
Timed Virtual Stationary Automata for Mobile Networks

Shlomi Dolev, Limor Lahiani∗

Department of Computer Science
Ben-Gurion University

Beer-Sheva, 84105, Israel
{dolev, lahiani}@cs.bgu.ac.il

Seth Gilbert, Nancy Lynch, Tina Nolte†

MIT CSAIL
Cambridge, MA 02139

{sethg, lynch, tnolte}@theory.csail.mit.edu

Abstract

We define a programming abstraction for mobile networks called theTimed Virtual
Stationary Automataprogramming layer, consisting of real mobile clients, virtual timed
I/O automata called virtual stationary automata (VSAs), and a communication service con-
necting VSAs and clients. The VSAs are located at prespecified regions that tile the plane,
defining a static virtual infrastructure. We sketch an algorithm to emulate a timed VSA us-
ing the real mobile nodes that are currently residing in the VSA’s region. We also discuss
examples of applications, such as intruder detection and tracking, whose implementations
benefit from the simplicity obtained through use of the VSA abstraction.

1 Introduction
The task of designing algorithms for constantly changing networks is difficult. Highly dynamic
networks, however, are becoming increasingly prevalent, such as in the context of pervasive and
ubiquitous computing, and it is therefore important to develop techniques to simplify this task.

Here we focus on mobile ad-hoc networks, where mobile processors attempt to coordi-
nate despite minimal infrastructure support. This paper develops new techniques to cope with
this dynamic, heterogeneous, and chaotic environment. We mask the unpredictable behavior
of mobile networks by defining and emulating avirtual infrastructure, consisting oftiming-
awareand location-awaremachines at fixed locations, that mobile nodes can interact with.
The static virtual infrastructure allows application developers to use simpler algorithms —
including many previously developed for fixed networks.

There are a number of prior papers that take advantage of geography to facilitate the co-
ordination of mobile nodes. For example, the GeoCast algorithms [1, 20], GOAFR [14], and
algorithms for “routing on a curve” [19] route messages based on the location of the source and
destination, using geography to delivery messages efficiently. Other papers [11,15,22] use ge-
ographic locations as a repository for data. These algorithms associate each piece of data with
a region of the network and store the data at certain nodes in the region. This data can then
be used for routing or other applications. All of these papers take a relatively ad-hoc approach
to using geography and location. We suggest a more systematic approach; many algorithms
presented in these papers could be simplified by using a fixed,predictable timing-enabled in-
frastructure.

In industry there have been a number of attempts to provide specialized applications for
ad-hoc networks by organizing some sort of virtual infrastructure over the mobile nodes. Pack-
etHop and Motorola envision mobile devices cooperating to form mesh networks to provide

∗Partially supported by IBM faculty award, NSF grant and the Israeli ministry of defense.
†Supported by DARPA contract F33615-01-C-1896, NSF ITR contract CCR-0121277, and USAF, AFRL

contract FA9550-04-1-0121.



communication in areas with wireless-broadcast devices but little fixed infrastructure [16, 27].
These virtual infrastructures could allow on-the-fly network formation that can be used at dis-
aster sites, or areas where fixed infrastructure does not exist or has been damaged. BMW and
other car manufacturers are developing systems that allow cars to communicate about local
road or car conditions, aiding in accident avoidance [12,18,23,26].

The above examples tackle very specific problems, like routing or distribution of sensor
data. A more general-purpose virtual infrastructure, thatorganizes mobile nodes into general
programmable entities, can make a richer set of applications easier to provide. For example,
with the advent of autonomous combat drones [25], the complexity of algorithms coordinating
the drones can make it difficult to provide assurance to an understandably concerned public that
these firepower-equipped autonomous units are coordinating properly. With a formal model of
a general and easy-to-understand virtual infrastructure available, it would be easier to both
provide and prove correct algorithms for performing sophisticated coordination tasks.
Virtual Stationary Automata programming layer. The programming abstraction we intro-
duce in this paper consists of a static infrastructure of fixed, timed virtual machines with an
explicit notion of real-time, calledVirtual Stationary Automata(VSAs), distributed at known
locations over the plane, and emulated by the real mobile nodes in the system. Each VSA
represents a predetermined geographic area and has broadcast capabilities similar to those of
the mobile nodes, allowing nearby VSAs and mobile nodes to communicate with one another.
This programming layer provides mobile nodes with a virtualinfrastructure with which to co-
ordinate their actions. Many practical algorithms depend significantly on timing, and many
mobile nodes have access to reasonably synchronized clocks. In the VSA programming layer,
the virtual automata also have access tovirtual clocks, guaranteed to not drift too far from
real-time. These virtual automata can then run programs whose behaviour might be dependent
on the continuous evolution of timing variables.

