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Abstract. We present simple algorithms for achieving self-stabilizing
location management and routing in mobile ad-hoc networks. While mo-
bile clients may be susceptible to corruption and stopping failures, mobile
networks are often deployed with a reliable GPS oracle, supplying fre-
quent updates of accurate real time and location information to mobile
nodes. Information from a GPS oracle provides an external, shared source
of consistency for mobile nodes, allowing them to label and timestamp
messages, and hence aiding in identification of, and eventual recovery
from, corruption and failures. Our algorithms use a GPS oracle.
Our algorithms also take advantage of the Virtual Stationary Automata

programming abstraction, consisting of mobile clients, virtual timed ma-
chines called virtual stationary automata (VSAs), and a local broadcast
service connecting VSAs and mobile clients. VSAs are distributed at
known locations over the plane, and emulated in a self-stabilizing manner
by the mobile nodes in the system. They serve as fault-tolerant build-
ing blocks that can interact with mobile clients and each other, and can
simplify implementations of services in mobile networks.
We implement three self-stabilizing, fault-tolerant services, each built on
the prior services: (1) VSA-to-VSA geographic routing, (2) mobile client
location management, and (3) mobile client end-to-end routing. We use
a greedy version of the classical depth-first search algorithm to route
messages between VSAs in different regions. The mobile client location
management service is based on home locations: Each client identifier
hashes to a set of home locations, regions whose VSAs are periodically
updated with the client’s location. VSAs maintain this information and
answer queries for client locations. Finally, the VSA-to-VSA routing and
location management services are used to implement mobile client end-
to-end routing.
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1 Introduction

A system with no fixed infrastructure in which mobile clients may wander in the
plane and assist each other in forwarding messages is called an ad-hoc network.
The task of designing algorithms for constantly changing networks is difficult.
Highly dynamic networks, however, are becoming increasingly prevalent, and it
is therefore important to develop and use techniques that simplify this task.
In addition, mobile nodes in these networks may suffer from crash failures or
corruption faults, which cause arbitrary changes to their program states. Self-
stabilization [4, 5] is the ability to recover from an arbitrarily corrupt state. This
property is important in long-lived, chaotic systems where certain events can
result in unpredictable faults. For example, transient interference may disrupt
wireless communication, violating our assumptions about the broadcast medium.

Mobile networks are often deployed with “reliable” GPS services, supplying
frequent updates of real time and region information to mobile nodes. While the
mobile clients may be susceptible to corruption and stopping failures, the GPS
service may not be. Each of our algorithms utilizes such a reliable GPS oracle.
Information from this oracle provides an external, shared source of consistency
for nodes, and aids in identification of, and recovery from, failures.

In this paper we describe self-stabilizing algorithms that use a reliable GPS
oracle to provide geographic routing, a mobile client location management ser-
vice, and a mobile client end-to-end routing service. Each service is built on the
prior services such that the composition of the services remains self-stabilizing
[11]. To simplify the service implementations, we mask the unpredictability of
mobile nodes by using a self-stabilizing virtual infrastructure, consisting of mo-
bile clients, timing-aware and location-aware machines at fixed locations, called
Virtual Stationary Automata (VSAs) [8, 9], that mobile clients can interact with,
and a local broadcast service connecting VSAs and mobile clients.

Self-stabilization and GPS oracles. Traditionally, self-stabilizing systems
are those systems that can be started from arbitrary configurations and eventu-
ally regain consistency without external help. However, mobile clients often have
access to some reliable external information from a service such as GPS. Each
algorithm in this paper uses an external GPS service (or an equivalent) as a
reliable GPS oracle, providing periodic time and location updates, to base sta-
bilization upon; our algorithms use timestamps and location information to tag
events. In an arbitrary state, recorded events may have corrupted timestamps.
Corrupted timestamps indicating future times can be identified and reset to pre-
defined values; new events receive newer timestamps than any in the arbitrary
initial state. This eventually allows nodes in the system to totally order events.
We use the eventual total order to provide consistency of information and dis-
tinguish between incarnations of activity (such as retransmissions of messages).

Virtual Stationary Automata programming layer. In prior work [8, 7,
6], we developed a notion of “virtual nodes” for mobile ad hoc networks. A vir-
tual node is an abstract, relatively well-behaved active node that is implemented
using less well-behaved real physical nodes. The GeoQuorums algorithm [7] pro-
poses storing data at fixed locations; however it only supports atomic objects,



rather than general automata. A more general virtual mobile automaton is sug-
gested in [6]. Finally, the virtual automata presented in [8, 9] (and used here)
are more powerful than those of [6], providing timing capabilities.

The static infrastructure we use in this paper includes virtual machines with
an explicit notion of real time, called Virtual Stationary Automata (VSAs), dis-
tributed at known locations [8, 9]. Each VSA represents a predetermined geo-
graphic area and has broadcast capabilities similar to those of the mobile nodes,
allowing nearby VSAs and mobile nodes to communicate with one another. Many
algorithms depend significantly on timing, and many mobile nodes have access
to reasonably synchronized clocks. In the VSA layer, VSAs also have access to
virtual clocks, guaranteed to not drift too far from real time. The layer provides
mobile nodes with a fixed virtual infrastructure, reminiscent of better under-
stood wired networks, with which to coordinate. An important property of the
VSA layer implementation described in [8, 9] is that it is self-stabilizing. Corrup-
tions at physical nodes can result in inconsistency in the emulation of a VSA.
However, emulations recover after corruptions to correctly emulate a VSA.

