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Abstra
t

Theorem provers are notoriously hard to use be
ause of the amount of human intera
tion they require, but

they are important tools that 
an verify in�nite state distributed systems. We present a method to make

theorem-proving safety properties of distributed algorithms more produ
tive by redu
ing human intervention.

We model the algorithms as I/O automata, render the automata exe
utable, and analyze the test exe
utions

with dynami
 invariant dete
tion. The human work in using a theorem prover is redu
ed be
ause our

te
hnique provides two forms of assistan
e: lemmas generated by the dynami
 invariant dete
tion for use in

the prover; and prover s
ripts, or ta
ti
s, generated from our experien
e with the I/O automaton model and

the knowledge embedded in the test suite used for exe
ution. We test our te
hnique on three 
ase studies:

the Peterson 2-pro
ess mutual ex
lusion algorithm, a strong 
a
hing implementation of shared memory, and

Lamport's Paxos algorithm for distributed 
onsensus.

In the development and implementation of our method, we also improved the tools for formal veri�
ation

of I/O automata and for dynami
 invariant dete
tion. We des
ribe a new model for spe
ifying I/O automata

in the Isabelle theorem prover's logi
, and prove the soundness of a te
hnique for verifying invariants in

this model in the Isabelle prover. We develop methods for generating proofs of I/O automata for two

theorem provers, the Lar
h Prover and Isabelle/HOL. We show methods for exe
uting I/O automata for

testing, by allowing the exe
ution of some automata de�ned with universal and existential quanti�ers that

were previously non-exe
utable. Lastly, we present improvements to dynami
 invariant dete
tion in order

to make it more s
alable | in parti
ular, we show how to a
hieve eÆ
ient in
remental dynami
 invariant

dete
tion, where the dete
tion tool is only allowed to make one pass over its input exe
utions.
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Chapter 1

Introdu
tion

As we in
reasingly rely on 
omputers in our lives, the 
orre
tness of software systems on

these 
omputers be
omes 
ru
ial. The problem of demonstrating the 
orre
tness of software

is known as software veri�
ation. Verifying software is important be
ause it gives us 
on�-

den
e that our systems perform as designed and do not behave harmfully. The most diÆ
ult

software systems to verify are distributed, or 
on
urrent, ones: these 
ombine the 
om-

plexity of traditional, 
entralized software systems with the nondeterminism from pro
esses

interleaving their exe
utions.

There are many desirable attributes in software veri�
ation te
hniques. The te
hnique's


orre
tness guarantee should be as mathemati
ally formal as possible, so that its statement of


orre
tness is pre
ise and the system 
an be dis
ussed using the standard tools of mathemat-

i
s. Yet, the veri�
ation should not require extreme amounts of e�ort from the programmer.

The veri�
ation should also provide intuition regarding why the software system is in
orre
t.

Lastly, errors should be 
aught as early as possible in the design pro
ess in order to save

programmer time and minimize harm to the users who rely on the system.

Program analysis methods for veri�
ation 
an be 
lassi�ed into two 
ategories: stati


and dynami
 [JR00℄. Stati
 methods analyze a program without exe
uting it. A sound,


onservative stati
 method produ
es formal guarantees be
ause its results hold for all exe
u-

tions. However, verifying general 
orre
tness properties (i.e., those that go beyond relatively

simple properties like type 
orre
tness) for all exe
utions of a program is unde
idable. A

stati
 method that attempts to verify su
h general properties either restri
ts itself to par-

ti
ular 
lasses of programs or requires large amounts of human intera
tion. Thus, verifying


orre
tness with stati
 methods is an expensive operation in terms of programmer time for

any 
omplex system.

In 
ontrast, dynami
 analysis methods work operationally | that is, by examining exe-


utions. For a program with a large or in�nite set of exe
utions, a dynami
 analysis examines

only a subset of the exe
utions. The te
hnique is unsound if it attempts to generalize for

all exe
utions. Nevertheless, dynami
 analysis is useful be
ause it requires 
omparatively

little programmer time. The programmer merely needs to exe
ute the program on some test

suite, and pass the exe
ution data to the dynami
 analysis. Be
ause of this low time 
ost to

programmers, dynami
 analyses, su
h as testing, have proven useful in �nding errors qui
kly

and early in development.
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The primary purpose of this thesis is to present a methodology for verifying the 
orre
t-

ness of distributed algorithms that 
ombines the strengths of stati
 and dynami
 veri�
ation

te
hniques. Our method re�nes and integrates two formerly disjoint but useful te
hniques.

The �rst te
hnique formally models distributed algorithms as I/O automata [LT89℄ and

proves them 
orre
t using a theorem prover, a general-purpose stati
 veri�
ation tool. The

se
ond te
hnique, 
alled dynami
 invariant dete
tion [ECGN01b℄, takes in exe
ution tra
es

of a program and 
onje
tures possible properties about the program in general. Our method-

ology works as follows:

1. Formally model the algorithm as an I/O automaton. The I/O automaton model is a

mathemati
al way to des
ribe distributed algorithms as state ma
hines whose a
tions

are labeled.

2. Build a test suite, test the I/O automaton by exe
ution, and �x any errors that arise.

3. Analyze the exe
utions over the test suite using dynami
 invariant dete
tion to produ
e

a set of 
andidate invariants that are likely to be true for the automaton.

4. Prove the algorithm 
orre
t using a theorem prover. This is where the a
tual 
orre
t-

ness proof happens. Traditionally, programmers have found a theorem prover diÆ
ult

to use be
ause it is not automati
 and requires human input. We make using a the-

orem prover easier by providing automati
ally-generated input to the prover that 
an

redu
e the human input required. We do this in two ways. First, we develop a set of

ta
ti
s, or proof strategy programs, that 
an be used on all stru
tured indu
tive proofs

of I/O automata. Se
ond, some or all lemmas that are needed for proofs are provided

by dynami
 invariant dete
tion rather than by the programmer.

Steps 1, 2 and 4 require some human intera
tion, while step 3 is automati
. Part of

minimizing programmer e�ort in veri�
ation is redu
ing the human input in the pro
ess.

We des
ribe the trade o�s we make on this issue when we des
ribe our methodology in

detail.

We do not attempt verify all types of program properties, and fo
us on safety properties

of distributed systems. Safety properties ensure that in
orre
t or damaging behavior never

o

urs. We fo
us on safety properties be
ause they are the most important ones for ensuring


orre
tness.

In terms of tools to implement our method, we 
an 
urrently use two theorem provers

and one dynami
 invariant dete
tor. Our method is not fundamentally limited to these tools,

but these are the ones we have spent e�ort developing in order to support the method. The

Isabelle/HOL theorem prover is a supported tool be
ause of the breadth of its higher order

logi
 [Pau93℄. The Lar
h Prover [GG91℄ is supported be
ause of its already-tight integration

with the I/O automaton model [Bog00℄. On the dynami
 side, our method uses the Daikon

tool [ECGN01b℄ for dynami
 invariant dete
tion.

To more 
learly introdu
e our methodology, we �rst present ba
kground on formal mod-

eling of distributed algorithms and the issues of software veri�
ation. Thus, Chapter 2

introdu
es the I/O automaton model; the two major types of general-purpose stati
 veri�-


ation tools, model 
he
kers and theorem provers, and their 
apabilities; a basi
 overview of

10



dynami
 invariant dete
tion; and the types of program properties that we shall attempt to

verify. With this ba
kground, we des
ribe our methodology in Chapter 3. Chapter 4 shows

our method in operation on three 
ase studies: Peterson's two-pro
ess mutual ex
lusion al-

gorithm, a strong 
a
hing implementation of shared memory; and Lamport's Paxos proto
ol

for distributed 
onsensus.

In order to implement our method, it was ne
essary to enhan
e pre-existing tools for

veri�
ation and to develop ways to des
ribe the formal mathemati
al models we have in the

language of a 
omputer theorem prover. Chapter 5 shows how dynami
 invariant dete
tion


an be enhan
ed to make it more s
alable for larger and longer-running programs. The

primary fo
us is des
ribing an in
remental algorithm for analyzing exe
utions | one that

does not use up spa
e as the exe
ution length in
reases. Chapter 6 shows enhan
ements

to the IOA Simulator (interpreter) in to allow it to exe
ute more programs, so that these

programs 
an be analyzed via dynami
 invariant dete
tion. Chapter 7 des
ribes how a new

model was developed for I/O automata in the Isabelle theorem prover's language, to in
rease

automation in the veri�
ation pro
ess, and redu
e human involvement.

Finally, Chapter 8 suggests further resear
h and 
on
ludes.
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Chapter 2

Preliminaries and Ba
kground

This 
hapter presents a ba
kground on software veri�
ation and formal modeling of dis-

tributed algorithms in order to better understand our methodology for veri�
ation. We

dis
uss the strengths and weaknesses of the two main general stati
 veri�
ation te
hniques,

model 
he
king and theorem proving in Se
tions 2.1 and 2.2. In examining an analysis te
h-

nique, we are interested in three features: the degree of its automation, the expressivity or

limits of its logi
, and the variety of programs it 
an examine. We introdu
e the 
on
ept of

dynami
 invariant dete
tion in Se
tion 2.3.

In Se
tion 2.4 we introdu
e the I/O automaton model for distributed systems, the math-

emati
al basis for our work, and formally express our veri�
ation goals in this model in

Se
tion 2.5. We des
ribe alternative, related approa
hes to veri�
ation in Se
tion 2.7.

2.1 Theorem provers

A theorem prover is a tool that manipulates mathemati
al fa
ts given to it in order to prove

more fa
ts. Provers use logi
s of varying expressivity. For example, the Lar
h Prover (LP)

uses multi-sorted (i.e., expli
itly data typed) �rst order logi
, while the Isabelle/HOL system

uses higher order logi
 with ML syntax and typing. If an algorithm and its 
omputation

model 
an be expressed in the logi
 of a prover, then a user 
an use the prover to verify

properties of the algorithm.

In order to do this, the user has to de�ne for the prover a model of 
omputation and

the behavior of the algorithm. Then the user states the proof goals, or logi
al predi
ates

that he wishes to show. The prover then soundly manipulates mathemati
al fa
ts implied

by the de�nitions in order to prove the goal. The manipulations are 
alled proof methods

and 
an be 
hained into higher level manipulations 
alled proof ta
ti
s. For example, a proof

method in Isabelle/LP is proof by assumption/impli
ation. When the proof goal is of the

form A! B, the prover 
an be asked to assume that A holds, and to let B be the new proof

goal. On
e B is proven, the prover pops its proof sta
k and states that A ! B is true. A

simple proof ta
ti
 might spe
ify that the impli
ation method is applied whenever A and B

have 
ommon free variables. The de
ision to apply proof methods and ta
ti
s 
an be made

manually, automati
ally, or both, depending on the prover.