Our virtual infrastructure differs in key ways from others that have previously been pro-
posed for mobile ad-hoc networks. The GeoQuorums algorithm[6, 7] was the first to use
virtual nodes; the virtual nodes in that work are atomic objects at fixed geographical locations.
More general virtual mobile automata were suggested in [5];our automata are stationary, and
are arranged in a connected pattern that is similar to a traditional wired network. Our automata
also have more powerful computational capabilities than those in [5] in that ours include timing
capabilities, which are important for many applications. Finally, we use a different implemen-
tation stategy for virtual nodes than in [5], incurring lesscommunication cost and enabling us
to provide virtual clocks that are never far from real-time.
Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by the real
mobile nodes in the network. Each mobile node is assumed to have access to a GPS service
informing it of the time and region it is currently in. A VSA for a geographic region is then
emulated by a subset of the mobile nodes populating its region: the VSA state is maintained in
the memory of the real nodes emulating it, and the real nodes perform VSA actions on behalf
of the VSA. The emulation is shared by the nodes while one leader node is responsible for
performing the outputs of the VSA and keeping the other emulators consistent. If no mobile
nodes are in the region, the VSA fails; if mobile nodes later arrive, the VSA restarts.

An important property of our implementation is that it can bemade self-stabilizing. Self-
stabilization [3, 4] is the ability to recover from an arbitrarily corrupt state. This property is
important in long-lived, chaotic systems where certain events can result in unpredictable faults.
For example, transient interference may disrupt the wireless communication. This might result
in inconsistency and corruption in the emulation of the VSA.A self-stabilizing implemen-
tation can recover after corruptions to correctly emulate aVSA. Details on the addition of



self-stabilization to this work can be found in [8].
Applications. We will present an overview of some applications that are significantly sim-
plified by the VSA infrastructure. We consider both low-level services, such as routing and
location management, as well as more sophisticated applications, such as tracking, motion
coordination, traffic management, and traffic coordination. The key idea in all cases is to lo-
cate data and computation at timed VSAs throughout the network, thus relying on the virtual
infrastructure to simplify coordination in ad-hoc networks.

A longer version of this paper can be found in [8].

2 Datatypes and system model
The system consists of a finite collection of mobile client processes moving in a closed, con-
nected, and bounded region of the 2D plane calledR. RegionR is partitioned into predeter-
mined connected subregions calledtilesor regions, labeled with unique ids from the set of tile
identifiersU . In practice it may be convenient to restrict tiles to be regular polygons such as
squares or hexagons. We define a neighbor relationnbrs on ids fromU : two tiles u andv

are neighbors iff the supremum distance between points intile(u) andtile(v) is bounded by a
constantrvirt.

Each mobile node (or client)Cp, p ∈ P , the set of mobile node ids, is modeled as a mobile
timed I/O automaton whose location inR at any time is referred to asloc(p). Mobile node
speed is bounded by a constantvmax. We assume each node occasionally (everyεsample time)
receives information about the time and its current regionu throughGPSupdate(u, now)p.
We assume the node’s local clocknow progresses at the rate of real-time.

Each client is equipped with a local broadcast service,P -bcast, with minimum broadcast
radiusrreal and message delayd. This service allows each clientCp to broadcast a message to
all nearby clients throughbcast(m)p and receive messages broadcast by other clients through
brcv(m)p actions. We assume a local broadcast service guarantees twoproperties: integrity
and reliable local delivery.Integrity guarantees that every message received was previously
sent.Reliable local deliveryguarantees that a transmission will be received by nearby nodes:
If client Cp broadcasts a message, then every clientCq within rreal distance ofCp’s transmission
location during the transmission interval of lengthd receives the message before the end of the
interval.

Clients are susceptible to stopping failures. After a stopping failure, a client performs
no additional local steps until restarted. If restarted, itstarts operating from an initial state.
In [10] we extend this work to the case where the client can also suffer from nondeterministic
changes to program state. Additional arbitrary external interface actions and local state used
by algorithms running at the client are allowed. For simplicity local steps take no time.