Geographic/VSA-to-VSA routing. A basic service running on the VSA
layer that we describe and use repeatedly is that of VSA-to-VSA (or region-
to-region) routing (VtoVComm), providing a form of geocast. GeoCast algo-
rithms [24, 3], GOAFR [19], and algorithms for “routing on a curve” [23] route
messages based on the location of the source and destination, using geography
to delivery messages efficiently. GPSR [17], AFR [20], GOAFR+ [19], polyg-
onal broadcast [10], and the asymptotically optimal algorithm [20] are algo-
rithms based on greedy geographic routing algorithms, forwarding messages to
the neighbor that is geographically closest to the destination. The algorithms
also address “local minimum situations”, where the greedy decision cannot be
made. GPSR, GOAFR+, and AFR achieve, under reasonable network behavior,
a linear order expected cost in the distance between the sender and the receiver.
We implement VSA-to-VSA routing using a persistent greedy depth-first search
(DFS) routing algorithm that runs on top of the VSA layer’s fixed infrastructure.
Our scheme is an application of the classical DFS algorithm in a new setting.

Location management. Finding the location of a moving client in an ad-
hoc network is difficult, much more so than in cellular networks where a fixed
infrastructure of wired support stations exist (as in [16]), or sensor networks
where some approximation of fixed infrastructure may exist [2]. A location service
is a service that allows any client to discover the location of any other client using
only its identifier. The paradigm for location services that we use here is that
of a home location service: Hosts called home location servers are responsible
for storing and maintaining the location of other hosts in the network [1, 14, 21].
Several ways to determine home location servers have been suggested.

The locality aware location service in [1] for ad-hoc networks is based on
a hierarchy of lattice points for destination nodes, published with locations of
associated nodes. Lattice points can be queried for the desired location, with
a query traversing a spiral path of lattice nodes increasingly distant from the
source until it reaches the destination. Another way of choosing location servers



is based on quorums. A set of hosts is chosen to be a write quorum for a mobile
client and is updated with the client’s location. Another set is chosen to be a read

quorum and queried for the desired client location. Each write and read quorum
has a nonempty intersection, guaranteeing that if a read quorum is queried, the
results will include the latest location written to a write quorum. In [14], a
uniform quorum system is suggested, based on a virtual backbone of quorum
representatives. Geographic quorums based on focal points are suggested in [7].

Location servers can also be chosen using a hash table. Some papers [21,
15, 25] use geographic locations as a repository for data. These use a hash to
associate each piece of data with a region of the network and store the data at
nodes in the region. This data can be used for routing or other applications. The
Grid location service (GLS) [21] maps client ids to geographic coordinates. A
client Cp’s location is saved by clients closest to the coordinates p hashes to.

The scheme we present is based on hash tables and built on top of the VSA
layer and VSA-to-VSA routing service. VSAs and mobile clients are programmed
to form a self-stabilizing distributed data structure, where VSAs serve as home
locations for clients. Each client’s id hashes to a VSA region, the client’s home
location, whose VSA is responsible for maintaining the location of the client. To
tolerate crashes of a limited number of VSAs, each mobile client id actually maps
to a set of VSA home locations; the hash function returns a sequence of region
ids as the home locations. We can use any hash function that provides a sequence
of regions; one possibility is a permutation hash function, where permutations of
region ids are lexicographically ordered and indexed by client id.
End-to-end routing. Another important service in mobile networks is end-
to-end routing. Our self-stabilizing implementation of a mobile client end-to-end
communication service is simple, given VSA-to-VSA routing and the home lo-
cation service. A client sends a message to another client by using the home
location service to discover the destination client’s region and then has a local
VSA forward the message to the region using the VSA-to-VSA service.

2 Datatypes and system model

We assume the Virtual Stationary Automata programming abstraction [8], which
includes mobile client nodes and the virtual stationary automata (VSAs) the
mobile nodes emulate, as well as a local broadcast service, V-bcast, between
them (see Figure 1). The network is a fixed, closed, and bounded connected
region R of the 2-D plane. R is partitioned into known connected subregions
called regions, with unique ids from the set of region ids U . We define a neighbor
relation nbrs on ids from U . This relation holds for any two regions u and v where
the supremum distance between points in u and v is bounded by a constant rvirt.

2.1 Client nodes

For each physical node identifier p from P , we assume a mobile timed I/O
automaton client Cp, whose location in R at any time is referred to as loc(p).
Mobile client speed is bounded by a constant vmax. Clients receive region and
time information from the GPS oracle. A GPSupdate(u, now)p happens every



εsample time at each client, indicating to the client the region u where it is
located and the current time now. Clients accept now as the value of their own
local clock. For simplicity, this local variable progresses at the rate of real time.
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Fig. 1. VSA layer. VSAs and clients communicate
with V-bcast. VSA outputs may be delayed in Dout.

Each client Cp is
equipped with a lo-
cal broadcast service V-
bcast (see Section 2.3),
allowing it to communi-
cate with nearby VSAs
and clients with bcast(m)p

and brcv(m)p. Clients
are susceptible to stop-
ping and corruption fail-
ures. After a stopping
failure, a client per-
forms no additional local
steps until restarted. If
restarted, it starts again
from an initial state. If
a node suffers a cor-
ruption, it experiences a
nondeterministic change
to its program state. Ad-
ditional interface actions
and local state at the
client are allowed. Local
steps take no time.