A sequen
e of proof methods and ta
ti
s that proves a goal is a proof s
ript or simply a
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proof. A prover that supports requires external input at every step is still useful for it 
an

be a tool for developing and 
he
king the 
orre
tness of a proof s
ript generated by hand or

by another tool.

Sin
e even �rst order logi
 is unde
idable, provers report failure both when the goal is

untrue, and when they 
annot prove the goal. If the goal is indeed true at this point, humans

have to step in and dire
t the prover somehow. This is why, traditionally, theorem provers

have been 
onsidered diÆ
ult to use by everyday programmers for software veri�
ation: they

are not automati
 and require humans to provide mu
h of the insight in proofs. Even the

most automati
 theorem provers only automate small steps using ta
ti
s.

In this thesis, we divide the human input into two varieties: lemmas and ta
ti
s. Ta
ti
s

tell the prover to use pre-existing fa
ts and proof methods to make progress on a proof.

Examples in
lude: simpli�
ation, 
ase analysis, assumption/impli
ation and indu
tion. They

are sear
hes on fa
ts known to the prover, a

ompanied by logi
al uni�
ation me
hanisms.

Some provers have built-in ta
ti
s that automati
ally attempt to apply themselves on proofs.

Lemmas add new fa
ts to the prover's knowledge base. Before proving a goal, for example,

it may be ne
essary to state and prove a lemma. For example, lemma A may be needed

to prove fa
t B. Or, to prove A ! B, it may be ne
essary to show A ! C and C ! B.

The sear
h for an appropriate C is a lemma input. In Se
tion 2.5 we show how lemmas are

used in proofs of distributed algorithms. Finding the right lemmas is mu
h more diÆ
ult

for a 
omputer than �nding the right ta
ti
s, for it is ne
essary to 
reate fa
ts that do not

yet exist, rather than merely sear
h on the prover's knowledge base. Theoreti
ally, a prover


ould also �nd these fa
ts by sear
hing on all possible synta
ti
al 
ombinations, but this

sear
h spa
e is enormous, and ea
h attempt at lemma would have to be veri�ed by a series

of ta
ti
s, or worse, more lemmas.

The su

ess of using a theorem prover depends on how mu
h of the above human input


an be eliminated. The key to our methodology in Se
tion 3 is the redu
tion of this human

input. The next two se
tions des
ribe in greater detail the two provers we shall use in our

method.

The Lar
h Prover

The Lar
h Prover [GG91℄ (LP) is an intera
tive theorem proving system for �rst-order logi
.

It admits spe
i�
ations of theories in the Lar
h Shared Language [GHG

+

93℄ (LSL). It is

strongly data typed, with de
lared types, and its type system permits polymorphi
 types,

su
h as Set[Int℄, a set of integers. It supports many intuitive proof methods, su
h as proof

by impli
ation and 
ontradi
tion. However, it does not support the 
reation of new proof

methods, only the 
reation of new lemmas whi
h 
an be applied using the built-in proof

methods.

As an example, we show a proof of the syllogism rule, (a ) b) ^ (b ) 
) ) (a ) 
), in

LP in Figure 2-1. We dire
t LP to perform an exhaustive sear
h on the values of a and b,

via 
ase analysis, and LP su

eeds.

The underlying data stru
tures of the IOA language (des
ribed in Se
tion 2.6) are based

on LP data libraries, so translating between the two domains is relatively straightforward.

Further, this means that any data stru
tures used in IOA already have LSL spe
i�
ations
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% De
lare variables and types

de
lare variable a, b, 
 : Bool

% The goal

prove (a ) b) ^ (b ) 
) ) (a ) 
)

% Proof method: by 
ases

resume by 
ases a = True, a = False

% LP says:

% Creating subgoals for proof by 
ases

% New 
onstant: a


% Case hypotheses:

% userCaseHyp.1.1: a


% userCaseHyp.1.2: :a


% Same subgoal for all 
ases:

% (a
 ) b) ^ (b ) 
) ) (a
 ) 
)

% Again follow by 
ases

resume by 
ases b = True, b = False

% LP says:

%% Creating subgoals for proof by 
ases

%% New 
onstant: b


%% Case hypotheses:

%% userCaseHyp.2.1: b


%% userCaseHyp.2.2: :b


%% Same subgoal for all 
ases:

%% b
 ^ (b
 ) 
) ) 


%% Attempting to prove level 3 subgoal for 
ase 1 (out of 2)

%% Added hypothesis userCaseHyp.2.1 to the system.

%% Level 3 subgoal for 
ase 1 (out of 2)

%% [℄ Proved by normalization.

%% Attempting to prove level 3 subgoal for 
ase 2 (out of 2)

%% Added hypothesis userCaseHyp.2.2 to the system.

%% Level 3 subgoal for 
ase 2 (out of 2)

%% [℄ Proved by normalization.

%% Level 2 subgoal for 
ase 1 (out of 2)

%% [℄ Proved by 
ases b.

...

%% Conje
ture user.2: (a ) b) ^ (b ) 
) ) (a ) 
)

%% [℄ Proved by 
ases a.

Figure 2-1: A proof of syllogism in LP.
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theorem syllogism: "a =) b & b =) 
 =) a =) 
"

(* goal (theorem (syllogism), 1 subgoal): *)

(* [ j a; b & b; 
; a j ℄ =) 
 *)

(* 1. [ j a; b & b; 
; a j ℄ =) 
 *)

apply (
ases "a")

(* goal (theorem (syllogism), 2 subgoals): *)

(* [ j a; b & b; 
; a j ℄ =) 
 *)

(* 1. [ j a; b & b; 
; a; a j ℄ =) 
 *)

(* 2. [ j a; b & b; 
; a; : a j ℄ =) 
 *)

apply (
ases "b")

(* goal (theorem (syllogism), 3 subgoals): *)

(* [ j a; b & b; 
; a j ℄ =) 
 *)

(* 1. [ j a; b & b; 
; a; a; b j ℄ =) 
 *)

(* 2. [ j a; b & b; 
; a; a; : b j ℄ =) 
 *)

(* 3. [ j a; b & b; 
; a; : a j ℄ =) 
 *)

apply (simp_all)

(* goal (theorem (syllogism)): *)

(* [ j a; b & b; 
; a j ℄ =) 
 *)

(* No subgoals! *)

done

Figure 2-2: A proof of syllogism by 
ases in Isabelle.

generated for the prover.

The Isabelle/HOL system

The Isabelle/HOL system [Pau93, Gor89℄ is a 
ombination of two parts. The Isabelle system

is an intera
tive theorem prover that veri�es logi
al statements given to it. Isabelle 
an

operate with any given logi
, when the logi
 is spe
i�ed in its \meta-language". The logi
 we


hose to use for our methodology is HOL, or higher-order logi
. Unlike �rst-order logi
, HOL

allows fun
tions to be �rst-
lass values | i.e., values that 
an be passed as parameters to

fun
tions and returned. HOL also allows quanti�
ation on fun
tions. The advantage of using

higher-order logi
 is twofold. First, the prover 
an be used to prove fa
ts about fun
tions.

For example, we 
an show that a given predi
ate is an invariant. Se
ond, HOL 
an be used

to prove meta-theory, or theory about proof methods. This is useful for veri�
ation be
ause

it proves that the methods used to verify systems are themselves sound.

Isabelle's syntax is an augmented version of ML. Logi
al formulae are stated in ML,

using the language's type system (and syntax), but the syntax is augmented to allow for

the stating of quanti�ers. The 
ommands to 
ontrol the prover are written in very simple

syntax. The ML logi
al formulae are written in quotes as arguments to these 
ommands. A

proof of syllogism in Isabelle is shown in Figure 2-2. At the end of the proof, we invoke the

simp all proof ta
ti
, whi
h invokes a built-in simpli�er.
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Isabelle/HOL supports the addition of new proof methods and ta
ti
s, both in its lan-

guage and in ML, the implementation language of the prover. In the latter, Isabelle 
an

be used as a standard programming language, so the user 
an potentially 
reate powerful

ta
ti
s.

Isabelle/HOL also has a relatively large user 
ommunity, and its data libraries are more

extensive. However, the Isabelle data stru
ture libraries do not dire
tly mat
h the ones in

IOA, so any IOA data stru
tures need to be manually translated for Isabelle.

2.2 Model 
he
kers

Model 
he
kers are a possible alternative veri�
ation method. Model 
he
kers examine the

entire rea
hable state spa
e of a program to determine if a property holds. They work in a

variety of non temporal and propositional temporal logi
s [CGP99℄ and are fully automated

provided the user knows the property to verify. Their main limit is that by having to examine

all rea
hable states, their performan
e 
an su�er drasti
ally for systems with large state

spa
es, and they do not work for in�nite state systems if soundness is to be preserved. For


on
urrent systems, models 
he
kers have to examine all interleavings of exe
utions, and their

runtime in
reases exponentially with the number of pro
esses unless 
lever optimizations are

done.

Model 
he
ker designers have 
ome up with some ways to over
ome the large/in�nite state

spa
e problem. By using 
lever data stru
tures su
h as binary de
ision diagrams, large state

spa
es 
an be 
he
ked qui
kly (log time) for most programs humans would write [CGP99℄.

However, there are programs for whi
h this te
hnique does not work. For an in�nite state

system, model 
he
kers are used to 
he
k �nite state abstra
tions of the system, but human

work is involved in formulating and proving the 
on
rete to abstra
t mapping. Se
tion 2.7.1

dis
usses te
hniques related to model 
he
king using this abstra
tion and how it relates to

our work.

2.3 Dynami
 invariant dete
tion

The Daikon invariant dete
tor [ECGN01a℄ proposes properties that are likely to be true

throughout a program's exe
ution. Daikon operates dynami
ally by examining values 
om-

puted during exe
ution and generalizing over those values. Its output is in the form of

invariants over a grammar on the program's variables. Initially, Daikon 
onje
tures that all

properties in its grammar are true on the program. Then Daikon examines the exe
ution

data and deletes any invariants that are 
ontradi
ted by the data. Finally, Daikon uses stati


analysis and statisti
al tests to redu
e the number of false positives by eliminating some of

the remaining invariants [ECGN00℄. When used in 
onjun
tion with the IOA interpreter,

Daikon expresses this formal spe
i�
ation in IOA as an invariant of the exe
uted automaton.

