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Abstract

We define a programming abstraction for mobile networksedatheTimed Virtual Stationary Au-
tomataprogramming layer, consisting of mobile clients, virtuatéd 1/O automata called virtual sta-
tionary automata (VSASs), and a communication service cotimgVSAs and client nodes. The VSAs
are located at prespecified regions that tile the plane,idgfastatic virtual infrastructure. We present a
self-stabilizing algorithm to emulate a timed VSA using thal mobile nodes that are currently residing
in the VSA's region. We also discuss examples of applicatishose implementations benefit from the
simplicity obtained through use of the VSA abstraction.

Keywords: Ad-hoc networks, mobile computing, location-aware disttéd computing, fault tolerance/avail-
ability, virtual infrastructure, state replication, dibtited virtual machine

1 Introduction

The task of designing algorithms for constantly changinigvoeks is difficult. Highly dynamic networks,
however, are becoming increasingly prevalent, espedialtiie context of pervasive and ubiquitous com-
puting, and it is therefore important to develop new techegyjto simplify this task.

Here we focus on mobile ad-hoc networks, where mobile psmesattempt to coordinate despite min-
imal infrastructure support. This paper develops new tigghas to cope with this dynamic, heterogeneous,
and chaotic environment. We mask the unpredictable behaf/imobile networks by defining and emulat-
ing avirtual infrastructure, consisting diming-awareandlocation-awaremachines at fixed locations, that
mobile nodes can interact with. The static virtual infrasture allows application developers to use simpler
algorithms — including many previously developed for fixedvmorks.

There are a number of prior papers that take advantage ofg@ngto facilitate the coordination of
mobile nodes. For example, the GeoCast algorithms [19, QRER [13], and algorithms for “routing on a
curve” [18] route messages based on the location of the s@umg destination, using geography to delivery
messages efficiently. Other papers [14, 10, 21] use geogrémtations as a repository for data. These
algorithms associate each piece of data with a region oféheark and store the data at certain nodes in the
region. This data can then be used for routing or other agupdies. All of these papers take a relatively ad
hoc approach to using geography and location. We suggestasystematic approach; many algorithms
presented in these papers would benefit from a fixed, prédcteming-enabled infrastructure.

In industry there have been a number of attempts to providei@lized applications for ad-hoc networks
by organizing some sort of virtual infrastructure over thebife nodes. PacketHop and Motorola envi-
sion mobile devices cooperating to form mesh networks tgideocommunication in areas with wireless-
broadcast devices but little fixed infrastructure [15, Z&jese virtual infrastructures could allow on-the-fly
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network formation that can be used at disaster sites, os arkare fixed infrastructure does not exist or has
been damaged. BMW and other car manufacturers are deveglspatems that allow cars to communicate
about local road or car conditions, aiding in accident asoa [25, 17, 11, 22].

Each of the above examples tackles very specific problekestduting or distribution of sensor data. A
more general-purpose virtual infrastructure, that orgesmimobile nodes into general programmable entities,
can make a richer set of applications easier to provide. ¥amele, with the advent of autonomous combat
drones [24], the complexity of algorithms coordinating tlienes can make it difficult to provide assurance
to an understandably concerned public that these firepegu@pped autonomous units are coordinating
properly. With a formal model of a general and easy-to-ustded virtual infrastructure available, it would
be easier to both provide and prove correct algorithms fdopaing sophisticated coordination tasks.
Virtual Stationary Automata programming layer. The programming abstraction we introduce in this
paper consists of a static infrastructure of fixed, timetbairmachines with an explicit notion of real time,
called Virtual Stationary AutomatgVSASs), distributed at known locations over the plane, amdilated
by the real mobile nodes in the system. Each VSA representedeigrmined geographic area and has
broadcast capabilities similar to those of the mobile npadswing nearby VSAs and mobile nodes to
communicate with one another. This programming layer pi@vimobile nodes with a virtual infrastructure
with which to coordinate their actions. Many practical aldons depend significantly on timing, and it is
reasonable to assume that many mobile nodes have accessaoably synchronized clocks. In the VSA
programming layer, the virtual automata also have accesstt@l clocks, guaranteed to not drift too far
from real time. These virtual automata can then run prograhwse behaviour might be dependent on the
continuous evolution of timing variables.

Our virtual infrastructure differs in key ways from othehsit have previously been proposed for mobile
ad-hoc networks. The GeoQuorums algorithm [6, 7] was thetbrase virtual nodes; the virtual nodes in
that work are atomic objects at fixed geographical locatidere general virtual mobile automata were
suggested in [5]; our automata are stationary, and aregedaim a connected pattern that is similar to a
traditional wired network. Our automata also have more phweomputational capabilities than those
in [5] in that ours include timing capabilities, which aregortant for many applications. Finally, we use
a different implementation stategy for virtual nodes thar5], incurring less communication cost and
enabling us to provide virtual clocks that are never far fre=ltime.

Emulating the virtual infrastructure. Our clock-enabled VSA layer is emulated by the real mobiléeso

in the network. Each mobile node is assumed to have accesSR&aservice informing it of the time and
region it is currently in. A VSA for a geographic region is themulated by a subset of the mobile nodes
populating its region: the VSA state is maintained in the mgnof the real nodes emulating it, and the real
nodes perform VSA actions on behalf of the VSA. The emulaisoshared by the nodes while one leader
node is responsible for performing the outputs of the VSAleeping the other emulators consistent. If no
mobile nodes are in the region, the VSA fails; if mobile notdder arrive, the VSA restarts.

An important property of our implementation is that it isfsghbilizing. Self-stabilization [3, 4] is the
ability to recover from an arbitrarily corrupt state. Thi®perty is important in long-lived, chaotic systems
where certain events can result in unpredictable faults. ekample, transient interference may disrupt
the wireless communication, violating our assumptionsuéliee broadcast medium. This might result in
inconsistency and corruption in the emulation of the VSAr @elf-stabilizing implementation, however,
can recover after corruptions to correctly emulate a VSA.

