Timed Virtual Stationary Automata for Mobile Networks

Shlomi Dolev, Limor Lahiarii Seth Gilbert, Nancy Lynch, Tina Nolte
Department of Computer Science MIT CSAIL
Ben-Gurion University Cambridge, MA 02139
Beer-Sheva, 84105, Israel {sethg, lynch, tnoltg@theory.csail.mit.edu

{dolev, lahian}@cs.bgu.ac.il

Abstract

We define a programming abstraction for mobile networksedatheTimed Virtual
Stationary Automatg@rogramming layer, consisting of real mobile clients, wadttimed
I/O automata called virtual stationary automata (VSASs) aecommunication service con-
necting VSAs and clients. The VSAs are located at prespdaiéigions that tile the plane,
defining a static virtual infrastructure. We sketch an &dthar to emulate a timed VSA us-
ing the real mobile nodes that are currently residing in tiS&\¢ region. We also discuss
examples of applications, such as intruder detection aufitrg, whose implementations
benefit from the simplicity obtained through use of the VSAtedction.

1 Introduction

The task of designing algorithms for constantly changirtgvoeks is difficult. Highly dynamic
networks, however, are becoming increasingly prevalewt) as in the context of pervasive and
ubiquitous computing, and it is therefore important to depeechniques to simplify this task.

Here we focus on mobile ad-hoc networks, where mobile psmresattempt to coordi-
nate despite minimal infrastructure support. This papeeldgs new techniques to cope with
this dynamic, heterogeneous, and chaotic environment. ¥skie unpredictable behavior
of mobile networks by defining and emulatingsimtual infrastructure, consisting dfming-
aware and location-awaremachines at fixed locations, that mobile nodes can interébt w
The static virtual infrastructure allows application deyers to use simpler algorithms —
including many previously developed for fixed networks.

There are a number of prior papers that take advantage ofag@ogto facilitate the co-
ordination of mobile nodes. For example, the GeoCast dlgos [1, 20], GOAFR [14], and
algorithms for “routing on a curve” [19] route messages damethe location of the source and
destination, using geography to delivery messages effigiédther papers [11, 15, 22] use ge-
ographic locations as a repository for data. These algostassociate each piece of data with
a region of the network and store the data at certain noddwimegion. This data can then
be used for routing or other applications. All of these pajpake a relatively ad-hoc approach
to using geography and location. We suggest a more systeaggtroach; many algorithms
presented in these papers could be simplified by using a fptedjctable timing-enabled in-
frastructure.

In industry there have been a number of attempts to provideialzed applications for
ad-hoc networks by organizing some sort of virtual infrasture over the mobile nodes. Pack-
etHop and Motorola envision mobile devices cooperatingoptonfmesh networks to provide

*Partially supported by IBM faculty award, NSF grant and thraéli ministry of defense.
TSupported by DARPA contract F33615-01-C-1896, NSF ITR @mitCCR-0121277, and USAF, AFRL
contract FA9550-04-1-0121.

communication in areas with wireless-broadcast devicestta fixed infrastructure [16, 27].
These virtual infrastructures could allow on-the-fly netkviormation that can be used at dis-
aster sites, or areas where fixed infrastructure does nstt @xhas been damaged. BMW and
other car manufacturers are developing systems that allm®/to communicate about local
road or car conditions, aiding in accident avoidance [1223826].

The above examples tackle very specific problems, like mgubir distribution of sensor
data. A more general-purpose virtual infrastructure, tiiganizes mobile nodes into general
programmable entities, can make a richer set of applicate@sier to provide. For example,
with the advent of autonomous combat drones [25], the caxitplef algorithms coordinating
the drones can make it difficult to provide assurance to aenstandably concerned public that
these firepower-equipped autonomous units are coordgatoperly. With a formal model of
a general and easy-to-understand virtual infrastructuadadble, it would be easier to both
provide and prove correct algorithms for performing sopbtesed coordination tasks.

Virtual Stationary Automata programming layer. The programming abstraction we intro-
duce in this paper consists of a static infrastructure ofifistaned virtual machines with an
explicit notion of real-time, calledirtual Stationary AutomatéVSAs), distributed at known
locations over the plane, and emulated by the real mobilesad the system. Each VSA
represents a predetermined geographic area and has sbedpabilities similar to those of
the mobile nodes, allowing nearby VSAs and mobile nodes tongonicate with one another.
This programming layer provides mobile nodes with a virin&tastructure with which to co-
ordinate their actions. Many practical algorithms depegdiBcantly on timing, and many
mobile nodes have access to reasonably synchronized cloctkee VSA programming layer,
the virtual automata also have acceswittual clocks, guaranteed to not drift too far from
real-time. These virtual automata can then run programsehbehaviour might be dependent
on the continuous evolution of timing variables.