3 Virtual Stationary Automata programming layer
Here we describe theVirtual Stationary Automataprogramming layer. This abstraction in-
cludes the real mobile nodes discussed in the last section, the virtual stationary automata
(VSAs) that the real nodes emulate, and a local broadcast service, V-bcast, between them (see
Figure 1). The layer allows developers to write programs forboth mobile clients and stationary
tiles of the network as though broadcast-equipped virtual machines exist in those tiles. We
begin by describing the properties of VSAs and the V-bcast service.

3.1 Virtual Stationary Automata
An abstract VSA is a timing-capable virtual machine. We formally describe such a timed
machine for a tileu, Vu, as a TIOA whose program is a tuple of its action signature,sigu,
valid states,statesu, a start state function,startu, mapping clock values to appropriate start



states, a discrete transition function,δu, and a set of valid trajectories of the machine,τu.
Trajectories [13] describe state evolution over intervalsof time. The state can be referred to as
vstate.

.

.

.

ubcast(m)

ubrcv(m) uV

.

.

.

vDout[e]

vV

vbcast(m)

vbrcv(m)

uDout[e]

GPS

q

qbrcv(m)
Cq

pbcast(m)

pbrcv(m)
Cp

bcast(m)

p

q

V−bcast

GPSupdate(u,t)

GPSupdate(v,t)

Figure 1: Virtual Stationary Automata abstrac-
tion. VSAs and clients communicate using the
V-bcast service. VSA bcasts may be delayed in
Dout buffers.

A virtual automatonVu’s external inter-
face is restricted to be similar to that of the
real nodes, including only stopping failure
and restart inputs and the ability to broad-
cast and receive messages. As with mobile
clients, the VSA clock valuevstate.now

is assumed to progress at the rate of real-
time and, outside of failure, equal real-time.
Since a VSA is emulated by physical nodes
(corresponding to clients) in its region, its
failures are defined in terms of client move-
ments and failures in its region: (1) If no
clients are in the region, the VSA is crashed,
(2) If Vu is failed but a clientCp enters the
region and remains for at leasttrestart time,
then in that interval of timeVu restarts, and
(3) If no client failure occurs in an alive
VSA’s region over some interval, the VSA
does not suffer a failure during that interval.

3.2 V-bcast service
The V-bcast service is a “virtual” broadcast communicationservice with transmission radius
rvirt. It is similar to that of the real nodes’P -bcast service and implemented using theP -bcast
service. It allows broadcast communication between neighboring VSAs, between VSAs and
nearby clients, and between clients throughbcast andbrcv actions, as before. V-bcast guar-
antees the integrity property described forP -bcast, as well as a similar reliable local delivery
property. Thereliable local deliveryproperty for V-bcast is as follows: If a client or VSA in
a regionu transmits a message, then every client or VSA in regionu or neighboring regions
during the entire time interval starting at transmission and endingd later receives the message
by the end of the interval. (For this definition, due toGPSupdate lag, a client is still said to
be “in” regionu even if it has just left regionu but has not yet received aGPSupdate with the
change.)

Notice that V-bcast’s broadcast radius is different from that ofP -bcast; since virtual broad-
casts are performed using real broadcasts, the virtual transmission radius cannot be larger than
the real. Recallrvirt is the supremum distance between points in two neighboring tiles. V-bcast
then allows a real nodep and a VSA for tileu to communicate as long as the node is at most
rvirt distance from any point in tileu and a VSA to communicate with another VSA as long
as they are in neighboring tiles. The implementation of the V-bcast service using the mobile
clients’ P -bcast service introduces the requirement thatrvirt ≤ rreal − 2εsample · vmax. The
2εsample · vmax adjustment guarantees that two nodes emulating VSAs for tiles they have just
left (because they have not yet receivedGPSupdates that they’ve change tiles) can still receive
messages transmitted to each other.

3.3 Delay augmentation
While an emulation ofVu would ideally look identical to a legitimate execution ofVu, an
abstraction must reflect the possibility that, due to delaysresulting from message delay or real



node failure, the emulation ofVu may be slightly behind real-time and appear to be delayed
in performing output actions ofVu by up to a timee. The emulation ofVu is then called a
delay-augmented TIOA, an augmentation ofVu with timing perturbations composed withVu’s
output interface. These timing perturbations are represented with a buffer Dout[e]u, composed
with Vu’s bcast output. The buffer delays delivery of messages by some nondeterminstic time
[0, e]. Program actions ofVu must be written taking into account the emulation parametere,
just as it must the message delay factord.