Dynami
 dete
tion of invariants is unsound, be
ause there is no guarantee that the test

suite used to generate exe
ution tra
es fully 
hara
terizes the exe
ution environment. In

pra
ti
e, the reported properties are usually true and are generally helpful in expli
ating the

system under test and/or its test suite. Furthermore, the method des
ribed in this paper
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does not rely on unproven lemmas; rather, it uses Daikon to suggest lemmas and a theorem

prover to prove whi
hever of these lemmas it 
an and then to use those lemmas in a larger

proof.

Daikon produ
es output in the form of a formal spe
i�
ation that often mat
hes what a

human would have written [ECGN00, NE02b℄. Even when Daikon was given inadequate test

suites in order to arti�
ially degrade its output, it still improved programmer performan
e

(to a statisti
ally signi�
ant degree) on a program veri�
ation task [NE02
℄.

Nimmer and Ernst [NE02b℄ have also used dynami
 analysis from Daikon to help stati


analysis in the ESC/Java tool. Their primary goal was to extra
t and verify Java program

spe
i�
ations rather than verifying safety properties in �rst order logi
 about distributed

algorithms. Gro
e et al. [Gro02℄ are attempting to use model 
he
kers on programs to

generate test output for dynami
 invariant dete
tion with the Daikon tool, rather than

exe
uting the programs themselves.

2.4 I/O automata

I/O automata [LT89℄ have been used to model a variety of distributed systems [GL00a℄.

I/O automata are (possibly in�nite, nondeterministi
) state ma
hines in whi
h transitions

between states are asso
iated with named a
tions. A
tions are 
lassi�ed as either input,

output, or internal. The inputs and outputs are external a
tions used for 
ommuni
ation

with the automaton's environment; internal a
tions are visible only to the automaton itself.

An automaton 
ontrols whi
h output and internal a
tions it performs, but input a
tions

are not under its 
ontrol. A
tions 
an be parametrized. An I/O automaton 
onsists of its

signature, whi
h lists its a
tions; a set of states, some of whi
h are distinguished as start

states; a state-transition relation, whi
h 
ontains triples of the form (state, a
tion, state);

and an optional set of tasks.

A
tion � is enabled in state s if there is a state s

0

su
h that (s; �; s

0

) is a transition of the

automaton. Input a
tions are enabled in every state. The operation of an I/O automaton

is des
ribed by an exe
ution � = s

0

; a

1

; s

1

; : : :, whi
h is an alternating sequen
es of states

and a
tions that is valid with respe
t to the automaton's transitions. The exe
utions of an

automaton are the set of all su
h sequen
es. A tra
e � of an exe
ution � is its proje
tion

su
h that states and internal a
tions are removed. The tra
es of an automaton determine,

therefore, its external behavior.

Program properties or spe
i�
ations are des
ribed formally in terms of automaton tra
es.

A property is de�ned by the set of tra
es it admits. For example, property P might require

an automaton to only �re a parti
ular a
tion a(n) where n is an even integer. In this 
ase,

P is the set of all tra
es 
ontaining only even invo
ations of a. An automaton obeys a given

property P if its tra
es are a subset of P .

2.5 Program properties

Every property of a program tra
e 
an be written as an interse
tion of a safety and a liveness

property [AS87℄. Informally, a safety property is one where \nothing bad happens", while
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a liveness property is one where \something good eventually happens", ensuring that the

program makes progress during its exe
ution.

Formally, a tra
e property (a set of tra
es, or alternatively, a predi
ate on tra
es) P is a

safety property if:

� P 
ontains the empty tra
e, and

� If � is in P , then any �nite pre�x �

0

� � is in P .

If a tra
e does not satisfy a safety property, then we 
an �nd the exa
t pla
e where the

property was violated with the above de�nition.

Formally, P is a liveness property if:

� For any � there exists an extension �

0

of � su
h that �

0

is in P.

In our veri�
ation methodology, we do not attempt verify all types of program properties,

but fo
us on safety properties of distributed algorithms that 
an be des
ribed either by

invariant assertions or by a forward simulation relations. We do this be
ause our tools

allow these two demonstrations of safety to be veri�ed, and be
ause liveness properties are

not as important for algorithm 
orre
tness.

The next two se
tions show how safety properties apply to I/O automata.

2.5.1 Forward simulation relation

The purpose of a forward simulation relation is to relate two automata, a spe
i�
ation au-

tomaton and an implementation automaton, and to show that the latter implements the

behavior of the former. If the spe
i�
ation automaton is known to behave safely, then so

will the implementation automaton, and the implementation will be veri�ed.

Formally, an automaton A is de�ned to implement a spe
i�
ation automaton B if

tra
es(A) � tra
es(B). A forward simulation relation [LV95b℄ is suÆ
ient (but not ne
es-

sary) to show this implementation. A forward simulation relation f on the states of B and

A satis�es the two following two 
onditions:

� For all s 2 starts(A), there exists u 2 starts(B) su
h that f(s; u).

� For all (s; a; s

0

) 2 trans(A) and for all u su
h that f(s; u), there exists an exe
ution

� 2 exe
s(B) with �nal state u

0

su
h that: tra
e(�) = tra
e(a) and f(s

0

; u

0

).

For ea
h exe
ution � of A, the above requirement allows us to 
hoose an exe
ution � of B

that starts and transitions properly. The su

essive re�nement method uses multiple levels

of automata are used to show that a 
on
rete implementation implements a spe
i�
ation

automaton.
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2.5.2 Invariant assertion

An invariant assertion is simply a statement that the rea
hable states of an I/O automaton

obey a given predi
ate. These assertions apply to states and not to a
tions. To prove that

an automaton obeys an invariant I, it is ne
essary to show two things:

� For all s 2 starts(A), I(s).

� For all (s; a; s

0

) 2 trans(A), I(s)! I(s

0

).

Invariants are used in three ways. First, it is sometimes 
onvenient to spe
ify program

properties using an invariant rather than a spe
i�
ation automaton. Se
ond, invariants may

be needed to show a simulation relation | in the simulation proof, the invariant is used as

a lemma. Third, invariants may be needed to prove other invariants.

We 
an formalize and prove many safety properties as implementation relations or in-

variants. In the next two se
tions, we examine possible methods to verify other property

types.

2.5.3 Liveness

Liveness properties are used to show that a system makes eventual progress towards a goal.

A liveness property is either stated expli
itly in temporal logi
, or relies on the underlying

model to provide the temporal framework and is spe
i�ed in terms of the model. For an

example of the latter, the I/O automaton framework allows for a set of task partitions, or

sets of a
tions su
h that a parti
ular set of �rings determine a fair exe
ution. From these

fair exe
utions, whi
h are simple liveness properties, the designer 
an argue more 
omplex

liveness properties.

Live I/O automata [SGSAL98℄ are a more general way to spe
ify liveness. They allow

arbitrary temporal formulae (spe
i�ed as a set of a

eptable tra
es) for liveness properties,

with the only restri
tion being that the properties remain satis�able for all inputs. Unfortu-

nately, traditional simulation relations, whi
h show that one automaton implements another,

do not work for live I/O automata. This is be
ause a simulation relation shows that ea
h

of the implementation automaton's tra
es are a subset of all the tra
es of the spe
i�
ation

automaton, while the liveness requirements restri
t the 
orre
t tra
es of the spe
i�
ation

automaton to a spe
i�
 subset.

However, Attie [Att99℄ has a way of spe
ifying liveness that lends itself to formal veri�
a-

tion by simulation relation. Intuitively, the live tra
es of an implementation will be a subset

of the live tra
es of the spe
i�
ation. In his method, liveness properties must be spe
i�ed as

pairs of predi
ates hA;Bi on the automaton state, su
h that the following temporal holds:

2 � (A! 2 �B)

This reads \in�nitely often, it is true that an o

urren
e of the property A leads to an

in�nitely often o

urren
e of the property B". Thus, the temporal framework is en
apsulated

entirely in the model, and the designer only has to work with the �rst order logi
 of the

predi
ates. With this spe
ial form of liveness, Attie has developed a formal theory of \liveness

preserving simulation relations", an extension of forward simulation relations for liveness.
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2.5.4 Other safety properties

Our method requires safety properties to either be invariant assertions or re�nement map-

pings, so it may leave out a few safety properties, espe
ially the ones relating to adja
ent

sets of states. For example, neither invariants nor simulation relations 
an dire
tly say that

an a
tion �

1

is never followed by another a
tion �

2

. However, there are easy ways to rewrite

all su
h safety de�nitions into either invariant assertions or re�nements, with the addition

of history state variables [LV95a℄. In the 
ase of this example, a 
ag 
ould be set whenever

�

1

is exe
uted, and the invariant 
ould be \�

2

is never enabled if flag is on".

2.6 The IOA language

The IOA language [GL00a℄ provides notations for des
ribing I/O automata and for stating

their properties; it uses Lar
h Shared Language [GHG

+

93℄ spe
i�
ations to axiomatize the

semanti
s of I/O automata and the data types used to des
ribe algorithms. In IOA, transition

relations are de�ned in terms of pre
onditions and e�e
ts. These 
an be written either in

an imperative style (as a sequen
e of assignment, 
onditional, and loop statements), or in

de
larative style (as a predi
ate relating state variables in the pre- and post-states, transition

parameters, and other nondeterministi
ally 
hosen parameters). It is also possible to use a


ombination of these two styles.

Nondeterminism appears in IOA in two ways: expli
itly, in the form of 
hoose 
onstru
ts

in state variable initializations and the e�e
ts of the transition de�nitions, and impli
itly, in

the form of a
tion s
heduling un
ertainty. Nondeterminism allows systems to be des
ribed in

their most general forms and to be veri�ed 
onsidering all possible behaviors without being

tied to a parti
ular implementation of a system design.

Tools in IOA in
lude a 
he
ker for well-formedness of automata (e.g., input a
tions are

always enabled), a Simulator (interpreter) [KCD

+

02℄, and a translator from IOA to the

theorem proving language of the Lar
h Prover [BGL02℄.