Applications. We present in this paper an overview of some applicationsatesignificantly simplified

by the VSA infrastructure. We consider both low-level seeg, such as routing and location management,
as well as more sophisticated applications, such as motiordmation, tracking, traffic management, and
traffic coordination. The key idea in all cases is to locate@nd computation at timed VSAs throughout
the network, thus relying on the virtual infrastructure tmglify coordination in ad-hoc networks. This
infrastructure can be used to implement services such &agdbat are oftentimes thought of as the lowest-
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level services in a network.

Organization. The paper is organized as follows. The system model is dextin Section 2. We then
define our virtual stationary automata (VSA) programmingtegdztion in Section 3. Then we present a
leader-based implementation of the VSA layer by the undeglyeal mobile nodes in 4. We conclude
by describing examples of candidate applications for VSASeéction 5 and some current and possible
extensions of our work to other system settings in Section 6.

2 Datatypes and system model

The system consists of a finite collection of mobile

client processes moving in a closed, connected, aigtem constants:

bounded region of the 2D plane calléti(see e.g., — R, a fixed closed connected region of the two-
[6, 8]). A summary table of system datatypes, codimensional plane.

stants, and variables is in Figure 1. — U, afinite set of tile ids for subregions &f.
. — tile, a mapping fronU to connected subsets &f
2.1 Network tiling — nbrs, a symmetric relation between idsih

Region R is partitioned into predetermined con--r,;,.;, the supremum distance between points andv
nected subregions calletiles or regions labeled for any tilesu, v whereu € nbrs(v).

with unique ids from the set of tile identifiefs. In — > afinite set of node ids wheden U = 0.

practice it may be convenient to restrict tiles to big Ymas- thé maximum mobile node speed.

regular polygons such as squares or hexagons. Wget‘ﬁ’etg]eogl%b:llg dneogﬁ)gzjc:;aaiiﬁéggg: 'd elay
define a neighbor relationbrs on ids fromU: two  _ ' "o GpS sample period. '
tilesw andv are neighbors iff the supremum distancgystem variables:

between points itile(u) andtile(v) is bounded by — now € R, a clock variable, representing real time.
a constant-;,;. — loc, a continuously updated array of location coordi-
nates ink of mobile nodes, indexed by node id.

2.2 Client nodes andP-bcast
Each mobile node”,, p € P, the set of mobile Figure 1: System constants and variables.
node ids, is modeled as a mobile timed I/O automa-
ton whose location ik at any time is referred to as
loc(p). Mobile node speed is bounded by a constapt,. We assume each node occasionally receives
information about the time and its current regiona GPSupdate(u, now), happens every,q,y. time.
While GPS is not accurate in reality, as long as an error basirkthown, its effects here are small (see
Section 3.2). We assume the node’s local claoks progresses at the rate of real-time. This implies that if
a node copied GPS'’s clock time, outside of failures, theevalinow should be equal to that of real-time.
Each client is equipped with a local broadcast communinatirvice calledP-bcast, with a minimum
broadcast radius of..,; and a message delay We assume that a local broadcast service guarantees two
properties: integrity and reliable local deliveryntegrity guarantees that for any receive of an arbitrary
messagen, brcv(m),, that occurs, a broadcadicast(m),,q € P, previously occurredReliable local
delivery(roughly) guarantees that a transmission will be receiweddarby nodes: If client’, broadcastss
a message, then every cligfif within r,.,; distance ofC,’s transmission location during the transmission
interval of lengthd receives the message before the end of the interval.
In practice, a broadcast service has bounded messagesbufflerassume buffers are sufficiently large
that overflows do not occur in normal operation. In the evébudfer overflow, overflow messages are lost.
Clients are susceptible to stopping and corruption fadupdter a stopping failure, a client performs no
additional local steps until restarted. If restarted, airtst operating again from an initial state. If a node is
corrupted, it suffers from a nondeterministic change tpiitqgram state.
Additional arbitrary external interface actions and lostte used by algorithms running at the client
are allowed. For simplicity local steps are assumed to takinme.



3 Virtual Stationary Automata programming layer

Here we describe th¥irtual Stationary Automatgrogramming layer that we have implemented. This
abstraction includes the real mobile nodes discussed itagtesection, the virtual stationary automata
(VSASs) that the real nodes emulate, and a local broadcagteeiv-bcast, between them (see Figure 2).
The layer allows developers to write programs for both neblients and stationary tiles of the network as
though broadcast-equipped virtual machines exist in thits® We begin by describing the properties of
VSAs and then describe the V-bcast service. A VSA is emulbyeckal mobile nodes that coordinate their
emulation and may fail; this can introduce delays in the et of the VSA that we model with a concept

we calldelay augmentatian

3.1 Virtual Stationary Automata

An abstract VSA is a timing-capable virtual ma-
chine. We formally describe such a timed machine
for atileu, V,, as a TIOA whose program can be re-
ferred to as a tuple of its action signatuséy,,, valid
states,states,,, a start state functionstart,,, map- . ——

ping clock values to appropriate start states, a dis- Vobeast
crete transition functiony,, and a set of valid trajec- ' S

tories of the machiner,. Trajectories [12] describe cPswdaeus,
state evolution over intervals of time.