4 Implementation of the VSA layer
We describe the implementation of a VSA by mobile clients in its tile in the network. At
a high level, the individual mobile clients in a tile share emulation of the virtual machine
through a deterministic state replication algorithm whilealso being coordinated somewhat by
a leader. We begin by describing a totally-ordered broadcast service and leader election service
for individual regions, also implemented using the underlying real mobile nodes, that we will
use in our replication algorithm. We then focus on describing the core emulation algorithm.

4.1 TOBcast service
To keep emulators’ state consistent, emulators must process the same sets of messages in the
same order. We accomplish this by using the emulators’ clocks andP -bcast service to imple-
ment a TOBcast service for each region and client. This service allows a clientCp in tile u

to broadcastm, TOBcast(m)u,p, and to have the message be received,TOBrcv(m, u)v,q, by
clients intile(u) and neighboring tiles exactlyd time later.

To implement this service, when a client wants toTOBcast m from itself or its tile, it tags
m with its current tile, time, message sequence number (incremented when the client sends
multiple messages at once), and the client id, and broadcasts it usingP -bcast. When a client
receives such a message from a client in its tile or a neighboring tile it holds the message in a
queue until exactlyd time has passed since the message’s timestamp. Messages that are exactly
d old are thenTOBrcved in order of sender id and sequence number, ordering the messages. To
avoid the use of shared variables, we include input and output actions so the TOBcast service
can inform the client whether all messages sent up tod time ago have been received.

4.2 Leader election service
Here we describe the specification for a leader election service required for our emulator im-
plementation. We divide time into timeslices of lengthtslice,tslice ≥ 4d, that begin on multiples
of tslice. The leader election service for a regionu then guarantees:
(1) There is at most one leader ofu at a time, and the leader is inu (or within εsample · vmax),
(2) If a processp becomes leader of regionu at some time, then at that time either:

(a) there was a prior leader of regionu during an interval starting at leastd afterp entered
u and ending after some multiple oftslice at least2d later, or

(b) there is no process inu where a prior leader such as in (a) can be found,
(3) If a process ceases being leader then it will be at leastd time before a new leader is chosen,
(4) For any two consecutive timeslices such that at least oneprocess is alive inu for both
timeslices and no failures occur in the latter timeslice, there will be a leader in one of the two
timeslices for at least2d time and until the end of the timeslice.

One simple heartbeat implementation of this specification is in [8]. If a process is leader, it
broadcasts aleaderhb message everytslice amount of time. Once it fails or leaves, the other
processes in the region will synchronously timeout the heartbeat and sendrestart messages,
from which the lowest id process that had previously heard a leader heartbeat at least3d time



after entering the tile is chosen as leader. If there is no such process, the lowest id process
becomes leader.

4.3 Emulator implementation
We describe a fault-tolerant implementation of a VSA emulator. We start with how our leader-
based emulation generally works and then address details. Signature, state, and trajectories for
the algorithm are in Figure 2 and the actions are in Figure 3. Line numbers refer to Figure 3.
Leader-based virtual machine emulation. In our VSA emulation, at most one mobile node
in a VSA’s tile is leader (chosen by leader election), with primary responsibility for emulating
the VSA and performing VSA outputs. A leader stores and updates the VSA state (including its
clock value) locally, simulating VSA actions based on it. When the leader receives a TOBcast
message, it places the message in a saved message queue (lines 33-37) from which it simulates
the VSA brcving (processing) the message (lines 39-45). If the VSA is to perform a local
action, the leader simulates its effect on the VSA state (lines 47-54). If the action is tobcast
a message, the leader puts the message in an outgoing queue (lines 53-54), to be removed and
TOBcasted with the tile as the source by the leader, in the VSA’s stead(lines 56-61).

