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Abstract—This paper presents an efficient protocol to reliably
exchange information in a single-hop radio network with unpre-
dictable interference. The devices can access C' communication
channels. We model the interference with an adversary that can
disrupt up to ¢ of these channels simultaneously. We assume no
shared secret keys or third-party infrastructure. The running
time of our protocol decreases as the gap between C and ¢
increases. Two extreme cases prove particularly interesting: The
running time is linear when the number of channels C' = Q(t?),
and exponential when only C' = ¢ + 1 channels are available. We
prove that exponential-time is unavoidable in the latter case.

At the core of our protocol lies a combinatorial function, of in-
dependent interest, and described for the first time in this paper:
the multi-selector. This function determines a sequence of device
channel assignments such that every sufficiently large subset of
devices is partitioned, by at least one of these assignments, onto
distinct channels.

Keywords: radio networks, wireless networks, jamming,
information exchange, multi-selectors, combinatorial data
structures.

I. Introduction

We study the problem of reliable information exchange in
a multi-channel single-hop radio network subject to unpre-
dictable interference. Each node begins the execution with a
value that it wants to distribute to everyone else; the goal is
for as many nodes as possible to learn as much information
as possible.! This problem is at the core of many distributed
applications, including: sensor data aggregation, distributed
data storage, fault-tolerant agreement, group membership, and
mobile location services.

As practitioners readily admit, reliably exchanging infor-
mation is challenging in the context of radio networks. This
holds especially true for devices operating on the increas-
ingly crowded unlicensed bands of the radio spectrum. In
this setting, devices must tolerate unpredictable and perhaps
even adversarial interference from sources as diverse as the
electromagnetic radiation of nearby microwaves, to nearby
devices running unrelated protocols, to any combination of
fading, multi-path, or shadowing effects that can render a once
reliable channel unreliable, to actual malcontents armed with
signal jammers. Shared secrets can be used to perform pseudo-
random frequency hopping in this environment, as in Bluetooth

!Elsewhere, the problem of information exchange is occasionally referred to
as gossip. Sometimes, however, the term gossip refers to a specific randomized
epidemic approach for disseminating information. Hence, to avoid confusion,
we use the term information exchange.
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[1], but the establishment of such secrets can be problematic
in certain settings. We seek solutions that do not assume such
secrecy.

We model disruption with an adaptive adversary. We assume
that it knows, in each round, which channels are used for com-
munication, and it can disrupt up to ¢ among the C' channels
per round. This adversary is a useful modeling convention:
it does not necessarily describe an actual malicious entity. It
provides a powerful abstraction for modeling a diversity of
different unpredictable interference sources.> Our assumption
that this abstract adversary knows which channels are used
can be read at least three different ways. First, this captures
the worst-case disruption. A protocol that tolerates such an
adversary will work under any disruption patterns—a desirable
property for mission critical scenarios. Second, it is possible
that the source of disruption is a collection of formerly honest
devices suffering from faults. These faulty devices could share
the secrets of the non-faulty devices, rendering random choices
non-random. Third, it can capture a collection of up to ¢ actual
malicious devices that can scan the C' channels quickly to see
which are in use but then each only have time to disrupt one.
(This assumes it takes longer to disrupt than to listen due to
the need to overcome error correction.)’

It is easy to see that, against such a strong adversary, reliable
communication requires the simultaneous use of more chan-
nels than can be disrupted (C' > t). Imagine, for example, that
we identify a sequence of channel assignments that guarantees
the following: for every subset of ¢ 4+ 1 processes, there exists
an element of the sequence that assigns all ¢ + 1 nodes to
distinct channels. If we use this channel assignment, then we
know that at most ¢ nodes can be consistently disrupted, as

2We did not want to constrain ourselves to more restricted interference
patterns—eg., random interference—as real world interference is often much
less well-behaved. An arbitrary adversary captures almost any possible inter-
ference a device might encounter—from actual jammers to unexpected path
fading—in the chaos of real radio communication.

3By contrast, if we assume the adversary cannot discover which channel
is in use until after the transmission is complete, then there is a relatively
simple randomized protocol with polynomial time complexity: each device
is allocated a separate “epoch” in which to distribute its data. In each round
of the epoch, the designated device chooses a random channel on which to
transmit; all other devices listen on a randomly chosen channel. It is easy to
see that if C' channels are available, at least one of which the adversary cannot
block, then within O(C? logn) time, with high probability, every device has
received the data. The devices then all proceed to the next epoch. See [2] for
more on randomized protocols for a weak adversary.



all groups of size t + 1 would have been on ¢ 4 1 distinct
channels during at least one round, preventing all from being
disrupted. The paper shows how to solve this simultaneous
selection problem using multi-selectors and generalized multi-
selectors, two new combinatorial constructions that generalizes
the classical notion of selectors (classical mathematical tools
used for fault-free radio communication, e.g., [3], [4]) in a
non-trivial fashion. We show that there exist efficient multi-
selectors and generalized multi-selectors and that, for certain
important cases, these combinatorial objects are polynomial
in length. Moreover, for these important cases, we present
a method for constructing polynomial length multi-selectors
using hash functions. We use these tools at the core of our
information exchange protocol.

