom node using -edges.

What is the total cost of the graph? Top nodes learn no tokensbottom nodes learn at most
two tokens from other bottom nodes and at most one token frtop aode. Thus, the total cost is
bounded by

6.2 lower bound against knowledge-based token-forwarding alg-
rithms

In this section we describe a lower bound against a redfridtess of randomized token-forwarding
algorithms. We represent randomness as a random binang strovided to each node at the
beginning of the execution. In every round, the nodes magume a finite number of random
bits, and use them to determine their message for that rauhthair next state. In every execution
nodes only use finitely many coin tosses; we use an infinitegstvhen modelling the algorithm in
order to avoid
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missing tokens

missing tokens

Figure 1: lllustration for the proof of the lower bound

A token-forwarding algorithm is said to benowledge-baseit it can be represented as a col-
lection of functions , such that in every round, if
is the sequence of coin-tosses for nodap to round (inclusive), the distribution according to
which node decides which token to broadcast is given by .
We say that two dynamic graphs and areequal up to round if
and for all we have . Let denote the probability distribution
for node inround . Knowledge-based algorithms have the following property.

Lemma 6.2. Let be two dynamic graphs that are equal up to rounand let be an
instance of gossip. If is a node such that , then for any round and string
we have

Proof. Since and are equal up to round the sequences and
are equal, and in particular :
By definition, for all we have and : there-
fore, for all . Consequently, for all , the sequences
and are equal, and the claim follows. O

Theorem 6.3. Any knowledge-based token-forwarding algorithm fanput gossip in -interval
connected graphs overnodes requires rounds to succeed with probability at least
. Further, if , then for sufficiently large , deterministic algorithms require
rounds even when each node begins with at most one token.

Proof. A lower bound of is demonstrated trivially in a static line network whereesdt one
token starts at one end of the line. In the sequel we assurhe tha.
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Let be an knowledge-based token-forwarding algorithm fayossip. We use the UID
space as the token domain, and choose nodes . for randomized algorithms we choose
the UIDs arbitrarily, but for deterministic algorithms weust choose them carefully (see the last
part of the proof). If the algorithm is randomized, we choaseinput assignment where some
node starts with all tokens, and all other nodes start with a set . For
deterministic algorithms, we later show that we can reachdtate from some input assignment
where each node starts with at most one token. For now letppose that we have reached some

round in which and for all we have . In this starting state
there are nodes that do not know each token . We abuse notation by usingto denote
the set of all tokens as well as the input assignment  to each node .

Let . For a token , let denote the expected number

of times token is broadcast by between rounds and (exclusive). We have
is broadcast in round

Thus, there are at least two tokens such that . Assume
w.l.o.g. that . From Markov’s inequality, node broadcasts less than times
with probability at least  in any execution fragment starting from roundand ending before
round , regardless of the dynamic graph we choose. The idea in tef 8 to use as a
buffer between the nodes that have already learrsd those that have not; since broadcasts
infrequently with high probability, in this manner we camit the number of nodes that learn

We divide the rounds between and into segments . The graph remains static
during each segment, but changes between segments. Fosezaobnt we define two sets of
nodes, and ,where . The nodes in are “contaminated nodes” that might
know token at the beginning of the segment; we connect them in a cliqie ribdes in  are
“clean™: initially, except for , these nodes do not know(some of them might learn during
the segment). The only way the nodes incan learn isif  broadcasts it. In the first segment

is arranged in a line with at one end; in subsequent segments we “closefo form a ring.
Initially and (recall that , in addition to being a token, is also the UID
of a node).

There are two types of segments in our construction.

Quietsegments are ones in which does not broadcastuntil the last round in the segment.
In the last round of a quiet segment, broadcasts, and some nodes in the ring become
contaminated. The first segment is a quiet segment.

After every quiet segment there follows one or maotive segments, in which we clean up
the ring and move contaminated nodes fromto . We have to do this in a way that
preserves -interval connectivity. Each active segment is triggergd b broadcasting in
the previous segment; if in some active segmentloes not broadcast the next segment
will be quiet.

An active segment lasts exactlyrounds, and a quiet segment lasts until the first timbroadcasts
(including that round).
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Next we define in detail the construction of the communicatisaph in each segment. We
maintain the following property:

() At the beginning of each active segment of all the nodes in , only  and at most
nodes in the -neighborhood of in the ring know token. Further, all the nodes that know
are on the same side of. We refer to the side of where these nodes are located as the
contaminated side of .

() Atthe beginning of each quiet segment node is the only node in the ring that knows

token .

Let be some ordering of the nodes in (nodes that initially do not know

). In each segmentthe nodes in  will be some contiguous subset , Where
and forall . We place between and inthe ring. Formally,

the edges in any round where are given by
In the first segment, the edges are (we
do not close the ring; this is to ensure thatliolds for the first active segment).

If is a quiet segment, then we define (and consequently ); that is,
the network does not change betweerand (except possibly for the closing of the ring after

the first segment). However, if is an active session, then has some neighbors in the ring that
knows , and they might spreadto other nodes even when does not broadcast We divide the
nodes in into three subsets.

Thered nodes comprise the nodes adjacent to on the contaminated side. The first

of these (the ones closer to) may know at the beginning of the segment; the other
may become contaminated if some of the firsbroadcast token. To be safe, we treat all
red nodes as though they knowy the end of the session.

Theyellow nodes comprise the nodes adjacent to on the uncontaminated side.
These nodes may learrduring the segment, but only if broadcasts it.