2.2 Virtual Stationary Automata (VSAs)

A self-stabilizing implementation of VSAs using a GPS oracle and physical mo-
bile nodes can be found in [8, 9]. An abstract VSA is a timing-enabled virtual
machine that may be emulated by the mobile nodes in its region in the network.
A VSA for region u, Vu, is a TIOA whose program is a tuple of its action signa-
ture, sigu, valid states, statesu, a start state function mapping clock values to
start states, startu, a discrete transition function, δu, and a set of valid trajecto-
ries [18], τu. The state of Vu is referred to collectively as vstate and is assumed
to include a variable corresponding to real time, vstate.now. To guarantee we
can emulate a VSA using mobile nodes, its interface must be emulatable by
the nodes; a VSA Vu’s external interface is restricted, including only stopping,
corruption, and restart inputs, and the ability to broadcast and receive messages.

Since a VSA is emulated by physical nodes in its region, its failures are
defined in terms of client failures: (1) If no clients are in the region, the VSA
is crashed, (2) If no client failure occurs in an alive VSA’s region over some
interval, the VSA does not suffer a failure during that interval, and (3) A VSA
may suffer a corruption only if a mobile client in its region suffers a corruption;
the self-stabilizing implementation of a VSA in [8, 9] guarantees that starting



from an arbitrary configuration, the emulation’s external trace will eventually
look like that of the abstract VSA, starting from a corrupted abstract state.

Due to message delays or node failure, emulations might be behind real time
by up to some time e. It is then a delay-augmented TIOA, an augmentation
of Vu with timing perturbations, represented with buffers Dout[e]u. The buffer
delays messages by a nondeterministic time [0, e], where e is more than V-bcast’s
broadcast delay, d (see Section 2.3).

2.3 Local broadcast service (V-bcast)

Communication is in the form of local broadcast V-bcast, with broadcast radius
rvirt and message delay d. It allows communication between VSAs and clients
in the same or neighboring regions. The service allows the broadcasting and
receiving of message m at each port i ∈ P ∪U through bcast(m)i and brcv(m)i.

We assume V-bcast guarantees two properties: integrity and reliable local
delivery. Integrity guarantees for any brcv(m)i that occurs, a bcast(m)j , j ∈ P∪U

previously occurred. Reliable local delivery roughly guarantees a transmission
will be received by nearby ports: If port i in region u transmits a message, then
every port j in region u or neighboring regions during the entire time interval
starting at transmission and ending d later receives the message by the end of
the interval. (Here, due to GPSupdate lag, a client is said to be “in” region u if
it has just left u but has not yet received a GPSupdate with the change.)

We assume broadcast buffers are large enough that overflows do not occur in
normal operation. In the event of overflow, overflow messages are lost.

3 Problem specifications

We describe the services we will build over the VSA layer: VSA-to-VSA routing,
a location service, and client-to-client routing, and describe our requirement that
implementations be self-stabilizing.

The following constants (explained/used shortly) are globally known: (1)
f < |U |, a limit on “home location” VSA failures for a client, (2) h, a function
mapping each client id to a sequence of f +1 distinct region ids, (3) ttlV toV > d,
delivery time for the VtoVComm service, (4) ttlHLS ≥ εsample+2d+3e+2ttlV toV ,
response time of the location management service, and (5) ttlhb, a refresh period.
We assume the following client mobility and VSA crash failure conditions:
(1) Each client spends at least εsample time in a region before moving to another,
(2) At any time, each alive client’s current region or a neighboring region has a
non-crashed VSA that remains alive for an additional ttlHLS time,
(3) For any interval of length ttlV toV + e, VSAs alive over the interval are con-
nected via at least one path of non-crashed VSAs over the whole interval, and
(4) For any interval of length ttlhb + 2ttlV toV + 2e + d, and any alive client q, at
least one VSA from h(q) does not crash during the interval.

3.1 VSA-to-VSA communication service (VtoVComm) specification

The first service is an inter-VSA routing service, where a VSA from some re-
gion u can send a message m through VtoVsend(v, m)u to a VSA in another
(potentially non-neighboring) region v. Region v’s VSA later receives m through



VtoVrcv(m)v. The service guarantees two properties:
(1) If a VSA at region u performs a VtoVsend(v, m), and region u and v VSAs
are alive over the interval beginning with the send and ending ttlV toV later, then
the VSA at region v performs a VtoVrcv(m) before the end of the interval, and
(2) If a message is received at some VSA, it was previously sent to that VSA.

3.2 Location service specification

A location service answers queries from clients for the locations of other clients.
A client node p can submit a query for a recent region of client node q via a
HLquery(q)p action. If q has been in the system for a sufficient amount of time,
the service responds within bounded time with a recent region location of q,
qreg, through a HLreply(q, qreg)i action. More precisely, the service guarantees
that if a client p performs a HLquery to find an alive client q that has been in
the system longer than εsample + d + ttlV toV + e + ttlHLS time, and p does not
crash or change regions for ttlHLS time, then:
(1) Within ttlHLS time, client p will perform a HLreply with a region for q, and
(2) If p performs a HLreply(q, qreg), then p had requested q’s location and q was
either: (a) alive in region qreg within the last ttlHLS time, or (b) failed for at
most ttlhb + ttlHLS − εsample time.

