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Abstract

In 2012, Feinerman et al. introduced the Ants Nearby Treasure Search (ANTS)
problem [1]. In this problem, 𝑘 non-communicating agents with unlimited memory,
initially located at the origin, try to locate a treasure distance 𝐷 from the origin.
They show that if the agents know 𝑘, then the treasure can be located in the optimal
𝑂(𝐷+𝐷2/𝑘) steps. Furthermore, they show that without knowledge of 𝑘, the agents
need Ω((𝐷 + 𝐷2/𝑘) · log1+𝜖 𝑘) steps for some 𝜖 > 0 to locate the treasure. In 2014,
Emek et al. studied a variant of the problem in which the agents use only constant
memory but are allowed a small amount of communication [2]. Specifically, they allow
an agent to read the state of any agent sharing its cell. In this paper, we study a
variant of the problem similar to that in [2], but where the agents have even more
limited communication. Specifically, the only communication is loneliness detection,
in which an agent in able to sense whether it is the only agent located in its current
cell. To solve this problem we present an algorithm Hybrid-Search, which locates
the treasure in 𝑂(𝐷 · log 𝑘 +𝐷2/𝑘) steps in expectation. While this is slightly slower
than the straightforward lower bound of Ω(𝐷 + 𝐷2/𝑘), it is faster than the lower
bound for agents locating the treasure without communication.

Thesis Supervisor: Nancy Lynch
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Consider a colony of ants located at their nest. The colony needs to leave the nest

and locate a food source. With their limited capabilities, the ants need to work

collaboratively to locate the food in a timely manner. This problem has been studied

in detail from the perspective of ant biologists. Recently, it has garnered attention

from the perspective of distributed algorithmists.

In 2012, Feinerman et al. introduced the Ants Nearby Treasure Search (ANTS)

problem [1]. In this problem, there are 𝑘 non-communicating agents with unlimited

memory, initially located at the origin of a two-dimensional grid. There is a treasure

located a Manhattan distance 𝐷 from the origin. The goal is for an agent to locate

the treasure as quickly as possible, both in terms of 𝐷 and 𝑘 (refer to Section 2 for

the formal model).

One of the reasons that this problem is interesting is its possible applications to

biology. A handful of papers following [1] ([2], [3], [5]) studied the same problem

using different models for the agents. However, none of the models that have been

studied thus far properly represent ants in nature. In this paper, we propose a new

model which more accurately represents the capabilities of ants.

It is well established that ants are able to sense the presence of other ants in their

colony [4]. When an ant is within reach of another ant, it uses its antennae to sense

the hydrocarbons on the back of the other ant. Each ant colony has a distinct scent,

and so by doing this, the ant is able to determine if the other ant is a member of its

11



colony.

Consider a situation in which multiple nearby ant colonies are all performing an

algorithm to locate a food source. When an ant is close to another ant, it can use its

antennae to sense whether the other ant is a member of its colony. This would allow

the ant to coordinate with only members of its own colony when performing the algo-

rithm. Motivated by this ability, we study a model in which the only communication

allowed by an agent is the ability to sense whether it is in the presence of another

agent performing the algorithm. When there is only a single colony performing the

algorithm, this ability is equivalent to sensing whether an agent is in the presence of

any other agent.

1.1 Results

In this paper, we study a variant of the Ants Nearby Treasure Search (ANTS) prob-

lem, proposed by Feinerman et. al in 2012. In this problem, 𝑘 agents navigate a

two-dimensional grid, attempting to locate an adversarially placed treasure Manhat-

tan distance 𝐷 from the origin. All the agents begin at the origin. In a single round,

an agent can move to the north, east, south, west, or remain in the same position [1].

It is straightforward to show that it takes Ω(𝐷 + 𝐷2/𝑘) rounds in expectation to

locate the treasure [1]. Let 𝑇 be the expected number of rounds for some algorithm to

locate the treasure. Clearly 𝑇 ≥ 𝐷, because some agent has to reach the treasure. We

also claim that 𝑇 ≥ 𝐷2/4𝑘. To see why, suppose we have 𝑇 < 𝐷2/4𝑘. Rearranging

yields 2𝑇𝑘 < 𝐷2/2. But this says that by after 2𝑇 rounds, more than half the cells

have not been visited by any agent. Thus, there is some cell such that the probability

that is it visited by some agent in 2𝑇 rounds is less than 1/2. However, if the treasure

is placed there, then the expected number of rounds to find the treasure is greater

than 𝑇 , yielding a contradiction.

In our model, each agent possesses only constant memory. Additionally, the agents

are allowed very limited communication. Specifically, we allow our agents to have

loneliness detection [6], which allows them to sense whether or not they are the only

12



agent at their current position. Our agents also have the ability to sense whether or

not their current position is the origin.

Throughout this paper, we consider only a single set of agents searching for the

treasure. However, we note that if we were to consider the case mentioned in the

previous section, where multiple sets of agents were performing the algorithm at once

from different starting locations, the obvious generalization of loneliness detection

would be the ability to detect whether an agent was sharing a cell with another agent

in its own set. If we were to substitute this ability for loneliness detection, then all the

results in this paper would still be valid, even with multiple sets of agents performing

the algorithm separately.

We present an algorithm Hybrid-Search which is able to locate the treasure in

𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in expectation in this new model. The algorithm works

by having the agents randomly decide whether to execute Geometric-Search,

which locates the treasure in 𝑂(𝐷) rounds with high probably if 𝐷 < (log 𝑘)/2, and

Rectangle-Search, which locates the treasure in 𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in

expectation if 𝐷 = Ω(log 𝑘). Furthermore, we conjecture that Rectangle-Search

actually locates the treasure in 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘) if 𝐷 = Ω(log 𝑘). If this

conjecture is true, then Hybrid-Search locates the treasure in 𝑂(𝐷·log log 𝑘+𝐷2/𝑘)

rounds in expectation.

The algorithm Geometric-Search is a very simple protocol which does not

involve any communication between the agents. In Rectangle-Search, the agents

work in a carefully coordinated effort. Each agent consecutively executes three phases

of the algorithm, and in each phase makes use of its loneliness detection ability.

We note that this algorithm has the optimal runtime when the treasure is far away

(i.e., when 𝐷 = Ω(𝑘 log 𝑘)). When the treasure is close to the origin (𝐷 = 𝑜(𝑘 log 𝑘)),

the algorithm has near optimal performance, locating the treasure in 𝑂(𝐷 · log 𝑘)

rounds in expectation.
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1.2 Related Work

In [1], Feinerman et al. presented the original version of the Ants Nearby Treasure

Search (ANTS) problem. In this version of the problem, the agents are unable to

communicate, and are assumed to have infinite memory.

In the paper they present two algorithms. The first algorithm is non-uniform in

𝑘 (i.e., assumes that the agents are aware of the value of 𝑘). The general idea behind

the algorithm is that the agents randomly choose a cell and perform a spiral search

around that cell. To perform a spiral search, the agent begins at some cell, and then

walks in an outward spiral around that cell. We note that only an agent with infinite

memory can perform spiral searches of arbitrary size. They show that this algorithm

achieves the optimal runtime of 𝑂(𝐷 + 𝐷2/𝑘).

The second algorithm they present is uniform in 𝑘 (i.e., does not assume the agents

have any knowledge of the value of 𝑘). The essence of this algorithm is that the agents

guess 𝑘 and then perform the previous algorithm, updating their estimated value of 𝑘

if they fail to find the treasure based on their previous guess. This algorithm runs in

𝑂((𝐷+𝐷2/𝑘) · log1+𝜖 𝑘) for some 𝜖 > 0. Furthermore, they prove that this is optimal

for any model in which the agents have no communication and no knowledge of 𝑘.

In [2], Emek et al. devised an optimal algorithm for the case where the agents

have only finite memory. In their model, they allow the agents to have some com-

munication. Specifically, an agent can read the state of any other agent sharing the

same position.

The algorithm works by dividing the agents randomly between two algorithms.

One algorithm is efficient when the treasure is far away. It locates the treasure in

𝑂(𝐷 + 𝐷2/𝑘 + log 𝑘) with high probability. To do so, the agents split into search

teams, and each search team is responsible for searching all the cells exactly 𝑑 moves

from the origin for some 𝑑. The teams begin by searching cells close to the origin,

and then move outwards and search cells further way.

The other algorithm is efficient when the treasure is very close to the origin.

It locates the treasure in 𝑂(𝐷) with high probability when there 𝐷 < (log 𝑘)/2. To
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take advantage of the strengths of both algorithms, the agents randomly choose which

algorithm to perform. This results in an overall runtime of 𝑂(𝐷 + 𝐷2/𝑘) with high

probability.

In [2], they also show how to modify the algorithm to work in the case where the

agents move asynchronously. In [5], Langner et al. show how to modify the algorithm

to be failure resistant. Specifically, the algorithm is modified so that it locates the

treasure in 𝑂(𝐷+𝐷2/𝑘+𝐷𝑓) with high probability, even if there are up to 𝑓 failures.

1.3 Discussion

The algorithm presented in this paper is heavily inspired by the work in [2], so it is

useful to compare our results to the results achieved there. The difference between

the models is that their model allows much more communication than our model.

Recall that their model allows an agent to read the states of all other agents in that

cell. Our model simply allows an agent to sense whether another agent is present

in its current cell. Both models assume that an agent is able to sense whether it is

currently at the origin.

The algorithm in [2] is able to achieve the optimal runtime of 𝑂(𝐷 + 𝐷2/𝑘) with

high probability. The algorithm we present in this paper is able to achieve a runtime

of 𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) in expectation, which is very close to the optimal runtime.

In fact, we conjecture that the runtime is actually 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘) rounds in

expectation.

1.4 Organization

In Chapter 2, we present the formal model for this paper. In Chapter 3, we present

our algorithm Rectangle-Search. This algorithm locates the treasure efficiently

when the treasure is located far from the origin. In Chapter 4, we present another

new algorithm, Geometric-Search, which locates the treasure efficiently when it

is located near the origin. We also describe the algorithm Hybrid-Search, which
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uses both algorithms as subroutines, and achieves the near-optimal runtime of 𝑂(𝐷 ·

log 𝑘 + 𝐷2/𝑘) in expectation.
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Chapter 2

Model

In our model, we consider the infinite two-dimensional grid Z2. The grid is explored

by 𝑘 ∈ N identical agents. Each agent is always located in some cell, and multiple

agents may occupy the same cell. All agents are initially located at the origin. Agents

are able to move north, east, south, or west. An agent is not aware of its current

position in the grid, but can sense whether or not it is at the origin. We assume that

each agent has access to a fair coin. The agents have only constant memory. Finally,

the agents are capable of loneliness detection [6], that is, they can sense whether they

are the only agent currently in their cell.

2.1 Agents

Each agent is modeled as a probabilistic finite state automaton. Each automaton is

a tuple (𝑆, 𝑠0, 𝛿,𝑀), defined as follows:

1. 𝑆 is a set of states.

2. 𝑠0 ∈ 𝑆 is the unique start state.

3. 𝛿 : 𝑆 × {true, false} × {true, false} → Π is the state transition function,

where Π is a set of probability distributions on 𝑆. It takes in a state 𝑠 ∈ 𝑆, a

boolean indicating if the agent is alone, and a boolean indicating if the agent is

at the origin, and returns a probability distribution on 𝑆.
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4. 𝑀 : 𝑆 → {north,east, south,west,none} determines the moves the agent

makes. It maps each state 𝑠 ∈ 𝑆 to a move to be performed by the agent, where

a move of none indicates staying in the same position.

We say that an agent is executing Rectangle-Search if its 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 variable is

rectangle, and similarly for Geometric-Search. We say that an agent is in the

Separation Phase if the 𝑝ℎ𝑎𝑠𝑒 variable of its current state is set to separation, and

similarly for the Allocation and Search Phases.

2.2 Executions

An execution of the algorithm consists of synchronous rounds. In a single round of

the algorithm, all agents apply their 𝑀 functions and move to new positions based on

the results. Once all agents have completed their moves, they apply their 𝛿 functions

to update their state.

We define time 𝑖 to be the moment after 𝑖 rounds have been completed. Let 𝐴

be the set of agents. Then we define the system configuration 𝐶𝑖 : 𝐴 → 𝑆 × Z2 for

𝑖 ≥ 0 to be a function which takes an agent and returns the state and position of

the agent at time 𝑖. Formally, an execution of the algorithm is a sequence of system

configurations 𝐶0, 𝐶1, 𝐶2, . . ., where for every agent 𝑎, 𝐶0(𝑎) = (𝑠0, (0, 0)). For 𝑖 > 0,

𝐶𝑖 is determined by 𝐶𝑖−1.

Let (𝑠𝑎𝑖 , (𝑥
𝑎
𝑖 , 𝑦

𝑎
𝑖 )) = 𝐶𝑖(𝑎). We say that an agent 𝑎 is in a cell (𝑥, 𝑦) at time 𝑖 if

(𝑥𝑎
𝑖 , 𝑦

𝑎
𝑖 ) = (𝑥, 𝑦), and that it has state 𝑠 at time 𝑖 if 𝑠𝑎𝑖 = 𝑠. Now, the position of an

agent 𝑎 at time 𝑖 is determined by applying the 𝑀 function to the agent’s state at time

𝑖 − 1, and then updating its position from time 𝑖 − 1 based on the result. Formally,

(𝑥𝑎
𝑖 , 𝑦

𝑎
𝑖 ) is determined by 𝑠𝑎𝑖−1 and (𝑥𝑎

𝑖−1, 𝑦
𝑎
𝑖−1). For example, if 𝑀(𝑠𝑎𝑖−1) = north,

then (𝑥𝑎
𝑖 , 𝑦

𝑎
𝑖 ) = (𝑥𝑎

𝑖−1, 𝑦
𝑎
𝑖−1 + 1).

The state of an agent at time 𝑖 is determined by applying the 𝛿 function to the

agent’s state at time 𝑖− 1, also taking as input whether or not the agent is alone or
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at the origin at time 𝑖. Formally, define the variables 𝑎𝑙𝑜𝑛𝑒𝑎𝑖 and 𝑜𝑟𝑖𝑔𝑖𝑛𝑎
𝑖 as

𝑎𝑙𝑜𝑛𝑒𝑎𝑖 :=
⋀︁

𝑎′ ̸=𝑎∈𝐴

(𝑥𝑎′

𝑖 , 𝑦
𝑎′

𝑖 ) ̸= (𝑥𝑎
𝑖 , 𝑦

𝑎
𝑖 )

𝑜𝑟𝑖𝑔𝑖𝑛𝑎
𝑖 := (𝑥𝑎

𝑖 , 𝑦
𝑎
𝑖 ) = (0, 0).

We say that an agent 𝑎 is alone at time 𝑖 if 𝑎𝑙𝑜𝑛𝑒𝑎𝑖 = true, and that it is at the

origin at time 𝑖 if 𝑜𝑟𝑖𝑔𝑖𝑛𝑎
𝑖 = true. Then 𝑠𝑎𝑖 is determined by sampling the distribution

returned by 𝛿(𝑠𝑎𝑖−1, 𝑎𝑙𝑜𝑛𝑒
𝑎
𝑖 , 𝑜𝑟𝑖𝑔𝑖𝑛

𝑎
𝑖 ).

We say that an agent is in a phase at time 𝑖 if the 𝑝ℎ𝑎𝑠𝑒 variable of 𝑠𝑎𝑖 is that

phase. If an agent switches from some phase to another in round 𝑖, then we say that

the agent completes the former and enters the latter in round 𝑖.

2.3 Problem Statement

The goal is to locate a treasure in some cell distance 𝐷 from the origin in as few

expected rounds as possible. The distance of a cell from the origin is defined to be

the minimum number of moves that an agent could make to get from the origin to

the cell (i.e., Manhattan distance). The treasure is considered located once any agent

is positioned in the same cell as the treasure.

2.4 Definitions

We need a few additional definitions in order to describe our algorithm. As we will

see, Rectangle-Search (see Chapter 3) involves the agents beginning by searching

the cells nearby the origin, and progressively making their way to cells further from

the origin. However, the algorithm is not quite centered around the origin. Instead,

it is centered around a different cell, which we will call the center, as defined below.

Definition 2.1. The center of the grid is the cell (1,−1).

This is due to the fact that the origin is a special cell since the agents can detect

19



𝑂

𝐶

Figure 2-1: The cell marked 𝑂 is the origin, and the cell marked 𝐶 is the center. The
cells located on an axis are shaded in gray.

whether they are in it. As we will see in Chapter 3, in order to maintain separation

between different phases of Rectangle-Search, the agents need the recognizable

cell to be different from the cell around which the search is centered.

We also define the axes with respect to the center instead of the origin. Any cell

that lies directly north of the center is on the north axis, and similarly for the east,

south, and west axes. This is demonstrated in Figure 2-1.

The agents begin by searching all the cells exactly distance 1 from the center, and

then searching all the cells exactly distance 2 from the center, and so on. To formalize

this idea, we include the following definition.

Definition 2.2. Level 𝑑 is the set of all cells exactly distance 𝑑 from the center.

Note that because the center is two moves from the origin, the treasure is located

at most 𝐷 + 2 moves from the center. Thus, if the agents exhaustively search levels

0 through 𝐷 + 2, they are guaranteed to locate the treasure.
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Chapter 3

The Rectangle-Search Algorithm

In this chapter, we describe the algorithm Rectangle-Search. We prove that

this algorithm locates the treasure in 𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in expectation

when 𝑘 ≥ 19. Furthermore, we conjecture that it actually locates the treasure in

𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘 + log 𝑘) rounds in expectation. For the remainder of this

chapter we assume that 𝑘 ≥ 19.

Recall that initially all agents are located at the origin. At the start of the

algorithm, each agent executes the Separation Phase (see Section 3.1). The purpose

of the Separation Phase is for each agent to separate itself from the other agents.

Once an agent has separated itself from the other agents, it is more powerful because

it can make use of its ability to detect if it is alone.

Once an agent completes the Separation Phase, it immediately moves into the

Allocation Phase (see Section 3.2). In this phase, the agents are assigned one of five

roles, which determines how they behave in the following phase.

Immediately after having finished the Allocation Phase, an agent enters the Search

Phase (see Section 3.3). Most of the exploration of the grid is done during the Search

Phase. In this phase, the agents work in a carefully coordinated effort to exhaustively

search the grid from the origin outwards.

We begin by describing the Separation Phase in Section 3.1. In this section we

define functions 𝛿-Separation and 𝑀-Separation, which determine how an agent

updates its state and moves while in the Separation Phase. When proving facts about
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the behavior of an agent 𝐴 in the Separation Phase, we do not consider the impact

that an agent in another phase could have on 𝐴 (we will handle this in Section 3.4).

In Section 3.2 we present the Allocation Phase, and in doing so define functions

𝛿-Allocation and 𝑀-Allocation. We prove statements about the behavior of

an agent 𝐴 in the Allocation Phase, again ignoring the impact agents in other phases

could have on 𝐴 until Section 3.4.

In Section 3.3, we introduce the final phase of Rectangle-Search, the Search

Phase. We define functions 𝛿-Search and 𝑀-Search. Again, we do not consider

the impact agents from other phases have on Search Phase agents until Section 3.4

Finally, in Section 3.4 we argue that none of the agents are able to impact the

behavior of agents in other phases. Using this, we prove that Rectangle-Search

is guaranteed to locate the treasure eventually. We then analyze the expected time

until some agent locates the treasure.

With these functions defined, we define the functions 𝛿-Rectangle and 𝑀-

Rectangle as follows. Recall that an agent is a tuple (𝑆, 𝑠0, 𝛿,𝑀). For an agent to

execute Rectangle-Search, it uses 𝛿 = 𝛿-Rectangle and 𝑀 = 𝑀-Rectangle.

To define these functions we only need to use the 𝑝ℎ𝑎𝑠𝑒 variable of the state. Through-

out this chapter, we introduce the variables of the state and their initial values as

they are needed.

With this in mind, we present the pseudocode for Rectangle-Search.

Each state 𝑠 ∈ 𝑆 contains the following variable.
𝑝ℎ𝑎𝑠𝑒: member of {separation,allocation, search}, initially separation.