Interestingly, in addition to avoiding adversarial disrup-
tion, we also make use of multi-selectors in our protocol
to adaptively prevent contention, i.e., when more than one
node transmits at the same time on the same channel, there
is a collision and no messages are delivered. The classical
oblivious solution is to determine the transmission schedule
in advance, thereby ensuring that there are no collisions.
Unfortunately, as was shown in [5], such an oblivious strat-
egy is necessarily exponential in t. We therefore consider
adaptive strategies where the nodes dynamically determine
their transmission schedule as the execution proceeds. Of
course, the adversary can prevent the nodes from maintaining
a synchronized view of the world: by preventing some nodes
from communicating or receiving information, the adversary
can ensure that different nodes have a different view of the
current situation; these differing views can result in further
disturbances and delays. An important use of multi-selectors
is in ensuring that the views do not diverge foo much; other
protocolic tools underlying our protocol ensure that, despite
these differing views, the nodes continue to make progress
and avoid contention.

We now summarize the performance of our protocol, which
executes in three different regimes, based on the number ¢ of
channels that the adversary can disrupt out of the total number
C of available channels. (Table 1 summarizes the performance
in more details.)

1) When the adversary can block no more than (approxi-
mately) v/C of the channels, the protocol has a linear
O(n) time.

2) When the adversary can block ¢ = C — 1 channels,
leaving only one channel free for communication, the
protocol is exponential in ¢. We derive from a lower
bound on multi-selectors (using Stirling’s approxima-
tion) a proof that when t = C' — 1, every information
exchange protocol requires exponential time.

3) In the intermediate cases where VC' < t < C' — 1, we
show how the running times increases as the number of
disrupted channels increases.

A. Roadmap

In the remainder of this section, we present the basic com-
munication model (Section I-B), we describe the problem of

information exchange (Section I-C), and we discuss some
related work (Section I-D). In Section II, we introduce the idea
of multiselectors. In Section III, we present our basic algorithm
for exchanging information, and show that it is efficient in
the case where C' = Q(t?). In Section IV, we show how to
modify the protocol for the case where not as many channels
are available. We also show a lower bound in the case where
t = C — 1. Finally, we conclude with some open question
in Section V. For proofs omitted due to space, see the full
version of the paper [6].

B. Basic Model

We consider a set of n deterministic nodes P = {p1,...,p,}.
Nodes communicate via a synchronous single-hop radio net-
work with multiple-access channels (MAC). In each round,
each node chooses a single channel z € {1,...,C} and either
transmits or listens on channel x. If exactly one node transmits
on channel z, then every node listening on z receives that
message. Otherwise, the listening nodes receive nothing. We
do not assume any collision detection.

The network is subject to malicious interference that can
prevent communication. We assume an adversary that can
disrupt up to t channels in each round. When the adversary
chooses to disrupt some channel z € {1,...,C}, none of the
nodes listening on channel x receive a message. Throughout
this paper, we assume that ¢ is polynomially smaller than n,
that is, for some ¢ < 1/6, t = o(n®). In real networks, the
number of nodes tends to be much larger than the number of
channels; thus since we assume that ¢ < C, it is not unrealistic
to assume that n is significantly larger than ¢.

C. Basic Problem

We study the fundamental problem of information exchange:
the nodes are initialized with values {v1,...,v,}. Each node
attempts to learn as many values as possible. For ¢t > 1, it
is impossible for all the nodes to learn all the values. To
see why, consider the case where the adversary disrupts all
communication by nodes in some subset P’ of ¢ different
nodes. (The adversary can accomplish this disruption since
it can block ¢ channels in each round.) In this case, for each
p; € P’, no other node ever learns value v;, and no node in
P’ ever learns any value other than its own. Thus, the best we
can hope to achieve is (n—t)-to-(n—t) information exchange:
eventually, all but ¢ nodes learn all but ¢ values. We call this
variant: almost-complete information exchange. This variant is
solvable provided t < C.

D. Related Work

Selectors: Selectors were introduced by Komlos and
Greenberg [3], and have been widely studied, particularly in
the context of group property testing and radio networks [4],
[71-[9]. Given a set S C P, a set S’ is said to select an
element ¢ € P if SN S’ = {i}. A k-selector is a sequence of
sets S1,...,S,, where for each set S of size k, at least 1 of
the elements in S is selected by some set .S;. A multi-selector
generalizes a selector in that it simultaneously selects a set of
elements. We come back to this notion later in the paper.



