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Abstract

Theorem provers are notoriously hard to use because of the amount of human interaction they require, but
they are important tools that can verify infinite state distributed systems. We present a method to make
theorem-proving safety properties of distributed algorithms more productive by reducing human intervention.
We model the algorithms as I/O automata, render the automata executable, and analyze the test executions
with dynamic invariant detection. The human work in using a theorem prover is reduced because our
technique provides two forms of assistance: lemmas generated by the dynamic invariant detection for use in
the prover; and prover scripts, or tactics, generated from our experience with the I/O automaton model and
the knowledge embedded in the test suite used for execution. We test our technique on three case studies:
the Peterson 2-process mutual exclusion algorithm, a strong caching implementation of shared memory, and
Lamport’s Paxos algorithm for distributed consensus.

In the development and implementation of our method, we also improved the tools for formal verification
of I/O automata and for dynamic invariant detection. We describe a new model for specifying I/O automata
in the Isabelle theorem prover’s logic, and prove the soundness of a technique for verifying invariants in
this model in the Isabelle prover. We develop methods for generating proofs of I/O automata for two
theorem provers, the Larch Prover and Isabelle/HOL. We show methods for executing I/O automata for
testing, by allowing the execution of some automata defined with universal and existential quantifiers that
were previously non-executable. Lastly, we present improvements to dynamic invariant detection in order
to make it more scalable — in particular, we show how to achieve efficient incremental dynamic invariant
detection, where the detection tool is only allowed to make one pass over its input executions.
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Chapter 1

Introduction

As we increasingly rely on computers in our lives, the correctness of software systems on
these computers becomes crucial. The problem of demonstrating the correctness of software
is known as software verification. Verifying software is important because it gives us confi-
dence that our systems perform as designed and do not behave harmfully. The most difficult
software systems to verify are distributed, or concurrent, ones: these combine the com-
plexity of traditional, centralized software systems with the nondeterminism from processes
interleaving their executions.

There are many desirable attributes in software verification techniques. The technique’s
correctness guarantee should be as mathematically formal as possible, so that its statement of
correctness is precise and the system can be discussed using the standard tools of mathemat-
ics. Yet, the verification should not require extreme amounts of effort from the programmer.
The verification should also provide intuition regarding why the software system is incorrect.
Lastly, errors should be caught as early as possible in the design process in order to save
programmer time and minimize harm to the users who rely on the system.

Program analysis methods for verification can be classified into two categories: static
and dynamic [JRO0]. Static methods analyze a program without executing it. A sound,
conservative static method produces formal guarantees because its results hold for all execu-
tions. However, verifying general correctness properties (i.e., those that go beyond relatively
simple properties like type correctness) for all executions of a program is undecidable. A
static method that attempts to verify such general properties either restricts itself to par-
ticular classes of programs or requires large amounts of human interaction. Thus, verifying
correctness with static methods is an expensive operation in terms of programmer time for
any complex system.

In contrast, dynamic analysis methods work operationally — that is, by examining exe-
cutions. For a program with a large or infinite set of executions, a dynamic analysis examines
only a subset of the executions. The technique is unsound if it attempts to generalize for
all executions. Nevertheless, dynamic analysis is useful because it requires comparatively
little programmer time. The programmer merely needs to execute the program on some test
suite, and pass the execution data to the dynamic analysis. Because of this low time cost to
programmers, dynamic analyses, such as testing, have proven useful in finding errors quickly
and early in development.



The primary purpose of this thesis is to present a methodology for verifying the correct-
ness of distributed algorithms that combines the strengths of static and dynamic verification
techniques. Our method refines and integrates two formerly disjoint but useful techniques.
The first technique formally models distributed algorithms as I/O automata [LT89] and
proves them correct using a theorem prover, a general-purpose static verification tool. The
second technique, called dynamic invariant detection [ECGNO1b], takes in execution traces
of a program and conjectures possible properties about the program in general. Our method-
ology works as follows:

1. Formally model the algorithm as an I/O automaton. The I/O automaton model is a
mathematical way to describe distributed algorithms as state machines whose actions
are labeled.

2. Build a test suite, test the I/O automaton by execution, and fix any errors that arise.

3. Analyze the executions over the test suite using dynamic invariant detection to produce
a set of candidate invariants that are likely to be true for the automaton.

4. Prove the algorithm correct using a theorem prover. This is where the actual correct-
ness proof happens. Traditionally, programmers have found a theorem prover difficult
to use because it is not automatic and requires human input. We make using a the-
orem prover easier by providing automatically-generated input to the prover that can
reduce the human input required. We do this in two ways. First, we develop a set of
tactics, or proof strategy programs, that can be used on all structured inductive proofs
of I/O automata. Second, some or all lemmas that are needed for proofs are provided
by dynamic invariant detection rather than by the programmer.

Steps 1, 2 and 4 require some human interaction, while step 3 is automatic. Part of
minimizing programmer effort in verification is reducing the human input in the process.
We describe the trade offs we make on this issue when we describe our methodology in
detail.

We do not attempt verify all types of program properties, and focus on safety properties
of distributed systems. Safety properties ensure that incorrect or damaging behavior never
occurs. We focus on safety properties because they are the most important ones for ensuring
correctness.

In terms of tools to implement our method, we can currently use two theorem provers
and one dynamic invariant detector. Our method is not fundamentally limited to these tools,
but these are the ones we have spent effort developing in order to support the method. The
Isabelle/HOL theorem prover is a supported tool because of the breadth of its higher order
logic [Pau93]. The Larch Prover [GG91] is supported because of its already-tight integration
with the I/O automaton model [Bog00]. On the dynamic side, our method uses the Daikon
tool [ECGNO1b] for dynamic invariant detection.

To more clearly introduce our methodology, we first present background on formal mod-
eling of distributed algorithms and the issues of software verification. Thus, Chapter 2
introduces the I/O automaton model; the two major types of general-purpose static verifi-
cation tools, model checkers and theorem provers, and their capabilities; a basic overview of
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dynamic invariant detection; and the types of program properties that we shall attempt to
verify. With this background, we describe our methodology in Chapter 3. Chapter 4 shows
our method in operation on three case studies: Peterson’s two-process mutual exclusion al-
gorithm, a strong caching implementation of shared memory; and Lamport’s Paxos protocol
for distributed consensus.

In order to implement our method, it was necessary to enhance pre-existing tools for
verification and to develop ways to describe the formal mathematical models we have in the
language of a computer theorem prover. Chapter 5 shows how dynamic invariant detection
can be enhanced to make it more scalable for larger and longer-running programs. The
primary focus is describing an incremental algorithm for analyzing executions — one that
does not use up space as the execution length increases. Chapter 6 shows enhancements
to the IOA Simulator (interpreter) in to allow it to execute more programs, so that these
programs can be analyzed via dynamic invariant detection. Chapter 7 describes how a new
model was developed for I/O automata in the Isabelle theorem prover’s language, to increase
automation in the verification process, and reduce human involvement.

Finally, Chapter 8 suggests further research and concludes.

1.1 Acknowledgments

I would like to thank Michael Ernst, my primary research supervisor, for guiding every aspect
of my work over the last two years, and for providing me encouragement and inspiration dur-
ing the most difficult times. I would also like to thank Stephen Garland for being the source
of advice on formal modeling of I/O automata in theorem provers and on using theorem
provers in general. I am also grateful to Nancy Lynch for teaching me the fundamentals of
distributed algorithms and formal methods, and for suggesting examples and ways to move
forward in proofs with her immense experience with the field.

I would also like to thank Laura Dean, Jeremy Nimmer, Josh Tauber, and Michael Tsai,
who taught me how to code effectively in a team and corrected and initiated or refined
many implementation ideas presented in this thesis. I also express my gratitude to Dilsun
KirhiKaynar for helping organize our joint work on this methodology.

1.1.1 Joint work

The improvements to dynamic invariant detection were implemented after extensive discus-
sion with Michael Ernst. Jeremy Nimmer and Michael Ernst developed the idea of hierarchi-
cally ordering program points for dynamic invariant detection and implemented the initial
incremental version of the Daikon tool, without the optimizations discussed in this thesis.
Nii Doodoo initially implemented the handling of conditional invariants in the Daikon tool.

Andrej Bogdanov originally developed the IOA translator to the Larch Prover, while
Stephen Garland and Chris Luhrs developed the original Isabelle translator. Bogdanov also
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Nicole Immorlica was a collaborator in the proof of the Paxos protocol in the Larch
Prover. Roberto DePrisco, Nancy Lynch and Alex Shvartsman formulated the original I/O
automaton code for Paxos.
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Chapter 2

Preliminaries and Background

This chapter presents a background on software verification and formal modeling of dis-
tributed algorithms in order to better understand our methodology for verification. We
discuss the strengths and weaknesses of the two main general static verification techniques,
model checking and theorem proving in Sections 2.1 and 2.2. In examining an analysis tech-
nique, we are interested in three features: the degree of its automation, the expressivity or
limits of its logic, and the variety of programs it can examine. We introduce the concept of
dynamic invariant detection in Section 2.3.

In Section 2.4 we introduce the I/O automaton model for distributed systems, the math-
ematical basis for our work, and formally express our verification goals in this model in
Section 2.5. We describe alternative, related approaches to verification in Section 2.7.

2.1 Theorem provers

A theorem prover is a tool that manipulates mathematical facts given to it in order to prove
more facts. Provers use logics of varying expressivity. For example, the Larch Prover (LP)
uses multi-sorted (i.e., explicitly data typed) first order logic, while the Isabelle/HOL system
uses higher order logic with ML syntax and typing. If an algorithm and its computation
model can be expressed in the logic of a prover, then a user can use the prover to verify
properties of the algorithm.

In order to do this, the user has to define for the prover a model of computation and
the behavior of the algorithm. Then the user states the proof goals, or logical predicates
that he wishes to show. The prover then soundly manipulates mathematical facts implied
by the definitions in order to prove the goal. The manipulations are called proof methods
and can be chained into higher level manipulations called proof tactics. For example, a proof
method in Isabelle/LP is proof by assumption/implication. When the proof goal is of the
form A — B, the prover can be asked to assume that A holds, and to let B be the new proof
goal. Once B is proven, the prover pops its proof stack and states that A — B is true. A
simple proof tactic might specify that the implication method is applied whenever A and B
have common free variables. The decision to apply proof methods and tactics can be made
manually, automatically, or both, depending on the prover.

A sequence of proof methods and tactics that proves a goal is a proof script or simply a
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proof. A prover that supports requires external input at every step is still useful for it can
be a tool for developing and checking the correctness of a proof script generated by hand or
by another tool.

Since even first order logic is undecidable, provers report failure both when the goal is
untrue, and when they cannot prove the goal. If the goal is indeed true at this point, humans
have to step in and direct the prover somehow. This is why, traditionally, theorem provers
have been considered difficult to use by everyday programmers for software verification: they
are not automatic and require humans to provide much of the insight in proofs. Even the
most automatic theorem provers only automate small steps using tactics.

In this thesis, we divide the human input into two varieties: lemmas and tactics. Tactics
tell the prover to use pre-existing facts and proof methods to make progress on a proof.
Examples include: simplification, case analysis, assumption/implication and induction. They
are searches on facts known to the prover, accompanied by logical unification mechanisms.
Some provers have built-in tactics that automatically attempt to apply themselves on proofs.

Lemmas add new facts to the prover’s knowledge base. Before proving a goal, for example,
it may be necessary to state and prove a lemma. For example, lemma A may be needed
to prove fact B. Or, to prove A — B, it may be necessary to show A — C' and C — B.
The search for an appropriate C' is a lemma input. In Section 2.5 we show how lemmas are
used in proofs of distributed algorithms. Finding the right lemmas is much more difficult
for a computer than finding the right tactics, for it is necessary to create facts that do not
yet exist, rather than merely search on the prover’s knowledge base. Theoretically, a prover
could also find these facts by searching on all possible syntactical combinations, but this
search space is enormous, and each attempt at lemma would have to be verified by a series
of tactics, or worse, more lemmas.

The success of using a theorem prover depends on how much of the above human input
can be eliminated. The key to our methodology in Section 3 is the reduction of this human
input. The next two sections describe in greater detail the two provers we shall use in our
method.

The Larch Prover

The Larch Prover [GG91] (LP) is an interactive theorem proving system for first-order logic.
It admits specifications of theories in the Larch Shared Language [GHG'93] (LSL). It is
strongly data typed, with declared types, and its type system permits polymorphic types,
such as Set[Int], a set of integers. It supports many intuitive proof methods, such as proof
by implication and contradiction. However, it does not support the creation of new proof
methods, only the creation of new lemmas which can be applied using the built-in proof
methods.

As an example, we show a proof of the syllogism rule, (a = b) A (b = ¢) = (a = ¢), in
LP in Figure 2-1. We direct LP to perform an exhaustive search on the values of a and b,
via case analysis, and LP succeeds.

The underlying data structures of the IOA language (described in Section 2.6) are based
on LP data libraries, so translating between the two domains is relatively straightforward.
Further, this means that any data structures used in IOA already have LSL specifications

14
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Declare variables and types
clare variable a, b, c : Bool

The goal
ove (a = b) A (b=c) = (a= c)

Proof method: by cases

sume by cases a = True, a = False
LP says:
Creating subgoals for proof by cases

New constant: ac

Case hypotheses:
userCaseHyp.1.1: ac
userCaseHyp.1.2: -ac

Same subgoal for all cases:
(ac = b) A (b= c) = (ac = c)

Again follow by cases

sume by cases b = True, b = False
LP says:
Creating subgoals for proof by cases

New comnstant: bc
Case hypotheses:
userCaseHyp.2.1: bc
userCaseHyp.2.2: -bc
Same subgoal for all cases:
bc A (bc = c) = ¢
Attempting to prove level 3 subgoal for case 1 (out of 2)
Added hypothesis userCaseHyp.2.1 to the system.

Level 3 subgoal for case 1 (out of 2)
[] Proved by normalization.

Attempting to prove level 3 subgoal for case 2 (out of 2)
Added hypothesis userCaseHyp.2.2 to the system.

Level 3 subgoal for case 2 (out of 2)
[] Proved by normalization.

Level 2 subgoal for case 1 (out of 2)
[] Proved by cases b.

Conjecture user.2: (a = b) A (b= c) = (a = c)
[] Proved by cases a.

Figure 2-1: A proof of syllogism in LP.
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theorem syllogism: "a —= b & b — ¢ — a — c"
(* goal (theorem (syllogism), 1 subgoal): x*)
(x [| a; D & b; c; a |1 = c *)

(* 1. [|] a; b & b; c; a |1 = c *)

apply (cases "a")

(* goal (theorem (syllogism), 2 subgoals): *)

(x [| a; D & b; c; a |1 = c *)

(* 1. []| a; D & b; c; a; a |1 = c *)

(» 2. [| a; D & b; c; a; = a |] = c *)
apply (cases "b")

(¥ goal (theorem (syllogism), 3 subgoals): *)
(» [| a; D & b; c; a |] = c *)

(x 1. [] a; D & b; c; a; a; b |] = c *)
(* 2. [| a; b & b; c; a; a; = b |1 = ¢ *)
(* 3. [] a; b & b; c; a; - a |1 = c *)

apply (simp_all)

(* goal (theorem (syllogism)): *)
(x [| a; D & b; c; a |1 = c *)
(* No subgoals! *)

done

Figure 2-2: A proof of syllogism by cases in Isabelle.

generated for the prover.

The Isabelle/HOL system

The Isabelle/HOL system [Pau93, Gor89] is a combination of two parts. The Isabelle system
is an interactive theorem prover that verifies logical statements given to it. Isabelle can
operate with any given logic, when the logic is specified in its “meta-language”. The logic we
chose to use for our methodology is HOL, or higher-order logic. Unlike first-order logic, HOL
allows functions to be first-class values — i.e., values that can be passed as parameters to
functions and returned. HOL also allows quantification on functions. The advantage of using
higher-order logic is twofold. First, the prover can be used to prove facts about functions.
For example, we can show that a given predicate is an invariant. Second, HOL can be used
to prove meta-theory, or theory about proof methods. This is useful for verification because
it proves that the methods used to verify systems are themselves sound.

Isabelle’s syntax is an augmented version of ML. Logical formulae are stated in ML,
using the language’s type system (and syntax), but the syntax is augmented to allow for
the stating of quantifiers. The commands to control the prover are written in very simple
syntax. The ML logical formulae are written in quotes as arguments to these commands. A
proof of syllogism in Isabelle is shown in Figure 2-2. At the end of the proof, we invoke the
simp_all proof tactic, which invokes a built-in simplifier.
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Isabelle/HOL supports the addition of new proof methods and tactics, both in its lan-
guage and in ML, the implementation language of the prover. In the latter, Isabelle can
be used as a standard programming language, so the user can potentially create powerful
tactics.

Isabelle/HOL also has a relatively large user community, and its data libraries are more
extensive. However, the Isabelle data structure libraries do not directly match the ones in
IOA, so any TOA data structures need to be manually translated for Isabelle.

2.2 Model checkers

Model checkers are a possible alternative verification method. Model checkers examine the
entire reachable state space of a program to determine if a property holds. They work in a
variety of non temporal and propositional temporal logics [CGP99] and are fully automated
provided the user knows the property to verify. Their main limit is that by having to examine
all reachable states, their performance can suffer drastically for systems with large state
spaces, and they do not work for infinite state systems if soundness is to be preserved. For
concurrent systems, models checkers have to examine all interleavings of executions, and their
runtime increases exponentially with the number of processes unless clever optimizations are
done.

Model checker designers have come up with some ways to overcome the large/infinite state
space problem. By using clever data structures such as binary decision diagrams, large state
spaces can be checked quickly (log time) for most programs humans would write [CGP99].
However, there are programs for which this technique does not work. For an infinite state
system, model checkers are used to check finite state abstractions of the system, but human
work is involved in formulating and proving the concrete to abstract mapping. Section 2.7.1
discusses techniques related to model checking using this abstraction and how it relates to
our work.

2.3 Dynamic invariant detection

The Daikon invariant detector [ECGNOla] proposes properties that are likely to be true
throughout a program’s execution. Daikon operates dynamically by examining values com-
puted during execution and generalizing over those values. Its output is in the form of
invariants over a grammar on the program’s variables. Initially, Daikon conjectures that all
properties in its grammar are true on the program. Then Daikon examines the execution
data and deletes any invariants that are contradicted by the data. Finally, Daikon uses static
analysis and statistical tests to reduce the number of false positives by eliminating some of
the remaining invariants [ECGN00]. When used in conjunction with the IOA interpreter,
Daikon expresses this formal specification in IOA as an invariant of the executed automaton.

Dynamic detection of invariants is unsound, because there is no guarantee that the test
suite used to generate execution traces fully characterizes the execution environment. In
practice, the reported properties are usually true and are generally helpful in explicating the
system under test and/or its test suite. Furthermore, the method described in this paper
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does not rely on unproven lemmas; rather, it uses Daikon to suggest lemmas and a theorem
prover to prove whichever of these lemmas it can and then to use those lemmas in a larger
proof.

Daikon produces output in the form of a formal specification that often matches what a
human would have written [ECGN00, NE02b]. Even when Daikon was given inadequate test
suites in order to artificially degrade its output, it still improved programmer performance
(to a statistically significant degree) on a program verification task [NE02c].

Nimmer and Ernst [NE02b] have also used dynamic analysis from Daikon to help static
analysis in the ESC/Java tool. Their primary goal was to extract and verify Java program
specifications rather than verifying safety properties in first order logic about distributed
algorithms. Groce et al. [Gro02] are attempting to use model checkers on programs to
generate test output for dynamic invariant detection with the Daikon tool, rather than
executing the programs themselves.

2.4 1I/0 automata

[/O automata [LT89] have been used to model a variety of distributed systems [GLO00Oa].
[/O automata are (possibly infinite, nondeterministic) state machines in which transitions
between states are associated with named actions. Actions are classified as either input,
output, or internal. The inputs and outputs are external actions used for communication
with the automaton’s environment; internal actions are visible only to the automaton itself.
An automaton controls which output and internal actions it performs, but input actions
are not under its control. Actions can be parametrized. An I/O automaton consists of its
stgnature, which lists its actions; a set of states, some of which are distinguished as start
states; a state-transition relation, which contains triples of the form (state, action, state);
and an optional set of tasks.

Action 7 is enabled in state s if there is a state s’ such that (s, 7, s') is a transition of the
automaton. Input actions are enabled in every state. The operation of an I/O automaton
is described by an execution m = s¢,ay, s, ..., which is an alternating sequences of states
and actions that is valid with respect to the automaton’s transitions. The executions of an
automaton are the set of all such sequences. A trace 7 of an execution 7 is its projection
such that states and internal actions are removed. The traces of an automaton determine,
therefore, its external behavior.

Program properties or specifications are described formally in terms of automaton traces.
A property is defined by the set of traces it admits. For example, property P might require
an automaton to only fire a particular action a(n) where n is an even integer. In this case,
P is the set of all traces containing only even invocations of a. An automaton obeys a given
property P if its traces are a subset of P.

2.5 Program properties

Every property of a program trace can be written as an intersection of a safety and a liveness
property [AS87]. Informally, a safety property is one where “nothing bad happens”, while
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a liveness property is one where “something good eventually happens”, ensuring that the
program makes progress during its execution.

Formally, a trace property (a set of traces, or alternatively, a predicate on traces) P is a
safety property if:

e P contains the empty trace, and

e If 5 isin P, then any finite prefix f' < 3 is in P.

If a trace does not satisfy a safety property, then we can find the exact place where the
property was violated with the above definition.
Formally, P is a liveness property if:

e For any [ there exists an extension /3’ of  such that ' is in P.

In our verification methodology, we do not attempt verify all types of program properties,
but focus on safety properties of distributed algorithms that can be described either by
invariant assertions or by a forward simulation relations. We do this because our tools
allow these two demonstrations of safety to be verified, and because liveness properties are
not as important for algorithm correctness.

The next two sections show how safety properties apply to I/O automata.

2.5.1 Forward simulation relation

The purpose of a forward simulation relation is to relate two automata, a specification au-
tomaton and an implementation automaton, and to show that the latter implements the
behavior of the former. If the specification automaton is known to behave safely, then so
will the implementation automaton, and the implementation will be verified.

Formally, an automaton A is defined to implement a specification automaton B if
traces(A) C traces(B). A forward simulation relation [LV95b] is sufficient (but not neces-
sary) to show this implementation. A forward simulation relation f on the states of B and
A satisfies the two following two conditions:

e For all s € starts(A), there exists u € starts(B) such that f(s,u).

e For all (s,a,s’) € trans(A) and for all u such that f(s,u), there exists an execution
p € execs(B) with final state u’ such that: trace(8) = trace(a) and f(s',u').

For each execution a of A, the above requirement allows us to choose an execution (3 of B
that starts and transitions properly. The successive refinement method uses multiple levels
of automata are used to show that a concrete implementation implements a specification
automaton.
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2.5.2 Invariant assertion

An invariant assertion is simply a statement that the reachable states of an I/O automaton
obey a given predicate. These assertions apply to states and not to actions. To prove that
an automaton obeys an invariant I, it is necessary to show two things:

e For all s € starts(A), I(s).

e For all (s,a,s") € trans(A), I(s) — I(s).

Invariants are used in three ways. First, it is sometimes convenient to specify program
properties using an invariant rather than a specification automaton. Second, invariants may
be needed to show a simulation relation — in the simulation proof, the invariant is used as
a lemma. Third, invariants may be needed to prove other invariants.

We can formalize and prove many safety properties as implementation relations or in-
variants. In the next two sections, we examine possible methods to verify other property

types.

2.5.3 Liveness

Liveness properties are used to show that a system makes eventual progress towards a goal.
A liveness property is either stated explicitly in temporal logic, or relies on the underlying
model to provide the temporal framework and is specified in terms of the model. For an
example of the latter, the I/O automaton framework allows for a set of task partitions, or
sets of actions such that a particular set of firings determine a fair execution. From these
fair executions, which are simple liveness properties, the designer can argue more complex
liveness properties.

Live I/O automata [SGSAL98] are a more general way to specify liveness. They allow
arbitrary temporal formulae (specified as a set of acceptable traces) for liveness properties,
with the only restriction being that the properties remain satisfiable for all inputs. Unfortu-
nately, traditional simulation relations, which show that one automaton implements another,
do not work for live I/O automata. This is because a simulation relation shows that each
of the implementation automaton’s traces are a subset of all the traces of the specification
automaton, while the liveness requirements restrict the correct traces of the specification
automaton to a specific subset.

