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Abstract

In this paper, we introduce the concept of hierarchy-based fault-local stabilization and a novel
self-healing /fault-containment technique and apply them in STALK. STALK is an algorithm for
tracking in sensor networks that maintains a data structure on top of an underlying hierarchical
partitioning of the network. Starting from an arbitrarily corrupted state, STALK satisfies its
specification within time and communication cost proportional to the size of the faulty region,
defined in terms of levels of the hierarchy where faults have occurred. This local stabilization is
achieved by slowing propagation of information as the levels of the hierarchy underlying STALK
increase, enabling more recent information propagated by lower levels to override misinformation
at higher levels before the misinformation is propagated more than a constant number of levels.
In addition, this stabilization is achieved without reducing the efficiency or availability of the
data structure when faults don’t occur: 1) Operations to find the mobile object distance d away
take O(d) time and communication to complete, 2) Updates to the tracking structure after the
object has moved a total of d distance take O(d * log network diameter) amortized time and
communication to complete, 3) The tracked object may relocate without waiting for STALK to
complete updates resulting from prior moves, and 4) The mobile object can move while a find is
in progress.

Keywords: Sensor networks, self-stabilization, fault-containment, tracking, distributed data structures.

“Everything is related to everything else, but near things are more related
than distant things”.

Waldo Tobler’s First Law of Geography

1 Introduction

In a distributed system, faults can occur that might be propagated throughout the system. In some
systems, this propagation of errors might be unacceptable. Fault-containment or error confinement is
concerned with preventing this propagation of faults beyond a small region. Exactly what is meant by
“small” is defined as a polynomial of the perturbation size, an error severity measure. Previously, the
perturbation size of a failure was defined in terms of the number of errors that occurred. This measure
is convenient for expressing the seriousness of a processor fault in the execution of an algorithm as long
as the algorithm does not incorporate use of processor hierarchies.



Hierarchies have long been imposed on networks of processors to facilitate design of efficient and
scalable protocols. For example, Awerbuch and Peleg’s tracking paper [6] described distributed directory
servers to store location information for mobile objects. The directory servers were composed of a
hierarchy of geographically defined regional directories where directories at higher levels of the hierarchy
were responsible for maintaining information for larger regions of a network.

Another example of geographically defined hierarchies used in distributed systems are clusterings
based on hierarchical partitionings. In such a system, all processes are divided into level zero clusters.
Fach of these clusters contain members that are close to one another geographically and have a defined
clusterhead. These level zero clusterheads are then partitioned into level one clusters, again containing
members that are close to one another, and so on.

Using traditional definitions of perturbation size, a fault that occurs at a single level zero process
during execution of a hierarchy-based algorithm has the same size as that of a fault of a single level
ten process. As a result, a fault-containing algorithm would have to prevent propagation of information
beyond an area whose size is a polynomial based on perturbation size one. This kind of level-blind
fault-containment is not always possible. Instead, it can be useful to define perturbation size and fault-
containment in terms of the hierarchy. Perturbation size would be defined in terms of levels where errors
occurred, and a fault-containing algorithm would be required to not propagate faults more than a small
number of levels in the hierarchy. In this paper, we define such a notion and use it to evaluate an
algorithm for tracking a mobile object.

Because of the recent growth of applications in mobile computing, cellular telephony, and military con-
texts, tracking of mobile objects has recently received significant attention [6,8,12,20,22]. The DARPA
Network Embedded Software Technology (NEST) program posed tracking as a challenge problem in
wireless sensor networks, and several groups have delivered small-scale (100 node networks) tracking
demonstrations: pursuer-evader tracking with one human controlled evader and three autonomous pur-
suers is showcased in [21], and detection, classification, and tracking of various intruders, such as persons
and cars, are demonstrated in [3].

In addition to the opportunities they provide for tracking of objects, wireless sensor networks also
impose additional challenges. Sensor nodes are energy-constrained, and algorithms that require excessive
communication are unacceptable since they drain battery power quickly. Sensor networks are fault-prone,
message losses and corruptions and node failures are frequent, nodes can lose synchrony and programs
can reach arbitrary states [17]. On-site maintenance is infeasible and hence sensor networks should be
self-healing. Moreover self-healing should achieve fault-containment to prevent a fault in one region of
the network from contaminating the entire network and requiring a global correction, wasting the energy
of the nodes and reducing the availability of the tracking service.