Our virtual infrastructure differs in key ways from othelat have previously been pro-
posed for mobile ad-hoc networks. The GeoQuorums algor[@ii] was the first to use
virtual nodes; the virtual nodes in that work are atomic otgat fixed geographical locations.
More general virtual mobile automata were suggested ind&ij;automata are stationary, and
are arranged in a connected pattern that is similar to aitwadi wired network. Our automata
also have more powerful computational capabilities thasetin [5] in that ours include timing
capabilities, which are important for many applicationsaHy, we use a different implemen-
tation stategy for virtual nodes than in [5], incurring lessnmunication cost and enabling us
to provide virtual clocks that are never far from real-time.

Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by the real
mobile nodes in the network. Each mobile node is assumedvi® decess to a GPS service
informing it of the time and region it is currently in. A VSA f@ geographic region is then
emulated by a subset of the mobile nodes populating its megfi@ VSA state is maintained in
the memory of the real nodes emulating it, and the real noddsnm VSA actions on behalf
of the VSA. The emulation is shared by the nodes while oneeleadde is responsible for
performing the outputs of the VSA and keeping the other etatdaconsistent. If no mobile
nodes are in the region, the VSA fails; if mobile nodes latave, the VSA restarts.

An important property of our implementation is that it canrbade self-stabilizing. Self-
stabilization [3, 4] is the ability to recover from an arhitity corrupt state. This property is
important in long-lived, chaotic systems where certaimévean result in unpredictable faults.
For example, transient interference may disrupt the wsget®mmunication. This might result
in inconsistency and corruption in the emulation of the V@Aself-stabilizing implemen-
tation can recover after corruptions to correctly emuladSA. Details on the addition of

self-stabilization to this work can be found in [8].
Applications. We will present an overview of some applications that araifgantly sim-
plified by the VSA infrastructure. We consider both low-leservices, such as routing and
location management, as well as more sophisticated agiphsa such as tracking, motion
coordination, traffic management, and traffic coordinati®he key idea in all cases is to lo-
cate data and computation at timed VSAs throughout the n&fwlaus relying on the virtual
infrastructure to simplify coordination in ad-hoc netwsrk

A longer version of this paper can be found in [8].

2 Datatypes and system model

The system consists of a finite collection of mobile cliemigasses moving in a closed, con-
nected, and bounded region of the 2D plane calledRegionR is partitioned into predeter-
mined connected subregions caltédds or regions labeled with unique ids from the set of tile
identifiersU. In practice it may be convenient to restrict tiles to be tagpolygons such as
squares or hexagons. We define a neighbor relatien on ids fromU: two tilesu andv
are neighbors iff the supremum distance between pointdd() andtile(v) is bounded by a
constantr,;,.;.

Each mobile node (or client),,, p € P, the set of mobile node ids, is modeled as a mobile
timed 1/0 automaton whose location i at any time is referred to dsc(p). Mobile node
speed is bounded by a constapt,... We assume each node occasionally (evefy,.. time)
receives information about the time and its current regidhroughGPSupdate(u, now),.

We assume the node’s local clogkw progresses at the rate of real-time.

Each client is equipped with a local broadcast servigdacast, with minimum broadcast
radiusr,.,; and message delaly This service allows each clieft, to broadcast a message to
all nearby clients throughcast(m),, and receive messages broadcast by other clients through
brcv(m), actions. We assume a local broadcast service guarantegedywerties: integrity
and reliable local deliverylntegrity guarantees that every message received was previously
sent.Reliable local delivernyguarantees that a transmission will be received by neartdgsio
If client C, broadcasts a message, then every cligwithin r,..,; distance of”,,’s transmission
location during the transmission interval of lengtheceives the message before the end of the
interval.

Clients are susceptible to stopping failures. After a stoggailure, a client performs
no additional local steps until restarted. If restartedtéirts operating from an initial state.
In [10] we extend this work to the case where the client cao sidfer from nondeterministic
changes to program state. Additional arbitrary externtgrface actions and local state used
by algorithms running at the client are allowed. For simpfitocal steps take no time.

