
On the Weakest Failure Detector Ever

Rachid Guerraoui
School of Computer and Communication

Sciences, EPFL, and Computer Science and
Artificial Intelligence Laboratory, MIT

rachid.guerraoui@epfl.ch

Maurice Herlihy
Computer Science Department, Brown

University

mph@cs.brown.edu

Petr Kouznetsov
Max Planck Institute for Software Systems

pkouznet@mpi-sws.mpg.de

Nancy Lynch
Computer Science and Artificial Intelligence

Laboratory, MIT

lynch@theory.csail.mit.edu

Calvin Newport
Computer Science and Artificial Intelligence

Laboratory, MIT

cnewport@mit.edu

ABSTRACT
Many problems in distributed computing are impossible when
no information about process failures is available. It is com-
mon to ask what information about failures is necessary and
sufficient to circumvent some specific impossibility, e.g., con-
sensus, atomic commit, mutual exclusion, etc. This paper
asks what information about failures is needed to circumvent
any impossibility and sufficient to circumvent some impos-
sibility. In other words, what is the minimal yet non-trivial
failure information.

We present an abstraction, denoted Υ, that provides very
little failure information. In every run of the distributed
system, Υ eventually informs the processes that some set
of processes in the system cannot be the set of correct pro-
cesses in that run. Although seemingly weak, for it might
provide random information for an arbitrarily long period
of time, and it only excludes one possibility of correct set
among many, Υ still captures non-trivial failure information.
We show that Υ is sufficient to circumvent the fundamental
wait-free set-agreement impossibility. While doing so, we (a)
disprove previous conjectures about the weakest failure de-
tector to solve set-agreement and we (b) prove that solving
set-agreement with registers is strictly weaker than solving
n + 1-process consensus using n-process consensus.

We prove that Υ is, in a precise sense, minimal non-trivial
failure detector. Roughly, we show that Υ is the weakest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’07, August 12–15, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-616-5/07/0008 ...$5.00.

eventually stable failure detector to circumvent any wait-
free impossibility.

Our results are generalized through an abstraction Υf

that we introduce and prove necessary to solve any prob-
lem that cannot be solved in an f -resilient manner, and yet
sufficient to solve f -resilient f -set-agreement.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—distributed networks; C.2.4 [Com-
puter-Communication Networks]: Distributed Systems;
F.1.1 [Computation by Abstract Devices]: Models of
Computation—relations between models

General Terms
Algorithms, Performance, Theory

Keywords
wait-free impossibilities, failure detectors, set-agreement, weak-
est failure detector ever

1. INTRODUCTION
Fischer, Lynch, and Paterson’s seminal result in the the-

ory of distributed computing [8] says that the seemingly
easy consensus task (a decision task where a collection of
processes start with some input values and need to agree
on one of the input values), cannot be deterministically
solved in an asynchronous distributed system that is prone
to process failures, even if processes simply fail by crash-
ing, i.e., prematurely stop taking steps of their algorithms.
Later, three independent groups of researchers [15, 10, 2] ex-
tended that result by proving the impossibility of wait-free
set-agreement [5], a decision task where processes need to
agree on up to n input values, in an asynchronous shared

235

memory model of n+1-processes among which n can crash.
This result was then extended to prove the asynchronous
impossibility of f -resilient f -set agreement [2], i.e., f -set
agreement when f processes can crash.

Asynchrony refers to the absence of timing assumptions
on process speeds and communication delays. Some timing
assumptions can typically be made in most real distributed
systems however. In the best case, if we assume precise
knowledge of bounds on communication delays and process
relative speeds, then it is easy to show that known asyn-
chronous impossibilities can be circumvented. Intuitively,
such timing assumptions circumvent asynchronous impossi-
bilities by providing processes with information about fail-
ures, typically through time-out (or heart-beat) mechanisms.

In general, whereas certain information about failures can
indeed be obtained in distributed systems, it is nevertheless
reasonable to assume that this information is only partial
and might sometimes be inaccurate. Typically, bounds on
process speeds and message delays hold only during cer-
tain periods of time, or only in certain parts of the system.
Hence, the information provided about the failure of a pro-
cess might not be perfect. It is common to ask what infor-
mation about failures is necessary and sufficient to circum-
vent some specific impossibility, e.g., consensus [3], atomic
commit [6], mutual exclusion [7], etc.

This paper asks, for the first time. what information
about failures is is necessary to circumvent any (asynchronous)
impossibility and yet sufficient to circumvent some impos-
sibility. In other words, we seek for the minimal non-trivial
information about failures or, in the parlance of Chandra
et al. [3], the weakest failure detector that cannot be imple-
mented in an asynchronous system. By doing so, and assum-
ing that this minimal information is sufficient to circumvent
the impossibility of some problem T , we would derive that
T , from the failure detection perspective, is the weakest im-
possible problem in asynchronous distributed computing.

We focus in this paper on the shared memory model. For
presentation simplicity, we also consider first the n-resilient
case and assume a system with n+1 processes among which
n can crash (sometimes called the wait-free case). Then we
move to the f -resilient case where f ≤ n processes can crash.

We introduce a failure detector oracle, denoted by Υ. This
oracle outputs, whenever queried by a process, a non-empty
set of processes in the system. The output might be vary-
ing for an arbitrarily long period. Eventually, however, the
output set should:

(a) be the same at all correct processes and

(b) not be the exact set of correct processes.

Failure detector Υ provides very little information about
failures: it basically only excludes one possibility of failures
among many, and it does so only eventually. In particular,
Υ does not say which set of processes are correct, and the
set it outputs might never contain any correct (resp. faulty)
process.