However, Attie [Att99] has a way of specifying liveness that lends itself to formal verifica-
tion by simulation relation. Intuitively, the live traces of an implementation will be a subset
of the live traces of the specification. In his method, liveness properties must be specified as
pairs of predicates (A, B) on the automaton state, such that the following temporal holds:

Oo(A— OoB)

This reads “infinitely often, it is true that an occurrence of the property A leads to an
infinitely often occurrence of the property B”. Thus, the temporal framework is encapsulated
entirely in the model, and the designer only has to work with the first order logic of the
predicates. With this special form of liveness, Attie has developed a formal theory of “liveness
preserving simulation relations”, an extension of forward simulation relations for liveness.
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2.5.4 Other safety properties

Our method requires safety properties to either be invariant assertions or refinement map-
pings, so it may leave out a few safety properties, especially the ones relating to adjacent
sets of states. For example, neither invariants nor simulation relations can directly say that
an action «; is never followed by another action . However, there are easy ways to rewrite
all such safety definitions into either invariant assertions or refinements, with the addition
of history state variables [LV95a]. In the case of this example, a flag could be set whenever
a is executed, and the invariant could be “as is never enabled if flag is on”.

2.6 The IOA language

The TOA language [GL00a] provides notations for describing I/O automata and for stating
their properties; it uses Larch Shared Language [GHG93] specifications to axiomatize the
semantics of I/O automata and the data types used to describe algorithms. In IOA, transition
relations are defined in terms of preconditions and effects. These can be written either in
an imperative style (as a sequence of assignment, conditional, and loop statements), or in
declarative style (as a predicate relating state variables in the pre- and post-states, transition
parameters, and other nondeterministically chosen parameters). It is also possible to use a
combination of these two styles.

Nondeterminism appears in IOA in two ways: ezplicitly, in the form of choose constructs
in state variable initializations and the effects of the transition definitions, and implicitly, in
the form of action scheduling uncertainty. Nondeterminism allows systems to be described in
their most general forms and to be verified considering all possible behaviors without being
tied to a particular implementation of a system design.

Tools in IOA include a checker for well-formedness of automata (e.g., input actions are
always enabled), a Simulator (interpreter) [KCD*02], and a translator from IOA to the
theorem proving language of the Larch Prover [BGL02].

We use the I/O automaton model and the IOA language for our verification methodology
for many reasons. First, the model has proven useful in describing many existing systems
and algorithms [GL00a]. Second, we can use the existing tool that translates IOA [Bog00]
into the first order language of the theorem prover LP, and adapt it to generate proof
tactics. We can also retarget the tool to generate and the other provers. Many proofs of
distributed algorithms have already been done with LP [BGLO02]. There is also already
a model for the semantics of 1/O automata in Isabelle [Miil98] and Luhrs has created a
design for a tool to translate IOA to Isabelle [Luh02]. Third, an IOA program is executable
after some modifications and the executions can be used in dynamic analysis. With various
enhancements, the IOA Simulator can produce data the is useful for the Daikon tool to
examine [NE02a].
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2.7 Related work

In the next two sections, we discuss methods developed to improve the range of systems that
can be verified by a model checker. The first is abstraction, a means to map a large state
space into a smaller state space for model checking. The second is a verification method for
a restricted class of systems called parametrized systems.

2.7.1 Abstraction

Abstraction [CC77a] has been increasingly used by the model checking community [Pod03] in
order to deal with both the (finite) state space explosion and the infinite state space problem.
In this section, we examine the possible approaches and limitations to using abstraction and
model checking for the I/O automaton model. We also describe our work in the terminology
of abstract interpretation for comparison.

Abstraction is mapping a concrete state space to an abstract state space, a way to
formalize and make sound the approximation of a model. model that may yield useful
information. This mapping is most useful when it is from infinite to finite space, and the
model checking on the abstract space produced verifies the concrete space. Given a finite
property, there exists an abstraction that maps an infinite state space to a finite one that
represents the property. However, it is undecidable to actually deduce the right abstraction,
and the finite space might still be too large.

A predicate abstraction is a particular abstraction mapping concrete state space to
boolean variables. It is equivalent to an invariant. The mapping function is thus predicates
on concrete variables, like x < y. In theory, for any property, there exists an abstraction
such that any model can be mapped to two states — i.e., a predicate abstraction can be
sufficient for model checking, where one state is “good” and another is “bad” and we just
show that “bad” is not reachable from the start states of an automaton. All transitions from
“good” never go to “bad”, and this is easy to check because the abstraction has done all the
work [Pod03].

However, finding the right predicate abstraction is also undecidable and difficult for
humans to do. A predicate I on the concrete state s must have the following three properties
to be useful for verification:

e Vel (state) = good(state). I implies the property to be proved.
® VsiateestartI (state). I holds on the start.

® Yiate stater (I(State) A transition(state, state’) = I(state’). I is “inductive”. That is, if
we know that I holds on a pre state, then I is sufficient to prove that I holds under
any transition to a post state.

The key to successful verification with abstraction is to discover the inductive invariant
I. Note that I is usually a conjunction of many invariants. Methods include “widening”
where [ is weakened at every step until it is inductive [CC92], or heuristics such as ab-
stractions by “octagons” saying that the values of z and y are within an octagonal region
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when graphed [Min01]. In this sense, our methodology, which also attempts to find suitable
invariants for verification, is not that different from the efforts of researchers of abstraction.

However, our work differs in the way we discover these invariants and how we verify that
they imply the “good” property. We discover invariants through execution rather than a
static methodology like widening. The grammar of our invariants is also wider. Presently,
those who are practicing automatically generating abstractions for verification seem to be
restricting themselves to arithmetic on integers [Pod03] and say nothing, for example, about
subset inclusion on unbounded sets. In some cases, the useful abstractions must be generated
by hand. Since our method uses a theorem prover rather than a model checker, it may require
more manual intervention to verify that an invariant I obeys the three properties. However,
we can make progress when the invariant is not quite sufficient for verification precisely
because of the ability to manually intervene.

2.7.2 Verifying parameterized systems

A parametrized system is an unbounded array of finite state automata that only perform
communication with their neighbors. A parametrized system is still an infinite state system,
but its infinity is only in the number of participating processes.

One particular model checking technique, called “invisible invariants” by Pnueli, et
al. [PRZ01], allows a restricted class of parametrized systems to be model checked for a
certain class of properties. By model checking a certain (computable) number of these au-
tomata, the result holds for all the automata. For example, they model check 5 automata
in a solution to the Dining Philosopher’s Algorithm to show that the solution holds for an
unbounded system.

Intuitively, the method restricts itself to properties that are local — related to a handful
of automata interacting next to each other, rather than the global system. Further, the
individual automata not only have to be finite state, but limited in function. The exact
limit has not yet been formalized. An example may provide some intuition, however: the
individual automata cannot act as cells on a Turing machine tape, whereby they simulate
the Turing machine by passing messages back and forth. Otherwise, a verification of such a
parametrized system would be able to tell if the Turing machine halts.

Further, many distributed algorithms have state variables that are unbounded, in ad-
dition to having an unbounded number of processes. For example, Lamport’s Bakery al-
gorithm [Lam74] requires each process to have an unbounded integer counter. For these
systems, model checking has no answer so far. Thus we focus our work on theorem provers
alone in terms of static verification tools.
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Chapter 3

Methodology

This section describes in detail our intended method for verifying distributed algorithms
using a combination of formal modeling, dynamic analysis and theorem proving. Recall that
properties for I/O automata can be stated either as invariant assertions or as specification
automata. We use a slightly different approach for properties stated as invariants versus
properties stated via specification automata, but the first three steps are the same. Further,
note that each invariant needed for verification by simulation relation can use the version of
our method for invariants.
Our method, outlined in Figure 3-1, is summarized by four steps:

1. Model the algorithm as an I/O automaton.

2. Render the nondeterministic and declaratively specified I/O automaton into IOA pro-
grams that are imperatively executable. In the case of verification by simulation rela-
tion, we only need to rewrite the implementation automaton. Execute the automaton
(automata) using a simple test strategy, and fix any errors that may arise, until what
the programmer believes are correct executions are produced.

3. Analyze the executions using dynamic invariant detection to produce a set of invariants.

4. Translate all automata into the language of a theorem prover, and verify the safety
properties, with assistance from: the Daikon invariants as lemmas; tactics and proof
structure from the translation tool.

3.1 Specifying algorithms as I/O automata

The first step in using our method for verifying a system is to define it as an I/O automaton.
This means that an algorithm should be converted into a state machine with each atomic
step being a transition. Many algorithms have been modeled as I/O automata [PPG196,
SAGG™93a, GLOOb] and we do not delve deeper into how the conversion happens. The final
result is an I/O automaton that is a mathematical specification for an algorithm.

Now, the definition of safety properties can be done in two ways. Often, it is sufficient
to simply state an invariant on behavior, such as with the Peterson case study used in
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Figure 3-1: An overview of our method. We verify program properties with help from
dynamic invariant detection and proof scripts generated by our IOA to prover translators.

Chapter 4.1. Verification by invariants is supported by our method. Otherwise, the user
may prefer to state safety properties as another I/O automaton [LV95a]. In this case, the
user should specify the correct behavior in terms of a specification automaton and verification
shall happen by forward simulation, which is another method we support. The user also has
to specify the forward simulation relation.

3.2 Executing automata

The second step in using our method to verify an automaton is to test its behavior through
execution. The IOA Simulator simulates (on a single computer) execution of an I/O au-
tomaton, allowing the user to help select the executions and to propose invariants for the
interpreter to check.

Converting I/O automata into executable IOA code involves two steps: writing the au-
tomata in the IOA language, and resolving nondeterminism by scheduling. Afterward, the
IOA Simulator executes the program and writes execution data (the concrete representation
of interleaved states and actions) to a file.

The former is necessary and relatively trivial: the IOA Toolkit supports a useful but
limited set of data type libraries written in LSL, and the specified 1/O automaton must
be written in terms of these libraries. Other tools like the IOA Composer provide the
convenience of having to write only one automaton and being able to form a system of
interconnected automata using this automaton as a template.

The latter requires work: we must write determiners [Che98, RR00] that choose between
nondeterministic steps an automaton can take. When verifying by simulation relation, this
is only necessary for implementation automata. The primary place for this is in scheduling
which transition fires next among those that are enabled. The IOA language allows us to
append a small program, called a schedule block, at the end of the automaton definition
to perform this scheduling. The schedule block not only selects which transition to per-
form using a language very similar to IOA! but also selects which parameters to supply to

Tt is essentially the same semantics as the eff code of IOA, except it only allows imperative code.

26



the transition. Additionally, where the IOA language allows nondeterministic choice using
choose terms within eff blocks, determiners have to be supplied to choose a specific choice.
It is not necessary that a scheduled IOA program is purely deterministic - schedule blocks
can use explicit calls to randomization functions.

Because transitions have parameters and because their preconditions are in first-order
logic, it is generally undecidable to automatically schedule transitions. However, it is still
useful to develop methods that either automatically schedule for some types of transitions, or
ways to write schedule blocks that approximate fair (or other desired) scheduling techniques.
A common schedule technique used in our case studies is as follows: pick a node at random,
find which actions the node can take and perform one of these actions. Usually, a particular
node’s choice of actions is limited to one.

It is important to note why we want a schedule that exhibits all the interesting behavior
of a program: executions are the source of data for dynamic invariant detection to examine.
Although not all possible executions have to be seen (this would amount to a very slow form
of model checking), it is desirable to create representative transition steps. The key insight
here is that the schedule block can be seen as a test suite from the perspective of dynamic
analysis.

3.3 Dynamic invariant detection

Verifying safety properties often depends on invariants and on auxiliary lemmas. Machine
verification requires that such lemmas be stated and proved explicitly, even if they seem
like bookkeeping details to the user. Hence, the third step in our method is to generate
candidate invariants and lemmas automatically by using dynamic invariant detection to
analyze execution data from the IOA Simulator.

After execution data is generated from the Simulator, it is given to the Daikon tool to
perform this dynamic invariant detection. Tool support for this data conversion was initially
developed by Dean and Santos [Dea00, NS01] and further extensions are shown in Section 6.3.
Daikon generates conjectures (in first-order logic) that are valid IOA syntax in the form of
invariants. These invariants are appended to the automaton, to be used in the next step of
our method.

If any unusual behavior is seen by Daikon at this point, as with the Peterson case study
in Section 4.1, it is an early opportunity to fix the algorithm or its implementation in IOA.
This feedback loop of writing of code and dynamic analysis, often including the addition of
more test suites, can happen until the user is satisfied that what is reported by the dynamic
invariant detector is not unexpected behavior.

Three potential problems with this third step are that the lemmas it produces may be
unsound, incomplete, or not very useful. Despite these potential pitfalls, this step tends
to perform well in practice as shown by our case studies and others [NE02b, NE02c]. We
discuss how to cope with the three potential problems.

Soundness Dynamic invariant detection is unsound: reported properties are true over the
test suite, but there is no guarantee that the test suite fully characterizes the execution
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environment of the program. This does not hinder us, for two reasons. First, we use all
of the dynamically detected invariants to help in proposing, understanding, and verifying
program properties, but we use a theorem prover to ensure that the lemmas we use in proofs
are sound. Second, most of the output in our case studies were correct, and those that were
not were easily corrected artifacts of the test suite (execution scheduling). In general, simply
covering every interesting aspect of each action seems to be adequate.

Completeness Dynamic invariant detection is incomplete: the proposed invariants may
be insufficient for verification, because some true invariants are not reported. Daikon restricts
the set of invariants it checks for two reasons: to conserve runtime and, more importantly,
to reduce the number of false positives that it reports (the more properties it checks, the
larger the number of false or non-useful properties it will report).

Sometimes, as in our Paxos case study, dynamic invariant detection may report an invari-
ant that is not provable in isolation — another invariant may be necessary but not detected.
In other words, dynamic invariant detection can postulate a useful property whose proof is
complicated. This ability to decompose a proof into parts demonstrates a strength of our
technique: it is easy to check properties dynamically, even if they have complicated proofs
that are beyond the capabilities of completely automatic static tools.

Usefulness Third, some reported properties may be true but not useful. Daikon uses
heuristics to prune useless facts, for instance, by limiting output based on variable types.
However, it is impossible for a tool to know what a human will find desirable in a given
situation. In practice, we find that it is easy for humans to select the useful invariants and to
pass over the uninteresting ones—and examining them helped us solidify our understanding
of the algorithm and the implementation. Thus, a moderate amount of extra information
does not distract or disable users.

Similarly, the reported properties may be more than are really needed: a proof accepted
by a theorem prover may use more invariants than are strictly necessary, thus obscuring
the essential argument. We believe it is better to first obtain a working, machine-verified
proof, and then to simplify it. Possibly automating this task (following Rintanen [Rin00] by
iterating unto a minimal fix-point of invariants) is presented as future work in Section 8.1.
We did not have to perform such a reduction in our case study. This finding accords with
other user studies of runtime analysis [NE02c|, where the output from dynamic invariant
detection was able to help verify the absence of certain runtime errors.

3.4 Paired execution

The second step in our method, execution, is also appropriate when attempting to verify a
simulation relation. As noted in Section 3.2, the IOA simulator can help users formulate and
test the validity of a forward simulation relation, prior to such a verification. In this section,
we discuss how a schedule and other information can help in executing paired automata,
while the IOA simulator tests the conditions of the relation. This scheduling will later be
useful in guiding verification.
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A forward simulation relation is a predicate that relates the states of two automata
(see the definition in Section 2.5.1). Paired execution requires such a correspondence to
resolve nondeterminism. Usually, the designer of an implementation has an idea of the step
correspondence. The IOA toolkit allows the designer to annotate the program with this
correspondence.

The proof block in Figure 3-2 describes a step correspondence for use in testing a sim-
ulation relation. The code is from the Paxos case study in Section 4.3.6 but we examine
only the syntax here. With a proof block, the paired simulator can execute the specifica-
tion automaton in lockstep with the implementation automaton. The proof block contains
two sub-blocks, corresponding to the two conditions required for a simulation relation (Sec-
tion 2.5.1). The first sub-block, started by initially, shows how to start the specification
automaton.? The second sub-block contains an entry for each action of the implementation
automaton; this entry provides an algorithm for producing an execution fragment of the
specification automaton. Syntactically, each entry uses fire statements to tell the simulator
to fire specification actions. A proof block may also contain a third sub-block that declares
auxiliary variables used by the step correspondence.

3.5 Proving properties

The last step in our method is to prove the simulation relation (or invariant) using a theorem
prover. This guarantees the soundness of our technique. As described above, theorem provers
generally require human input in the form of lemmas and proof tactics. Here we describe
how the results of Sections 3.3 and 3.4 can be used to generate this input automatically.
First, the invariants suggested by dynamic invariant detection become candidates lemmas,
thereby saving the user time in finding auxiliary invariants needed for verification. Second,
the annotations for paired execution provide a proof outline and tactics. In this section, we
show how to generate the latter.

The outline and tactics are generated from modified versions of the proof translators for
LP and Isabelle. The translators use the structure of the program; the annotations written
by the user for execution; and our knowledge of commonalities in proofs of I/O automata
to generate proof scripts. In practice, we have found that these proof scripts have saved
verification time by automating many steps of a proof.

3.5.1 Proving invariants
Proofs of invariants in a theorem prover follow a structured methodology:
e Prove the start condition.

e Prove the transition condition by structural induction on the data type of the action
and its parameters.

2The set of legal start states of the specification automaton is determined by the states block in its
code; the initially block selects a particular start state, which may depend on the start state of the
implementation automaton.
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There are two tools that translate IOA to prover languages and somewhat automate
providing this kind of assistance. The ioa21sl tool [BGLO02| converts IOA programs and

asserted invariants into LSL, an input language for LP. An example of its output is:
prove Inv(s) A isStep(s, a, s’) = Inv(s')

The i0a2Isabelle [Luh02] tool provides similar assistance for reasoning about IOA using
Isabelle [NS94, Miil98]. We have used a this tool successfully in case studies. An example

of its output is:
lemma I_step:
"V state act
((reachable aut state) A
(I state) A
(enablement_of aut state act)
)—
I(effects_of aut state act)"

Now we describe the tactics that the Isabelle translator outputs for assisting proofs of
invariants. The LP translator outputs relatively minimal tactics for invariants because we
have less control over the prover than we do for Isabelle. Figure 3-3 shows the lines generated
by the Isabelle tool for one invariant of the shared memory case study from Chapter 4.2.
Again, the particular algorithm is not important. The general methodology we use is as
follows:

1. Prove the start condition by citing specific tactics. This is relatively straightforward
and so the tactic for this is omitted from the figure.

2. Split up the proof of the invariant into separate lemmas for each transition. Prove
each lemma by citing a specific sequence of theorems about the automaton as lemmas.
In the figure, the first paragraph shows the proof for one transition, respond, which
assumes sCache is reachable and respond is enabled. The code attempts to prove
that the invariant Inv holds for the post-state. The tactics generator cites the three
premises, p0, pl, and p2. Then it uses the simp and auto? Isabelle tactics with
specific arguments relating to the automaton definition, which were discovered to be
effective in proofs.

3. Try to prove the invariant step condition by induction on the action data type and by
citing the lemmas for each transition. This is shown in the second paragraph of the
figure.

4. Prove the invariance of the predicate itself by citing the step condition and the start
condition lemmas. Then prove that as a consequence of the predicate being an invari-
ant, the invariant holds on all reachable states. This last part is useful so that other
invariant proofs can take advantage of the current invariant holding should a state be
reachable.

For many simple invariants, like in the memory case study, these automatically generated
tactics require no human augmentation.
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3.5.2 Proving a simulation relation

Recall from Section 2.5.1 that verifying a simulation relation requires verifying both a start
condition and a step condition. Translation tools in the IOA toolkit use the proof block for a
simulation relation to generate proof tactics for each condition. The proof block can be seen
as a test suite that also contains the programmer’s knowledge about how the specification
automaton is supposed to behave — this is why it is useful in a formal proof, once properly
translated. The proof block from the Paxos case study in Figure 3-2 will be used as a
running example.

Start condition

The start condition requires finding a witness start state b of the specification automaton.
In LP, the proof obligation is
start (a:States[A]) = 3 b:States[B] (start(b) A F(a, b))

the rules are similar for Isabelle, but wrapped up in a predicate:
theorem FCache2Mem_start:
"isFwdSim_start Cache Mem FCache2Mem"

where the predicate is:
constdefs isFwdSim_start
"('"actionA, ’'stateA) ioa = ('actionB, 'stateB) ioa =
('"stateA = 'stateB = bool) =
bool"

"isFwdSim_start autA autB F —
(V a . a € starts_of autA — (3 b . (b € starts_of autB) A
(F a b)
))

The definition of the predicate comes in two pieces. First, we define the data type of
isFwdSim_start, then we define its meaning. The data type says that isFwdSim_start
takes in three arguments: two automata (parametrized by their action type, as explained
in Section 7) and a relation on their states, and returns a boolean. The definition is the
standard start condition for simulation relations.

The proof translator tools extract the witness b from the imperative statements in the
initially section of a proof block, which define initial values for the state variables in the
specification automaton in terms of the initial values for the state variables in the imple-
mentation automaton. In the Paxos case study, the proof script generator translated the
initially section of Figure 3-2 into the following commands for LP:

declare operator StartRel: States[Globall]l] — States[Cons]
assert StartRel(a:States[Globalll]) =
[a.initiated, a.proposed, {}, a.decided, a.failed]
prove start(a:States[Globalll) =
Jd b:States[Cons] (start(b) A F(a, b))
resume by =
resume by specializing b to StartRel(ac)
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Here, the two ’resume by’ commands direct LP to begin the proof by using its built-in impli-
cation tactic, which assumes the hypothesis and replaces the universally quantified variable
a by a fixed constant ac, and then using StartRel(ac) as the witness for the existential
quantifier 3 b. In the case study, these commands are sufficient to complete the proof of the
start condition.

The commands are similar for Isabelle:
"startRelGloball2Cons sGloball —

Cons_state.make (Globall.initiated sGloball)
(Globall.proposed sGloball)
{}
(Globall.decided sGlobalil)
(Globall.failed sGloball)"

theorem FGloball2Cons_start:
"isFwdSim_start Globall Cons FGlobalili2Cons"

show "(startRelGlobalil2Cons sGloball) € starts_of Cons A
FGloball12Cons sGloball (startRelGlobalil2Cons sGloball)"
apply (simp add: startRelGloball2Cons_def Cons_def
Cons_start_def FGloball2Cons_def
Cons_state.make_def)

The first line defines startRel. The second line proves that startRel satisfies the
start requirement through the use of the simp tactic. The arguments to the tactic are the
definitions of parts of the two automata. They were chosen from our experience with I/O
automaton proofs and then coded into the Isabelle translator tool to be output for every
automaton.

Step condition

The step condition requires finding a witness execution [ of the specification automaton for
each transition of the implementation automaton. The proof script generator formulates this

proof obligation for LP as follows:
prove
F(a:States[A], b:States[B])
A step(a, alpha: Actions[A], a’:States[A]) =
3 beta:ActionSeq[B] (execFrag(b, beta) A F(a', last(b, beta)) A
trace(beta) = trace(alpha))

A similar formulation is generated in Isabelle, which can be found in Appendix B. Both
tools also generate proof scripts that divide the proof into cases based on the kind of the
action a. In LP, this script uses the command resume by induction on a, which directs LP
to perform structural induction on the datatype of a, while in Isabelle, the script uses the
induct tactic. The tools generate lemmas to handle the details of the individual cases. For
example, the LP translator generates the following lemma and proof script from the proof

block for the init action in the Paxos case study.
prove
F(a:States[Globall]l, b:States[Cons])
A step(a, init(i, v), a') =
3 beta:ActionSeq[Cons]
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(execFrag(b, beta) A
F(a’, last(b, beta)) A
trace(beta) = trace(alpha))

resume by =
resume by specializing beta to init(ic, vc) * {}

The intelligence of this tactic lies in the line that says resume by specializing....
Which beta to specialize to is derived from the proof block’s fire statements in the corre-
sponding for blocks. An analogous script is generated for Isabelle.