3.3 Client end-to-end routing (EtoEComm) specification

End-to-end routing is an important application for ad-hoc networks. The V-bcast
service provides a local broadcast service where VSAs and clients can communi-
cate with VSAs and clients in neighboring regions. VtoVComm allows arbitrary
VSAs to communicate. End-to-end routing (EtoEComm) allows arbitrary clients
to communicate: a client p sends message m to client q using send(q, m)p, which
is received by q in bounded time via receive(m)q.

If clients p and q do not crash for ttlHLS time, clients do not change regions
for ttlHLS time after a send, and q has been in the system at least ttlHLS +
εsample + d + ttlV toV + e time, then:
(1) If p sends m to q, q receives m within ttlHLS + 2d + 2e + ttlV toV time, and
(2) Any message received by a client was previously sent to the client.

3.4 Self-stabilizing implementations

We require implementations of the services to be self-stabilizing. A system con-
figuration is safe with respect to a specification and implementation if any ad-
missible execution fragment of the implementation starting from the configura-
tion is an admissible execution fragment of the specification. An implementation
is self-stabilizing if starting from any configuration, an admissible execution of
the implementation eventually reaches a safe configuration. Notice if an imple-
mentation is self-stabilizing, then any long enough execution fragment of the
implementation will eventually have a suffix that looks like the suffix of some
correct execution of the specification, until a corruption occurs.

Each of the above services’ self-stabilizing implementations will be built on
top of self-stabilizing implementations of other services: VtoVComm over the
VSA layer, the location service over the VSA layer and VtoVComm service, and



EtoEComm over the VSA layer, VtoVComm, and location services. Each self-
stabilizing implementation uses lower level services without feedback, so lower
level service executions are not influenced by the upper level services. This allows
us to guarantee that higher level service implementations are still self-stabilizing
through fair composition [11].

Our service implementations, starting from an arbitrary system configura-
tion, stabilize within the following times: VtoVComm: ttlV toV +d time after the
VSA layer stabilizes, the location service: max(ttlHLS , 2e+3ttlV toV + ttlhb +2d)
time after VtoVComm stabilizes, and EtoEComm: ttlpb +2d+2e+ ttlV toV time
after the location service has stabilized.

4 VSA-to-VSA communication implementation

The VSA-to-VSA communication (VtoVComm) service allows communication
of messages between any two VSAs through VtoVsend and VtoVrcv actions, as
long as there is a path of non-failed VSAs between them. The VtoVComm service
is built on top of the V-bcast service [8], which supports communication between
two neighboring VSAs.

VSA-to-VSA communication is based on greedy DFS. When a VSA receives
a message for which it is not the destination, it chooses a neighboring VSA that is
on a shortest path to the destination VSA and forwards the message in a forward

message to that neighbor. If the VSA does not receive an indication through a
found message that the message has been delivered to the destination within
some bounded amount of time, it then forwards the message to the neighboring
VSA on the next shortest path to the destination VSA, and so on. This choice
of neighbors is greedy in the sense that the next neighbor chosen to receive
the forwarded message is the one on a shortest path to the destination VSA,
excluding the neighbors associated with previous tries. The greedy DFS can turn
into a flood in pathological situations in which the destination is that last VSA
reached. Self-stabilization of the algorithm is ensured by the use of a real time
timestamp to identify the version of the DFS. Too old versions are eliminated
from the system and new versions are handled as completely new attempts to
complete a greedy DFS towards the destination.

We present a simple greedy DFS that gradually expands the search until all
paths are checked. This algorithm will find a path to the destination if such a
path exists throughout the DFS execution. We also have a modification of the
algorithm to produce a persistent version in which each VSA repeatedly tries
to forward messages along previously unsuccessful paths to take advantage of
recoveries of VSAs that may result in a viable path [13].

4.1 Detailed code description

The following code description refers to the code for VSA V V toV
u in Figure 2.

The main state variable DFStable keeps track of information for messages that
are still waiting to be delivered. For each such unique message, the table stores
the intermediate source of the message, the set of VSA neighbors that have yet
to have the message forwarded to them, and a timeout for the neighbor currently
being tried for forwarding the message.



A source VSA V V toV
u for region u sends a message m to a destination VSA

in region d using VtoVsend(d, m)u (line 35). If u = d then V V toV
u receives m

through VtoVrcv(m)u (lines 37-38). Otherwise the destination VSA is another
VSA and VSA V V toV

u sets the DFStable mapping of an augmented version of
the message, 〈m, u, d, now〉, to 〈u, nbrs(u), now〉. This enables the start of a new
DFS execution to forward the message to its destination (line 39-40).