Radio Networks: A lot of research has been devoted
to information exchange in the context of single-channel,
fault-free radio networks (e.g., [3], [10]-[18]), particularly
with respect to channel contention. There are also several
papers on communicating on a multiple-access channel sub-
ject to dynamic arrival, either modeled by an adversarial
queuing framework (e.g., [19]) or by stochastic distributions
(e.g., [20]). Another area of interest has been the capacity of
wireless networks (e.g., [21], [22]) and multi-channel wireless
networks (e.g., [23]-[25]).

Recently, there has been some interest in tolerating crash
failures in radio networks (e.g., [26]—[28]). There has also been
work on Byzantine-resilient broadcast in radio networks [29],
[30]; however, in these papers, the adversary cannot disrupt
communication. When adversarial disruption is possible, two
common approaches are considered. The first assumes that
messages may be corrupted at random (e.g., [31]); the second
bounds the number of messages that the adversary can transmit
or disrupt, due, for example, to a limited energy budget
(e.g., [32], [33D).

Unreliable Multi-Channel Radio Networks: To avoid
disruption, some systems used shared “secrets” to perform
pseudo-random frequency hopping (e.g., Bluetooth [1]). It
is often unreasonable, however, to assume the existence of
shared secrets for all possible sets of wireless devices that
may eventually want to communicate.

The present paper, along with [2], [5], are the first, to
our knowledge, to consider multi-channel networks subject
to malicious disruption in which nodes do not possess a
priori shared secrets. Dolev et al. [5] consider oblivious (non-
adaptive) protocols. They prove, for the special case of t = 1,
a tight bound for information exchange of ©(n?/C?). They
extend their protocol for general ¢, achieving running time
O((en/t)!™1). In this paper, we use multi-selectors to pro-
duce adaptive strategies that outperform the optimal oblivious
solutions in [5].

In [2], Dolev et al. consider a weak adversary that cannot
determine on which channel a node is broadcasting until
the broadcast is complete. Thus, the focus is on randomized
algorithms. In this paper we consider deterministic protocols,
and we assume that the adversary can always determine which
channels are in use.

II. Simultaneous Selection

We now introduce multi-selectors, a combinatorial tool that
captures the idea of simultaneous selection, generalizing the
classical notion of selectors [3], [4]. We provide upper and
lower bounds on the size of a multi-selector.

A. Definitions

We first define a multi-selector that selects exactly one set of
size k simultaneously:

Definition 1. An (n,c,k)-multi-selector, where n > ¢ > k > 1,
is a sequence of functions My, My, ..., M,, from P — [1, ]
such that:

For every subset S C P where |S| = k, there exists
some ¢ € [1,m] such that M, maps each element in S
to a unique value in [1,c].

We say that such a multi-selector has size m. A generalized
multi-selector selects many sets of size k& simultaneously; it
generalizes both selectors and multi-selectors:

Definition 2. A generalized (n,c,k,r)-multi-selector, where
n>c>k>1and n > r, is a sequence of functions
My, Ms, ..., M,, from P — [0, c] such that:

For every subset S C P where |S| = r, for every subset
S’ C S where |S’| = k, there exists some £ € {1,...,m}
such that (1) M, maps each element in S’ to a unique
value in {1,...,c}, and (2) M, maps each element in

S\ S to 0.

B. Upper Bound

We now show that there exist (n,c, k)-multi-selectors and
determine their size. The proof is non-constructive, and relies
on the probabilistic method.

Theorem 1. For every n > ¢ > k, there exists an (n,c,k)-
multi-selector of size:

. ke® en
c=k . \/ﬁlnT
c/2<k<c ke In <2
k% /c en
k<c/2 k22K /¢ n <o

Proof: We include here the proof for the case where k <
¢/2; the other cases are similar and can be found in the full
version of the paper [6]. Let m = 22K/ In 9+, the desired
bound.

For each My, for each i € P, choose M,(i) at random
from [1,c]. We show that with some probability > 0, M is
an (n, ¢, k)-multi-selector. Fix an arbitrary set S C P where
|S| = k. Consider a particular M,. We calculate the probability
that each element of S is assigned a unique element in [1, ¢].
Since there are (;)k! good mappings from k elements to [1, c],
and c* total mappings of k elements to [1, ¢ sets, we conclude
that:

(1) *! e
Pr{S is uniquely mapped} = =& =

ck (c—k)ck -

Since k < ¢/2 we get the following estimate which we denote
as ¢:

—k\" 2
Pr{S is uniquely mapped} > <CC) >4k e =g .

The probability that S is not well-mapped for all M, is at
most (1—¢)™. Since m = ¢~ - k1n <, the probability that S
is not well-mapped for all M, is at most e *" % < (%)k

en

Since there are only (}) < (7)]g possible subsets S of size
k, we argue (by a union bound) that the probability of some
S being incorrectly mapped by all M, is at most (2) . (%)k,
which is smaller than 1, implying the conclusion.



If ¢ is sufficiently larger than k, there are efficient (n, ¢, k)-
multi-selectors:

Corollary 2. For every n > ¢ > k2, there exists an (n,c, k)-
multi-selector of size O(klog(n/k)).