When proof blocks are more complicated than those in the Paxos case study, the job of
the proof script generator is correspondingly more complicated. For example, the generator
must expand a for entry in the proof block that contains a sequence of conditional statements

such as
if P1 then fire al else fire a2 fi
if P2 then fire a3 else fire a4 fi

into one that contains nested conditionals such as
if P1 then
if P2 then fire a1l fire a3 else fire al fire a4 fi
else
if P2 then fire a2 fire a3 else fire a2 fire a4 fi
fi

in order to generate the appropriate case splits in the proof script.

Our techniques do not completely eliminate the need for human guidance in proving
invariants and simulation relations. Some transitions that have complex semantics may
need the citation of specific invariants (that have already been proved). We do not yet have
a methodology for choosing which invariants to cite. There may also be other case splits
that are not mentioned in the proof block. We do not yet consider these splits.

Kirly, et al. [KCD102] have also manually performed the above process in LP on Dijkstra’s
mutual exclusion algorithm. The difference with our method is that our tools now perform
the translation automatically from the proof block.

3.6 Assessment

The main drawback of our method is that human intervention is still necessary in two

important places. First, the right invariants need to be selected to use in verification. Second,

when the prover cannot make process, the user has to enter tactics to complete proofs.
Nevertheless, our methodology satisfies five desirable properties for a verification method:

Achieving a formal proof of correctness: Our method uses I/O automata for formal
modeling and a theorem prover, whose output is a logically verifiable proof. The method is
thus sound.
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Catching errors quickly: Our method executes and tests the program before the pro-
grammer has to invest time in formal verification. Execution is fast and, compared to formal
verification, easy for the programmer to perform. Tests can reveal deviations from expected
behavior. Dynamic invariant detection can also reveal such erroneous behavior.

Working on all distributed algorithms: The I/O automaton model can be used for a
large variety of asynchronous systems [Gol90a, Lyn96]. By reasoning on mathematical facts,
theorem provers can handle infinite state, nondeterministic systems. Dynamic invariant
detection can also handle such systems. Thus with our tools, we can verify any system that
can be modeled as an I/O automaton.

Reducing the programmer effort in formal verification: As a consequence of their
generality, theorem provers have traditionally required significant human interaction (i.e.,
programmer effort in verification). Our method reduces this human effort in using the
prover through assistance with lemmas and tactics.

Providing insight for the programmer: Some of the insight stems from the results
of dynamic invariant detection, which may output useful properties that are not necessarily
used in a particular correctness proof. More insight is achieved because our method produces
a set of facts and their proofs.
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forward simulation from Globall to Cons:
Cons.initiated = Globall.initiated A

Cons.proposed = Globall.proposed A
Cons.decided = Globall.decided A
Cons.failed = Globall.failed A

V v:Value (v € Cons.chosen &

4 b:Ballot (b € Globall.succeeded A Globall.val[b] = embed(v)

proof

initially
Cons.initiated: Set[Node] := Globall.initiated;
Cons.proposed: Set[Value] := Globall.proposed;

Cons.chosen: Set[Value] {};
Cons.decided: Set[Nodel Globall.decided;
Cons.failed: Set[Nodel] := Globall.failed

for internal start(S: Set[Node], B: Set[Ballot]) ignore
for input init(i: Node, v: Value) do fire input init(i, v) od
for input fail(i: Node) do fire input fail(i) od
for output decide(i: Node, v: Value) do fire output decide(i, v) od
for internal makeBallot(b: Ballot) ignore
for internal abstain(i: Node, B: Set[Ballot]) ignore
for internal vote(i: Node, b: Ballot) ignore
for internal assignVal(b: Ballot, v: Value) do
if =(b € Globall.succeeded) then
ignore
elseif 3 b:Ballot (b € Globall.succeeded A Globall.val[b] # nil)
then ignore
else
fire internal chooseVal(v)
fi od
for internal internalDecide(b: Ballot) do
if (b € Globall.succeeded) then
ignore
elseif (Globall.val[b] = nil) then
ignore
elseif 3 b:Ballot (b € Globall.succeeded A Globall.val[b] # nil)
then ignore
else
fire internmal chooseVal(Globall.val[b].val)
fi od

Figure 3-2: A proof block of a forward simulation relation.
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(* One transition *)
theorem Inv_trans_respond:
assumes
pO: "reachable Cache sCache"
and pl: "Inv sCache"
and p2: "enablement_of Cache sCache((respond n r))"
shows " Inv (effects_of Cache sCache((respond n r)))"
apply (insert pO pl p2)
apply (simp_all add: Inv_def Cache_def Cache_enablement_def
Cache_effect_def Cache_state.make_def)
apply (auto 7)
done

(* The invariant step condition itself x*)
theorem Inv_trans:

assumes

pO: "reachable Cache sCache"

and pl: " Inv sCache"

and p2: "enablement_of Cache sCache aCache"
shows " Inv (effects_of Cache sCache aCache)"

apply (insert pO pl p2)

apply (cases aCache)

apply (simp add: Inv_trans_invoke)

apply (simp add: Inv_trans_respond)

apply (simp add: Inv_trans_read)

apply (simp add: Inv_trans_write)

apply (simp add: Inv_trans_copy)

apply (simp add: Inv_trans_drop)
done

(* Auxiliary proofs x)
theorem Inv_invariant:

"invariant Cache Inv"

apply (rule invariantI)

apply (simp_all add: Inv_start Inv_trans)
done

theorem Inv_reachable:
"reachable Cache sCache = Inv sCache"
apply (insert Inv_invariant)
apply (auto intro: invariantReachable)
done
end

Figure 3-3: Sample output of the proof tactics generated for invariant proofs in Isabelle.
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Chapter 4

Case studies

This chapter describes three case studies that were used to test our methodology of us-
ing dynamic invariant detection and model-specific insights to more efficiently prove safety
properties in a theorem prover.

e Peterson’s mutual exclusion algorithm. This is a lockout-free implementation of mutual
exclusion for two processes using shared memory, proven by invariant assertions.

e An algorithm that implements atomic shared memory through distributed caching,
drawn from Bogdanov’s M.Eng. thesis [Bog00]. The implementation of shared memory
is proven correct by simulation relation.

e Lamport’s Paxos protocol, as written in IOA by De Prisco, et al. [DPLS*02]. Paxos
implements consensus using a ballot and quorum system, and is proved correct by
successive refinement,.

4.1 Peterson mutual exclusion algorithm

The Peterson two-process mutual exclusion algorithm [Pet81] achieves lockout-free mutual
exclusion using multi-writer, multi-reader, read-write shared memory. The algorithm we
present here is designed for two processes, but the algorithm can be staged in a (single
elimination) tournament to support more processes.

There are three variables in the algorithm: flag,, flag; and turn. Figure 4-1 shows
the state-transition diagram for a single process. The algorithm operates as follows. Every
process p sets flag[p] to true, then sets turn to itself. From then on, each process checks
the other’s flag and turn. If either the other process’s flag is off (checkFlag), or if the
turn variable points to the other process (checkTurn), the first process is allowed to go into
the critical section. The critical region consists of the states in which the program counter
has the value critical0 or criticall.

Figure 4-2 gives the IOA code for this algorithm, which we proved correct with both
LP and Isabelle using only invariants discovered by Daikon. Daikon detected the mutual
exclusion property that was the final goal, along with two invariants required for its proof.
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Figure 4-1: State-transition diagram for one process in the Peterson algorithm.

The Peterson IOA program was scheduled for execution using random scheduling. That
is, the scheduler selected one of the two processes at random and advanced its state, if it
was possible. The IOA program was run for 5000 transitions.

This is a good subject for a case study because mutual exclusion algorithms can be subtle
and testing them is rarely sufficient. In IOA, mutual exclusion is expressed as the invariant
that when one automaton is in the set of states designated as the critical region, the other
automaton is not.

4.1.1 Peterson invariants detected by Daikon

We now describe Daikon’s output when given the Peterson executions.

On an initial run over the Peterson executions, Daikon reported that the mutual exclusion
property did not actually hold, for we had made an error in writing the IOA code: in
our initial implementation, each process set its turn variable first, then its flag variable.
Running Daikon immediately revealed this error. We could also have detected the error
during theorem proving, but again, it was faster, easier, and more convenient to notice it in
Daikon’s summarization of the runtime properties.

After correcting the problem, we reran the IOA Simulator and Daikon. Daikon reported
the mutual exclusion property, namely, that no two processes may simultaneously be in the
critical region. Expressed in LP syntax, this invariant is

InvMutex:

pclanIndex]) = critical0 A anIndex # anotherIndex =
pclanotherIndex] # criticall

pclanIndex]) = critical0 A anIndex # anotherIndex =
pclanIndex] # pclanotherIndex]

pclanIndex]) = criticall A anIndex # anotherIndex =
pclanotherIndex] # critical0

pclanIndex]) = criticall A anIndex # anotherIndex =
pclanIndex] # pclanotherIndex]

Daikon also reported two lemmas needed to prove this property:
InvA:
V p (pclp]l = tryingl V pclp] = trying?2
V pclp]l = critical0 V pcl[p] = criticall
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% There are two processes, named pO and pl.

type ProcType = enumeration of p0O, pil

% PC stands for program counter.

type PCType = enumeration of waiting0O, trying0O, tryingl,
trying2, criticalO, criticall

automaton Peterson
signature
output trying(p:ProcType)
internal, setFlag(p:ProcType), setTurn(p:ProcType),
checkFlag(p:ProcType), checkTurn(p:ProcType)
output critical(p:ProcType), release(p:ProcType)

states
% A program counter and boolean flag for each process are kept
% in arrays of type Array[A,B], which are indexed by keys of type
% A and contains elements of type B.
pc : Array[ProcType, PCType] := constant(waiting0),
flag : Array[ProcType, Bool] := constant(false),
turn : ProcType

transitions
output trying(p)
pre pclp] = waiting0
eff pclp]l] := trying0

internal setFlag(p)
pre pclp]l] = trying0
eff pclp]l := tryingl; flaglp] := true

internal setTurn(p)
pre pclp]l = tryingl
eff pclp]l := trying2; turn := p

internal checkTurn(p)
pre pclp] = trying?2

eff if turn # p then pclp] critical0 fi

internal checkFlag(p)

pre pclp] = trying?2

eff if —-flag (if p = p0 then pl else p0) then pclp] := critical0 fi
output critical (p)

pre pclpl] = criticalO

eff pclp]l := criticall

output release (p)
pre pclp]l = criticall
eff pclp]l := waitingO; flagl[p] := false

Figure 4-2: The Peterson two-process mutual exclusion algorithm in IOA. For brevity, this
figure omits the scheduling code that chooses among possible executions at runtime.
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= flaglpl)

InvB:
V p (pclp]l = trying2 = pclturn] = trying2)

Daikon expressed these lemmas as a set of separate terms based on enablement of the cor-
responding actions:

enabled(setFlag(p)) = flaglpl]
enabled(setTurn(p)) = flaglp]
enabled(checkFlag(p)) = flaglpl]
enabled(checkTurn(p)) = flaglpl]
enabled(critical(p)) = flaglpl]
enabled(release(p)) = flagl[p]

enabled(checkFlag(p)) = pclturn]
enabled(checkTurn(p)) = pclturn]

= trying2

= trying?2

The first clause says that whenever the checkFlag transition is enabled in a process, its flag
is true. These simple conditions are not stated in the code, but some of them are apparent
from static inspection. Daikon also reported some invariants that were not used for our
proof, but might be useful for other proofs. One example is:

enabled(release(p)) = flaglturn]

Section 8.1 discusses possible future methods to find such true but not useful invariants.

4.1.2 Proving Peterson invariants

We used InvB and InvA to prove the mutual exclusion property InvMutex with both LP and
[sabelle.

With Isabelle, our prototype automatically generated tactics that were sufficient to prove
InvA. The tactics proved InvB for all but one transition (checkFlag). For this transition,
we had to supply some procedural steps by hand, reasoning by case analysis depending on
whether or not anIndex = p. For InvMutex, the same was true for two transitions, checkFlag
and checkTurn.

Because LP lacks programmable tactics, we had to supply all procedural input manually.
That proof, too, went through without difficulty.

An earlier proof of the algorithm, along with IOA-style pseudocode, appears in Lynch’s
book [Lyn96]. We did not examine the pseudocode or the proof until after completing our
own implementation and proof. This proof also used two invariants. The first is our InvA.
The second is like InvB but explicitly mentions the other process and is written in terms of
program counters:

InvC:
VpVyp (p#p A
(pclp] = critical0 V pclpl]
(pclp’] = trying2 V pclp’]
V pclp’] = criticall)
= turn = p'))

criticall) A
criticalO
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In order to compare the two pairs of invariants, we performed a second LP proof, using
InvC instead of InvB. This proof was quite different, but was about the same length in terms
of LP commands. Both LP proofs took about the same effort, but development of the proof
based on InvC had the advantage of our additional experience.

The invariant proposed by Daikon has several advantages. First, it was provided au-
tomatically, requiring no user effort beyond providing test cases. Second, it was simpler
and easier to understand than the expert-provided invariant. Third, it unexpectedly pro-
vided insight, revealing interesting information about the relationship between p and turn,
information that we put to good use in our proof.

4.2 Atomic memory for distributed caches

We report on another case study, a strong cache for atomic shared memory, where every
processor has a cache and there is a central store. Each cache can have a value or be empty.
The code for this algorithm is based on Bogdanov [BGL02], but we analyze the algorithm
differently from his proof.

The proof for this algorithm uses a forward simulation relation. The specification au-
tomaton, Mem (Figure 4-3), provides the definition for atomic shared memory. The Null[T]
data type creates a pointed domain for a given data type T so that state variables can hold
nil values. The embed operator takes an element of type T and creates an element of type
Null[T] while the .val operator does the reverse.

Each node can take in an invocation via its invoke action, and apply the invocation to
the central memory in the update action. The central memory memVar is updated according
to some function perform while a response is calculated by the function result. The
node responds to its user with the response. The automaton implements atomic shared
memory because: 1) the invocations are all serialized on the shared variable Mem and 2) each
invocation’s time interval contains the exact point of serialization on the shared memory
variable.

The automaton Cache implements the caching algorithm. The invoke and respond
actions are the same. When performing a write to shared memory, a processor updates the
central memory location and clears the caches of other processors (in one synchronous step).
Processors can arbitrarily copy from the central memory location to their caches and can
delete their cached values. When performing a read, a processor either reads from its cache
or waits for the cache to be filled.

Our goal is to prove the existence of a forward simulation relation between Cache and
Mem using our methodology.

4.2.1 Executing the cache automaton

A schedule was written for the cache algorithm in order to execute it to perform dynamic
invariant detection. As with the Peterson case study, the schedule selects a node at random
and attempts to move it forward in the algorithm at whatever state the node is. This
randomized schedule was run for 500 steps. No significant changes needed to be made to the
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automaton Mem

signature
output invoke(n: Node, a: Action), respond(n: Node, r: Response)
internal update(n: Node)

states
memVar: Value := v0, ) an arbitrary default value
act: Array[Node, Null[Action]] := constant(nil),
rsp: Array[Node, Null[Response]] := constant(nil)

transitions

output invoke(n, a)

pre
act[n] = nil

eff
act[n] := embed(a)

internal update(n; local a:Action)

pre
rsp[n] = nil A act[n] = embed(a)
eff
rspln] := embed(result(a, memVar));
memVar := perform(a, memVar);

output respond(n, r)

pre
rsp[n] = embed(r)
eff
rspln] := nil;
act[n] := nil

Figure 4-3: The specification automaton, Mem.

automaton code itself to render it executable — however, for practical reasons we chose to
implement each node id as an integer rather than an abstract data type.

4.2.2 Invariants required and detected

One invariant is enough to show that this strong caching algorithm implements shared mem-
ory: when a processor’s cache is not empty, its value is equal to the central memory’s value.
This invariant was detected by Daikon as:

V n : Node (cache[n] # nil = cache[n].value = memVar)

As written in Bogdanov [BGLO02], this invariant is:
V n : Node (cache[n] = nil V cache[n] = embed(memVar))

The results are logically equivalent but syntactically different because Daikon does not
detect invariants over disjunctions, but rather picked out the values in cache that were not
nil and saw that the values were equal to memVar. That is, Daikon arrived at the same result
as a human did, but via a different method.
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automaton Cache
signature

Node)

output invoke(n: Node, a: Action), respond(n: Node, r: Response)

internal read(n: Node), write(n: Node), copy(n: Node), drop(n:
states

memVar: Value := vO0,

act: Array[Node, Null[Action]] := constant(nil),

rsp: Array[Node, Null[Response]] := constant(nil),

cache: Array[Node, Null[Value]] := constant(nil)

transitions

output invoke(n, a)
pre
act[n] = nil
eff
act[n] := embed(a)
internal read(n; local a Action)
pre
embed(a) = act[n];
isRead (a);

rspln] = nil;
cache[n] # nil

eff
rspln] :=

embed (result (a,

cache[n].val))

internal write(n; local a Action)
pre
embed (a) = act[n];
isWrite(a);
rspln] = nil
eff
rspln] := embed(result(a, memVar));
memVar := perform(a, memVar);
cache := constant(nil)

internal copy(n)

eff

cache[n] :=

embed (memVar)

internal drop(n)

eff

cache[n] :=

nil

output respond(n, r)

pre
rspln] = embed(r)
eff
rspln] := nil;
act[n] := nil

invariant Inv

V n

of Cache:
Node (cacheln] =

nil V cachel[n] = embed (memVar))

Figure 4-4: Strongly cach}lng implementation, Cache.
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forward simulation from Cache to Mem:

Mem.memVar = Cache.memVar A Mem.act = Cache.act A Mem.rsp = Cache.rsp

proof

start
Mem.act := Cache.act;
Mem.rsp := Cache.rsp;
Mem.memVar := Cache.memVar

for internal copy(n : Node) ignore

for internal drop(n : Node) ignore

for internal write(n : Node, a : Action) do
fire internal update (n, a)

od

for internal read(n : Node, a : Action) do
fire internal update (n, a)

od

for output respond(n : Node, r : Response) do
fire output respond (n, r)

od

for output invoke (n : Node, a : Action) do
fire output invoke (n, a)

od

Figure 4-5: The simulation relation and execution annotations between Mem and Cache.

4.2.3 The simulation relation

The simulation relation between the two automata is shown in Figure 4-5. The simulation
relation says that the all the state variables map via the identity relation, and says nothing
about the cache variable in the Cache automaton (this is why the above invariant is neces-
sary). Notice the execution annotations for each transition, which will be used a template
for generating the proof by the LP and Isabelle translation tools.

4.2.4 Proving the simulation relation

Using the proof translator tools, we translated the two automata and the simulation relation
into input for both LP and Isabelle. The first step we chose to do before proving the
simulation relation was to prove the crucial invariant.

The proof scripts we generated were quite successful. In LP, the invariant had to be
done by hand, as we do not generate proof scripts. In Isabelle, the crucial invariant, was
automatically proved just from the proof script. Thus nearly zero human work was involved
in proving this invariant. Chapter 7 describes the Isabelle model for the automata in detail
and the methodology for generating proof scripts for invariants.
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As for the simulation relation, both prover translators generated proof scripts for the
automata following the methodology presented in Chapter 3. In both provers, the proof
scripts proved adequate to automatically prove all transitions except for one, the read tran-
sition. Here, a few lines of human-generated commands were necessary to leverage the crucial
invariant: when reading from cache, the cache’s value contains the value of memVar. Our
computer-generated proof was nearly identical to Bogdanov’s proof [BGL02] for LP.

4.2.5 Assessment

For the memory case study, little human intervention was required. The steps involving
the most human help were: 1) selecting the invariant that might be useful for the simula-
tion relation proof; 2) 2) giving a few commands to the prover when it halted. Thus, our
methodology was quite successful here.

4.3 Distributed Consensus with Paxos

Lamport’s Paxos protocol [Lam98] implements distributed consensus in an asynchronous
system in which individual processes can fail. We define distributed consensus as follows.
Suppose that [ is a finite set of nodes representing the processes in the system and V' is the
set, of possible consensus values. Processes in I may propose values in V. The consensus
service is allowed to return decisions to processes that have proposed values. It must satisfy
two conditions: all nodes must receive the same value (“agreement”) and that value must
have been proposed by some process (“validity”).

Paxos implements consensus through the use of quorums and ballot voting and we prove
the implementation through successive refinement of multiple simulation relations. We use
code from a case study [DPLS*02] that defines a hierarchy of automata. The highest-level
automaton, Cons, provides a specification for consensus. The lowest-level automaton, Paxos,
provides a distributed implementation. An intermediate-level automaton, Global1, although
non-distributed, captures the main idea of Paxos, that of using ballots and quorums to
achieve consensus. A correctness proof involves showing the existence of a series of forward
simulation relations between successive levels in the hierarchy. In this section, we discuss
the forward simulation between Cons and Globall. This is based on the work by Ne Win,
et. al. in [NEGT03].

4.3.1 Specification automaton

The signature of the specification automaton Cons (Figure 4.3.1) contains an input action
init(i,v), representing the proposal of value v by process i, an internal action chooseVal(v),
representing the choice of a consensus value v, an output action decide(i,v), representing
the report of the consensus value to process i, and an input action fail(i), representing the
failure of process i. The automaton provides the required agreement and validity guarantees:
only a single consensus value can be chosen, and that value must have been previously
proposed.
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type Node = tuple of location: Int
type Value = tuple of value: Int

automaton Cons

signature
input fail(i: Node), init(i: Node, v: Value)
output decide(i: Node, v: Value)
internal chooseVal(v: Value)

states
initiated: Set[Nodel := {3}, proposed: Set[Valuel] := {},
chosen: Set[Valuel] = {1}, decided: Set[Nodel = {},
failed: Set[Nodel = {}

transitions
input init(i, v)
eff if -(i € failed) A —(i € initiated) then
initiated := initiated U {i};
proposed := proposed U {v}
fi
internal chooseVal(v)
pre v € proposed A chosen = {}
eff chosen := {v};
output decide (i, v)
pre i € initiated A = (i € decided) A
-(i € failed) A v € chosen

eff decided := decided U {i}
input fail(i)
eff failed := failed U {i}

Figure 4-6: Specification of consensus in IOA

4.3.2 Implementation automaton

The automaton Globall (Figure 4.3.1) specifies an algorithm that implements consensus in a
non-distributed setting. This automaton uses a totally ordered set of ballots for values, one
of which may eventually be chosen as the consensus value if sufficient approval is collected
from the processes in the system.

In addition to the external actions of the automaton Cons, the signature of Globall in-
cludes internal actions for making ballots, assigning them values, and voting for or abstaining
from ballots. The automaton Globall determines the fate of a ballot by considering the ac-
tions of quorums, which are finite subsets of I, on that ballot. Globalil allows a ballot to
succeed only if every node in a quorum has voted for it.