3 Virtual Stationary Automata programming layer

Here we describe th¥irtual Stationary Automatg@rogramming layer. This abstraction in-
cludes the real mobile nodes discussed in the last sectienyittual stationary automata
(VSAs) that the real nodes emulate, and a local broadcasteeW-bcast, between them (see
Figure 1). The layer allows developers to write program$fith mobile clients and stationary
tiles of the network as though broadcast-equipped virtuathimes exist in those tiles. We
begin by describing the properties of VSAs and the V-bcastice

3.1 \Virtual Stationary Automata

An abstract VSA is a timing-capable virtual machine. We falijn describe such a timed
machine for a tilex, V,, as a TIOA whose program is a tuple of its action signatuie,,
valid statesstates,,, a start state functiorstart,, mapping clock values to appropriate start

states, a discrete transition functiaf, and a set of valid trajectories of the maching,
Trajectories [13] describe state evolution over intergdisme. The state can be referred to as
vstate.

A virtual automatonl,,’s external inter-
face is restricted to be similar to that of the
real nodes, including only stopping failure
and restart inputs and the ability to broad-
cast and receive messages. As with mobile
clients, the VSA clock valuestate.now g,
is assumed to progress at the rate of real- '
time and, outside of failure, equal real-time.
Since a VSA is emulated by physical node
(corresponding to clients) in its region, itgs.
failures are defined in terms of client move-
ments and failures in its region: (1) If no
clients are in the region, the VSA is crashed,
(2) If V, is failed but a clienC, enters the
region and remains for at lealst ;. time,
then in that interval of timé/,, restarts, and Figure 1: Virtual Stationary Automata abstrac-
(3) If no client failure occurs in an alivetion. VSAs and clients communicate using the
VSAs region over some interval, the VSA/-bcast service. VSA bcasts may be delayed in
does not suffer a failure during that intervaDout buffers.

V-bcast

3.2 V-bcast service

The V-bcast service is a “virtual” broadcast communicagsenvice with transmission radius
rvire- I1iS Similar to that of the real node®-bcast service and implemented using fhcast
service. It allows broadcast communication between n&gh VSAs, between VSAs and
nearby clients, and between clients throlglast andbrcv actions, as before. V-bcast guar-
antees the integrity property described foibcast, as well as a similar reliable local delivery
property. Thereliable local deliveryproperty for V-bcast is as follows: If a client or VSA in
a regionu transmits a message, then every client or VSA in regiar neighboring regions
during the entire time interval starting at transmissiod andingd later receives the message
by the end of the interval. (For this definition, dueG®Supdate lag, a client is still said to
be “in” regionu even if it has just left region but has not yet received@PSupdate with the
change.)

Notice that V-bcast’s broadcast radius is different fromtt tbf P-bcast; since virtual broad-
casts are performed using real broadcasts, the virtuarrasion radius cannot be larger than
the real. Recalt,;,; is the supremum distance between points in two neighbaitesy V/-bcast
then allows a real nodeand a VSA for tileu to communicate as long as the node is at most
rvire distance from any point in tile and a VSA to communicate with another VSA as long
as they are in neighboring tiles. The implementation of tHec¥st service using the mobile
clients’ P-bcast service introduces the requirement that < 7,ca — 2€sample * Vmaz- 1he
2€sample * Umaz @Djustment guarantees that two nodes emulating VSAs & tiley have just
left (because they have not yet receiv&dSupdates that they’ve change tiles) can still receive
messages transmitted to each other.

3.3 Delay augmentation
While an emulation oft,, would ideally look identical to a legitimate execution @f, an
abstraction must reflect the possibility that, due to deftagsiting from message delay or real

node failure, the emulation df, may be slightly behind real-time and appear to be delayed
in performing output actions df,, by up to a timee. The emulation of/, is then called a
delay-augmented TIQA&n augmentation df, with timing perturbations composed with'’s
output interface. These timing perturbations are reptesenith a buffer Doyt|,, composed
with V,’s bcast output. The buffer delays delivery of messages by some rierdastic time

[0, ¢e]. Program actions of,, must be written taking into account the emulation parameter
just as it must the message delay factor

4 Implementation of the VSA layer

We describe the implementation of a VSA by mobile clientstintile in the network. At

a high level, the individual mobile clients in a tile sharewation of the virtual machine
through a deterministic state replication algorithm wialso being coordinated somewhat by
aleader. We begin by describing a totally-ordered broadeasice and leader election service
for individual regions, also implemented using the undagyreal mobile nodes, that we will
use in our replication algorithm. We then focus on descghire core emulation algorithm.