A virtual automator¥/,’s external interface is re-
stricted to be similar to that of the real nodes, in
cluding only stopping failure, corruption, and restartsudatev
inputs and the ability to broadcast and receive mes-
sages. Corruptions result in a nondeterministic
change to any portion df,'s state,vstate, includ-
ing the virtual clockvstate.now. As with mobile
clients, thisnow value is assumed to progress at the
rate of real-time and, outside of failure, equal real-

time. Since a VSA is emulated by physical nodgsgure 2: Virtual Stationary Automata abstraction.
(corresponding to clients) in its region, its failuregsas and clients communicate using the V-bcast ser-

are defined in terms of client movements and failice. VSA bcasts may be delayed in Dout buffers.
ures in its region: (1) If no clients are in the region,

the VSAis crashed, (2) IV, is failed but a client, enters the region and remains for at least;,. time,
then in that interval of timé/, restarts, (3) If no client failure (corruption or stoppinggcurs in an alive
VSA's region over some interval, the VSA does not suffer aufaiduring that interval, and (4) A VSA may
suffer a corruption only if a mobile client in its region seif§ a corruption; our self-stabilizing implemen-
tation of a VSA guarantees that starting from an arbitramyfigoiration of the emulation, the emulation’s
external trace will eventually look like that of the abstre(SA, starting from a corrupted abstract state.

bcast(m) v

Doutfe],,
beast(m) v
brev(m) v
brev(m)

3.2 V-bcast service

The V-bcast service is a “virtual” broadcast communicasiervice with transmission radius;,.;. It is simi-

lar to that of the real nodeg>-bcast service and implemented using ihdcast service. It allows broadcast
communication between neighboring VSAs, between VSAs aadhy clients, and between clients through
bcast andbrcv actions, as before. V-bcast guarantees the integrity psodescribed forP-bcast, as well
as a slightly different reliable local delivery propertyhdreliable local deliveryproperty for V-bcast is as
follows: If port i, wherei is a client or VSA port in any region, transmits a message, then every gort
whether a client or VSA port, in regiom or neighboring regions during the entire time interval titgrat



transmission and ending later receives the message by the end of the interval. (Fod#finition, due
to GPSupdate lag, a client is still said to be “in” regiom even if it has just left regiom but has not yet
received &GPSupdate with the change.)

Notice that V-bcast’s broadcast radius is different frorattbf P-bcast; since virtual broadcasts are
performed using real broadcasts, the virtual transmissdius cannot be larger than the real. Recall V-
bcast's transmission radiusg;,; is defined as the supremum distance between points in twdnlbaigg
tiles. V-bcast then allows a real nogeand a VSA for tileu to communicate as long as the node is at most
ryirt distance from any point in tile and a VSA to communicate with another VSA as long as they are
in neighboring tiles. The implementation of the V-bcaswirr using the mobile clientsP-bcast service
introduces the requirement that,; < 7rcq; — 2€sample - Umaz- 1N€2€5ampie - Vmaa Adjustment guarantees
that two nodes emulating VSAs for tiles they have just leficduse they have not yet receiveBSupdates
that they've change tiles) can still receive messagesnrdiesl to each other. If GPS error is considered,
we would compensate by further decreasipg; by twice the error bound.

3.3 Delay augmentation

While an emulation o#/, would ideally look identical to a legitimate executiongf, an abstraction must
reflect the possibility that, due to delays resulting fronmssagje delay or real node failure, the emulation of
V., may be slightly behind real time and appear to be delayedrioeing output actions of/, by up to

a timee. The emulation oV, is then called alelay-augmented TIQAn augmentation df,, with timing
perturbations composed wiil,’s output interface. These timing perturbations are regres] with a buffer
Doutle],,, composed with/,’s bcast output. The buffer delays delivery of messages by some nermda-

stic time |0, e]. Program actions of,, must be written taking into account the emulation parametgrst

as it must the message delay facioA discussion of the value @fcan be found in Section 4.5.

4 Implementation of the VSA layer

We describe the implementation of a VSA by mobile clientstintile in the network. At a high level,
the individual mobile clients in a tile share emulation o tvirtual machine through a deterministic state
replication algorithm while also being coordinated somaiNly a leader. We begin by describing a totally-
ordered delayed broadcast service and leader electioleasdéov individual regions, also implemented using
the underlying real mobile nodes, that we will use in ouricgtion algorithm. We then focus on describing
the core emulation algorithm, give a performance evalnatand briefly sketch correctness. The IOA
implementations are in Figures 3-6.

4.1 TOBcast service

In order to keep emulators’ state consistent, emulatorg prosess the same sets of messages in the same
order. We accomplish this by using the emulators’ clocks &rldcast service to implement a TOBcast
service for each region and client (Figure 3). This servidens a clientC), in tile v to broadcastn,
TOBcast(m),, ,, and to have the message be receii@Brcv(m, u), 4, by clients intile(u) and neigh-
boring tiles exactly time later. To implement this service, when a client want$@Bcast m from itself

or its tile, it tagsm with its current tile, time, message sequence number (imented when the client sends
multiple messages at once), and the client id, and broalitagting P-bcast. When a client receives such
a message from a client in its tile or a neighboring tile itdsolhe message in a queue until exadtlyme
has passed since the message’s timestamp. Messages tbeached old are thenTOBrcved in order of
sender id and sequence number, ordering the messages. iddlaase of shared variables, we include
input and output actions so the TOBcast service can infoeclient whether all messages sent ug tone
ago have been received. Most complications in the use of thetfons come from self-stabilization.



Signature: Input TOBprobe,
2 Input TOBcast(m)u,p Effect: 44
Input brev({(m, s,t,b,7))p, s € P,t € R,b € Int=0,r € U nextreve— L
4 Input GPSupdate(v, t)p,v € U,t € R 46
Input TOBprobe, Output 'If(_)Bnext(t)u’p
6 Output TOBnext(t)w,p,t € R Precondition: 48
Output TOBrev(m, v)y,p, VE U t_;«é nextrevv now /ttlyp ¢ [upd{—.lteTSl, updateT$
8 Output bcast(m)p (lncomlng: Ont= OO) Vit=min (m,s,ts,b,r)Eincoming ts 50
Internal correct({m, s, t, b, 1))u,p, s € P,t € R,b € Int20,r ¢ U | Effect:
10 nextrcv«— t 52
State if now= updateTSttl,, then
12 analognow € R, current real time updateTS— update TS+ 1 54
reg € U, current reg, initially_L elseupdate TS— [now/ttlyp]
14 btime nextrcve R, last message timestamp 56,
bsege Int=0, message sequence number Input TOBcast(m)u.p
16 incoming outgoing message tuple queues, initially Effect. 58
updateTSe Int if reg= uthen
18 if btime# nowthen 60,
Trajectories: bseq— 0
20 satisfies btime «— now 62
d(now) =1 elsebseqg«— bseqgt+ 1
22 constantreg, btime bseq incoming outgoing nextrcy updateTS outgoing+= {(m, p, now, bseq u)} 64
stops when
24 Any precondition is satisfied. Input brev((m, s, t, b, 1)) 66
Effect:
26 Actions if r=uVr € nbrs(u) ] then 68
Output beast(m),, incoming+= {(m,s,t,b,r)}
28 Precondition: 70
m € outgoing Output TOBrev(m, 1)y, p
30 Effect: Precondition: 72
outgoing— = {m} reg=uA(ms,t,b,r) € incomingAt = now-d
32 v{m',s,t',b',r’') €incoming (t, s, b) < (',s,b’) 74
Input GPSupdate(v, t), Effect:
34 Effect: incoming— = {(m, s, t, b, 1)} 76
now«— t )
a6 if reg# v then Internal correction((m, s, t, b, r))w,p 78
reg—v Precondition:
38 incoming«— (m, s, t, b, r) € incoming 80
btime «— now r ¢ {u}u nbrs(u) Vt+d < nowVt>nowVreg# u
40 bsequpdateTS— 0 Effect: 82
nextrev— L incoming— = {(m,s,t, b, r)}
Figure 3: TOBcast,, providing ordered broadcast in tile