4.3.3 Executing the Globall automaton

The second step in using our method to verify an automaton is to test its behavior by
simulating execution. The simulator requires that IOA programs be transformed into a form
suitable for execution. For example, the simulator requires quorums in Paxos to be initialized
operationally, whereas they were specified declaratively in the original I/O automaton model.
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type Ballot = tuple of ordering: Int

automaton Globall
signature
input fail(i: Node), init(i: Node, v: Value)
output decide(i: Node, v: Value)
internal start(theNodes: Set[Node]), makeBallot(b: Ballot),
abstain(i: Node, B: Set[Ballot]),
assignVal(b: Ballot, v:Value),
vote(i: Node, b: Ballot), internalDecide(b: Ballot)

states
initiated: Set[Nodel] := {}, proposed: Set[Value] = {},
decided: Set[Nodel = {}, failed: Set[Nodel = {},
ballots: Set[Ballot] := {}, succeeded: Set[Ballot] := {},
val: Array([Ballot, Null[Valuel] := constant(nil),
voted: Array[Node, Set[Ballot]] := constant ({}),
abstained: Array[Node, Set[Ballot]] := constant({})
quorums: Set[Nodel],
dead: Set[Ballot] := {}

transitions
internal start(theNodes)

eff quorums := delete([1], theNodes);
for i: Node in theNodes do voted[i] := {};
abstained[i] := {} od;

input init(i, v)
eff J As in Cons (Figure 1)
input fail (i)
eff failed := failed U {i}
internal makeBallot (b)
pre - (b € ballots);
eff ballots := ballots U {b};
internal assignVal(b, v)
pre b € ballots A val[b] = nil A v € proposed
A Y b’:Ballot (b'.ordering < b.ordering =
vall[b’] = embed(v) V b’ € dead)
eff val[b] := embed(v)
internal vote(i, b)
pre i € initiated A —(i € failed) A
b € ballots A —(b € abstained[i])
eff voted[i] := voted[i] U {b}
internal abstain(i, B)
pre i € initiated A —=(i € failed) A voted[i] N B = {}
eff abstained[i] := abstained[i] U B;
for aBallot:Ballot in B do
if V aNode:Node (aNode € quorums =
aBallot € abstained[aNodel])
then dead := insert (aBallot, dead);
fi;
od;
internal internalDecide(b)
pre b € ballots AV j:Node (j € quorums = b € voted[j])
eff succeeded := succeeded U {b}
output decide (i, v)
pre i € initiated A —(i € decided) A -—(i € failed)
A 3 b:Ballot (b € succeeded gy embed(v) = val[b])
eff decided := decided U {i}

Figure 4-7: A ballot-based implementation of consensus in IOA



Aside from such bookkeeping issues, the crucial problem is resolving nondeterminism by
specifying a schedule. An example schedule is:

schedule
states
theNodes: Set[Node] := insert ([0], insert ([1], imnsert ([2]1, {}))) U
insert ([3], insert([4], imnsert ([5]1, {})))
do

fire Iinternal start(theNodes);
fire input init ([0], [1]1);
fire input init ([1], [2]1);
fire input fail ([5]);

fire internal makeBallot ([0]);

causing the IOA simulator to execute five actions. The output is:

internal start(([0] [1] [2] [3] [4] [5])) in automaton Globall
input init([0], [1]) in automaton Globall

input init([1], [2]) in automaton Globall

input fail([5]) in automaton Globall

internal makeBallot([0]) in automaton Globall

O W N -

For our case study, we wrote schedules to execute Globall with different interleavings
of actions, some of which cause nodes to fail or to abstain from a ballot. We did not use
structured test generation methods to produce the schedules, nor did we evaluate them
according to specific criteria (e.g., code coverage). Instead, we simply selected executions
that illustrates what we felt was the normal behavior of the automaton (and that exercised
every action). In our experience, using simple schedules like these is adequate for the purpose
of dynamic invariant detection.

4.3.4 Dynamic invariant detection results

For Paxos, invariant detection with Daikon produced 23 invariants, four of which were helpful
in the simulation relation proof in Section 4.3.6. The four were:

Invli: V anIndex:Node (size(voted[anIndex] N abstained[anIndex]) = 0)
Inv2: val.values.val(nonNull) C proposed

Inv3: size(succeeded N dead) = 0

Invb: succeeded C ballots

(We have added the names Invi for convenience in this presentation.)
A full proof of the Paxos simulation relation required six invariants: five for the simulation
relation proper, and one more for one of the invariants. The two missing invariants were:

Inv4d: V b:Ballot V b’':Ballot (vall[b] # nil A b’ < b =
val[b’] = val[b] V b’ € dead(abstained))
Inv6: V b:Ballot (b € succeeded =
3 q:Set[Nodel] V n:Node
(q € wquorums A
(n € g = Db € voted[n])))
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These two invariants are outside Daikon’s grammar, so it neither checked nor reported
them. Daikon does not report invariants with existential quantifiers, nor does it report those
with more than a given number of subterms. This is not a fundamental limitation, but
a design choice that reduces Daikon’s computational requirements and, more importantly,
the number of false positives or unhelpful invariants that Daikon would otherwise report.
Section 5 discusses potential ways of improving this grammar.

In our case study, Daikon proposed four of the six required invariants. This reduced the
amount of human effort — particularly non-imaginative effort — required for the correctness
proof, even though it did not eliminate all such human effort.

It is notable that Inv3, although true and necessary for the proof, was not provable in
isolation: establishing it required use of Inv6. In other words, dynamic invariant detection
postulated a useful simple property (inv3) whose proof is complicated (because it requires
Inv6). This ability to decompose a proof into parts demonstrates a strength of our technique:
it is easy to check properties dynamically, even if they have complicated proofs that are
beyond the capabilities of completely automatic static tools.

4.3.5 Paired execution

The fourth step in our method is appropriate when attempting to verify a simulation relation.
As noted in Section 4.3.3, the IOA simulator can help users formulate and test the validity
of a forward simulation relation, prior to such a verification. In this section, we discuss how
a schedule and other information can help in executing paired automata, while the IOA
simulator tests the conditions of the relation. This scheduling will later be useful in guiding
verification.

In Figure 4-8, the simulation relation is the identity on all state variables of Cons except
chosen, which is not a state variable of Globall. The simulation relation defines chosen in
Cons to contain a value v if and only if there is a successful ballot in Globall with value
v. The proof block is straightforward for the start state and for the external actions: each
external action in the implementation automaton is matched by the action with the same
name in the specification automaton. The internal actions start, makeBallot, abstain, and
vote are matched by an empty execution sequence of the specification automaton.

In our case study, the IOA simulator can reveal two problems with a more naive treatment

for intermnal assignVal(b: Ballot, v: Value) ignore

for internal internalDecide(b: Ballot)
do fire internal chooseVal(Globall.val[b].val) od

in the proof block for the internal actions assignVal and internalDecide. First, given
a schedule that executes internalDecide twice in Globall, the simulator discovers that the
precondition for chooseVal fails the second time it is executed in the lockstep execution of
Cons. Second, assignVal needs to fire chooseVal if a ballot has been decided internally but
does not yet have a value assigned; hence we must fire chooseVal when firing assignVal, but
only if no other ballot in Globall.succeeded has a non-nil value. Most of this case analysis
is necessary because Globall allows ballots to be voted on (and to succeed) before they are
assigned values.
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forward simulation from Globall to Cons:
Cons.initiated = Globall.initiated A

Cons.proposed = Globall.proposed A
Cons.decided = Globall.decided A
Cons.failed = Globall.failed A

V v:Value (v € Cons.chosen &
d b:Ballot (b € Globall.succeeded A Globall.val[b] = embed(v) ))

proof

initially
Cons.initiated: Set[Node] := Globall.initiated;
Cons.proposed: Set[Value] := Globall.proposed;
Cons.chosen: Set[Value] = {};
Cons.decided: Set[Node] := Globall.decided;
Cons.failed: Set[Node] := Globall.failed

for internal start(S: Set[Nodel], B: Set[Ballot]) ignore
for input init(i: Node, v: Value) do fire input init(i, v) od
for input fail(i: Node) do fire input fail(i) od
for output decide(i: Node, v: Value) do fire output decide(i, v) od
for internal makeBallot(b: Ballot) ignore
for internal abstain(i: Node, B: Set[Ballot]) ignore
for internal vote(i: Node, b: Ballot) ignore
for internal assignVal(b: Ballot, v: Value) do
if -(b € Globall.succeeded) then
ignore
elseif 3 b:Ballot (b € Globall.succeeded A Globall.val[b] # nil)
then ignore
else
fire internal chooseVal(v)
fi od
for internal internalDecide(b: Ballot) do
if (b € Globall.succeeded) then
ignore
elseif (Globall.val[b] = nil) then
ignore
elseif 3 b:Ballot (b € Globall.succeeded A Globall.val[b] # nil)
then ignore
else
fire intermnal chooseVal(Globall.val[b].val)
fi od

Figure 4-8: Forward simulation relation and step correspondence (proof block) from the
Globall specification (Figure 4.3.1) to the Cons implementation (Figure 4.3.1).
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This nondeterminism makes the algorithm more general, but it complicates the correct-
ness proof. Hence it was helpful to use paired simulation to debug the details of the step
correspondence and arrive at the formulation shown in Figure 4-8.

4.3.6 Verifying a simulation relation in LP

The last step in our method is to prove the simulation relation (or invariant) using a theorem
prover. Here we describe how the results of Sections 4.3.4 and 4.3.5 can be used to generate
this input automatically. First, the invariants suggested by dynamic invariant detection
become candidates lemmas, thereby saving the user time in finding auxiliary invariants
needed for verification. Second, the annotations for paired execution provide a proof outline.

Recall from Section 2.5.1 that verifying a simulation relation requires verifying both a
start condition and a step condition. Translation tools in the IOA toolkit use the proof
block for a simulation relation to generate proof tactics for each condition.

Start condition

The start condition requires finding a witness start state b of the specification automaton. In
the Paxos case study, the proof script generator translated the initially section of Figure 4-8
into the following commands for LP:

declare operator StartRel: States[Globall]l] — States[Cons]

assert StartRel(a:States[Globalill) = [{}, {}, {}, {3}, {}]

prove start(a:States[Globalll) = 3 b:States[Cons] (start(b) A F(a, b))

resume by =
resume by specializing b to StartRel(ac)

Here, the two resume by commands direct LP to begin the proof by using its built-in impli-
cation tactic, which assumes the hypothesis and replaces the universally quantified variable
a by a fixed constant ac, and then using StartRel(ac) as the witness for the existential
quantifier 3 b. In the case study, these commands are sufficient to complete the proof of the
start condition.

Step condition

The step condition requires finding a witness execution /3 of the specification automaton for
each transition of the implementation automaton. The proof script generator formulates this

proof obligation for LP as follows:
prove
F(a:States[A], b:States[B])
A step(a, alpha: Actions[A], a’:States[A]) =
3 beta:ActionSeq[B] (execFrag(b, beta) A F(a’', last(b, beta)) A
trace(beta) = trace(alpha))

It also generates a proof script that divides the proof into cases based on the kind of the action
a (using the command resume by induction on a, which directs LP to perform structural
induction on the datatype of a) and generating lemmas to handle the details of the individual
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cases. For example, it generates the following lemma and proof script from the proof block

for the init action in the Paxos case study.
prove
F(a:States[Globall], b:States[Cons])
A step(a, init(i, v), a') =
3 beta:ActionSeq[Cons] (execFrag(b, beta) A F(a’', last(b, beta)) A
trace(beta) = trace(alpha))

resume by =
resume by specializing beta to init(ic, vc) * {}

LP finishes the proof of this lemma automatically, as it also does for the fail, makeBallot,
abstain, and vote actions.

The proof scripts for the lemmas for the assignVal and internalDecide actions are
themselves divided into cases, in accordance with the for statements for those actions in
the proof block. For example, the proof script generator produces the following lemma and
script for the internalDecide action:

prove
F(a:States[Globall]l, b:States[Cons])
A step(a, internalDecide(b:Ballot, a’) =
3 beta:ActionSeq[Cons] (execFrag(b, beta) A F(a’', last(b, beta)) A
trace(beta) = trace(alpha))

resume by =
resume by cases bc € ac.succeeded
% True case
resume by specializing beta to {}
% Elseif case
resume by cases ac.vall[bc] = nil
% True case
resume by specializing beta to {}
% Elseif case
resume by cases 3 b:Ballot (b € ac.succeeded A ac.val[bc] # nil)
% True case
resume by specializing beta to {}
% False case
resume by specializing beta to chooseVal(ac.val[bc].val) * {}

LP needs further assistance to finish the proof of this lemma, which uses invariants Invi
through Inv5. Invariant Inv2 is used when chooseVal is the witness execution for internalDecide
to show that the value being chosen belongs to Cons.proposed. The other four invariants,
which show that all ballots not in Globall.dead have identical or nil values, help establish
that changes to Globall.succeeded and Globall.val preserve the simulation relation.

When proof blocks are more complicated than those in the Paxos case study, the job of
the proof script generator is correspondingly more complicated. For example, the generator
must expand a for entry in the proof block contains a sequence of conditional statements

such as
if P1 then fire al else fire a2 fi
if P2 then fire a3 else fire a4 fi

into one that contains nested conditionals such as
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if P1 then

if P2 then fire a1l fire a3 else fire al fire a4 fi
else

if P2 then fire a2 fire a3 else fire a2 fire a4 fi
fi

in order to generate the appropriate case splits in the proof script.

Of course, the invariants used to establish a simulation relation must be verified them-
selves. Here too, the simulator and invariant detector provide help. First, invariants some-
times require other invariants in their proofs. In the case study, only Inv3 required auxiliary
invariants (Invl and Inv6), one of which was Daikon detected. Second, the statement of com-
plicated invariants such as Invé can be tested via simulated execution; once stated properly,
the proof of this invariant was rather simple.

Our techniques do not completely eliminate the need for human guidance in proving
invariants and simulation relations. They can automatically discover, and prove with little
human assistance, invariants such as Invi, Inv2, and Inv5. They cannot yet discover invari-
ants such as Inv4 and Inv6, even though their proofs are simple. And although they discover
invariant Inv3, which is simple, the proof of this invariant using LP requires moderate human
guidance.
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Chapter 5

Achieving fast, scalable and correct
dynamic invariant detection

5.1 Introduction

A dynamic invariant detection tool observes program executions and outputs properties
(logical formulae) that are true of the executions and are likely to be true of the program in
general. For example, an invariant detector might report that at entry to procedure 2foo,
a # null = x = a.length; that at exit from procedure bar, y' =y + 1 (where y is the variable’s
value at entry and y’ is the value at exit); or that at from the point of view of any client
of class ¢, C.x > C.y. The reported properties, which are syntactically identical to formal
specifications, are also known as likely invariants.

Invariant detection has applications to program evolution [ECGNO1b], static verifica-
tion [NEO1, Nim02a, NE02b, NE02c, ?], program refactoring [KEGNO01], automated theo-
rem proving [NE02a, NEG103, ?], testing [?, Har02, ?, 7], software upgrades [?], anomaly
detection [RKS02|, fault detection [DDLE02, Dod02, HL02, ?], error isolation [?, ?], and
error prevention [?], among others.

A naive implementation of dynamic invariant detection is not difficult. We present an
abstract algorithm in Section 5.1.2. Doing it correctly and efficiently, however, requires
some thought. The two correctness properties we wish to preserve while optimizing an
invariant inference algorithm are soundness and completeness. We formally define these as
in Section 5.1.3, within the context of a grammar, or the set of formulae an algorithm can
output.

An efficient inferencing algorithm is desirable, in terms of time and space needed. The
primary efficiency concern, either when adding other optimizations or expanding the gram-
mar, is to keep the algorithm incremental. An incremental algorithm exhibits two properties
that are dual to each other. First, it consumes no extra space with respect to the length
of the executions that are given, and it runs linearly in time. Second, it can run on-line,
alongside the program to be examined, receiving values as they are generated and discarding
them afterward. For example, an incremental algorithm can monitor a web server over days
or weeks, without having to store the record of each transaction. This is important as a
week’s transactions may not even fit on disk. An incremental algorithm is also a one-pass
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algorithm.

Once incrementality is achieved, there are secondary efficiency concerns. It is also im-
portant to save space and time as a function of the size of the program, measured in the
number of variables. We optimize along this line by taking advantage of one general idea:
invariants often imply each other. The space and/or time resources used to check such im-
plied invariants can often be avoided. We present three optimizations based on the idea of
implied invariants in this chapter.

This chapter is organized as follows. Section 5.1.2 describes a naive invariant inferencing
algorithm as a benchmark to compare against. Section 5.1.4 describes the different parame-
ters that affect resource consumption and the data structure space over which an algorithm
would operate. Section 5.2.1 classifies the different methods by which optimizations could
be performed. Sections 5.3.1(largely borrowed from Nimmer [Nim02b], but repeated here for
clarity of exposition), 5.4, and 5.5 show major optimizations that lead to better use of space
and time by employing the fact that some invariants imply each other in some way. These
optimizations are performed on the Daikon invariant detector [ECGNO1b], a general purpose
tool with a wide and useful grammar. Section 5.7 shows extensions to Daikon’s grammar
to make it more useful and allow it to extract more information from any given execution.
Section 5.8 presents future work and Section 5.9 concludes.

5.1.1 Terminology

Here we define terminology, to give a foundation for the rest of this chapter.

A program point is slightly more general than just a specific location in the program.
Instead, it represents a specific scope (set of variables) and its associated semantics. For
example, consider a program point associated with the pre-state of a method. Its scope is
all fields of the class and any arguments to the method. Its semantics are that every time
the method is called, a snapshot of all pre-state within scope is taken. For a program point
associated with the object invariants of a class, its scope is all fields of the class, and its
semantics are that every time the any public method is called, snapshots of all pre-state and
post-state within scope is taken.

A sample is the snapshot of program state taken for a specific program point.

An ezxecution is a sequence of samples taken over the run of a program over time.

A wariable is an expression associated with a given scope (a program point). It may
be a simple field reference (such as this.x), may involve array indexing or slicing (such as
this.myArray[this.x..this.y]), or may involve other compound expressions. A primitive
variable is one whose value is provided in a sample. The a.[x] operator denotes array
subscripting as via C or Java syntax.

A derived variable is a variable whose value is not provided in a sample, but is instead
computed as a function of other variables after the fact. For example, array slices like
this.myArray[this.x..this.y] are derived from the full array this.myArray[] given in the
sample.

An invariant object is a data structure that relates variables at a program point. It
represents a boolean formula that will be checked against data from samples in dynamic
invariant detection. For brevity, we will often refer to an invariant object simply as an
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invariant, but we do not mean that it is true over all runs of a program.

A grammoar is the set of boolean formulae over which dynamic invariant detection occurs.
It is also thus the set different invariant object types. For example, a grammar might contain
the equality and less than operators on integers.

There are also some terms specific to the Daikon dynamic invariant detection system.

A frontend is a tool that executes a program, interprets runtime values and outputs the
values into a format understandable by the Daikon back end, which analyzes the data samples
in terms of invariants. For example, the IOA Simulator is the IOA front end for Daikon,
and the Daikon Frontend for Java (dfej) instruments Java programs to output values to a
file readable by Daikon. The Daikon back end is responsible for computing derived variables
from primitive variables given in data samples.

5.1.2 Naive algorithm

Recall that an invariant detector reports all properties in its grammar that are not violated
at runtime. This section gives a naive algorithm that achieves that goal. As noted later in
Section 5.1.4, this algorithm runs too slowly to be practical.

1. Initially, assume all properties in the grammar to be true. Instantiate an invariant for
each property and combination of variables. For example, if the available properties
are odd and =, and the variables are a, b, and c, instantiate odd(a), odd(b), odd(c),
a=b,a=c,and b=c.

2. For each sample, check each candidate invariant associated with the same program
point as the sample and eliminate (falsify) any that are contradicted by the sample.
For example, the sample (3,4,3) eliminates the invariants odd(b), a=b, and b=—c¢
from the above list.

3. Report the invariants that remain after all samples have been processed.

5.1.3 Correctness properties

This algorithm has two desirable properties, soundness and completeness.

Soundness Any invariant reported by a sound invariant detection algorithm holds for all
samples in the input (that is, in the test executions).

Like other dynamic techniques such as testing, invariant detection is unsound over all
possible executions of a program. The observed executions are not guaranteed to characterize
all possible execution environments of the program. Our definition is for soundness with
respect to observed executions.

Completeness A complete algorithm reports any property that: 1) is expressible in its
grammar, and 2) holds for all samples in the input.

Completeness with respect to all possible properties is possible in theory [CC77b] but
unattainable in practice. An infinite number of formulae are true of any set of executions,
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Per-program-point variables:
V' number of primitive variables at a program point
L number of samples for a program point
I number of instantiated invariants at a program point = O(V9)

RI number of reported invariants at a program point = O(I); in common case, = O(1)
FI number of falsified invariants at a program point = O(I)
Total (sum of all program points) variables:
P number of program points
I;  total number of invariants = O(P - I)
L; total execution length (“exploded”) = O(P - L)
Other variables:
G number of invariant templates (grammar)

Figure 5-1: Variables used in the running time and space analyses (see Section 5.1.4 for
details). All variables except for RI, FI, L, and L; are known statically.

and many of them are beyond the scope of any static or dynamic analysis. Our definition is
completeness with respect to a grammar of properties.

Given these definitions, the naive algorithm is sound because every invariant is tested
against every relevant sample in Step 2. It is complete because all possible invariants are
instantiated in Step 1. It is incremental because it runs in one pass.

However, the algorithm achieves these three goals at a large time and space cost, as shown
in Section 5.1.4. By instantiating all invariants, many redundant invariants are instantiated
and tested. For example, if a = ¢ and odd(a) holds, then odd(c) holds.

5.1.4 Performance analysis

This section analyzes the time and space performance of the naive detection algorithm.

Analysis variables

Figure 5-1 lists the variables that influence performance:

V' denotes the number of primitive variables at a program point. Conceptually, this is
the number of variables in scope. In practice, it is the number of variables that are measured
by a frontend. The practical value may be less if the frontend omits certain variables, or
may be more if it breaks out of scope (for example, by sampling private fields of classes in
object oriented programs).

L denotes the number of samples at a program point.

I denotes the number of instantiated invariants at a program point. V will have a
positive, superlinear effect on I, for two reasons. First, invariants often involve more than one
variable. For example, there are ©(V?) pairwise equality invariants. Second, the grammar of
a tool like Daikon will create derived variables that represent a computation on the original
variables. For example, if A is a sequence, and i is an integer, the derived variable A[i] may
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be interesting, even if it is not mentioned in the program text. In general, if the grammar
supports j-way derived variables, k-way invariants, and G different invariant types, then
there could be as many as [ = O(GV7*) invariants. In the case of Daikon, j = 2 and k = 3,
yielding the definition of I given in the figure.

RI and F'I, the reported and falsified invariant counts, respectively, are used to better
elucidate common case analyses where the reported invariants are a minuscule subset of the
grammar’s candidate set.

P, the number of program points, scales with program size. Also, the “total” values I,
and L; denote the product of P and their subscript-less counterpart.

Naive performance

To study the performance of the naive algorithm, we compute its space and time performance
both in the worst and common case. We measure space S by the maximum number of
instantiated invariants, and time 7" by the number of checks on whether an invariant holds .

The naive algorithm performs quite poorly. Since the algorithm instantiates every pos-
sible invariant (in step 1), its maximum space usage is O(I;). This is the same for both the
common and worst cases, and makes the algorithm incremental.

S=0(;) =0(P-1I)

Worst-case time occurs when all invariants are checked against all samples for their
program point; this happens when no invariants are falsified.

T=0(I-L)=0(,-L)y=0(P-I-1L)

Common-case time occurs when falsified invariants are falsified quickly, so that there are
vanishingly few checks against falsified invariants.

T=0OP-(RI-L+FI-0O(1)))=0(P-RI-L)+O(P-FI-0(1))

The first term is for the useful invariants that are actually true on the program, which are
always checked, while the second term is for invariants that are untrue and, in the common
case, quickly falsified.

Within the constraints of soundness, completeness and the incremental requirement, a
major way to save space and/or time, as well as to reduce clutter for the user, is to eliminate
some derived variables and invariants. There is no way to avoid examining all program
points and every execution sample if soundness is to be preserved.

Lastly, it is important to note that the asymptotic notation hides one important detail:
it takes some amount of time to check if a sample contradicts an invariant. If Daikon
could discern that no sample may ever falsify a certain invariant, it could omit checking the
invariant, leading to significant improvement in the asymptotic constants.

5.2 Goal: eliminate invariants and derived variables

As mentioned in Section 5.1.4, the most promising way to optimize invariant inference is to
eliminate some derived variables and invariants that are uninteresting or logically implied.
This also helps to reduce clutter for the user.

When examining which invariants and derived variables to eliminate, there are two or-
thogonal concerns. The first is whether the elimination is static or dynamic, and the second
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is how much it saves in resources.

5.2.1 Elimination type: static, dynamic negative or dynamic pos-
itive

The first concern for eliminating invariants and derived variables is whether the process can
be done statically or must be done dynamically. Dynamic elimination can be further split
into two cases: negative and positive.

A static elimination is one that can be done without execution trace data. An example is
Ali] € A[], which is always true. A static elimination is advantageous, as it can be done even
before data is seen. In contrast, a dynamic elimination needs execution data. The example

where (z = y) A odd(z) eliminates odd(y) is a dynamic elimination, for we cannot be sure
that © = y until some data is seen. Within dynamic elimination, there are two cases:

Nonsensical/Negative elimination is where one sample can forever remove an invariant
or derived variable. For example, if ever x > A.length, then A[x] is nonsensical. This is called
negative elimination because examples for elimination are contradictory to the invariant or
derived variable.

Implied /Positive suppression is where an invariant or derived variable is eliminated
only through being implied by some other invariant. For example, (z = y)Aodd(z) = odd(y).
Here, a positive statement is being made about the eliminated invariant by the two invariants
on the left. No one sample is enough: we cannot be sure of the elimination until all data
has been seen, since z = y or odd(x) could be falsified. Thus we use the term “suppression”
because invariants are never completely eliminated.