4.1 TOBcast service
To keep emulators’ state consistent, emulators must pgdbessame sets of messages in the
same order. We accomplish this by using the emulators’ slacidP-bcast service to imple-
ment a TOBcast service for each region and client. This serailows a client’,, in tile u
to broadcastn, TOBcast(m), ,, and to have the message be receivi€dBrcv(m, u), 4, by
clients intile(u) and neighboring tiles exacthytime later.

To implement this service, when a client wantgtBcast m from itself or its tile, it tags
m with its current tile, time, message sequence number (mented when the client sends
multiple messages at once), and the client id, and broalitasting P-bcast. When a client
receives such a message from a client in its tile or a neigidpdite it holds the message in a
gueue until exactly time has passed since the message’s timestamp. Message teactly
d old are therTOBrcved in order of sender id and sequence number, ordering theages. To
avoid the use of shared variables, we include input and ¢aigions so the TOBcast service
can inform the client whether all messages sent uptime ago have been received.

4.2 Leader election service
Here we describe the specification for a leader election@Erequired for our emulator im-
plementation. We divide time into timeslices of lengih...t ... > 4d, that begin on multiples
of ty;... The leader election service for a regiothen guarantees:
(1) There is at most one leaderwft a time, and the leader isin(or within €sqmpie * Vimaz),
(2) If a proces® becomes leader of regianat some time, then at that time either:

(a) there was a prior leader of regiarduring an interval starting at leagtafterp entered

u and ending after some multiple of;.. at leastd later, or

(b) there is no process inwhere a prior leader such as in (a) can be found,

(3) If a process ceases being leader then it will be at létiste before a new leader is chosen,
(4) For any two consecutive timeslices such that at leastpsoeess is alive in, for both
timeslices and no failures occur in the latter timesliceréhwill be a leader in one of the two
timeslices for at leasid time and until the end of the timeslice.

One simple heartbeat implementation of this specificagan [8]. If a process is leader, it
broadcasts &aderhb message every;.. amount of time. Once it fails or leaves, the other
processes in the region will synchronously timeout the theat and sendestart messages,
from which the lowest id process that had previously hearhdér heartbeat at leakt time

after entering the tile is chosen as leader. If there is n& gwocess, the lowest id process
becomes leader.

4.3 Emulator implementation

We describe a fault-tolerant implementation of a VSA enarlafVe start with how our leader-
based emulation generally works and then address detajisat8re, state, and trajectories for
the algorithm are in Figure 2 and the actions are in Figureii® bumbers refer to Figure 3.
Leader-based virtual machine emulation. In our VSA emulation, at most one mobile node
in a VSASs tile is leader (chosen by leader election), withmary responsibility for emulating
the VSA and performing VSA outputs. A leader stores and wgsdidite VSA state (including its
clock value) locally, simulating VSA actions based on it. 8tlthe leader receives a TOBcast
message, it places the message in a saved message que@3iBid from which it simulates
the VSA breving (processing) the message (lines 39-45). If the VSA iseidgom a local
action, the leader simulates its effect on the VSA state¢lih7-54). If the action is tbcast

a message, the leader puts the message in an outgoing gunese@-54), to be removed and
TOBcasted with the tile as the source by the leader, in the VSA's s(iaels 56-61).