For fault-tolerance, it is necessary to have more than just the leader maintaining a VSA. A
VSA is actually maintained by several emulators, includingat most one leader, each maintain-
ing and updating its local copy of the VSA state and saved message queue as above. However,
non-leader emulators, unlike leaders, do not transmit the VSA messages from their outgoing
queues, preventing multiple transmission of messages fromthe VSA. To keep emulators con-
sistent, the emulation trajectories are based on a determinized version of the VSA trajectories.
Emulation details. There are complications that arise from message delay and node failure:
Joining: When a node enters a new region, itTOBcasts ajoin (lines 23-31). Any process that
receives this message stores its timestamp as the latest join request (lines 63-65). If a leader has
processed all messages in its saved message queue andTOBcasted all messages in its outgoing
queue, it answers outstanding join requests byTOBcasting anupdate, containing a copy of
the leader’s VSA state (lines 67-74). The leader does not perform any additional VSA-related
transmissions until it receives this message (line 74). When any process that has been in the
region at least2d time receives theupdate, it adopts the attached VSA state as its own local
VSA state and erases its outgoing queue (lines 76-88). (If ithas not been in the region2d time,
its saved message queue may not have all messages too recent to be reflected in theupdate.)

t’

t

t−t’<d

virtual clock

real clock t’’

t’’

Figure 4: Relationship between virtual and
real-time. A virtual clock behind real-time
runs faster until it catches up.

Catching up to real-time: After receipt of an
update message, the VSA’s clock (and state)
can bed behind real-time. Intuitively, the VSA
emulation is “set back” whenever anupdate
message is received. To guarantee the VSA
emulation satisfies the specifications from Sec-
tion 3 (bounding the time the output trace of
the emulation may be behind that of the VSA
being emulated), the virtual clock must catch
up to real-time. This is done by having the vir-
tual clock advance more than twice as fast as
real-time until both are equal, after which they
increase at the same rate. This is illustrated in
Figure 4, where the virtual clock proceeds in
fits and starts relative to real-time, occasionally
falling behind and then catching up. It is formally described in Figure 2, lines 26-28. To guar-
antee that the virtual clock can catch up befored time, we require a leader to only transmit



Signature:
2 Input GPSupdate(v, t)p, v∈ U, t ∈ R

Input leader(val)u,p, val∈ Bool
4 Input TOBnext(t)u,p, t ∈ R

Input TOBrcv(m, v)u,p, v∈ {u}∪ nbrs(u)
6 Output TOBprobeu,p

Output TOBcast(m)u,p, m∈ (Msg× R)∪ {join}
8 ∪ ({update} × statesu)

Internal VSArcv(m)u,p

10 Internal VSAlocal(act)u,p, act∈ internal , output sigu

12 State:
analognow∈ R, current real time

14 reg∈ U, current reg, initially⊥
nextrcv, joinTS, leadTS, joinreq∈ R

16 vstate∈ statesu
oldsavedq, savedq, outq, queues of msg, timestamp pairs

Trajectories:
20satisfies

d(now) = 1
22constantreg, joinTS, joinreq, oldsavedq, savedq,

outq, nextrcv, leadTS
24τ(now).vstate= τu(τ (now).vstate.now)

if (vstate6=⊥ ∧ vstate.now≥ now-d) then
26if vstate.now< now then

d(vstate.now) = x, x > 2
28elsevstate.now= now

else constantvstate
30stops when

Any precondition is satisfied.

Figure 2: VSA emulator atp of Vu = 〈sigu, statesu, startu, δu, τu〉 - sig, state, trajectories.

Output TOBprobeu,p

2 Precondition:
nextrcv≤ now-d

4

Input TOBnext(t)u,p

6 Effect:
nextrcv← t

8

Input GPSupdate(v, t)p

10 Effect:
now← t

12 if reg 6= v then
reg← v

14 joinTS←∞

16 Input leader(val)u,p

Effect:
18 if (! val∨ joinTS> now-d) then

leadTS←∞
20 else if leadTS> now+ d then

leadTS← now
22

Output TOBcast(join)u,p

24 Precondition:
reg= u∧ joinTS> now

26 Effect:
joinTS← now

28 nextrcv← now-d
leadTS, joinreq←∞

30 savedq, oldsavedq, outq← ∅
vstate←⊥

32

Input TOBrcv(m, s)u,p, m.first /∈ {update, join}
34 Effect:

savedq← append(savedq, 〈m.first , now-d〉)
36 if (s= u∧∃ x, y: [outq= append(append(x, m), y) ]) then

outq← y
38

Internal VSArcv(m)u,p

40 Precondition:
vstate6= ⊥∧ 〈m, t〉 = head(savedq)

42 Effect:
vstate← δu(vstate, brcv(m))

44 oldsavedq← append(oldsavedq, head(savedq))
savedq← tail(savedq)

Internal VSAlocal(act)u,p

48Precondition:
vstate6=⊥6= δu(vstate, act) ∧ act= next(vstate, δu)