5.2.2 Resources saved in elimination: time, space or printing

The second concern for elimination is what resources it saves. At best, it will save space, save
time and let the inferencing algorithm avoid printing out extra information that is obvious
or uninteresting to the user. At worst, it will only reduce printing, but have the same time
and space costs.

To avoid printing extra invariants is relatively simple. Invariant inference can be run as
before. When invariants are to be output, an invariant that is logically implied by the rest
can be eliminated, and this process can be repeated.

To save space, it is necessary to actually delete invariants or never instantiate them.
However, soudness and completeness need to be preserved. For example, if © = y Aodd(z) =
odd(y), then deleting odd(y) might be a good idea. However, this naive deletion produces
an incomplete algorithm: should later x # y, yet odd(y) remain true, the user will not be
able to deduce odd(y) from odd(x). The correct solution, if odd(y) is to be eliminated, is to
preserve some mechanism for regenerating odd(y) should z # y — i.e., should the dynamic
suppression no longer apply.

To save time, invariants can be removed as with for space. Alternatively, invariants can
be marked so they are not checked. These invariants would take up space, but they would
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not need to be checked against data. For complex invariants like V; A[i] > 5 checking can
take up a significant amount of time.

In the following sections, we do not discuss any static elimination techniques for there is
already adequate literature on standard static analysis [CC77b, GC96]. Similarly, dynamic
negative elimination is also relatively straightforward: simply stop keeping track of the
invariant when it is no longer interesting. Instead, we describe three techniques for dynamic
positive suppression.

5.3 Previous optimizations

Before this work, three optimizations were already performed on the Daikon system.

First, the concept of invariant weakening was added. For a series of invariants such as
x> 2,x > 1,2 > 0 that imply each other in a total order, it is only necessary to keep track
of one of them, and weaken that invariant as facts come in. With the > invariant, we start
with > MAX_INT. The correct amount of weakening has to be done: if [5,8,1,2] are seen,
then the final invariant must be z > 1. This ensures soundness and completeness.

Second, a version (V2) of Daikon attempted to eliminate some invariants, but had to
make multiple passes over the data to do so. For example, Daikon V2 did a pass to collect
which variables were equal to each other before any other invariants were generated. If x =y
then only f(x) would be instantiated on the second pass. Thus V2 eliminated many obvious
invariants and avoided examining extraneous data. This saved time at the expense of space:
it took up space in memory that was linear on F and was not incremental.

Third, the concept of a data hierarchy was introduced, to relate variables across program
points. We describe this hierarchy in the next section.

5.3.1 Hierarchy and flow

5.3.2 Nimmer’s thesis paste, to be edited

This section introduces a technique to perform dynamic positive suppression for invariant
detection by taking advantage of implication relationships between different program points,
and organizing program points into a lattice.

5.3.3 Staged inference

In a previous version(Section 5.3), the Daikon system operated in multiple passes over the
samples to infer invariants. The multiple passes permited optimizations because certain
invariants are always true or false, or certain derived variables are undefined. By testing the
strongest invariants in earlier passes, the weaker invariants or certain derived variables may
not need to be processed at all. For example, if x = 0 always holds over an earlier pass, then
x > 0 is necessarily true and need not be instantiated, tested, or reported on a later pass.
Similarly, unless the invariant i < theArray.length holds, the derived variable theArray[i] may
be non-sensical.
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public class A { public class B {

public static int n; private int x;
private B b; public int m2();
public int m(B arg); }

}

Figure 5-2: Example declarations for two simple Java classes.

B:::OBJECN

‘ this ‘this.x

thls this.x | B.m2:::ENTER

/ \

orlg th|s orlg (this.x)

B. m2:::EX|N

retum. ’ this ,f}"fhis.x

A.n [A:::CLASS

‘ this ‘ this.b ‘ this.b.x ‘ An A:::‘~QBJECT\

arg | arg.x | this | this.b | this.b.x | A.n | Am:::ENTER

‘ orig(arg) ‘ orig(arg.x) ‘orig(this) ‘ orig(this.b) ‘ orig(this.b.x) ‘ orig(A.n) ‘ arg ‘ arg.x ‘ return ‘ this ‘this.b ‘ this.b.x ‘ A.n ‘A.m:::EXﬁ

Figure 5-3: Flow relationship between variables for the code shown in Figure 5-2. Shaded areas
name the program point, while unshaded boxes represent variables at that program point. Lines
show the partial ordering Cp described in Section 5.3.4, with a nub at the lesser end of the relation.
(For instance, arg Cp orig(arg) in the lower left corner.) Relations implied by transitivity of the
partial order are not explicitly drawn.

While operating in multiple passes, Daikon also treated each program point indepen-
dently. Therefore, data from one program point may be discarded before the other points’
data is processed.

5.3.4 Variable ordering

One major way to improve performance for dynamic invariant detection is for program points
to no longer be processed independently. Instead, the dynamic invariant detection algorithm
relates variables from all program points in a partial order.

The relationship that defines the partial order Cp is “sees as much data as”. If variables
X and Y satisfy X Cp Y, then all data seen at Y must also be seen at X — X sees as much data
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as Y. As a consequence, the invariants that hold over X are a subset of those that hold over Y,
since any data that contradicts an invariant over Y must also contradict the same invariant
over X.

Figure 5-3 shows the partial order formed by Cp for the example classes of Figure 5-
2. Consider the relationship between B:::0BJECT and B.m2:::ENTER. First, recall that all
data from method entries must also apply to the object invariants. (In other words, ob-
ject invariants must always hold upon method entry.) Therefore, we have thisg..opsecr Ep
thisgmo:eytern and this.Xg...opseer &p this.Xgmoenter. LThe same holds true for method exits:
thisg..ossecr Cp thiSppe.exrr. Finally, note that thisgue.ewrer Cp orig(this)g, gy, since
any pre-state data associated with a method exit must have been seen on entry.

For reasons similar to ones that relate B’s variables across program points, the relation-
ships that contribute to the partial order are as follows.

Definition of orig().

Variables on ENTER points are Cp the corresponding orig() variables at all EXIT and
EXCEPTION program points.

Object invariants hold at method boundaries.

Instance variables from the OBJECT program point are Cp the corresponding instance
variables on all ENTER, EXIT, and EXCEPTION program points.

Object invariants hold for all instances of a type.

Instance variables from the T:::0BJECT program point are Cp the corresponding in-
stance variables on instrumented arguments and fields of type T. (For example, see
arg, u.pmen aNd this.b.yuopseer in Figure 5-3.)

Subclassing preserves object invariants.

Instance variables from the T:::0BJECT program point are Cp the same instance vari-
ables on subclasses or non-static inner classes of T.

Overriding methods may only weaken the specification.

Argument(s) to a method m are Cp argument(s) of methods that override or imple-
ment m, by the behavioral subtyping principle.

5.3.5 Consequences of variable ordering

As shown in the previous section, the partial ordering of variables implies that when invari-
ants hold true over variables at certain program points, those invariants also must hold true at
lower (as drawn in Figure 5-3) program points. For instance, if we have this.xg..opjger > 0,
then we also know that arg.x, ...cvren > 0. We call this the hierarchy property of program
points.

Dynamic invariant detection can be optimized by taking advantage of this hierarchy
property. One way to do this, which we have implemented in the Daikon system, is by
instantiating, checking, and reporting invariants at the most general place they could be
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stated. For instance, if an invariant always holds over an object’s fields, it would only exist
at the OBJECT program point (instead of each method’s ENTER and EXIT points), and would
only need to be tested once per sample.

For printing invariants for the user, the algorithm could locate all invariants over a set
of variables V' at a program point P by forming the closure of V' at P using the partial
ordering, and taking the union (conjunction) of the invariants present at each point in the
closure.

However, for this technique of minimal invariant instantiation to work, both the samples
and the invariants must flow through the partial order in a specific way, as explained in the
next, two sections.

5.3.6 Invariant flow

The naive algorithm instantiates all possible invariants (modulo type constraints) at all pro-
gram points. Now the hierarchy property described above leads to new rules for instantiating
invariants and for what to do when checking invariants against data.

Instantiation During the setup phase prior to seeing data, instantiate invariants only
where they would not be inferrable from a corresponding version higher in the hierarchy.
For example, the algorithm would not instantiate arg.x, ...myes > 0 since it would have
instantiated arg.x, . .omer > O (or the equivalent invariant at a higher program point).
Formally, instantiation is only allowed when one or more of the variables of an invariant has
no predecessor in the Cp partial order. That is, a set V' of n variables should be used to
instantiate an m-ary invariant only if v € VVz : z [Zp v.

Checking When an invariant is falsified or weakened at a program point during inference,
copy it “down” to the immediate child program points. By child program point, we mean
program point(s) where every variable used by the invariant is less in the partial ordering.
By nearest we mean that there must be no intermediate program points. For example, when
arg.x, ...osper > 0 is falsified, it is copied down to A.m:::ENTER as arg.x, ..pyme = O-
Formally, a falsified invariant over a set of source variables A should be copied to a destination
set B when all variables in B are at the same program point and when Va € A : 3b € B :
(@Cpb)A(—Fx:a Cp = Cp b).

One positive consequence of this approach is that methods defined in interfaces will have
invariants reported over their arguments, even though no samples can ever be taken on
interfaces directly. For example, if every implementation of an interface’s method is called
with a non-null argument, Daikon will report this property as a requirement of the interface,
instead of as a requirement of each implementation.

5.3.7 Sample flow

In the invariant flow algorithm, invariants flow down as they are falsified. This property
suggests a corresponding flow algorithm to process samples.
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this.b.x | A.n A:::OBJEC'N

this.b.x A.n“A‘m:EEENT[\EFN

AN

orig(this.b.x) | orig(A.n) | this.b.x | A.n A.m:::EXIﬁ

0 0 1 1

t t

Figure 5-4: Example indicating the need for path information in sample and invariant flow, as
described in Section 5.3.8. A portion of Figure 5-3 is reproduced, along with a potential sample
(0,0,1,1). Given only that sample, the invariant this.b.x = A.n at A: : : 0BJECT should hold. However,
if the sample flows as indicated by the bold links of the partial order, the invariant would be
incorrectly falsified. Therefore, the path taken is important.

1. Identify the exact program point where the sample was drawn from.

2. Form the closure of program points that have any variable filled in by following the
relations upward in the partial order.

3. Feed the sample to each of these program points in a topological order. A sample is
fed to a point after it has been fed to all points where a variable is greater. Therefore,
any falsified invariants are always copied to lower program points before the sample is
fed there to falsify them.

5.3.8 Paths

For both invariant and sample flow, the path taken through the partial order is impor-
tant. For example, consider Figure 5-4. Given only this data, Daikon should report that
this.b.x = A.n at A: : :0BJECT. However, since we have this.b.xy..opsecr Cp orig(this.b.x), . oir
and A.ny...opsjeer ©p A.nypexrr, the values for orig(this.b.x) and A.n would falsify the in-
variant. The problem is that the two paths through the partial order are different — they
traverse different program points.

To address this problem, we annotate each edge in the partial order with some nonce. A
pair of variables <A1,A2> is together related to <B1,B2> by the partial order if the path from
A1 to B1 follows the same nonces as the path from A2 to B2. The nonces must be chosen so
that sets of variables from two program points that are related due to the same item from
the list starting on page 63 must share the same nonce. In terms of Figure 5-3, parallel or
nearly-parallel lines from one program point to another will have the same nonce.

5.3.9 Hierarchy shape

An important property of the hierarchy property presented so far is that the variables and
program points form a tree under the Cp relationship for any one reason that variables
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Program point: P Program point: P
(without equality optimization) (with equality optimization)

Variables: Variables:
PIoICKEl

Invariants: Invariants:

Figure 5-5: The advantage of handling equality specially. Without equality handling (above)
there are 4 invariants saying a, b, ¢ and d are even. There are 6 invariants saying the variables
are equal. With equality handling all the equality invariants collapse into one equality set,
while even invariants are represented by even(a) on the leader of the set.

relate, such as method instance variables to object instance variables. The variables of a
program would thus form a forest under the partial order. However, when multiple reasons
are combined, variables are no longer always related a tree — they can become a general
directed acyclic graph.

For example, with multiple inheritance (due to interfaces), a method’s specification could
be governed by multiple interfaces, so its arguments would have multiple parents in the
partial order.

Thus we can no longer say that “an invariant only appears at the one place where it may
be most generally stated”. Instead, we reword “one place” to minimal number of places.
An implementation would have to take into account the non-tree nature of the partial order
when flowing samples and variables.

5.4 Handling equality

One dynamic positive elimination technique is to handle equality specially. This saves space
and time in two ways. Given v variables that are always equal — i.e., belong to the same
equality set: 1) We have one equality invariant for the set rather than ©(v?) two-way equality
invariants. 2) We have invariants only on one member of each equality set rather than v
invariants for each member. With invariants of more than one variable, the savings for the
latter can be enormous.

As seen in Figure5-5, let us say a program point has four variables, a, b, ¢, d and they are
all equal. There is an invariant f that can apply over any one of them. Normally, we would
need 6 equality invariants to express the equality:

a=b,a=c,a=d,b=c,b=d,c=d
and 4 invariants to show f held on each:

f(a), f(b), f(c), f(d)

With the use of equality sets, we have one data structure that keeps track of the equality
relationship, and only create one copy of f for a canonical member, or leader of the set, f(a).
The leader is chosen arbitrarily from the set. This saves space because we do not need to
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keep track of other instances of f or equality invariants. Further, this saves time, especially
when checking f is computationally expensive.

This is a dynamic, positive elimination. f(b) is suppressed by f(a) and a = b, and should
the latter be falsified, f(b) will have to be created as an invariant to be checked. We do not
have to specially handle f(a) being falsified, since as long as a = b held, f(b) would also be
falsified.

The equality optimization to the Daikon tool is summarized below, as an augmentation
to the native algorithm.

Initialization Before running the rest of the algorithm, all comparable variables at a
program point are placed into the same equality set (a data structure). Each equality set is
given an arbitrary leader from within the set. When the normal algorithm instantiates (non-
equality) invariants, we allow instantiation only for invariants whose variables are leaders of
their equality sets.

During checking At every data sample during checking, each equality set is first checked
to see if its members are still equal. If not, the equality set is split into new sets, so that
variables with same values are placed into the same set. The invariants of the old set’s leader
are copied to each of the new leaders. After this, all other invariants (some of which may be
newly copied) are checked as usual.

Post processing The equality sets can, at the end of the run through the execution data,
be “devolved” back into regular two-way equality invariants. How this is done depends on the
user’s preferences. By default, this post processing stage creates two-way equality invariants
between the leader of each equality set and its members, rather than between all members
of an equality set.

Notice that the dynamically suppressed invariants, such as f(b), are kept implicitly by
the equality mechanism: when b no longer equals a, we simply copy f from a. The space and
time savings depend on how many invariants are equal during checking. The more variables
that are equal for a longer amount of time, the more the savings.

The above summary gives an overview of how a naive invariant inference algorithm can be
altered for saving time and space using equality. It is one-pass because it simply adds some
steps to the algorithm before initialization and before each sample is processed. However,
ensuring soundness and completeness requires handling five issues:

e Copying and instantiating non-equality invariants between members of the same equal-
ity set.

Counting the number of data samples seen

Counting the number of missing data samples seen
e When invariants are not instantiated with respect to data flow

e Other post processing issues

We discuss each of these in the sections that follow.
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Program point: P
Variables:
t = before
Invariants:
Program point: P
Variables:
Invariants: k\\l t = after
g(a,b)
h(a,b,x)

Figure 5-6: When b splits off from {a,c} it is not adequate to simply copy the invariants
from the old leader to the new. The two grayed-out invariants, g(a,b) and h(a,b, x) show
what would be missing.

5.4.1 Copying and instantiation of invariants

When an equality set is split during inference, any invariants from the leader of the old set
are copied onto the leaders of the new sets. This is necessary to represent the fact that
invariants may remain true on the new sets but falsified on the old sets. However, mere
copying is not adequate.

Each of the new leaders and the old leader might have other invariants between them-
selves. The example in Figure 5-6 demonstrates this. The top part shows the state of
invariant inference before a certain sample is seen, while the bottom shows the state after
the sample. Before, a is the leader of the equality set of {a,b,c}. After, b splits off into
its own equality set. x is a variable that was not in the original equality set a,b,c. The
invariant templates are f (unary), g (binary) and h (ternary). Assume the invariants are
commutative for their variables (i.e., g(a,b) < g(b,a)). Originally, the invariants are:

f(a), f(z), 9(a,z).

If we simply copied over the invariants of the old leader onto those of the new leaders,
we would additionally have:

f(0),9(b, z)

This does not cover all possibilities, for we are missing:

g(a,b), h(a,b, x)

as shown grayed in the figure. A possible g that could hold at this point, for example, is
g(a,b) :a>b.

One way to have these invariants is to instantiate them at the time of the equality split.
Another is to instantiate them during initialization. We first explain why the first method
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is unsound, and then describe the second method.

Method 1: Instantiating invariants at the time of split

An algorithm could instantiate new invariants at the time of splitting as follows: Let N be
the set of new leaders, o be the old leader, and X be the leaders outside of the old equality
set. The invariants to instantiate are all the invariants on {0} + N 4+ X minus the invariants
that were copied, minus the invariants that hold on X alone. This precisely covers the set

g(a,b),h(a,b, x) shown grayed in Figure 5-6.

The problem with this implementation is that some of the instantiated invariants may
have been falsified by data at this point. Clearly, for an invariant like g(a,b) : @ < b this is
easy to determine. However, there are some invariants for which equality implies nothing.
For example, consider the invariant g(a,b) : a + b = 4. Knowing that, until now, a = b gives
no information on whether a + b = 4 has been true. Short of actually storing all samples
of @ and b (which would make a non-incremental algorithm), there is no way to determine
if g(a,b) held for a general formula. Thus instantiating invariants at the time of split is
unsound, because we do not know which invariants to instantiate.

Method 2: Instantiating invariants during initialization

A way to know if g(a,b) held previously is to actually instantiate g(a,b) at the beginning.
This way, the invariant itself is checked against the samples before the time of the equality
split. However, we do not want to instantiate g(a, b) since this would obviate the benefits of
equality optimization. However, we know that a = b before the split, so we can instantiate
g(a,a) instead for both g(a,b) and g(a,c). We call these new types of invariants reflezive
invariants. When b splits off from a, both the reflexive and non reflexive invariants are copied
onto b, using the same mechanism. This approach can be seen more generally in two new
rules, one for initialization and one for during copying:

Initialization When instantiating (non-equality) invariants during initialization, let there
be r equality sets initially. In the summary description of equality optimization, for every
invariant on k variables, the algorithm would instantiate ,C invariants. This is because we
wanted all combinations of k£ variables on r equality leaders. Now the algorithm instantiates
all k-way combinations with repetition. This allows cases like ¢g(a, a) and h(a, a, d).

In the example above, the invariants that would exist before the equality set split are
shown in Figure5-7:

f(a), f(x),9(a,z),g(a,a),h(a,a,a),h(a,a,x),h(a,z,x), h(z,x,x)

Copying during a split When an equality set is split off, invariants are only copied
(no instantiation), but this copying is no longer a direct substitution of new leader for old
leader. We again use the combinations with repetition technique. Let r be the number of
new equality sets from one equality set. For each invariant containing k instances of the old
leader, we copy the invariant for each k-way combination with repetition on the r leaders.
Figure 5-8 shows how each of the invariants in the example would be copied when the set
with a as leader splits off.
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Program point: P
Variables:

Invariants:

t = before

Program point: P
Variables:
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Figure 5-7: Solving the copying problem by keeping invariants on the same variable. Lines
connecting invariants to variables have been removed for clarity.

Original invariant | Instances of leader | Copied invariants

f(a) 1 7 ()

f(x) 0

9(a,z) 1 g(b,x)

9(a,a) 2 9(a,b), g(b,b)

h(a,a,a) 3 h(a,a,b), h(a,b,b), h(b,b,b)
h(a,a,x) 2 h(a,b,x), h(b,b,x)
h(a,x,x) 1 h(b,x, x)

h(z,z, ) 0

Figure 5-8: Copying of invariants using combinations with repetition, where a is the old
leader and b is the new leader.
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Program point: P

Variables:
Invariants:
t = before
Program point: P
Variables:
Invariants:
t = after

Figure 5-9: Optimizing the copying and reflexive process. Some invariants with more than
one instance of a variable do not have to be instantiated.

This method enumerates at least the invariants that would be instantiated in method 1,
and has adequate information from keeping around invariants within the same equality set.
We use combinations with repetition rather than those without because otherwise ¢(a,a)
would not appear. We use combinations rather than permutations because we assume the
data structures for invariants are designed so that g will work regardless of the order of the
variables (i.e., g tracks both g(a,b) and g(b,a) if needed, as the Daikon system does).

It might appear at first that this method instantiates an unnecessary number of invariants.
However, we perform the following optimization: if a variable occurs £ times within an
invariant, the variable’s equality set must have at least £ members. Otherwise, the invariant
is no longer interesting and is destroyed (during run). This is shown in Figure 5-9. In the
example, if b is the only member of its equality set, then the invariants ¢(b,b), h(b,b,b),
h(b,b,c), h(b,b,d) are destroyed. Thus the number of invariants is bounded by the number
of invariants without equality optimization.

5.4.2 Sample counts

For statistical tests, invariant inference systems like Daikon track the number of sample
values seen for a variable. For each variable, at each sample data point, there is one of three
pieces of information: that the data is 1) present and was assigned to since it was last seen;
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2) present but unmodified; 3) missing. Data can be missing for reasons discussed in Section
5.4.3. The count of the number of modified and unmodified samples is used to later classify
invariants as justified or not (there is no need to track missing samples).

Modified /unmodified /missing data is also counted for each group of k variables that has
invariants generated. For a k-tuple, if any variable is missing, then the tuple is considered
missing. Otherwise, if any variable is modified, then the tuple is considered modified. Thus
each invariant can perform a more accurate statistical test.

For statistical tests to continue to yield the same results under equality optimization, we
must provide the right sample data to variables and invariants, even though the variables are
combined into equality sets so not all invariants are instantiated to keep track of data. We
use the following conservative mechanism: if any of the values in an equality set is modified,
then the equality set’s leader is considered modified. Further, when invariants are copied
(due to equality sets splitting), sample counts are also copied.

Missing values have to be handled specially, as explained in the next section.

5.4.3 Missing data samples

Sometimes, execution data for invariant inference contains missing samples. This can hap-
pen, for example, for variables that are nonsensical in some cases, such as s.a when s is
null. In the naive implementation of inference, invariants ignore missing data samples. This
is sound for the naive implementation because a missing sample means there is inadequate
information to contradict an invariant. However, with equality optimization, either ignoring
missing samples or handling missing samples like modified/unmodified values is unsound.

Figures 5-10 and 5-11 explain this. Consider a program point with two variables, a and
b, and a unary invariant f. Initially, a and b are equal, a is the leader, and f(a) holds. Now
a sample arrives that has a missing, but contains a value for b that contradicts f(b). We
cannot falsify f(a) because f might hold for a (and when «a is missing, this is still true). We
cannot maintain f(a) and say this implies f(b) because we have seen a falsifying sample.

The sound solution is to split the equality set {a, b} and instantiate a two-way equality
invariant between a and b, as shown in Figure 5-12 In fact, when two-way equality invari-
ants are used during initialization, the instantiation is unnecessary: the copying mechanism
produces the right results. The general rule, then, is to split off all variables with missing
values from the old equality set into a new equality set and to use the copying mechanism
as usual, while including two-way equality invariants in the ones instantiated during initial-
ization. Not including two-way equality invariants would be unsound, as the invariant a = b
would still hold in the example since a was missing.

5.4.4 No more non-instantiation of invariants

One drawback of equality optimization is that a performance optimization done in data flow
is no longer correct (it is incomplete). Data flow does not instantiate invariants in a program
point if a higher program point subsumes the invariants. However, the example in figure 5-13
shows how this is now incomplete. The upper program point contains variable a,yp., and
the lower contains variables @y, and x. The two as are connected by flow, while initially
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Program point: P
Variables:
alb
t = before

even(a)

Invariants:

Program point: P

Variables:
@ @ t = after
a = missing

. b=1
Invariants:

even(a)

Figure 5-10: It is wrong, as shown here, to assume even(b) holds even though a is missing.
It could be the case that b is not even.