𝛿-Rectangle(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.phase = separation

𝑠 := 𝛿-Separation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.phase = allocation

𝑠 := 𝛿-Allocation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.phase = search

𝑠 := 𝛿-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
return 𝑠
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𝑀-Rectangle(𝑠)
if 𝑠.phase = separation

return 𝑀-Separation(𝑠)
if 𝑠.phase = allocation

return 𝑀-Allocation(𝑠)
if 𝑠.phase = search

return 𝑀-Search(𝑠)

In Sections 3.1, 3.2, and 3.3, we describe each of the phases of Rectangle-

Search and define the functions used in the pseudocode above.

3.1 Separation Phase

In this section, we describe the Separation Phase of the algorithm. The purpose of

this phase is for the agents to separate themselves.

Input Assumptions

1. Each agent enters the phase at the origin.

2. Agents enter the phase in the same even-numbered round.

3. Let 𝑘′ be the total number of agents that begin the Separation Phase. Then

𝑘′ ≥ 19.

Guarantees

1. No two agents complete the phase in the same round.

2. Agents only complete the phase in even-numbered rounds.

3. Agents complete the phase at the origin.

4. The probability that at least 19 agents have completed the phase by round 𝑇

approaches 1 as 𝑇 goes to infinity.
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3.1.1 The Algorithm

In this section, and in Sections 3.2 and 3.3, we begin by giving an informal description

of the protocol for an agent in the phase, and then give formal pseudocode.

Informal Description

In rounds 1 and 2, the agent moves west. In round 3, it does not move. In round

4, it moves west with probability 1/2, and otherwise remains in the same position.

It repeats this process of pausing on odd-numbered rounds and moving west with

probability 1/2 only in even-numbered rounds until it finds itself alone in a cell.

After detecting that it is alone, it continues to not move in odd-numbered rounds,

but on even-numbered rounds it moves east. It repeats this process until it reaches

the origin. Upon reaching the origin, the agent has completed the Separation Phase,

and switches to the Allocation Phase.

Formal Description

Each state 𝑠 ∈ 𝑆 contains the following variables. The variables that are not used in
this phase are omitted here.

𝑝ℎ𝑎𝑠𝑒: member of {separation,allocation}, initially separation.
𝑐𝑜𝑢𝑛𝑡: integer in {0, 1, 2}, initially 0
𝑏𝑎𝑐𝑘: boolean, initially false
𝑒𝑣𝑒𝑛: boolean, initially false
𝑐𝑜𝑖𝑛: members of {heads,tails}, initially heads

𝛿-Separation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

𝑠.coin := result of fair coin toss
if 𝑠.count < 2

𝑠.count := 𝑠.count + 1
if 𝑎𝑙𝑜𝑛𝑒

𝑠.back := true
𝑠.even := not 𝑠.even
if 𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑠.back

𝑠.phase := allocation
Initialize other state variables for Allocation Phase

return 𝑠
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𝑀-Separation(𝑠)

if 𝑠.count < 2
return west

elseif 𝑠.even
if 𝑠.back

return east
elseif 𝑠.coin = heads

return west
return none

3.1.2 Correctness

As we see in the Section 3.2, it is important for future phases that agents complete the

Separation Phase in distinct rounds. It is also important that agents only complete

the phase on even-numbered rounds at the origin. We formalize these ideas with the

following theorem.

Theorem 3.1 (Guarantees 1, 2, and 3). Consider some agent 𝐴 in a fixed execution

𝛼, and let 𝑇 be the round in which 𝐴 completes the Separation Phase in 𝛼. Then we

have that

1. 𝐴 is at the origin at time 𝑇 .

2. 𝑇 is even.

3. No other agent completes the Separation Phase in round 𝑇 .

Proof. The protocol dictates that 𝐴 completes the phase when it reaches the origin,

so part (1) is trivially true.

It is easy to see why 𝑇 must be even. 𝐴 moves west in rounds 1 and 2. After

that, it alternates between pausing and moving, so the total number of rounds spent

in the phase after that must be even, resulting in an even number of rounds overall.

This proves part (2) of the theorem.

Part (3) is more interesting because it is not immediately obvious why it must be

true. Consider some other agent 𝐴′ executing this protocol. Suppose for the sake of
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contradiction that 𝐴′ also completes the Separation Phase in round 𝑇 . Let (−𝑐, 0)

be the furthest cell from the origin that 𝐴 reached while executing the phase. We

assume that 𝐴′ made it at least as far from the origin as 𝐴 while executing the phase.

If this is not the case, then the symmetric argument proves this part.

For this to have been the furthest cell reached by 𝐴, it must have been the case

that 𝐴 was alone in one of the last two rounds in which it was in that cell. This is

because after the first two initial moves west, 𝐴 only moves every other round, so

it spends two rounds in every cell. The protocol dictates that it switches to moving

back east if it detects being alone in either of those two rounds. It is not obvious

why this analysis is useful until we consider the interaction between Separation Phase

agents and agents from other phases.

We know that 𝐴 and 𝐴′ are both at the origin at time 𝑇 . Because they both

deterministically move east every other round after detecting being alone, we know

that they were both in the cell (−1, 0) at times 𝑇 − 1 and 𝑇 − 2. Following this

reasoning, both 𝐴 and 𝐴′ must have been in cell (−𝑐, 0) at times 𝑇 − 2𝑐 + 1 and

𝑇 − 2𝑐. This contradicts the above statement that 𝐴 was alone in one of the last two

rounds it was in (−𝑐, 0), proving part (3) of the theorem.

In our final analysis of Rectangle-Search in Section 3.4, we will show that

the agents eventually locate the treasure with probability 1. To help prove this, we

show that at least 19 agents eventually complete the phase with probability 1. First

we use Lemma 3.2 to show this for a single agent, and then in Theorem 3.3 we use

this to show it for 19 agents. Note that in Lemma 3.2 and Theorem 3.3, we analyze

a probabilistic execution 𝛽, which is a tree consisting of all possible executions, as

opposed to a fixed execution, which is a single branch in the tree.

Lemma 3.2. Consider some agent 𝐴 in a probabilistic execution 𝛽, and let 𝑇 be the

round in which 𝐴 completes the Separation Phase in 𝛽. Then we have that for any
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𝑡 ≥ 8,

𝑃 (𝑇 < 𝑡) ≥ 1 −
(︂

1 − 1

2𝑘′

)︂⌊ 𝑡−6
4 ⌋

Proof. Before proving this lemma, we introduce an additional definition. We say that

some round 𝑅 is a probabilistic round if 𝑅 = 2𝑟 for some 𝑅 ≥ 2. In a probabilistic

round, agents that have not yet become alone move west with probability 1/2.

Let 𝐹𝑅 be the event that 𝐴 has become alone by probabilistic round 𝑅. We begin

by upper bounding 𝑃
(︀
𝐹𝑅

)︀
. 𝐴 will become alone in the first probabilistic round if it

decides to move west and all other agents remain in place, or it decides to remain in

place and all other agents move west. So we have

𝑃 (𝐹1) = 2 · 1

2
· 1

2𝑘′−1
=

1

2𝑘′−1
.

And then clearly

𝑃
(︀
𝐹1

)︀
= 1 − 1

2𝑘′−1
.

After probabilistic round 𝑅, let 𝑌𝑤, 𝑌𝑐, and 𝑌𝑒 be the number of agents in the cell

west of 𝐴, in the cell which 𝐴 is in (not including 𝐴), and in the cell east of 𝐴,

respectively. For 𝐴 to not have become alone by probabilistic round 𝑅, we must first

have that 𝐴 did not become alone in any previous round. Furthermore, if 𝐴 chooses

to move west in probabilistic round 𝑅, then at least one other agent which had been

sharing 𝐴’s cell must move west or at least one agent which had been in the cell west

of 𝐴 must remain in place, and similarly if 𝐴 chooses to remain in place. So we have

𝑃
(︀
𝐹𝑅

)︀
= 𝑃

(︀
𝐹1

)︀
· . . . · 𝑃

(︀
𝐹𝑅−1

)︀
·
(︂

1 −
(︂

1

2
· 1

2𝑌𝑤+𝑌𝑐
+

1

2
· 1

2𝑌𝑐+𝑌𝑒

)︂)︂
≤ 𝑃

(︀
𝐹1

)︀
· . . . · 𝑃

(︀
𝐹𝑅−1

)︀
·
(︂

1 − 1

2𝑘′−1

)︂
≤
(︂

1 − 1

2𝑘′−1

)︂𝑅

,
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leading to

𝑃 (𝐹𝑅) ≥ 1 −
(︂

1 − 1

2𝑘′−1

)︂𝑅

.

Recall that all agents move west in rounds 1 and 2, and then pause every other

round until becoming alone. So an agent that becomes alone in probabilistic round

𝑅 becomes alone in round 2𝑅 + 2. In that round that agent is at most 𝑅 + 2 moves

from the origin. Since it then moves east every other round until reaching the origin,

we know that it completes the phase by round 4𝑅 + 6. This yields the relationship

𝑇 ≤ 4𝑅 + 6. Rearranging, we have have 𝑅 ≥ ⌊(𝑇 − 6)/4⌋. So, if an agent spends 𝑡

rounds in the phase, then it spent at least ⌊(𝑡−6)/4⌋ rounds probabilistically deciding

whether to move west. This leads to

𝑃 (𝑇 < 𝑡) ≥ 1 −
(︂

1 − 1

2𝑘′−1

)︂⌊ 𝑡−6
4 ⌋

,

as desired.

Now, with Lemma 3.2 in mind, we can prove Theorem 3.3, which lower bounds

the probability that at least 19 agents complete the phase by the end of some round.

Theorem 3.3 (Guarantee 4). Consider a probabilistic execution 𝛽, let 𝐴1, . . . 𝐴19 be

random variables representing the 1𝑠𝑡 through 19𝑡ℎ agents to complete the Separation

Phase in 𝛽, and let 𝑇 be a random variable representing the round in which 𝐴19 does

so. Then we have that for any 𝑡 ≥ 8,

𝑃 (𝑇 < 𝑡) ≥

(︃
1 −

(︂
1 − 1

2𝑘′

)︂⌊ 𝑡−6
4 ⌋)︃19

Proof. Let 𝐹𝑖 be the event that agent 𝐴𝑖 completes the phase by round 𝑇 . Then by
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Lemma 3.2, we have

𝑃 (𝐹1) ≥ 1 −
(︂

1 − 1

2𝑘′

)︂⌊𝑇−6
4 ⌋

.

Now, we want to compute the probability that two agents complete the phase by round

𝑇 , namely 𝑃 (𝐹1 ∧ 𝐹2). Clearly 𝐹1 and 𝐹2 are not independent events. However, we

claim that the occurrance of 𝐹1 only makes the occurrance of 𝐹2 more likely. This is

because once one agent completes the phase, all other agents have fewer agents that

they might be sharing a cell with, and are therefore more likely to become alone. So,

we have

𝑃 (𝐹1 ∧ 𝐹2) ≥ 𝑃 (𝐹1) · 𝑃 (𝐹2)

≥

(︃
1 −

(︂
1 − 1

2𝑘′

)︂⌊𝑇−6
4 ⌋)︃2

Applying this same reasoning to the next 17 agents, we have

𝑃 (𝐹1 ∧ . . . ∧ 𝐹19) ≥ 𝑃 (𝐹1) · . . . · 𝑃 (𝐹19)

≥

(︃
1 −

(︂
1 − 1

2𝑘′

)︂⌊𝑇−6
4 ⌋)︃19

,

as desired.

The following lemma outlines the region in which an agent in the Separation Phase

could be located. This is useful for us when we combine the Separation Phase with

other phases and need to show that agents in different phases do not interact with

each other. The region is displayed in Figure 3-1.

Lemma 3.4. Consider some agent 𝐴 in the Separation Phase. Then 𝐴’s current cell

is (−𝑐, 0) for some 𝑐 ≥ 0.

Proof. 𝐴 begins the Separation Phase at the origin, and immediately moves west to

the cell (−1, 0). In all future rounds until it is alone, it only moves west, so its position
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𝑂

𝐶

Figure 3-1: The gray region indicates the cells in which an agent from the Separation
Phase could be located. Note that the region extends infinitely far to the west. The
cell marked 𝑂 is the origin, and the cell marked 𝐶 is the center.

must be of the form (−𝑐, 0) for some 𝑐 > 0.

After becoming alone the agent switches to only making moves to the east. How-

ever, since it leaves the Separation Phase as soon as it reaches the origin, it can never

be in the Separation Phase in any cell east of the origin.

3.1.3 Analysis

The Separation Phase is the only randomized phase in Rectangle-Search. So, we

need to upper bound the expected number of rounds until the agents complete this

phase. However, since some agents are moving on to other phases while other agents

are still in the Separation Phase, it is not enough to compute the number of rounds

until all agents complete the phase. Instead, we want to upper bound the number of

rounds until a given number of agents have completed the phase.

Let 𝑇𝑖 be a random variable representing the round in which the 𝑖𝑡ℎ agent com-

pletes the Separation Phase. Our goal in this section is to upper bound 𝐸[𝑇𝑖]. To

this end, we define the Separation completion function 𝑓𝑘(𝑖) : {1, . . . , 𝑘} → N to be

the expected number of rounds until 𝑖 agents have completed the Separation Phase.
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Formally, we define 𝑓𝑘(𝑖) = 𝐸[𝑇𝑖]. We prove that 𝑓𝑘(𝑖) = 𝑂(𝑖 · log 𝑘). Furthermore, we

conjecture that after the first agent completes the phase, the other agents complete

it in even fewer rounds. Specifically, we conjecture that 𝑓𝑘(𝑖) = 𝑂(log 𝑘+ 𝑖 · log log 𝑘).

Before beginning with those proofs, we define a few more random variables that

we will use throughout this section. Recall that we defined a probabilistic round to

be any round 𝑇 such that 𝑇 = 2𝑟 for some 𝑟 ≥ 2. Let 𝑅𝑖 be number of probabilistic

rounds until the 𝑖𝑡ℎ agent becomes alone. Note that it is not necessarily the case that

the 𝑖𝑡ℎ agent that becomes alone is the 𝑖𝑡ℎ agent to complete the phase. If an agent

becomes alone far from the origin, and another agent later becomes alone closer to

the origin, the latter may complete the phase first.

Recall in the proof of Theorem 3.1 that we reasoned about the relationship between

the number of probabilistic rounds and the number of rounds an agent spends in the

phase. The 𝑖𝑡ℎ agent becomes alone in round 2𝑅𝑖 + 2, and in that round that agent

is at most 𝑅𝑖 + 2 moves from the origin. It then moves east every other round until

reaching the origin, so it completes the phase by round 4𝑅𝑖+6, leading to 𝑇𝑖 ≤ 4𝑅𝑖+6.

Let cell 𝐶𝑇 be a random variable representing the closest cell to the origin that

contains agents that have not yet become alone after 𝑇 probabilistic rounds, and let

𝑌𝑇 be a random variable representing the number of such agents in that cell after that

round. We say that a probabilistic round 𝑇 is counted if 𝑌𝑇 = 1. Let 𝑍𝑖 be the 𝑖𝑡ℎ

probabilistic round that is counted. Through the following lemmas, we upper bound

𝐸[𝑍𝑖], and then use that to upper bound 𝐸[𝑇𝑖]. We begin by establishing a simple

property of 𝐶𝑇 which will be useful in later proofs.

Lemma 3.5. Let 𝛼 be a fixed execution, and let 𝑥𝑇 be the 𝑥-coordinate of cell 𝐶𝑇 in

𝛼. Then for any 𝑇 > 1, 𝑥𝑇 ≤ 𝑥𝑇−1.

Proof. Let 𝑆𝑇 be the set of agents that have not yet been alone by time 𝑇 . By

definition, at time 𝑇 − 1 all agents in 𝑆𝑇−1 have 𝑥 coordinate at most 𝑥𝑇−1. Note

that 𝑆𝑇 is a subset of 𝑆𝑇−1. Consider some agent 𝐴 in 𝑆𝑇−1. If 𝐴 is also in 𝑆𝑇 , then it
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did not become alone in round 𝑇 , and therefore it either moved west or remained in

the same position. Thus, its 𝑥 coordinate is still at most 𝑥𝑇−1, proving the claim.

We use the next two lemmas to upper bound the expected number of probabilistic

rounds between counted probabilistic rounds. To do so, we begin by using Lemma 3.6

to provide a lower bound on the probability that certain specific rounds are counted.

Then, in Lemma 3.7, we use that probability to upper bound the expected number

of rounds until a counted probabilistic round occurs.

Lemma 3.6. Consider some fixed finite execution 𝛼 that contains exactly 𝑇 prob-

abilistic rounds for some 𝑇 ≥ 0, where 𝛼 ends on a probabilistic round if 𝑇 > 0.

Furthermore, in 𝛼, there is at least one agent that does not become alone. Let 𝛽 be

a probabilistic extension of 𝛼, resulting from extending 𝛼 another ⌈log 𝑌𝑇 ⌉ + 1 proba-

bilistic rounds. Then the probability that 𝛽 contains a counted round after the prefix

𝛼 is at least 1/(4
√
𝑒).

Proof. Consider a modified version of the algorithm in which after becoming alone,

agents continue tossing coins and remain in their cells as ghosts, meaning that other

agents do not detect their presence when sharing their cell. Let 𝛾 be a fixed finite

execution of this modified algorithm that contains exactly 𝑇 probabilistic rounds, and

let 𝜁 be a probabilistic extension of 𝛾, resulting from extending 𝛾 another ⌈log 𝑌𝑇 ⌉+1

probabilistic rounds. Let 𝑆 be the set of agents in cell 𝐶𝑇 at the end of probabilistic

round 𝑇 . Let 𝐹 be the event that 𝜁 contains a round in which exactly one agent from

𝑆 is in cell 𝐶𝑇 after the prefix 𝛾. Then 𝐹 is guaranteed to occur if

1. One agent from 𝑆 remains in place in every probabilistic round for ⌈log 𝑌𝑇 ⌉+ 1

probabilistic rounds.

2. The 𝑌𝑇 − 1 other agents from 𝑆 each have at least one probabilistic round in

the next ⌈log 𝑌𝑇 ⌉ + 1 probabilistic rounds where they move west.
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So then we can lower bound the probability of 𝐹 occurring by

𝑃 (𝐹 ) ≥ 𝑌𝑇 ·
(︂

1

2⌈log 𝑌𝑇 ⌉+1

)︂
·
(︂

1 − 1

2⌈log 𝑌𝑇 ⌉+1

)︂𝑌𝑇−1

≥ 𝑌𝑇 ·
(︂

1

2log 𝑌𝑇+2

)︂
·
(︂

1 − 1

2log 𝑌𝑇+1

)︂𝑌𝑇−1

= 𝑌𝑇 ·
(︂

1

4𝑌𝑇

)︂
·
(︂

1 − 1

2𝑌𝑇

)︂𝑌𝑇−1

=
1

4
·
(︂

1 − 1

2𝑌𝑇

)︂𝑌𝑇−1

≥ 1

4
√
𝑒
.

Consider any execution 𝛾 of the modified algorithm. The corresponding execution

of the unmodified algorithm is the execution of the same number of rounds in which

the results of the coin flips are the same as those in 𝛾 (for as long as coin flips are

required in the unmodified algorithm).

Let 𝐺 be the event that 𝛽 contains a counted round after the prefix 𝛼. Consider an

execution 𝜁 in which 𝐹 occurs. Then in the corresponding execution of the unmodified

algorithm, 𝐺 occurs. As a result, we know 𝑃 (𝐺) ≥ 𝑃 (𝐹 ), proving the claim.

With this in mind, we now use the following lemma to establish the expected

number of rounds until the next counted probabilistic round.

Lemma 3.7. Consider some fixed finite execution 𝛼 that contains exactly 𝑇 proba-

bilistic rounds for some 𝑇 ≥ 0, where 𝛼 ends on a probabilistic round if 𝑇 > 0. Fur-

thermore, in 𝛼, there is at least one agent that does not become alone. Let 𝛽 be a prob-

abilistic extension of 𝛼, resulting from extending 𝛼 until it ends on a counted round.

Then the expected number of rounds required to extend 𝛼 is at most 4
√
𝑒·(⌈log 𝑘⌉ + 1).

Proof. By Lemma 3.6, with probability at least 1/(4
√
𝑒), an extension of 𝛼 of ⌈log 𝑌𝑇 ⌉+
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1 probabilistic rounds contains a counted round. Since we know 𝑌𝑇 ≤ 𝑘, the prob-

ability that an extension of 𝛼 of ⌈log 𝑘⌉ + 1 probabilistic rounds contains a counted

round is at least 1/(4
√
𝑒).