4.2 Leader election service
Here we describe the specification for a leader electionicerequired for our emulator implementation.
Assume timeslice are of lengthy;.. > 4d and begin on multiples df,; ..

When there are no corruption failures, the leader elecéowice for a region;, guarantees:
(1) There is at most one leader of a region at a time, and tietesin the region (or withis,,,pie - Vimaz).
(2) If a proces® becomes leader of regianat some time, then at that time either:

(a) there was a prior leader of regiarduring an interval starting at leagtafterp enteredu and ending

after some multiple of ;.. at least2d later, or

(b) there is no process inwhere a prior leader such as in (a) can be found,
(3) If a process ceases being leader at tirtteen it will be at least! time before a new leader is chosen,
(4) For any two consecutive timeslices such that at leasponmeess is alive in, for both timeslices and no
failures occur in the latter timeslice, there will be a leaileone of the two timeslices for at lea&d time
and until the end of the timeslice.

One example of a self-stabilizing implementation of thisder election specification can be found in
Figure 4. In this simple implementation, if a process is é&radt broadcasts &aderhb message every



Signature: Output TOBcast((leaderhb, p))u,p
2 Input GPSupdate(v,t),,ve U, te R Precondition: 46
Input TOBnext(t)u,p,t€ R reg = u A leaderAtimeslice-tg;;.. < now
4 Input TOBrev(m, w)u,p, Effect: 48
m e ({leaderhb} x P) U ({restart} x P x Bool) if now= timeslice-t4;.. then
6 Output TOBcast(m).,,,me {(leaderhb,p),(restart,p,updated } timeslice— timeslice+ 1 50
Output leader(val).,p, val € Bool elsetimeslice— [now/tsy;ce |
8 Output TOBprobe,,, 52
Internal newleader,, ; Input TOBrcv((leaderhb, q), U)w,p
10 Effect: 54
State if [(leadern q+# p) V (! leaderAtimeslice-t;.. +d < now)] then
12 analognowe€ R, current real time leader— false 56,
reg € U, current reg, initially L updated— true
14 timeslice updateTSe Int timeslice— [now/ts;ce | 58
nextrcve R
16 updated leader, leaderval restartede Bool Output TOBcast((restart, p, updated).,, 60
Precondition:
18 Trajectories: reg = u A ! restartedA timeslice-t¢;;.. < now-d < nextrcv 62
satisfies Effect:
20 d(now) =1 restarted«— true 64
constantreg, timeslice updateTSupdated leader,
22 leaderval restarted nextrcv Input TOBrcv((restart, g, qupdated, u),p 66
stops when Effect:
24 Any precondition is satisfied. if [leaderV (restartedA [(qupdatedA ! updated 68
V (qupdated= updatedA g < p)]) ] then
26 Actions restarted leader— false 70
Output TOBprobey, , timeslice— [now/ts;ce |
28 Precondition: 72
nextrcv< now-d Internal newleader,,
30 Precondition: 74
Input TOBnext(t)w,p restartedA d + timeslice-t;;.. < now-d < nextrcv
32 Effect: Effect: 76
nextrcv«— t timeslice— [now/tsce |
34 leader, updated— true 78
Input GPSupdate(v, t),
36 Effect: Output leader(leader),p 80
now -« t Precondition:
38 if (reg# vV now< timeslice-ts;.. -3d) then reg= UA [leader# leaderval now'ttl,, ¢ [updateTS1,updateT$|s2
reg «— v Effect:
40 nextrcv«— now -d leaderval«— leader 84
timeslice«— [(now + 3d) /tsice | if now= updateTSttl,, then
42 updated leader, leaderval restarted« false updateTS— update TS+ 1 86,
updateTS— 0 elseupdateTS— [now/ttlup |
Figure 4: Leadey,, electing a leader for tila.

tqice @amount of time. Once it fails or leaves the tile, the othercpsses in the region will synchronously
timeout the heartbeat and serektart messages, from which the lowest id process that had prdyious
heard a heartbeat from the leader at |gaktime after entering the tile is chosen as leader. If thereis n
such process, then the lowest id process becomes leadsrsifiplistic strategy ignores issues of network
contention or power management. We briefly discuss altembtader election strategies in Section 6.