Contributions. Our novel contribution is to present a hierarchy-based self-healing/fault-containment
technique and then demonstrate the concept with an algorithm for tracking in sensor networks, which we
call STALK (Stabilizing Tracking viA Layered linKs). To achieve scalability, STALK employs a hierarchical
tracking structure. The tracking structure is a path imposed on an underlying hierarchical partitioning
of the sensor network into clusters, such as those provided by the self-stabilizing algorithm described
in [18]. We implement updates to the tracking structure by means of two local actions, grow and shrink.
The grow action enables a path to grow from the new location of the mobile object to increasingly higher
levels of the hierarchy and connect to the original path. The shrink action cleans branches deserted by
the object. Shrinking also starts at the lowest level and climbs to increasingly higher levels. Despite
the fact that grow and shrink occur concurrently, we complete the move operation successfully by using
suitably-chosen timers to determine when these actions are performed.

STALK is hierarchy-based fault-containing, preventing propagation of faults in the tracking structure
beyond a small number of levels in the hierarchy. Starting from an arbitrarily corrupted state, it satisfies
its specification in time and work proportional to perturbation size, defined in terms of levels (as defined
by the underlying hierarchy) where faults have occurred. We achieve fault-containment by slowing
propagation of information as the levels of the hierarchy underlying STALK increase, enabling the more



recent information propagated by lower levels to override misinformation at higher levels.

STALK provides good locality guarantees; a move of the object being tracked to distance d away
requires O(d x logD) time and communication (work) to update the tracking structure, where D is the
network diameter. In the full version of our paper [11] we also describe a find operation using the
tracking structure. A find operation invoked at a process queries neighboring processes at increasingly
higher levels of the clustering hierarchy until it encounters a process on the tracking path. Once the
path is found, the find operation follows it to its leaf to reach the mobile object. In the full version we
also show that a find invoked within distance d of the mobile object requires O(d) work to reach the
object and that when no faults occur, our scheme for achieving fault-containment does not increase the
complexity of tracking or finding. Furthermore, we show that STALK achieves seamless tracking of a
continuously moving object by allowing concurrent tracking and finding operations. For space reasons,
we refer the reader to the full version [11] for these results and instead concentrate here on the tracking
program actions of STALK and fault-containment.

Related work. The idea of employing a hierarchical structure for achieving scalability of tracking has
been extensively researched. The idea of using a partial information strategy to optimize both finds and
moves in a relatively static point-to-point network was investigated in [6]. In [6], a hierarchy of regional
directories is constructed so that each level [ directory enables a node to find a mobile object within 2
distance from itself. The communication cost of a find for an object d away is O(d * log? N) and that
of a move of distance d is O(d * logD * logN + log?D/logN) (where N is the number of nodes and D
is network diameter). However, a topology change, such as a node failure, necessitates a global reset of
the system since the regional directories depend on a non-local clustering program [5] that constructs a
sparse cover of a graph.

In [9], the tracking problem is considered for a geometric network model similar to ours, and cost
complexity similar to ours is achieved. However, the tracking structure maintained is not available
during moves of mobile objects and the program for finding a mobile object is only implicitly defined.
This algorithm is also not fault-tolerant. Papers such as [2,23] are concerned with non-stabilizing solutions
for personal communication systems and the mobile Internet Protocol, not sensor networks. A location
service for ad hoc networks is described in [1] and provides attractive worst case and average case costs
and provides some fault-tolerance, though it is not fault-containing.

There has been work on self-stabilizing, though not fault-containing, tracking algorithms [10,12, 15].
The distributed arrow protocol [15] is one such algorithm but suffers from the dithering problem —where
an object moving back and forth across a multi-level hierarchy boundary may lead to nonlocal updates.
The protocols in [10] do not exploit the hierarchy idea and are not scalable for large networks. In [12],
using a hierarchy of location servers, a stabilizing location management protocol is presented. However,
the protocol in [12] does not ensure locality of finds. In [14] another self-stabilizing algorithm using
hierarchies to solve a problem close to tracking is presented, though it too is not fault-containing.