Say that an extension of 𝛼 of ⌈log 𝑘⌉ + 1 probabilistic rounds does not contain a

counted round. By the same reasoning, an extension of another ⌈log 𝑘⌉ + 1 proba-

bilistic rounds also has probability at least 1/4
√
𝑒 of containing a counted round. If

that extension still does not contain a counted round, we can repeat this process.

Let 𝑊 be a random variable representing the number of times we must repeat

this process before a round is counted. Then we have that a round is counted once

we have extended 𝛼 by 𝑊 · (⌈log 𝑘⌉ + 1) probabilistic rounds. Since each repetition

of this process has probability at least 1/(4
√
𝑒) of success, 𝑊 is a geometric random

variable with parameter 𝑝 ≥ 1/(4
√
𝑒), so 𝐸[𝑊 ] ≤ 4

√
𝑒. So then we have that we

expect to need to extend 𝛼 by at most 4
√
𝑒 · (⌈log 𝑘⌉ + 1) probabilistic rounds, as

desired.

With these lemmas in mind, we can now upper bound the number of rounds

until 𝑖 agents have completed the Separation Phase in expectation. We begin by

proving in Lemma 3.8 that some agent completes the phase within 𝑂(log 𝑘) rounds

in expectation. Then, in Lemma 3.9, we prove that 𝑖 agents complete the phase in

𝑂(𝑖 · log 𝑘) rounds in expectation.

Lemma 3.8. Some agent completes the Separation Phase within 𝑂(log 𝑘) rounds in

expectation. Formally, 𝐸[𝑇1] = 𝑂(log 𝑘).

Proof. Setting 𝑇 = 0 and applying Lemma 3.7, we have

𝐸[𝑍1] ≤ 4
√
𝑒 · (⌈log 𝑘⌉ + 1) .

We argue that 𝑅1 ≤ 𝑍1. Combining this with the fact that 𝑇1 ≤ 4𝑅1 + 6, which we
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argued earlier, proves the claim.

We know that in probabilistic round 𝑍1 we have 𝑌𝑍1 = 1. Let 𝐴 be a random

variable representing that single agent. Then we consider two cases.

1. 𝐴 is alone in probabilistic round 𝑍1.

It directly follows that 𝑅1 ≤ 𝑍1.

2. 𝐴 is sharing its cell with some agent 𝐴′ in probabilistic round 𝑍1.

By the definition of a counted round, 𝐴 is the only agent in the cell that had not

been alone in any previous round. So, 𝐴′ must have been alone in some previous

round. Since 𝐴′ was alone before probabilistic round 𝑍1, we know 𝑅1 < 𝑍1.

Lemma 3.9. The Separation completion function satisfies 𝑓𝑘(𝑖) = 𝑂(𝑖 · log 𝑘).

Proof. For any 𝑖 > 1, consider the probabilistic round 𝑍𝑖−1. By Lemma 3.7, we

expect another counted round to occur within 4
√
𝑒 · (⌈log 𝑘⌉ + 1) probabilistic rounds

of probabilistic round 𝑍𝑖−1. So then we have

𝐸[𝑍𝑖|𝑍𝑖−1] ≤ 𝑍𝑖−1 + 4
√
𝑒 · (⌈log 𝑘⌉ + 1) .

Now, with this in mind, using iterated expectation, this means that

𝐸[𝑍𝑖] = 𝐸[𝐸[𝑍𝑖|𝑍𝑖−1]]

≤ 𝐸[𝑍𝑖−1] + 4
√
𝑒 (·⌈log 𝑘⌉ + 1) .

Recursively applying yields

𝐸[𝑍𝑖] ≤ 𝐸[𝑍1] + (𝑖− 1) ·
(︀
4
√
𝑒 · (⌈log 𝑘⌉ + 1)

)︀
.
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By the proof of Lemma 3.8, we have 𝐸[𝑍1] ≤ 4
√
𝑒 · (⌈log 𝑘⌉ + 1). So then we have

𝐸[𝑍𝑖] ≤ 𝑖 ·
(︀
4
√
𝑒 · (⌈log 𝑘⌉ + 1)

)︀
.

It remains to show that 𝑅𝑖 ≤ 𝑍𝑖.

Let 𝑥𝑍𝑖
be the 𝑥-coordinate the cell 𝐶𝑍𝑖

. We prove using induction that by the

end of probabilistic round 𝑍𝑖, at least 𝑖 distinct agents have become alone and then

afterwards reached a cell (𝑥, 𝑦) such that 𝑥 ≥ 𝑥𝑍𝑖
. This directly implies that 𝑅𝑖 ≤ 𝑍𝑖.

For the base case, we showed in the proof of Lemma 3.8 that in round 𝑍1 there is an

agent that has become alone in cell 𝐶𝑍1 .

Now, assume for induction that by the end of round 𝑍𝑖−1, there have been at

least 𝑖 − 1 distinct agents that have become alone and reached a cell (𝑥, 𝑦) such

that 𝑥 ≥ 𝑥𝑍𝑖−1
. Let 𝑆𝑖−1 be the set of those 𝑖 − 1 agents. We prove that after 𝑍𝑖

probabilistic rounds, there is an agent in cell 𝐶𝑍𝑖
which is not in 𝑆𝑖−1 and has already

become alone.

We proceed with a proof very similar to that of Lemma 3.8. We know that in

probabilistic round 𝑍𝑖 we have 𝑌𝑍𝑖
= 1. Let 𝐴 be a random variable representing that

single agent. We consider two cases.

1. 𝐴 is alone in probabilistic round 𝑍𝑖.

Since 𝐴 becomes alone for the first time in probabilistic round 𝑍𝑖, we know that

it is not in 𝑆𝑖−1.

2. 𝐴 is sharing its cell with some other agent 𝐴′ in probabilistic round 𝑍𝑖.

Since 𝑍𝑖 is counted, we know that 𝐴′ become alone in some probabilistic round

before 𝑍𝑖. But since agents only move east after becoming alone, we know that

that to be in 𝐶𝑍𝑖
in round 𝑍𝑖, 𝐴′ must have become alone in a cell west of 𝐶𝑍𝑖

.

But then we know that in the rounds between when 𝐴′ became alone and 𝑍𝑖,
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𝐴′ was west of 𝐶𝑍𝑖
, and therefore by Lemma 3.5 also west of 𝐶𝑍𝑖−1

. Therefore,

we know that 𝐴′ is not in 𝑆𝑖−1.

We believe that our bound on the number of rounds for the first agent to complete

the Separation Phase is tight. That is, it seems to be the case that 𝐸[𝑇1] = Θ(log 𝑘).

However, for any 𝑖 > 1, it does not seem to be the case that 𝐸[𝑇𝑖] = Θ(𝑖·log 𝑘). In fact,

we believe that after the first agent completes the phase, another agent completes the

phase roughly every 𝑂(log log 𝑘) rounds. The following conjecture states this claim

and provides some intuition behind it.

Conjecture 3.10. The Separation completion function satisfies 𝑓𝑘(𝑖) = 𝑂(log 𝑘 + 𝑖 ·

log log 𝑘).

Intuition. We claim that for any 𝑇 ≥ log 𝑘, 𝐸[𝑌𝑇 ] = 𝑂(log 𝑘). We provide our

intuition for why this claim is true, but do not have a formal proof. The formal proof

of this claim is the only missing piece of the proof of this conjecture.

We begin by arguing that 𝐸[𝑌log 𝑘] = 𝑂(log 𝑘). With high probability, in the first

log 𝑘 rounds at least one agent moved west no more than once. Since the expected

number of agents that did not move west at all is 1, and the expected number that

moved west only once is log 𝑘, we know that 𝐸[𝑌log 𝑘] = 𝑂(log 𝑘). Since the agents are

spreading out over time, intuitively we believe that 𝐸[𝑌𝑇 ] decreases as 𝑇 increases.

By Jensen’s inequality, we know that 𝐸[log 𝑌𝑇 ] ≤ log𝐸[𝑌𝑇 ]. Recall in the proof

of Lemma 3.6, we used the fact that log 𝑌𝑇 ≤ log 𝑘. If we replace this fact with

𝐸[log 𝑌𝑇 ] ≤ log𝐸[𝑌𝑇 ]

= log (𝑂(log 𝑘))

= 𝑂(log log 𝑘),
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then the same logic in the proof leads to the fact that for any 𝑇 ≥ log 𝑘, the next

counted probabilistic round occurs within 𝑂(log log 𝑘) rounds in expectation.

Using this as we did in the proof of Lemma 3.9, this leads to

𝐸[𝑍𝑖|𝑍𝑖−1] ≤ 𝑍𝑖−1 + 𝑂(log log 𝑘).

Recursively applying yields

𝐸[𝑍𝑖] = 𝑂(log 𝑘 + 𝑖 · log log 𝑘).

The reasoning that 𝑅𝑖 ≤ 𝑍𝑖 is still valid, so this leads to

𝐸[𝑇𝑖] = 𝑂(log 𝑘 + 𝑖 · log log 𝑘).

3.2 Allocation Phase

In this section we describe the Allocation Phase. Unlike the Separation Phase, the

Allocation Phase is deterministic. The purpose of the Allocation Phase is to assign

each agent a role and to ensure that the agents enter the Search Phase in the appro-

priate time and place. Note that the input assumptions in this phase are guarantees

provided by the Separation Phase. Similarly, we will see that the input assumptions

of the Search Phase are a subset of the Guarantees of this phase. Guarantees 4 and

9 of the Allocation Phase are not input assumptions of the Search Phase, but will be

useful in the overall analysis of Rectangle-Search.

Input Assumptions

1. No two agents enter the phase in the same round.

2. Agents only enter the phase in even-numbered rounds.
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3. Agents enter the phase at the origin.

4. Let 𝑘′ be the total number of agents that ever enter the Allocation Phase. Then

𝑘′ ≥ 19.

Guarantees

1. Every agent that completes the phase is assigned one of five roles: North Guide,

East Guide, South Guide, West Guide, or Explorer.

2. All North Guides complete the phase four cells north of the center, East Guides

four cells east of the center, South Guides four cells south of the center, and

West Guides and Explorers four cells west of the center.

3. The phase produces at least two agents of each role.

4. Once all the agents that will ever complete the phase have done so, the number

of Explorers is at least ⌊(𝑘′ − 9)/5⌋ and at most ⌊(𝑘′ − 1)/5⌋.

5. Upon completing the phase, each agent knows whether it is the first of its role

to complete the phase.

6. The second agent of any given role completes the phase exactly two rounds after

the first agent of the role, and there are at least 8 rounds between when any

two other agents of that role complete the phase.

7. A West Guide always completes the phase in the round after an Explorer com-

pletes the phase.

8. Every Explorer completes the phase in an even-numbered round.

9. Allocation Phase agents search levels 0 through 3 completely.

10. Before the first Explorer completes the phase, a North Guide, East Guide, and

South Guide have completed the phase.
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3.2.1 The Algorithm

Each agent in this phase executes either Part A or Part B. We will see that Part A

produces exactly one agent of each role and that the agents executing Part B are

equally split among the roles. Both parts are similar, in that they involve each agent

moving in a carefully designed path around the center, along the way using its ability

to detect loneliness to determine its role. These paths are designed to have minimal

overlap to simplify some of our proofs, but there are many other paths that would

also produce a correct algorithm.

As we will see, the first agent of each role to complete the phase is the first agent

of that role that executes Part B. These agents know that they are the first of their

role to complete the phase because they will have shared a cell with the Part A agent

of that role before completing the phase.

Informal Description

An agent that has just entered the Allocation Phase first senses whether it is alone at

the origin. If so, it executes Part A of the Allocation Phase. Otherwise, it executes

Part B. We will see that some agents executing Part A will return to the origin, so

that once they do so, all subsequent agents to enter the phase will execute Part B.

Part A: An agent executing Part A of the Allocation Phase follows the path outlined

in Figure 3-2, by moving to the next cell in the path each round. If the agent reaches

the cell marked N and detects that it is alone, then it stops following the path and

begins executing the North Guide protocol (to be described shortly). Similarly, if it

is alone in the cell marked E, S, W, or X, it stops following the path and begins exe-

cuting the East Guide, South Guide, West Guide, or Explorer protocol, respectively.

Otherwise, the agent continues following the path back to the origin, where it remains

for the rest of the algorithm. If the agent returns to the origin, it never completes
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𝑂

𝐶
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WX

Figure 3-2: The line represents the path followed by an agent in Part A of the
Allocation Phase. Agents begin at the origin, marked 𝑂. The cell marked 𝐶 is the
center. If an agent reaches one of the cells marked N, E, S, W, or X and detects
that it is alone, it stops following the path and begins executing the appropriate role
protocol.

the Allocation Phase.

Now we describe the protocol for an agent that has been assigned one of the roles.

An agent assigned any role begins by waiting in its current cell until it shares it with

another agent in two consecutive rounds. As we will see, this guarantees that the

agent remains in its cell until sharing it with some Part B agent of the same role.

Afterwards, if the role is Explorer, then the agent does not move for one round and

then moves west once, after which it has completed the Allocation Phase. If the

role is a Guide, then after detecting it is not alone in two consecutive rounds, the

agent waits to be alone and then does not move for two rounds and then moves twice

in its cardinal direction. After that, it has completed the Allocation Phase. After

completing the Allocation Phase, the agent immediately switches to the Search Phase.

Part B: An agent executing Part B of the Allocation Phase is very similar to an

agent executing Part A. The agent follows the path outlined in Figure 3-3. If it finds

itself alone in the cell marked N, E, S, or W, it stops and begins executing the protocol

for a North Guide, East Guide, South Guide, or West Guide, respectively. Otherwise,
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𝑂 N
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WX

Figure 3-3: The line represents the path followed by an agent in Part B of the
Allocation Phase. Agents begin at the origin, marked 𝑂. If an agent reaches one of
the cells marked N, E, S, or W and detects that it is alone, it stops following the path
and begins executing the appropriate role protocol. Otherwise it moves to the cell
marked X and becomes an Explorer.

it reaches the cell marked X and becomes an Explorer.

If the agent is assigned the role of Explorer, then it moves west twice, after which

it has completed the Allocation Phase. If the role is West Guide, then the agent waits

until it shares its cell in a round. Then it does not move for one round, then moves

west in the following three rounds, after which is has completed the Allocation Phase.

If the role is North, East, or South Guide, then the agent waits until it shares its

cell in a specified number of (not necessarily consecutive) rounds. This number is 4

for North Guides, 3 for East Guides, and 2 for South Guides. These values are chosen

to guarantee that every fifth agent is assigned the same role. Then it moves in its

cardinal direction for one round, does not move for one round, and then moves in its

cardinal direction for two rounds. After that, it has completed the Allocation Phase.

After completing the Allocation Phase, the agent immediately switches to the Search

Phase.

If the agent detects that it is not alone in the round of its first move while executing

a role protocol, it concludes that it is the first agent of its role to complete the

Allocation Phase. Otherwise, it concludes that some other other agent of its role was

the first to complete the phase.
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Formal Description

Note that in order to define the state transition function 𝛿-Allocation for this

section, we use a helper function 𝛿-NESWX-Allocation.

Each state 𝑠 ∈ 𝑆 contains the following variables. The variables that are not used in
this phase are omitted here.

𝑝ℎ𝑎𝑠𝑒: member of {allocation, search}, initially allocation
𝑝𝑎𝑟𝑡: member of {a,b}, initially b
𝑟𝑜𝑙𝑒: member of {none,north,east, south,west,explorer}, initially none
𝑚𝑜𝑣𝑒𝑠: array of members of {north,east, south,west},

initially [east, south,east,west, south,north,west,west]
𝑐𝑜𝑢𝑛𝑡: integer in {0, . . . 18}, initially 0
𝑟𝑜𝑢𝑛𝑑𝑠: integer in {0, . . . , 5}, initially 0
𝑠ℎ𝑎𝑟𝑒𝑑: integer in {0, . . . , 5}, initially 0
𝑓𝑖𝑟𝑠𝑡: boolean, initially false

𝛿-Allocation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

if 𝑠.role = none
if 𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑎𝑙𝑜𝑛𝑒 and 𝑠.count = 0

𝑠.part := a
𝑠.moves := [north,east,east, south,east, south,

south,west, south,west,west,north,
west,north,west,east,north,east]

if 𝑎𝑙𝑜𝑛𝑒
if (𝑠.part = a and 𝑠.count = 1) or (𝑠.part = b and 𝑠.count = 0)

𝑠.role := north
if (𝑠.part = a and 𝑠.count = 5) or (𝑠.part = b and 𝑠.count = 2)

𝑠.role := east
if (𝑠.part = a and 𝑠.count = 9) or (𝑠.part = b and 𝑠.count = 4)

𝑠.role := south
if (𝑠.part = a and 𝑠.count = 13) or (𝑠.part = b and 𝑠.count = 6)

𝑠.role := west
if (𝑠.part = a and 𝑠.count = 14)

𝑠.role := explorer
if (𝑠.part = b and 𝑠.count = 7)

𝑠.role := explorer
if not 𝑜𝑟𝑖𝑔𝑖𝑛 or 𝑠.count = 𝑠.moves . length − 1

𝑠.count := 𝑠.count + 1
if 𝑠.role ̸= none

𝑠 := 𝛿-NESWX-Allocation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
return 𝑠
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𝛿-NESWX-Allocation(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.part = a

if 𝑎𝑙𝑜𝑛𝑒
𝑠.shared := 0

elseif 𝑠.shared < 2
𝑠.shared := 𝑠.shared + 1

if 𝑠.rounds > 0 or 𝑠.shared = 2
𝑠.rounds := 𝑠.rounds + 1

elseif 𝑠.part = b
if not 𝑎𝑙𝑜𝑛𝑒

if 𝑠.shared < 5
𝑠.shared := 𝑠.shared + 1

if 𝑠.rounds = 1 or 2
𝑠.first := true

if 𝑠.rounds > 0 or
(𝑠.role = north and 𝑠.shared ≥ 4) or
(𝑠.role = east and 𝑠.shared ≥ 3) or
(𝑠.role = south and 𝑠.shared ≥ 2) or
(𝑠.role = west and 𝑠.shared ≥ 1) or
(𝑠.role = explorer)

𝑠.rounds := 𝑠.rounds + 1
if 𝑠.rounds = 5 or (𝑠.rounds = 3 and 𝑠.role = explorer)

𝑠.phase := search
Initialize other state variables for Search Phase

return 𝑠

𝑀-Allocation(𝑠)

if 𝑠.role = none and 𝑠.count < 𝑠.moves . length
return 𝑠.moves [𝑠.count ]

else
if 𝑠.part = a

if 𝑠.role = explorer and 𝑠.count = 2
return west

elseif 𝑠.count ≥ 3
return 𝑠.role

elseif 𝑠.part = b
if 𝑠.role = explorer and 𝑠.rounds ≥ 1

return west
elseif 𝑠.role = west and 𝑠.rounds ≥ 2

return west
elseif (𝑠.role = north or east or south) and (𝑠.rounds = 1 or ≥ 3)

return 𝑠.role
return none
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3.2.2 Correctness

In this section, we consider some fixed execution 𝛼 of the algorithm. We prove that all

of the guarantees are satisfied in 𝛼, provided that the input assumptions are met. We

begin with a simple theorem which proves that all agents are assigned a role before

completing the phase.

Theorem 3.11 (Guarantee 1). Consider some agent 𝐴 that completes the Allocation

Phase, and let 𝑇 be the round in which it does so. Then by round 𝑇 , 𝐴 has been

assigned some role.

Proof. First consider the case where 𝐴 executes Part A. If 𝐴 reaches the end of the

path in Figure 3-2, then it never completes the phase. If it does not reach the end

of the path, then it must have left the path early to execute some role protocol, and

therefore is assigned some role before completing the phase.

Now consider the case where 𝐴 executes Part B. If it reaches the end of the path

in Figure 3-3, then it becomes an Explorer. Otherwise, it must have left the path

early to execute some role protocol, and so it has been assigned some other role before

completing the phase.

Next, we present another simple theorem which establishes the cells in which

agents complete the phase.

Theorem 3.12 (Guarantee 2). Let 𝑁 be a North Guide, 𝐸 an East Guide, 𝑆 a South

Guide, 𝑊 a West Guide, and 𝑋 an Explorer. Then

1. 𝑁 completes the phase four moves north of the center.