Thegreen nodes are all the other nodes in the ring. These nodes cannot become
taminated during the segment, because their distance fngmade that knows is greater
than

Our cleanup between segmentsand consists of moving all the red nodes into . For-
mally, if , then we define and : otherwise, if ,
then we define and . This satisfies () and ( ): if  does not
broadcast during segment , then only the red nodes can knovat the end, and since we re-
moved them from the ring, at the beginning of no node knows except . The next segment
will be quiet. Otherwise, if does broadcastduring , then at the beginning of the next session
(which is active) only the yellow nodes can know . These nodes then become red nodes in
segment , and there are of them, as required.
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The cleanup step preservesnterval connectivity: assume that (the

other case is similar). Then the line exists
throughout both segment and segment : in segment it exists as part of the ring, and
in segment , after we moved the red nodes into the clique , the first part of the line

exists in the cliqgue and the second part
exists in the ring. The nodes in are all connected to each other in both segments; thus, ithare
static connected graph that persists throughout both sgigme , and in particular it exists in
any rounds that startin . (Note that may be quiet, and in this case it can be shorter than
rounds. But in this case it will be followed by an active seginghich has exactly the same edges
and lasts rounds.)

Notice that the number of uncontaminated nodes at the biegiruf every active segment is at
most  less than in the previous active session. Therefore thertotaber of nodes that know
by round is at most times the number of active sessions, and this in turn is beady
times the number of rounds in which broadcasts. Since broadcasts less than
times with probability at least , the algorithm is not finished by round with probability at
least

Deterministic algorithms. If the algorithm is deterministic, we first show that therasexan
input assignment in which each node begins with at most daentdrom which either

1. the algorithm runs for rounds, or

2. we reach a round in which some node has and for all we have

In the case of (2), we then continue with the same proof ash®irtput assignment where some
node starts with all tokens and the rest of the nodes havekeosdsee above). Since we are free
to choose the input assignment, we restrict attention tamees in which the inputs tonodes are
their own UIDs, and the inputs to the other tokens are

For deterministic algorithms the function representing node's behavior must return a distri-
bution in which one token has probability 1. We abuse natatlightly by using

to denote this token.

We say that a process fires in round if when process receives  as its input and
hears nothing in the first rounds, it will stay silent in those rounds and then sporaasky
broadcast its token in round Formally, process fires in round if

1. Forall we have ,and
2.
If process does not fire in any round , we say that is passive until round. (Note that

nodes that receive no tokens in their input have no choictobaroadcast nothing until they receive
a token from someone.)
Since , there exist constants such that for all we have
. Let . We divide into two cases.
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Case |I. There exist that are all passive until round . In this case we

construct the static clique over and let the algorithm run. During the first
rounds, all nodes send only, and no node learns new tokens. Consequently all nodéave
in , and the algorithm cannot terminate by round

Case Il. All but processes fire no later than round

Since , by the pigeonhole principle there must exist a round
such that at least processes fire in round. Let be such processes. We choose the
instance where each nodereceives as input  if ,or if

Let Dbe the static star with at the center: , where

for all . Because all nodes fire in round, when the algorithm is executed in the network is
silent until round . Inround all nodes that have a token broadcast it. Following roundie
have , and for all , . This is the state
from which we start the main body of the proof above. O
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(a) The network at the beginning of the execution. Nodes
that may know token are indicated in solid blue.

(c) The network after the end of the first phase: the
red nodes are removed from the ring and placed in
the clique, and the ring is repaired by connecting

to . Double lines indicate stable edges along
which -interval connectivity was preserved in the
transition between the phases.

Figure 2: lllustrations for the proof of the
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(b) The network at the beginning of the first phase: the
line is closed to form a ring. The dotted line indicates
the edge we will add at the end of the phase to re-close
the ring after we remove the red nodes; double lines
indicate stable edges, along whichinterval connec-
tivity is preserved between phases.

(d) If  broadcast at any point during the first
phase, we begin a new phase. The nodes that
were yellow in the first phase become red, and
the “clean” nodes on 's other side become yel-
low. Double lines indicate edges that will be stable
through the next two phases.

lower bound,



7 Conclusion

In this work we consider a model for dynamic networks whictkesavery few assumptions about
the network. The model can serve as an abstraction for 88ele mobile networks, to reason
about the fundamental unpredictability of communicatiothis type of system. We do not restrict
the mobility of the nodes except for retaining connectjvityd we do not assume that geographical
information or neighbor discovery are available to the mod8levertheless, we show that it is
possible to efficiently compute any computable functioking advantage of stability if it exists in
the network.

We believe that the -interval connectivity property provides a natural and eyahway to
reason about dynamic networks. It is easy to see that withoutype of connectivity assumption
no non-trivial function can be computed, except possibihésense of computation in the limit (as
in [3]). However, our connectivity assumption is easily we@ed to only require connectivity once
every constant number of rounds, or to only require everomhectivity in the style of Claim 5.1,
with a known bound on the number of rounds.

There are many open problems related to the model. We hopeet@then our lower bounds
for gossip and obtain an general lower bound, and to determine whether counting is in
fact as hard as gossip. Other natural problems, such asmsurssand leader election, can be solved
in linear time once a (possibly approximate) count is knolrt,can they be solved more quickly
without first counting? Is it possible to compute an appratenupper bound for the size of the
network in less than the time required for counting exactlifese and other questions remain
intriguing open problems.
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