Fault-containment of self-stabilizing algorithms in general has received growing interest [4,7,13,19],
though none of these algorithms use a hierarchy-based concept of fault-containment. The notion of fault
containment within the context of stabilization was first formalized in [13]; algorithms were proposed to
contain state-corruption of a single node in a stabilizing spanning tree protocol. In [19] fault-containment
of Byzantine nodes was studied in dining philosophers and graph coloring algorithms; this work required
the range of contamination to be constant and is too limiting for problems such as tracking and routing
where locality is not constant. In [7], a broadcast protocol was proposed to contain observable variables
in the presence of state corruptions, but the protocol allowed for global propagation of internal protocol
variables. Another protocol that achieved fault-local stabilization in shortest path routing was presented
in [4]. To achieve fault-containment the protocol used privileged containment actions that were a constant
time faster than the fault-intolerant program actions.

Organization of the paper. After presenting the model in the next section, we present the spec-
ifications of STALK and a definition for hierarchy-based fault-localization in Section 3. In Section 4,
we present the move operation. Fault local stabilization actions for the tracking path are discussed in



Section 5. Finally we conclude our paper in Section 6. For space reasons, we relegate detailed proofs to
the Technical Report [11].

2 Model

We consider a sensor network consisting of multiple sensor locations. Each sensor location plays host
to (possibly) multiple processes with identifiers from a set P. In this paper, as a convention, i and j
refer to process identifiers, and .z refers to the value of variable x at 1.

We denote the location of a process i with loc(i) (and for convenience the set of locations of process
set I with loc(I)). The Euclidean distance between the locations of i and j is denoted by dist(i, 7).

Hierarchical partitioning. Assume a hierarchical partitioning of processes over locations. Consider a
tree with levels 0 through M AX of all processes P. For each process i we define:

1. lvl(3), the level of process i in the tree,

2. h(i), i’s parent in the tree (for convenience, we define h(i) to be i if lvl(i) = M AX),

3. h"™(i), the iterated parent, defined as h(i) if n = 1 and h(h"~1(i)) otherwise,

4. children(i), i’s children in the tree.

We assume a one-to-one correspondence between the level 0 processes in the tree and sensor locations.
For a location v we denote the level 0 process residing at v as procyo(v). We also assume that for any ¢
such that (vl(i) >0, i’s location loc(7) is equal to loc(j) of one of its children j.

This partitioning yields clusters. For i such that [vi(i) = k+1, 0 < k < MAX, children(i) together
form a cluster C at level k whose clusterhead, head(C), is i. Radius(C') is the maximum distance from
head(C) to any process in C.

Next we introduce the symmetric neighbor relation. For level 0 processes i,7, i#j, j € nbr(i) <
dist(i, j) < 1. For level k > 0 processes i, j, that are clusterheads of level k — 1 clusters C; and Cj, i and
J are neighbors if C; and C; contain two processes that are neighbors.

Geometry assumptions. We fix the following assumptions about the hierarchical partitioning:

1. We define a real constant » > 3 to denote the cluster dilation factor; the radius of a level [ cluster
is at least 7/,

2. We define a real maximum cluster radius constant m > 2/ V3 to bound the radius of a level [ cluster
to be at most mr,

3. We define a real minimum cluster breadth constant ¢ satisfying % < g < 2m to restricts the

locations in non-neighboring level I clusters to be greater than ¢r! apart.

The constraints imply a bound, w, on the number of neighbors at any level I > 0. They also imply
that, for I > 0, the distance between two neighboring level I processes is within 2r/~'-to-2mr!~!, and
the distance between a level I process and its children in the hierarchy is at most ms!~1. This clustering
does not necessarily imply a uniform tiling of the network, as radii of clusters at the same level are not
required to be the same. The network diameter, D, is the maximum distance between any two locations
in the network. Each node in the network is deployed with O(M AX) storage where M AX < log,D.

An example of the clustering geometry with » = 3 can be found in Section 4. Our hierarchical parti-
tioning constraints can be realized by using a distributed and fault-local stabilizing clustering protocol,
Locr [18].