2. 𝐸 completes the phase four moves east of the center.

3. 𝑆 completes the phase four moves south of the center.

4. 𝑊 and 𝑋 complete the phase four moves west of the center.
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Proof. Say that 𝑁 is a Part A agent. Then 𝑁 becomes a North Guide in the cell two

moves north of the center. The Part A North Guide protocol requires exactly two

moves north, so 𝑁 will complete the phase four moves north of the center, as desired.

Now say that 𝑁 is a Part B agent. Then it becomes a North Guide in the cell one

move north of the center. The Part B North Guide protocol requires exactly three

moves north, so it will complete the phase four moves north of the center.

A similar analysis proves the theorem for the other roles.

We show in Lemma 3.13 that agents who execute Part B of the Allocation Phase

are evenly distributed among the 5 roles. Then, in Lemma 3.14, we show that Part

A produces exactly one agent of each role. Furthermore, we show that only a small

number of agents ever execute Part A at all. Recall that an agent that reaches the

end of the path in Figure 3-2 is at the origin and then remains there, so once some

agent does that then all subsequent agents to enter the phase execute Part B.

Consider 5 consecutive agents who enter the phase and begin executing Part B.

The protocol guarantees that each of those 5 agents are assigned different roles. This

ensures that there are enough agents in each role. To get an intuition for why this is

the case, we show a sample execution of Part B of the Allocation Phase in Figure 3-4.

In this sample execution, a new agent enters the phase every other round. Subfigures

show the positions of the agents at the end of consecutive rounds. Once an agent

is assigned a role, it is shown in red. With this in mind, we present the following

lemma.

Lemma 3.13. Let 𝐵𝑖 be the 𝑖𝑡ℎ agent to begin executing Part B of the Allocation

Phase. Then we have that

1. If 𝑖 (mod 5) ≡ 1, then 𝐵𝑖 becomes a North Guide.

2. If 𝑖 (mod 5) ≡ 2, then 𝐵𝑖 becomes an East Guide.

3. If 𝑖 (mod 5) ≡ 3, then 𝐵𝑖 becomes a South Guide.
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Figure 3-4: This figure depicts a sample execution of Part B of the Allocation Phase,
in which a new agent enters the phase every other round. The subfigures show the
agents at the end of consecutive rounds. The agent 𝐵𝑖 is the 𝑖𝑡ℎ agent to begin
executing Part B. Once an agent is assigned a role it is displayed in red. The origin
is shown in gray.
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4. If 𝑖 (mod 5) ≡ 4, then 𝐵𝑖 becomes a West Guide.

5. If 𝑖 (mod 5) ≡ 0, then 𝐵𝑖 becomes an Explorer.

Proof. First, note that no Part A agent ever enters one of the cells marked N, E, S,

or W in Figure 3-3. So then we know that 𝐵1 is the first agent to ever reach the cell

marked N in Figure 3-3. It is therefore alone when it arrives there and becomes a

North Guide.

Now let 𝑖 ≡ 1 (mod 5) for some 𝑖 > 1, and assume that 𝐵𝑖 becomes a North

Guide. We will induct on 𝑖 to prove the claim. As soon as it becomes a North Guide,

it waits in the cell marked N in Figure 3-3 until it has shared its cell in 4 rounds.

Since only Part B agents ever enter that cell, and no other agent pauses in that cell

while it is occupied by 𝐵𝑖, we know that four separate Part B agents need to pass

by that cell before 𝐵𝑖 moves. Since every Part B agent passes through that cell, we

know that 𝐵𝑖+1, 𝐵𝑖+2, 𝐵𝑖+3, and 𝐵𝑖+4 all pass that cell while 𝐵𝑖 is located there.

In the round after 𝐵𝑖 shares its cell with 𝐵𝑖+4, 𝐵𝑖 moves north. Thus, when 𝐵𝑖+5

enters the cell marked N it is unoccupied, so 𝐵𝑖+5 becomes a North Guide. This

proves part (1) of the claim. A similar analysis proves the other parts of the claim.

As we have mentioned before, Part A produces exactly one agent of each role. In

Lemma 3.12, we formally prove this. This allows us to refer to the Part A agent of

some role. We will see in future proofs that this will simplify our logic. This lemma

also bounds the number of agents that execute Part A and are never assigned a role.

Lemma 3.14. Let 𝐴𝑖 be the 𝑖𝑡ℎ agent to begin executing Part A of the Allocation

Phase, and let 𝐴𝑗 be the final agent to begin executing Part A. Then the following

statements are true.

1. 𝐴1, . . . , 𝐴5 are assigned distinct roles.
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2. Any agent assigned a role remains in its respective cell in Figure 3-2 until shar-

ing it with some Part B agent.

3. For any 𝑖, 5 < 𝑖 ≤ 𝑗, 𝐴𝑖 is never assigned a role.

4. 6 ≤ 𝑗 ≤ 14.

Proof. An agent entering the Allocation Phase begins to execute Part A if it is alone

in its first round in the phase. Every agent moves away from the origin as soon as it

enters the phase, so if an agent is not alone at the origin, it must be sharing its cell

with a Part A agent that has reached the end of the path in Figure 3-2.

We claim that 𝐴6 is the first agent to execute Part A and reach the end of the

path. 𝐴1 is alone in the cell marked N and becomes a North Guide. It remains in

that cell until it shares it in two consecutive rounds. While the cell is occupied, no

other Part A agent remains in the cell in two consecutive rounds. A Part A agent

could never occupy the cell in the round directly after another Part A agent, because

by Input Assumption 2, agents only enter the phase in even-numbered rounds. So

then as long as only Part A agents are in the phase, 𝐴1 remains in that cell.

Similar arguments show that 𝐴2, 𝐴3, 𝐴4, and 𝐴5 reach and remain in the cells

E, S, W, and X, respectively, for as long as only Part A agents are in the phase. So,

when 𝐴6 enters the phase, it moves past each of those cells and ultimately returns to

the origin, proving that 𝑗 ≥ 6.

𝐴6 returns to the origin 18 rounds after it leaves the origin. During that time,

since agents enter the Allocation Phase at most every other round, at most 8 other

agents can begin Part A. Once 𝐴6 returns to the origin, all agents entering the phase

begin executing Part B, giving us 𝑗 ≤ 6 + 8 = 14.

It remains to show that those Part A agents that enter the phase after 𝐴6 are

not assigned any role. We have already argued that no Part A agent assigned a role

leaves its corresponding cell in the path in Figure 3-2 until it shares that cell with
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some Part B agent. So, we show no Part A agent ever enters one of those cells after

a Part B agent has, proving that no other Part A agent is ever assigned a role.

We prove this specifically for the cell marked W, but it generalizes to the 4 other

cells. Let 𝐴𝑊 be the last Part A agent to reach the cell marked W, and let 𝑇 be the

round in which 𝐴𝑊 enters the phase. Then 𝐴𝑊 reaches the cell marked W in round

𝑇 + 14.

The first Part B agent to reach the cell marked W is the first Part B Explorer (call

it 𝑋). By Lemma 3.13, this is the fifth agent to begin executing Part B. No agent

can begin executing Part B until at least round 𝑇 + 2, and by Input Assumption 2,

agents only enter the phase in even-numbered rounds. Therefore, 𝑋 cannot enter the

phase until at least round 𝑇 + 10. By round 𝑇 + 14 it is only partway through the

path in Figure 3-3, so we know that 𝐴𝑊 is never assigned the role of West Guide.

With this lemma, we can now prove that at least two agents of each role complete

the Allocation Phase.

Theorem 3.15 (Guarantee 3). The Allocation Phase produces at least two agents of

each role.

Proof. Recall that by Input Assumption 4, 𝑘′ ≥ 19. By Lemma 3.14, we know that

Part A produces exactly one agent of each role. Also by Lemma 3.14, we know that

at most 14 agents execute Part A, so that means at least 5 agents execute Part B.

Then by Lemma 3.13, Part B produces at least one agent of each role.

For the algorithm to be guaranteed to locate the treasure, there must be at least

two Explorers. However, for the algorithm to locate the treasure efficiently, we need

the number of Explorers to be a constant fraction of 𝑘′. Thus, we have the following

theorem.
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Theorem 3.16 (Guarantee 4). Let 𝑋 be the final Explorer to complete the Allocation

Phase, and let 𝑇 be the round in which it does so. Then after round 𝑇 , there are at

least ⌊(𝑘′ − 9)/5⌋ and at most ⌊(𝑘′ − 1)/5⌋ Explorers.

Proof. By Lemma 3.14, at least 6 and at most 14 agents execute Part A of the

Allocation Phase. The remaining agents all execute Part B of the Allocation Phase.

From Lemma 3.13, we know that every fifth agent who executes Part B becomes an

Explorer. So, the number of Part B Explorers after round 𝑇 is at least ⌊(𝑘 − 14)/5⌋

and at most ⌊(𝑘 − 6)/5⌋.

Of the agents who execute Part A, exactly one becomes an Explorer. From this we

have that there are at least ⌊(𝑘′−14)/5⌋+1 = ⌊(𝑘′−9)/5⌋ and at most ⌊(𝑘′−6)/5⌋+1 =

⌊(𝑘′ − 1)/5⌋ Explorers, as desired.

As we will see in Section 3.3, it is essential that each agent knows whether it is the

first agent of its role to enter the Search Phase. The reason that Part A is included is

to ensure that the first agent of each role to complete the Allocation Phase is aware

of that fact.

It is not immediately obvious how the agents executing the Part A and Part B

protocols interact. In Lemmas 3.15 and 3.16, we show that the first Part B agent

of each role is the first of its role to complete the Allocation Phase. We also show

that each Part A agent completes the phase exactly two rounds after the first Part

B agent of the same role. In Theorem 3.19, we show that the first Part B agent of

each role is aware of the fact that it is the first by the round in which it completes

the phase.

Lemma 3.17. Let 𝑁𝐴 be the Part A agent that becomes a North Guide, and 𝑁𝐵

the first Part B agent to become a North Guide. Let 𝑇 be the round in which 𝑁𝐵

completes the Allocation Phase. Then 𝑁𝐴 completes the Allocation Phase in round

𝑇 + 2. Symmetric statements hold true for South Guides and East Guides.
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Proof. We prove the statement for North Guides. Since East and South Guides follow

symmetric protocols, the proof holds for them as well.

By Lemma 3.14, we know that 𝑁𝐴 remains in the cell marked N in Figure 3-2

until it shares that cell with a Part B agent. Clearly 𝑁𝐵 is the first Part B agent to

reach the cell, so 𝑁𝐴 is in its cell until 𝑁𝐵 arrives there.

To show that 𝑁𝐴 completes the Allocation Phase exactly two rounds after 𝑁𝐵, we

show both agents executing their North Guide protocols in Figure 3-5. In Figure 3-

5(a), we see 𝑁𝐴 and 𝑁𝐵 waiting in their positions. We see some other Part B agent,

𝐵, sharing 𝑁𝐵’s cell. Assume that 𝐵 is the fourth agent to share that cell with

𝑁𝐵, meaning that after that round 𝑁𝐵 moves on in its North Guide protocol. Each

subfigure represents the positions of the agents at the end of consecutive rounds. The

agents are displayed in red in the round in which they complete the Allocation Phase

and begin the Search Phase (and are not displayed in further rounds).

We can see that 𝑁𝐵 completes the phase in Figure 3-5(e), and 𝑁𝐴 completes the

phase in Figure 3-5(g). Since these protocols are deterministic once 𝑁𝐵 shares its cell

for the fourth time, from this we can see that 𝑁𝐴 always completes the Allocation

Phase exactly two rounds after 𝑁𝐵, as desired.

Lemma 3.18. Let 𝑋𝐴 be the Part A agent that becomes an Explorer, 𝑊𝐴 the Part A

agent that becomes a West Guide, 𝑋𝐵 the first Part B agent to become an Explorer,

and 𝑊𝐵 the first Part B agent to become a West Guide. Let 𝑇 be the round in which

𝑋𝐵 completes the Allocation Phase. Then we have

1. 𝑊𝐵 completes the Allocation Phase in round 𝑇 + 1.

2. 𝑋𝐴 completes the Allocation Phase in round 𝑇 + 2.

3. 𝑊𝐴 completes the Allocation Phase in round 𝑇 + 3.
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Figure 3-5: 𝑁𝐴 is the Part A North Guide, and 𝑁𝐵 is the first Part B North Guide.
The center is shown in gray. In (a), we see that 𝑁𝐵 shares a cell with some other Part
B agent 𝐵, which is the fourth agent to share that cell with 𝑁𝐵. Each consecutive
subfigure shows the agents at the end of consecutive rounds. In the round where an
agent completes the phase it is shown in red and not shown again after that.

Proof. By Lemma 3.14, we know that 𝑋𝐴 and 𝑊𝐴 remain in the cells marked X and

W in Figure 3-2, respectively, until they share those cells with Part B agents. Only

Part B Explorers and West Guides enter those cells, so we know that 𝑋𝐴 and 𝑊𝐴 do

not move until sharing their cells with 𝑋𝐵 and/or 𝑊𝐵. The first agent to reach the

cell marked W in Figure 3-3 becomes a West Guide, so that is 𝑊𝐵. The second agent

to reach that cell moves along in the path and become an Explorer, and therefore

must be 𝑋𝐵.

As in the proof of Lemma 3.17, we can prove this claim by demonstrating the

protocol, which we do in Figure 3-6. Figure 3-6(a) shows the round before 𝑋𝐵

reaches the cell where 𝑊𝐵 waits, and Figure 3-6(b) shows the first round in which

𝑊𝐵 and 𝑋𝐵 share a cell.

Each subfigure shows the positions of the agents at the end of consecutive rounds.

In the round where an agent completes the Allocation Phase and enters the Search

Phase, the agent is shown in red (and then not showed in subsequent subfigures).

We can see 𝑋𝐵 completing the phase in Figure 3-6(e), 𝑊𝐵 completing the phase in

the following round (Figure 3-6(f)), 𝑋𝐴 completing the phase in the following round

53



XA WA WB XB

(a)

XA WA WB

XB

(b)

XA WA
WB

XB

(c)

XA WA

WBXB

(d)

XA
WA

WBXB

(e)

XA WAWB

(f)

WAXA

(g)

WA

(h)

Figure 3-6: 𝑊𝐴 and 𝑋𝐴 are the Part A West Guide and Explorer, respectively, and
𝑊𝐵 and 𝑋𝐵 are the first Part B West Guide and Explorer. The center is shown in
gray. In (a), we see 𝑋𝐵 in the center, in the 7𝑡ℎ step along the path in Figure 3-3,
while the other agents have been assigned their roles and are waiting in their cells.
Each consecutive subfigure shows the agents at the end of consecutive rounds. In the
round where an agent completes the phase it is shown in red and not shown again
after that.

(Figure 3-6(g)), and 𝑊𝐴 completing the phase in the round after that (Figure 3-6(h)).

Now that we have established that the first Part B agent of each role is the first

agent of that role to complete the Allocation Phase, we need to ensure that those

agents know that they are the first of their role to complete the phase, and that no

later agents incorrectly believe that they are the first. We say that an agent knows

that it is the first of its role to complete the phase if the 𝑓𝑖𝑟𝑠𝑡 variable in its state

is true. Note that all agents initially have 𝑓𝑖𝑟𝑠𝑡 = false, and no 𝑓𝑖𝑟𝑠𝑡 variable is

ever reset to false once it has been changed. The following theorem establishes that

the 𝑓𝑖𝑟𝑠𝑡 variables are correctly set.

Theorem 3.19 (Guarantee 5). Consider some agent 𝐴, and let 𝑇 be the round in

which 𝐴 completes the Allocation Phase. In round 𝑇 , the 𝑓𝑖𝑟𝑠𝑡 variable in 𝐴’s state
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is true if and only if no other agent of 𝐴’s role completes the Allocation Phase before

round 𝑇 .

Proof. First, we show that if 𝐴 is the first agent of its role to complete the Allocation

Phase, then it has the 𝑓𝑖𝑟𝑠𝑡 variable of its state set to true when it completes the

phase. Then we show that if some other agent of that role completes the phase

first, then 𝐴 never sets 𝑓𝑖𝑟𝑠𝑡 to true. We specifically prove this for North Guides,

although the proof generalizes to all other roles.

Say that 𝐴 is the first North Guide to complete the phase. Then by Lemma 3.17,

𝐴 is the first agent to become a Part B North Guide. By Lemma 3.17, we know that

after 𝐴 moves north once from the cell marked N in Figure 3-3, it is sharing its cell

with the Part A North Guide, so it knows that it is the first North Guide to complete

the phase.

Part A North Guides never modify the 𝑓𝑖𝑟𝑠𝑡 variable, so we know this theorem is

satisfied if 𝐴 is the Part A North Guide. Now we consider the case where 𝐴 is a Part

B North Guide other than the first one. By Lemma 3.17, the Part A North Guide

leaves the cell marked N in Figure 3-2 two rounds after the first Part B North Guide

leaves the cell. Clearly no other Part B North Guide can arrive in that cell by then,

so we know that no other Part B North Guide shares that cell with the Part A North

Guide.

By Lemma 3.14 no other Part A agent becomes a North Guide, so no Part A agent

is in the cell marked N in Figure 3-2 once some Part B agent arrives there. Thus,

we know that 𝐴 is be alone when it reaches that cell, meaning it does not modify its

𝑓𝑖𝑟𝑠𝑡 variable.

In the Lemma 3.18, we reason about the spacing between any two Part B agents

of the same role. This will help to us to establish Guarantee 6 in Theorem 3.19, which

says that there are at least 8 rounds between when any two agents (other than the

first two) of a role complete the phase.
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Lemma 3.20. Consider some Part B agent 𝐵, and let 𝑇 be the round in which 𝐵

completes the Allocation Phase. Then no other Part B agent of the same role as 𝐵

completes the phase before round 𝑇 + 10.

Proof. We prove the lemma for the case where 𝐵 becomes a North Guide, but the

proof for any other role is very similar. Consider the round 𝑇 ′ which is the fourth

round in which 𝐵 shares the cell marked N in Figure 3-3 with some other agent. Any

Part B North Guide completes the phase exactly 4 rounds after its last round in the

cell marked N. We show that another agent cannot have shared that cell in 4 rounds

until at least round 𝑇 ′ + 10, which proves the lemma.

By Input Assumption 2, agents only enter the phase at most every other round.

So the earliest another agent 𝑁 can become a North Guide is round 𝑇 ′ + 2. By the

same reasoning 𝑁 cannot share its cell for the first time until round 𝑇 ′ + 4, for the

second time until round 𝑇 ′ + 6, for the third time until round 𝑇 ′ + 8, and for the

fourth time until round 𝑇 ′ + 10, proving the lemma.

Now we have the tools we need to establish the following theorem.

Theorem 3.21 (Guarantee 6). Let 𝐴 be the first agent of its role to complete the

Allocation Phase, and let 𝑇 be the round in which it does so. Then

1. The second agent of that role completes the phase in round 𝑇 + 2.

2. There are at least 8 rounds between when any other pair of agents of the role

complete the phase.

Proof. Part (1) follows from Lemmas 3.17 and 3.18. To prove part (2), we first

consider the case where 𝐴 is the Part A agent. By Lemmas 3.17 and 3.18, 𝐴 completes

the phase two rounds after the first Part B agent of its role. By Lemma 3.20, there

are at least 10 rounds between when any two Part B agents complete the phase, so

the next Part B agent does not complete the phase until at least 8 rounds after 𝐴. If
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𝐴 is a Part B agent (other than the first one), then 𝐴 completes the phase after the

Part A agent of the same role, so Lemma 3.20 directly proves the lemma.

As we will see in Section 3.3, it is important that each Explorer that enters the

Search Phase is directly followed by a West Guide entering the phase in the following

round. The following theorem establishes this fact.

Theorem 3.22 (Guarantee 7). Let 𝑋 be an Explorer, and let 𝑇 be the round in which

𝑋 completes the Allocation Phase. Then a West Guide completes the phase in round

𝑇 + 1.

Proof. If 𝑋 executes Part A, then the lemma is true by Lemma 3.18.

Consider the case where 𝑋 executes Part B. For 𝑋 to have become an Explorer,

it must have reached the cell marked W in Figure 3-3 and found it occupied. Only a

Part B West Guide could be waiting in that cell, so we know that 𝑋 shares the cell

with some West Guide 𝑊 . Let 𝑇 ′ be the round in which 𝑋 and 𝑊 share the cell.