T == Qower With ajuer as leader. If the standard data flow non-instantiation is used, then
we initially only instantiate invariant f(aypper). f(@ower) is not instantiated due to dataflow
optimization, while f(z) is not instantiated because x is not the leader.

Say a sample first arrives that shows x is not equal to ajwer, followed by a sample that
falsifies f on the as but not on x. An example of this could be if f means “even” and the
samples seen are (2,2), (2,4) and (3,4). Since ajper has no invariants, when the inequality
sample is seen, x is split off but no invariants are copied. Then when a,,., has f falsified,
f flows to ajower, where it is also falsified. However, x never gets f, so now the output from
Daikon is wrong (i.e., incomplete). Note that if f is falsified before the inequality is seen,
then correctness is preserved, since f(ajouwer) is first created, and then copied as f(x) when
inequality happens.

One way to fix this dataflow problem is to make the non-instantiation rule no longer
apply. That is, all leaders at all program points now instantiate invariants, even if another
program point would eventually flow the invariant down. In the above counterexample, this
approach is sound because f(aupper) and f(aoumer) both exist, so when the unequal sample is
seen, f(z) can be copied.

This fix increases the space used for invariants, but does not add much to the time, since
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Program point: P
Variables:
a/b]
t = before

even(a)

Invariants:

Program point: P

Variables:
t = after
@ @ a = missing
b=2
Invariants:

Figure 5-11: It is wrong, as shown here, to assume even(b) does not hold when «a is missing.
It could be the case that f is even.

suppression optimization (Section 5.5) prevents them from being checked. We also claim that
the number of invariants eliminated by the equality optimization dominates the number that
would be eliminated by data flow, especially since any invariant that weakens cannot use the
data flow mechanism.

An alternative way to fix this problem is to search for all invariants that are on the old
leader in all the parent program points, and to copy the invariants onto the new leaders, In
the example in the figure, x would have f copied to it when x is split from a. This is shown
in Figure 5-15.

5.4.5 Post processing

The basic step in post processing was described in the overview of equality optimization
in the start of Section 5.4 — equality sets are converted into two-way equality invariants.
However, it is often the case that some variables are not interesting for printing, and these
variables may be the leaders of equality sets, in which case none of the invariants on any
of the variables will be printed. For example, a == b, and a is the leader, but a is not
interesting. In that case, odd(a) will not be printed (this is correct) but neither will odd(b)
(this is wrong). Thus, before the post processing conversion stage, some equality sets are
pivoted. If the leader of an equality set would not be printed, the leader is switched to one
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Program point: P
Variables:
a/b]
t = before

even(a)

Invariants:

Program point: P

Variables:
a t = after
a = missing
. b=1
Invariants:

Keven(a)} Kequal(a,bﬁ

Figure 5-12: The sound way to handle missing values: keep a two-way equality invariant
between a and b and split off the equality sets.

that would be (if any exists). The invariants attached to the former leader are switched over
to the new leader.

5.5 Suppression optimization

An invariant is suppressed if it is implied by some set of other invariants. Suppression
optimization attempts to save time by not checking suppressed invariants. It performs
dynamic, positive elimination only, but is general enough to work for all logical implications.
Suppression and equality optimization are the only forms of dynamic suppression used in
the Daikon tool. Suppression saves times and reduces clutter from printing, but it does not
save space: recall that for positive elimination, it is not possible to entirely eliminate an
implied invariant. With equality optimization, we keep track of invariants implicitly, since
the copying mechanism is adequate for re-creating invariants. With suppression optimization,
since it works for all implications in general, it is necessary to actually keep the suppressed
invariant.

A suppression link connects an invariant and its suppressors. Using suppression links
entails two major changes to the inferencing algorithm (we will assume we are changing
it after equality optimization has been added). First, each invariant is given suppression
factories that describe what kind of logical conditions can suppress it. Second, the invariant
checking mechanism is modified to save time by using suppression links.
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Program point: Upper
Variables:

=

, t=0
Invariants:
f(aupper)
Program point: Lower f(a,per)
Variables: {(H.
. [ak)weg [bk)weJ aIower= lower
Invariants:
f(a)
Program point: Upper
Variables:
t=1
Invariants: (equality split)
Program point: Lower ;(aupper)
Variables: (@0wer)
[a ] [b j f(blower)
Invariants: lower lower alower!=blower

f(a)

Program point: Upper
Variables:

Invariants: (f falls)
|
Program point: Lower ];f(aupper)
Variables: (alower)
[a ] [[b jJ Iower_
Invariants: I0|W o lower Qower =Plower

Figure 5-13: The problem with not instantiating invariants and relying on the data flow
hierarchy. Problem with non-instantiation of invariants: since f(b) is never instantiated, if
x splits off from a in LOWER before f drops from UPPER, then x will never have f as an
invariant.
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Program point: Upper
Variables:

=

: t=0
Invariants:
. f(aupper)
Program point: Lower f(a,per)
Variables: {(H.
, [aloweg [b|0weJ ower = Piower
Invariants: |
i@ )
Program point: Upper
Variables:
t=1
Invariants: (equality split)
Program point: Lower ;(aupper)
Variables: (@ ouer)
e [ged | [
Invariants: ower OWer’ | 18ower'=Piower

Program point: Upper
Variables:

t-2
Invariants: (f falls)
Program point: Lower h;(a""uppe)r)
Variables: f(blower

[aloweJ [[bloweJJ a Iow'lar—b
Invariants: I ) lower* = ~lower

Kita) )

Kita) )]

Figure 5-14: One way to correct the problem of non-instantiation: instantiate invariants that
would hold on equality leaders at every program point.
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Program point: Upper
Variables:

=

, t=0
Invariants:
. f(aupper)
Program point: Lower f(a,per)
Variables: {(H.
. [a|oweg [bk)weJ aIower = blower
Invariants:
f(a)
Program point: Upper
Variables:
t=1
Invariants: (equality split)
Program point: Lower f(auploer)
Variables: (@ower)
[al J [[bl JJ f(blower)
Invariants: ower OWer’ | 18ower'=Piower

Program point: Upper
Variables:

t=2
Invariants: (f falls)
|
Program point: Lower ‘f(aupper)
Variables: (alower)
[al J [[bl JJ f(blowvier
Invariants: °|W er olwer Aower =Dlower

Kita) )

Kita) )]

Figure 5-15: Another way to correct the problem of non-instantiation: copy relevant invari-
ants from upper program points upon splitting the equality set.
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When an invariant is copied over to a new equality set, we do not copy over suppression
links. Instead, we re-attempt suppression on the copied invariant, as shown in Section 5.5.2.

5.5.1 Suppression factories

The conditions for suppression are dependent on the type of invariant and the structure
of the variables suppression works on. For example, A[i] € B is implied by A C B —
this suppression depends both on the fact that the suppressed invariant is an “element of”
invariant and that one of the variables is a location in an array.

Suppression factories are attached to the invariant they might suppress, since each sup-
pression link can connect to multiple suppressors but only one suppressee. When asked to
attempt suppression on an invariant, a suppression factory generates a suppression template.
A suppression template consists of a list of invariants and variables on these invariants. If
there exists these invariants on the variables, then the suppression template is filled, and the
suppression factory is allowed to suppress the suppressee. The suppression template for the
above example would be [(C,[A, B])], consisting of one invariant and variable group. The
conditions for suppression are other invariants, including equality sets.

The most important complication to filling a suppression template is that suppression can
happen across program points via their data flow connections. Recall that every invariant
that holds on a parent program point holds on the child. Thus, we also want to scan all
the ancestor program points of an invariant, in addition to the invariant’s program point,
when looking for suppressors, while remapping the variables via their flow connections. An
invariant does not have to have all its suppressors in the same program point.

Lastly, we also use suppression to hide invariants implied by data flow that the data flow
mechanism cannot catch. With equality, we can no longer leave invariants uninstantiated if
parent program points have them. However, we can use suppression to save time on checking
these invariants, since when equality sets split, invariants are cloned but not their suppression
factories.

5.5.2 Handling suppression during Daikon’s run

Below is a description of how suppression is integrated into Daikon’s inferencing loop. Even
though suppression links may connect across program points, suppression itself is examined
in the context of one program point. For a program point:

1. When invariants are instantiated, attempt to suppress them. An invariant is sup-
pressed when any suppression link can be created for it, but we only keep track of one
suppression link.

2. During inferencing, check only the invariants that are not suppressed with values.

3. When an invariant is falsified, collect all its suppressees, and remove their suppression
links. If the falsified invariant was suppressing an invariant with another invariant, the
suppression link is still removed since it is the conjunction that implies the suppression.
Take all the formerly suppressed invariants, and attempt to re-suppress them (using
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Program point: P

Variables: [ a ] [ b ] [ i

-/

i

—/

Invariants: .
alil | [l
t = initialize
Suppressed:
contains (a[i],b) contains (a[j],b)

Program point: P

Variables: - ste
La (b ] [0 ] (al Esuptprzssor

Invariants: removed)

K contains (afi],b) >{ K contains (a[j].b) >{

a=[0,1,2]
b=[0,2,3]
Suppressed: i=1;a[i]=1

j=0;a[j]=0

\—/v

Program point: P

Variables: [ a j [ b j [ i j [a[l]j E;f;ﬁzm

Invariants: falsified)

[ contains (a[j].b) }

a=[0,1,2]
b=[0,2,3]
Suppressed: i1

afil=1

Figure 5-16: Suppression in action for the logical implications A C B = Ali] € B and
ACB=A[jleB

unfalsified invariants). For any unsuppressed invariants that remain, check them with
values if the invariant was in the same program point as the former suppressor. We
do not check invariants in different program points because they have to be in child
program points and will be checked when values arrive.

4. Before invariants are printed (i.e., during post processing) attempt to suppress each
invariant again.

The above algorithm ensures the following property:

Theorem 5.5.2.1 (Suppression never falls): A suppressed invariant can
never flow to a lower program point.

Figure 5-16 shows suppression in action. The variables are the arrays a and b, integers ¢
and j and derived variables a[i] and a[j]. Initially, A C B, so this implies that A[i] € B and
A[j] € B have to hold. A suppression is established connects A C B to the two suppressed
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invariants. Should any samples arrive that preserve A C B, the two suppressed invariants
will not be checked.

At a later time, a sample is seen that falsifies A C B (and A[i] € B). The two invariants
that were suppressed now become regular invariants. They are checked against the data
sample, and A[i] € B is falsified, while A[j] € B is preserved.

5.5.3 Suppressors that do not have their values set

Another issue that arises with suppression is that some suppressors may be invariants that
set their parameters only after a few samples have been read. For example, in invariants
of the form: y = ax + b, a and b are not set until at least 2 samples of (z,y) have been
observed. We know that y = x + 4 can suppress y > x but it is incorrect to follow either of
the following approaches:

e Connect y = z + 4 to y > x via suppression links at the beginning. This is incorrect,
as we could encounter just one value for (x,y), (1,1) that does not set a and b but
contradicts y > x. This would be unsound.

e Not connect y = x4+ 4 to y > x via suppression links. In this case, the connection will
never form, even when ¢ = 1 and b = 4. Since it is the suppressor that is changing, the
potential suppressee will not know when to look for the change, as the two invariants
are not connected.

The only way to have the suppression link form at the right time is to check occasionally
whether z > y is suppressed. One such way to do this is to exactly look for when an invariant
of the form y = ax + b changes, but this would require adding special case handlers to every
suppressor that changes. Instead, it is easier to run a general suppression check (as done
during initialization) periodically. If the suppression check is done using exponential back
off (every 10, 100, 1000, etc. samples) then the time cost is minimal, as most changing
invariants have their parameters set early.

5.5.4 Suppression cycles

Lastly, there is a question of whether suppressed invariants can suppress other invariants.
The advantage of allowing this is greater suppression, the danger the presence of cycles.
If there is a cycle, then a set of invariants may never be falsified. We allow suppressed
invariants to be suppressors, but check (at design time) that all the suppression factories we
have contain no logical cycles.

5.6 Conditional invariant detection

Recall that the grammar of any dynamic invariant detection system must be limited because
there are an infinite number of invariants that are true of a program. For example, the
Daikon system limits itself to invariants that contain at most 3 variables as the atoms of its
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grammar. This limitation is a tradeoff between the general usefulness of the invariants and
the extra time (both computer and user) involved in processing them.

However, setting a hard limit like 3 variables is not sufficient for some applications. Thus,
the Daikon system supports a limited extension of its grammar by allowing for boolean
combinations of atomic invariant units. For any two boolean values, there can be 2* = 16
different binary functions, but it is not useful to have all these functions. Daikon allows the
checking of two specific forms [DDLE02]: A = B and —A = B. These are useful because
implications are commonly used to describe program behavior, especially in exceptional
cases.

In terms of terminology, we shall call the left hand side the condition and the whole
invariant a conditional invariant.

However, even with potentially useful implications, adding just one type of boolean ex-
pansion could expand the grammar by squaring the number of invariants. Not all of these
invariants would be useful. Daikon thus decides on which invariant atoms to choose as left
hand sides. One mechanism for deciding this is to let the user specify. Other mechanisms,
such as examining boolean predicates in the program syntax and data clustering analysis
have been attempted [DDLE02]. This section shows how to efficiently run dynamic invari-
ant detection, despite the seeming explosion in the number of invariants that implications
introduce.

The main issue in detecting A = B is the waste of computation if A or B are always
true. Using a non-incremental, multiple pass approach to this problem is easy: after dynamic
invariant detection is run the first time for atomic invariants, we only instantiate conditional
invariant A = B if A and B are not invariants themselves. In Daikon V2, this is implemented
via conditional program points, virtual program points that have been created to represent
all the possible invariants on the right hand side of the implication assuming A is true.
Conditional program points are passed in the right subset of the data for their conditions
(i.e., all the samples where A is true) and then each invariant B in the conditional program
point is used as before.

5.6.1 Incremental detection of conditional invariants

In an incremental approach to dynamic invariant detection, creating conditional invariants
or conditional program points cannot be done after data samples have been read. A naive
incremental approach would be to simply instantiate all conditional invariants, but this
would result in the resource consumption presented above. An optimizing approach is to take
advantage of the optimizations that are already used in the Daikon system. The key insight
here is that the hierarchy established between program points also works for conditional
program points.

At the start of invariant detection, when the program point hierarchy is created, condi-
tional program points are created just like regular program points. Each conditional pro-
gram point PptCond; is connected to two groups of program points via the Cp relation-
ship: 1) the regular program point without the condition Ppt;; 2) the conditional program
points PptCond; for which the corresponding regular program points are in the relation
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This connection is precisely in accordance with the Cp relation. PptCond; Cp Ppt;
because any any data samples seen under a condition should be seen by the program point
that subsumes all samples. Ppt; CTp Ppt; = PptCond; Cp PptCond; is true because the
upper program point Ppt; claims to see all samples at the lower program point Ppt;. This
new rule is also necessary because it is not the case that Ppt; Cp PptCond;: the condition
may not be true at Ppt;. Since the Cp ordering takes the transitive closure of the rules, we
are sure that PptCond; Cp Ppt;. These two new rules together establish a lattice (rather
than a tree) for data flowing up from a particular sample under a condition, but this is
already handled by the hierarchy.

Once the hierarchy is established, invariants are instantiated and checked under the
same rules as before. During checking, on corresponding variables between related program
points, the upper invariant will shadow the lower one. Thus if B is always true, the invariant
A = B will not be checked. A = B will be checked precisely when it needs to be: when B
is destroyed at the upper program point.

There is one minor change to the operation of the system during checking: samples are
no longer always inserted at exactly one program point: for each regular program point,
many conditions could hold. However, performing multiple insertions is not a problem since
the system is already capable of handling multiple sample flows to one program point. At
each insertion, memoization can be used to make sure that a sample is not processed again
at a program point.

One more optimization can be done to the system to efficiently handle the case where A
is always true. While A remains true, it is not necessary to keep the conditional program
points for Ppt. Thus, the creation of the hierarchy could be done dynamically, once A is
falsified. The rules would be:

e For PptCondA, the conditional program point where A holds, copy no invariants,
since the invariants in the two program points must be identical at the moment of A’s
falsification and PptC'ondA CTp Ppt. The condition must be checked first however,
because we want to copy the invariants that exist before the falsifying data sample is
seen.

e For PptCondA’, the condition program point where A is false, instantiate exactly the
invariants not in Ppt. Since until now, A has never been false, everything must be
true at PptCondA’. However, we do not need to copy the invariants in Ppt since
PptCondA' Cp Ppt.

These rules soundly and incrementally performs conditional invariant detection with the
same optimizations as in Daikon V2. If A is always true, then the conditional program points
are never created. In fact, the rules are advantageous over a multiple pass approach: rather
than instantiating the conditional program point for A and = A early on, when there will be
many other invariants there are true, the incremental optimizations create the conditional
program point only when needed.
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5.7 Function parameters

During the implementation of dynamic invariant detection for the IOA language, it was
discovered that many invariants were obvious because the variables involved were parameters
to transitions. To reduce clutter for the user, we developed a mechanism to eliminate certain
invariants on parameter variables, and ported this technique to the semantics of Java and C
function parameters.

A transition parameter in [OA is immutable. This means that the values of the variable
before and after the transition (called the pre- and post- values) will be equal and any
invariant on the post variable is uninteresting because it will be present on the pre variable.
The same is true for any derived variable of the post variable.

In Java and C, function parameters are mutable, but some ways of changing them render
them uninteresting. Consider a data structure s with field s.a, passed into function f(). If
the value (of the pointer) s is changed, there are two cases: 1) s is set to a new structure; 2)
s is set to an existing data structure. Case (1) cannot be seen by the caller, unless s is also
in the return of f, in which case the return value will have the relevant information. Case
(2) may be seen by the caller, but the information is useless unless the new value of post(s)
is in a data structure visible to the caller. If this is the case, then the data structure will
contain all the necessary information. So for both cases, post(s) is not interesting.

If the value of s is not changed, but the value of s.a is changed, this effect may be visible
to the caller. In this case, post(s.a) is interesting, even though post(s) is not.

In implementation, language front ends are responsible for labeling variables as param-
eters. Any parameter and derivation done by Daikon of a parameter is treated like post(s)
above and is not interesting. Any variable issued by front ends that is related to a parameter
variable is labeled as a secondary (or front-end derived) parameter. In the example above,
this is true for s.a — the front end does not label it as a parameter, but Daikon labels it
as a secondary parameter. Post states of secondary parameters are interesting if the pa-
rameter variable they are related to have not changed. Since parameters in IOA are deeply
immutable, the IOA front end labels all secondary parameters as primary parameters.

Since determining whether secondary parameters are interesting depends on the equality
between the pre- and post- variables of the corresponding primary parameters, suppressing
invariants that contain secondary parameters is a dynamic suppression. In contrast, sup-
pressing invariants with primary parameters can be done statically. However, the equality
set. between the pre- and post- variables cannot be eliminated, since it will be used for
determining if secondary parameters are interesting.

5.8 Future work

automatically generate (or check) suppressors
(do more ambitious experiments using V3’s capabilities)

implement online
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5.9 Conclusion
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Chapter 6

Improving the IOA Simulator

This chapter covers improvements that were made to the IOA Simulator so that it would
be better suited for executing IOA programs, especially in relation to dynamic invariant
detection. We describe three major improvements:

Simulating paired automata How the semantics of paired simulation was changed to
make it identical to the semantics in the proof tactics that are generated by the translator
tools.

Handling quantifiers How the IOA simulator handles quantifiers in the language.

Connecting to the Daikon tool How the IOA Simulator passes data to the Daikon tool
such that data structures in IOA become data structures understandable by Daikon.

6.1 Simulating paired automata

The proof block of the IOA language syntax specifies how the IOA Simulator executes
a specification automaton given an implementation automaton’s transition. In a previous
version of the IOA Simulator, simulation of paired automata was implemented so that only
the post-state of the implementation automaton was visible to the proof block. Further,
with each fire statement in the execution, the specification automaton would change state,
so that any if statements that examined the state of the specification automaton afterwards
would be doing so on the state after the fire. This made the semantics of the IOA Simulator
different from the execution given by the proof translator tools. The proof translator tools
assume that any examination of the state of either automaton would be the pre-state of both

automata. For example, in the Paxos case study, one of the proof actions was:
for internal assignVal(b: Ballot, v: Value) do
if =(b € Globall.succeeded) then
ignore
elseif 3 b:Ballot (b € Globall.succeeded A Globall.val[b] # nil) then
ignore
else
fire intermnal chooseVal(v)
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The if statements would test the post-state of Globall rather than the pre-state, as
desired in the proof. And after the fire statement, Cons itself would be changed, so any
subsequent if statements would check a different state. With this semantic mismatch, paired
executions cannot not match simulation relation proofs, so our verification methodology
cannot be used. Further, users of the IOA tools should be able to expect a consistent
handling of proof blocks.

Other than the semantic mismatch, another limitation of this design is the lack of in-
formation for the proof block code. There is no way the code can tell what the pre-state
is, since there could be multiple pre-states that map to the same post-state. Choosing the
correct [ execution might depend on the pre-state.

Thus, the IOA Simulator was altered such that its paired execution semantics match
what the proof translator tools would output. All references to automaton state variables
now refer to the pre-state of the automaton. The drawback is that we cannot directly
observe the post-state. However, it can be deduced from the action that has been fired and
its parameters. If there is any explicit nondeterminism in the post-state, it is captured in
the local variables. Ideally, we would want to be able to refer to both the pre and post-states
in the IOA Simulator, but the IOA language itself does not permit this dual reference.

6.2 Handling quantifiers in the Simulator

It is generally undecidable for the IOA Simulator to determine certain predicates, since the
IOA language allows quantifiers on infinite data types to be used (though they are usually
used in preconditions or choose blocks). For example, the IOA Toolkit allows the use of mul-
tiplication and addition in quantified expressions over the integers. Even without quantifiers,
if a transition contains a local variable, the local variable is implicitly (existentially) quan-
tified. nevertheless, we still want to be able to simulate most IOA programs. We therefore
wish to develop two ways of handling quantifiers. One is sound and the other unsound.

6.2.1 Sound execution

Any expression without a quantifier (or with a quantifier over a finite data type) is defined
as executable. The sound method relies on the fact that certain quantified expressions are
decidable through iteration on the possible values that the quantified variable can take. If
S is a finite set and P is executable, the following two expressions are executable:

Ve(e € S — P(e))

J.(e € SA P(e))

The expressions are executable because iterating through the set S is sufficient to de-
termine the truth of the quantified expression. If a program contains only such limited
syntactical forms, then the IOA Simulator can execute them. In practice, these forms are
used quite often, because the programmer often means to say that every object in a set obeys
a given property, or that there exists an object in a set that obeys a given property.

Note that the two formulae above are actually instances of a more general set of two-way
boolean expressions of the form:
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(—)?A op (—)?B where op is either V or A, Ais e € S and B is executable. There are 4
forms of each expression for each operator, and thus 8 total. Only the two presented above
are executable.

There may be more such soundly executable expressions that are worth discovering. It
may be necessary to syntactically transform some executable expressions so that they can
be recognized by the IOA Simulator as executable.

6.2.2 Unsound execution

The unsound method iterates through some large values of the infinite datatype and hopes
that seeing these is enough to determine the truth value of the quantifier. The method is
sound when a positive result is found for an existential quantifier or a negative result for a
universal quantifier, but unsound in general. For instance, it would be difficult to determine
the values of x, y and z to check for the following expression:

Hx,y,zzlntx?) + y3 = Z3

The disadvantage of using the unsound method is that it is possible to have an execution
in the IOA Simulator that would not be a valid execution according to the code. However,
we still permit unsound execution in order to allow for program testing.

In practice with IOA programs, we have found that the quantifiers used are on a specific
data set that is finite within the context of a particular execution. For example, in the Paxos
case study, we speak of quantifiers on all ballots. However, we know exactly how many
ballots are currently in existence. Thus it is sufficient to simply check ballot quantifiers
on these ballots. The sound method used above is not sufficient for the Paxos case study,
for there is no data structure that keeps track of all the existing ballots, including future,
yet-to-be-created ones.

6.3 Connecting to the Daikon invariant detector

This section discusses what changes were made to the IOA Simulator in order to have it
output useful data in the input format of the Daikon tool. The key problem here is that
the data structures in IOA do not match the data structures in the Daikon tool. Since we
use the Daikon tool to analyze IOA executions, we need to better connect the two data
representations.