We use the I/O automaton model and the IOA language for our veri�
ation methodology

for many reasons. First, the model has proven useful in des
ribing many existing systems

and algorithms [GL00a℄. Se
ond, we 
an use the existing tool that translates IOA [Bog00℄

into the �rst order language of the theorem prover LP, and adapt it to generate proof

ta
ti
s. We 
an also retarget the tool to generate and the other provers. Many proofs of

distributed algorithms have already been done with LP [BGL02℄. There is also already

a model for the semanti
s of I/O automata in Isabelle [M�ul98℄ and Luhrs has 
reated a

design for a tool to translate IOA to Isabelle [Luh02℄. Third, an IOA program is exe
utable

after some modi�
ations and the exe
utions 
an be used in dynami
 analysis. With various

enhan
ements, the IOA Simulator 
an produ
e data the is useful for the Daikon tool to

examine [NE02a℄.
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2.7 Related work

In the next two se
tions, we dis
uss methods developed to improve the range of systems that


an be veri�ed by a model 
he
ker. The �rst is abstra
tion, a means to map a large state

spa
e into a smaller state spa
e for model 
he
king. The se
ond is a veri�
ation method for

a restri
ted 
lass of systems 
alled parametrized systems.

2.7.1 Abstra
tion

Abstra
tion [CC77a℄ has been in
reasingly used by the model 
he
king 
ommunity [Pod03℄ in

order to deal with both the (�nite) state spa
e explosion and the in�nite state spa
e problem.

In this se
tion, we examine the possible approa
hes and limitations to using abstra
tion and

model 
he
king for the I/O automaton model. We also des
ribe our work in the terminology

of abstra
t interpretation for 
omparison.

Abstra
tion is mapping a 
on
rete state spa
e to an abstra
t state spa
e, a way to

formalize and make sound the approximation of a model. model that may yield useful

information. This mapping is most useful when it is from in�nite to �nite spa
e, and the

model 
he
king on the abstra
t spa
e produ
ed veri�es the 
on
rete spa
e. Given a �nite

property, there exists an abstra
tion that maps an in�nite state spa
e to a �nite one that

represents the property. However, it is unde
idable to a
tually dedu
e the right abstra
tion,

and the �nite spa
e might still be too large.

A predi
ate abstra
tion is a parti
ular abstra
tion mapping 
on
rete state spa
e to

boolean variables. It is equivalent to an invariant. The mapping fun
tion is thus predi
ates

on 
on
rete variables, like x < y. In theory, for any property, there exists an abstra
tion

su
h that any model 
an be mapped to two states | i.e., a predi
ate abstra
tion 
an be

suÆ
ient for model 
he
king, where one state is \good" and another is \bad" and we just

show that \bad" is not rea
hable from the start states of an automaton. All transitions from

\good" never go to \bad", and this is easy to 
he
k be
ause the abstra
tion has done all the

work [Pod03℄.

However, �nding the right predi
ate abstra
tion is also unde
idable and diÆ
ult for

humans to do. A predi
ate I on the 
on
rete state s must have the following three properties

to be useful for veri�
ation:

� 8

state

I(state)) good(state). I implies the property to be proved.

� 8

state2start

I(state). I holds on the start.

� 8

state;state

0

(I(state) ^ transition(state; state

0

)) I(state

0

). I is \indu
tive". That is, if

we know that I holds on a pre state, then I is suÆ
ient to prove that I holds under

any transition to a post state.

The key to su

essful veri�
ation with abstra
tion is to dis
over the indu
tive invariant

I. Note that I is usually a 
onjun
tion of many invariants. Methods in
lude \widening"

where I is weakened at every step until it is indu
tive [CC92℄, or heuristi
s su
h as ab-

stra
tions by \o
tagons" saying that the values of x and y are within an o
tagonal region
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when graphed [Min01℄. In this sense, our methodology, whi
h also attempts to �nd suitable

invariants for veri�
ation, is not that di�erent from the e�orts of resear
hers of abstra
tion.

However, our work di�ers in the way we dis
over these invariants and how we verify that

they imply the \good" property. We dis
over invariants through exe
ution rather than a

stati
 methodology like widening. The grammar of our invariants is also wider. Presently,

those who are pra
ti
ing automati
ally generating abstra
tions for veri�
ation seem to be

restri
ting themselves to arithmeti
 on integers [Pod03℄ and say nothing, for example, about

subset in
lusion on unbounded sets. In some 
ases, the useful abstra
tions must be generated

by hand. Sin
e our method uses a theorem prover rather than a model 
he
ker, it may require

more manual intervention to verify that an invariant I obeys the three properties. However,

we 
an make progress when the invariant is not quite suÆ
ient for veri�
ation pre
isely

be
ause of the ability to manually intervene.

2.7.2 Verifying parameterized systems

A parametrized system is an unbounded array of �nite state automata that only perform


ommuni
ation with their neighbors. A parametrized system is still an in�nite state system,

but its in�nity is only in the number of parti
ipating pro
esses.

One parti
ular model 
he
king te
hnique, 
alled \invisible invariants" by Pnueli, et

al. [PRZ01℄, allows a restri
ted 
lass of parametrized systems to be model 
he
ked for a


ertain 
lass of properties. By model 
he
king a 
ertain (
omputable) number of these au-

tomata, the result holds for all the automata. For example, they model 
he
k 5 automata

in a solution to the Dining Philosopher's Algorithm to show that the solution holds for an

unbounded system.

Intuitively, the method restri
ts itself to properties that are lo
al | related to a handful

of automata intera
ting next to ea
h other, rather than the global system. Further, the

individual automata not only have to be �nite state, but limited in fun
tion. The exa
t

limit has not yet been formalized. An example may provide some intuition, however: the

individual automata 
annot a
t as 
ells on a Turing ma
hine tape, whereby they simulate

the Turing ma
hine by passing messages ba
k and forth. Otherwise, a veri�
ation of su
h a

parametrized system would be able to tell if the Turing ma
hine halts.

Further, many distributed algorithms have state variables that are unbounded, in ad-

dition to having an unbounded number of pro
esses. For example, Lamport's Bakery al-

gorithm [Lam74℄ requires ea
h pro
ess to have an unbounded integer 
ounter. For these

systems, model 
he
king has no answer so far. Thus we fo
us our work on theorem provers

alone in terms of stati
 veri�
ation tools.
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Chapter 3

Methodology

This se
tion des
ribes in detail our intended method for verifying distributed algorithms

using a 
ombination of formal modeling, dynami
 analysis and theorem proving. Re
all that

properties for I/O automata 
an be stated either as invariant assertions or as spe
i�
ation

automata. We use a slightly di�erent approa
h for properties stated as invariants versus

properties stated via spe
i�
ation automata, but the �rst three steps are the same. Further,

note that ea
h invariant needed for veri�
ation by simulation relation 
an use the version of

our method for invariants.

Our method, outlined in Figure 3-1, is summarized by four steps:

1. Model the algorithm as an I/O automaton.

2. Render the nondeterministi
 and de
laratively spe
i�ed I/O automaton into IOA pro-

grams that are imperatively exe
utable. In the 
ase of veri�
ation by simulation rela-

tion, we only need to rewrite the implementation automaton. Exe
ute the automaton

(automata) using a simple test strategy, and �x any errors that may arise, until what

the programmer believes are 
orre
t exe
utions are produ
ed.

3. Analyze the exe
utions using dynami
 invariant dete
tion to produ
e a set of invariants.

4. Translate all automata into the language of a theorem prover, and verify the safety

properties, with assistan
e from: the Daikon invariants as lemmas; ta
ti
s and proof

stru
ture from the translation tool.

3.1 Spe
ifying algorithms as I/O automata

The �rst step in using our method for verifying a system is to de�ne it as an I/O automaton.

This means that an algorithm should be 
onverted into a state ma
hine with ea
h atomi


step being a transition. Many algorithms have been modeled as I/O automata [PPG

+

96,

SAGG

+

93a, GL00b℄ and we do not delve deeper into how the 
onversion happens. The �nal

result is an I/O automaton that is a mathemati
al spe
i�
ation for an algorithm.

Now, the de�nition of safety properties 
an be done in two ways. Often, it is suÆ
ient

to simply state an invariant on behavior, su
h as with the Peterson 
ase study used in
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Figure 3-1: An overview of our method. We verify program properties with help from

dynami
 invariant dete
tion and proof s
ripts generated by our IOA to prover translators.

Chapter 4.1. Veri�
ation by invariants is supported by our method. Otherwise, the user

may prefer to state safety properties as another I/O automaton [LV95a℄. In this 
ase, the

user should spe
ify the 
orre
t behavior in terms of a spe
i�
ation automaton and veri�
ation

shall happen by forward simulation, whi
h is another method we support. The user also has

to spe
ify the forward simulation relation.

3.2 Exe
uting automata

The se
ond step in using our method to verify an automaton is to test its behavior through

exe
ution. The IOA Simulator simulates (on a single 
omputer) exe
ution of an I/O au-

tomaton, allowing the user to help sele
t the exe
utions and to propose invariants for the

interpreter to 
he
k.

Converting I/O automata into exe
utable IOA 
ode involves two steps: writing the au-

tomata in the IOA language, and resolving nondeterminism by s
heduling. Afterward, the

IOA Simulator exe
utes the program and writes exe
ution data (the 
on
rete representation

of interleaved states and a
tions) to a �le.

The former is ne
essary and relatively trivial: the IOA Toolkit supports a useful but

limited set of data type libraries written in LSL, and the spe
i�ed I/O automaton must

be written in terms of these libraries. Other tools like the IOA Composer provide the


onvenien
e of having to write only one automaton and being able to form a system of

inter
onne
ted automata using this automaton as a template.

The latter requires work: we must write determiners [Che98, RR00℄ that 
hoose between

nondeterministi
 steps an automaton 
an take. When verifying by simulation relation, this

is only ne
essary for implementation automata. The primary pla
e for this is in s
heduling

whi
h transition �res next among those that are enabled. The IOA language allows us to

append a small program, 
alled a s
hedule blo
k, at the end of the automaton de�nition

to perform this s
heduling. The s
hedule blo
k not only sele
ts whi
h transition to per-

form using a language very similar to IOA

1

but also sele
ts whi
h parameters to supply to

1

It is essentially the same semanti
s as the eff 
ode of IOA, ex
ept it only allows imperative 
ode.
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the transition. Additionally, where the IOA language allows nondeterministi
 
hoi
e using


hoose terms within eff blo
ks, determiners have to be supplied to 
hoose a spe
i�
 
hoi
e.