To illustrate Υ, consider for instance a system of 3 pro-
cesses, p1, p2, p3, and a run where p1 fails while p2 and p3 are
correct. Oracle Υ can output any set of processes for an ar-
bitrarily long period, it can keep arbitrary changing this set
and can output different sets at different processes. Even-
tually however, Υ should permanently output, at p2 and p3,
either {p1}, {p2}, {p3}, {p1, p3}, {p1, p2} or {p1, p2, p3}.

We prove that, although seemingly pretty weak, Υ is suffi-
cient to solve n-set-agreement with read/write objects (reg-
isters), in a system of n + 1 processes among which n might
crash. In other words, Υ is sufficient to circumvent the sem-
inal wait-free set-agreement impossibility. At the heart of
our algorithm lies the following idea. We use the informa-
tion provided by Υ to eventually partition the processes into
two subsets: gladiators that are eventually permanently out-
put by Υ, and citizens that are not. Very roughly speaking,
our algorithm has the gladiators compete until they (1) elim-
inate one of their input values, which necessarily happens if
one of them fails, or (2) escape from their condition if they
see the initial value of a citizen. What Υ ensures is precisely
that at least one of the gladiators fail or at least one of the
citizens is correct.

We use the very existence of our algorithm to (a) disprove
the conjecture of [14] about the weakest failure detector to
implement n-resilient n-set agreement and (b) prove that
implementing n-resilient n-set agreement with read/write
objects is strictly weaker than solving n + 1-process consen-
sus using n-process consensus.

We then show how our algorithm can be adapted to solve
f -set-agreement in a system of n + 1 processes where f ≤ n
processes can fail, using a generalization of Υ, which we
denote Υf . This oracle outputs a set of processes of size at
least n+1− f such that (as for Υ) eventually: the same set
is permanently output at all correct processes, and this set
is not the exact set of correct processes.

We finally prove that Υf encapsulates, in a precise sense,
minimal failure information to circumvent any impossibility
in an asynchronous shared memory system where f pro-
cesses can crash. This minimality holds even if the shared
memory contains any atomic object type, beyond just reg-
isters. To establish this minimality, we use here a restricted
variant of the reduction notion of Chandra, Hadzilacos, and
Toueg [3]. We show that any oracle that (1) might output
any information (within its range) for an arbitrary period
of time, and eventually outputs a permanent (stable) value
that depends only on which processes failed (not on the com-
putation), as well as (2) helps circumvent any impossibility
in an asynchronous system with f failures, can be used to
compute a set of processes of size n + 1− f that is not the
set of correct processes, i.e., can be used to emulate Υf .
Our proof is very simple: basically, it extracts the minimal
information about failures to solve a decision problem, from
the impossibility of the problem itself.

Related work. Chandra, Hadzilacos, and Toueg established
in [3] the weakest failure detector to solve consensus, in the
form of a failure detector oracle, denoted by Ω. This oracle
outputs, whenever queried by a process, a single leader pro-
cess. Eventually, the outputs stabilize on the same correct
leader at all processes. Ω is the weakest failure detector to
solve consensus in the sense that (a) there is an algorithm
that solves consensus using Ω, and (b) for every oracle D
that provides (only) information about failures such that
some algorithm solves consensus using D, there is an al-
gorithm that emulates Ω using D. In short, every such D
encapsulates at least as much information about failures as
Ω. The motivation of our work is to address the general
question of the necessary failure information about failures
that is needed to circumvent any asynchronous impossibility,
i.e., beyond consensus.

236

Not surprisingly, in the case of two processes (i.e., the
case where set agreement coincides with consensus), Ω and
Υ are equivalent. Our minimality result is more restrictive,
but the proof is significantly simpler than that of [3]: in
short, our approach extracts Ω from the fact of consensus
impossibility [8] without having to go through valence argu-
ments as in [3]. As pointed out, our result is restricted to
failure detectors that are eventually stable and depend only
on which processes fail.

In the same vein, and in the general case of 2 or more
processes, our approach extracts Υ directly from the fact of
set-agreement impossibility, without having to go through
topological arguments as in [15, 10, 2]. In this case, we
prove that Υ is strictly weaker than failure detector Ωn in-
troduced in [13]. The latter failure detector, outputs, when-
ever queried by a process, a subset of n processes such that,
eventually, it is the same subset at all correct processes and
it contains at least one correct process. Failure detector
Ωn was shown to be sufficient to solve (1) n-resilient n-set-
agreement among n + 1 processes using registers [13], and
(2) n + 1-process consensus using n-process consensus [16].
In fact, Ωn was also shown to be necessary to implement
n + 1-process consensus using n-process consensus [9] and
conjectured to be necessary to solve set-agreement [14]. It
was our long quest to prove this conjecture that led us iden-
tify Υ and devise our set-agreement algorithm based on this
oracle.

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 gives some basic definitions needed to state and prove
our results. Section 3 defines and discusses Υ. Sections 4
describes our set-agreement algorithm using Υ. Section 5
proves the minimality of Υ and Υf . Section 6 concludes the
paper by discussing open questions.

2. MODEL
Our model of processes communicating through shared

objects and using failure detectors is based on [11, 12, 3]. We
recall below the details necessary for describing our results.

Processes and objects. The distributed system we consider is
composed of a set Π of n + 1 processes {p1, . . . , pn+1}. Pro-
cesses are subject to crash failures. A process that never
fails is said to be correct. Process communicate through
applying atomic operations on a collection of shared objects.
When presenting our algorithms, we assume that the shared
objects are registers, i.e., they export only read-write oper-
ations. The impossibility and necessity parts of our results
do not restrict the types of shared objects.