A general problem in linking specifications and automated tools is that specifications tend
to have greater notational complexity than implementations or executions. Whereas tools
are best at reporting simple properties of simple data structures, specifications may express
sophisticated properties of complicated domain-specific data structures. We therefore extend
Daikon’s grammar for checked invariants to include properties and data structures relevant
to IOA specifications.

The Daikon invariant detector operates over basic datatypes: integers (scalars and hash-
codes), strings, and sequences. This keeps its implementation simple, fast, and portable to
many different programming languages. TOA specifications use more sophisticated datatypes,
such as sets, tuples, and maps between arbitrary types.
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In our translation between the two tools, we alter the IOA Simulator so that complicated
data structures are represented using scalars and sequences. For example, sets become se-
quences. Since Daikon ordinarily tests sequences for duplicates and order-related properties,
which are irrelevant for sets, we extend Daikon to recognize when a sequence is marked as
representing a set and Daikon avoids these tests.

The next two subsections present the most important data translations done by the IOA
Simulator. First, we look at how IOA maps, or functions from a domain data type to a range
data type, are translated into Daikon data structures. Second, we look at how conditional
invariant detection, as described in Section 5.6, can be implemented for IOA programs.

6.3.1 Translation of map data structures

Map data types, such as Array and Map are used in many IOA programs. A map is a
function that connects a domain data type to a range data type. Often, the domain data
type is not totally ordered, so the map cannot be presented as a simple array to Daikon.

The TOA Simulator map data types in two ways. First, it linearizes the range of the
map, and reports the values that are present. For an array m, the Simulator thus reports
m.values[] as an array to Daikon. Second, the Simulator samples key, value pairs of a map
m using two distinct random keys named anlndex and anotherIndex. The output to Daikon
is two derived variables (see Section 5.1.1) mfanIndex] and mf[anotherIndez/. We extend
Daikon to report invariants it detects involving such synthetic variables as being universally
quantified on the variables. For any map that has a range with a null element (i.e., a pointed
range data type), we introduce another synthetic variable to represent the elements of the
map that are not null.

We used mechanisms such as these in our case study involving the Paxos algorithm,
which uses a map voted from participating nodes to sets of ballots. Without enhance-
ment, Daikon reports few interesting properties of this data structure, which is inherently
two-dimensional and involves sets of nodes and ballots represented as sequences. With infor-
mation about the type of this data structure, and with synthetic variables voted [anIndex]
and voted[anotherIndex], Daikon is able to detect and report properties useful for proofs,

such as:
V anIndex:Node (size(voted[anIndex] N abstained[anIndex]) = 0)

6.3.2 Conditional splitting in IOA

As mentioned in Section 5.6, Daikon is capable of detecting conditional invariants, or in-
variants with implications. However, choosing which conditional invariant to search for is
difficult to do without overly expanding Daikon’s search space. Daikon leaves it up to other
tools to choose the condition, or left hand side, of implications. This section shows how
conditions are chosen in IOA.

A simple syntactic analysis suffices. The Simulator uses each clause (conjunct) in a
precondition as a condition predicate. We replace transition parameters, which appear in
preconditions but are not in scope at the automaton level, by special the variable anIndex.
The quantification technique discussed above ensure that the resulting expressions are sen-
sible. For example, in the Peterson case study (Figure 4-2), the checkFlag(p) precondition
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becomes the condition pc[anIndex] = trying2. This condition is used in the Peterson

invariant:
V p (pclpl = trying2 = pclturn] = trying2)

Thus, Daikon is able to report invariants that indicate properties of particular points in
the code despite performing invariant detection on the system as a whole.
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Chapter 7

IO automata in Isabelle: enhancing
the representation of I/O automata in
the prover

Every theorem prover requires a prover model in its language for the system model it is to
verify. For example, Garland and others developed the model for I/O automata in the Larch
Prover [SAGG™93b]. A prover model specifies the semantics of the system model in the logic
of the prover.

The original prover model for I/O automata in Isabelle was designed by Mueller [Miil98].
Its main purpose was to prove the meta theory about IO automata, such as the soundness of
forward simulation relation proofs. It also permitted proofs of properties of specific automata.
Luhrs and Garland [Luh02] used this model to design and partially implement a translator
from IOA to Isabelle. However, the model and translation were, in practice, inconvenient
for designing automatable proofs of specific automata. We describe why below.

For our work, we chose to change the Isabelle system model to be more similar to the
one created by Bogdanov for his work with the Larch Prover [BGL02]. This made tactic
writing easier. Here, we describe the modifications and formally specify the prover model.
We use the memory case study from Section 4.2 to show the differences between the two
prover models.

7.1 The Mueller model

In the Mueller prover model, an IO automaton is a triple consisting of an action signature,
a set of start states, and a set of transitions. This is the same as the intuition for the actual
system model of an I/O automaton described in Section 2.4. However, the Mueller model
also includes ancillary data definitions for the prover to understand the model. Thus, the
whole prove model is represented by the following:

e Data type declaration describing the state space of the automaton.

e Data type declaration describing the action type of the automaton.
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e Classification of the actions as input, output or internal. These predicates are combined
into the action signature.

e Definition of the set of start states.

e Definition of the valid transitions relating a pre-state, action and post-state of the
automaton.

The next sections describe each component in more detail.

State spaces

State spaces are declared as records of the automaton state variables:
record Mem_state =

memVar :: "Value"
act :: "(Node, Action Null) Array"
rsp :: "(Node, Response Null) Array"

The command creates an Isabelle data type, not a data value. Having a record represent
the data type is the correct approach, because state spaces are cartesian products of the
underlying variables.

Action data type

Actions are declared as ML type constructors:
datatype mem_action =

invoke node action |

respond node result |

update node

This creates a mutually exclusive set of constructors because automaton actions are
mutually exclusive. The parameters to the type constructor correspond to the parameters
of the action. We use a different means of constructing the action data type from the state
data type because the automaton state is a cartesian product of each state variable, while
the actions are mutually exclusive.

Classification of actions

We classify the actions into three sets, input, output and internal:
Mem_input :: "Mem_action set"
Mem_input = {a. case a of
(invoke n a) = False |
(respond n r) = False |
(update n) = False
}ll

Mem_output :: "Mem_action set"
Mem_output_def:

" Mem_output =— {a. case a of
(invoke n a) = True |
(respond n r) = True |
(update n) = False
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}ll

Mem_internal :: "Mem_action set"
Mem_internal_def:
" Mem_internal — {a. case a of
(invoke n a) = False |
(respond n r) = False |
(update n) = True
}ll
By convention, we use the collect operator (“.”) to define the sets. The collect operator
fills a set with all values that satisfy its predicate. However, they could be defined by any
other set operators or by explicitly enumerating the values.
The action signature does not list the type of actions (for this is already done in action
the data type) but simply groups the above three sets. It is an ML triple:

Mem_asig_def : "Mem_asig — (Mem_input, Mem_output, Mem_internal)"

The start state

The start state is a subset of the states, also defined using the collect operator:

defs
Mem_start_def:
" Mem_start == { sMem.
(rsp sMem = (constant nil)) &
(act sMem (constant nil)) &
(memVar sMem = vO0)

}u

Transitions

A transition of an automaton is an ML triple of a pre-state, an action, and a post-state. The

set of transitions is also defined via the collect operator:

types
('"a,’s)transition = "('s x 'a x 's)"

Mem_trans :: "( Mem_action, Mem_state) transition set"

Mem_transitions = "{tr
Let s = fst tr
act = snd tr
s’ = 1st tr
in
case act of
(invoke n a) =
(memVar s’) = (memVar s) A
(act s') = (assign (act s) n (embed a)) A
(rsp s') = (rsp s)
(respond n r) =
(memVar s’) = (memVar s) A
(act s’) = (assign (act s) n nil) A
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(rsp s') = (assign (rsp s) n nil)

(update n) =
d a . (sub act n) = (embed a) A
Let a = SOME a. (sub act n) = (embed a) in

}ll

(memVar s’') = (perform a (memVar s)) A
(act s') = (act s) A
(rsp s’) = (assign (rsp s) n (embed (result a (memVar s))))

The ticked variables (e.g., ’s) are data type variables in ML, The star operator (*) makes
a tuple. We use these operators here to abbreviate the meaning of a transition as a triple.
The transition definition permits any number of post-states to match a particular pre-state,
action pair — this is a form of nondeterminism. The existential quantifier and Let syntax
handle the local variable a, for a is not part of the action’s formal parameters but is used
in the transition for update (see the automaton code in Section 4.2). The precondition for
update is written using an existential quantifier, and then a is referred to in the effect section
using a Let and a SOME operator. The sub operator corresponds to array subscripting.

Defining the automaton

Lastly, the automaton itself is defined:

Mem :: "(Mem_action, Mem_state) ioa"
Mem_def:
Mem — (Mem_asig, Mem_start, Mem_transitions)

The datatype of Mem is an ioa, which is a pre-defined data triple. The following definitions
are true for all automata, since they are built into a helper file in Isabelle:

(’a,’s)transition = "(’s x 2a x ’g)"
(’a,’s)ioa = "’a signature * ’s set * (’a,’s)transition set"

The automaton has a few other helper procedures:

asig_of_def: ‘"asig_of aut == (first aut)"
starts_of_def: "starts_of == (second aut)"
trans_of_def: '"trans_of aut == (third aut)"

Issues with the Mueller model for verification

There are two problems with this model for use in proofs of specific automata, either for
humans or machines:

e The enablement of a particular transition is hidden in the transition definition, and

requires an existential quantifier to specify. Thus, to say that a is enabled in state s,

it is necessary to say:
(enabled aut s a) = 3 s’ . (s, a, s’) : (trans_of aut)

This is unfortunate, as existential quantifiers can only be proved in the prover by
actually providing witness variables. Thus to say that an action is enabled, the user
must provide a witness, even though the IOA code itself made the enablement obvious
in the transition’s precondition.
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e An execution fragment is not determined just by a given sequence of actions but
requires the post-states of each of the actions. To show that an action sequence is
valid, the user must provide multiple existential witnesses to describe the post-states.

The first shortcoming is less of a problem because the standard invariant proof tends to

be a theorem in the form:
theorem Mem_Inv_step:

(s, a, s') : (trans_of Mem) A (Inv s) = (Inv s')

Thus, the post-state is explicitly provided. However, the second shortcoming is a problem
because when we want to show that there exists a witness execution S, we have to provide
all the intermediate states also. This is tedious for the user, and clutters computer-generated
proofs.

7.2 The new Isabelle model

The fundamental problem for practical use of the Mueller model is that it allows nondeter-
minism in the post-state for each action, so that a proof is required to choose a particular
post-state. This arises from a direct translation of I/O automata, which are by nature
nondeterministic for each state, in both the next action and the post-state given an action.

In practice, when we write [/O automata, the main source of nondeterminism is in the
action that is taken, not in the post-state. Further, when there is nondeterminism in the
post-state, in an overwhelming majority of cases, the nondeterminism is made explicit by the
use of local variables, which encapsulate the nondeterminism. Handling nondeterminism
in the action is easier, since we can perform structural induction on the action data type
and cover all possibilities. It is not possible to do the same on the post-state since the
nondeterminism is mixed in with the actual state variables. There is thus an advantage in
pushing all nondeterminism into the action and making the post-state deterministic once the
pre-state and action are known. This was Bogdanov’s insight [Bog00] for the Larch theory
of I/O automata, an approach we closely follow in the new model.

The general rule is that every choose variable becomes a local parameter to the action.
The action datatype itself is now modified to include the local variable as a parameter
to each action. Any constraints on local and choose variables become preconditions to
transitions '. The post-state is a deterministic function of the pre-state and the new action.
Since we change the action datatype, we need to also change how actions between two
automata correspond. We explain this later in Section 7.2.2.

An automaton is now a 4-tuple, consisting of an action signature, start states, an enable-
ment function and an effect function. We preserve the method of defining the automaton
signature and action and state datatypes. By separating the enablement from the effect, we
can say when an action is enabled without having to quantify the post-state. For implemen-
tation convenience, an automaton is no longer a tuple, but instead constructed by the ML
type constructor ioa:

'Bogdanov did not resolve what happens when choose variables appear inside for loops. We do not
attempt to remedy this either.
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datatype ('action, ’'state) ioa =

I0A
""action signature" (* Signature *)
"'"state set" (* Starts *)
"('action,'state) enablement" (* Enablement *)
"('action,'state) effect" (x Effects *)

[sabelle automatically defines accessor functions when we use this means of definition.
We now define the memory automaton in this prover model:

Mem — (IOA Mem_asig Mem_start Mem_enablement Mem_effect)"
where the data types enablement and effect are defined by:

types
('"action,’state) enablement = "'state = 'action = bool"
("action,'state) effect = "'state = 'action = 'state"

Thus an enablement function tells whether a particular action is enabled from a state,
while the effect function determines the new state. The effect function is unspecified when
the action is not enabled. Now it is possible to have a quantifier-free predicate to determine
whether an action is enabled, as long as the precondition itself does not contain a quantifier.
For the shared memory case study in Isabelle, the new translation results in the specifications
shown in Figure 7-1 for the Mem automaton.

With determinism in actions, an execution fragment is just a list of actions:

type
("action) execution = "'action list"

the head of the list contains the last action, so that we can recursively (or inductively) define
the execution as shown below.

Using this execution format requires some helper functions. The last0f function returns
the state that is the result of executing a particular execution fragment upon a state of an
automaton, from a given state:

consts last0f :: "('action, ’'state) ioa =
"state =
("action) execution =
"state"

primrec

last0f_def:

"last0f aut s [] = s"

last0f_def2:

"last0f aut s (Cons act rest) =

effects_of aut (last0Of aut s rest) act

Note: the primrec allows the definition of a partially specified function in the Isabelle
language using ML pattern matching. The isExecution function determines whether an

entire execution fragment is valid:

consts
isExecution :: "('action, ’'state) ioa =
"state =
("action) execution =
bool"
primrec
isExecution_def:
"isExecution aut s [] = (
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record Mem_state

memVar "Value"
act "(Node, (Action) Null) Array"
rsp "(Node, (Response) Null) Array"
datatype Mem_action =
invoke "Node" "Action" | respond "Node" "Response" | update
defs
Mem_start_def:
" Mem_start — { sMem.
(rsp sMem = (constant nil)) A
(act sMem = (constant nil)) A
(memVar sMem = vO0)
}"
defs
Mem_enablement_def:
" Mem_enablement sMem aMem —— case aMem of
(invoke n a) =
((sub (act sMem) n) = nil) % sMem.act[n] = nil
|
(respond n r) =
((sub (rsp sMem) n) = (embed r)) % sMem.rsp[n] = embed(r)
|
(update n a) = % sMem.rsp[n] = nul A sMem.act[n] = embed(a)

(((sub (rsp sMem) n)
"
defs
Mem_effect_def:
" Mem_effect
(invoke n a) =
Mem_state.make
(memVar sMem)
(assign (act sMem)
(rsp sMem) |
(respond n r) =
Mem_state.make
(memVar sMem)
(assign (act sMem)
(assign (rsp slMem)
(update n a) =
Mem_state.make
(perform a (memVar
(act sMem)
(assign (rsp slMem)

sMem aM

defs
Mem_def:
" Mem

(I0OA Mem_asi

nil) A ((sub (act sMem) n) (embed a)))

em case aMem of

n (embed a))

n nil)
n nil) |

sMem))

n (embed (result a (memVar sMem))))

Mem_start Mem_enablement Mem_effect)"

g

llNOde "

Figure 7-1: The specification automaton, Mem translated to Isabelle. Notice how the local
variable a in the update transition is now a full parameter. This requires a change in how
we match traces for simulation relations.



True
)ll
isExecution_def2:
"isExecution aut s (act#rest) = (
(enablement_of aut (last0Of aut s rest) act) A
(isExecution aut s rest)

) "

Now that we have the basic infrastructure, there are three useful aspects of this model
to discuss. First is the practical view of using this model for proofs. This has already been
presented in Section 3.5.2. The main benefit we get is that, like the LP translation, the
transition semantics is free of existential quantifiers. Second is the use of this model for the
theory of I/O automata in general. This is a useful discussion because we want to ensure
that the model can do meta-theoretic proofs, and that it is sound. Third is how this model
relates to simulation relations.

7.2.1 Meta theory for the new I/O automaton model

In this section, we describe how the infrastructure we have developed is still adequate for
meta-theoretic proofs as done by Mueller. First we define two functions on automata: reach-
ability and invariance. We then prove that the standard method of proving IOA invariance
(start condition; step condition) is a sound way to show invariance as defined here.

In order to define reachability, we first define a helper, reachableWith which says that a

particular state s is reachable from a particular state s0O using a particular execution alpha:
constdefs

reachableWith :: "(’action,’state)ioa =
"state =
"state =
"action execution =
bool"

"reachableWith aut s s0 alpha = (

(s0 : starts_of aut) A

(isExecution aut sO alpha) A

(last0f aut sO alpha = s)
) n

Now this helper predicate is used by the definition of reachable in saying that there
exists a start state sO and an execution alpha that satisfies reachableWith, for a given

state s:
constdefs

reachable :: "('action,’state)ioa = 'state = bool"
"reachable aut s =—
(3 s0 . (3 alpha . reachableWith aut s sO alpha))

Given this definition of reachability, we can now define what it means for an invariant to

hold on an automaton. An invariant is a predicate on the states of an automaton. Thus:
constdefs
invariant :: "[('"action,’'state)ioa, ’'state=bool] = bool"
"invariant aut P = (V s. reachable aut s — P(s))"
An invariant P is an invariant on automaton aut if for all reachable states s the invariant

holds. We now show that the IOA method for proving invariants is sound. We define the

100



start and step conditions holding as follows:

constdefs
invariant_start :: "[('action,’state)ioa, 'state = bool] = bool"
"invariant_start aut I =

V state . (state : (starts_of aut) — I state)"
constdefs

invariant_trans :: "[('action,’state)ioa, 'state = bool] = bool"
"invariant_trans aut I =
V state act
((reachable aut state) A
(I state) A
(enablement_of aut state act)
)—
I(effects_of aut state act)"
These simply are the standard way we prove invariants in IOA. We then prove the

following main theorem:
theorem invariantI:
assumes pO: "invariant_start aut I"
and pl: "invariant_trans aut I"
shows "invariant aut I"

This is a 200 line proof shown in Appendix A. The reason why the two conditions are
sufficient to prove invariance is the expected one: a state is reachable if it is a start state
or can be reached from a valid execution. If the state is a start state, invariant_start
handles this case. If a state is reachable due to a valid execution, invariant_trans handles
this case. The second case is a bit intricate, as we have to show that the invariant step
condition holding is sufficient to show that the invariant holds for the entire valid execution.
We do this by structural induction on the valid execution sequence (case nil, case Cons).

Thus, we have proven, using only our Isabelle theory of I/O automata, that our method-
ology for proving invariants is sound. This gives a concrete mathematical foundation for the
theorem prover tactics we use on our model.

7.2.2 Simulation relations

The model is also adequate for handling simulation relations. We have not yet performed the
meta-theoretic proofs showing that the IOA method for showing simulation relations implies
trace inclusion (as is proven by hand in Lynch’s book [Lyn96] and by Mueller in his model).
We simply present here the functions for defining that a predicate is indeed a simulation
relation.

The actual mapping of the states between the implementation and specification automata
for a simulation relation is trivial: we simply use any F that takes in the right automaton

states. For the mapping from the Cache automaton to the Mem automaton, this is simply:
consts
FCache2Mem :: "Cache_state = Mem_state = bool"
defs
FCache2Mem_def:
"FCache2Mem sCache sMem =—
((((Mem.memVar sMem) = (Cache.memVar sCache)) A
((Mem.act sMem) = (Cache.act sCache))) A
((Mem.rsp sMem) = (Cache.rsp sCache)))"
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The difficulty is showing that the corresponding executions exhibit the same traces. This
is because of two reasons. First, the action data types of the two automata are different,
according to the model. Thus, we cannot simply equate the two actions in a strongly typed
language like Isabelle or LP. Second, we chose to resolve the nondeterminism of post-states
by including extra parameters in the action. Now these parameters may not match between
the automata (e.g. one automaton has nondeterminism, the other does not).

We resolve both of these problems using a technique almost identical to the one used by
Bogdanov in the LP translator. We define a new action type that represents the actions com-
mon to both automata, and two action mapping functions that map from each automaton’s
action type to the common type. With the memory example, this is:
datatype Cache2Mem_action =

invoke Node Action |

respond Node Response |
dummy

consts
mapCache :: "Cache_action = Cache2Mem_action"
mapMem :: "Mem_action = Cache2Mem_action"

defs
mapCache_def:

"mapCache aCache — case aCache of
(invoke n a) = (invoke n a) |
(respond n r) = (respond n r) |
(read n a) = dummy |
(write n a) = dummy |
(copy n) = dummy |
(drop n) = dummy"

defs
mapMem_def:

"mapMem aMem — case aMem of
(invoke n a) = (invoke n a) |
(respond n r) = (respond n r) |
(update n a) = dummy"

Notice that the internal transitions are mapped to dummy to indicate that there is no need
to compare traces between them. Unfortunately, the memory example does not have any
external actions with local parameters. Had update been an external action, the mapping

would have been:

datatype Cache2Mem_action =
invoke Node Action |
respond Node Response |
update Node

defs
mapMem_def:

"mapMem aMem — case aMem of
(invoke n a) = (invoke n a) |
(respond n r) = (respond n r) |
(update n a) = (update n)"
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Given this mapping function, we can now fully specify what it means in Isabelle for two
automata to have a forward simulation relation.

A forward simulation between two automata is defined as follows:
constdefs isFwdSim :: "('actionL, ’'statel) ioa = ('actionU, ’'stateU) ioa =

('"statel = 'stateU = bool) =
("actionL = ’'action) =
("actionU = ’'action) =
bool"

"isFwdSim autl autU relation maplL mapU —

(isFwdSim_start autL autU relation)
A (isFwdSim_trans autlL autU relation mapL mapU)

The isFwdSim predicate takes in two automata, the actual simulation relation, and the
two mapping functions and says that two conditions have to hold: the start and step condi-
tions. The start condition is defined as expected:
constdefs isFwdSim_start

"('actionL, ’statel) ioa = ('actionU, 'stateU) ioa =
('"statel = 'stateU = bool) =
bool"

"isFwdSim_start autlL autU relation —
(V s0. s0: starts_of autL — (3 u0 . (u0 : starts_of autU) A
(relation sO0 u0)

))

This is precisely the definition we use in LP or on paper: for all start states of the
implementation automaton, there exists a start state of the specification automaton that
satisfies the relation.

The step condition is also as expected:
constdefs isFwdSim_trans

"("actionL, 'statelL) ioa = ('actionU, ’'stateU) ioa =
('"statel = 'stateU = bool) =

("actionL, 'action) actionMap =
("actionU, 'action) actionMap =
bool"

"isFwdSim_trans autlL autU relation maplL mapU —
(V s act u. (enablement_of autl s act) A
(relation s u) A
(reachable autl s) —
(3 beta . correspExec autl autU relation mapL mapU s u [act] beta

)
)

For all implementation actions act, there exists an execution beta of the specification au-
tomaton such that act and beta are corresponding executions. The correspondence relation
is given by:
constdefs correspExec

"("actionL, 'statelL) ioa = ('actionU, 'stateU) ioa =
('"statel = 'stateU = bool) =
("actionL, ’'action) actionMap =
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("actionU, 'action) actionMap =
"statel = 'statelU =
("actionL execution) = (’'actionU execution) =
bool"
"correspExec autl autU relation mapL mapU s u alpha beta —
(map mapU (traceOf autU beta)) = (map mapL (traceOf autlL alpha))
A (isExecution autU u beta)
A (relation (lastO0f autL s alpha) (lastOf autU u beta))

This gives the three requirements of the step condition: trace equality, valid execution,
and that the last states relate. The map function is the standard mapping function that
applies its first argument onto every element of its second argument. In this case, we map
the action mapping function onto the automaton trace, which is a list of actions.

7.3 Assessment

From out case studies, we have seen that the new prover model for I/O automata, based
on Bogdanov’s work, is adequate infrastructure for enacting practical proofs of simulation
relations in Isabelle. We have also seen in Chapter 3 that the definitions have been useful
for generating proof tactics. The usefulness of this model for proofs stems from restricting
nondeterminism to the actions of a transition, rather than allowing it also in the post-state.