Signature:
2 Input VtoVsend(d, m)u, d ∈ U, m arbitrary

Input brcv(m)u, m ∈ ({found}× Msg)
4 ∪ ({forward} × Msg × U × {u})

Output bcast(m)u, m arbitrary
6 Output VtoVrcv(m)u, m arbitrary

Internal DFStimeout(msg)u, msg ∈ Msg
8 Internal DFSclean(msg)u, msg ∈ Msg

Msg = M× U× U× R,
10 of the form 〈m, v2vs, v2vd, ts〉

12 State:

analog now ∈ R, the current real time
14 bcastq,VtoVrcvq, message queues, initially ∅

DFStable, a table indexed on Msg tuples,

16 with entries in (nbrs(u)× 2nbrs(u) × R),
initially ∅

18 curNbr ∈ U, initially ⊥

20 Trajectories:

satisfies

22 d(now) = 1
constant bcastq, VtoVrcvq, DFStable,

24 curNbr
stops when

26 Any precondition is satisfied.

28 Actions:

Output bcast(m)u

30 Precondition:
m ∈ bcastq

32 Effect:
bcastq ← bcastq \ {m}

34

Input VtoVsend(d, m)u

36 Effect:
if u = d then

38 VtoVrcvq ← VtoVrcvq ∪ {m}
else DFStable(〈m, u, d, now〉)

40 ← 〈u, nbrs(u), now〉

42Internal DFStimeout(msg)u

Precondition:
44DFStable(msg) = 〈∗, ∗, to〉

to /∈ (now, now + δ(u, msg.v2vd) ]
46Effect:

if (DFStable(msg)= 〈i,NS,to〉∧NS 6= ∅) then

48curNbr ← NxtNbr(NS, i, u, msg.v2vd)
DFStable(msg)

50← 〈i,NS\{curNbr},now+δ(u,msg.v2vd)〉
bcastq← bcastq ∪ {〈forward,msg,u,curNbr〉}

52else DFStable(msg) ← null

54Input brcv(〈forward, msg, isrc, u〉)u

Effect:
56if msg.ts ∈ [now -ttlV toV , now ] then

if u = msg.v2vd then

58bcastq ← bcastq ∪ {〈found, msg〉}
VtoVrcvq ← VtoVrcvq ∪ {msg.m}

60else if DFStable(msg) = null then

DFStable(msg)
62← 〈isrc, nbrs(u)\{isrc}, now〉

64Input brcv(〈found, msg〉)u

Effect:
66if DFStable(msg) 6= null then

DFStable(msg) ← null
68if u 6= msg.v2vs then

bcastq ← bcastq ∪ {〈found, msg〉}
70

Output VtoVrcv(m)u

72Precondition:
m ∈ VtoVrcvq

74Effect:
VtoVrcvq ← VtoVRcvq \ {m}

76

Internal DFSclean(msg)u

78Precondition:
DFStable(msg) 6= null

80msg.ts /∈ [now -ttlV toV , now ]
Effect:

82DFStable(msg) ← null

Fig. 2. Greedy DFS algorithm at V
V toV

u for region u.

Whenever the forwarding of a message to a neighbor in DFStable times out,
it triggers forwarding to the next neighbor in the DFS, if possible. If the message
hasn’t yet been forwarded to all of the relevant neighbors, then the next neighbor
closest to the destination VSA that has not yet had a message forwarded to it,
curNbr, is selected and the message tuple msg is then forwarded in a forward

message to it using the V-bcast service (lines 42-52). The timeout for this attempt



at forwarding is set to δ(curNbr, msg.v2vd) later, where δ : {U} × {U} → N is
a bound on the time required for a message to arrive from x to y. If the message
has already been forwarded to all the relevant neighbors, then DFStable(msg)
is set to null, indicating that nothing more can be done.

If a tuple msg whose destination is u is received in a forward message from
isrc, then V V toV

u broadcasts a 〈found, msg〉 message via the V-bcast service and
VtoVrcv’s the message msg.m. The found message notifies neighbors still partici-
pating in the DFS for msg that it has reached its destination. No forwarding is re-
quired (lines 56-59). Otherwise, if msg is not destined for V V toV

u and V V toV
u does

not already have an entry in DFStable for msg, then the message must be for-
warded to its destination. DFStable(msg) is set to 〈isrc, nbrs(u)\{isrc}, now〉
(lines 61-62), storing the intermediate source, initializing the set of neighbors
that have yet to have the message forwarded to them, and setting a timeout to
now. Setting the timeout to now immediately enables the DFStimeout action for
msg, triggering the forwarding of msg to one of V V toV

u ’s neighbors.
When a found message is received for a message tuple msg that is mapped

by DFStable, the entry in DFStable is erased, preventing additional forwarding
(line 67). If u 6= msg.v2vs then VSA V V toV

u broadcasts a found message via the
V-bcast service (lines 68-69), notifying neighbors that are still participating for
msg that it has been delivered. Clearly, if u = msg.v2vs, then no found message
is required and no further action needs to be taken.

4.2 Correctness
Let the source VSA be V V toV

s , the destination VSA be V V toV
d , the message sent

be m, and a DFS execution exe from V V toV
s to V V toV

d be as defined above.
Any non-negative wait time is sufficient for correctness. However, a wait time
dependent on hop count between regions will be the most message-efficient. If
no corruptions occur and the status (failed or non-failed) of every VSA doesn’t
change during exe, then the following holds:

Lemma 1. If V V toV
s performs a VtoVsend(d, m) at time t, and there exists a

path of non-failed VSAs between V V toV
s and V V toV

d from t to time t + ttlV toV ,
then V V toV

d performs a VtoVrcv(m) in the interval [t, t + ttlV toV ], for ttlV toV ≥
[e + d + (maxu,v∈Uδ(u, v) · maxu∈U |nbrs(u)| − 1)] · (|U | − 1).

Lemma 2. The number of times a message tuple is re-broadcast is bounded.