50nextrcv> now-d∧ savedq= ∅
Effect:

52vstate← δu(vstate, act)
if act= bcast(m) then

54outq← append(outq, 〈m, vstate.now〉)

56Output TOBcast(m)u,p

Precondition:
58reg= u∧ leadTS≤ now< nextrcv+ d∧m= head(outq)

vstate6= ⊥∧ vstate.now≥ now-d∧∀〈m, t〉∈ outq:t≥ now-e
60Effect:

outq← tail(outq)
62

Input TOBrcv(join, u)u,p

64Effect:
joinreq← now-d

66

Output TOBcast(〈update, vstate′〉)u,p

68Precondition:
reg= u∧ leadTS≤ now< nextrcv+d∧ [(vstate′= vstate∧ [vstate= ⊥

70∨ (vstate.now= now∧ outq= ∅= savedq∧ joinreq 6=∞) ]) ∨
(vstate′= ⊥∧ [vstate.now< now-d∨∃ 〈m,t〉∈ outq: t < now-e]) ]

72Effect:
joinreq←∞

74leadTS← now+ d

76Input TOBrcv(〈update, vstate′〉, u)u,p

Effect:
78if joinreq≤ now-2d then

joinreq←∞
80if (joinTS≤ now-2d∧ vstate′ =⊥) then

vstate← startu(now)
82savedq← ∅

else if joinTS≤ now-2d then
84if vstate= ⊥ then

oldsavedq← ∅
86vstate← vstate′

savedq← append(oldsavedq, savedq)− {〈m, t〉: t ≤ now-2d}
88oldsavedq, outq← ∅

Figure 3: VSA emulator atp of Vu = 〈sigu, statesu, startu, δu, τu〉 - actions.



anupdate message once its virtual clock is caught up to real-time (line 69). This behaviour
allows us to quantify the value ofe to be at least(k + 1) · tslice − d.
Message processing:Messages to be received by the VSA are placed in a saved message queue
from which emulators simulate receiving the messages. If anupdate is received, setting back
the state of the VSA, emulators must be able to resimulate receiving messages that were sent
up tod time before theupdate was sent. To guarantee this, whenever an emulator processesa
message from the saved message queue for the VSA, it moves themessage into an old saved
message queue (line 47); if a process receives anupdate, it moves all messages received after
theupdate was sent back into its saved message queue to be reprocessed (line 87).
Making up leader broadcasts:If a leader is supposed to perform broadcasts on the VSA’s
behalf, but fails or leaves before sending them, the next leader needs to transmit the messages.
A new leader just transmits the VSA messages stored in its outgoing queue (lines 56-61). To
prevent messages from being rebroadcast, emulators that receive a VSA message broadcast by
the leader remove it from their own outgoing queues (lines 36-37).
Restarting a VSA:If a process is leader and has no value for the VSA state or has messages in
its outgoing queue with timestamps older than the delay augmentation parametere, it restarts
the emulation. It does this by sending anupdate message with attached state of⊥ and then
waiting to receive the message (lines 67-74). When processes that have been in the region2d
time receive the messaged later, they initialize the VSA state and messaging queues and begin
emulating a restarted VSA (lines 76-88).

4.4 (Almost) trivial client implementation
The implementation of VSA layer client automata is almost trivial; client automata programs
are executed as is, except for communication. A client broadcast requires a message wrapper
identical to that of TOBcast. When a message from a VSA or another client isbrcved by the
client throughP -bcast, the client “receives” the message stripped of its wrapper.

5 Applications for the VSA layer
We believe the VSA layer will be helpful for many applications, including some of the more
difficult coordination problems for nonhomogenous networks oftentimes desired in true mobile
ad-hoc deployments. It allows application developers to re-use many algorithms originally
designed for the fixed network or base station setting, and todesign different services for
different regions. Here we list several applications whoseimplementations would benefit from
use of the VSA abstraction.
Geo-routing. One important application is to allow arbitrary regions to communicate. This
can be easily implemented by VSAs that utilize the fixed tiling of the network to forward
messages [10]. Each VSA chooses a neighboring VSA to forwarda message to according to
criteria of shortest path to destination or greedy DFS as suggested in [9]. The VSA layer offers
a fixed tiled infrastructure to depend on, rather than the ad-hoc imaginary tiling used in that
algorithm. Retransmissions along greedy DFS explored links can be used to cope with repeated
crashes and recoveries [10]. The GOAFR algorithm [14], combining greedy routing and face
routing, can be used to give efficient routing in the face of “holes” in the VSA tiling.
Location management and end-to-end routing.Location management is a difficult task in
ad-hoc networks. However,home locationalgorithms that either assume fixed infrastructure
or are difficult to reason about due to concerns about data consistency are easily implemented
using the VSA layer [10]. Each client’s id can be hashed to a set of VSAs (home locations)
that would store the client’s location. The client would occasionally inform its local VSA of its
presence. That local VSA would then inform the client’s homelocations, using a Geo-routing