The same argument extends to bound the size of generalized
multi-selectors:

Theorem 3. For every n > r > ¢ > k where
n > 2r, there exists (n,c,k,r)-multi-selectors of size

O (T(CJF;# log (en/r)) or O (T‘ ((ﬁf,gz log (6”/7’))

The proof can be found in the full version of the paper [6].
C. Constructing Multi-Selectors

There exists a connection between good hash functions and
multi-selectors when k2 < ¢. (In general, however, for other
values of k and c¢, it is not immediately clear how multi-
selectors relate to hash functions.) We discuss some of these
connections and derive some multi-selector constructions.

First, we show how to use a universal family of hash func-
tions to construct a (n, ¢, k)-multi-selector. A (two)-universal
family of hash functions is a set of functions from universe P
to some domain {1,...,c} such that for each pair z,y € P,
at least a (1 — 1/n) fraction of the hash functions map x
and y to a unique value. Carter et al. [34] present such a
family of size ©(n?). This family of hash functions is also
an (n, ¢, k)-multi-selector, for any k < +/c: consider some
set S of k elements; for each of the O(k?) = O(c) pairs,
there are < n hash functions that collide; thus there are at
most O(cn) < O(n?) hash functions for which elements of S
collide. The resulting multi-selector is of size O(n?).

We now derive a more efficient construction. Assume that ¢
is sufficiently large such that there exist p1, ..., po(r210gn)> @
set of ©(k?logn) distinct primes less than c. Fix a set S C P
of size k. For every pair z,y € S, there are at most logn
primes p; such that z = y mod p;. Thus there is some prime
p; such that none of the ©(k?) pairs in S collide. This results
in an (n, ¢, k)-multi-selector of size O(k?logn).

If k2 = c then there are not a sufficient number of
primes < c; the two techniques can be combined. The second
technique reduces the channel range to O(k?log?n) (using
the Prime Number Theorem to demonstrate sufficient prime
numbers) using O(k? log n) mappings; the two-universal hash
family of [34] reduces the channel range to ¢, multiplying each
mapping by O(k*log* n). From this we conclude:

Theorem 4. For every n > ¢ > k2, we can construct a
(n, ¢, k)-multi-selector of size O(k®log® n). O

It is also possible to construct multi-selectors using selec-
tors. The resulting construction is not particularly efficient, but
illustrates a connection between selectors and multi-selectors.
The following theorem can be found in the full version of the

paper [6]:

Theorem 5. For every n,c, k, there exists a construction of a
(n, ¢, k)-multi-selector of size O(k* log" n).

D. Lower Bound

In this section, we prove a lower bound on the size of an
(n, ¢, k)-multi-selector.

Theorem 6. For some m > 0, let M = M, ..., M,, be an
(n, ¢, k)-multi-selector where n > 2c¢ and ¢ > k. Then M has
size at least:

2C
=k
¢ 4/ 2me

C - k)
c/2<k<c em“cfk*kQ/”-L
/ 4v/c(n — k)

k < 6/2 ekz/c7k2/n . n(c B k;)

4y/c(n —k)

Proof: We consider the case where & = c¢; for the

remaining cases, see the full version of the paper [6]. We
begin by choosing a subset S C P of size ¢ at random. We
calculate the probability that S is correctly mapped by some
M. We show that if m < 1 22;6, then this probability is
smaller than one, thus the probability that a random set S
violates the definition of multi-selector M is positive. By the
probabilistic argument, such a set S exists, which contradicts
that M is an (n, ¢, k)-multi-selector.

Fix some ¢ € [1,m], and define Sy = {i : M,(i) = d},
that is, the subset of P that M, maps to d. To calculate the
probability that A, correctly maps each element of S to a
unique element of [1, ¢|, we first approximate the number of
subsets of P that are correctly mapped by M: []5_; |S4| <
(n/c)¢ . (The inequality follows from the relationship between
the arithmetic and geometric means.) Since there are (?) sets
of size ¢, and since (n—c) > n/2, we conclude (via Stirling’s
approximation) that the probability that S is correctly mapped
by M, is at most

< n¢ _ 4/ 2me <4\/27rc

T C

Thus, the probability that .S is correctly mapped by any of the
m functions is at most m - 4v/2mwc2™¢ (by a union bound).
Ifm < 4\/2%, then with positive probability the set S
is not correctly mapped by any of the My, resulting in a
contradiction. [ ]

III. Reliable Information Exchange

We now present our protocol for solving the problem of
reliable information exchange. In this section, we assume that
C > t, specifically C = ©O(t?). In Section IV, we show
how to adapt this protocol to the case where C' =t + 1, and
conclude with a discussion of the remaining cases.

The protocol adaptively chooses a set of nodes to transmit
in each round based on which nodes have already succeeded
in a previous round. Adapting to the past proves challenging
as nodes do not share a uniform view: a node does not know a
priori which transmissions succeeded, unless it was listening
on that channel. Our protocol circumvents this challenge by
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Figure 1: Information exchange routine for node p;.