It is not ne
essary that a s
heduled IOA program is purely deterministi
 - s
hedule blo
ks


an use expli
it 
alls to randomization fun
tions.

Be
ause transitions have parameters and be
ause their pre
onditions are in �rst-order

logi
, it is generally unde
idable to automati
ally s
hedule transitions. However, it is still

useful to develop methods that either automati
ally s
hedule for some types of transitions, or

ways to write s
hedule blo
ks that approximate fair (or other desired) s
heduling te
hniques.

A 
ommon s
hedule te
hnique used in our 
ase studies is as follows: pi
k a node at random,

�nd whi
h a
tions the node 
an take and perform one of these a
tions. Usually, a parti
ular

node's 
hoi
e of a
tions is limited to one.

It is important to note why we want a s
hedule that exhibits all the interesting behavior

of a program: exe
utions are the sour
e of data for dynami
 invariant dete
tion to examine.

Although not all possible exe
utions have to be seen (this would amount to a very slow form

of model 
he
king), it is desirable to 
reate representative transition steps. The key insight

here is that the s
hedule blo
k 
an be seen as a test suite from the perspe
tive of dynami


analysis.

3.3 Dynami
 invariant dete
tion

Verifying safety properties often depends on invariants and on auxiliary lemmas. Ma
hine

veri�
ation requires that su
h lemmas be stated and proved expli
itly, even if they seem

like bookkeeping details to the user. Hen
e, the third step in our method is to generate


andidate invariants and lemmas automati
ally by using dynami
 invariant dete
tion to

analyze exe
ution data from the IOA Simulator.

After exe
ution data is generated from the Simulator, it is given to the Daikon tool to

perform this dynami
 invariant dete
tion. Tool support for this data 
onversion was initially

developed by Dean and Santos [Dea00, NS01℄ and further extensions are shown in Se
tion 6.3.

Daikon generates 
onje
tures (in �rst-order logi
) that are valid IOA syntax in the form of

invariants. These invariants are appended to the automaton, to be used in the next step of

our method.

If any unusual behavior is seen by Daikon at this point, as with the Peterson 
ase study

in Se
tion 4.1, it is an early opportunity to �x the algorithm or its implementation in IOA.

This feedba
k loop of writing of 
ode and dynami
 analysis, often in
luding the addition of

more test suites, 
an happen until the user is satis�ed that what is reported by the dynami


invariant dete
tor is not unexpe
ted behavior.

Three potential problems with this third step are that the lemmas it produ
es may be

unsound, in
omplete, or not very useful. Despite these potential pitfalls, this step tends

to perform well in pra
ti
e as shown by our 
ase studies and others [NE02b, NE02
℄. We

dis
uss how to 
ope with the three potential problems.

Soundness Dynami
 invariant dete
tion is unsound: reported properties are true over the

test suite, but there is no guarantee that the test suite fully 
hara
terizes the exe
ution
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environment of the program. This does not hinder us, for two reasons. First, we use all

of the dynami
ally dete
ted invariants to help in proposing, understanding, and verifying

program properties, but we use a theorem prover to ensure that the lemmas we use in proofs

are sound. Se
ond, most of the output in our 
ase studies were 
orre
t, and those that were

not were easily 
orre
ted artifa
ts of the test suite (exe
ution s
heduling). In general, simply


overing every interesting aspe
t of ea
h a
tion seems to be adequate.

Completeness Dynami
 invariant dete
tion is in
omplete: the proposed invariants may

be insuÆ
ient for veri�
ation, be
ause some true invariants are not reported. Daikon restri
ts

the set of invariants it 
he
ks for two reasons: to 
onserve runtime and, more importantly,

to redu
e the number of false positives that it reports (the more properties it 
he
ks, the

larger the number of false or non-useful properties it will report).

Sometimes, as in our Paxos 
ase study, dynami
 invariant dete
tion may report an invari-

ant that is not provable in isolation | another invariant may be ne
essary but not dete
ted.

In other words, dynami
 invariant dete
tion 
an postulate a useful property whose proof is


ompli
ated. This ability to de
ompose a proof into parts demonstrates a strength of our

te
hnique: it is easy to 
he
k properties dynami
ally, even if they have 
ompli
ated proofs

that are beyond the 
apabilities of 
ompletely automati
 stati
 tools.

Usefulness Third, some reported properties may be true but not useful. Daikon uses

heuristi
s to prune useless fa
ts, for instan
e, by limiting output based on variable types.

However, it is impossible for a tool to know what a human will �nd desirable in a given

situation. In pra
ti
e, we �nd that it is easy for humans to sele
t the useful invariants and to

pass over the uninteresting ones|and examining them helped us solidify our understanding

of the algorithm and the implementation. Thus, a moderate amount of extra information

does not distra
t or disable users.

Similarly, the reported properties may be more than are really needed: a proof a

epted

by a theorem prover may use more invariants than are stri
tly ne
essary, thus obs
uring

the essential argument. We believe it is better to �rst obtain a working, ma
hine-veri�ed

proof, and then to simplify it. Possibly automating this task (following Rintanen [Rin00℄ by

iterating unto a minimal �x-point of invariants) is presented as future work in Se
tion 8.1.

We did not have to perform su
h a redu
tion in our 
ase study. This �nding a

ords with

other user studies of runtime analysis [NE02
℄, where the output from dynami
 invariant

dete
tion was able to help verify the absen
e of 
ertain runtime errors.

3.4 Paired exe
ution

The se
ond step in our method, exe
ution, is also appropriate when attempting to verify a

simulation relation. As noted in Se
tion 3.2, the IOA simulator 
an help users formulate and

test the validity of a forward simulation relation, prior to su
h a veri�
ation. In this se
tion,

we dis
uss how a s
hedule and other information 
an help in exe
uting paired automata,

while the IOA simulator tests the 
onditions of the relation. This s
heduling will later be

useful in guiding veri�
ation.
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A forward simulation relation is a predi
ate that relates the states of two automata

(see the de�nition in Se
tion 2.5.1). Paired exe
ution requires su
h a 
orresponden
e to

resolve nondeterminism. Usually, the designer of an implementation has an idea of the step


orresponden
e. The IOA toolkit allows the designer to annotate the program with this


orresponden
e.

The proof blo
k in Figure 3-2 des
ribes a step 
orresponden
e for use in testing a sim-

ulation relation. The 
ode is from the Paxos 
ase study in Se
tion 4.3.6 but we examine

only the syntax here. With a proof blo
k, the paired simulator 
an exe
ute the spe
i�
a-

tion automaton in lo
kstep with the implementation automaton. The proof blo
k 
ontains

two sub-blo
ks, 
orresponding to the two 
onditions required for a simulation relation (Se
-

tion 2.5.1). The �rst sub-blo
k, started by initially, shows how to start the spe
i�
ation

automaton.

2

The se
ond sub-blo
k 
ontains an entry for ea
h a
tion of the implementation

automaton; this entry provides an algorithm for produ
ing an exe
ution fragment of the

spe
i�
ation automaton. Synta
ti
ally, ea
h entry uses �re statements to tell the simulator

to �re spe
i�
ation a
tions. A proof blo
k may also 
ontain a third sub-blo
k that de
lares

auxiliary variables used by the step 
orresponden
e.

3.5 Proving properties

The last step in our method is to prove the simulation relation (or invariant) using a theorem

prover. This guarantees the soundness of our te
hnique. As des
ribed above, theorem provers

generally require human input in the form of lemmas and proof ta
ti
s. Here we des
ribe

how the results of Se
tions 3.3 and 3.4 
an be used to generate this input automati
ally.

First, the invariants suggested by dynami
 invariant dete
tion be
ome 
andidates lemmas,

thereby saving the user time in �nding auxiliary invariants needed for veri�
ation. Se
ond,

the annotations for paired exe
ution provide a proof outline and ta
ti
s. In this se
tion, we

show how to generate the latter.

The outline and ta
ti
s are generated from modi�ed versions of the proof translators for

LP and Isabelle. The translators use the stru
ture of the program; the annotations written

by the user for exe
ution; and our knowledge of 
ommonalities in proofs of I/O automata

to generate proof s
ripts. In pra
ti
e, we have found that these proof s
ripts have saved

veri�
ation time by automating many steps of a proof.

3.5.1 Proving invariants

Proofs of invariants in a theorem prover follow a stru
tured methodology:

� Prove the start 
ondition.

� Prove the transition 
ondition by stru
tural indu
tion on the data type of the a
tion

and its parameters.

2

The set of legal start states of the spe
i�
ation automaton is determined by the states blo
k in its


ode; the initially blo
k sele
ts a parti
ular start state, whi
h may depend on the start state of the

implementation automaton.

29



There are two tools that translate IOA to prover languages and somewhat automate

providing this kind of assistan
e. The ioa2lsl tool [BGL02℄ 
onverts IOA programs and

asserted invariants into LSL, an input language for LP. An example of its output is:

prove Inv(s) ^ isStep(s, a, s

0

) ) Inv(s

0

)

The ioa2Isabelle [Luh02℄ tool provides similar assistan
e for reasoning about IOA using

Isabelle [NS94, M�ul98℄. We have used a this tool su

essfully in 
ase studies. An example

of its output is:

lemma I_step:

"8 state a
t .

((rea
hable aut state) ^

(I state) ^

(enablement_of aut state a
t)

)!

I(effe
ts_of aut state a
t)"

Now we des
ribe the ta
ti
s that the Isabelle translator outputs for assisting proofs of

invariants. The LP translator outputs relatively minimal ta
ti
s for invariants be
ause we

have less 
ontrol over the prover than we do for Isabelle. Figure 3-3 shows the lines generated

by the Isabelle tool for one invariant of the shared memory 
ase study from Chapter 4.2.

Again, the parti
ular algorithm is not important. The general methodology we use is as

follows:

1. Prove the start 
ondition by 
iting spe
i�
 ta
ti
s. This is relatively straightforward

and so the ta
ti
 for this is omitted from the �gure.

2. Split up the proof of the invariant into separate lemmas for ea
h transition. Prove

ea
h lemma by 
iting a spe
i�
 sequen
e of theorems about the automaton as lemmas.