3 System specification

Here we describe the specification for the system.

Mobile object. The mobile object Evader resides at exactly one sensor location. We model the
Evader using object and no_object inputs at processes: An object; occurs at all processes residing
at the object’s current location and no_object; occurs for all other locations. When moving, the object
nondeterministically moves to a neighboring location.

STALK. STALK consists of two parts, Tracker and Finder, as seen in Figure 1. Tracker maintains
a tracking structure by propagating mobile object information obtained through object and no_object



inputs. Finder answers client finds by outputting found at the mobile object’s current location. Finder
would query Tracker for location information through cpq requests and Tracker would answer with
cpointer responses.

]

Figure 1. STALK architecture at process i

STALK is implemented distributively by individual processes communicating through channels. Each
process is assumed to have access to its own local timer, that advances at the same rate at all processes.
We do not assume time synchronization across processes.

Channels. We use a communication abstraction of a (possibly) multi-hop channel Channel; ; between
any two processes ¢ and j. Such channels are accessed using send(m); ; to send from ¢ and receive(m); ;
to receive at j. The cost of sending a message through Channel,; ; is dist(7,j), and in the absence of
faults a message is removed from the channel by at most 0 * dist(7, j) time where J is a known message
delay factor.

Fault model and tolerance specification. Processes can suffer from arbitrary state corruption.
These faults may occur at any time and in any finite number and order. Channels may suffer faults that
corrupt, manufacture, duplicate, or lose messages.

We say a system is self-stabilizing iff starting from an arbitrary state the system eventually recovers to
a consistent state, a state from where its specification is satisfied. In Section 4 we characterize consistent
states for our implementation.

A perturbation count for a given system state is the minimum number of processes whose state must
change to achieve a consistent state of the system. For work and time calculations the level of “perturbed”
processes are important; a fault hitting a level [ process affects the entire level [ cluster and hence its
size is r!. We define the perturbation size of a system to be a weighted sum of the sizes of perturbed
processes. A stabilizing system is fault local stabilizing if the time and work required for stabilization are
bounded by functions of perturbation size rather than system size.

Complete system. The complete system is the composition of all channels, Evader and STALK.We
require the system be fault-local stabilizing to a consistent state. Starting from a consistent state we
then require that if the object moves d distance, the amortized time and work to update the tracking
structure is O(d xlog(D)). (Other guarantees and requirements relating to finds and concurrent tracking
and finding are discussed in the Tech Report [11].)

4 Tracker

Here we describe how Tracker updates the tracking path after a move, assuming that the mobile
object does not relocate until the updates are completed. In [11], we relax this restriction and allow the
object to relocate while effects of its previous moves are still rippling through the path.

Updates to the tracking path are implemented by two local actions, grow and shrink. The grow action
enables a new path to grow to increasingly higher levels of the clustering hierarchy and connect to the



original path at some level. The shrink action cleans old branches deserted by the mobile object starting
from the lowest levels.

A hierarchical partitioning of a network inevitably results in multi-level cluster boundaries: even
though two processes are neighbors they might be contained in different clusters at all levels (except
the top) of the hierarchy. If a process were to always propagate grows and shrinks to its clusterhead, a
small movement of the object back and forth across a multi-level cluster boundary could result in work
proportional to the size of the network rather than the distance of the move. To resolve this “dithering”
problem, we allow one lateral link per level in our tracking path. A process occasionally connects to the
original path with a lateral link to a neighboring process rather than by propagating a link to its parent
in the hierarchy.

To implement Tracker, each process ¢ maintains a child pointer ¢, a parent pointer p, a grow timer
gtime, and a shrink timer stime. In the initial states, i.c = i.p = L and i.gtime = i.stime = oo for all
1. We assume the use of grow and shrink constants g and s that satisfy:

s > 10.56m (1)
s+ dm

<g<s—odm (2)

Wl (i) Wl (i)

A grow or shrink timer is set at i for g*r or S*1 time respectively. The values for the timers are
chosen to satisfy the requirements on both the work calculations in Section 4.4 and the fault-containment
proofs in Section 5.