InfoExchange();
L « a partition of the set {1,...,c?} into c sets of size c.
for e =1 to |E| do // First set of epochs:
knowledgeable «Epoch(L, knowledgeable, Ele]);

L « a partition of the set {c¢*> +1,...,2¢?} into c sets of size c.

for e =1 to |E| do // Second set of epochs:
knowledgeable «Epoch(L, knowledgeable, Ele]);

// Lastly, do the special epoch which attempts to transmit the final < 4¢ values.

Special-Epoch(knowledgeable);

using a (n,c,t + 1)-multi-selector to ensure that almost all
the nodes have the same view. nodes use the multi-selector
to guide their channel selection when attempting to receive
updates on the system state. Because it guarantees the simul-
taneous selection of any subset of size £+ 1, it follows that for
any group of size ¢t+1 nodes, there exists a round during which
these nodes are listening on different channels. Therefore, at
most ¢ total can be kept ignorant by the adversary. This bound
on ignorance allows efficient and consistent adaptation.

Preliminaries: For the remainder of this section, we fix
the constant ¢ = (5¢ + 1)2. Of the C available channels, our
protocol will use exactly c. Recall here that n is assumed to
be large compared to t, specifically, that ¢ = o(n¢) for some
€ < 1/6. It follows: (a) n > c?(5t+1)+5t; and (b) n > c*t+c.

We refer to values as either complete or incomplete. Initially,
each value is incomplete; when a value is received by at least
n —t nodes, it is designated as complete; the node at which it
originated is said to have completed. We use the notation S|[k]
to refer to the k" value in a set S under some fixed ordering.
When given a set S comprised of sets, we use S[j][k] to refer
to the k*" value of the j* set also under some fixed orderings.

Information Exchange: The main routine for the infor-
mation exchange protocol is in Figure 1. It consists of two
parts, each consisting of a set of epochs. In each part, a set
of listeners is chosen, and they facilitate the dissemination of
incomplete values. The listeners’ own initial values are not
disseminated, however, as they are busy listening; hence each
part chooses a disjoint set of listeners: {pi,...,p.2} in the
first part, and {p.2y1,...,P2.2} in the second part. Each part
ensures that there are at most 2t non-listener values that remain
incomplete. Thus, after the two parts, at most 4¢ values are left
incomplete in total. The final call to Special-Epoch reduces the
number of incomplete values from 4t to ¢, as required.

The function E(r) bounds the length of epoch r and the
number of epochs. We define it recursively. Let (1) = [n/c].
For all r > 1, let E(r) WW . The sequence

terminates when E(r) = 1. Notice that |E| = O(logn) and
STE=0(n/c).

Epochs: In each call to Epoch, some set of incomplete
values are completed; i.e., disseminated to at least n — ¢t
nodes. At the end of an epoch, each node is designated as

knowledgeable or unknowledgeable based on the outcome of
the epoch: a knowledgeable node knows the results of all pre-
ceding epochs, including the current set of completed values;
an unknowledgeable node does not have this information.
The epoch pseudocode is in Figure 2. For each epoch, we
are given (1) a set of listeners L, (2) a flag knowledgeable,
indicating the status of node i, and (3) a number rnds
indicating the length of the aggregation phase. We conclude:

Lemma 7. If some epoch begins with s incomplete nodes in
the set P\ L, then at the end of the epoch, there are at most
2t|s/c| incomplete nodes in P\ L.

Aggregation: In the first phase of an epoch (lines 2-9),
values are transmitted to the listeners in the set L. Let S be
the set of nodes that have not yet completed. The set S is
divided into subsets of size ¢, each of which is scheduled
to transmit in one of the subsequent ||S|/c| rounds. Only
knowledgeable nodes can calculate S; thus only nodes that
are both knowledgeable and incomplete transmit.

Throughout, ¢ listeners are scheduled to listen on each
channel. In each of these rounds, the adversary can block up to
t; moreover, up to ¢ of the nodes “scheduled” to transmit in a
round may in fact be unknowledgeable and hence not transmit.
Thus, in each round, at most 2¢ values are not successfully
received by the listeners. By the end of the aggregation phase,
only 2t||S|/c] values remain incomplete.

Dissemination: In the second phase of an epoch, the
listeners disseminate their information. The pseudocode for
Disseminate is in Figure 3. The disseminate routine ensures:

Lemma 8. If some value v is known to a set of listeners when
the disseminate routine begins, then the value is complete at
the end of the disseminate routine.

In Part 1 (lines 3-9), each of the c sets of c listeners attempts
to disseminate its set of values. For each set (lines 5-9), each
of the c listeners in the set transmits continually on a unique
channel (line 7). An (n,c,t + 1)-multi-selector M is used to
schedule the non-listener nodes (line 8). While the listeners
are broadcasting, the non-listeners choose which channel to
receive on according to M. This ensures that for any set of
t + 1 non-listeners, there is some round in which they are all
receiving simultaneously on different channels. As a result, at



Figure 2: Epoch routine for node p;.