4.3 Emulator implementation

Here we describe a fault-tolerant implementation of a VSAlkor. We first describe how our leader-based
emulation generally works and then address details in thdagion. The signature, state, and trajectories
for the algorithm are in Figure 5 and the actions are in Figureine numbers refer to lines in Figure 6.
Leader-based virtual machine emulation. In our virtual machine emulation, at most one of the mobile
nodes in a VSA s tile is a leader (chosen by the leader elestiovice), with primary responsibility for em-
ulating the VSA and performing VSA outputs. A leader stoned apdates the state of the VSA (including
the VSA's clock value) locally, simulating all actions ofetlYSA based on it. When the leader receives a
TOBcast message, it places the message in a local savedgmaegszue (lines 33-37) from which it sim-
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Signature: Trajectories: 22

2 Input GPSupdate(v,t),,ve U, te R satisfies

Input leader(val),p, val € Bool d(now) =1 24
4 Input TOBnext(t)u,p,t € R constantreg, joinTS joinreq, oldsavedgsavedg

Input TOBrev(m, v)u,p, v € {u}U nbrs(u) outa, nextrcy lead TS checksum 26
6 Output TOBprobe,,, 7(now).vstate= 7 (T (now).vstatenow)

Output TOBcast(m)v,p, me (Msg x R)U {join} U if (vstate# L A vstatenow > now-d) then 28
8 ({update} x states,)U ({check} x (hashx N)x Bool) if vstatenow < nowthen

Internal VSArcv(m)u,p d(vstatenow) = x, x > 2 30
10 Internal VSAlocal(act)w,p, act € internal, output sigy, elsevstatenow= now

Internal correctqueues,, , else constantsstate 32
12 Internal checksum,, , stops when

Any precondition is satisfied. 34

14 State
analognow € R, current real time
16 reg e U, current reg, initially L
nextrcy, joinTS leadTS joinreq € R
18 vstatec states,
oldsavedgsavedqoutg queues of msg, timestamp pairs
20 checksumtriple of hashed/, state, a natural, and a bool

Figure 5: VSAE, ,, emulator ap of V,, = (sig,, states,,, start,, o, T,) - Signature, state, trajec-
tories.

ulates the VSAbreving (processing) the message (lines 39-45). If the VSA isetidgpm a local action,
the leader simulates its effect on the VSA state (lines 47-B4he VSA action is tdbcast a message, the
leader places the message in an outgoing VSA queue (liné4)%3e be removed antiOBcasted with the
tile as the source by the leader, in the VSA's stead (line6 H6-

For fault-tolerance and load balancing reasons, it is rs@acgd0 have more than just the leader main-
taining a VSA. In our multiple emulator approach, a VSA is mained by several emulators, including at
most one leader, each maintaining and updating its local obgphe VSA state and saved message queue
as above. However, non-leader emulators, unlike leadersptitransmit messages for the VSA from their
outgoing VSA queues, preventing multiple transmission essages from the VSA. To keep emulators
consistent, the emulation trajectories are based on anieieed version of the VSA trajectories.

Emulation details. There are several complications in VSA emulation that adise to both message
delays and process failure:

Joining: When a node discovers itis in a new regiod,@Bcasts ajoin message (lines 23-31). Any process
that receives this message stores the timestamp of the geeasdhe latest join request (lines 63-65). If a
leader has processed all messages in its saved messageaqudi@Bcasted all messages in its outgoing
VSA queue, it answers outstanding join requestI ®yBcasting anupdate message, containing a copy of
the leader’s current emulated VSA state (lines 67-74). Eaeér holds off on performing any additional
VSA-related transmissions until it receives this messéige 74). When any process that has been in the
region at leas®d time receives thepdate, it adopts the attached VSA state as its own local VSA state an
erases its outgoing VSA queue (lines 76-89). (If it has netnbi@ the regior2d time, its saved message
gueue may not have all messages that were too recent to beedfie theupdate.)

Catching up to real time: After receipt of anupdate message, the VSAs clock (and state) candbe
behind real time. Intuitively, the VSA emulation is “set B&gvhenever arupdate message is received. To
guarantee the VSA emulation satisfies the specificatioms 8ection 3 (bounding the time the output trace
of the emulation may be behind that of the VSA being emulatbd)virtual clock must catch up to real time.
This is done by having the virtual clock advance more thardves fast as real time until both are equal,
after which they increase at the same rate. This is illusdrat Figure 7, where the virtual clock proceeds in
fits and starts relative to real time, occasionally fallirdnimd and then catching up. It is formally described
in Figure 5, lines 28-32. To guarantee that the virtual cloak catch up beforé time, we require a leader



Output TOBprobey,,,
2 Precondition:
nextrcv< now-d
4
Input TOBnext(t)w,p
6 Effect:
nextrcv«— t
8
Input GPSupdate(v, t),

10 Effect:
now« t
12 if reg# vthen
reg«— v
14 joinTS«— oo

16 Input leader(val),p

Effect:
18 if (! val v joinTS> now-d) then
lead TS+ oo
20 else ifleadTS> now+ dthen
leadTS— now

22
Output TOBcast(join),p
24 Precondition:
reg=uAjoinTS> now
26 Effect:
join TS« now
28  nextrcv«— now-d
lead TS joinreq «— oo
30 savedgoldsavedgoutq<« 0
vstate checksum— L
32
Input TOBrev(m, s).,,p, mfirst ¢ {check, update, join}
34 Effect:
savedg— append(savedq (mfirst, now-d))
36 if (s=uA3xy: [outq= append(append(x, m), y)]) then
outq«—y
38
Internal VSArcv(m).,p
40 Precondition:
vstate# LA (m, t) = head(savedq
42 Effect:
vstate— ¢, (vstate brcv(m))
44 oldsavedg— append(oldsavedghead(savedq)
savedg— tail (savedq
46
Internal VSAlocal(act),p
48 Precondition:
vstates# 1 # §,, (vstate act) A act= next(vstate d.,)
50 nextrcv> now-d A savedg= )
Effect:
52 vstate— §, (vstate act)
if act= bcast(m) then
54 outq < append(outg, (m, vstatenow))

56 Output TOBcast(m),p
Precondition:
58 reg= uAleadTS< now < nextrcv+ d A m= head(outq)
vstates# LA vstatenow > now-d A V(m, t) € outq t > now-e
60 Effect:
outq « tail (outq)

Input TOBrev(join, u).,p

Effect: 64
joinreq < now-d

66

Output TOBcast((update, vstaté)).,

Precondition: 68
reg = uA leadTS< now < nextrcv+ dA [(vstaté= vstate\ [vstate= L
V (vstatenow= now A outq = (= savedgh joinreq # c0)]) V. 70
(vstaté = LA [vstatenow < now-d vV 3 (m, t) € outq t < now-e])]