In the �gure, the �rst paragraph shows the proof for one transition, respond, whi
h

assumes sCa
he is rea
hable and respond is enabled. The 
ode attempts to prove

that the invariant Inv holds for the post-state. The ta
ti
s generator 
ites the three

premises, p0, p1, and p2. Then it uses the simp and auto? Isabelle ta
ti
s with

spe
i�
 arguments relating to the automaton de�nition, whi
h were dis
overed to be

e�e
tive in proofs.

3. Try to prove the invariant step 
ondition by indu
tion on the a
tion data type and by


iting the lemmas for ea
h transition. This is shown in the se
ond paragraph of the

�gure.

4. Prove the invarian
e of the predi
ate itself by 
iting the step 
ondition and the start


ondition lemmas. Then prove that as a 
onsequen
e of the predi
ate being an invari-

ant, the invariant holds on all rea
hable states. This last part is useful so that other

invariant proofs 
an take advantage of the 
urrent invariant holding should a state be

rea
hable.

For many simple invariants, like in the memory 
ase study, these automati
ally generated

ta
ti
s require no human augmentation.
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3.5.2 Proving a simulation relation

Re
all from Se
tion 2.5.1 that verifying a simulation relation requires verifying both a start


ondition and a step 
ondition. Translation tools in the IOA toolkit use the proof blo
k for a

simulation relation to generate proof ta
ti
s for ea
h 
ondition. The proof blo
k 
an be seen

as a test suite that also 
ontains the programmer's knowledge about how the spe
i�
ation

automaton is supposed to behave | this is why it is useful in a formal proof, on
e properly

translated. The proof blo
k from the Paxos 
ase study in Figure 3-2 will be used as a

running example.

Start 
ondition

The start 
ondition requires �nding a witness start state b of the spe
i�
ation automaton.

In LP, the proof obligation is

start(a:States[A℄) ) 9 b:States[B℄ (start(b) ^ F(a, b))

the rules are similar for Isabelle, but wrapped up in a predi
ate:

theorem FCa
he2Mem_start:

"isFwdSim_start Ca
he Mem FCa
he2Mem"

where the predi
ate is:


onstdefs isFwdSim_start ::

"(

0

a
tionA,

0

stateA) ioa ) (

0

a
tionB,

0

stateB) ioa )

(

0

stateA )

0

stateB ) bool) )

bool"

"isFwdSim_start autA autB F ==

(8 a . a 2 starts_of autA ! (9 b . (b 2 starts_of autB) ^

(F a b)

))

"

The de�nition of the predi
ate 
omes in two pie
es. First, we de�ne the data type of

isFwdSim start, then we de�ne its meaning. The data type says that isFwdSim start

takes in three arguments: two automata (parametrized by their a
tion type, as explained

in Se
tion 7) and a relation on their states, and returns a boolean. The de�nition is the

standard start 
ondition for simulation relations.

The proof translator tools extra
t the witness b from the imperative statements in the

initially se
tion of a proof blo
k, whi
h de�ne initial values for the state variables in the

spe
i�
ation automaton in terms of the initial values for the state variables in the imple-

mentation automaton. In the Paxos 
ase study, the proof s
ript generator translated the

initially se
tion of Figure 3-2 into the following 
ommands for LP:

de
lare operator StartRel: States[Global1℄ ! States[Cons℄

assert StartRel(a:States[Global1℄) =

[a.initiated, a.proposed, {}, a.de
ided, a.failed℄

prove start(a:States[Global1℄) )

9 b:States[Cons℄ (start(b) ^ F(a, b))

resume by )

resume by spe
ializing b to StartRel(a
)
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Here, the two 'resume by' 
ommands dire
t LP to begin the proof by using its built-in impli-


ation ta
ti
, whi
h assumes the hypothesis and repla
es the universally quanti�ed variable

a by a �xed 
onstant a
, and then using StartRel(a
) as the witness for the existential

quanti�er 9 b. In the 
ase study, these 
ommands are suÆ
ient to 
omplete the proof of the

start 
ondition.

The 
ommands are similar for Isabelle:

"startRelGlobal12Cons sGlobal1 ==

Cons_state.make (Global1.initiated sGlobal1)

(Global1.proposed sGlobal1)

{}

(Global1.de
ided sGlobal1)

(Global1.failed sGlobal1)"

theorem FGlobal12Cons_start:

"isFwdSim_start Global1 Cons FGlobal12Cons"

...

show "( startRelGlobal12Cons sGlobal1) 2 starts_of Cons ^

FGlobal12Cons sGlobal1 ( startRelGlobal12Cons sGlobal1)"

apply (simp add: startRelGlobal12Cons_def Cons_def

Cons_start_def FGlobal12Cons_def

Cons_state.make_def)

The �rst line de�nes startRel. The se
ond line proves that startRel satis�es the

start requirement through the use of the simp ta
ti
. The arguments to the ta
ti
 are the

de�nitions of parts of the two automata. They were 
hosen from our experien
e with I/O

automaton proofs and then 
oded into the Isabelle translator tool to be output for every

automaton.

Step 
ondition

The step 
ondition requires �nding a witness exe
ution � of the spe
i�
ation automaton for

ea
h transition of the implementation automaton. The proof s
ript generator formulates this

proof obligation for LP as follows:

prove

F(a:States[A℄, b:States[B℄)

^ step(a, alpha: A
tions[A℄, a

0

:States[A℄) )

9 beta:A
tionSeq[B℄ ( exe
Frag(b, beta) ^ F(a

0

, last(b, beta)) ^

tra
e(beta) = tra
e(alpha))

A similar formulation is generated in Isabelle, whi
h 
an be found in Appendix B. Both

tools also generate proof s
ripts that divide the proof into 
ases based on the kind of the

a
tion a. In LP, this s
ript uses the 
ommand resume by indu
tion on a, whi
h dire
ts LP

to perform stru
tural indu
tion on the datatype of a, while in Isabelle, the s
ript uses the

indu
t ta
ti
. The tools generate lemmas to handle the details of the individual 
ases. For

example, the LP translator generates the following lemma and proof s
ript from the proof

blo
k for the init a
tion in the Paxos 
ase study.

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, init(i, v), a

0

) )

9 beta:A
tionSeq[Cons℄
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(exe
Frag(b, beta) ^

F(a

0

, last(b, beta)) ^

tra
e(beta) = tra
e(alpha))

..

resume by )

resume by spe
ializing beta to init(i
, v
) * {}

The intelligen
e of this ta
ti
 lies in the line that says resume by spe
ializing....

Whi
h beta to spe
ialize to is derived from the proof blo
k's fire statements in the 
orre-

sponding for blo
ks. An analogous s
ript is generated for Isabelle.

When proof blo
ks are more 
ompli
ated than those in the Paxos 
ase study, the job of

the proof s
ript generator is 
orrespondingly more 
ompli
ated. For example, the generator

must expand a for entry in the proof blo
k that 
ontains a sequen
e of 
onditional statements

su
h as

i f P1 then f i r e a1 e l se f i r e a2 f i

i f P2 then f i r e a3 e l se f i r e a4 f i

into one that 
ontains nested 
onditionals su
h as

i f P1 then

i f P2 then f i r e a1 f i r e a3 e l se f i r e a1 f i r e a4 f i

e l s e

i f P2 then f i r e a2 f i r e a3 e l se f i r e a2 f i r e a4 f i

f i

in order to generate the appropriate 
ase splits in the proof s
ript.

Our te
hniques do not 
ompletely eliminate the need for human guidan
e in proving

invariants and simulation relations. Some transitions that have 
omplex semanti
s may

need the 
itation of spe
i�
 invariants (that have already been proved). We do not yet have

a methodology for 
hoosing whi
h invariants to 
ite. There may also be other 
ase splits

that are not mentioned in the proof blo
k. We do not yet 
onsider these splits.

K�rl�, et al. [KCD

+

02℄ have also manually performed the above pro
ess in LP on Dijkstra's

mutual ex
lusion algorithm. The di�eren
e with our method is that our tools now perform

the translation automati
ally from the proof blo
k.

3.6 Assessment

The main drawba
k of our method is that human intervention is still ne
essary in two

important pla
es. First, the right invariants need to be sele
ted to use in veri�
ation. Se
ond,

when the prover 
annot make pro
ess, the user has to enter ta
ti
s to 
omplete proofs.

Nevertheless, our methodology satis�es �ve desirable properties for a veri�
ation method:

A
hieving a formal proof of 
orre
tness: Our method uses I/O automata for formal

modeling and a theorem prover, whose output is a logi
ally veri�able proof. The method is

thus sound.
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Cat
hing errors qui
kly: Our method exe
utes and tests the program before the pro-

grammer has to invest time in formal veri�
ation. Exe
ution is fast and, 
ompared to formal

veri�
ation, easy for the programmer to perform. Tests 
an reveal deviations from expe
ted

behavior. Dynami
 invariant dete
tion 
an also reveal su
h erroneous behavior.

Working on all distributed algorithms: The I/O automaton model 
an be used for a

large variety of asyn
hronous systems [Gol90a, Lyn96℄. By reasoning on mathemati
al fa
ts,

theorem provers 
an handle in�nite state, nondeterministi
 systems. Dynami
 invariant

dete
tion 
an also handle su
h systems. Thus with our tools, we 
an verify any system that


an be modeled as an I/O automaton.

Redu
ing the programmer e�ort in formal veri�
ation: As a 
onsequen
e of their

generality, theorem provers have traditionally required signi�
ant human intera
tion (i.e.,

programmer e�ort in veri�
ation). Our method redu
es this human e�ort in using the

prover through assistan
e with lemmas and ta
ti
s.