Once it is in the cell marked W, 𝑋 moves once more along the path in Figure 3-

3, and then executes the Part B Explorer protocol, which takes two rounds, so 𝑋

completes the phase in round 𝑇 ′ + 3.

𝑊 had been waiting in the cell marked W to share in some round. Once it shares

its cell with 𝑋, it pauses for one round, then moves west in the following three rounds

and completes the phase in round 𝑇 ′ + 4, which is the round after 𝑋. This proves

the claim.

In the Section 3.1 we proved that agents only enter the Allocation Phase on even-

numbered rounds. Then we used the fact that no two agents enter the phase in

consecutive rounds for proving some of our lemmas in this section. In the Search

Phase, we need to directly use the fact that Explorers only enter the phase on even-

numbered rounds. This is established by the following theorem.
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Theorem 3.23 (Guarantee 8). Consider some agent 𝑋 that becomes an Explorer in

the Allocation Phase, and let 𝑇 be the round in which 𝑋 completes the Allocation

Phase. Then 𝑇 is even.

Proof. By Input Assumption 2, 𝑋 enters the Allocation Phase in an even-numbered

round, so we just need to show that 𝑋 spends an even number of rounds in the phase.

First consider the case where 𝑋 executes Part B. Since 𝑋 became an Explorer

we know it followed the path outlined in Figure 3-3 to the end, which took an even

number of rounds. After that it executed the Part B Explorer protocol, which requires

only two rounds. Thus, 𝑋 completes the phase in an even number of rounds.

If 𝑋 executes Part A, then by Lemma 3.18 it completes the phase two rounds

after some Part B Explorer, so we know that it also completes the phase in an even

number of rounds.

Our goal is to ensure that levels 0 through 𝐷 + 2 are completely searched, as this

guarantees that the treasure is located. As its name implies, most levels are searched

during the Search Phase. However, agents in the Search Phase only search levels 4

and outward. The following theorem establishes that levels 0 through 3 are searched

by agents in the Allocation Phase.

Theorem 3.24 (Guarantees 9 and 10). Let 𝑋 be the first Explorer to complete the

Allocation Phase, and let 𝑇 be the round in which it completes the phase. Then after

round 𝑇 ,

1. A North Guide, East Guide, and South Guide have completed the phase.

2. Every cell in levels 0 through 3 have been searched by some agent.

Proof. By Lemma 3.17, 𝑋 must have executed Part B. For some agent to have ex-

ecuted Part B, some other agent must have executed Part A and returned to the

origin. Since 𝑋 become an Explorer, we know that it reached the end of the path
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in Figure 3-3. Thus, by round 𝑇 , all the cells in the paths in Figures 3-2 and 3-3

have been searched. The only cells in levels 0 through 3 that are not covered by the

union of those two paths are the cells exactly three moves north, east, and south of

the center.

To have become a pending Explorer, 𝑋 must have passed by the cell marked S in

Figure 3-3 and found it occupied (say, by agent 𝑆), and passed by the cell marked W

and found it occupied (say, by agent 𝑊 ). To be in its location, 𝑊 must have passed

by 𝑆, so then 𝑋 is the second agent to pass 𝑆.

Consider the round in which 𝑆 and 𝑋 share a cell. In the next round, 𝑆 moves

south, then pause for a round, and then move south twice more, completing the phase.

In this round 𝑋 has just reached the cell marked X in Figure 3-2, so 𝑆 completes the

phase before 𝑋. Since 𝑆 visits the cell 3 moves south of the center before completing

the phase, we know that the cell three moves south of the center is searched before

𝑋 completes the phase. A similar analysis shows that a North and an East Guide

complete the phase before 𝑋, meaning that the cells three moves north and east of

the center are also searched before round 𝑇 .

Finally, as we did in the Separation Phase, we outline the region that an agent in

the Allocation Phase could be located. This will be important when we combine the

phases to form Rectangle-Search. The region is shown in Figure 3-7.

Lemma 3.25. Let 𝐴 be some agent in the Allocation Phase. Then 𝐴 is at most three

moves away from the center.

Proof. An agent executing the Allocation Phase can be doing one of four things.

Below, we argue that an agent doing any one of the four things is always at most

three moves from the center.

1. The agent could be executing Part A and not be assigned any role.
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In this case, the agent would be following the path outlined in Figure 3-2. We

can clearly see that all cells along this path are within three moves from the

center.

2. The agent could be executing Part A and be assigned some role.

When a Part A agent becomes a Guide, it is two moves away from the center.

The Guide protocol involves moving once, then moving again and in that round

entering the Search Phase. Thus, while still in the Allocation Phase, it is at

most three moves from the center.

When a Part A agent becomes an Explorer, it is three moves away from the

center, but in the round when an agent moves in the Part A Explorer protocol,

it enters the Search Phase, so it is always within three steps from the center

while in the Allocation Phase.

3. The agent could be executing Part B and not be assigned any role.

The agent would be following the path outlined in Figure 3-3. As in (1), we can

see that all cells along this path are within three moves from the center.

4. The agent could be executing Part B and be assigned some role.

Similar to (2). When a Part B agent becomes a Guide, it is one move from the

center. The Guide protocol requires three moves, but in the round of the third

move the agent enters the Search Phase, so while in the Allocation Phase it is

always at most three moves from the center. When a Part B agent becomes an

Explorer, it is two moves from the center. After that it moves twice, but in the

round of the second move it enters the Search Phase.
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𝑂

𝐶

Figure 3-7: The gray region indicates the cells in which an agent from the Allocation
Phase could be located. The cell marked 𝑂 is the origin, and the cell marked 𝐶 is
the center.

3.2.3 Analysis

All agents other than the Part B Explorers have a part of their protocol where they

have to wait for other agents. Thus, only the Part B Explorers spend a predetermined

number of rounds in the Allocation Phase. Since we perform our eventual analysis of

Rectangle-Search by analyzing the behavior of Explorers, it turns out we only

need to bound the number of rounds Explorers spend in the phase.

Lemma 3.26. Consider an agent 𝐴 who became an Explorer in Part B of the Allo-

cation Phase. Then 𝐴 spends 10 rounds in the Allocation Phase.

Proof. To have become a Part B explorer, 𝐴 must have followed the path in Figure 3-

3 and reached the end of the path. This took exactly 8 rounds. After that, the agent

became an Explorer. The Part B Explorer protocol involves only two rounds (two

moves west), so the total number of rounds 𝐴 spends in the Allocation Phase is 10.
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3.3 Search Phase

In the Search Phase, the agents work collaboratively to search the grid from the center

outwards. Recall that we defined level 𝑑 to be the set of all cells exactly 𝑑 moves from

the center. The Explorers progressively explore the levels. To explore a level, an

Explorer starts on the west axis, then alternates between moving north and east until

it reaches the north axis. It knows when it has reached the north axis because a

North Guide will be positioned there. It then repeats this process in the next three

quadrants, each time finding a Guide in the appropriate place so that it knows when

to switch directions. As we will see, the West Guide will actually be waiting directly

below the west axis for the Explorer to return.

The idea of exploring levels and using Guides to mark the axes for Explorers was

first presented in [2]. Since our models allows less communication than [2], some

details had to be modified. For example, in the model from [2], a Guide can sense

whether it is sharing its cell with another Guide or an Explorer, but our model does

not allow agents to sense this.

The path of an Explorer exploring level 4 is shown in Figure 3-8. As we can see

from the figure, an Explorer exploring level 4 also explores almost all of level 5. In

fact, the only level 5 cells that it does not explore are those located on the axes. As

we will see, the cells on the axes are explored by the Guides, so it is not necessary for

an Explorer to ever explore level 5. In general, if an Explorer explores level 𝑑, then

it is not necessary for another Explorer to explore level 𝑑 + 1. In the Search Phase,

the first Explorer explores level 4, the next Explorer level 6, and so on. When an

Explorer finishes exploring a level, it moves outwards and explores a new level.

In this section, we describe exactly how the agents coordinate these efforts in order

to ensure that all the levels are explored. As in Sections 3.1 and 3.2, we begin by

describing the algorithm to be performed. Then we argue why this algorithm results

in the desired behavior, and reason about the number of rounds it takes the agents
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Figure 3-8: Both subfigures display the path an Explorer 𝑋 would take to Explore
level 4. 𝑁 , 𝐸, 𝑆, and 𝑊 are North, East, South, and West Guides, shown in the
positions that they must be in for 𝑋 to properly explore the level. The cell marked
𝐶 is the center. In (a) the level 4 cells are highlighted, and in (b) the level 5 cells are
highlighted, demonstrating that when level 𝑑 is explored, almost all the level 𝑑 + 1
cells are also explored.

to explore levels 4 through 𝑑 completely.

Input Assumptions

1. Every agent that enters the phase is assigned one of five roles: North Guide,

East Guide, South Guide, West Guide, or Explorer.

2. All North Guides enter the phase four cells north of the center, East Guides

four cells east of the center, South Guides four cells south of the center, and

West Guides and Explorers four cells west of the center.

3. At least two agents of each role enter the phase.

4. Every agent knows whether it is the first of its role to enter the phase.

5. The second agent of any given role enters the phase exactly two rounds after

the first agent of the role, and there are at least 8 rounds between when any
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two other agents of that role enter the phase.

6. A West Guide always enters the phase in the round after an Explorer completes

the phase.

7. Every Explorer enters the phase in an even-numbered round.

8. Before the first Explorer enters the phase, a North Guide, an East Guide, and

South Guide have entered the phase.

Guarantee

1. For any even 𝑑 ≥ 4, there is some round in which an Explorer completes explor-

ing level 𝑑, and at that time levels 4 through 𝑑 have been searched completely.

3.3.1 The Algorithm

Informal Description

In this phase, each agent’s state has a variable status, which is either exploring or

between. An agent begins the phase with a status of between. Afterwards, it alternates

between having a status of exploring and a status of between.

For simplicity, we refer to any cell that is an even number of moves from the

center as an even cell (and similarly for an odd cell). Now, if an agent has just

entered the phase and is the first of its role to do so, it immediately changes its status

to exploring. In any other situation, an agent with a status of between moves in its

designated direction until it is in an even cell with another agent. It then continues

moving in its direction. If it ever reaches an odd cell that is occupied, it restarts

its search for an occupied even cell. After finding an occupied even cell, it continues

moving in its direction. When it finds an even cell that is unoccupied, it switches to

a status of exploring.
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The behavior of an agent with a status of exploring differs between the different

roles. North, East, and South Guides behave the same, but West Guides and Explor-

ers each have different protocols.

North, East, and South Guides: With a status of exploring, the agent remains

in its cell until it shares it in 3 consecutive rounds. Then, as soon as it senses that it

is alone in its cell, it switches to a between status.

West Guide: When the West Guide has a status of exploring, it remains in its cell

until it has shared its cell for 2 consecutive rounds. Then it moves south once. It

remains there until there is a round where it shares its cell. After that round, it moves

north once and then does not move for a round. If it is alone in the round that it

does not move, it immediately switches to a status of between. Otherwise, it waits in

its cell until a round where it detects that it is alone. Then it does not move for one

round, and then switches to a status of between.

Explorer: Say that an Explorer switches to a status of exploring while in a cell

on level 𝑑. Then we say that the agent is exploring level 𝑑 (until it switches back

to having a status of between). With a status of exploring, the Explorer begins by

moving north, then east, then north again (the reason for these three initial steps will

become clear later). After that, it alternates between moving east and north until it

shares its cell with another agent for a round.

After detecting it is not alone, it does not move for two rounds. Then, it alternates

between moving east and moving south. After reaching another agent, it does not

move for two rounds again and then alternates between moving south and west. Once

it reaches another agent, it again does not move for two rounds and then alternates

between moving west and north until it reaches another agent. After that, it moves
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west once and north once more. Once it is alone in its cell, it switches to a status of

between.

Formal Description

Note that in order to define the state transition function 𝛿-Search for this section,

we use helper functions 𝛿-NES-Search, 𝛿-W-Search, and 𝛿-X-Search.

Each state 𝑠 ∈ 𝑆 contains the following variables. The variables that are not used in
this phase are omitted here.

𝑝ℎ𝑎𝑠𝑒: initially search (does not change)
𝑟𝑜𝑙𝑒: member of {north,east, south,west,explorer},

value set in previous phase
𝑓𝑖𝑟𝑠𝑡: boolean, value set in previous phase
𝑠𝑡𝑎𝑡𝑢𝑠: member of {between,exploring}, initially between
𝑓𝑜𝑢𝑛𝑑: boolean, initially false
𝑤𝑎𝑖𝑡: boolean, initially false
𝑑𝑜𝑤𝑛: boolean, initially false
𝑒𝑣𝑒𝑛: boolean, initially true
𝑞𝑢𝑎𝑑: integer in {1, . . . , 4}, initially 1
𝑟𝑜𝑢𝑛𝑑𝑠: integer in {0, . . . , 4}, initially 0
𝑠ℎ𝑎𝑟𝑒𝑑: integer in {0, . . . , 3}, initially 0
𝑐𝑜𝑢𝑛𝑡: integer in {0, . . . , 3}, initially 0
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𝛿-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

if 𝑠.first
𝑠.first := false
𝑠.even := false
𝑠.status := exploring

if 𝑠.status = between
if not 𝑎𝑙𝑜𝑛𝑒

if 𝑠.even
𝑠.found := true

else
𝑠.found := false

elseif 𝑠.found and 𝑠.even and 𝑎𝑙𝑜𝑛𝑒
𝑠.found := false
𝑠.wait := false
𝑠.even := true
𝑠.shared := 0
𝑠.count := 0
𝑠.status := exploring

𝑠.even := not 𝑠.even
if 𝑠.status = exploring

if 𝑠.role = north or east or south
𝑠 := 𝛿-NES-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

elseif 𝑠.role = west
𝑠 := 𝛿-W-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

elseif 𝑠.role = explorer
𝑠 := 𝛿-X-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

return 𝑠

𝛿-NES-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

if not 𝑎𝑙𝑜𝑛𝑒
if 𝑠.shared < 3

𝑠.shared := 𝑠.shared + 1
else

𝑠.shared := 0
if 𝑠.shared = 3

𝑠.wait := true
if 𝑠.wait and 𝑎𝑙𝑜𝑛𝑒

𝑠.status := between
return 𝑠
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𝛿-W-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

𝑠.down := false
if not 𝑎𝑙𝑜𝑛𝑒 and 𝑠.shared < 3

𝑠.shared := 𝑠.shared + 1
if 𝑠.shared = 2

𝑠.down := true
if 𝑠.count ≥ 2 and not 𝑠.wait

if 𝑎𝑙𝑜𝑛𝑒
𝑠.status := between

else
𝑠.wait := true

if 𝑎𝑙𝑜𝑛𝑒
𝑠.wait := false

if 𝑠.shared = 3 or (𝑠.count > 0 and < 3)
𝑠.count := 𝑠.count + 1

return 𝑠

𝛿-X-Search(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)

𝑠.even := not 𝑠.even
if 𝑠.rounds < 4

𝑠.rounds := 𝑠.rounds + 1
if 𝑠.rounds = 4 and not 𝑎𝑙𝑜𝑛𝑒 and 𝑠.shared < 3

𝑠.shared := 𝑠.shared + 1
if 𝑠.shared = 3

𝑠.shared := 0
𝑠.quad := 𝑠.quad + 1

if (𝑠.quad = 4 and 𝑠.shared = 1) or (𝑠.count > 0 and < 4)
𝑠.shared = 0
𝑠.count := 𝑠.count + 1

if 𝑠.count ≥ 3 and 𝑎𝑙𝑜𝑛𝑒
𝑠.even := true
𝑠.quad := 1
𝑠.rounds := 0
𝑠.status := between

return 𝑠

68



𝑀-Search(𝑠)
if 𝑠.status = between

if 𝑠.role = explorer
return west

else
return 𝑠.role

elseif 𝑠.status = exploring and 𝑠.role = west
if 𝑠.down

return south
elseif 𝑠.count = 2

return north
elseif 𝑠.status = exploring and 𝑠.role = explorer

if 𝑠.shared = 0 and 𝑠.count < 3
if 𝑠.count > 0

if 𝑠.even return west
else return north

elseif (𝑠.quad = 1 and 𝑠.even) or (𝑠.quad = 4 and not 𝑠.even)
return north

elseif (𝑠.quad = 1 and not 𝑠.even) or (𝑠.quad = 2 and 𝑠.even)
return east

elseif (𝑠.quad = 2 and not 𝑠.even) or (𝑠.quad = 3 and 𝑠.even)
return south

elseif (𝑠.quad = 3 and not 𝑠.even) or (𝑠.quad = 4 and 𝑠.even)
return west

return none

3.3.2 Correctness

In this section we prove that the protocol outlined above ensures that Search Phase

agents locate the treasure if it is not located by agents in previous phases. We begin

by analyzing the number of rounds that it takes an agent in the Search Phase to

search all level 𝑑 cells when exploring level 𝑑, assuming that the appropriate Guides

are in place so that the Explorer correctly switches directions when arriving at an axis.

While Lemma 3.27 is also used in the analysis section, we will see that is necessary

to prove the correctness of this phase.

Lemma 3.27. Consider an Explorer 𝑋 that switches to an exploring status in level

𝑑 in round 𝑇 . Then if there are North, East, and South Guides positioned in the level

𝑑 cells on their respective axes when 𝑋 reaches those cells, then 𝑋 is in the cell south
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of the level 𝑑 west axis cell in round 𝑇 + 8𝑑 + 5.

Proof. First, we note that only a level 𝑑 Explorer could be located in a level 𝑑 or 𝑑+1

cell other than those cells on each of the axes or directly south of the west axis.

𝑋 begins by alternating between moving north and east until it shares its cell for

a round. By the above statement it does not share its cell until it reaches the north

axis. This takes 2𝑑 rounds. We are assuming that a North Guide is located in the

level 𝑑 cell on the north axis, so 𝑋 waits on the north axis for 2 rounds.

Then it repeats the process, spending 2𝑑 rounds to reach the east axis, 2 rounds

waiting on the east axis, 2𝑑 rounds to reach the south axis, and 2 rounds waiting on

the south axis. From the level 𝑑 cell on the south axis, it takes 2𝑑−1 rounds to reach

the cell south of the level 𝑑 cell on the west axis, for a total of 8𝑑 + 5 rounds.

The next theorem ensures that some Explorer searches each level, and that the

levels are explored from level 4 outwards. This ensures us that by the round in which

some Explorer completes exploring level 𝐷 + 2, the treasure must have been located.

Theorem 3.28. Consider some Explorer 𝑋 that completes exploring level 𝑑 in round

𝑇 for some even 𝑑 ≥ 4. Then in round 𝑇 , levels 4 through 𝑑 have been completely

searched by Search Phase agents.

Proof. For brevity, we define 𝑋𝑑 to be the first Explorer to begin exploring level

𝑑. Similarly, define 𝑁𝑑, 𝐸𝑑, 𝑆𝑑, and 𝑊𝑑 as the first North, East, South, and West

Guides, respectively. We define the cell 𝑛𝑑 to be the level 𝑑 cell on the north axis,

and similarly for the cells 𝑒𝑑, 𝑠𝑑, and 𝑤𝑑.

To prove this lemma, we inductively prove the following 8 part claim. We will

see that it is necessary to prove all 8 parts together due to dependence between the

parts. For any even 𝑑 ≥ 4,
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1. 𝑁𝑑 does not switch from an exploring status in cell 𝑛𝑑 before sharing its cell

with 𝑋𝑑.

2. If 𝑁𝑑 switches from an exploring to between status in cell 𝑛𝑑 in round 𝑇 , then

in round 𝑇 , 𝑛𝑑 is not part of a chain of three consecutive cells on the north axis

containing North Guides with statuses of between.

3. 𝑁𝑑 and 𝑁𝑑+2 switch to statuses of exploring in cells 𝑛𝑑 and 𝑛𝑑+2 before 𝑋𝑑

reaches the north axis.

4. 𝑋𝑑 is the first Explorer to reach cell 𝑤𝑑.

5. No Explorer other than 𝑋𝑑 or West Guide other than 𝑊𝑑 ever explores level 𝑑.

6. 𝑊𝑑 is in the cell south of 𝑤𝑑 in the round when 𝑋𝑑 reaches that cell, and no

other agents are there.