For fault-tolerance, it is necessary to have more than hestdader maintaining a VSA. A
VSA is actually maintained by several emulators, includahgiost one leader, each maintain-
ing and updating its local copy of the VSA state and saved aggesqueue as above. However,
non-leader emulators, unlike leaders, do not transmit 88 Yhessages from their outgoing
gueues, preventing multiple transmission of messagestienvSA. To keep emulators con-
sistent, the emulation trajectories are based on a detedinersion of the VSA trajectories.
Emulation details. There are complications that arise from message delay atelfadure:
Joining: When a node enters a new regionf@Bcasts ajoin (lines 23-31). Any process that
receives this message stores its timestamp as the lates¢gpiest (lines 63-65). If a leader has
processed all messages in its saved message queli®©8adsted all messages in its outgoing
gueue, it answers outstanding join requestd®Bcasting anupdate, containing a copy of
the leader’s VSA state (lines 67-74). The leader does ndbvperany additional VSA-related
transmissions until it receives this message (line 74). Mdrgy process that has been in the
region at leas®d time receives thepdate, it adopts the attached VSA state as its own local
VSA state and erases its outgoing queue (lines 76-88).H{#stnot been in the regi@a time,
its saved message queue may not have all messages too ebentflected in thapdate.)
Catching up to real-time: After receipt of an
update message, the VSA's clock (and state)
can bed behind real-time. Intuitively, the VSA"™ <
emulation is “set back” whenever arpdate
message is received. To guarantee the VSA
emulation satisfies the specifications from Sec-
tion 3 (bounding the time the output trace of
the emulation may be behind that of the VSA e e -
being emulated), the virtual clock must catch " [t
up to real-time. This is done by having the vir- r<d
tual clock advance more than twice as fast as) _ _
real-time until both are equal, after which thef/9ure 4: Relationship between virtual and
increase at the same rate. This is illustratedff@i-time. A virtual clock behind real-time
Figure 4, where the virtual clock proceeds s faster until it catches up.
fits and starts relative to real-time, occasionally
falling behind and then catching up. It is formally descdle Figure 2, lines 26-28. To guar-
antee that the virtual clock can catch up befdreme, we require a leader to only transmit

v e

Signature:
2 Input GPSupdate(v, t)p,ve U,te R
Input leader(val)w,p, val € Bool
4 Input TOBnext(t)u,p,t € R
Input TOBrev(m, v)w,p, vV € {u}U nbrs(u)
6 Output TOBprobey,,,
Output TOBcast(m)w,p, me (Msg x R)U {join}
8 U ({update} x states,)
Internal VSArcv(m)u,p
10 Internal VSAlocal(act).,p, acte internal, output sig.,
12 State:
analognow e R, current real time
reg € U, current reg, initially L
nextrcy joinTS leadTS joinreq € R
vstatec states,
oldsavedgsavedqoutg queues of msg, timestamp pairs

14

16

Trajectories:

satisfies 2
d(now) =1
constantreg, joinTS joinreq, oldsavedgsavedg 22

outq nextrcy leadTS
7(now).vstate= 7, (T (now).vstatenow)
if (vstate# L A vstatenow > now-d) then
if vstatenow < nowthen
d(vstatenow) = x, x > 2
elsevstatenow= now
else constanwvstate
stops when
Any precondition is satisfied.

24

24

28

30

Figure 2: VSA emulator gt of V,, = (sig,, states,, start,, d,, T,) - Sig, State, trajectorie

Output TOBprobe,,,;
2 Precondition:
nextrcv< now-d
4
Input TOBNext(t)w,p
6 Effect:
nextrcv«— t
8
Input GPSupdate(v, t),

10 Effect:
now« t
12 if reg# vthen
reg«— v
14 joinTS«— oo

16 Input leader(val),p
Effect:
if (!valVvjoinTS> now-d) then
leadTS+— oo
else ifleadTS> now+ d then
leadTS— now

18
20

22
Output TOBcast(join),p

24 Precondition:

reg=uAjoinTS> now

26 Effect:

joinTS«— now

nextrcv«+— now -d

leadTS joinreq < oo

savedgoldsavedgoutq«—

vstate— L

28
30

32
Input TOBrev(m, s).,,,, mfirst ¢ {update, join}

34 Effect:

savedg— append(savedq (mfirst, now-d))

if (s=uA3x y: [outq= append(append(x, m),y)]) then
outq«—y

36

38
Internal VSArcv(m).,p
40 Precondition:
vstate# LA (m, t) = head(savedq
42 Effect:
vstate— ¢, (vstate brcv(m))
oldsavedg— append(oldsavedghead(savedq)
savedg— tail (savedq

44

Internal VSAlocal(act),p
Precondition:

vstate#£ 1 £ §, (vstate act) A act= next(vstate d,,)

nextrcv> now-d A savedg= 50
Effect:

vstate— 4, (vstate act)

if act= bcast(m) then

outq < append(outg, (m, vstatenow))

48

52
54

Output TOBcast(m),p
Precondition:
reg= u AleadTS< now < nextrcv+ d A m= head(outq)
vstateZ LA vstatenow> now-dA V(m, t)e outgt> now-e
Effect:
outq «+ tail (outq)