Providing insight for the programmer: Some of the insight stems from the results

of dynami
 invariant dete
tion, whi
h may output useful properties that are not ne
essarily

used in a parti
ular 
orre
tness proof. More insight is a
hieved be
ause our method produ
es

a set of fa
ts and their proofs.
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forward simulation from Global1 to Cons:

Cons.initiated = Global1.initiated ^

Cons.proposed = Global1.proposed ^

Cons.de
ided = Global1.de
ided ^

Cons.failed = Global1.failed ^

8 v:Value (v 2 Cons.
hosen ,

9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ = embed(v) ))

proof

i n i t i a l l y

Cons.initiated: Set[Node℄ := Global1.initiated;

Cons.proposed: Set[Value℄ := Global1.proposed;

Cons.
hosen: Set[Value℄ := {};

Cons.de
ided: Set[Node℄ := Global1.de
ided;

Cons.failed: Set[Node℄ := Global1.failed

for internal start(S: Set[Node℄, B: Set[Ballot ℄) ignore

for input init(i: Node, v: Value) do f i r e input init(i, v) od

for input fail(i: Node) do f i r e input fail(i) od

for output de
ide(i: Node, v: Value) do f i r e output de
ide(i, v) od

for internal makeBallot(b: Ballot) ignore

for internal abstain(i: Node, B: Set[Ballot ℄) ignore

for internal vote(i: Node, b: Ballot) ignore

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.su

eeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal 
hooseVal(v)

f i od

for internal internalDe
ide(b: Ballot) do

i f (b 2 Global1.su

eeded) then

ignore

e l s e i f (Global1.val[b℄ = nil) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal 
hooseVal(Global1.val[b℄.val)

f i od

Figure 3-2: A proof blo
k of a forward simulation relation.
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(* One transition *)

theorem Inv_trans_respond:

assumes

p0: " rea
hable Ca
he sCa
he"

and p1: "Inv sCa
he"

and p2: " enablement_of Ca
he sCa
he((respond n r))"

shows " Inv (effe
ts_of Ca
he sCa
he((respond n r)))"

apply (insert p0 p1 p2)

apply (simp_all add: Inv_def Ca
he_def Ca
he_enablement_def

Ca
he_effe
t_def Ca
he_state.make_def)

apply (auto ?)

done

(* The invariant step 
ondition itself *)

theorem Inv_trans:

assumes

p0: " rea
hable Ca
he sCa
he"

and p1: " Inv sCa
he"

and p2: " enablement_of Ca
he sCa
he aCa
he"

shows " Inv (effe
ts_of Ca
he sCa
he aCa
he)"

apply (insert p0 p1 p2)

apply (
ases aCa
he)

apply (simp add: Inv_trans_invoke)

apply (simp add: Inv_trans_respond)

apply (simp add: Inv_trans_read)

apply (simp add: Inv_trans_write)

apply (simp add: Inv_trans_
opy)

apply (simp add: Inv_trans_drop)

done

(* Auxiliary proofs *)

theorem Inv_invariant:

" invariant Ca
he Inv"

apply (rule invariantI)

apply (simp_all add: Inv_start Inv_trans)

done

theorem Inv_rea
hable:

"rea
hable Ca
he sCa
he =) Inv sCa
he"

apply (insert Inv_invariant)

apply (auto intro: invariantRea
hable)

done

end

Figure 3-3: Sample output of the proof ta
ti
s generated for invariant proofs in Isabelle.
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Chapter 4

Case studies

This 
hapter des
ribes three 
ase studies that were used to test our methodology of us-

ing dynami
 invariant dete
tion and model-spe
i�
 insights to more eÆ
iently prove safety

properties in a theorem prover.

� Peterson's mutual ex
lusion algorithm. This is a lo
kout-free implementation of mutual

ex
lusion for two pro
esses using shared memory, proven by invariant assertions.

� An algorithm that implements atomi
 shared memory through distributed 
a
hing,

drawn from Bogdanov's M.Eng. thesis [Bog00℄. The implementation of shared memory

is proven 
orre
t by simulation relation.

� Lamport's Paxos proto
ol, as written in IOA by De Pris
o, et al. [DPLS

+

02℄. Paxos

implements 
onsensus using a ballot and quorum system, and is proved 
orre
t by

su

essive re�nement.

4.1 Peterson mutual ex
lusion algorithm

The Peterson two-pro
ess mutual ex
lusion algorithm [Pet81℄ a
hieves lo
kout-free mutual

ex
lusion using multi-writer, multi-reader, read-write shared memory. The algorithm we

present here is designed for two pro
esses, but the algorithm 
an be staged in a (single

elimination) tournament to support more pro
esses.

There are three variables in the algorithm: flag

0

, flag

1

and turn. Figure 4-1 shows

the state-transition diagram for a single pro
ess. The algorithm operates as follows. Every

pro
ess p sets flag[p℄ to true, then sets turn to itself. From then on, ea
h pro
ess 
he
ks

the other's flag and turn. If either the other pro
ess's flag is o� (
he
kFlag), or if the

turn variable points to the other pro
ess (
he
kTurn), the �rst pro
ess is allowed to go into

the 
riti
al se
tion. The 
riti
al region 
onsists of the states in whi
h the program 
ounter

has the value 
riti
al0 or 
riti
al1.

Figure 4-2 gives the IOA 
ode for this algorithm, whi
h we proved 
orre
t with both

LP and Isabelle using only invariants dis
overed by Daikon. Daikon dete
ted the mutual

ex
lusion property that was the �nal goal, along with two invariants required for its proof.
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Figure 4-1: State-transition diagram for one pro
ess in the Peterson algorithm.

The Peterson IOA program was s
heduled for exe
ution using random s
heduling. That

is, the s
heduler sele
ted one of the two pro
esses at random and advan
ed its state, if it

was possible. The IOA program was run for 5000 transitions.

This is a good subje
t for a 
ase study be
ause mutual ex
lusion algorithms 
an be subtle

and testing them is rarely suÆ
ient. In IOA, mutual ex
lusion is expressed as the invariant

that when one automaton is in the set of states designated as the 
riti
al region, the other

automaton is not.

4.1.1 Peterson invariants dete
ted by Daikon

We now des
ribe Daikon's output when given the Peterson exe
utions.

On an initial run over the Peterson exe
utions, Daikon reported that the mutual ex
lusion

property did not a
tually hold, for we had made an error in writing the IOA 
ode: in

our initial implementation, ea
h pro
ess set its turn variable �rst, then its flag variable.

Running Daikon immediately revealed this error. We 
ould also have dete
ted the error

during theorem proving, but again, it was faster, easier, and more 
onvenient to noti
e it in

Daikon's summarization of the runtime properties.

After 
orre
ting the problem, we reran the IOA Simulator and Daikon. Daikon reported

the mutual ex
lusion property, namely, that no two pro
esses may simultaneously be in the


riti
al region. Expressed in LP syntax, this invariant is

InvMutex:

p
[anIndex℄) = 
riti
al0 ^ anIndex 6= anotherIndex )

p
[anotherIndex℄ 6= 
riti
al1

p
[anIndex℄) = 
riti
al0 ^ anIndex 6= anotherIndex )

p
[anIndex℄ 6= p
[anotherIndex℄

p
[anIndex℄) = 
riti
al1 ^ anIndex 6= anotherIndex )

p
[anotherIndex℄ 6= 
riti
al0

p
[anIndex℄) = 
riti
al1 ^ anIndex 6= anotherIndex )

p
[anIndex℄ 6= p
[anotherIndex℄

Daikon also reported two lemmas needed to prove this property:

InvA:

8 p (p
[p℄ = trying1 _ p
[p℄ = trying2

_ p
[p℄ = 
riti
al0 _ p
[p℄ = 
riti
al1
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% There are two pro
esses, named p0 and p1.

type Pro
Type = enumeration of p0, p1

% PC stands for program 
ounter.

type PCType = enumeration of waiting0, trying0, trying1,

trying2, 
riti
al0, 
riti
al1

automaton Peterson

signature

output trying(p:Pro
Type)

internal , setFlag(p:Pro
Type), setTurn(p:Pro
Type),


he
kFlag(p:Pro
Type), 
he
kTurn(p:Pro
Type)

output 
riti
al(p:Pro
Type), release(p:Pro
Type)

states

% A program 
ounter and boolean flag for ea
h pro
ess are kept

% in arrays of type Array[A,B℄, whi
h are indexed by keys of type

% A and 
ontains elements of type B.

p
 : Array[Pro
Type, PCType ℄ := 
onstant(waiting0),

flag : Array[Pro
Type, Bool℄ := 
onstant(false),

turn : Pro
Type

trans i t ions

output trying(p)

pre p
[p℄ = waiting0

e f f p
[p℄ := trying0

internal setFlag(p)

pre p
[p℄ = trying0

e f f p
[p℄ := trying1; flag[p℄ := true

internal setTurn(p)

pre p
[p℄ = trying1

e f f p
[p℄ := trying2; turn := p

internal 
he
kTurn(p)

pre p
[p℄ = trying2

e f f i f turn 6= p then p
[p℄ := 
riti
al0 f i

internal 
he
kFlag(p)

pre p
[p℄ = trying2

e f f i f :flag ( i f p = p0 then p1 e l se p0) then p
[p℄ := 
riti
al0 f i

output 
riti
al (p)

pre p
[p℄ = 
riti
al0

e f f p
[p℄ := 
riti
al1

output release (p)

pre p
[p℄ = 
riti
al1

e f f p
[p℄ := waiting0; flag[p℄ := false

Figure 4-2: The Peterson two-pro
ess mutual ex
lusion algorithm in IOA. For brevity, this

�gure omits the s
heduling 
ode that 
hooses among possible exe
utions at runtime.
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) flag[p℄)

InvB:

8 p (p
[p℄ = trying2 ) p
[turn℄ = trying2)

Daikon expressed these lemmas as a set of separate terms based on enablement of the 
or-

responding a
tions:

enabled(setFlag(p)) ) flag[p℄

enabled(setTurn(p)) ) flag[p℄

enabled(
he
kFlag(p)) ) flag[p℄

enabled(
he
kTurn(p)) ) flag[p℄

enabled(
riti
al(p)) ) flag[p℄

enabled(release(p)) ) flag[p℄

enabled(
he
kFlag(p)) ) p
[turn℄ = trying2

enabled(
he
kTurn(p)) ) p
[turn℄ = trying2

The �rst 
lause says that whenever the 
he
kFlag transition is enabled in a pro
ess, its flag

is true. These simple 
onditions are not stated in the 
ode, but some of them are apparent

from stati
 inspe
tion. Daikon also reported some invariants that were not used for our

proof, but might be useful for other proofs. One example is:

enabled(release(p)) ) flag[turn℄

Se
tion 8.1 dis
usses possible future methods to �nd su
h true but not useful invariants.

4.1.2 Proving Peterson invariants

We used InvB and InvA to prove the mutual ex
lusion property InvMutex with both LP and

Isabelle.

With Isabelle, our prototype automati
ally generated ta
ti
s that were suÆ
ient to prove

InvA. The ta
ti
s proved InvB for all but one transition (
he
kFlag). For this transition,

we had to supply some pro
edural steps by hand, reasoning by 
ase analysis depending on

whether or not anIndex = p. For InvMutex, the same was true for two transitions, 
he
kFlag

and 
he
kTurn.