Failure patterns and failure detectors. Besides accessing
shared objects, processes can also make use of oracles that
provide them with information about failures of other pro-
cesses, i.e., failure detectors [4, 3]. The local module for
process pi of failure detector D is denoted by Di. Defining
the notion of failure detector more precisely goes through
defining the notions of failure pattern and failure detector
history. A failure pattern F is a function from the time
range T = {0}∪N to 2Π, where F (t) denotes the set of pro-
cesses that have crashed by time t. Once a process crashes,
it does not recover, i.e., ∀t : F (t) ⊆ F (t + 1). We define
faulty(F) = ∪t∈TF (t), the set of faulty processes in F . Pro-
cesses in correct(F) = Π− faulty(F) are called correct in F .

A process p ∈ F (t) is said to be crashed at time t. An envi-
ronment is a set of failure patterns. Unless stated otherwise,
we assume the environment that includes all failure patterns
in which at least one process is correct, i.e., we assume that
n or less processes can fail.

A failure detector history H with range R is a function
from Π×T to R. Informally, H(p, t) is the value output by
the failure detector module of process p at time t. A failure
detector D with range RD is a function that maps each
failure pattern to a nonempty set of failure detector histories
with range RD (usually defined by a set of requirements
that these histories should satisfy). D(F) denotes the set of
possible failure detector histories permitted by D for failure
pattern F . Note that we do not restrict possible ranges of
failure detectors.

Algorithms. We define an algorithm A using a failure de-
tector D as a collection of deterministic automata, one for
each process in the system. A(pi) denotes the automaton
on which process p runs the algorithm A. Computation
proceeds in atomic steps of A. In each step of A, process p

(i) invokes an operation on a shared object and receives a
response from the object, or queries its failure detector
module Di and receives a value from Di (in the latter
case, we say that the step of p is a query step), and

(ii) applies its current state, the response received from
the shared object or the value output by Di to the
automaton A(p) to obtain a new state.

A step of A is thus identified by a pair (pi, x), where x
is either the value returned by the invoked operation on a
shared object and the resulting object state or, if the step is
a query step, the failure detector value output at p during
that step.

Configurations and runs. A configuration of A defines the
state of each process and each object in the system. In
an initial configuration I of A, every process pi is in an
initial state of A(pi) and every object is in an initial state
determined by its object type.

A run of algorithm A using a failure detector D is a tuple
R = 〈F, H, I, S, T 〉 where F is a failure pattern, H ∈ D(F)
is a failure detector history, I is an initial configuration of A,
S is an infinite sequence of steps of A, and T is an infinite
list of non-decreasing time values indicating when each step
of S has occurred such that:

(1) S respects the specifications of all shared objects and
all process automata, given their initial states in I;

(2) For all k ∈ N, if S[k] = (pi, x) (x denotes here any
legitimate value), then pi has not crashed by time T [k],
i.e., pi /∈ F (T [k]);

(3) For all k ∈ N, if S[k] = (pi, x) and x ∈ RD, then x is
the value of the failure detector module of pi at time
T [k], i.e., x = H(pi, T [k]);

(4) For all k, l ∈ N, if T [k] = T [l], then S[k] and S[l] are
steps of different processes.

(5) Every correct process (in F) takes infinitely many steps
in S.

237

A partial run of an algorithm A is a finite prefix of a run of
A.1

A problem is a set of runs. An algorithm A solves a prob-
lem M using a failure detector D, if every run of A using D
is in M .

Comparing failure detectors. If, for failure detectors D and
D′, there is an algorithm TD′→D using D′ that extracts the
output of D, i.e. implements a distributed variable D-output
such that in every run R = 〈F, H ′, I, S, T 〉 of TD′→D, there
exists H ∈ D(F) such that for all pi ∈ Π and t ∈ T,
H(pi, t) = D-outputi(t) (i.e., the value of D-output output
at pi at time t), then we say that D is weaker than D′. If
D is weaker than D′ but D′ is not weaker than D, then we
say that D strictly weaker than D′. If D and D′ are weaker
than each other, we say they are equivalent.

If D is weaker than D′, then D′ provides at least as much
information about failures as D: every problem that can
be solved using D can also be solved using D′. D is the
weakest failure detector to solve a problem M if there is an
algorithm that solves M using D and D is weaker than any
failure detector that can be used to solve M . If the weakest
failure detector to solve a problem A is strictly weaker than
the weakest failure detector to solve a problem B, then we
say that A is strictly weaker than B, i.e., A requires strictly
less failure information than B.

3. A VERY WEAK FAILURE DETECTOR
We introduce failure detector Υ, which outputs a non-

empty set of processes (RΥ = 2Π−{∅}), such that for every
failure pattern F and every failure detector history H ∈
Υ(F), eventually:

(1) the same set U ∈ 2Π − {∅}) is permanently output at
all correct processes.

(2) this set U is not the set of correct processes in F , i.e.,
U 6= correct(F).

In a system of 2 processes, Υ and Ω [3] are equivalent.
(Recall that Ω outputs a leader process so that eventually
the same correct leader is output at all correct processes).
Basically, to get Υ from Ω, every process outputs the com-
plement of Ω in Π. On the other hand, to get Ω from Υ,
every process outputs the complement of Υ if this is a sin-
gleton, and outputs the process identifier otherwise.

Ω was generalized to a failure detector Ωn [13], which
outputs a set of processes of size n so that, eventually, the
same set containing at least one correct process is perma-
nently output at all correct processes. (Clearly, Ω1 is Ω.)
The complement of Ωn in Π is a legal output for Υ. Hence,
Υ is weaker than Ωn. The converse is however not true in
our default environment where n processes can fail, as we
show below.

Theorem 1. Υ is strictly weaker than Ωn if n ≥ 2.

Proof. We just discussed how to transform Ωn into Υ,
so it remains to show that Υ cannot be transformed into Ωn.