56
58
60
62
Input TOBrev(join, u).,p

Effect:
joinreq < now-d

64

66
Output TOBcast((update, vstaté)).,
Precondition: 68
reg = UA lead TS now< nextrevrdA [(vstaté= vstate\ [vstate= |
V (vstatenow= now A outq = @= savedgA joinreq # o)]) V 70
(vstaté= LA [vstatenow< now-dv 3 (mt)€ outq t < now-e])]
Effect: 72
joinreq < oo
leadTS— now+d 74
Input TOBrcv({update, vstaté), u) 76
Effect:
if joinreq < now-2d then
joinreq «— oo
if (joinTS< now-2d A vstaté = L) then
vstate— start, (now)
savedg— 0
else ifjoinTS< now-2d then
if vstate= _L then
oldsavedg— 0
vstate«— vstatd 86
savedg— append(oldsavedgsavedg— {(m, t): t < now-2d}
oldsavedgoutg«— 88

78

80

82

84

Figure 3: VSA emulator gt of V,, =

(8igu, states,, start,, d,, 7,) - actions.

S.

anupdate message once its virtual clock is caught up to real-times (68). This behaviour
allows us to quantify the value efto be at leastk + 1) - tc. — d.

Message processingvlessages to be received by the VSA are placed in a saved neapsage
from which emulators simulate receiving the messages. Upalate is received, setting back
the state of the VSA, emulators must be able to resimulatvieg messages that were sent
up tod time before theipdate was sent. To guarantee this, whenever an emulator procg@sses
message from the saved message queue for the VSA, it movasegsage into an old saved
message queue (line 47); if a process receivagodate, it moves all messages received after
theupdate was sent back into its saved message queue to be reprockssdyy.

Making up leader broadcastsif a leader is supposed to perform broadcasts on the VSAs
behalf, but fails or leaves before sending them, the nexigleaeeds to transmit the messages.
A new leader just transmits the VSA messages stored in itgpooug queue (lines 56-61). To
prevent messages from being rebroadcast, emulators teaeea VSA message broadcast by
the leader remove it from their own outgoing queues (line83p

Restarting a VSAIf a process is leader and has no value for the VSA state or basages in

its outgoing queue with timestamps older than the delay angation paramete, it restarts

the emulation. It does this by sending apdate message with attached state ofand then
waiting to receive the message (lines 67-74). When prosdbse have been in the regian
time receive the messagddater, they initialize the VSA state and messaging queudbagin
emulating a restarted VSA (lines 76-88).

4.4 (Almost) trivial client implementation

The implementation of VSA layer client automata is almosidf; client automata programs
are executed as is, except for communication. A client brasicrequires a message wrapper
identical to that of TOBcast. When a message from a VSA orhanatlient isbrcved by the
client throughP-bcast, the client “receives” the message stripped of itgpper.

5 Applications for the VSA layer

We believe the VSA layer will be helpful for many applicatgnincluding some of the more
difficult coordination problems for nonhomogenous netvgakentimes desired in true mobile
ad-hoc deployments. It allows application developers tase many algorithms originally
designed for the fixed network or base station setting, andiegign different services for
different regions. Here we list several applications whogg@ementations would benefit from
use of the VSA abstraction.

Geo-routing. One important application is to allow arbitrary regions torenunicate. This
can be easily implemented by VSAs that utilize the fixed gilof the network to forward
messages [10]. Each VSA chooses a neighboring VSA to foraangssage to according to
criteria of shortest path to destination or greedy DFS agestgd in [9]. The VSA layer offers
a fixed tiled infrastructure to depend on, rather than th@@dimaginary tiling used in that
algorithm. Retransmissions along greedy DFS explored loak be used to cope with repeated
crashes and recoveries [10]. The GOAFR algorithm [14], damb greedy routing and face
routing, can be used to give efficient routing in the face afiés” in the VSA tiling.

Location management and end-to-end routing. Location management is a difficult task in
ad-hoc networks. Howevelnome locatioralgorithms that either assume fixed infrastructure
or are difficult to reason about due to concerns about datsistency are easily implemented
using the VSA layer [10]. Each client’s id can be hashed totaos®¥ SAs (home locations)
that would store the client’s location. The client would asionally inform its local VSA of its
presence. That local VSA would then inform the client’s hdowations, using a Geo-routing

service, of the region. Anyone searching for the client widudve their local VSA query the
client’'s home location VSAS, again using the a Geo-routenyise, for the client’s location.