Signature: State:
Input: object; c € PU{L}, initially L
no_object; p € PU{Ll}, initially L
cpq; gqack € P U {L}, initially L
receive(msg);i, j € P, gnbrquery C P, initially ()
msg € {gquery, ack_gquery, grow, shrink} update, a Boolean, initially false
Output: send(msg)i,j,j € P, gtime € R, a timer, initially co
msg € {gquery, ack_gquery, grow, shrink} stime € R, a timer, initially oo
cpointer(j);,j € PU{Ll} now € R, a timer indicating current time at 3

Figure 2. Signature and state of Tracker;

Tracker; answers a cpq; input (an information request from Finder;) with a cpointer(i.c); output,
providing the value of its child pointer. The sends and receives propagate grows and shrinks as explained
in detail below for process i.

4.1 Grow action

A grow updates a path to point to the new location of the object.

If 7 is at level 0, the object is at the same location as ¢, and #’s child pointer ¢ does not point to itself,
then ¢ becomes the leaf of the tracking path by setting ¢ to ¢ and setting its grow timer, gtime, scheduling
a grow to be sent when gtime expires.

If i is above level 0 and receives a grow message, it sets its ¢ pointer to the sender, sets gtime
scheduling a grow to be sent to its prospective parent. ¢ also sends a gquery message to its neighbors
to check if the tracking path is reachable through a neighbor. The tracking path allows the use of one
lateral link per level. A neighbor j that receives the gquery sends an ack _gquery back if j is on the
tracking path and there isn’t already a lateral link pointing to 7, i.e., if j.p points to its own clusterhead,
h(j). If i receives such an ack_gquery from j then it sets p to point to j, in preparation for adding a
lateral link at j.

When gtime expires, if ¢ is still non-L, meaning that the path has not shrunk while i’s grow timer
was counting down, then a send (grow) is performed to extend the tracking path. If i.p points to a
neighbor j then the grow message is sent to j, inserting a lateral link. Otherwise, if p = 1, i sets p to



Input: object; Input: receive (ack_gquery);;
eff: ifc#i A Ilwl(i) =0 then eff: ifec#1L A p=_1 then
c:=1 pi=7

gtime := now + g
Output: send (grow); ;

Output: send (gquery);, ; pre:  now = gtime A c# L A
pre:  j € gnbrquery (J=p N pemnbr(@)) VvV (j=h) AN p=1))
eff:  gnbrquery := gnbrquery — {j} eff: if p=_1 then

if gnbrquery = @ then p = h(7)

lvl(2)

gtime :=now + g *r gtime := o0

Input: receive (gquery);,; Input: receive (grow);;
eff:  if p = h(i) then eff: c:=j
gqack :=j if lvl(i) = MAX then
p:i=1
Output: send (ack_gquery); ; if p= L then
pre:  gqack = j gnbrquery := nbr (i)

eff:  ggack := L

Figure 3. Grow actions at process ¢

point to its own clusterhead h(i) and sends a grow message to h(i), propagating the grow one level up
in the hierarchy. In either case gtime is set to oo, and 4’s role in updating the tracking path is complete.

If a grow message is received at ¢ but ¢ already has a parent in the tracking path or is the M AX level
process, then ¢ does not propagate the grow (it is already on the tracking path).

4.2 Shrink action

Input: no_object; Input: receive(shrink); ;
eff: iflvl(i) =0 A c¢# L then eff: if ¢ =7 then
c:=1 c:=1
stime := now + s stime := now + s * 'V

Output: send (shrink); ;
pre: now =stime A c=1 A j=p
efff p:=1

stime := o0

Figure 4. Shrink actions at process ¢

A shrink cleans old, deserted branches of the tracking path.

If 7 is at level 0 and has a non-_L child pointer, but the mobile object is not at i’s location, then i
removes itself from the leaf of the tracking path. It sets its child pointer ¢ to L and sets the shrink timer
stime, scheduling a shrink to be sent upon expiration of stime.