Assume, by contradiction, that we can extract the output
of Ωn from Υ. Extracting the output of Ωn is equivalent
to eventually identifying, in every run and at every correct

1A more formal definition of a run of an algorithm using a
failure detector can be found in [3, 9].

process, the same process pc that is not the only correct
process in that run. Thus, our assumption implies that there
exists an algorithm T that, using Υ, eventually outputs the
same pc at every correct process and Π − {pc} contains at
least one correct process. To establish a contradiction, we
construct a run of T in which the extracted failure detector
output never stabilizes.

We consider the set of runs of T in which Υ permanently
outputs {p1, . . . , pn} at all processes. Recall that this is a
legitimate output of Υ if either pn+1 is correct or there is at
least one faulty process in {p1, . . . , pn}.

Consider partial runs of T in which no process fails but
pn+1 is the only process that takes steps. Note that these
partial runs are indistinguishable for pn+1 from partial runs
in which every process but pn+1 is faulty. Thus, there exists
a sufficiently long such partial run R1 in which Υ always
outputs {p1, . . . , pn} at all processes and T outputs a process
pi1 ∈ {p1, . . . , pn} at pn+1.

Now consider partial runs extending R1 in which (1) no
process fails, and (2) every process takes exactly one step
after R1 after which pi1 is the only process that takes steps.
Again, these partial runs are indistinguishable for pi1 from
partial runs in which every process but pi1 is faulty. Note
that, since n ≥ 2, if pi1 is the only correct process in a run,
then at least one process in {p1, . . . , pn} is faulty, and thus it
is still legitimate for Υ to always output {p1, . . . , pn}. Thus,
there exists a failure-free partial run R2 extending R1 in
which Υ always outputs {p1, . . . , pn} at all processes and T
outputs a process pi2 ∈ Π−{pi1} at pi1 after R1 (i.e., after
the last step of R1 in R2).

Now consider partial runs extending R2 in which (1) no
process fails, and (2) every process takes exactly one step
after R2 and then pi2 is the only process that takes steps.
Similarly, there exists a sufficiently long such partial run in
which Υ always outputs {p1, . . . , pn} at all processes and T
outputs a process pi3 ∈ Π− {pi2} at pi2 after R2.

By repeating this procedure, we obtain a failure-free run R
of T in which Υ always outputs {p1, . . . , pn} at all processes,
but the extracted failure detector output never stabilizes —
a contradiction.

4. SET-AGREEMENT

4.1 The problem
In the k-set-agreement problem, processes need to agree

on at most k values out of a possibly larger set of values.
Let V be the value domain such that ⊥ 6∈ V . Every process
pi starts with an initial value v in V (we say pi proposes
v), and aims at reaching a state in which pi irrevocably
commits on a decision value v′ in V (we say pi decides on
v′). Every run of a k-set-agreement algorithm satisfies the
following properties: (1) Termination: Every correct process
eventually decides on a value; (2) Agreement: At most k
values are decided on; (3) Validity: Any value decided is a
value proposed.

In the following, we first focus on solving n-set-agreement
in a system of n + 1 processes. We sometimes also talk
about implementing n-resilient n-set agreement. This prob-
lem is impossible if processes can only communicate using
registers, n processes can crash, and no information about
failures is available [15, 10, 2].

We show how to circumvent this impossibility using Υ: we
describe a protocol that solves n-set-agreement using regis-

238

ters and Υ, while tolerating the failure of n processes. Basi-
cally, implementing set-agreement aims at excluding at least
one proposed value among the n+1 possible ones. Our pro-
tocol achieves this by using the output of Υ to eventually
split the processes into two non-overlapping subsets: those
in the subset output by Υ, and which we call gladiators,
and those outside that subset, and which we call citizens.
Intuitively, gladiators do not decide on any value until ei-
ther they make sure one of them gives up its value, which is
guaranteed to happen if one of them crashes, or they see a
value of a citizen, in which case they simply decide on that
value. The property eventually ensured by Υ is that either
at least one of the gladiators crash or at least one of the
citizens is correct.

Besides putting this intuition to work, technical difficul-
ties handled by our protocol include coping with the facts
that (1) Υ might output random sets for an arbitrarily long
periods of time, providing divergent and temporary infor-
mation about who is gladiator and who is citizen, and (2)
citizens might be faulty. A key procedure we use to han-
dle these difficulties is the k-converge routine, introduced
in [16]. A process calls k-converge with an input value in V
and gets back an output value in V and a boolean c. We
say that the process picks v and, if c = true, we say that the
process commits v. The k-converge routine ensures the fol-
lowing properties: (1) C-Termination: every correct process
picks some value; (2) C-Validity: if a process picks v then
some process invoked k-converge with v; (3) C-Agreement:
If some process commits to a value, then at most k values
are picked; (4) Convergence: If there are at most k different
input values, then every process that picks a value com-
mits. The k-converge routine can be implemented, for any
k, using registers [16]. By definition, 0-converge(v) always
returns (v, false).

4.2 The protocol
The abstract pseudo-code of the protocol that solves n-set

agreement using Υ and registers is described in Figure 1.
The protocol proceeds in rounds. In every round r, the

processes first try to reach agreement using n-convergence
(line 4). If a process pi commits to a value v, then pi writes
v in register D and returns v. If pi fails to commit (which
can only happen if all n + 1 processes take part in the n-
convergence instance), then pi queries Υ. Let U be the
returned value.