Effect: 72
joinreq < oo
leadTS— now+d 74
Input TOBrcv({update, vstaté), U) 76
Effect:
if joinreq < now-2d then 78
joinreq < oo
if (joinTS< now-2d A vstaté = L) then 80
vstate— start, (now)
savedg— 0 82
else ifjoinTS< now-2d then
if vstate= _L then 84
oldsavedg— 0
vstate«— vstaté 86
savedg— append(oldsavedgsavedg— {(m, t): t < now-2d}
oldsavedgoutg«— 88

checksum— L
20
Internal correctqueues,

Precondition: 92
3 (mt) € oldsavedqU savedqt > now-d Vv 3 (mt) € outq t > now
Effect: 94
savedqoldsavedg— = {(m, t): t > now-d}
outq— = {(m, t): t > now} 9
Internal checksum,, ;, 98
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vstatenowmod ttl,,qqte = 0 A Nextrev> now-d A savedg=
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Effect:
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if (joinreq# oo A joinreq > now-d) then

joinreq <— now-d

100
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104
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Output TOBcast(({check, (csumt), jr))u,p
Precondition:
reg = u A leadTS< now < nextrev+dA now+ d< (t+1)-ttly paate
checksum= (csumt, false) A jr = = (joinreq # oo) A outq= )
Effect:
checksum— (csumt, true)
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Effect:
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if (jr Ajoinreq= oo) then
joinreq <— now-2d
if ([vstate= LA joinTS< now-2d A!jr]
V [vstate# LA checksung (csuni, t/, ) ]) then
joinTS« oo
elsechecksum— (csuni, t', true)
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Figure 6: VSAE, ,,, emulator ap of V,, = (sigy, states,, start,, d,,T,) - actions.




to only transmit arupdate message once its virtual clock is caught up to real time @i@e
Message processing:Messages to be received by the
VSA are placed in a saved message queue from which
emulators simulate receiving the messages. Itipn
date message is received, setting back the state of the
VSA, emulators must be able to resimulate receiving
messages that were sent upittme before theipdate

was sent. In order to guarantee this, whenever an emula-
tor processes a message from the saved message queue weacosc— . e T -
for the VSA, it moves the message into an old saved e
message queue (line 47); if a process receivesmn
date message, it moves all messages in that queue that
were received after thepdate was sent back into itsFigure 7: Relationship between virtual and real
saved message queue to be reprocessed (line 87). time. A virtual clock behind real time runs faster
Making up leader broadcastsif a leader is supposeduntil it catches up.

to perform broadcasts on the VSA's behalf, but fails or

leaves before sending them, the next leader needs to tratenmessages. Since emulators store outgoing
VSA messages in a local outgoing queue, the new leader argtrhits any messages stored in its outgoing
gueue (lines 56-61) and removes them. To prevent messammsbiing rebroadcast by future leaders,
emulators that receive a VSA message broadcast by the leaewe it from their own outgoing queues
(lines 36-37).

Restarting a VSAIf a process is leader and has no value for the VSA state or kasages in its outgoing
gueue with timestamps older than the delay augmentaticenmpetere, it restarts the emulation. It does
this by sending anpdate message with attached state loind then waiting to receive the message (lines
67-74). When processes that have been in the rejidime receive the messagdater, they initialize the
VSA state and messaging queues and begin emulating a eesté8iA (lines 76-89).

Self-stabilization. Our implementation is self-stabilizing through the useaafdl correction andipdate
andchecksum messages. Thepdate messages sent by a leader contain state information wherfwvates

any VSA state information at other emulators, bringing etars into agreement about VSA state. In the
event that join requests do not occur very often, if the wirtlock is divisible byttl, 4., the emulators
calculate and store a checksum of the VSA state. The leatlensresponsible for sending atttecksum
messages with the attached checksum. Emulators, whendbelve this message, compare the attached
checksum to the version that they have stored. If the vesgidfer, they re-join. This ensures that emulators
will have state consistent with the leader’s.

virtual clock

t-t'<d

4.4 (Almost) trivial client implementation

Recall the VSA abstraction consists not just of VSAs and &dbcbut also client automata, corresponding
to mobile nodes in the network. The implementation of cliaatomata is almost trivial; client automata
programs are executed as is, except for communication. Adogst of a message by a client requires the
use of a communication wrapper identical to the one in TOBc®then such a message from a VSA or
another client idorcved by the client througlP-bcast, the client runs its program based on receipt of the
message stripped of its wrapper.

4.5 Correctness and performance evaluation
Correctness roughly consists of guaranteeing livenesbetmulation under certain circumstances and
guaranteeing that emulations of an abstract VSA implententMSA. Providing complete proofs for the
sketches below is work in progress.

We say a VSA idailed if no process in the region has VSA stat&ate # L such thawstate.now >
now — d and its outgoing queue has no messages with timestamps naore lvefore real-time.
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Assume that as a parameter of the system, there is somevpastegerk such that if a process is alive
in a region from the beginning of any timeslicéhrough the end of timeslice+ &, then there is at least one
timeslice int + 1. ..t + k where no failures or leaves of processes occur in the region.
Lemma 4.1 For any non-failed VSA, its VSA outputs are not delayed byeri@nme = (k + 1) - tgice — d
time, and as long as from the beginning of any timeslice tiseed least one alive process in the VSA's
region withuvstate # 1, vstate.now > now — d, and an outgoing queue without messages that are older
thane that remains alive in the region through the followihdimeslices, the VSA does not fail or restart.

Proof sketch: To make up time lost between the sending ofupadlate by a leader and the pick-up of the
emulationd later, the VSA is emulated using a sped-up virtual clock, escdbed before. Since a leader
only sends ampdate if the virtual clock equals realtime and the virtual clocknsre than twice as fast as
realtime if it is not equal to realtime, a “behind” emulatianll catch up to realtime withind time. Thus,
after the leader broadcasts outstanding messages ing@iogtqueue when it first becomes leader, any new
VSA broadcasts by the leader will be delayed by at nadgne.