1 Epoch(L, knowledgeable, rnds);

2

3

4

8

9

10
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2

S0
if knowledgeable = true then

let S be the set of processes that are not in L and not completed.

Partition S into [|S|/c] sets of size c.

for r =1 to rnds do
if (knowledgeable = true) and (r < [|S|/c]) then

if 3k € {1,...,¢} : i = S[r][k] then schedule i to transmit on channel k.
if 3k € {1,...,¢} : i € L[k] then schedule ¢ to receive on channel k.

knowledgeable < Disseminate(L[1], ..., L[c]);

return knowledgeable

Figure 3: Disseminate routine for node p;.

Disseminate(L[1],. .., L[c]);
let M be a (n,c,t + 1)-multiselector.

// Part 1: Ensure that for each listener group, all but some set of ¢ processes receive its value set.

knowledgeable — true
for k=1 to c do
for each round » =1 to | M|

if 35 € {1,...,¢} : i = L[k][4] schedule i to transmit on channel j.
if i ¢ L[k] then schedule ¢ to receive on channel M, (7).
if i does not receive a message in any of the |M| rounds then knowledgeable «— false.

// Part 2: Ensure that all but some set of ¢ processes receive all the value sets from all the listener groups.

L’ «— an arbitrary subset of {1,...,n} of size c(ct 4+ 1).
Partition L’ into ¢t + 1 sets L'[1],..., L'[ct + 1] of size ¢
for each s=1toct+1 do

for each » = 1 to |M| do

if 3j € {1,...,c} : i = L'[s][j] schedule i to transmit on channel j
if i ¢ L'[s] then schedule i to receive on channel M.,.(4).
if 7 receives a message in any of the |M| rounds from a node with knowledgeable = true then

knowledgeable — true
return knowledgeable

most ¢ can be disrupted by the adversary. Since there are c
sets of listeners, this results in at most ¢t nodes that do not
receive a value from all c sets of listeners.

In Part 2 (lines 11-19), we select a larger set of c¢(ct + 1)
nodes, which we partition into sets of size c. (Recall that n >
c(ct + 1).) At least one of these ct + 1 partitions consists
only of nodes that have received a message from all c sets of
listeners in Part 1. Thus, all the nodes in the set know all the
values known to all the sets of listeners. As before, each of
these sets transmits its information to the remaining nodes in
such a way that at most ¢ nodes can fail to learn these values.

Special Epoch: In order to transmit the remaining
values, we execute a special epoch. The pseudocode for
Special-Epoch is in Figure 4. The special epoch operates
somewhat differently, as there are very few values left to
transmit. As before, we use listeners to collect the values; we
need to choose a set of listeners that have already completed.
Recall, up to 4t values may be incomplete after the two sets of
epochs. An additional ¢ nodes might be complete but not aware
of it because they are unknowledgeable. This leaves at most 5¢

nodes that are not complete and knowledgeable. We refer to
these as special nodes. We choose a set of ¢?(5t+ 1) possible
listeners, and divide them into 5t + 1 sets of size ¢?; at least
one of these sets contains only nodes that are complete and
knowledgeable. We use a (n, ¢, 5t)-multi-selector to ensure
that in some round, each of the & < b5t special nodes is
assigned to a different channel to transmit; at most ¢ can be
blocked. Dissemination proceeds as before.

Performance: Each epoch e spends E(e) rounds dur-
ing the aggregation phase, resulting in O(n/c) rounds of
aggregation. Each epoch e performs c|M| + (¢t + 1)| M|
rounds of dissemination. By Corollary 2, we conclude that
M| = O((t + 1)logn/(t+1)); and thus during O(logn)
epochs, there are O(ct?log®n) rounds of dissemination. Fi-
nally, we observe that the special epoch aggregation has
running time (5t+1)| M| where M is a multi-selector of size at
most O(tlogn/(5t)) (again by Corollary 2). Thus the special
epoch has round complexity O(t*logn/t), along with O(t)
disseminations. Summing these costs and substituting in for
c=O(t?) and t = o(n'/®), we conclude that:



Figure 4: Special Epoch routine for node p;.

Special-Epoch(knowledgeable);
let M be an (n, ¢, 5t)-multiselector.
special «— false

if (knowledgeable = false) or (i has not completed) then special < true

if knowledgeable = true then

L « set of ¢?(5t + 1) smallest processes that have completed in a previous epoch.

Partition L into (5t + 1) sets L1, ..., L;;1 of size c2.

Partition each Ly, into ¢ sets L[], ..., Lg[c] of size c.
for s=1to 5t + 1 do

for r =1 to |M| do

if special = true then schedule ¢ to transmit on channel M,.(7)
if 3k : i € L,[k] then schedule ¢ to receive on channel k.

Disseminate(Ls[1],. .., Ls[c]);

Theorem 9. Within O(n) rounds, all but t values are com-
plete. More precisely, the information exchange protocol has
round complexity O(n/t> + t° log® n).