Now pi cyclically executes the following procedure (lines 12–
17). If pi does not belong to U (pi believes it is a citizen),
then pi writes its value in a shared register D[r] and pro-
ceeds to the next round. Otherwise (pi believes it is a glad-
iator), pi takes part in the (|U | − 1)-convergence protocol
trying to eliminate one of the values concurrently proposed
by processes in U . (Recall that, by definition, 0-converge(v)
always returns (v, false).) The procedure is repeated as long
as none of the conditions in line 17 is satisfied, i.e., (a) no
process participating in the current round r reports that the
output Υ has not yet stabilized, (b) (|U | − 1)-convergence
does not commit to a value, and (c) no non-⊥ value is found
in D[r] or D (line 17). If pi finds D[r] 6= ⊥, then pi adopts
the value in D[r] and proceeds to round r + 1. If pi finds
D 6= ⊥ then pi returns D.

Remember that there is a time after which Υ permanently
outputs, at all correct processes, the same set U that is
not the set of correct processes: U either contains a faulty

Shared abstractions:
Registers D, D[], initially ⊥
Binary registers Stable[], initially true
Convergence instances: n-converge[],

j-converge[][], for all j = 0, . . . , n

Code for every process pi:

1 vi := the input value of pi; r := 0
2 repeat
3 r := r + 1
4 (vi, c) := n-converge[r](vi)
5 if c = true then
6 D := vi; return (vi)
7 U := query(Υi)
8 if pi 6∈ U then
9 D[r] := vi

10 else
11 k := 0
12 repeat
13 k := k + 1
14 (vi, c) := (|U | − 1)-converge[r][k](vi)
15 if c = true then D[r] := vi

16 if U 6= query(Υi) then Stable[r] := false
17 until D 6= ⊥ or D[r] 6= ⊥ or ¬Stable[r]
18 if D[r] 6= ⊥ then
19 vi := D[r]
20 until D 6= ⊥
21 return (D)

Figure 1: Υ-based set agreement protocol.

process or there is a correct process outside U . Thus, no
process can be blocked in round r by repeating forever the
procedure described above: eventually, either some process
outside U writes its value in D[r], or some process is faulty
in U and (|U | − 1)-convergence returns a committed value.

As a result, eventually, there is a round in which at least
one input value is eliminated: either some process in U
adopts a value from outside U , or processes in U commit
to at most |U |−1 input values. In both cases, every process
that participates in n-convergence in round r + 1 (line 4)
commits one of at most n “survived” values.

Theorem 2. The algorithm in Figure 1 solves n-set agree-
ment using Υ and registers.

Proof. Consider an arbitrary run R of the algorithm in
Figure 1.

Validity immediately follows from the protocol and the
C-Validity property of k-converge.

Agreement is implied by the fact that every decided value
is first committed by n-convergence (line 4). Indeed, let r be
the first round in which some process pi commits to a value
after invoking n-converge[r]. By the C-Agreement property
of n-convergence, every process that invoked n-converge[r]
adopted at most n different values. Thus, no more than n
different values can ever be written in register D. Since a
process is allowed to decide on a value only if the value was
previously written in D (lines 6 and 21), at most n different
values can be decided on.

Now consider Termination. We observe first that no pro-
cess can decide unless D contains a non-⊥ value, and if
D 6= ⊥, then every correct process eventually decides. This
is because the converge instances are non-blocking and ev-
ery correct process periodically checks whether D contains a
non-⊥ value and, if there is one, returns the value (lines 20

239

and 17). Assume now, by contradiction, that D = ⊥ forever
and, thus, no process ever decides in R.

Let U be the stable output of Υ in R, i.e., at every correct
process, Υ eventually permanently outputs U . Whenever a
process observes that the output of Υ is not stable in round
r, it sets register Stable[r] to true (line 16) and proceeds to
the next round. Further, if a process finds D[r] 6= ⊥, then
eventually every correct process finds D[r] 6= ⊥ and proceeds
to the next round. Moreover, by our assumption, no process
ever writes in D and returns in line 6. Thus, there exists a
round r such that every correct process reaches r, and the
observed output of Υ at every process that reached round r
has stabilized on U .

Recall that U is a non-empty set of processes that is not
the set of correct processes in R, i.e., U 6= ∅ and U 6= C,
where C is the set of correct processes in R. Thus, two cases
are possible: (1) C (U , and (2) C − U 6= ∅.

In case (1), there is at least one faulty process in U .
Since every faulty process eventually crashes, there exists
k ∈ N, such that at most |U | − 1 values are proposed to
(|U |−1)-converge[r][k]. By the Convergence property of the
(|U | − 1)-converge procedure, every correct process eventu-
ally commits to a value, writes it in D[r] and proceeds to
round r + 1.

In case (2), there is at least one correct process pj outside
U . Thus, pj eventually reaches round r and writes its cur-
rent value in D[r]. Thus, every correct process eventually
reads the value, adopts it and proceeds to round r + 1.

In both cases, every correct process reaches round r + 1.
By the algorithm, every process that reaches round r + 1
adopted a value previously written in D[r].

A process is allowed to write a value in D[r] only if (a)
the process is in Π − U , or (b) a process is in U and the
value is committed in (|U | − 1)-converge[r][k] for some k.
By the C-Agreement and C-Validity properties of (|U | − 1)-
convergence and because every value returned by an instance
of (|U |−1)-converge[r][k] is adopted (line 14), at most |U |−1
distinct values can be written in D[r] by processes in U .
Thus, at most n + 1− |U |+ |U | − 1 = n distinct values can
ever be found in D[r]. Hence, at most n distinct values can
be proposed to n-convergence (line 4) in round r + 1. By
the Convergence property of n-convergence, every correct
process commits and decides — a contradiction.

Thus, eventually, every correct process decides.

Remark. Our algorithm actually solves a stronger version
of set-agreement that terminates even if not every correct
process participates, i.e., proposes a value and executes the
protocol. Indeed, assume (by slightly changing the model)
that some (possibly correct) process does not participate in
a given run of the algorithm in Figure 1. Thus, in round 1,
at most n different values are proposed to n-converge (line 4)
and, by the Convergence property of n-converge, every cor-
rect participant commits to a value. Thus, every correct
participant returns in line 6 of round 1.