If there is no leader, the next leader for at leéastime will be chosen betweehand(k + 1) - tgice — 2d
time later, by the leader election specification and ouresgsassumptions. If the new leader receives an
update from the prior leader right as it becomes leader, messadelanput in the outgoing queue at most
d late (as per above). Otherwise, the emulation is alreadgitayp and transmissions occur immediately; at
worst, the prior leader wagbehind in broadcasts when it ceased being leader (as peg)ade maximum
message age for these two situations is then

Next, to see that the VSA does not restart, note that sincarttwint of time before a process is leader
for at least2d time is bounded by — d time, the only way for a VSA to restart is if a process becomes
leader before it receives arpdate message. However, by the leader election specificatidmereiihere are
no processes in the region who had previously received fstatea leader (false), or sometime afteafter
this leader originally entered the region there must haes lamother leader for at leaxt time. That leader
would have received this current leader’s join request ant anupdate. [

Lemma 4.2 If a VSA is failed in some timeslice but there is an alive pssda the VSA's region from the
beginning of the timeslice through the followihdgimeslices, then the VSA will be restarted withitime.

Proof sketch: We know by the leader election specification thatddybefore the end of the following
timeslices there will be a leader. That leader will transamtupdate message to initializestate. By d
later this message will be delivered and processes in therregll restart the VSA. [

Theorem 4.3 The VSA emulator and client implementation correctly imm@et the VSA abstraction: Let
A be the abstract VSA model asdhe implementation. Thefimed-traces(S) C timed-traces(A).

Proof sketch: We introduce an intermediate layer description, and desai(simple) simulation relation
[12] between this layer and the abstract layer. We then tesarsimulation relation from our implementa-
tion to the intermediate layer. Together, this shows thdémgntation implements the abstract layer.

The intermediate layer is similar to the abstract layergpkthat VSAs may have clocks that are behind
real-time and have incoming delay buffers that hold eachsamgsbound for the VSA until the VSA's clock
passes the message’s timestamp. This layer captures ththate/SA state in the emulation can be behind
what the corresponding abstract VSA state would be. A sitimmaelation is then defined to show that
this intermediate layer implements the abstract layergigting the state of a VSA, its incoming message
buffer, and outgoing message buffer in the intermediaterl&y what will be the state of that VSA and its
delayed outgoing message buffer in the abstract layer, ieatual clock equals the current real-time.

We now describe a forward simulation relation between th@ementation and the intermediate VSA
abstraction for non-failed VSA emulations. There are savgarts, relating state of emulators to the state
of the abstract VSA and state of message buffers in the inmgiésttion to those of the abstract system:
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(1) For any process whetstate # L, the value ofustate is equivalent td/,.vstate unless there is an
update message in transit, in which caBg.vstate is equal to the attached state in thigdate message.

(2) If m is a message either in transiitor in p’s saved message queue, theiis in virtual transmission
to u. If there is anupdate message in transit and is in p's old saved message queue anehifvas sent
less thard before theupdate, then it is in virtual transmission ta.

(3) If m is a message in transit toand was sent by, then the message is in virtual transmissiop.to

(4) If m is a message in the outgoing queue and not currently in traargd noupdate message is in
transit thenm is in Doute].

Using the simulation relation we can then prove the theorgimdiuction on implementation actiors.

Message complexity. There are two parts to the message overhead introducedsbgltjarithm. The first

is that of the overhead in normal operation introduced olvat ¢f the virtual machine if it was real. This
is just one checksum-sized message evéry,... time (used for self-stabilization). The second is that of
the overhead from dealing with processes joining the emoulatn this case, when a successful join occurs
it results in a broadcast of the VSA state and saved message gwhich could contain as many messages
as could be received itime. If M’ is the number of messages that can be receiveltime, then the bit
overhead of a join i®)(|vstate| + |msg| - M').

5 Applications for the VSA layer

We believe the VSA layer will be helpful for many applicatsnncluding some of the more difficult coor-
dination problems for nonhomogenous networks oftentineséred in true mobile ad hoc deployments. Our
virtual static infrastructure provides something like adatation model, with a fixed network that interacts
with mobile clients. It allows application developers teuse many algorithms originally designed for the
fixed network or base station setting, and to design diftesenvices for different regions. Here we list
several applications whose implementations would bemnefit use of the VSA abstraction.

Geo-routing. An important application is a means for remote regions toroomcate. This can be easily
implemented by VSAs that utilize the fixed tiling of the netlwdo forward messages [9]. Each VSA
chooses a neighboring VSA to forward a message to accordingtéria of shortest path to destination or
greedy DFS as suggested in [8]. The VSA layer offers a fixed fihfrastructure to depend on, rather than
the ad-hoc imaginary tiling used in that algorithm. Retraissions along greedy DFS explored links can
be used to cope with repeated crashes and recoveries [9]GDd-R algorithm [13], combining greedy
routing and face routing, can be used to give efficient rguitinthe face of “holes” in the VSA tiling.
Location management and end-to-end routing. Location management is a difficult task in ad-hoc net-
works. However,home locationalgorithms that either assumed fixed infrastructure or veffecult to
reason about due to concerns about data consistency dseiggemented using the VSA layer [9]. Each
client’s id could hash to a set of VSAs (home locations) thauld store the client’s location. The client
would occasionally inform its home locations of its curreggion. Anyone searching for the client would
query the client's home location VSAs for its location. Th8A/abstraction removes the burden of explic-
itly coordinating mobile processes in the home locationare¢p have them agree on data being served. The
home location service can then be used to provide end-tccemimunication between individual clients
[9].