7. If an Explorer 𝑋 is located in cell 𝑤𝑑 at time 𝑇 , then 𝑇 is even.

8. If an Explorer 𝑋 is located in cell 𝑤𝑑 at time 𝑇 , then a single West Guide

sharing 𝑋’s status is located in cell 𝑤𝑑 at time 𝑇 + 1. Furthermore, 𝑊 is alone

at time 𝑇 + 1 if and only if 𝑋 is alone at time 𝑇 .

Combining parts (1), (3), and (6) show that when an Explorer explores a level,

all the Guides will be in place, so Explorers always finish exploring levels that they

start exploring. Part (2) helps us to prove part (1). Part (4) shows that no level can

be skipped. Part (5) shows that the agents search the space efficiently. This is useful

in the analysis section, but is included here because it is necessary for the proof of

part (6). It is not immediately obvious why parts (7) and (8) are useful, but we will

see that they are needed for the proofs of parts (5) and (6).

We begin by showing that all the statements hold true for 𝑑 = 4. For this, we can

prove each of the parts separately.
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1. 𝑁4 cannot switch from the exploring status until sharing the cell 𝑛4 for 3 consec-

utive rounds. The only agents who can ever enter the cell 𝑛4 are North Guides

and level 4 Explorers. All North Guides other than the first North Guide to

enter the Search Phase enter the phase in the cell 𝑛4 and then move north in

the following round. By Input Assumption 5, no two North Guides enter the

phase in consecutive rounds, so other North Guides cannot cause 𝑁4 to share

its cell for 3 consecutive rounds, and therefore it remains there until 𝑋4 arrives.

2. For 𝑁4 to be part of a chain of 3 consecutive North Guides in between states,

other North Guides would have to enter the phase in either rounds 𝑇 − 1 and

𝑇 − 2, 𝑇 − 1 and 𝑇 + 1, or 𝑇 + 1 and 𝑇 + 2. By Input Assumption 5, for any

two North Guides not including 𝑁4 there are at least 8 rounds between when

they enter the phase, so clearly this cannot be the case.

3. The first agent of each role to enter the Search Phase immediately begins ex-

ploring level 4. So 𝑋4 and 𝑁4 are the first Explorer and North Guide to enter

the phase, respectively. Let 𝑇𝑋 be the round in which 𝑋4 enters the phase and

𝑇𝑁 the round in which 𝑁4 enters the phase. By Input Assumption 8, 𝑇𝑁 < 𝑇𝑋 .

𝑋4 reaches the north axis in round 𝑇𝑋 + 8. Since 𝑇𝑁 < 𝑇𝑋 + 8, 𝑁4 switches to

the exploring status before 𝑋4 reaches the north axis. By Input Assumption 5,

another North Guide enters the phase in round 𝑇𝑁 + 2. By part (1), 𝑁4 will

still be located in the cell 𝑛4 at that time. So, the North Guide will share the

cell 𝑛4 with 𝑁4 and then move north in search of an unoccupied even cell. It

will find this in the cell 𝑛6, so it will switch to a exploring status there in round

𝑇𝑁 + 4.

4. Clearly the first Explorer to enter the phase will be the first Explorer to reach

the cell 𝑤4. The protocol dictates that the first Explorer to enter the phase

explores level 4.
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5. Any Explorer or West Guide that is not the first to enter the phase must find

an occupied even cell and then an unoccupied even cell further from the origin

before it can explore a level, so it clearly cannot explore level 4.

6. Let 𝑇 be the round in which 𝑋4 enters the phase. Then by Input Assumption 6

𝑊4 enters the phase in round 𝑇 + 1. Its protocol dictates that it remains in

the cell 𝑤4 until sharing it in 2 consecutive rounds. By Input Assumptions 6

and 5, an Explorer and West Guide enter the phase in rounds 𝑇 + 2 and 𝑇 + 3

respectively, so they share 𝑊4’s cell in those rounds. So then 𝑊4 moves south

in round 𝑇 + 4. Only a level 4 Explorer or West Guide could ever reach the cell

directly south of 𝑤4. By part (5) there are no other level 4 West Guides, so 𝑊4

remains south of 𝑤4 and alone until 𝑋4 arrives.

7. By Input Assumption 7, 𝑋 enters the phase in an even-numbered round. We

claim that 𝑋 is only located in the cell 𝑤4 in the round in which it enters the

phase. If 𝑋 is the first Explorer to enter the phase it switches to an exploring

status and moves north the round after it enters the phase. By part (6), 𝑋

reaches a West Guide in the cell south of 𝑤4, after which it moves west and

then north, so that when it returns to the west axis it is in cell 𝑤𝑑+1. If 𝑋 is

not the first Explorer to enter the phase it remains with a between status moves

west in the next round.

8. If 𝑋 is the first Explorer to enter the phase, then by Input Assumption 6 the

first West Guide enters the phase in the following round, and both have status

exploring. It is easy to see that both agents are alone in the rounds they enter

the phase, so this part is satisfied for this case.

If 𝑋 is not the first Explorer to enter the phase, then it is slightly more com-

plicated. By Input Assumption 6, some West Guide 𝑊 always enters the phase

in the round after 𝑋, and since neither are the first of their role to enter the
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phase, they both have status between. It remains to show that 𝑋 is alone at

time 𝑇 if and only if 𝑊 is alone at time 𝑇 + 1.

The only agent other than 𝑋 and 𝑊 who could be in the cell 𝑤4 is 𝑊4. We

show that if 𝑊4 is located in the cell 𝑤4 at time 𝑇 , then it is also located there

at time 𝑇 + 1. First we show that 𝑊4 cannot exit the cell in round 𝑇 + 1. If

𝑊4 has not yet moved south when 𝑋 shares its cell, then 𝑋 must be the first

agent to share its cell, so 𝑊4 remains in the cell for at least one more round.

If 𝑊4 had already moved south and then north again, then it is waiting to be

alone to switch to a between status, so does not move in round 𝑇 + 1.

The only round in which 𝑊4 enters the cell is when it moves north back to

the west axis after having shared the cell south of 𝑤4 with 𝑋4. But 𝑋4 begins

exploring on an even round, and by Lemma 3.27 reaches 𝑊4 below the west axis

in an odd-numbered round. Since 𝑊4 moves north in the next round, it enters

𝑤4 in an even-numbered round. Since 𝑇 + 1 is odd, it cannot enter in round

𝑇 + 1, completing the proof of this part.

Next we need to show the inductive step. For this part, we cannot separate all of

the parts as we did for the base case, because many of them are dependent on each

other. We assume that the claim holds for 𝑑− 2, and prove that it holds for 𝑑.

1. For 𝑁𝑑 to switch from a status of exploring in cell 𝑛𝑑, it must share the cell

𝑛𝑑 in 3 consecutive rounds. Assume for contradiction that 𝑁𝑑 switches from a

status of exploring before sharing cell 𝑛𝑑 with 𝑋𝑑. We know that only other

North Guides could ever be located in that cell, and that no other North Guide

remains in that cell for more than a single round while it is occupied by 𝑁𝑑.

So then it must be the case that 3 distinct North Guides enter the phase in

consecutive rounds.

We know that no North Guides can enter the phase in consecutive rounds. So
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then the 3 North Guides cannot all be in their first between status. But by

assumption (2), any North Guide that switches from an exploring status to

a between status doesn not form a chain of three consecutive North Guides,

presenting a contradiction.

2. Let 𝑇𝑑−2 be the round in which 𝑁𝑑−2 switches from a exploring status to a

between status in 𝑛𝑑−2. Then at the latest, 𝑋𝑑−2 entered the north axis in

round 𝑇𝑑−2 − 3.

We claim that 𝑋𝑑 cannot reach the north axis until at least round 𝑇𝑑−2 + 5.

To see why, consider the round 𝑇 ′ in which 𝑋𝑑−2 began exploring level 𝑑 − 2.

Combining assumptions (4) and (7), the next explorer furthest from the center

could be located in at most cell 𝑤𝑑−4. But then 𝑋𝑑−2 reaches the north axis in

round 𝑇 ′ + 2(𝑑− 2), and so that next Explorer cannot possibly reach the north

axis until round 𝑇 ′ + 4 + 2𝑑, or 8 rounds after 𝑋𝑑−2 reaches it.

At time 𝑇𝑑−2 + 5, if 𝑁𝑑 is still has a status of between, then it is in cell 𝑛𝑑+3. By

assumption (2), either cell 𝑛𝑑+2 or 𝑛𝑑+1 does not contain a North Guide with a

between status in that round, so 𝑁𝑑 does not join a chain of three consecutive

between status North Guides including 𝑁𝑑−2.

A similar analysis shows that 𝑁𝑑 cannot form a chain of length 3 with 𝑁𝑑′ for

any 𝑑′ < 𝑑− 2. By Input Assumption 6, we know that two North Guides with

their first between status cannot form a chain of length 3 with 𝑁𝑑, completing

the proof.

3. Let 𝑇 be the round in which 𝑋𝑑−2 switches to an exploring status in cell 𝑤𝑑−2.

It takes 2(𝑑 − 2) rounds for 𝑋𝑑−2 to reach the north axis. By assumption (3),

we know that by round 𝑇 +2(𝑑−2), 𝑁𝑑−2 is in an exploring state on level 𝑑−2.

So, when 𝑋𝑑−2 reaches the north axis it waits there for 2 rounds. Thus, 𝑋𝑑−2

leaves the north axis in round 𝑇 + 2(𝑑− 2) + 2 = 𝑇 + 2𝑑− 2. If 𝑁𝑑−2 is alone
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at time 𝑇 + 2𝑑− 2, it switches to a between status.

If it is not alone, it must be sharing its cell with some other North Guide in a

between state, so without loss of generality we can assume that 𝑁𝑑−2 was alone

and entered a between state.

By assumption (3), 𝑁𝑑 had a status of exploring in cell 𝑛𝑑 by round 𝑇 +2(𝑑−2),

and by part (1) remains in the cell until 𝑋𝑑 shares its cell. By the same reasoning

as in part (2), 𝑋𝑑 cannot begin exploring level 𝑑 until at least round 𝑇 + 4, so

it cannot reach the north axis until round 𝑇 + 4 + 2𝑑.

So, when 𝑁𝑑−2 reaches cell 𝑛𝑑 in round 𝑇 + 2𝑑, it finds it occupied by 𝑁𝑑 and

continues to move north in search of an unoccupied even cell. It reaches cell

𝑛𝑑+2 in round 𝑇 + 2𝑑 + 2. If it is alone at that time, it switches to a status of

exploring. Otherwise, there was already some North Guide located there in an

exploring state. So, 𝑁𝑑+2 is in an exploring state in the level 𝑑 + 2 north axis

cell by round 𝑇 + 2𝑑 + 2.

4. We claim that 𝑋𝑑−2 cannot return to the west axis before another Explorer

reaches the cell 𝑤𝑑−2. By assumption (6), 𝑊𝑑−2 moved south from cell 𝑤𝑑−2

before 𝑋𝑑−2 reached that cell. To have moved south, 𝑊𝑑−2 must have shared

its cell for two consecutive rounds. By assumption (8), it must have first shared

its cell with an Explorer 𝑋, and then with a West Guide 𝑊 .

After sharing the cell 𝑤𝑑−2 with 𝑊𝑑−2, 𝑋 begins exploring the next unoccupied

even cell that it reaches, as long as it does not reach an occupied odd cell before

that. Since 𝑋 is the first agent to reach the cell 𝑤𝑑−1, it is alone there. So then

it reaches the cell 𝑤𝑑 and also be alone, and enters an exploring state. So then

𝑋𝑑 = 𝑋. A similar analysis shows that 𝑊𝑑 = 𝑊 , proving this part.

5. Consider an Explorer 𝑋 who reaches level 𝑑 after 𝑋𝑑 starts exploring the level.

We show that 𝑋 does not explore level 𝑑. If 𝑊𝑑 is in cell 𝑤𝑑 when 𝑋 arrives,
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then clearly 𝑋 does not explore level 𝑑. Otherwise, we claim that when 𝑋

reaches cell 𝑤𝑑, it has 𝑓𝑜𝑢𝑛𝑑 = false, so it does not explore the level.

Since 𝑋𝑑 and 𝑊𝑑 moved from level 4 to level 𝑑 on the west axis, any West

Guide that was on the west axis would have already moved south by the round

in which 𝑋 arrives there. Say that 𝑋 shares a cell with some West Guide 𝑊𝑑′

in level 𝑑′ < 𝑑. Then 𝑊 ′ must have just moved north and be awaiting becoming

alone to switch to a between status. Since 𝑊𝑑′ only moves north after sharing

its cell with 𝑋𝑑′ , we know that 𝑋𝑑′ moves into the cell 𝑤𝑑′+1 in the round after

𝑊𝑑′ moves north and does not move until it is alone. So when 𝑋 moves west

once it shares the odd cell 𝑤𝑑′+1 with 𝑋𝑑′ and set 𝑓𝑜𝑢𝑛𝑑 = false.

6, 7, 8. Consider some Explorer 𝑋 that does not explore level 𝑑 − 2. Say that 𝑋 is

in the cell 𝑤𝑑−2 at time 𝑇 . By assumption (7) 𝑇 is even. Since 𝑋 does not

explore that level, it remains with a status of between and moves west in the

next round. By assumption (8), there is be a West Guide 𝑊 in the cell 𝑤𝑑−2 at

time 𝑇 + 1 that also does not explore level 𝑑− 2. So then at time 𝑇 + 2, 𝑋 is

in the cell 𝑤𝑑, satisfying part (7) for when 𝑋 does not explore level 𝑑− 2. The

same reasoning an in part (8) of the base case shows that 𝑋 shares the cell 𝑤𝑑

at time 𝑇 + 2 if and only if 𝑊 shares the cell 𝑤𝑑 at time 𝑇 + 3, satisfying part

(8) for when 𝑋 does not explore level 𝑑− 2.

Now, we need to show that by the round in which 𝑋𝑑 reaches the cell south

of 𝑤𝑑, 𝑊𝑑 (and no other agent) is there. By part (5), no Explorer ever begins

exploring level 𝑑 after 𝑋𝑑 does, so 𝑊𝑑 is the only West Guide that could possibly

be in the cell south of 𝑤𝑑.

Let 𝑇 be the round in which 𝑋𝑑−2 begins exploration of level 𝑑 − 2. Then by

Lemma 3.27 and assumption (6), 𝑋𝑑−2 and 𝑊𝑑−2 share the cell south of 𝑤𝑑−2 at

time 𝑇 + 8(𝑑− 2) + 5 (an odd round). In the following round, 𝑊 moves north
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and 𝑋 moves west. In the found after that, 𝑊 does not move, and 𝑋 moves

north.

This places 𝑋𝑑−2 in an odd cell in an odd round and 𝑊𝑑−2 in an even cell in an

even round. If 𝑋𝑑−2 is sharing a cell in this round, then by our proof of part (8)

above for Explorers that do not explore level 𝑑 − 2, it must be sharing its cell

with some other Explorer, and in the following round shares its cell with some

West Guide. Thus, 𝑋𝑑−2 waits an even number of rounds before switching to

a between status. Thus, it switches to a between status in an odd-numbered

round, meaning it reaches level 𝑑 in an even-numbered round, proving part (7).

In the round when 𝑋𝑑−2 returns to the west axis, 𝑊𝑑−2 is in the cell east of

𝑋𝑑−2, so it must become alone in the round before 𝑋𝑑−2. So, by pausing for a

round before switching to a between status, it switches to a between status in

the same round as 𝑋𝑑−2, and reach the cell 𝑤𝑑 a round later, proving part (8).

If 𝑋𝑑−2 is alone upon reaching the west axis, it would immediately switch to a

between status, and would arrive in the cell 𝑤𝑑 round 𝑇 + 8(𝑑 − 2) + 5 + 3 =

𝑇 + 8𝑑− 8. If 𝑋𝑑−2 was not alone, it was sharing its cell with some other agent

that would then arrive in the cell 𝑤𝑑 in round 𝑇 + 8𝑑 − 8. Similar reasoning

shows that either 𝑊𝑑−2 or some other agent arrives in the cell 𝑤𝑑 in round

𝑇 + 8𝑑− 7.

If 𝑊𝑑 was still in the cell 𝑤𝑑 at time 𝑇 + 8𝑑− 7, then it certainly moves south

in the next round. By Lemma 3.27, 𝑋𝑑 takes 8𝑑 + 5 rounds to reach the cell

south of the level 𝑑 west axis cell, so 𝑊𝑑 is there before that, proving part (6).

Next, as Sections 3.1 and 3.2, we outline the region in which a Search Phase agent

could be located. The region is displayed in Figure 3-9.
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𝑂

𝐶

Figure 3-9: The gray region indicates the cells in which an agent from the Search
Phase could be located. The cell marked 𝑂 is the origin, and then cell marked 𝐶
is the center. Note that the gray region includes all the cells outside grid displayed
here.

Lemma 3.29. Let 𝐴 be some agent in the Search Phase. Then 𝐴 is at least four

moves from the center.

Proof. By Input Assumptin 2, each agent enters the phase exactly four moves from

the center. No Guide ever moves in the opposite of its cardinal direction, so it can

never get any closer to the center, so it is always at least four moves from the center.

With a status of between, Explorers only move west. So, if an Explorer switches

to a status of between in the region, then it remains in the region while having the

status of between. With a status of exploring, when exploring level 𝑑, the Explorer

never moves into any cell less than 𝑑 moves from the origin. Since the innermost level

explored is level 4, no agent with a status of exploring is ever less than four moves

from the center.

3.3.3 Analysis

Since agents are all in the phase for different numbers of rounds, it is difficult to

upper bound the number of rounds that an agent spends in the Search Phase. So, we
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focus on one particular Explorer, and upper bound the number of rounds that that

Explorer could spend in the phase before levels 4 through 𝑑 have been completely

searched, for any arbitrary 𝑑 ≥ 4.

Lemma 3.30. Let 𝑇 be the round in which some Explorer completes exploring level

𝑑 for some even 𝑑 ≥ 4. Say that there are 𝑖 Explorers in the Search Phase after 𝑇

rounds, and let 𝑋 be the last Explorer to enter the phase before the end of round 𝑇 .

Then the number of rounds that 𝑋 spends in the phase before levels 4 through 𝑑 have

been completely searched is 𝑂(𝑑 + 𝑑2/𝑖).

Proof. When 𝑋 enters the Search Phase, it moves out to find the first unexplored

level. Say that this is level 𝑙. Once there, it explores that level. By Lemma 3.27 it

takes 𝑂(𝑙) rounds to explore level 𝑙. After exploring this level, it passes by all the

levels that are currently being explored by another Explorer, and explores the next

level. Since Explorers explore every other level, and there are 𝑖− 1 other Explorers,

this next level is level 𝑙 + 2𝑖. After exploring that level, it explores level 𝑙 + 4𝑖, and

so on. This process is repeated at most 𝑑/2𝑖 times before level 𝑑 is explored. So, the

total number of rounds is given by

𝑙 +

𝑑/(2𝑖)∑︁
𝑧=0

𝑂(𝑙 + 𝑧 · (2𝑖)) + 2𝑖 = 𝑙 + 𝑂

⎛⎝ 𝑑/𝑖∑︁
𝑧=0

𝑙 + 𝑧𝑖

⎞⎠
= 𝑙 + 𝑂

⎛⎝ 𝑑/𝑖∑︁
𝑧=0

𝑙 + 𝑖

𝑑/𝑖∑︁
𝑧=0

𝑧

⎞⎠
= 𝑙 + 𝑂((𝑑/𝑖) · 𝑙 + 𝑑2/𝑖)

To simplify this further, we claim that 𝑙 = 𝑂(𝑑). To see why, we note that if

𝑙 > 𝑑, then it means that by the round in which 𝑋 starts exploring its first level,

some other Explorer is already exploring level 𝑑. That Explorer completes exploring

level 𝑑 within 𝑂(𝑑) rounds, so 𝑋 cannot possibly start exploring a level more than

𝑂(𝑑) moves from the center. With this in mind, the above sum simplifies to
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𝑂(𝑑 + 𝑑2/𝑖 + 𝑑2/𝑖) = 𝑂(𝑑 + 𝑑2/𝑖),

as desired.

3.4 Putting it All Together

In this section, we show how to combine the Separation, Allocation, and Search Phases

to form the algorithm Rectangle-Search. We prove that Rectangle-Search

eventually locates the treasure with probability 1, and reason about the expected

number of rounds until it does so.