Lemma 3. Once corruptions stop and the VSA layer has stabilized, it takes up
to d + ttlV toV time for VtoVComm to stabilize.

5 Home Location Service (HLS) implementation

The location service allows a client to determine a recent region of another
alive client. In our implementation, called the Home Location Service (HLS), we
accomplish this using home locations. Recall that the home locations of a client
node p are f + 1 regions whose VSAs are occasionally updated with p’s region.
The home locations are calculated with a hash function h, mapping a client’s id
to a list of VSA regions, and is known to all VSAs. These home location VSAs
can then be queried by other VSAs to determine a recent region of p.



The HLS implementation consists of two parts: a client-side portion and a
VSA-side portion. CHL

p is a subautomaton of client p that interacts with VSAs
to provide HLS. It notifies local VSAs of its region. It also handles HLquery(q)p

requests, by broadcasting the query to local VSAs. It translates responses from
the VSAs into HLreply outputs. For the VSA-side, V HL

u and V HL
v are home

location VSAs corresponding to regions u and v of the network; they are sub-
automata of VSAs Vu and Vv. V HL

u takes a request from a local client for client
node q’s region, calculates q’s home locations using the hash function, and then
sends location queries to the home locations using VtoVComm. Home locations
respond with region information they have for q, which is then provided by V HL

u

to the requesting client. V HL
u also is responsible both for informing the home

locations of each client p located in its region or neighboring regions of p’s region,
and answering queries for the regions of clients for which it is a home location.

Time and region information from the GPS oracle is used throughout the
HLS algorithm, by clients and VSAs, to timestamp and label information and
messages. This information is used to guarantee timeliness of replies from the
HLS service, and to stabilize the service after faults. Timestamps are used to
determine if information is too old or too new, while region information allows
clients and VSAs to know which other clients and VSAs to interact with.

5.1 HLS client actions
Clients receive GPSupdates every εsample time from the GPS automaton, making
them aware of their current region and the time. If a client’s region has changed,
the client immediately sends a heartbeat message with its id, current time and
region information. The client periodically reminds its current and neighboring
region VSAs of its region by broadcasting additional heartbeat messages every
ttlhb time, where ttlhb is a known constant.

CHL
p also handles the HLquery(q) inputs it receives. This request for q’s loca-

tion is stored in a queryq table and, once the client knows its own region, trans-
lated into a 〈clocQuery, q〉 message that is broadcast, together with the VSA
region, to local regions’ VSAs. If CHL

p eventually receives a 〈clocReply, q, qreg〉
message from its current or neighboring region’s VSA for a client q in queryq,
indicating that node q was in region qreg, it clears the entry for q in queryq, and
outputs a HLreply(q, qreg) of the information. If the request goes unanswered for
more than ttlHLS − εsample time, then the request has failed and is removed.

5.2 HLS VSA actions
The code for automaton V HL

u appears in Figure 3. The VSA knows of local
clients through heartbeat messages. If a VSA hears a heartbeat from a client p

claiming to be in its region or a neighboring region, the VSA sends a locUpdate

message for p, with p’s heartbeat timestamp and region, through VtoVComm
to the VSAs at home locations of client p (lines 40-44); home locations are
computed using a known hash function h from P × {1, · · · , f + 1} to U .

When a VSA receives one of these locUpdate messages for a client p, it stores
both the region indicated in the message as p’s current region and the attached
heartbeat timestamp in its loc table (lines 46-49). This location information
for p is refreshed each time the VSA receives a locUpdate for client p with a



newer heartbeat timestamp. Since a client sends a heartbeat message every ttlhb

time, which can take up to d + e time to arrive at and trigger a VSA to send
a locUpdate message through VtoVComm, which can take ttlV toV time to be
delivered at a home location, an entry for client p is erased if its timestamp is
older than ttlhb + d + e + ttlV toV (lines 51-55).

Constants:
2 h, a hash function from P × {1, · · · , f + 1} to

U such that for p ∈ P , x, y ∈ {1, · · · , f + 1},
4 if x 6= y, then h(p, x) 6= h(p, y)

6 Signature:
Input brcv(〈m, v〉)u, m ∈ ({heartbeat}× R× P)

8 ∪ ({clocQuery} × P), v ∈ U
Input VtoVrcv(〈v, m〉)u, v ∈ U,

10 m ∈ ({locUpdate} × P × R)∪
({vlocQuery}× P)∪ ({vlocReply}× P× U)

12 Output bcast(〈〈clocReply, q, qreg〉, u〉)u,
q ∈ P, qreg ∈ U

14 Output VtoVsend(v, m)u, v ∈ U
Internal updateHL(q)u, q ∈ P

16 Internal cleanLoc(q)u, q ∈ P
Internal cleanLquery(q)u, q ∈ P

18

State:
20 loc, lquery, tables indexed on process ids with

entries from U × R
≥0, of the form 〈reg, ts〉

22 vtovq, a queue of tuples from U ×msg
(Above all initially empty)