As a corollary to Theorems 1 and 2, we disprove the conjec-
ture of [14] by showing that:

Corollary 3. For all n ≥ 2, Ωn is not the weakest fail-
ure detector to implement n-resilient n-set-agreement among
n + 1 processes using registers.

As a corollary to Theorems 1 and 2, and the fact that Ωn is
the weakest failure detector to implement n+1-process con-
sensus using n-process consensus [9], we get the following:

Corollary 4. For all n ≥ 2, implementing n-resilient
n-set-agreement among n + 1 processes using registers is
strictly easier than implementing n + 1-process consensus
using n-process consensus.

4.3 f-Resilient Set-Agreement
For pedagogical purposes, we focused so far on the envi-

ronment where n out of n + 1 processes can crash. In this
section, we consider the more general environment where f
processes can crash, and 0 < f < n + 1. More specifically,
we consider the environment Ef that consists of all failure
patterns F such that faulty(F) ≤ f .

By reduction to the impossibility of wait-free set agree-
ment, Borowsky and Gafni showed that f -set agreement is
impossible in Ef [2]. We present a failure detector, which
generalizes Υ, and which circumvents this impossibility. This
failure detector, which we denote by Υf , outputs a set of
processes of size at least n + 1− f (RΥf = {U ⊆ Π : |U | ≥
n + 1− f}), such that, for every failure pattern F ∈ Ef and
every failure detector history H ∈ Υf (F), eventually (as for
Υ): (1) the same set is permanently output at all correct
processes, and (2) this set is not the set of correct processes
in F . Clearly, Υn is Υ.

Failure detector Ωf can also be used to solve f -resilient f -
set agreement (a simple variation of the consensus algorithm
in [13] will work). It is easy to see that Υf is weaker than
Ωf in Ef : to emulate Υf , every process simply outputs the
complement of Ωf in Π. Eventually the correct processes
obtain the same set of n+1−f processes that is not the set
of correct processes (the output of Ωf eventually includes at
least one correct process).

It is also straightforward to extract Ω1 = Ω from Υ1 in
E1. In the reduction algorithm, every process pi periodi-
cally writes ever-growing timestamps in the shared memory.
If Υ1

i outputs a proper subset of Π (of size n), then pi elects
the process p` = Π − Υi, otherwise, if Υ1 outputs Π (i.e.,
exactly one process is faulty), then pi elects the process with
the smallest id among n processes with the highest times-
tamps. Eventually, the same correct process is elected by the
correct processes — the output of Ω is extracted. However,
in general, Υf is strictly weaker than Ωf :

Theorem 5. Υf is strictly weaker than Ωf in Ef if 2 ≤
f ≤ n.

Proof. We generalize the proof of Theorem 1. By con-
tradiction, assume that there exists an algorithm T using Υf

that, in every run with at least n + 1− f correct processes,
eventually outputs at every correct process the same set of
processes L such that |L| = f and L contains at least one
correct process. To establish a contradiction, we construct
a run of T in which the extracted output of never stabilizes.

We consider the set of runs of T in which Υf permanently
outputs U = {p1, . . . , pn} at all processes. Recall that this
is a legitimate output if either pn+1 is correct or there is at
least one faulty process in {p1, . . . , pn}.

Let R1 be any partial run of T in which no process fails
and Υf always outputs U . Let L1 be the set output by T
at some process in run R1.

Now consider partial runs that extend R1 in which (1) no
process fails, and (2) every process takes exactly one step
after the last step of R1 and then only processes in Π −
L1 take steps. These partial runs are indistinguishable for
processes in Π−L1 from partial runs in which the processes

240

in L1 are faulty. Note that, since 2 ≤ f ≤ n, U 6= Π − L1,
and it is thus legitimate for Υf to output U in any run in
which every process in L1 is faulty. Thus, there exists such a
partial run R2 in which Υf always outputs U and T outputs
a set L2 6= L1 at some process after R1.

Now consider partial runs that extend R2 in which (1) no
process fails, and (2) every process takes exactly one step
after the last step of R2 and then only processes in Π− L2

take steps. Similarly, there exists such a partial run R3 in
which Υf always outputs U and T outputs a set L3 6= L2 at
some process after R2.

Following this procedure, we obtain a failure-free run of
T in Υf always outputs U = {p1, . . . , pn} but the extracted
output of Ωf never stabilizes — a contradiction.

A generalized f -resilient f -set-agreement algorithm using
Υf is presented in Figure 2. The algorithm essentially fol-
lows the lines of our “wait-free” algorithm described in Fig-
ure 1, except that now the set U of n + 1 − f or more
gladiators (processes that are eventually permanently out-
put by Υf) have to be able to eventually commit on at most
|U | + f − n − 1 distinct values, so that, together with at
most n + 1− |U | values chosen by the citizens, there would
eventually be at most f distinct values in the system. To
achieve this, we add a simple mechanism based on the use of
atomic-snapshots [1] which ensures that, whenever U con-
tains at least one faulty processes, at most |U | + f − n − 1
values are eventually chosen by the members of U .

Theorem 6. There is an algorithm that implements f-
set agreement using Υf and registers in Ef .

Proof. Consider an arbitrary run of the protocol in Fig-
ure 2. The Agreement and Validity properties are immediate
from the algorithm. Termination is proved along the lines
of the proof of our “wait-free” algorithm described in Fig-
ure 1, except that now we have a new potentially blocking
loop (in lines 17–17). Suppose, by contradiction, that there
is a run R of our algorithm in which some correct process
never decides. Using the arguments presented in the proof
of Theorem 2, we can show that D always contains ⊥. Fur-
ther, there exists a round r such that every correct process
reached round r, and the observed output of Υf at every
process that reached round r has stabilized on some set U
in round r. By the properties of Υf , U is of size at least
n + 1− f and U is not the set of correct processes in R.