In Sections 3.1, 3.2, and 3.3, we analyzed the behavior of the agents in each phase

under the assumption that the agents’ behavior would not be impacted by agents in

the other phases. The next three lemmas, which we will collectively refer to as the

Isolation Lemmas, prove that this assumption is valid.

Before we begin, we define notation that is used in all three Isolation Lemmas.

Consider some fixed execution 𝛼 of Rectangle-Search, and let 𝐴 be an agent in

the execution. For any 𝑖 ≥ 0, let 𝑐𝑖 be the cell in which 𝐴 is located at time 𝑖 in 𝛼.

In each Isolation Lemma, we prove that when 𝐴 is in any given phase, it would

have occupied the same sequence of cells if the agents from the other two phases had

not been present. Recall that we defined a ghost to be an agent which executes the

algorithm normally, but the other agents do not detect its presence. We will define

modified versions of 𝛼 in which agents in a specific phase treat agents in the other

phases as ghosts. We will show that the sequence of cells which an agent occupies in

one of these modified executions is equivalent to the sequence of cells it occupies in

𝛼.

In Sections 3.1, 3.2, and 3.3, we effectively proved the correctness of each phase

in this modified execution. By proving that the cells occupied by each agent in these
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modified executions are identical to the cells occupied by the agents in 𝛼, we see that

the guarantees of each phase are met when we combine all three phases.

Lemma 3.31 (Isolation Lemma 1). Let 𝛼′ be a fixed execution that is identical to

𝛼 except agents in the Separation Phase treat agents in other phases as ghosts. Let

𝑇 be the round in which 𝐴 completes the Separation Phase in 𝛼′. Let 𝑐′𝑖 be the cell

occupied by 𝐴 at time 𝑖 in 𝛼′ for some 𝑖, 0 ≤ 𝑖 ≤ 𝑇 . Then we have 𝑐𝑖 = 𝑐′𝑖.

Proof. We induct on 𝑖 to prove our claim. Since all agents are at the origin at time

0, we know that if 𝑖 = 0 we have 𝑐𝑖 = 𝑐′𝑖. If 𝑖 > 0, assume that we have 𝑐𝑖−1 = 𝑐′𝑖−1.

We prove that 𝑐𝑖 = 𝑐′𝑖. To do so, we prove that the move chosen by 𝐴 in round 𝑖− 1

of 𝛼 is not impacted by the presence of agents in other phases, and therefore it must

be the same as the move chosen by 𝐴 in round 𝑖− 1 of 𝛼′.

We begin by arguing that in 𝛼, 𝐴 never performs loneliness detection while sharing

a cell with a member of the Allocation Phase, which clearly implies that 𝐴 makes the

same moves it would have made if those agents had not been present. By Lemmas 3.4

and 3.25, the only cells that both 𝐴 and an agent in the Allocation Phase could ever

occupy are (−1, 0) and the origin. However, since 𝐴 is only at the origin in the

Separation Phase at time 0, we only need to consider the cell (−1, 0).

There are two times at which 𝐴 could occupy the cell (−1, 0). It occupies the cell

at time 1, but moves west deterministically in the following round. It also occupies

the cell when moving east back towards the origin, but once it starts moving east it

never uses its ability to detect its loneliness. So clearly no Allocation Phase agent

affects the cells occupied by 𝐴.

Next we show that in 𝛼, agents from the Search Phase can never impact the moves

made by 𝐴. In the Search Phase, North, East, and South Guides never leave their

respective axes, and West Guides only ever occupy cells on the west axis and cells

one move south of the west axis. By Lemma 3.4, an agent in the Separation Phase

can never occupy any of those cells. Explorers with a status of exploring are always
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located on the west axis. So we just need to show that an Explorer with a status of

between cannot impact the moves made by 𝐴.

Say that 𝐴 shares cell 𝑐𝑖−1 with some Explorer 𝑋 at time 𝑖− 1. We claim that no

Search Phase agent is located in cell 𝑐𝑖−1 at times 𝑖− 2 or 𝑖. Since Explorers with an

exploring status move every round until returning to the west axis, we know that 𝑋

is not in cell 𝑐𝑖−1 at times 𝑖 − 2 or 𝑖. Only another Explorer of the same level could

ever be in cell 𝑐𝑖, but by Theorem 3.28, no other Explorer ever explores that level.

We know that 𝐴 remains in cell 𝑐𝑖−1 for two rounds. If it is already moving back to

the origin, it is not performing loneliness detection so clearly no Search Phase agents

impact its behavior. If it is still moving west, all that matters is whether it detects

being alone in either round in which it occupies cell 𝑐𝑖−1. By the above reasoning,

Search Phase agents cannot cause it to detect that it is sharing its cell for both rounds

in which it occupies cell 𝑐𝑖−1, proving the claim.

Lemma 3.32 (Isolation Lemma 2). Let 𝛼′ be a fixed execution that is identical to 𝛼

except agents in the Allocation Phase treat agents in other phases as ghosts. Let 𝑇𝐸 be

the round in which 𝐴 enters the Allocation Phase in 𝛼′ and 𝑇𝐶 the round in which it

completes it. Let 𝑐′𝑖 be the cell occupied by 𝐴 at time 𝑖 in 𝛼′ for some 𝑖, 𝑇𝐸 ≤ 𝑖 ≤ 𝑇𝐶.

Then we have 𝑐𝑖 = 𝑐′𝑖.

Proof. As in the proof of Isolation Lemma 1, we induct on 𝑖 to prove our claim.

First, we consider the case where 𝑖 = 𝑇𝐸. By our definition of 𝛼′, 𝐴 appears at the

origin in 𝛼′ in the same round as it completed the Separation Phase in 𝛼, so we know

𝑐𝑇𝐸
= 𝑐′𝑇𝐸

.

If 𝑖 > 𝑇𝐸, assume that we have 𝑐𝑖−1 = 𝑐′𝑖−1. We prove that 𝑐𝑖 = 𝑐′𝑖. To do so, we

prove that the move chosen by 𝐴 in round 𝑖− 1 of 𝛼 is not impacted by the presence

of agents in other phases, and therefore it must be the same as the move chosen by

𝐴 in round 𝑖− 1 of 𝛼′.
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By Lemmas 3.25 and 3.29, 𝐴 never shares a cell with an agent in the Search Phase,

so we only need to consider agents in the Separation Phase.

By Lemmas 3.4 and 3.25, we only need to consider the case where 𝑐𝑖−1 = (0, 0)

or (−1, 0). Since Separation Phase agents are only located at the origin at time 0,

we know that 𝐴 is never at the origin at the same time as an agent in the Separation

Phase. If 𝑐𝑖−1 = (−1, 0), then 𝐴 must have been executing Part A and reached the

second to last move in the path in Figure 3-2. Since 𝐴 does not detect loneliness in

that cell, we know that no Separation Phase agent can influence the move chosen by

𝐴, proving our claim.

Lemma 3.33 (Isolation Lemma 3). Let 𝛼′ be a fixed execution that is identical to 𝛼

except agents in the Search Phase treat agents in other phases as ghosts. Let 𝑇 be the

round in which 𝐴 enters the Search Phase in 𝛼′. Let 𝑐′𝑖 be the cell occupied by 𝐴 at

time 𝑖 in 𝛼′ for some 𝑖 ≥ 𝑇 . Then we have 𝑐𝑖 = 𝑐′𝑖.

Proof. As in the proofs of Isolation Lemma 1 and 2, we induct on 𝑖. Since the behavior

of 𝐴 is identical in 𝛼 and 𝛼′ up until 𝐴 enters the Search Phase, we know if 𝑖 = 𝑇 ,

then 𝑐𝑖 = 𝑐′𝑖.

If 𝑖 > 𝑇 , we assume that 𝑐𝑖−1 = 𝑐′𝑖−1. We prove that 𝑐𝑖 = 𝑐′𝑖. To do so, we prove

that the move chosen by 𝐴 in round 𝑖 − 1 of 𝛼 is not impacted by the presence of

agents in other phases, and therefore it must be the same as the move chosen by 𝐴

in round 𝑖− 1 of 𝛼′.

By Lemmas 3.25 and 3.29, 𝐴 never shares a cell with an agent in the Allocation

phase, so we only need to consider agents in the Separation Phase.

As noted in the previous proof, 𝐴 only ever shares a cell with an agent in the

Separation Phase agent if it is an Explorer with a status of exploring. With a status

of exploring, 𝐴 does not perform loneliness detection until after it has moved three

times. After three moves, it is two moves above the west axis, and does not return to
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a cell one move above the west axis with the same status of exploring. Therefore, we

know that no agent in the Separation Phase can ever impact the behavior of 𝐴.

With these lemmas in mind, we can now prove that Rectangle-Search locates

the treasure eventually with probability 1 as long as 𝑘 ≥ 19.

Lemma 3.34. Consider a probabilistic execution 𝛽 of Rectangle-Search where

𝑘 ≥ 19. Let 𝐿𝑖 be the event that an agent locates the treasure at or before time 𝑖.

Then we have

lim
𝑖→∞

𝑃 (𝐿𝑖) = 1.

Proof. First, since all the agents begin at the origin at time 0, we know that the

input assumptions of the Separation Phase are met by the initial configuration of the

agents.

Combining Lemma 3.31 with Theorem 3.3, we have that the probability that at

least 19 agents have completed the Separation Phase in 𝛽 by some time 𝑇 is at least

(︃
1 −

(︂
1 − 1

2𝑘−1

)︂⌊𝑇−6
4 ⌋)︃19

.

Taking the limit, we have

lim
𝑇→∞

(︃
1 −

(︂
1 − 1

2𝑘−1

)︂⌊𝑇−6
4 ⌋)︃19

= 1,

so the probability that 19 agents complete the phase eventually in 𝛽 is 1.

Now consider a fixed execution 𝛼 in which at least 19 agents complete the Sep-

aration Phase. Note that unlike 𝛽, which is a probabilistic execution, 𝛼 refers to

some specfic non-probabilistic execution. We show that the treasure is located in 𝛼.

Combining this with the previous reasoning proves the claim.
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Combining Lemmas 3.31 and Theorem 3.1, we know that the first three input

assumptions of the Allocation Phase are met in 𝛼. The fourth and final input as-

sumption is given by our assumption that at least 19 agents complete the Separation

Phase in 𝛼.

Because the input assumptions of the Allocation Phase are satisfied, we can apply

Lemma 3.32 to see that the guarantees of the Allocation Phase are valid. These

guarantees are given by Theorems 3.11, 3.12, 3.15, 3.19, 3.21, 3.22, 3.23, and 3.24.

Since the input assumptions of the Search Phase are met by the guarantees of

the Allocation Phase, we know that Theorem 3.33 gives us that the guarantee of the

Search Phase is met in 𝛼. This is given by Theorem 3.28.

If 𝐷 ≤ 3, then by Theorem 3.24 the agents in the Allocation Phase locate the

treasure in 𝛼. By Theorem 3.28, if 𝐷 ≥ 4, the agents in the Search Phase locate the

treasure in 𝛼, proving the claim.

Now that we know that Rectangle-Search locates the treasure eventually with

probability 1, we want to upper bound the number of rounds until it does so. Most of

this work was already done in the Analysis sections for each of the phases (Sections

3.1.3, 3.2.3, and 3.3.3), but it remains to combine them to compute the expected

number of rounds for the entire algorithm.

Before we can do that, we need to bound the number of Explorers that enter the

Search Phase. In Lemma 3.35 we show that the number of Explorers who enter the

phase before the treasure is located is upper bounded by a constant multiple of 𝐷.

Recall from Section 3.2 we proved that the total number of explorers to enter the

phase is a constant fraction of 𝑘 (Theorem 3.16).

Lemma 3.35. Consider some fixed execution 𝛼, and let 𝑖 be the total number of

Explorers that enter the Search Phase before the treasure is located in 𝛼. Then we

have that 𝑖 ≤ 5𝐷 + 8.
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Proof. By Theorem 3.24, levels 0 through 3 are fully explored in the Allocation Phase.

So, if 𝐷+ 2 ≤ 3, then we know that the treasure will be located before any Explorers

enter the Search Phase, so the lemma is true in that case.

We know that in the Search Phase, by the round in which some Explorer completes

exploring level 𝑑, levels 4 through 𝑑−1 have already been explored. So, by the round

in which level 𝐷 + 2 is explored, levels 0 through 𝐷 + 1 have already been explored.

Thus, we just need to upper bound the number of Explorers that could have entered

the phase before level 𝐷 + 2 was completely explored.

Even if each Explorer only explored a single level, the 𝐷/2𝑡ℎ Explorer would end

up exploring level 𝐷+ 2. Let 𝑋 be the Explorer that eventually explores level 𝐷+ 2.

We just need to compute the number of Explorers that could enter the phase after

𝑋, before it completes exploring level 𝐷 + 2.

Since by Input Assumption 2, all Explorers enter the phase in level 4, we know

that it takes 𝐷−2 rounds for 𝑋 to reach level 𝐷+ 2. Now, by Lemma 3.27, we know

that it will take 𝑋 8(𝐷 + 2) + 5 = 8𝐷 + 21 rounds before all level 𝐷 + 2 cells have

been searched. So, there are 9𝐷 + 19 rounds between when 𝑋 enters the phase and

when it completes exploring level 𝐷 + 2.

By Input Assumption 7, Explorers only enter the phase in even-numbered rounds,

so at most 4𝐷/9 + 9 agents enter the phase during these rounds. Now, since 𝐷/2− 1

Explorers entered the phase before 𝑋, this leads to a total of 5𝐷 + 8 Explorers that

could have entered the phase before the treasure was located.

Finally, we have all the tools we need to upper bound the expected number of

rounds until Rectangle-Search locates the treasure.

In Lemma 3.35 that we proved that the number of Explorers to enter the Search

Phase before the treasure is located is at most 5𝐷 + 8. In Lemma 3.16, we proved

that at least ⌊(𝑘 − 9)/5⌋ agents become Explorers.
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In Lemma 3.36, we upper bound the expected number of rounds until Rectangle-

Search locates the treasure if ⌊(𝑘− 9)/5⌋ > 5𝐷 + 8. Then in Lemma 3.37 we upper

bound the expected number of rounds in the other case, where ⌊(𝑘− 9)/5⌋ ≤ 5𝐷+ 8.

Then we combine these results in Theorem 3.38.

Lemma 3.36. Consider a probabilistic execution 𝛽 of Rectangle-Search in which

⌊(𝑘−9)/5⌋ > 5𝐷+8. Some agent locates the treasure in 𝛽 in 𝑓𝑘(𝑂(𝐷))+𝑂(1) rounds

in expectation.

Proof. Let 𝑖 be a random variable representing the number of Explorers that enter

the Search Phase before the treasure is located. By Lemma 3.35, 𝑖 ≤ 5𝐷 + 8. Thus,

we must have 𝑖 < ⌊(𝑘 − 9)/5⌋. From Lemma 3.16, we know that at least ⌊(𝑘 − 9)/5⌋

Explorers eventually enter the phase. Thus, there is at least one Explorer which does

not complete the Allocation Phase by the round in which some agent locates the

treasure.

Let 𝑋𝑖+1 be a random variable representing the 𝑖+1𝑡ℎ Explorer to enter the Search

Phase in any particular branch of 𝛽. By our definition of 𝑖, 𝑋𝑖+1 does not complete

the Allocation Phase by the round in which the treasure is located. So, to upper

bound the expected number of rounds until the treasure is found we can upper bound

the expected number of rounds until 𝑋𝑖+1 completes the Allocation Phase.

We compute the expected number of rounds until 𝑋𝑖+1 completes the Allocation

Phase conditioned on 𝑋𝑖+1 executing Part A, and on it executing Part B. We will see

that in either case, the expected number of rounds is at most 𝑓𝑘(𝑂(𝐷)) + 𝑂(1), so

then we can use the law of Total Expectation to conclude that the expected number

of rounds is always at most 𝑓𝑘(𝑂(𝐷)) + 𝑂(1).

We first consider the case where 𝑋𝑖+1 executes Part B of the Allocation Phase,

because we will use this reasoning in the case where 𝑋𝑖+1 executes Part A. By

Lemma 3.14, at most 14 agents execute Part A of the Allocation Phase, and by

Lemma 3.13, 𝑋𝑖+1 is the 5(𝑖 + 1)𝑡ℎ agent to begin executing Part B. So we have that
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𝑋𝑖+1 must have been at most the 14 + 5(𝑖 + 1)𝑡ℎ agent to complete the Separation

Phase.

By the definition of 𝑓𝑘, the expected number of rounds until 𝑋𝑖+1 completes the

Separation Phase is at most 𝑓𝑘(14 + 5(𝑖 + 1)). By Lemma 3.26, 𝑋𝑖+1 only spends

𝑂(1) rounds in the Allocation Phase, so the expected number of rounds before 𝑋𝑖+1

completes the Allocation Phase is 𝑓𝑘(14 + 5(𝑖+ 1)) +𝑂(1). By Lemma 3.35, we have

𝑖 = 𝑂(𝐷), so this simplifies to 𝑓𝑘(𝑂(𝐷)) + 𝑂(1).

If 𝑋𝑖+1 executes Part A of the Allocation Phase, then by Lemma 3.18 we know

that it completes the Allocation Phase exactly two rounds after the first Part B

Explorer. By the above reasoning, the first Part B Explorer is at most the 19𝑡ℎ agent

to complete the Separation Phase, so it does so by round 𝑓𝑘(19) in expectation. So

then 𝑋𝑖+1 completes the phase by round 𝑓𝑘(19) + 2 in expectation.

The expected number of rounds before 𝑋𝑖+1 completes the Allocation Phase is

𝑓𝑘(𝑂(𝐷)) + 𝑂(1) if 𝑋𝑖+1 executes Part B, and 𝑓𝑘(19) + 2 ≤ 𝑓𝑘(𝑂(𝐷)) + 𝑂(1) if 𝑋𝑖+1

executes Part A. Applying the law of Total Expectation, we know that the expected

number of rounds until 𝑋𝑖+1 completes the Allocation Phase is 𝑓𝑘(𝑂(𝐷)) + 𝑂(1).

Lemma 3.37. Consider a probabilistic execution 𝛽 of Rectangle-Search in which

⌊(𝑘 − 9)/5⌋ ≤ 5𝐷 + 8. Some agent locates the treasure in 𝛽 in 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘)

rounds in expectation.

Proof. Clearly ⌊(𝑘 − 9)/5⌋ ≤ 5𝐷 + 8 implies 𝑘 = 𝑂(𝐷). Since 𝑘 is small relative to

𝐷 in this case, we will upper bound the expected number of rounds until all agents

complete the Separation Phase, and then analyze the number of rounds after that

until the treasure is located.

Let 𝑋𝑗 be a random variable representing the last Explorer to enter the Search

Phase in any particular branch of 𝛽. Since 𝑋𝑗 clearly completes the Separation

Phase by the round in which the last agent does so, we know that 𝑋𝑗 completes the
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Separation Phase by the end of round 𝑓𝑘(𝑘) in expectation.

By Lemma 3.26, if 𝑋𝑗 executes Part B of the Allocation Phase, it spends 𝑂(1)

rounds in that phase, so in expectation, after 𝑓𝑘(𝑘) + 𝑂(1) rounds, 𝑋𝑗 enters the

Search Phase. By the same reasoning as in Lemma 3.36, if 𝑋𝑗 executes Part A

of the Allocation Phase, it completes the Allocation Phase in 𝑓𝑘(19) + 2 rounds in

expectation. As in the previous lemma, we can apply the law of Total Expectation

to conclude that the expected number of rounds until 𝑋𝑗 completes the Allocation

Phase is 𝑓𝑘(𝑘) + 𝑂(1).

By Theorem 3.24, after 𝑋𝑗 completes the Allocation Phase, levels 0 through 3

have been completely searched. Applying Lemma 3.30 with 𝑖 = 𝑗 and 𝑑 = 𝐷 + 2, we

have that levels 4 through 𝐷 + 2 are searched once 𝑋𝑗 has been in the Search Phase

for 𝑂(𝐷 + 𝐷2/𝑗) rounds. Combining this with the previous reasoning, we have that

the expected number of rounds until levels 0 through 𝐷 + 2 are searched completely

is 𝑓𝑘(𝑘) + 𝑂(𝐷 + 𝐷2/𝑗).