IV. Limiting the Number of Channels

We consider here the case where there are fewer than ¢? chan-
nels available. We first describe how to adapt the protocol of
Section III to the setting where C' = ¢+ 1, the minimal number
of channels for which information exchange is feasible. We
then present a lower bound showing that the time complexity
is inherently exponential in ¢. Finally, we briefly discuss the
intermediate cases where ¢t + 1 < C' < O(t)2.

A. Protocol Description
In this section, we modify the information exchange routine
to use only C' = ¢ + 1 channels. The disseminate protocol
(Section III) can be used without modification. We replace,
however, Epoch and Special-Epoch with Limited-Epoch (Fig-
ure 5) and Limited-Special-Epoch (Figure 6), respectively.
The key problem addressed is as follows: since only ¢ + 1
channels are available, if any of the ¢ 4+ 1 nodes scheduled
in a round are unknowledgeable and therefore choose not to
transmit, then the adversary can disrupt all < ¢ nodes that
do broadcast. In order to circumvent this problem, we use a
(n, C, C, 2t + 1)-generalized-multi-selector in the aggregation
phase of Limited-Epoch. nodes know at the beginning of a
round if they are scheduled or if they are unknowledgeable.
Such nodes will attempt to transmit according to the schedule
described by the generalized multi-selector. The multi-selector
guarantees that one of the rounds will simultaneously select
the ¢ + 1 nodes that are actually scheduled to transmit during
this round of the epoch, some of which might be unknowl-
edgeable. From this we conclude that at least 1 incomplete
value is transmitted to the listeners for each round of the
schedule. The function FE' is redefined as follows: for » > 1,
E(r) = [w] In this case, Limited-Special-Epoch only
has to cope with at most 3¢ “special” nodes—t from each set of
epochs, and as many as ¢ additional unknowledgeable nodes. A
(n, C, C, 3t)-generalized-multi-selector is used to ensure that
all subsets of size ¢ + 1 of these (no more than) 3t special
nodes get an opportunity to transmit concurrently.

Performance: The total running time of the aggregation
phases is now O(n|M,|), where |M,| = O((2t + 1)(C +
1)?*11ogn/(2t + 1)) by Theorem 3 and the fact that e <
t+ 1. Dissemination has running time (Ct+ 1)|My|, where in
this case |My| = O((t +1)e!™tlogn/(t + 1)) by Theorem 1;
the number of disseminations is bounded by n/t. Finally, the
special epoch costs a factor of O(t) more than a regular epoch.
We conclude that the total running time when C' =t + 1 is

n
2t+1)°

Theorem 10. When C' = t + 1, the information exchange
protocol terminates in time:

O ([ng +(t+ 2)3(”1)} -log

yielding:

n
2t+1

0 (t(c +1)%"* 1 1og [n+tlc+ l)t_1]> .

B. Lower Bound

In this section, we show that if C' =t + 1, every information
exchange protocol is exponential in ¢.

Theorem 11. Every almost-complete information exchange
protocol where C t + 1 requires at least time

Q@2+ 1).

Proof: Consider a protocol that solves almost-complete
information exchange in m rounds. We construct a (n,C,t +
1)-multi-selector of length m, and invoke Theorem 6 to con-
clude the proof. We construct the multi-selector by simulating
the information exchange protocol in each round:

« Every node that is scheduled to listen is simulated as if
it receives no messages in that round (as if the adversary
had disrupted the channel).

o Every node that is scheduled to transmit on some channel
is simulated as if it transmits its message.

(Notice, the resulting simulation might violate our model
assumptions by allowing more than ¢ channels to be disrupted.)
For each round r of this simulated execution, we construct M,
as follows: if a node ¢ listens on channel k, then M,.(i) < k;
otherwise, if node ¢ does not listen on any channel (either



because it transmits or because it does nothing), then M,. maps
7 to 1, a default.

We argue that M is a (n,C,t + 1)-multi-selector. Assume
for the sake of contradiction that it is not. Then, for some set
S of size t + 1, no M, maps S to unique channels. We now
construct a new execution. This the time the adversary always
and only disrupts the channels occupied by nodes in S. To
the nodes in S this execution looks indistinguishable from our
original simulated execution (in both, they receive nothing in
all rounds). Therefore, they behave the same: never occupying
more than ¢ channels. It follows that the adversary never has
to disrupt more than ¢ channels per round in this second
simulation, meaning that it is legal. This legal execution cannot
solve almost-complete information exchange because none of
the £ + 1 nodes in S ever receive a message. This contradicts
the assumption that the protocol under consideration solves
the problem in m rounds.