The home location service can then be used to provide eeddazommunication between
individual clients [10]. A message is sent to a client by llogkup its location using the home
location service and then using Geo-routing to send theagesd® VSAs close to the returned
location. Those VSAs that receive the message broadcastiacal clients. A client then
delivers the message if the message is for it.

Tracking. Tracking using VSAs can be accomplished using a similatesiyato that used in
location management above. A client that detects a paatiewader could notify its local VSA
of the evader’s presence. The local VSA then informs evadeking servers (home locations)
of the evader’'s whereabouts. As in the home location apgmicatrackers can then query the
evader tracking servers to determine a recent location.

Distributed coordination. VSAs corresponding to geographic regions can be a sourae-of o
line information and coordination, directing mobile clisrio help them complete distributed
systemwide missions. The virtual infrastructure can maleasier to handle coordination of
many clients when tasks are complex. Also, many coordingifoblems can tolerate a VSA
in an empty region failing since such regions have no clismtoordinate. The use of a vir-
tual infrastructure to enable mobile clients to coordireatd equally space themselves along a
target curve was recently demonstrated in [17]. The pamafighes a simple framework for co-
ordinating client nodes through interaction with virtuaddes. It also demonstrates a simplistic
“emulator-aware” approach to maintenance of virtual awttayna VSAs makes decisions about
target destinations for participating clients based pamti information about local population
density in an attempt to keep the VSA alive. The approachdcbel extended to take into
account more client or network factors and even to providweacecruitment, where virtual
automata can request emulator aid from distant regions.

An example of a timed coordination application that can kefulss that of avirtual traffic
light. A VSA for a region corresponding to, say, the intersectibroads in a remote area can
provide a virtual traffic light that keeps the light green achk direction for a specific amount of
time, providing a substitute for the fixed infrastructurekiag in the region. The VSA would
be emulated by computers on vehicles approaching the augos. Multiple traffic VSAs can
also coordinate to facilitate optimal movement of mobiierms.

Another coordination application we propose is the Virigd Traffic Controller [21]. The
VSA controller uses detailed knowledge of time in order tarpWwhere and when airborne
planes should fly. Essentially, for locally co-located &ift; the burden of regulating lateral
separation of aircraft could be allocated in a distributeshfon by VSAs, where VSAs assign
local planes different time separations and altitudesdagaircraft type and heading. Current
solutions rely heavily on ground-based systems that arerestpe to maintain and difficult to
scale. By devolving some decision-making to aircraft thelwes, we can both alleviate this
burden and allow for more local control of flight plans, réisg in optimized routes and better
fuel economy [24]. Airspace VSAs are especially easy tosomi given the positioning,
long-range communications, and computing resourcesasurgly available on aircraft.

Data collection and dissemination. A VSA could maintain a summary database of informa-
tion about its local conditions and those of other regiongens could then query their local
VSA for information. The history is complete as long as theA¥Sile remains occupied.
Resiliency can be built in by using techniques already desidor static but failure-prone net-
works, such as automatically backing up data at neighb&®Ws or sending data to a central,
reliable location by a background convergecast algoritheteted by the VSA network.
Hierarchical distributed data structures. In this work, the tile size is constrained by the

broadcast range of the underlying nodes. An hierarchicallamon of the model, in which
multiple nodes can coordinate to emulate larger tiles, cavige a more general infrastructure.
In large deployments, hierarchies are often used to guzedntality properties. The VSA
infrastructure can be a basic building block to implemeee thierarchies in a network that
could, for example, be used to allow clients to register amghygattributes.

References

[1]
(2]

[3]

[4]
[5]

[6]

[7]

(8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]

Camp, T, Liu, Y., “An adaptive mesh-based protocol feogast routing”,Journal of Parallel and Dis-
tributed Computing: Special Issue on Mobile Ad-hoc Netwayland Computingpp. 196-213, 2002.
Chockler, G., Demirbas, M., Gilbert, S., Newport, C.daxolte, T., “Consensus and Collision Detectors in
Wireless Ad Hoc Networks'Proceedings of the 24th Annual ACM Symposium on PrincigdlBsstributed
Computing (PODC)2005.