If i receives a shrink message from another process j, ¢ checks to see whether its child pointer ¢ points
to j (¢ might not point to j; it may have been updated to point to a process on a newer path). If ¢ = j
then i removes itself from the path by setting ¢ to | and then sets its shrink timer, scheduling a shrink
message to be sent to its parent p. Otherwise, if ¢ # j, i ignores the message, ensuring that shrink actions
clean only deadwood and not the entire tracking path.

When stime expires, if ¢ is still L, meaning no newer path has connected at ¢ while stime was counting
down, ¢ sends a shrink message to its parent p in the path and then sets p to L.

Example. Figure 5 depicts a sample tracking path. The path is seen pointing to a level 2 clusterhead,
which points to one of its hierarchy children, a level 1 clusterhead. That clusterhead has a lateral link



to another level 1 clusterhead that points to a level O cluster where the object e is located. Deadwood is
denoted by the dotted path.

Figure 5. Tracking path example

4.3 Correctness

Here we present system invariants and define consistent states of the system.
In the absence of faults, every process i satisfies I, the following five conditions, at all times:
10. If [vi(i) = 0 and object; occurs then i.c = 1,
I1. If i.c # L then one of the following holds:
(a) i.c =i and the object is at 4,
(b) i.c points to one of its children in the clustering hierarchy, or
(c) i.c points to a neighbor and i.p points to
its parent in the clustering hierarchy,
12. If 4.p # L then either i.c # L or i is executing a shrink action and will send a shrink to i.p,
I3. The dual: if i.c # L then i.p # L or i is executing a grow action and will send a grow to its
prospective parent,
I4. If i.c # i and i.c # L then (i.c).p is either ¢ or L. In the latter case a shrink from i.c is in transit
to <. |

A tracking path is a sequence {i,...,i1} where
1. 41 is a leaf and contains the object,
2. Every process but i1 points to the next
process as its child, and
3. I is satisfied at all processes in the sequence.

A complete tracking path is a tracking path {i,,...,i;} where lwi(i,) = MAX and i,.p = i,.

A consistent state is a state where a complete tracking path exists and i.c = i.p = L for every process
i not in the tracking path.

Using invariant [ it follows from the program actions that an execution starting from an initial state
eventually reaches a consistent state and that consistent states are closed under moves of the object.

In the case where the evader can relocate before updates have been completed it is necessary to relax
the definition of a tracking path and instead define a more general tracking structure describing path
segments that satisfy certain reachability conditions. Details can be found in the Technical Report.

4.4 Work

In order to prove our work claims, we must show that the timing of changes to the new and old tracking
paths satisfy certain relationships to ensure that the old path is reused (via insertion of a lateral link) to



the extent possible. More specifically, it follows from the assumptions on timer constants s and g that
an old path being cleaned bottom-up from level 0 will not clean one of its level [ pointers before a grow
starting at level 0 in the new path reaches level [ and has an opportunity to query one of those pointers,
allowing for the addition of a lateral link.

This allows us to reason that the new path (which grows by propagating pointers straight up the
hierarchy until it connects to the old path) connects to the pre-shrink old path at the lowest level process
that is either an iterated clusterhead of the new object location or a neighbor of such a clusterhead that
is not itself connected to the tracking path via a lateral link. In the latter case, the new path would
connect via a lateral link.

We then prove the following theorem.

Theorem 4.10 Starting from a consistent state, move operations of the mobile object to a total of
distance d away require at most O(d * wmr x MAX) amortized work and O(d * gr? + MAX) amortized
time to update the tracking path.

Proof sketch. The above reasoning implies a level | pointer in the path is updated as often as every
Zé:‘i gr? distance because of the required use of lateral links at all levels below [ (note that gr! is the

minimum distance between two non-neighboring level [ clusters). An O(mr!~!) work and O(gr!) time
cost is incurred each time a level | pointer is updated. The costs, multiplied by frequency of updates,
are summed for each level for the result. O

5 Fault-containment

After state corruption of a region of (potentially all) processes, our tracking path heals itself in a
fault-local manner within work proportional to perturbation size. Here we discuss correction actions
enabling fault-local stabilization of the path.

Through faults a shrink action can be mistakenly initiated. For example, when a portion of a tracking
path is hit by faults, higher level processes of the path, unaware a healthy lower path exists, start a
shrink action. If “growth” at lower levels lags behind “shrinking” of upper levels, faults can propagate
through the entire upper path. For fault-containment, grow actions started at lower levels must contain
shrink actions.