service, of the region. Anyone searching for the client would have their local VSA query the
client’s home location VSAs, again using the a Geo-routing service, for the client’s location.

The home location service can then be used to provide end-to-end communication between
individual clients [10]. A message is sent to a client by looking up its location using the home
location service and then using Geo-routing to send the message to VSAs close to the returned
location. Those VSAs that receive the message broadcast it to local clients. A client then
delivers the message if the message is for it.
Tracking. Tracking using VSAs can be accomplished using a similar strategy to that used in
location management above. A client that detects a particular evader could notify its local VSA
of the evader’s presence. The local VSA then informs evader tracking servers (home locations)
of the evader’s whereabouts. As in the home location application, trackers can then query the
evader tracking servers to determine a recent location.
Distributed coordination. VSAs corresponding to geographic regions can be a source of on-
line information and coordination, directing mobile clients to help them complete distributed
systemwide missions. The virtual infrastructure can make it easier to handle coordination of
many clients when tasks are complex. Also, many coordination problems can tolerate a VSA
in an empty region failing since such regions have no clientsto coordinate. The use of a vir-
tual infrastructure to enable mobile clients to coordinateand equally space themselves along a
target curve was recently demonstrated in [17]. The paper provides a simple framework for co-
ordinating client nodes through interaction with virtual nodes. It also demonstrates a simplistic
“emulator-aware” approach to maintenance of virtual automata; a VSAs makes decisions about
target destinations for participating clients based partly on information about local population
density in an attempt to keep the VSA alive. The approach could be extended to take into
account more client or network factors and even to provide active recruitment, where virtual
automata can request emulator aid from distant regions.

An example of a timed coordination application that can be useful is that of avirtual traffic
light. A VSA for a region corresponding to, say, the intersection of roads in a remote area can
provide a virtual traffic light that keeps the light green in each direction for a specific amount of
time, providing a substitute for the fixed infrastructure lacking in the region. The VSA would
be emulated by computers on vehicles approaching the intersection. Multiple traffic VSAs can
also coordinate to facilitate optimal movement of mobile clients.

Another coordination application we propose is the VirtualAir-Traffic Controller [21]. The
VSA controller uses detailed knowledge of time in order to plan where and when airborne
planes should fly. Essentially, for locally co-located aircraft, the burden of regulating lateral
separation of aircraft could be allocated in a distributed fashion by VSAs, where VSAs assign
local planes different time separations and altitudes based on aircraft type and heading. Current
solutions rely heavily on ground-based systems that are expensive to maintain and difficult to
scale. By devolving some decision-making to aircraft themselves, we can both alleviate this
burden and allow for more local control of flight plans, resulting in optimized routes and better
fuel economy [24]. Airspace VSAs are especially easy to envision, given the positioning,
long-range communications, and computing resources increasingly available on aircraft.
Data collection and dissemination.A VSA could maintain a summary database of informa-
tion about its local conditions and those of other regions. Clients could then query their local
VSA for information. The history is complete as long as the VSA’s tile remains occupied.
Resiliency can be built in by using techniques already designed for static but failure-prone net-
works, such as automatically backing up data at neighboringVSAs or sending data to a central,
reliable location by a background convergecast algorithm executed by the VSA network.
Hierarchical distributed data structures. In this work, the tile size is constrained by the



broadcast range of the underlying nodes. An hierarchical emulation of the model, in which
multiple nodes can coordinate to emulate larger tiles, can provide a more general infrastructure.
In large deployments, hierarchies are often used to guarantee locality properties. The VSA
infrastructure can be a basic building block to implement tree hierarchies in a network that
could, for example, be used to allow clients to register and query attributes.