Suppose, by contradiction, that some correct process is
blocked in the loop of lines 17–19, while executing sub-round
k of round r. It is easy to see that, if a correct process exits
the loop, then eventually every correct process is freed too.
Thus, our assumption implies that every correct process is
blocked in the loop of lines 17–19, while executing sub-round
k of round r.

Hence, Π−U contains no correct process: otherwise, some
correct process in Π − U would eventually write a non-⊥
value in D[r] in line 11, and every correct process would
eventually exit the loop. Thus, every correct process pi be-
longs to U and eventually writes a non-⊥ value in A[r][k][i]
(line 16). But since there are at least n + 1− f correct pro-
cesses in R, A[r][k] eventually contains at least n + 1 − f
non-⊥ entries and, thus, the condition in line 19 is eventu-
ally satisfied — a contradiction.

Thus, in every sub-round k of round r, each correct pro-
cess eventually exits the loop in lines 17–19 and, since D is
never ⊥, reaches line 23 (if D[r] 6= ⊥) or line 26 (otherwise).

Shared abstractions:
Registers D, D[], initially ⊥
Vectors of registers A[][], initially ⊥
Binary registers Stable[], initially true
Convergence instances: n-converge[],

j-converge[][], for all j = 0, . . . , n

Code for every process pi:

1 vi := the input value of pi

2 r := 0
3 repeat
4 r := r + 1
5 (vi, c) := f-converge[r](vi)
6 if c = true then
7 D := vi

8 return (vi)
9 U := query(Υi)
10 if pi 6∈ U then
11 D[r] := vi

12 else
13 k := 0
14 repeat
15 k := k + 1
16 A[r][k][i] := vi

17 repeat
18 V := atomic-snapshot(A[r][k])
19 until D 6= ⊥ or D[r] 6= ⊥ or ¬Stable[r] or

V contains ≥ n + 1− f non-⊥ entries
20 if D 6= ⊥ then
21 return(D)
22 else if D[r] 6= ⊥ then
23 vi := D[r]
24 else if Stable[r] then
25 vi := min non-⊥ value in V
26 (vi, c) := (|U |+ f − n− 1)-converge[r][k](vi)
27 if c = true then
28 D[r] := vi

29 if U 6= query(Υi) then
30 Stable[r] := false
31 until D 6= ⊥ or D[r] 6= ⊥ or ¬Stable[r]
32 if D[r] 6= ⊥ then
33 vi := D[r]
34 until D 6= ⊥
35 return (D)

Figure 2: Υf -based f-resilient f-set agreement pro-
tocol.

Note that at most n + 1− |U | different non-⊥ values can
be written in D[r] by processes not in U . On the other
hand, a process in U is allowed to write v in D[r] only if it
has committed on v in some instance of (f + |U | − n − 1)-
converge[r][k]. By the C-Agreement and Validity properties
of (f + |U | − n − 1)-convergence and the fact that every
value returned by (f + |U |−n−1)-converge[r][k] is adopted,
at most f + |U | − n− 1 distinct values can ever written by
processes in U . Thus, at most n+1−|U |+f +|U |−n−1 = f
distinct values can ever be written in D[r].

Suppose that D[r] 6= ⊥ at some point in R. Thus, even-
tually every process either fails or adopts one of at most f
values written in D[r] (line 23 or 33), and then proceeds
to round r + 1. Hence, by the Convergence property of
f -convergence, every correct process commits a value after
invoking f-converge[r + 1] and decides — a contradiction.

Now suppose that D[r] = ⊥ forever. By the algorithm,
there are no correct processes outside U and, thus, there

241

is at least one faulty process in U (otherwise, U would be
the set of correct processes, violating the properties of Υf).
Let k be a sub-round of round r in which no faulty process
participates (every faulty process fails before starting the
sub-round). Since there is at least one faulty process in U ,
at most |U | − 1 values can be written in A[r][k].

Now consider all sets that can be returned by atomic-
snapshot(A[r][k]) in line 18. Every such set contains at least
n+1−f and at most |U |−1 non-⊥ values. Moreover, by the
properties of atomic snapshot [1], all these sets are related
by containment. Thus, there can be at most |U | − 1− (n +
1 − f) + 1 = |U | + f − n − 1 distinct sets, and, thus, at
most |U |+f−n−1 different values can be computed by the
processes in line 25. Hence, by the Convergence property of
(|U | + f − n − 1)-converge[r][k], every correct process that
invokes the operation, commits on a value and writes it in
D[r] — a contradiction.

Thus, eventually, every correct process decides.

5. THE NECESSITY OF ΥF

We establish here that Υf is, in a certain sense, minimal
in systems where up to f processes can crash, implying that
Υ is also minimal when up to n processes can crash.

We introduce the notion of a dummy failure detector,
which always outputs the same value (i.e., its range is a
singleton {d}). Clearly, a dummy failure detector D can be
emulated in an asynchronous system. If a problem can be
solved in Ef using a dummy failure detector, then we say
that the problem is f-resilient. Otherwise, we say that the
problem is f-resilient impossible. We say that a failure de-
tector is f-non-trivial if it can be used to solve an f -resilient
impossible problem in Ef .