Similarly, grow actions can be mistakenly initiated. Consider a garbage path with no object at its
leaf. The topmost process of this path, unaware that the path does not lead to the object, starts a grow
action. If “shrinking” from lower levels lags behind “growing” of upper levels, faults can contaminate
the entire network. Thus shrinks started at lower levels must contain grows.

The above requirements are both satisfied by giving priority to actions with more recent information
regarding the path; actions from lower levels are privileged over ones at higher levels. We achieve this
by delaying shrink/grow for longer periods as the level of the process executing the action increases.
This way, propagation actions coming from below are subject to lesser delays and can arrest mistakenly
initiated propagation actions; hierarchy-based fault-local stabilization is achieved. We note that the
latency imposed by delaying is a constant factor of the communication delay to higher levels and does
not affect the quality of tracking.

Stabilization. Here we present correction actions for re-establishing the tracking path invariant [
starting from an arbitrarily corrupted state.

Internal: start-grow; Internal: start-shrink;
pre:c# L A p=1 A gtime ¢ [now,now + g r'"'@D] pre: (c=_1L A p# L A stime ¢ [now, now + s x r'*'¥])
eff: if lwl(i) = MAX then Vpenbr(i) A c€&nbr(i)
p=1 efff ¢c: =1
if p=_1 then stime := now + s * r'!®

gnbrquery := nbr(i)

Figure 6. Starting grow/shrink at process ¢



Output: send (heartbeat); ; Internal: heartbeat_set;
pre: now =next A j=p pre: p# L A mext ¢ [now, now + b x Pt
eff:  next = now + b x '@ eff: next := now + b % r'v®

Input: receive (heartbeat);; Internal: timeout_set;
eff: ifc= 1 then c:=j pre: c# L N c#i _
if ¢ =j then A timeout ¢ [now, now + (b4 26m/r) x r'*¥]
timeout := now + (b + 26m/r) * r'v'® eff: timeout := now + (b4 26m) * r'v'®

Internal: timeout_expire;
pre: now = timeout N c# L A cH#i
eff: c:=1

Figure 7. Heartbeat actions at process ¢

Correction actions for 10 and I1. 10 is established trivially by object and no_object inputs. The
correction of I1 follows from the domain assumptions we make on non-_L ¢, p and gnbrquery variables for
i € P. We require that i.c # L = i.c € {nbr(i)Uchildren(i)} : i.c points to either a neighbor of ¢ or to
a child of ¢. Similarly, we restrict the domain of non-_L i.p variables to {nbr(:) U{h(i)}} and i.gnbrquery
to subsets of nbr(i). These assumptions are reasonable since the clustering provides a process with the
identifiers of its neighbors, children, and clusterhead; a process can locally check and set these variables
to L if their values are outside their respective domains.

Correction action for I12. If ¢ has a valid parent but no valid child, then 12 is corrected at ¢ by setting
i.c = 1 and scheduling a shrink message to be sent to i.p.

Correction action for I3. If ¢ has a valid child but no parent, then a gquery message is sent to i’s
neighbors and a grow message is scheduled to be sent to the future parent of .

Correction actions for I4. To correct 14 we use heartbeat messages and two timers: next for periodi-
cally sending heartbeats to the parent and a timeout for dissociating a child if no heartbeat is heard. The
correction actions use a constant b for calculating the frequency of heartbeat messages, whose periodicity
are tunable to achieve less communication or faster detection. We require that b is more than twice s,
the shrink timer constant:

b>2s (3)
Intuitively, this condition serves to prevent a scenario where aggressively scheduled heartbeats shrink the
original path before a new growing path can reconnect to the original.

Every ¢ with a non-_1 valued parent sends a heartbeat message to its parent every b r time by
setting next. Every time i receives a heartbeat or grow message from its child, i.c, 7 resets its timeout
variable to (b + 20m/r) * r'*!®) (it is also reset upon receipt of a grow to prevent the scenario where the
heartbeat timeout of i expires scheduling a shrink just after i receives a grow message from a process
in a newly growing path). If ¢ receives a heartbeat from j but i.c = L then i sets i.c := j. Otherwise, a
heartbeat message received from a process other than i.c is ignored.