References
[1] Camp, T., Liu, Y., “An adaptive mesh-based protocol for geocast routing”,Journal of Parallel and Dis-

tributed Computing: Special Issue on Mobile Ad-hoc Networking and Computing, pp. 196–213, 2002.
[2] Chockler, G., Demirbas, M., Gilbert, S., Newport, C., and Nolte, T., “Consensus and Collision Detectors in

Wireless Ad Hoc Networks”,Proceedings of the 24th Annual ACM Symposium on Principles of Distributed
Computing (PODC), 2005.

[3] Dijkstra, E.W., “Self stabilizing systems in spite of distributed control”,Communications of the ACM, 1974.

[4] Dolev, S.,Self-Stabilization, MIT Press, 2000.
[5] Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvartsman, A., and Welch, J., “Virtual Mobile Nodes for

Mobile Ad Hoc Networks”,International Conference on Principles of Distributed Computing (DISC), 2004.

[6] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Implementing Atomic Mem-
ory in Ad Hoc Networks”,17th International Conference on Principles of Distributed Computing (DISC),
Springer-Verlag LNCS:2848, 2003.

[7] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Welch, J., “GeoQuorums: Implementing Atomic Mem-
ory in Ad Hoc Networks”, Technical Report MIT-LCS-TR-900, MIT Laboratory for Computer Science,
Cambridge, MA, 02139, 2003.

[8] Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte, T., “Timed Virtual Stationary Automata for Mobile
Networks”, Technical Report MIT-LCS-TR-979a, MIT CSAIL, Cambridge, MA 02139, 2005.

[9] Dolev, S., Herman, T., and Lahiani, L., “Polygonal Broadcast, Secret Maturity and the Firing Sensors”,
Third International Conference on Fun with Algorithms (FUN), pp. 41-52, May 2004. Also to appear inAd
Hoc Networks Journal, Elseiver.

[10] Dolev, S., Lahiani, L., Lynch, N., Nolte, T., “Self-Stabilizing Mobile Node Location Management and
Message Routing”, To appear: Symposium on Self StabilizingSystems (SSS), 2005.

[11] Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Hamdi,M., “The Terminodes Project: Towards Mobile
Ad-Hoc WAN”, Proceedings of MOMUC, 1999.

[12] Kan, M., Pande, R., Vinograd, P., and Garcia-Molina, H., “Event Dissemination in High-Mobility Ad-hoc
Networks”, Technical Report, 2005.

[13] Kaynar, D., Lynch, N., Segala, R., and Vaandrager, F., “The Theory of Timed I/O Automata”, Technical
Report MIT-LCS-TR-917a, MIT Laboratory for Computer Science, Cambridge, MA, 2004.

[14] Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A., “Geometric Ad-Hoc Routing: Of Theory and Practice”,
Proceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC), 2003.

[15] Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.R., and Morris, R., “A Scalable Location Service for Geo-
graphic Ad Hoc Routing”,Proceedings of Mobicom, 2000.

[16] Lok, C., “Instant Networks: Just Add Software”,Technology Review, June, 2005.
[17] Lynch, N., Mitra, S., and Nolte, T., “Motion coordination using virtual nodes”, To appear: IEEE Conference

on Decision and Control, 2005.
[18] Morris, R., Jannotti, J., Kaashoek, F., Li, J., and Decouto, D., “CarNet: A Scalable Ad Hoc Wireless

Network System”, 9th ACM SIGOPS European Workshop, Kolding, Denmark, September 2000.
[19] Nath, B., Niculescu, D., “Routing on a curve”,ACM SIGCOMM Computer Communication Review, 2003.
[20] Navas, J.C., Imielinski, T., “Geocast- geographic addressing and routing”,Proceedings of the 3rd MobiCom,

1997.
[21] Neogi, N., “Designing Trustworthy Networked Systems:A Case Study of the National Airspace System”,

International System Safety Conference, Ottawa, Canada, August 3-11, 2003.
[22] Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., and Shenker, S., “GHT: A Geographic

Hash Table for Data-Centric Storage”,First ACM International Workshop on Wireless Sensor Networks and
Applications (WSNA), 2002.

[23] Sun, Q., and Garcia-Molina, H., “Using Ad-hoc Inter-vehicle Networks for Regional Alerts”, Technical
Report, 2004.

[24] Talbot, D., “Airborne Networks”,Technology Review, May, 2005.
[25] Talbot, D., “The Ascent of the Robotic Attack Jet”,Technology Review, March, 2005.
[26] Vasek, T., “World Changing Ideas: Germany”,Technology Review, April, 2005.
[27] Woolley, S., “Backwater Broadband”,Forbes, 2005.