Establishing our minimality result goes through delimit-
ing the scope of failure detectors within which Υf is mini-
mal. We say that a failure detector, D with range RD, is
eventually stable if it satisfies the following properties:

• The same value is eventually permanently output by
D at all correct processes. Formally, for every failure
pattern F and every H ∈ D(F), there exists a value
d ∈ RD and t ∈ N such that for all t′ ≥ t and pi ∈
correct(H), H(pi, t

′) = d (we say that d is stable in
H).2

• The stable output of D depends only on the set of
correct processes. Formally, for all failure patterns F
and H ∈ D(F), if d is stable in H, then for all F ′ such
that correct(F ′) = correct(F), there exists H ′ ∈ D(F ′)
such that d is also stable in H ′.

• D is allowed to output any value in its range in every
finite prefix of every history of D. Formally, for all
failure patterns F , histories H ∈ D(F), values d ∈ RD
and times t ∈ T, there exists H ′ ∈ D(F), such that,
for all pi ∈ Π and t′ ∈ T, H ′(pi, t

′) = d if t′ ≤ t and
H ′(pi, t

′) = H(pi, t).

Theorem 7. Υf is weaker than any f-non-trivial even-
tually stable failure detector.

2Our lower bound proofs actually work also for “locally sta-
ble” failure detectors that eventually permanently output a
“stable” value at every correct process (the stable values out-
put at different correct processes can be different though).

Proof. Let D be any eventually stable failure detector
that can be used to solve an f -resilient impossible problem.
Let RD be the range of D, and let d be any value in RD.

First we show that there exists a set of processes U ∈ RΥf

(i.e., |U | ≥ n + 1 − f) such that for all failure patterns F
where correct(F) = U and all histories H ∈ D(F), d is not
the stable value in H.

Suppose not, i.e., there exists a value d ∈ RD such that,
for all U ∈ RΥf , there exists a failure pattern F and a his-
tory H ∈ D(F) such that correct(F) = U and d is the stable
value of H. Since D is stable, for every F , D(F) contains a
history in which d is always output at every process.

But then every history of a dummy failure detector that
always outputs d is a history of D, i.e., the dummy failure
detector can implement D. This contradicts the assumption
that D is f -non-trivial.

Thus, for any d ∈ RD, there exists U ∈ RΥf such that d
cannot be the stable value whenever U is the set of correct
processes. Since the elements of RΥf can be totally ordered,
we can define a function σ that maps every d ∈ RD to the
smallest U ∈ RΥf such that whenever d is stable, U that
cannot be the current set of correct processes.

The reduction algorithm TD→Υf works as follows. Every
process periodically queries its module of D and for every
returned value d outputs U = σ(d). In every run of TD→Υf ,
the produced output eventually stabilizes at a set U ∈ RΥf ,
that is not the set of correct processes. That is, the output
of Υf is extracted.

6. CONCLUDING REMARKS
We stated in this paper that Υ (resp. Υf) is weaker than

any eventually stable failure detector that circumvents a
wait-free (resp. f -resilient) impossibility.

Generalizing this result by determining the weakest non-
trivial among a wider class of failure detectors is left for
future research. Nevertheless, and interestingly, most fail-
ure detectors (we are aware of) that have been proposed
to capture minimal information to circumvent asynchronous
impossibilities in the shared memory model are eventually
stable or have eventually stable equivalents [4, 3, 13, 9].

An interesting aspect of our minimality result is that it
holds regardless of which shared objects are used to cir-
cumvent an impossibility. Indeed, the only fact we use to
extract the output of Υf is the very impossibility to solve
a given problem in a given model. On the other hand, our
Υ(Υf)-based algorithms work in the “weakest” shared mem-
ory model where processes communicate through registers.

7. REFERENCES

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt,
and N. Shavit. Atomic snapshots of shared memory.
J. ACM, 40(4):873–890, 1993.

[2] E. Borowsky and E. Gafni. Generalized FLP
impossibility result for t-resilient asynchronous
computations. In Proceedings of the 25th ACM
Symposium on Theory of Computing, pages 91–100,
May 1993.

[3] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996.

242

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225–267, Mar. 1996.

[5] S. Chaudhuri. More choices allow more faults: Set
consensus problems in totally asynchronous systems.
Information and Computation, 105(1):132–158, 1993.

[6] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui,
V. Hadzilacos, P. Kouznetsov, and S. Toueg. The
weakest failure detectors to solve certain fundamental
problems in distributed computing. In PODC, pages
338–346, 2004.

[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
P. Kouznetsov. Mutual exclusion in asynchronous
systems with failure detectors. J. Parallel Distrib.
Comput., 65(4):492–505, 2005.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[9] R. Guerraoui and P. Kouznetsov. On failure detectors
and type boosters. In Proceedings of the 17th
International Symposium on Distributed Computing,
pages 292–305. Springer-Verlag, 2003.

[10] M. Herlihy and N. Shavit. The asynchronous
computability theorem for t-resilient tasks. In
Proceedings of the 25th ACM Symposium on Theory of
Computing, pages 111–120, May 1993.

[11] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[12] P. Jayanti. Robust wait-free hierarchies. Journal of the
ACM, 44(4):592–614, 1997.

[13] G. Neiger. Failure detectors and the wait-free
hierarchy. In 14th ACM Symposium on Principles of
Distributed Computing, 1995.

[14] M. Raynal and C. Travers. In search of the holy grail:
Looking for the weakest failure detector for wait-free
set agreement. In OPODIS, pages 3–19, 2006.

[15] M. Saks and F. Zaharoglou. Wait-free k-set agreement
is impossible: The topology of public knowledge. In
Proceedings of the Twenty fifth ACM Symposium on
Theory of Computing, pages 101–110, May 1993.

[16] J. Yang, G. Neiger, and E. Gafni. Structured
derivations of consensus algorithms for failure
detectors. In Proceedings of the 17th ACM Symposium
on Principles of Distributed Computing, pages
297–306, 1998.

243