If ¢ has a non-_L valued child, is not a leaf, and has not received a heartbeat message in a (b+2Jm/r)
Pl time interval, then i.c is set to L.

Stabilization of the next and timeout variables of the corrector is ensured by keeping their values
within their respective domains.

Using the correction actions described above, we prove in Theorem 5.2, that STALK is self-stabilizing
to a consistent state, where a complete tracking path exists.’

Theorem 5.2 STALK is self-stabilizing. O

Wl (i)

'In the case where the evader can relocate before updates are completed, the algorithm self-stabilizes to a state where a
more general tracking structure exists, as mentioned in Section 4.3.
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Fault-local stabilization. To prove hierarchy-based fault-local stabilization we first give a bound on
arresting distance of grow/shrink actions in Lemmas 5.3 and 5.4. In these lemmas, I; + 1 and [y are
respectively the lowest and highest perturbed levels: faults occur only from level [1 + 1 through level [s.
We prove fault containment by showing that due to our timing assumptions, a correction propagated
from [; catches propagation of bad information at a level [ > ls, leaving levels above [ untouched by
faults. The proofs for both lemmas are done by comparing the maximum time the propagation of a lower
wave takes to reach level [ versus the minimum time the higher wave takes to pass it.

Lemma 5.3 Propagation of a shrink action started at level I1+1 catches propagation of a grow action
started at level Iy by level | where

br—b+sr+gr—25+3§m-‘
gr—s—om '

l =15+ [log, i
Lemma 5.4 Propagation of a grow action started at level 11 catches propagation of a shrink action
started at level Iy by level | where
br—b+sr?—gr—§
l =15+ [log, %1. i
The size, [ — l5, of contamination due to fault propagation is independent of the network size and is
tunable via grow and shrink timer settings. In [11] we provide values that satisfy these requirements, as
well as a number of others (g = 56m, s = 11dm, b = 11dmr).
Finally, the above two lemmas allow us to prove the following theorem:

Theorem 5.5 (Fault-local stabilization) For a perturbation size S and a highest level L of corrup-
tion, our program self-stabilizes in O(S) work and O(rt) time. m]

Proof sketch. Even though there may be many different scenarios for corruption, since they all lead to
either mispropagation of a shrink or a grow, they all can be cast to the below two cases for a perturbed
process i: 1) ¢ can be corrupted to think it has a child and ¢ grows up, 2) ¢ can be corrupted to think it
has no child and ¢ shrinks up.

In either case i learns the correct information within at most O(r**"()) time and from the containment
arguments in Lemmas 5.3 and 5.4 this correction wave contains previous misinformed waves within a
constant number of levels in the hierarchy, or O(r!*"®)) time and work.

The work for fault-containment is additive: summation of the work for all perturbed processes gives
the work for the system. However, since fault-containment takes place concurrently for all perturbed
processes, the fault-containment time O(rL) for the highest level perturbed process (at level L) dominates,
giving at most O(r) time. O

6 Concluding remarks

We presented STALK, a hierarchy-based fault-local stabilizing tracking service for sensor networks.
We use two concepts to achieve hierarchy-based fault locality: hierarchical partitioning and level-based
timeouts for execution of actions. The key idea is to wait longer before updating a wider region’s view by
employing larger timeouts when propagating an update to higher levels of the hierarchy. This way, more
recent updates from lower levels can catch-up to and override the misinformed updates at higher levels
within a constant number of levels above the fault. While achieving fault-local stabilization STALK also
adheres to the locality of tracking operations. Moreover, by enabling concurrent move and concurrent
find operations STALK achieves seamless and continuous tracking of the mobile object. This last point
is described more fully in our Technical Report [11].

STALK has applications in message routing to mobile units and in pursuer/evader games. As part
of our efforts to develop sensor network services in the DARPA /NEST program, we are implementing
STALK on the Mica mote platform [16]. For future work, we are examining other problems that could
benefit from our hierarchy-based local stabilization technique.
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