Dijkstra, E.W., “Self stabilizing systems in spite ofstlibuted control”’Communications of the ACM974.

Dolev, S.,Self-StabilizationMIT Press, 2000.
Dolev, S., Gilbert, S., Lynch, N., Schiller, E., Shvaman, A., and Welch, J., “Virtual Mobile Nodes for

Mobile Ad Hoc Networks” International Conference on Principles of Distributed Qauting (DISC) 2004.

Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Weldh “GeoQuorums: Implementing Atomic Mem-
ory in Ad Hoc Networks”,17th International Conference on Principles of Distribdit€omputing (DISG)
Springer-Verlag LNCS:2848, 2003.

Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., Weldh “GeoQuorums: Implementing Atomic Mem-
ory in Ad Hoc Networks”, Technical Report MIT-LCS-TR-900,IMLaboratory for Computer Science,
Cambridge, MA, 02139, 2003.

Dolev, S., Gilbert, S., Lahiani, L., Lynch, N., Nolte,, T.Timed Virtual Stationary Automata for Mobile
Networks”, Technical Report MIT-LCS-TR-979a, MIT CSAIL a@bridge, MA 02139, 2005.

Dolev, S., Herman, T., and Lahiani, L., “Polygonal Brgadt, Secret Maturity and the Firing Sensors”,
Third International Conference on Fun with Algorithms (FJNp. 41-52, May 2004. Also to appearAa
Hoc Networks JournaElseiver.

Dolev, S., Lahiani, L., Lynch, N., Nolte, T., “Self-Sidizing Mobile Node Location Management and
Message Routing”, To appear: Symposium on Self Stabilidypstems (SSS), 2005.

Hubaux, J.P., Le Boudec, J.Y., Giordano, S., and Haivdi,“"The Terminodes Project: Towards Mobile
Ad-Hoc WAN", Proceedings of MOMUC1999.

Kan, M., Pande, R., Vinograd, P., and Garcia-Molina, ‘Bvent Dissemination in High-Mobility Ad-hoc
Networks”, Technical Report, 2005.

Kaynar, D., Lynch, N., Segala, R., and Vaandrager, Fhe' Theory of Timed 1/0 Automata”, Technical
Report MIT-LCS-TR-917a, MIT Laboratory for Computer SaenCambridge, MA, 2004.

Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.,&8metric Ad-Hoc Routing: Of Theory and Practice”,
Proceedings of the 22nd Annual ACM Symposium on PrinciglBsstributed Computing (PODCR003.

Li, J., Jannotti, J., De Couto, D.S.J., Karger, D.Rd &borris, R., “A Scalable Location Service for Geo-
graphic Ad Hoc Routing"Proceedings of Mobicon2000.

Lok, C., “Instant Networks: Just Add Softwaré@echnology Reviewune, 2005.

Lynch, N., Mitra, S., and Nolte, T., “Motion coordinati using virtual nodes”, To appear: IEEE Conference
on Decision and Control, 2005.

Morris, R., Jannotti, J., Kaashoek, F., Li, J., and De&op D., “CarNet: A Scalable Ad Hoc Wireless
Network System”, 9th ACM SIGOPS European Workshop, Koldbgnmark, September 2000.

Nath, B., Niculescu, D., “Routing on a curveACM SIGCOMM Computer Communication Revi2@03.
Navas, J.C., Imielinski, T., “Geocast- geographicradding and routing’Proceedings of the 3rd MobiCgm
1997.

Neogi, N., “Designing Trustworthy Networked SystemisCase Study of the National Airspace System”,
International System Safety Conference, Ottawa, Canaaigiigt 3-11, 2003.

Ratnasamy, S., Karp, B., Yin, L., Yu, F.,, Estrin, D., Gmdan, R., and Shenker, S., “GHT: A Geographic
Hash Table for Data-Centric Storag&irst ACM International Workshop on Wireless Sensor Neks@nd
Applications (WSNARO0O02.

Sun, Q., and Garcia-Molina, H., “Using Ad-hoc Interhiele Networks for Regional Alerts”, Technical
Report, 2004.

Talbot, D., “Airborne Networks”Technology Revieviviay, 2005.

Talbot, D., “The Ascent of the Robotic Attack JeTechnology RevievMarch, 2005.

Vasek, T., “World Changing Ideas: Germany&chnology ReviewApril, 2005.

Woolley, S., “Backwater BroadbandPprbes 2005.