In the future, it would be helpful to prove the soundness of proving simulation relations in
[sabelle: showing that the simulation relation start and step conditions imply trace inclusion.
This is a meta-theoretic proof. It is likely that the mapping function will need to be used in
the definition of trace inclusion.
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Chapter 8

Discussion

8.1 Further research

There are at least four ways to extend this research: improving dynamic invariant detection,
generating better proof tactics, programming in the prover, and selecting invariants for use
in proofs.

8.1.1 Improved dynamic invariant detection

The Daikon dynamic invariant detector could be improved, in order to find more lemmas for
proofs and increase human insight regarding program behavior. A major problem in dynamic
invariant detection is choosing a grammar of invariants that is useful for programmers but
does not generate an excessive amount of output. One way to choose a grammar would be
to take boolean expressions appearing in IOA program code as templates in the grammar.
Since these templates come from the semantics of the program, they may be likelier to be
useful invariants. For example, in the Paxos case study (Section 4.3), Inv4 closely resembles
the precondition for the assignVal transition.

8.1.2 Improved proof scripts from automaton code

Static analysis of I/O automata could generate more detailed proof scripts so that prover
can do more work without human intervention. For example, in performing case splits, we
currently examine if statements in the annotations for paired execution, but we could also
look at if statements within the effects code of the automaton itself.

8.1.3 Programming in the prover language

We can further extend our tools to use the Isabelle/HOL logic system and theorem prover
[Pau93, Gor89]. Isabelle is a programmable prover, so we could use its programming lan-
guage, ML, to derive better tactics. Presently, we have the IOA translator to Isabelle generate
the proof script — using ML to drive the proof may be more productive. Since Isabelle has a
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larger user community and a more extensive set of libraries, this may make our methodology
accessible to more people.

8.1.4 Filtering invariants with automated heuristics for proofs

One of the stages in our method that involves human intervention is having to manually
select invariants to use in a proof. We are in search of true and useful invariants when we
perform this manual selection. Here we suggest a way to automate this process. Invariants
output by dynamic invariant detection can be classified as follows:

e True and useful. These are later used in verification in theorem provers. There may
be more than one useful set of invariants that are used in verification. We want just
one such set.

e True and not useful. These may be useful for others, but are not used as lemmas in
our verification proof.

e False.

However, this classification is generally undecidable. We expect to rely on a combination
of human classification and automatic invariant filtering algorithms to compensate. Human
classification is still human intervention, but the intervention is greatly reduced compared to
using the prover alone, because the programmer no longer has to come up with the invariants.

In proving invariants true with the prover, the main difficulty is the dependencies between
different invariants. It could be that invariant [, is true, but cannot be proved without
another invariant Iz in the inductive assumption. It could also be that I4 is false, but holds
true Ip is true. We suggest an algorithm based on one by Rintanen [Rin00] that relies on
arriving at fix points:

Start with some set Inv of invariants to filter and check for truth. Check if
invariants in Inv hold on the start state of the automaton. Remove any invariants
in Inv that fail. Assume the invariants in Inv hold for some state a in the
automaton. For all enabled actions from a to a’, prove that they hold for a’.
Remove any invariants in Inv that fail. Repeat this process with the new Inv
until the members of Inv no longer change. At this fix point, all the invariants
in Inv are true.

Once we have a set of true invariants, they can be easily checked to see which are needed
to prove a simulation relation (or any other property):

Assume the simulation relation F(a, b) holds. Also assume I holds for a. At-
tempt to prove the simulation relation holds for a reachable state a’ from a by
showing the standard witness  from b to b’. Temporarily remove one invariant
i in Inv and test if the simulation relation can still be proved somehow. If so,
permanently remove i from Inv. Attempt this removal process on each invariant.

106



The set Inv that remains is true, since we started with a true set. It is “minimal” in the
sense that no subset of it will result in a proof, using a prover with the same capabilities.
There may be an alternative set of invariants that is of a smaller size, but we are interested
in only finding some minimal set. Further, some provers may be able to identify which
invariants were used in a proof, so the second algorithm may not be necessary.

We could implement both algorithms presented here using more automated proving meth-
ods built into Isabelle.

8.2 Conclusion

The purpose of software verification is to ensure programmers and users that the systems
they develop and employ behave correctly. In this thesis, we tackled the problem of verify-
ing distributed or concurrent systems, which are often infinite state and nondeterministic.
Theorem provers can be used to reason soundly about the correctness of such systems. Such
machine-checked proofs provide more assurance of correctness than hand proofs, but incur
a cost in terms of human interaction. The methodology presented in this thesis reduces the
human effort required in the theorem prover for verifying safety properties of distributed
algorithms modeled formally as I/O automata.

Our methodology integrates test execution —running a distributed algorithm with a
test suite on a uniprocessor —with theorem proving. Exploratory analysis based on such
executions is a well-known technique for building intuition and performing inexpensive sanity
checks. Our methodology extends the use of run-time techniques in two ways.

First, we use a dynamic invariant detector to generalize over observed executions and
report logical properties that are likely to be true of the program. This technique proposes
properties that would otherwise have to be synthesized by a person. Such properties can
reveal unexpected properties of a program, and they can buttress understanding more ef-
fectively than can be done merely examining execution traces. Most importantly for our
methodology, such properties can provide invariants and lemmas that simplify proofs and
reduce theorem proving effort.

Second, we leverage the effort used to build good test suites to produce scripts for theorem
provers, which mirror the form of the scripts for driving paired executions. These tactics
combine with our knowledge of proofs of all I/O automata to provide the proof outline in a
prover.

We have illustrated the use of the methodology, and of the toolset that supports the
methodology, by means of three case studies: Lamport’s Paxos protocol, distributed strong
caching memory, and Peterson’s 2-process mutual exclusion algorithm.

In order to efficiently implement our methodology, it was necessary to extend the three
tools employed. We modified the IOA Simulator to allow for simulation of some quantified
expressions, and so that its semantics matched that of the tools that translate IOA into
prover languages. We formalized the correctness properties of dynamic invariant detection,
and modified the Daikon tool to make it more scalable via two optimizations. Lastly, we
developed a new prover model for I/O automata in the Isabelle/HOL system based on
Bogdanov’s work with LLP and proved the soundness of our invariant proving methodology.
The prover model facilitates generation of proof tactics in our methodology.
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Appendix A

Soundness proof of invariant method
in Isabelle

The following is Isabelle code showing that in the Isabelle prover model, our method for
proving invariants is sound. We show that proving the start condition and the step condition
for invariants, invariant_start and invariant_trans for an automaton is sufficient to
prove invariance (as defined in Isabelle). Invariance is defined for a predicate by saying that
the predicate holds on all reachable states. Along the way, we define a few helper lemmas.
constdefs

invariant_start :: "[('action,’state)ioa, 'state=bool] = bool"

"invariant_start aut I —

V state . (state : (starts_of aut) -— I state)"

constdefs
invariant_trans :: "[('action,’state)ioa, ’'state=bool] = bool"
"invariant_trans aut I =
V state act
((reachable aut state) A
(I state) A
(enablement_of aut state act)
)—
I(effects_of aut state act)"

theorem executionStep:
assumes a0: "isExecution automaton s alpha"
and al: " enablement_of automaton (last0f automaton s alpha) act"
shows "isExecution automaton s (act#alpha)"
apply (simp add: isExecution_def2 prems)
done

theorem last0fStep:
"last0f automaton s (act#alpha) =
effects_of automaton (last0f automaton s alpha) act"
apply (simp add: last0f_def)

done

theorem reachableStep:

||[|
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reachable automaton s;

enablement_of automaton s act

|11 =

reachable automaton (effects_of automaton s act)"
apply (simp add: reachable_def)

proof -
assume
a0: "d s0. Ex (reachableWith automaton s s0)"
and al: "enablement_of automaton s act"
def s0 — "SOME s0 . Ex (reachableWith automaton s s0O)"
have t0: "Ex (reachableWith automaton s s0)"

apply (simp add: sO_def a0 existenceSome)
apply (rule existenceSome)
apply (simp add: a0)

done
have tl: "3 u. reachableWith automaton s s0 u"
apply (simp add: tO)
done
def alpha =— "SOME u . reachableWith automaton s sO u"
have t2: "reachableWith automaton s s0 alpha"
apply (simp add: alpha_def t1)
done
have a2: "sO0 : starts_of automaton"
and a3: "isExecution automaton sO alpha"
and a4: "last0f automaton s0 alpha = s"

apply (insert t2)
apply (simp_all add: reachableWith_def)

done

show "3J s0. Ex (reachableWith automaton (effects_of automaton
proof (rule exI)+

show "reachableWith automaton (effects_of automaton s act) sO
apply (insert t2 al)
apply (simp add: reachableWith_def)

done

qed

qed

theorem executionStep_back:

"isExecution aut sO (act#alpha) -— isExecution aut sO alpha"
apply (auto)

done

theorem invariantI2:

assumes pO: "invariant_start aut I"
and pl: "invariant_trans aut I"
and p2: "sO : (starts_of aut)"

shows

"isExecution aut s0 alpha -— I (last0Of aut sO alpha)"

proof (induct alpha)
have f1: "I sO"
proof -

have f1_1: "V state. (state : starts_of aut — I state)"
by (insert pO, simp add: invariant_start_def)
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show "7thesis"
by (insert f1_1, simp add: p2)

qed
{case Nil

show "7case"

by (simp add: last0f_def f1)
}
{case Cons

show "7case"

proof (safe)

assume al0: "isExecution aut s0 (a_ # list_)"
show "I (lastOf aut sO (a_ # list_))"

proof -

have

al: "enablement_of aut (last0Of aut sO0 list_) a_"
and a2: "isExecution aut sO list_"
apply (insert aO0)
apply (auto)
done
have f2: "I (last0Of aut sO list_)"
apply (simp add: Cons a2)
done
have f3: "reachable aut (lastOf aut sO list_)"
apply (simp add: reachable_def)
apply (rule exI, rule exI)
proof -
show "reachableWith aut (last0f aut sO list_) sO list_"
apply (simp add: reachableWith_def)
apply (simp add: p2 al a2)
done
qed
have f4: "reachable aut (last0Of aut s0 (a_ # list_))"
apply (simp add: reachable_def)
apply (rule exI, rule exI)
proof -
show "reachableWith aut
(effects_of aut (last0f aut sO list_)
s0 (a_ # list_)"
apply (simp add: reachableWith_def)
apply (simp add: p2 al a2)
done
qed
have f5: "!! state act.
[|reachable aut state A
I state A enablement_of aut state act|]
— I (effects_of aut state act)"
apply (insert p1l)
apply (simp add: invariant_trans_def)
done
show "?thesis"
apply (auto)
apply (insert f5 £f3 f2 al)
apply (auto) (* Booyeah, let’'s see some unification! *)
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done
qed
qed
}
qed

theorem invariantIl:

assumes pO: "invariant_start aut I"
and pl: "invariant_trans aut I"
and p2: "sO : (starts_of aut)"
and p3: "isExecution aut s0 alpha"

shows

"I (last0Of aut sO alpha)"
apply (simp add: invariantI2 pO pl p2 p3)

done

theorem invariantI:

assumes pO0: "invariant_start aut I"
and pl: "invariant_trans aut I"
shows "invariant aut I"

apply (simp add: invariant_def)
apply (auto)

proof -
fix s

show "reachable aut s — I s "

apply (simp add: reachable_def)
proof -
assume a0: "3J sO0. Ex (reachableWith aut s sO0)"
show "?thesis"
proof -
def s0 — "SOME s0 . Ex (reachableWith aut s sO)"
have t0: "Ex (reachableWith aut s s0)"
apply (simp add: sO_def a0 existenceSome)
apply (rule existenceSome)
apply (simp add: a0)
done
have tl1: "3 u. reachableWith aut s s0 u"
apply (simp add: tO)
done
def alpha =— "SOME u . reachableWith aut s sO u"
have f1: "reachableWith aut s sO alpha"
apply (simp add: alpha_def t1)
done
have f2: "sO : starts_of aut"
and f3: "isExecution aut sO alpha"
and f4: "last0f aut sO alpha = s"
apply (insert f1)
apply (simp_all add: reachableWith_def)
done
show "I s"
apply (insert f4)
apply (auto)
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apply (rule invariantI1l)
apply (simp_all add: f2 £f3 f4 pO pl)
done
qed
qed
qed
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Appendix B

The Paxos simulation relation proof
in Isabelle

The following is the automatically generated proof outline and tactics for the simulation
relation proof from the Globall to Cons automaton in the Paxos case study.

kBB RDD T DT T DD DT Tl T Tl ol To ol oo To ol o T T o T T o o T s o T o )

(* %% Simulation from Globall to Cons *)

(x %% %)

theory Globall2Cons = Globall + Cons:
datatype Globall2Cons_action =

init Node Value |

fail Node |

decide Node Value |

dummy

consts
mapGloball :: "Globall_action = Globall2Cons_action"
mapCons :: "Cons_action = Globall2Cons_action"
FGloball2Cons :: "Globall_state = Cons_state = bool"

defs
mapGloball_def:

"mapGloball aGloball =— case aGloball of
(init i v) = (init i v) |
(fail i) = (fail i) |
(decide i v) = (decide i v) |
(makeBallot b) = dummy |
(abstain i B) = dummy |
(assignVal b v) = dummy |
(vote i b) = dummy |
(internalDecide b) = dummy"

defs
mapCons_def:
"mapCons aCons — case aCons of
(init i v) = (init i v) |
(fail i) = (fail i) |
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(decide i v) = (decide i v) |
(chooseVal v) = dummy"

defs

FGloball2Cons_def:
"FGloball2Cons sGloball sCons — (((((((Cons.initiated sCons) =
(Globall.initiated sGloball)) & ((Cons.proposed sCons) =
(Globall.proposed sGloball))) & ((Cons.decided sCons) =
(Globall.decided sGloball))) & ((Cons.failed sCons) =
(Globall.failed sGloball))) & (V v:: Value . ((d b:: Ballot . ((b
€ (Globall.succeeded sGloball)) & ((sub (Globall.val sGloball) b) =
(embed v)))) -—— (v € (Cons.chosen sCons))))) & (V v:: Value . ((v
€ (Cons.chosen sCons)) -—— (3 b:: Ballot . ((b € (Globall.succeeded
sGloball)) & ((sub (Globall.val sGloball) b) = (embed v)))))))"

constdefs
startRelGloball2Cons :: " Globall_state = Cons_state"
"startRelGloball2Cons sGloball — Cons_state.make (Globall.initiated sGloball)
(Globall.proposed sGloball) {} (Globall.decided sGloball) (Globall.failed sGloba

theorem FGloball2Cons_start:
"isFwdSim_start Globall Cons FGlobalili2Cons"
apply (rule isFwdSim_startRule)

proof (- )

fix sGloball

assume al0: " sGloball: starts_of Globall"

show "d sCons . sCons: starts_of Cons & FGloball2Cons sGloball sCons"

proof (rule exI)
show "(startRelGloball2Cons sGloball) € starts_of Cons &
FGloball2Cons sGloball (startRelGloball2Cons sGloball)"
apply (simp add: startRelGloball2Cons_def Cons_def
Cons_start_def FGloball2Cons_def Cons_state.make_def)
apply (insert a0)
apply (auto )
apply (simp_all add: Globall_def Globall_start_def)
done
qed
qed

(* For enabled ( Globall.init i v) =*)
theorem FGloball2Cons_trans_init:

assumes
pO: "enablement_of Globall sGloball ( Globall.init i v)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 betaCons . correspExec Globall Cons FGloball2Cons
mapGloball mapCons sGloball sCons [ ( Globall.init i v)] betaCons"
proof (- )
(* Proof entry available x)
def betaCons — "[( Comns.init i v)] :: Cons_action list"
show "7thesis"
proof (rule exI)
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show "correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.init i v)] betaCons"

apply (simp add: correspExec_def)

apply (insert pO pl)

apply (auto )

(* For trace equality: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def
Globall_def Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *) apply (simp add: traceOf_def pO pil
betaCons_def Globall_def Cons_def FGloball2Cons_def prems
Globall_enablement_def Cons_enablement_def Globall_effect_def
Cons_effect_def Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *) apply (simp add: traceOf_def pO pl
betaCons_def Globall_def Cons_def FGloball2Cons_def prems
Globall_effect_def Cons_effect_def Globall_state.make_def
Cons_state.make_def) done qged qed

(* For enabled ( Globall.fail i) x*)
theorem FGloball2Cons_trans_fail:

assumes
pO: "enablement_of Globall sGloball ( Globall.fail i)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 DbetaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.fail i)] betaCons"

proof (- )
(* Proof entry available x)
def DbetaCons — "[( Cons.fail i)] :: Cons_action list"

show "7thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.fail i)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def p0O pl betaCons_def
Globall_def Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
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(* For posteffect relation: *)
apply (simp add: traceOf_def p0 pl DbetaCons_def Globall_def Cons_def
FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed
qed

(* For enabled ( Globall.decide i v b) *)
theorem FGloball2Cons_trans_decide:

assumes
pO: "enablement_of Globall sGloball ( Globall.decide i v b)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 betaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.decide i v b)] betaCons"

proof (- )
(* Proof entry available x)
def DbetaCons — "[( Cons.decide i v)] :: Cons_action list"

show "7?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.decide i v b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO p1l)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def p0O pl betaCons_def
Globall_def Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: %)
apply (simp add: traceOf_def p0O pl betaCons_def Globall_def Cons_def
FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed
qed

(* For enabled ( Globall.makeBallot b) x)
theorem FGloball2Cons_trans_makeBallot:
assumes
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pO: "enablement_of Globall sGloball ( Globall.makeBallot b)"
and pl: " FGloball2Cons sGloball sCons"
and p2: "reachable Globall sGloball"
shows "3 DbetaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.makeBallot b)] betaCons"

proof (- )
(* Proof entry available x)
def DbetaCons — "[] :: Cons_action list"

show "7thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons sGloball
sCons [ ( Globall.makeBallot b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def
Globall_def Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def p0 pl DbetaCons_def Globall_def Cons_def
FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed
qed

(* For enabled ( Globall.abstain i B) *)
theorem FGloball2Cons_trans_abstain:

assumes
pO: "enablement_of Globall sGloball ( Globall.abstain i B)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 betaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.abstain i B)] betaCons"

proof (- )
(* Proof entry available x)
def ©betaCons — "[] :: Cons_action list"

show "7?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.abstain i B)] betaCons"
apply (simp add: correspExec_def)
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apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def p0O pl betaCons_def
Globall_def Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: %)
apply (simp add: traceOf_def p0O pl betaCons_def Globall_def Cons_def
FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed
qed

(* For enabled ( Globall.assignVal b v) x*)
theorem FGloball2Cons_trans_assignVal:

assumes
pO: "enablement_of Globall sGloball ( Globall.assignVal b v)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 betaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.assignVal b v)] betaCons"
proof (- )
(* Proof entry available x)
show "7thesis"
proof (cases "(—=(b € (Globall.succeeded sGloball)))")
{
(* True case *)
case True
def ©betaCons — "[] :: Cons_action list"
show "?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.assignVal b v)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def p0 pl DbetaCons_def Globall_def Cons_def
FGloball2Cons_def prems Let_def asig_internals_def Globall_asig_def
Cons_asig_def Globall_internal_def Cons_internal_def mapGloball_def
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(* For enablement: x*)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def p0 pl DbetaCons_def Globall_def Cons_def
FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed

(* Elseif case x*)

case False

show "7?thesis"

proof (cases "(3J b:: Ballot . ((b € (Globall.succeeded sGloball)) &
(=((sub (Globall.val sGloball) b) = nil))))")

{
(¥ True case *)
case True
def betaCons =— "[] :: Cons_action list"
show "7thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.assignVal b v)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO p1l)
apply (auto )
(* For trace equality: *)
apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)
(* For enablement: *)
apply (simp add: traceOf_def p0O pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
(* For posteffect relation: *)
apply (simp add: traceOf_def p0O pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)
done
qed
}
{

(* False case x)
case False
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def betaCons =— "[( Cons.chooseVal v)] :: Cons_action list"
show "7thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.assignVal b v)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO p1l)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def p0O pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def

Cons_effect_def Globall_state.make_def Cons_state.make_def)
done

qed
}
qed
}
qed
qed

(* For enabled ( Globall.vote i b) x)
theorem FGloball2Cons_trans_vote:

assumes
pO: "enablement_of Globall sGloball ( Globall.vote i b)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 DbetaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.vote i b)] betaCons"
proof (- )
(* Proof entry available x)
def betaCons — "[] :: Cons_action list"
show "7thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.vote i b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )
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(* For trace equality: *)
apply (simp add: traceOf_def p0 pl DbetaCons_def
Globall_def
Cons_def FGloball2Cons_def prems Let_def
asig_internals_def Globall_asig_def Cons_asig_def
Globall_internal_def Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def
Cons_effect_def Globall_state.make_def Cons_state.make_def)
done
qed
qed

(* For enabled ( Globall.internalDecide b) *)
theorem FGloball2Cons_trans_internalDecide:

assumes
pO: "enablement_of Globall sGloball ( Globall.internalDecide b)"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
shows "3 DbetaCons . correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.internalDecide b)] betaCons"
proof (- )
(* Proof entry available x)
show "?thesis"
proof (cases "(b € (Globall.succeeded sGloball))")
{
(* True case *)
case True
def ©betaCons — "[] :: Cons_action list"
show "?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.internalDecide b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO p1l)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def p0O pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)

(¥ For enablement: x*)
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apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def
Cons_effect_def Globall_state.make_def Cons_state.make_def)
done
qed

(* Elseif case x*)
case False
show "7?thesis"
proof (cases "((sub (Globall.val sGloball) b) = nil)")
{
(¥ True case *)
case True
def betaCons =— "[] :: Cons_action list"
show "7?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.internalDecide b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def
Cons_effect_def Globall_state.make_def Cons_state.make_def)
done
qed

(* Elseif case x)

case False

show "7?thesis"

proof (cases "(3 b:: Ballot . ((b € (Globall.succeeded sGloball)) &
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((sub (Globall.val sGlobalil) b) # nil)))")

(¥ True case *)
case True
def betaCons =— "[] :: Cons_action list"
show "?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball mapCons
sGloball sCons [ ( Globall.internalDecide b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: %)
apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

done

qed

(* False case x)
case False
def betaCons — "[( Cons.chooseVal (val (sub (Globall.val sGloball) b)))]
show "7?thesis"
proof (rule exI)
show "correspExec Globall Cons FGloball2Cons mapGloball
mapCons sGloball sCons [ ( Globall.internalDecide b)] betaCons"
apply (simp add: correspExec_def)
apply (insert pO pl)
apply (auto )

(* For trace equality: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Let_def asig_internals_def
Globall_asig_def Cons_asig_def Globall_internal_def
Cons_internal_def mapGloball_def mapCons_def)

(* For enablement: *)

apply (simp add: trace0f_def p0 pl DbetaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_enablement_def
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Cons_enablement_def Globall_effect_def Cons_effect_def
Globall_state.make_def Cons_state.make_def)

(* For posteffect relation: *)
apply (simp add: traceOf_def pO pl betaCons_def Globall_def
Cons_def FGloball2Cons_def prems Globall_effect_def
Cons_effect_def Globall_state.make_def Cons_state.make_def)
done
gqed

qed
X
qed

theorem FGloball2Cons_trans:

"isFwdSim_trans Globall Cons FGloball2Cons mapGloball mapCons"
proof (rule isFwdSim_transRule)
fix sGloball aGloball sCons

assume
pO: "enablement_of Globall sGloball aGloball"
and pl: " FGloball2Cons sGloball sCons"

and p2: "reachable Globall sGloball"
show "3 betaCons . correspExec Globall Cons FGloball2Cons
mapGloball mapCons sGloball sCons [ aGloball] betaCons"
apply (cases aGloball)
apply (insert prems)
apply (simp_all add: FGloball2Cons_trans_init)
apply (simp_all add: FGloball2Cons_trans_fail)
apply (simp_all add: FGloball2Cons_trans_decide)
apply (simp_all add: FGloball2Cons_trans_makeBallot)
apply (simp_all add: FGloball2Cons_trans_abstain)
apply (simp_all add: FGloball2Cons_trans_assignVal)
apply (simp_all add: FGloball2Cons_trans_vote)
apply (simp_all add: FGloball2Cons_trans_internalDecide)
done
qed
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