Using the facts that 𝑘 = 𝑂(𝐷) and 𝑗 = Θ(𝑘) (Theorem 3.16), this simplifies to

𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘), concluding this proof.

Theorem 3.38. Consider a probabilistic execution 𝛽 of Rectangle-Search. Some

agent locates the treasure in 𝛽 in 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘) rounds in expectation.

Proof. By Lemma 3.36, the expected number of rounds until the treasure is located if

⌊(𝑘−9)/5⌋ > 5𝐷+8 is 𝑓𝑘(𝑂(𝐷))+𝑂(1). If ⌊(𝑘−9)/5⌋ ≤ 5𝐷+8, then by Lemma 3.37

the expected number of rounds until the treasure is located is 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘).

In either case, the expected number of rounds until the treasure is located is at

most 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘), so we can conclude that the expected number of rounds

until some agent locates the treasure in 𝛽 is 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘).

Now, we can apply our upper bound for 𝑓𝑘 from Section 3.1.3 to upper bound the

expected runtime of Rectangle-Search.
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Theorem 3.39. Consider a probabilistic execution 𝛽 of Rectangle-Search. Some

agent locates the treasure in 𝛽 in 𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in expectation.

Proof. This is the result of applying Lemma 3.9 to Lemma 3.38.

Recall in Section 3.1.3 that we conjectured an even tighter bound for 𝑓𝑘. Apply-

ing this tighter bound results in another conjecture specifying a tighter bound for

Rectangle-Search.

Conjecture 3.40. Consider a probabilistic execution 𝛽 of Rectangle-Search.

Some agent locates the treasure in 𝛽 in 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘 + log 𝑘) rounds in

expectation.

Intuition. This is the result of applying Conjecture 3.10 to Lemma 3.38.
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Chapter 4

Improving the Runtime

In this chapter, we will describe an algorithm Hybrid-Search. This algorithm lo-

cates the treasure in 𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in expectation. Furthermore, we

conjecture that it locates the treasure in 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘) rounds in expec-

tation. Like in [2], Hybrid-Search combines an algorithm Rectangle-Search,

which locates the treasure efficiently when 𝐷 is large relative to 𝑘, with an algorithm

Geometric-Search, which locates the treasure efficiently when 𝐷 is small relative

to 𝑘.

We will note that while Rectangle-Search alone locates the treasure in 𝑂(𝐷 ·

log 𝑘+𝐷2/𝑘) rounds in expectation (𝑂(𝐷·log log 𝑘+𝐷2/𝑘+log 𝑘) by Conjecture 3.40),

it is guaranteed to locate the treasure eventually as long as 𝑘 ≥ 19. As we will see,

Hybrid-Search only finds the treasure at all with high probability. So, it is possible

(although unlikely), that an execution of Hybrid-Search could fail to locate the

treasure.

4.1 The Geometric-Search Algorithm

Geometric-Search is a simple algorithm which locates the treasure with high

probability when 𝐷 ≤ (log 𝑘)/2. To execute Geometric-Search, an agent uses
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𝛿 = 𝛿-Geometric and 𝑀 = 𝑀-Geometric, with the states and initial values

defined in the following section.

4.1.1 The Algorithm

Informal Description

The agent begins by randomly choosing a quadrant to explore. Without loss of

generality, assume that the agent chooses the north-east quadrant. The agent begins

by moving east once. In the next round, with probability 1/2 it moves east again, and

with probability 1/2 it moves north. It repeats this process as long as it continues

moving east. Once it moves north once, it moves north in every future round.

Formal Description

Each state 𝑠 ∈ 𝑆 contains the following variables. The variables that are not used in
this algorithm are omitted here.

𝑞𝑢𝑎𝑑: member of {1, 2, 3, 4,none}, initially none
𝑐𝑜𝑖𝑛: member of {heads,tails}, initially heads

𝛿-Geometric(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.quad = none

𝑐𝑜𝑖𝑛1 := result of fair coin toss
𝑐𝑜𝑖𝑛2 := result of fair coin toss
if 𝑐𝑜𝑖𝑛1 = heads and 𝑐𝑜𝑖𝑛2 = heads

𝑠.quad := 1
elseif 𝑐𝑜𝑖𝑛1 = heads and 𝑐𝑜𝑖𝑛2 = tails

𝑠.quad := 2
elseif 𝑐𝑜𝑖𝑛1 = tails and 𝑐𝑜𝑖𝑛2 = heads

𝑠.quad := 3
elseif 𝑐𝑜𝑖𝑛1 = tails and 𝑐𝑜𝑖𝑛2 = tails

𝑠.quad := 4
elseif 𝑠.coin = heads

𝑠.coin := result of fair coin toss
return 𝑠
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𝑀-Geometric(𝑠)
if (𝑠.quad = 1 and 𝑠.coin = tails) or (𝑠.quad = 2 and 𝑠.coin = heads)

return north
elseif (𝑠.quad = 1 and 𝑠.coin = heads) or (𝑠.quad = 4 and 𝑠.coin = tails)

return east
elseif (𝑠.quad = 3 and 𝑠.coin = tails) or (𝑠.quad = 4 and 𝑠.coin = heads)

return south
elseif (𝑠.quad = 3 and 𝑠.coin = heads) or (𝑠.quad = 2 and 𝑠.coin = tails)

return west
return none

4.1.2 Correctness

We begin by showing that if the treasure is located close to the origin, then it is

very likely that some agent executing Geometric-Search will locate it. Before

presenting the proof, we introduce a Chernoff bound that will be useful through this

chapter. It states that for a Bernoulli random variable 𝑋, for any 𝜖 > 0 we have

𝑃 (𝑋 < (1 − 𝜖) · 𝐸[𝑋]) ≤ 1

𝑒(𝜖2·𝐸[𝑋])/2
.

With this in mind, we present the following lemma.

Lemma 4.1. Consider a probabilistic execution 𝛽 of Geometric-Search where

𝑘 ≥ 19. If 𝐷 ≤ (log 𝑘)/2, then the probability that no agent locates the treasure in 𝛽

is at most 1/𝑒
√
𝑘/8−1.

Proof. Say that the treasure is located in some cell 𝑐 with coordinates (𝑥, 𝑦) for some

𝑥 > 0, 𝑦 ≥ 0. Some agent 𝐴 which is exploring the north-east quadrant will begin by

moving east once. It will explore cell 𝑐 if it moves east for 𝑥−1 more rounds and then

moves north. So, the probability that 𝐴 will explore cell 𝑐, given that it is exploring

the north-east quadrant, is 1/2𝑥.

Let 𝑛 be the number of agents exploring the north-east quadrant. Let 𝐹 be the
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event that no agent explores 𝑐. Then we have

𝑃 (𝐹 ) =

(︂
1 − 1

2𝑥

)︂𝑛

≤ 1

𝑒(𝑛/2𝑥)
.

In expectation, 𝑘/4 agents will explore each quadrant. We will show that the proba-

bility that very few agents explore any given quadrant is small. Applying the Chernoff

bound from above with 𝜖 = 1/2 yields

𝑃 (𝑛 < 𝑘/8) ≤ 1

𝑒𝑘/32
.

Now we can use the law of Total Probability to upper bound the probability that no

agent explores 𝑐.

𝑃 (𝐹 ) = 𝑃

(︂
𝐹

⃒⃒⃒⃒
𝑛 ≥ 𝑘

8

)︂
· 𝑃
(︂
𝑛 ≥ 𝑘

8

)︂
+ 𝑃

(︂
𝐹

⃒⃒⃒⃒
𝑛 <

𝑘

8

)︂
· 𝑃
(︂
𝑛 <

𝑘

8

)︂
≤ 1

𝑒𝑘/(8·2𝑥)
· 1 + 1 · 1

𝑒𝑘/32

≤ 2

𝑒𝑘/(8·2𝑥)

≤ 1

𝑒𝑘/(8·2𝑥)−1.

We know that 0 < 𝑥 ≤ (log 𝑘)/2. Since this probability is maximized when 𝑥 =

(log 𝑘)/2, for all cells 𝑐 at most (log 𝑘)/2 steps from the origin we have

𝑃 (𝐹 ) ≤ 1

𝑒𝑘/(8·2log 𝑘/2)−1
=

1

𝑒
√
𝑘/8−1

,

proving the claim.

4.1.3 Analysis

In this section, we show that if an agent executing Geometric-Search did locate

the treasure, then it must have done so very efficiently.
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Lemma 4.2. Let 𝛼 be a fixed execution of Geometric-Search in which some agent

𝐴 locates the treasure. Then 𝐴 locates the treasure in 𝑂(𝐷) rounds.

Proof. Say that the treasure is located in some cell (𝑥, 𝑦). Without loss of generality

assume that 𝐴 was exploring the north-east quadrant. To have located the treasure,

𝐴 must have moved east 𝑥 times followed by north 𝑦 times, and therefore located the

treasure in exactly 𝐷 rounds.

4.2 The Hybrid-Search Algorithm

Finally, we present the algorithm Hybrid-Search, which combines the strengths of

both Rectangle-Search and Geometric-Search. To execute Hybrid-Search,

an agent uses 𝛿 = 𝛿-Hybrid and 𝑀 = 𝑀-Hybrid, with the states and initial values

as defined below.

4.2.1 The Algorithm

Informal Description

The agent begins by choosing whether to execute Rectangle-Search or Geometric-

Search, each with probability 1/2. If it chooses Geometric-Search, it immedi-

ately begins executing Geometric-Search. If it chooses Rectangle-Search, it

pauses for one round, and then begins executing Rectangle-Search.

Formal Description

Each state 𝑠 ∈ 𝑆 contains the following variables. The variables that are not used
directly in the following functions are omitted here.

𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚: member of {geometric,rectangle,none}, initially none
𝑝ℎ𝑎𝑠𝑒: member of {separation,allocation, search,none},

initially none
𝑝𝑎𝑢𝑠𝑒: boolean, initially false
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𝛿-Hybrid(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.algorithm = none

𝑐𝑜𝑖𝑛 := result of fair coin toss
if 𝑐𝑜𝑖𝑛 = heads

𝑠.algorithm = rectangle
𝑠.phase = separation
Initialize other state variables for Separation Phase
𝑠.pause = true

elseif 𝑐𝑜𝑖𝑛 = tails
𝑠.algorithm = geometric
Initialize other state variables for Geometric-Search

elseif 𝑠.algorithm = rectangle
if 𝑠.pause

𝑠.pause := false
else

𝑠 := 𝛿-Rectangle(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
if 𝑠.algorithm = geometric

𝑠 := 𝛿-Geometric(𝑠, 𝑎𝑙𝑜𝑛𝑒, 𝑜𝑟𝑖𝑔𝑖𝑛)
return 𝑠

𝑀-Hybrid(𝑠)
if 𝑠.algorithm = rectangle and not 𝑠.pause

return 𝑀-Rectangle(𝑠)
elseif 𝑠.algorithm = geometric

return 𝑀-Geometric(𝑠)
return none

4.2.2 Correctness

In round 1, agents randomly decide which algorithm to execute. We have already

proved the correctness of Rectangle-Search and Geometric-Search. So, to

prove the correctness of Hybrid-Search, we just need to prove that the agents

executing the two algorithms will not interfere with each other.

Lemma 4.3. Let 𝛼 be a fixed execution of Hybrid-Search in which at least one

agent executes each of Rectangle-Search and Geometric-Search. Let 𝐴 be

an agent that chooses to execute Rectangle-Search and 𝐴′ an agent that chooses

to execute Geometric-Search. Then after round 1, 𝐴 and 𝐴′ never share a cell.
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Proof. In round 2, 𝐴′ moves in a randomly chosen direction, and 𝐴 remains at the

origin (because Rectangle-Search agents pause once before beginning to execute

Rectangle-Search). In round 3, 𝐴 will begin executing Rectangle-Search.

𝐴′ moves further from the origin every round. Since it begins moving in the round

before 𝐴, and 𝐴 can only move once per round, 𝐴 will always be closer to the origin

than 𝐴′, and thus will never share its cell.

As we have mentioned, there are some executions of Hybrid-Search in which

no agent ever locates the treasure. In the following lemma, we upper bound the

probability that no agent executing Hybrid-Search ever locates the treasure.

First, we introduce a definition. If 𝐷 ≤ log (𝑘/3)/2, we say that an execution

of Hyrbid-Search is correct if an agent executing Geometric-Search locates

the treasure. If 𝐷 > log (𝑘/3)/2, we say that an execution of Hybrid-Search is

correct if an agent executing Rectangle-Search locates the treasure. Clearly if an

execution of Hybrid-Search is correct, then some agent locates the treasure. Thus,

we will upper bound the probability that Hybrid-Search is not correct, which will

upper bound the probability that no agent executing Hybrid-Search locates the

treasure.

Lemma 4.4. Consider a probabilistic execution 𝛽 of Hybrid-Search where 𝑘 ≥ 57.

The probability that 𝛽 is not correct is at most 1/𝑒
√

𝑘/3/8−2.

Proof. First we consider the case where 𝐷 > log (𝑘/3)/2. Let 𝑛𝑅 be the number

of agents that choose to execute Rectangle-Search in 𝛽. If 𝑛𝑅 ≥ 19, then by

Lemma 3.34 the probability that some agent locates the treasure eventually is 1. So,

we want to upper bound the probability that 𝑛𝑅 < 19 ≤ 𝑘/3.

Note that 𝐸[𝑛𝑅] = 𝑘/2. So then applying our Chernoff bound with 𝜖 = 1/3 yields

𝑃 (𝑛𝑅 < 19) ≤ 𝑃 (𝑛𝑅 < 𝑘/3) ≤ 1

𝑒𝑘/36
.
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So then we know that if 𝐷 > log (𝑘/3)/2, the probability that 𝛽 is not correct is at

most 1/𝑒𝑘/36.

Now we consider the case where 𝐷 ≤ log (𝑘/3)/2. Let 𝐹 be the event that no

agent executing Geometric-Search locates the treasure in 𝛽, and let 𝑛𝐺 be the

number of agents that execute Geometric-Search. If 𝑛𝐺 ≥ 𝑘/3, then we can apply

Lemma 4.1. Then, we show that it is very unlikely that 𝑛𝐺 < 𝑘/3, and combine the

results using the law of Total Probability.

𝑃 (𝐹 ) = 𝑃

(︂
𝐹

⃒⃒⃒⃒
𝑛𝐺 ≥ 𝑘

3

)︂
· 𝑃
(︂
𝑛𝐺 ≥ 𝑘

3

)︂
+ 𝑃

(︂
𝐹

⃒⃒⃒⃒
𝑛𝐺 <

𝑘

3

)︂
· 𝑃
(︂
𝑛𝐺 <

𝑘

3

)︂
≤ 1

𝑒
√

𝑘/3/8−1
· 1 + 1 · 1

𝑒𝑘/36

≤ 1

𝑒
√

𝑘/3/8−2
.

Our bound is tighter for 𝐷 > log (𝑘/3)/2, so we can conclude that in general, the

probability that Hyrbid-Search is not correct is at most 1/𝑒
√

𝑘/3/8−2, as desired.

4.2.3 Analysis

Now that we have assessed the likelihood that Hybrid-Search will locate the trea-

sure, it remains to upper bound the expected number of rounds until it does so.

Theorem 4.5. Consider a probabilistic execution 𝛽 of Hybrid-Search with 𝑘 ≥ 57

which is correct. Then the expected number of rounds until some agent locates the

treasure in 𝛽 is 𝑂(𝐷) if 𝐷 ≤ log (𝑘/3)/2, and 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘) otherwise.

Proof. First consider the case where 𝐷 ≤ log (𝑘/3)/2. By our assumption that 𝛽

is correct, we know that in this case an agent executing Geometric-Search will

locate the treasure. By Lemma 4.2, this takes 𝑂(𝐷) rounds.

Now consider the case where 𝐷 > log (𝑘/3)/2. Let 𝑇 be a random variable
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representing the round in which the treasure is located in 𝛽. Let 𝑛𝑅 be the number

of agents that execute Rectangle-Search. If 𝑛𝑅 ≥ 𝑘/3, then by Theorem 3.38

we know that the expected number of rounds until some agent locates the treasure

is at most 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘). We know that 𝑛𝑅 ≥ 1, so even when 𝑛𝑅 < 𝑘/3,

then the expected number of rounds until some agent locates the treasure is at most

𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2). We can combine these cases using the law of Total Probability.

𝐸[𝑇 ] ≤ 𝐸

[︂
𝑇

⃒⃒⃒⃒
𝑛𝑅 ≥ 𝑘

3

]︂
· 𝑃
(︂
𝑛𝑅 ≥ 𝑘

3

)︂
+ 𝐸

[︂
𝑇

⃒⃒⃒⃒
𝑛𝑅 <

𝑘

3

]︂
· 𝑃
(︂
𝑛𝑅 <

𝑘

3

)︂
≤
(︀
𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘)

)︀
· 1 +

(︀
𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2)

)︀
· 1

𝑒𝑘/36

≤ 𝑓𝑘(𝑂(𝐷)) + 𝑂(𝐷2/𝑘),

as desired.

If 𝑓𝑘(𝑖) = Θ(𝑖 · log 𝑘), then Rectangle-Search locates the treasure in the

same asymptotic number of rounds as Hybrid-Search. However, if, as we suggest

in Conjecture 3.10, 𝑓𝑘(𝑖) = 𝑂(log 𝑘 + 𝑖 · log log 𝑘), then Hybrid-Search locates

the treasure in 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘) rounds in expectation, which is faster than

the 𝑂(𝐷 · log log 𝑘 + 𝐷2/𝑘 + log 𝑘) rounds it would take Rectangle-Search in

expectation. We note that if 𝑓𝑘(𝐷) = 𝑂(log 𝑘+ 𝑖), then Hybrid-Search locates the

treasure in the optimal 𝑂(𝐷+𝐷2/𝑘) rounds in expectation. While we do not believe

this is the case, we have no proof otherwise.
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Chapter 5

Conclusion

In some sense, loneliness detection is the minimal form of communication, because

agents only exchange a single bit of information. In this paper, we have shown that

with this small amount of communication, agents are able to locate the treasure in

𝑂(𝐷 · log 𝑘 + 𝐷2/𝑘) rounds in expectation. This is an improvement upon the lower

bound of Ω((𝐷 + 𝐷2/𝑘) · log1+𝜖 𝑘) for some 𝜖 > 0 which is required of agents which

have no ability to communicate and no knowledge of 𝑘 [1]. In fact, this lower bound

applies to agents with unlimited memory. For our algorithms, we only require that

our agents possess constant memory.

In this paper we presented two algorithms which locate the treasure in 𝑂(𝐷·log 𝑘+

𝐷2/𝑘) rounds in expectation: Rectangle-Search and Hybrid-Search, which

uses Rectangle-Search as a subroutine. The benefit of using Hybrid-Search is

only clear when considered with Conjecture 3.10. If our conjecture is correct, then

Rectangle-Search locates the treasure in 𝑂(𝐷 · log log 𝑘+𝐷2/𝑘+log 𝑘) rounds in

expectation, while Hybrid-Search locates it in only 𝑂(𝐷 · log log 𝑘 +𝐷2/𝑘) rounds

in expectation.

Future work should focus on developing a tight bound for the Separation com-

pletion function 𝑓𝑘. This could begin with a proof of Conjecture 3.10, which states

103



that 𝑓𝑘(𝑖) = 𝑂(log 𝑘 + 𝑖 · log log 𝑘). An even better outcome would be to prove

that 𝑓𝑘(𝑖) = 𝑂(log 𝑘 + 𝑖), which would prove that Hybrid-Search is an optimal

algorithm.

If Hybrid-Search cannot be shown to locate the treasure in 𝑂(𝐷+𝐷2/𝑘) rounds

in expectation, then it is still an open question as to whether it is possible to locate the

treasure in 𝑂(𝐷+𝐷2/𝑘) rounds in this model. Future work may focus on developing

a different algorithm for locating the treasure which meets this bound, or proving a

tighter lower bound on the number of rounds required to locate the treasure in this

model.

Finally, it may be interesting to study whether Hybrid-Search can be modified

to work in more general models. For example, in [2], Emek et al. show how to

modify their algorithm to work in the case where the agents move asynchronously.

In [5], Langner et al. show how to modify the algorithm from [2] to work in the

event of failures. However, we do note that the simple error-handling strategy of

duplicating each agent will not work in this model, because duplicates would interfere

with loneliness detection.
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