24 analog now ∈ R
≥0, the current real time

26 Trajectories:

satisfies

28 d(now) = 1
constant loc, lquery, vtovq

30 stops when

Any precondition is satisfied.
32

Actions:
34 Output VtoVsend(v, m)u

Precondition:
36 〈v, m〉 ∈ vtovq

Effect:
38 vtovq ← vtovq \ {〈v, m〉}

40 Input brcv(〈〈heartbeat, t, p〉, v〉)u

Effect:
42 if (v∈ nbrs(u)∪ {u}∧now-d≤ t≤ now) then

for i = 1 to f+1
44 vtovq← vtovq∪ {〈h(q,i),〈v,〈locUpdate,q,t〉〉〉}

46Input VtoVrcv(〈v, 〈locUpdate, q, t〉〉)u

Effect:
48if loc(q).ts < t ≤ now then

loc(q) ← 〈v, t〉
50

Internal cleanLoc(q)u

52Precondition:
loc(q).ts /∈ [now-ttlhb-d-e-ttlV toV , now ]

54Effect:
loc(q) ← null

56

Input brcv(〈〈clocQuery, q〉, v〉)u

58Effect:
if ([lquery(q) = null ∨ lquery(q).ts< now ]

60∧ v ∈ nbrs(u)∪ {u}) then

lquery(q) ← 〈⊥, now + 2ttlV toV + 2e〉
62for i = 1 to f+1

vtovq ← vtovq ∪
64{〈h(q,i), 〈u, 〈vlocQuery, q〉〉〉}

66Input VtoVrcv(〈v, 〈vlocQuery, q〉〉)u

Effect:
68if loc(q) 6= null then

vtovq ← vtovq ∪
70{〈v, 〈u, 〈vlocReply, q, loc(q).reg〉〉〉}

72Input VtoVrcv(〈v, 〈vlocReply, q, qreg〉〉)u

Effect:
74if lquery(q) 6= null then

lquery(q).reg ← qreg
76

Output bcast(〈〈clocReply, q, qreg〉,u〉)u

78Precondition:
qreg = lquery(q).reg 6= ⊥

80Effect:
lquery(q) ← null

82

Internal cleanLquery(q)u

84Precondition:
lquery(q).ts/∈ [now, now + 2ttlV toV + 2e ]

86Effect:
lquery(q) ← null

Fig. 3. HLS’s V
HL

u automaton with parameters ttlV toV and ttlhb.

The other responsibility of the VSA is to receive and respond to local client
requests for location information on other clients. A client p in a VSA’s region
or a neighboring region v can send a query for q’s current location to the VSA.
This is done via a mobile node’s broadcast of a 〈〈clocQuery, q〉, v〉 message. When
the VSA at region u receives this query, if no outstanding query for q exists, it



notes the request for q in lquery(q), and sends a vlocQuery message to q’s f + 1
home locations, querying about q’s location (lines 57-64). Any home location
that receives such a message and has an entry for q’s region responds with a
vlocReply to the querying VSA with the region (lines 66-70).

If the querying VSA at u receives a vlocReply in response to an outstand-
ing location request for a client q, it stores the attached region information in
lquery(q) (lines 72-75), broadcasts a clocReply message with q and its region
to local clients, and erases the entry for lquery(q) (lines 77-81). If, however,
2ttlV toV + 2e time passes since a request for q’s region was received by a local
client and there is no entry for q’s region, lquery(q) is just erased (lines 83-87).

5.3 Correctness

We make the system assumptions described in Section 3. For the following two
lemmas and theorem, assume the system starts in a safe configuration, and no
corruptions occur.

Lemma 4. For any VSA u, if there is a request for q’s region in lquery, it was
submitted through a HLquery(q) within the last εsample + d + 2ttlV toV + 2e time.

Lemma 5. Starting εsample+d+e+ttlV toV time after client p enters the system
and until p fails, for each interval of length ttlV toV + e, all but f of p’s home
locations will have a non-null loc(p) entry for the entire interval. If client p is
alive and there is some VSA u such that loc(p) is not null, p was alive and
located in loc(p).reg within the last εsample + d + e + ttlV toV time.

Theorem 1. Every client p searching for a non-failed client q that has been in
the system longer than ttlHLS + εsample + d + ttlV toV + e time will perform a
HLreply(q, qreg) within time ttlHLS, such that q was located in region qreg no
more than ttlHLS time ago. No reply will occur if q has been failed for more than
ttlhb + ttlHLS − εsample time. Any reply is in response to a query.

Proof sketch: By the prior lemma, once client q has been in the system for
εsample + d + e + ttlV toV time, any queries of its home locations will succeed in
producing a result. However, a new HLquery request “piggybacks” on any prior
unexpired HLquery requests. Since one of these requests could have been initiated
just before the client q’s home locations are updated, we can only guarantee a
response will be received for a new request if any outstanding requests will be
answered. If the client has been in the system for this total ttlHLS+d+e+ttlV toV

time after receiving its first GPSupdate, then any response to a query can take
as much as ttlHLS time: εsample time for the querying client to receive its first
GPSupdate, d time for the query to be transmitted and received by a local VSA,
e+ttlV toV for the local VSA to query a home location, e+ttlV toV for the response
to arrive at a local VSA, e time for the local VSA to transmit the response to its
requesting clients, and d time for the transmission to be received and translated
into HLreplys at clients. By the prior lemma, we know that information can only
be out of date by εsample + ttlV toV + e + d time when a home location responds
to a query by another VSA. The response can take e + ttlV toV time to arrive
at the querying VSA, followed by e + d time for the querying VSA to get the



information to the clients that prompted the query. The oldest the information
could be is the total.