Distributed coordination. VSAs corresponding to geographic regions can be a sourca-bh® infor-
mation and coordination, directing mobile clients to hddprh complete distributed systemwide missions.
The virtual infrastructure can make it easier to handle dimation of many clients when tasks are complex.
Also, many coordination problems might not be bothered leygbssibility of a failed VSA in an empty
region since such regions have no clients to coordinate. uBkeof a virtual infrastructure to enable mo-
bile clients to coordinate and equally space themselvasyadotarget curve was recently demonstrated in
[16]. The paper provides a simple framework for coordir@gtitient nodes through interaction with virtual
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nodes. It also demonstrates a simplistic “emulator-awapgiroach to maintenance of virtual automata;
VSAs make decisions about target destinations for padiitig clients based partly on information about
local population density in an attempt to stay alive. Theragaph could be extended to take into account
more client or network factors and even to provide activeuigment, where virtual automata can request
emulator aid from distant virtual automata regions.

An example of a timed coordination application that may beessary in some systems that lack fixed
infrastructure is that of &irtual traffic light. A VSA for a region corresponding to, say, the intersectibn o
roads in a remote base can provide a virtual traffic light Kegps the light green in each direction for a
specific amount of time, providing a substitute for the fixefilgstructure lacking in the region. The VSA
would be emulated by computers on vehicles approachingntieesection. We are developing a version
of this application running on virtual nodes for the Tpartpjpct [26]. Multiple traffic VSAs can also
coordinate to facilitate optimal movement of mobile clent

Another coordination application we propose is the Virt&al Traffic Controller [20]. The VSA con-
troller uses detailed knowledge of time in order to plan vehamd when airborne planes should fly. Essen-
tially, for locally co-located aircraft, the burden of régiing lateral separation of aircraft could be allocated
in a distributed fashion by VSAs, where VSAs assign locahetadifferent time separations and altitudes
based on aircraft type and heading. Current solutions redyity on ground-based systems that are expen-
sive to maintain and difficult to scale. By devolving someigien-making to aircraft themselves, we can
both alleviate this burden and allow for more local contollight plans, resulting in optimized routes and
better fuel economy [23]. Airspace VSAs are especially éasnvision, given the positioning, long-range
communications, and computing resources increasingljaé@a on commercial aircraft.

Data collection and dissemination. A VSA could maintain a summary database of information alitsut
local conditions and those of other regions. Clients cohihtquery their local VSA to get recent infor-
mation about a location. The history is complete as long asviBA's tile remains occupied. Resiliency
can be built in by using techniques already designed foicdtat failure-prone networks, such as automat-
ically backing up data at neighboring VSAs or sending data ¢entral, reliable location by a background
convergecast algorithm executed by the VSA network.

Hierarchical distributed data structures. In this work, the tile size is constrained by the broadcasgea
of the underlying nodes. An hierarchical emulation of thededpin which multiple nodes can coordinate to
emulate larger tiles, can provide a more general infragtrac In large deployments, hierarchies are often
used to guarantee locality properties. The VSA infrastmgctan be a basic building block to implement
tree hierarchies in a network that could, for example, be tsallow clients to register and query attributes.

6 Current and future work

The system model assumed so far abstracts away details wfdeelying physical layer in order to clearly
describe algorithmic issues. Here we discuss some impleti@m issues and extensions. We also hope
that current work simulating this layer and implementiniia real-world environment for the MIT Tparty
project [26] will help guide improvements in our layer implentation.

Non-synchronized clocks. The work here assumes no clock drift and accurate periadie tipdates from
GPS. The VSA layer model and implementation could be exindéhe case where a bound on mobile
node clock drift is known. This might result in the additiohimcoming message delay buffers for VSAs in
the abstract model, in addition to the outgoing ones alrgaeyent.

Emulation strategies to accommodate message collisionQur work is being extended to a communica-
tion model allowing message collisions [2]. One approadb i®lax the physical and VSA layer broadcast
models to allow message loss in the presence of contentidrguarantee the VSA emulation is reliable
by taking advantage of the fact that leader election effeltidefines an orderly timeslicing of a commu-
nication channel for at least one process. Consider tworghsarper tile in the network, provided either
through frequency allocation or additional timeslicingssdiming a leader election service for this setting,
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whichever process is leader can have one channel to itfelfjiag it to perform VSA related broadcasts
without interference from other processes. The other ailasould be used by nodes trying to communicate
with the VSA; message loss on this channel would be possitée shere could be contention. The leader
can then become the arbiter of which messages are actuaiwee by the VSA, by rebroadcasting re-
ceived messages; other emulators adopt these as the imcomsages for the VSA. Alternatively, a more
state transmission heavy approach could be adopted, wbefleader emulators are passive, and the leader
periodically broadcasts up-to-date state to them.

Leader election algorithms. Our emulation algorithm utilized a basic leader electiavise with a simple
interface. Alternative leader election strategies candmsidered. For example, a round-robin strategy can
help relieve network congestion. Such a strategy coultbgdmally select a new leader fromkabounded
vector of mobile nodes in a region callgdards. This is done by defining globally knowtmeslicesof
lengtht,;.. and rotating theuards vector each timeslice, defining revolving responsibiliy leadership.
Whichever process’s id and join timestamp pair is curreatlyhe head of the rotating vector is the leader.
Processes trying to join thguards vector are appended to it if there is room while leaders thittd
transmit during their timeslice are subsequently droppenhfthe vector.

A promising area for further research is into region-basedér election algorithms for mobile networks
that are designed to produce stable outputs that take imimuat factors such as location, speed, power
constraints, and reliability of individual nodes. Imprdveader election guarantees can lead to improved
emulation guarantees.

In addition, a leader election service could be extendedftyrn client nodes if they should participate
in emulation at all. Some clients could be told they are nedee for emulation for some period, allowing
them to conserve power.

Extensions to non-homogenous networks.In many cases, there are portions of a deployment area that
have fixed infrastructure and portions that do not. Whilerttaglel we introduced here does not take into
account the fact that some deployments may have some aodessitinfrastructure, the model in this paper
should easily be extended to accommodate these mixed depity.

Another possibility is that some mobile nodes may have aidit capabilities, such as sensing; this
can also be incorporated into a framework with virtual nodes example, client nodes could periodically
broadcast their current sensor readings to local VSAs,wtieild then aggregate such information to form
simulated sensor readings.
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