We can therefore return to original contradiction assump-
tion, and conclude that M is indeed a (n,C,t + 1)-multi-
selector. The bound follows from applying Theorem 6 with
C=t+1. ]

C. Generalizing the Number of Channels

We have discussed the case where C' = ©(t?) and the case
where C' = t + 1. We briefly addresses the performance of
information exchange for intermediate values of C'; running
times are summarized in Table 1. When C' < 2t + 1, the
aggregation phase requires generalized multi-selectors as in
Limited-Epoch. It follows that the running time does not differ
significantly for t + 1 < C < 2t + 1. For C > 5t + 1, we
can use the protocol described in Section III, where the multi-
selectors are sized appropriately; as C' grows the running time
decreases, as the greater number of available channels reduces
the size of the multi-selectors. For 2t + 1 < C < 5t + 1,
we use a hybrid protocol in which Disseminate stays the
same, but Special-Epoch uses generalized multi-selectors as
in Limited-Special-Epoch. It is straightforward to calculate the
associated running times which can be found in Table 1.

V. Open Questions

Beyond the results in this paper, we believe that multi-
selectors may prove to be an important tool in developing
other protocols for multi-channel networks, especially given
that multi-channel networks are increasingly viewed as the
most promising approach for coping with malicious disruption.
We expect that multi-selectors will play a key role in adapt-
ing single-channel protocols for a multi-channel environment.
(This is especially the case for the large subset of single-
channel protocols that are themselves based on selectors.)
Moreover, much in the way that selectors have proved useful in
a variety of settings, ranging from wireless communication to
group property testing, we hope that multi-selectors will find
a similar wide range of applications. For example there are
possible connections to renaming and k-set agreement, both
of which depend on simultaneously allocating a set of scarce
resources (in this case, names or decision values).

Interesting open questions include: (1) deriving better con-
structive bounds for multi-selectors; (2) studying other algo-
rithmic uses of multi-selectors; (3) determining the complexity
of information exchange as ¢ approaches n; (4) studying the
tradeoff between the number of channels, the resilience, and
the performance in terms of different complexity measures,
such as energy usage; (5) studying the capacity of a wireless
network under the influence of a strong, malicious adversary.



Channels Running time Calculation
C > (5t +1)2 O(n) O(n/c+ ct|Mi|logn + ct?| My | + t|Ma|)
262, 50¢2 9
C > 10t O(n2°C +t*27C logn O(n/c+ ct|Mi|logn + ct*|M1| + t|Ma2])
2
C > 5t ) (n2%’ +t2et logn) O(n/c+ ct|Mi|logn + ct?| M| + t|Mz))
2
C>2+1 0 <n2% +£(C +1)3 log %> O(n/c+ ct|My|logn + ct?| My | + t| Ms))
C>t+1 o([n3+(2t+1)(c+1)2(t+1)]10g ﬁ) O(n|My| + nct|My| + ct?| M| + t|Ms))

My : (n,C,t+ 1)-multi-selector | My : (n,C, 5t)-multi-selector
Ms: (n,C,C,5t)-multi-selector | My : (n,C,C,2t+ 1)-multi-selector
Ms : (n,C,C,3t)-multi-selector

TABLE I
FOR EACH VALUE OF C, THERE EXISTS AN PROTOCOL THAT RUNS IN THE SPECIFIED TIME. THE SECONDARY TABLE SPECIFIES THE PARAMETERS OF THE
MULTI-SELECTORS. THE RUNNING TIME IS CALCULATED BY INSTANTIATING EACH MULTI-SELECTOR WITH THE BEST BOUND PRESENTED IN SECTION II

Figure 5: Epoch routine for node p; where C =t + 1.

1 Limited-Epoch(L, knowledgeable, rnds);

> let M be a (n,C,C, 2t + 1)-generalized-multiselector.

3 S0

4 if knowledgeable = true then

5 Let S be the set of processes that are not in L and not completed.

6 Partition S into [|S|/c] sets of size C.

7 for r1 = 1 to rnds do

8 if (r; < [|S|/C7) then

9 for ro =1 to |M]| do

10 if i ¢ L and ((¢ is NOt knowledgeable) or (i € S[r1])) then schedule ¢ to transmit on channel M, (%).
1 if 3k € {1,...,C} : i € L[k] then schedule i to receive on channel k.
12 knowledgeable —Disseminate(L[1],..., L[C]);

13 return knowledgeable

Figure 6: Special Epoch routine for node p; where C' =t + 1.

Limited-Special-Epoch(knowledgeable);
Let M be an (n, C, C, 3t)-multiselector

1

2

3 spectal «— false

4 if (knowledgeable = false) or (i has not completed) then special < true

5 if knowledgeable = true then

6 L « set of ¢?(3t + 1) smallest processes that have completed in a previous epoch.
7 Partition L into (3t + 1) sets L1,..., Ly11 of size c2.

8 Partition each Ly, into ¢ sets Lg[1], ..., Lg[c] of size c.

9 fors=1to3t+1do

10 for r =1 to | M| do

1 if special = true then schedule ¢ to transmit on channel M ()
_if 3k : 4 € Ls[k] then schedule i to receive on channel k.
13 Disseminate(Ls[1],..., Ls[c]);
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