For the second statement, note that a failed client will not send a heartbeat

message. Since loc(p) entries are cleared once ttlhb + d + e + ttlV toV time has
passed since the heartbeat message upon which it was based was broadcast, and
the information from the entry can only take as much as e + ttlV toV time to
reach a querying VSA and e + d time to reach any querying clients, the total is
the maximum time a HLreply can occur after the client fails.

For the third statement, a query expires after ttlHLS time. Hence, any re-
sponse generated must be for a query that is not older. ut

Theorem 2. Starting from an arbitrary configuration, after VtoVComm has
stabilized, it takes max(ttlHLS , 2e+3ttlV toV +ttlhb+2d) time for HLS to stabilize.

Proof sketch: Once lower levels have stabilized, most client state is made locally
consistent within εsample time, the time for a GPSupdate. This action resets
most variables if the region is updated. The remaining state is made consistent
instantaneously with local correction, except for the heartbeat timer and queryq

variables. The heartbeat timer can affect operations for at most ttlhb time. The
queryq variable can affect operations for ttlHLS time, when it would be deleted.

For VSAs, there are two variables that are not instantaneously corrected: loc

and lquery. The loc variable will be consistent within time e+2ttlV toV +ttlhb+d.
At worst, there could be a corrupted message that arrives at a VSA after ttlV toV

time, adding a bad entry that takes e + ttlV toV + ttlhb + d time to expire. If the
client referred to is in the system, it might not be until the next update after the
timestamp of the corrupted message (which could have been delivered as late as
ttlV toV after corruptions stopped) arrives for the information to be cleaned up.
This time is exactly what the offset term for loc timeouts describes. Hence, the
variable might not be cleaned until ttlV toV plus that offset term.

However, there may be responses based on this bad loc table information
that were sent right at e + 2ttlV toV + ttlhb + d, and that take e + ttlV toV to
arrive at the VSA. The resulting transmission (taking d time to complete) to
local clients is then incorrect. However, those incorrect transmissions cease after
the total time 2e + 3ttlV toV + ttlhb + 2d elapses.

The lquery variable is cleaned up within ttlHLS time. An entry in lquery

only has a total of 2ttlV toV + 2e time in the data structure. It could be the case
that a spurious request was transmitted in the beginning, which adds d time. If a
region response is received it results in immediate correction of the state through
erasure. Hence, the time required to be consistent is the time that it takes for a
query to be accounted for. The maximum of ttlHLS and 2e+3ttlV toV + ttlhb +2d

is the maximum stabilization time. ut

6 Client end-to-end routing (EtoEComm) implementation

Our implementation of the end-to-end routing service, EtoEComm, uses the
location service to discover a recent region location of a destination client node



and then uses this location in conjunction with VtoVComm to deliver messages.
As in the implementation of the Home Location Service, there are two parts to
the implementation: the client-side portion and the VSA-side portion.

A message m is sent to another client q via send(q, m)p. This input to client-
side CE2E

p results in the forwarding of the message to p’s current region u’s
and neighboring VSAs through a local broadcast of the message with the the
destination q and q’s location, if q’s location is known. If a recent region for q is
not known, CE2E

p queries HLS to determine one. A timeout for response to the
location request is set for ttlHLS later. Once a response is received from HLS in
the form of HLreply(q, qreg)p, indicating q was in region qreg, the location of q

is stored and kept for ttlpb time. For each message waiting to be sent to q, the
message, labeled with q and qreg, is forwarded to p’s current and neighboring
regions’ VSAs through a local broadcast, as before.

Messages for client p from other clients are received from p’s current region
or a neighboring region v’s VSA through a local broadcast from a local VSA.
The message is subsequently delivered through the output receive(m)p.

The VSA V E2E
u portion is very simple. A client may send it information

to be transmitted to other VSAs, which it forwards through VtoVComm, or
another VSA may send it information to be delivered at a client in its own or a
neighboring region, which it forwards through V-bcast.

The receipt of a locally broadcast message m from a client p in region u or a
neighboring region to q at region qreg results in the subsequent forwarding of the
message to the virtual automata at regions calcregs(qreg) and their neighboring
regions, via the virtual automata VtoVComm service. The set of VSA regions
calcregs(qreg) describes the regions that q may occupy by the time the message
is delivered to it. The receipt, via VtoVComm of message m intended for client
p in region u or a neighboring region results in the forwarding of the message to
p through a local broadcast.

7 Concluding remarks

We described how both the GPS oracle and the VSA layer could help implement
self-stabilizing geocast routing, location management, and end-to-end routing
services. The self-stabilizing VSA layer provides a virtual fixed infrastructure
useful for solving a variety of problems. It acts as a fault-tolerant, self-stabilizing
building block for services, allowing applications to be built for mobile networks
as though base stations existed for mobile clients to interact with.

The GPS oracle’s frequently refreshed and reliable timing and location in-
formation made providing self-stabilization easier. The paradigm of an exter-
nal service providing reliable information that can be used in a self-stabilizing
service implementation is an especially important and relevant one in mobile
networks. Mobile networks demonstrate many properties that naturally require
self-stabilizing implementations, such as a need for self-configuration, or the pos-
sibility of unpredictable kinds of failures, but also often have access to reliable
external knowledge that can act as a source of shared consistency in the net-
work; here, accurate region knowledge allowed nodes to determine who they
should be communicating with (current region and neighboring region nodes),



and time information allowed them to order messages and assess timeliness of
information.
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