Be
ause LP la
ks programmable ta
ti
s, we had to supply all pro
edural input manually.

That proof, too, went through without diÆ
ulty.

An earlier proof of the algorithm, along with IOA-style pseudo
ode, appears in Lyn
h's

book [Lyn96℄. We did not examine the pseudo
ode or the proof until after 
ompleting our

own implementation and proof. This proof also used two invariants. The �rst is our InvA.

The se
ond is like InvB but expli
itly mentions the other pro
ess and is written in terms of

program 
ounters:

InvC:

8 p 8 p

0

(p 6= p

0

^

(p
[p℄ = 
riti
al0 _ p
[p℄ = 
riti
al1) ^

(p
[p

0

℄ = trying2 _ p
[p

0

℄ = 
riti
al0

_ p
[p

0

℄ = 
riti
al1)

) turn = p

0

))
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In order to 
ompare the two pairs of invariants, we performed a se
ond LP proof, using

InvC instead of InvB. This proof was quite di�erent, but was about the same length in terms

of LP 
ommands. Both LP proofs took about the same e�ort, but development of the proof

based on InvC had the advantage of our additional experien
e.

The invariant proposed by Daikon has several advantages. First, it was provided au-

tomati
ally, requiring no user e�ort beyond providing test 
ases. Se
ond, it was simpler

and easier to understand than the expert-provided invariant. Third, it unexpe
tedly pro-

vided insight, revealing interesting information about the relationship between p and turn,

information that we put to good use in our proof.

4.2 Atomi
 memory for distributed 
a
hes

We report on another 
ase study, a strong 
a
he for atomi
 shared memory, where every

pro
essor has a 
a
he and there is a 
entral store. Ea
h 
a
he 
an have a value or be empty.

The 
ode for this algorithm is based on Bogdanov [BGL02℄, but we analyze the algorithm

di�erently from his proof.

The proof for this algorithm uses a forward simulation relation. The spe
i�
ation au-

tomaton, Mem (Figure 4-3), provides the de�nition for atomi
 shared memory. The Null[T℄

data type 
reates a pointed domain for a given data type T so that state variables 
an hold

nil values. The embed operator takes an element of type T and 
reates an element of type

Null[T℄ while the .val operator does the reverse.

Ea
h node 
an take in an invo
ation via its invoke a
tion, and apply the invo
ation to

the 
entral memory in the update a
tion. The 
entral memory memVar is updated a

ording

to some fun
tion perform while a response is 
al
ulated by the fun
tion result. The

node responds to its user with the response. The automaton implements atomi
 shared

memory be
ause: 1) the invo
ations are all serialized on the shared variable Mem and 2) ea
h

invo
ation's time interval 
ontains the exa
t point of serialization on the shared memory

variable.

The automaton Ca
he implements the 
a
hing algorithm. The invoke and respond

a
tions are the same. When performing a write to shared memory, a pro
essor updates the


entral memory lo
ation and 
lears the 
a
hes of other pro
essors (in one syn
hronous step).

Pro
essors 
an arbitrarily 
opy from the 
entral memory lo
ation to their 
a
hes and 
an

delete their 
a
hed values. When performing a read, a pro
essor either reads from its 
a
he

or waits for the 
a
he to be �lled.

Our goal is to prove the existen
e of a forward simulation relation between Ca
he and

Mem using our methodology.

4.2.1 Exe
uting the 
a
he automaton

A s
hedule was written for the 
a
he algorithm in order to exe
ute it to perform dynami


invariant dete
tion. As with the Peterson 
ase study, the s
hedule sele
ts a node at random

and attempts to move it forward in the algorithm at whatever state the node is. This

randomized s
hedule was run for 500 steps. No signi�
ant 
hanges needed to be made to the
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automaton Mem

signature

output invoke(n: Node, a: A
tion ), respond(n: Node, r: Response)

internal update(n: Node)

states

memVar : Value := v0, % an arbitrary default value

a
t: Array[Node, Null[A
tion ℄℄ := 
onstant(nil),

rsp: Array[Node, Null[Response℄℄ := 
onstant(nil)

trans i t ions

output invoke(n, a)

pre

a
t[n℄ = nil

e f f

a
t[n℄ := embed(a)

internal update(n; l o 
a l a:A
tion)

pre

rsp[n℄ = nil ^ a
t[n℄ = embed(a)

e f f

rsp[n℄ := embed(result(a, memVar ));

memVar := perform(a, memVar);

output respond(n, r)

pre

rsp[n℄ = embed(r)

e f f

rsp[n℄ := nil;

a
t[n℄ := nil

Figure 4-3: The spe
i�
ation automaton, Mem.

automaton 
ode itself to render it exe
utable | however, for pra
ti
al reasons we 
hose to

implement ea
h node id as an integer rather than an abstra
t data type.

4.2.2 Invariants required and dete
ted

One invariant is enough to show that this strong 
a
hing algorithm implements shared mem-

ory: when a pro
essor's 
a
he is not empty, its value is equal to the 
entral memory's value.

This invariant was dete
ted by Daikon as:

8 n : Node (
a
he[n℄ 6= nil ) 
a
he[n℄.value = memVar)

As written in Bogdanov [BGL02℄, this invariant is:

8 n : Node (
a
he[n℄ = nil _ 
a
he[n℄ = embed(memVar))

The results are logi
ally equivalent but synta
ti
ally di�erent be
ause Daikon does not

dete
t invariants over disjun
tions, but rather pi
ked out the values in 
a
he that were not

nil and saw that the values were equal to memVar. That is, Daikon arrived at the same result

as a human did, but via a di�erent method.
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automaton Ca
he

signature

output invoke(n: Node, a: A
tion ), respond(n: Node, r: Response)

internal read(n: Node), write(n: Node), 
opy(n: Node), drop(n: Node)

states

memVar: Value := v0,

a
t: Array[Node, Null[A
tion ℄℄ := 
onstant(nil),

rsp: Array[Node, Null[Response℄℄ := 
onstant(nil),


a
he: Array[Node, Null[Value℄℄ := 
onstant(nil)

trans i t ions

output invoke(n, a)

pre

a
t[n℄ = nil

e f f

a
t[n℄ := embed(a)

internal read(n; l o 
a l a : A
tion)

pre

embed(a) = a
t[n℄;

isRead(a);

rsp[n℄ = nil;


a
he[n℄ 6= nil

e f f

rsp[n℄ := embed(result(a, 
a
he[n℄.val))

internal write(n; l o 
a l a : A
tion)

pre

embed(a) = a
t[n℄;

isWrite(a);

rsp[n℄ = nil

e f f

rsp[n℄ := embed(result(a, memVar));

memVar := perform(a, memVar);


a
he := 
onstant(nil)

internal 
opy(n)

e f f


a
he[n℄ := embed(memVar)

internal drop(n)

e f f


a
he[n℄ := nil

output respond(n, r)

pre

rsp[n℄ = embed(r)

e f f

rsp[n℄ := nil;

a
t[n℄ := nil

invariant Inv of Ca
he:

8 n : Node (
a
he[n℄ = nil _ 
a
he[n℄ = embed(memVar))

Figure 4-4: Strongly 
a
hing implementation, Ca
he.
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forward simulation from Ca
he to Mem:

Mem.memVar = Ca
he.memVar ^ Mem.a
t = Ca
he.a
t ^ Mem.rsp = Ca
he.rsp

proof

start

Mem.a
t := Ca
he.a
t;

Mem.rsp := Ca
he.rsp;

Mem.memVar := Ca
he.memVar

for internal 
opy(n : Node) ignore

for internal drop(n : Node) ignore

for internal write(n : Node, a : A
tion ) do

f i r e internal update (n, a)

od

for internal read(n : Node, a : A
tion) do

f i r e internal update (n, a)

od

for output respond(n : Node, r : Response) do

f i r e output respond (n, r)

od

for output invoke (n : Node, a : A
tion ) do

f i r e output invoke (n, a)

od

Figure 4-5: The simulation relation and exe
ution annotations between Mem and Ca
he.

4.2.3 The simulation relation

The simulation relation between the two automata is shown in Figure 4-5. The simulation

relation says that the all the state variables map via the identity relation, and says nothing

about the 
a
he variable in the Ca
he automaton (this is why the above invariant is ne
es-

sary). Noti
e the exe
ution annotations for ea
h transition, whi
h will be used a template

for generating the proof by the LP and Isabelle translation tools.

4.2.4 Proving the simulation relation

Using the proof translator tools, we translated the two automata and the simulation relation

into input for both LP and Isabelle. The �rst step we 
hose to do before proving the

simulation relation was to prove the 
ru
ial invariant.

The proof s
ripts we generated were quite su

essful. In LP, the invariant had to be

done by hand, as we do not generate proof s
ripts. In Isabelle, the 
ru
ial invariant, was

automati
ally proved just from the proof s
ript. Thus nearly zero human work was involved

in proving this invariant. Chapter 7 des
ribes the Isabelle model for the automata in detail

and the methodology for generating proof s
ripts for invariants.
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As for the simulation relation, both prover translators generated proof s
ripts for the

automata following the methodology presented in Chapter 3. In both provers, the proof

s
ripts proved adequate to automati
ally prove all transitions ex
ept for one, the read tran-

sition. Here, a few lines of human-generated 
ommands were ne
essary to leverage the 
ru
ial

invariant: when reading from 
a
he, the 
a
he's value 
ontains the value of memVar. Our


omputer-generated proof was nearly identi
al to Bogdanov's proof [BGL02℄ for LP.

4.2.5 Assessment

For the memory 
ase study, little human intervention was required. The steps involving

the most human help were: 1) sele
ting the invariant that might be useful for the simula-

tion relation proof; 2) 2) giving a few 
ommands to the prover when it halted. Thus, our

methodology was quite su

essful here.

4.3 Distributed Consensus with Paxos

Lamport's Paxos proto
ol [Lam98℄ implements distributed 
onsensus in an asyn
hronous

system in whi
h individual pro
esses 
an fail. We de�ne distributed 
onsensus as follows.

Suppose that I is a �nite set of nodes representing the pro
esses in the system and V is the

set of possible 
onsensus values. Pro
esses in I may propose values in V . The 
onsensus

servi
e is allowed to return de
isions to pro
esses that have proposed values. It must satisfy

two 
onditions: all nodes must re
eive the same value (\agreement") and that value must

have been proposed by some pro
ess (\validity").

Paxos implements 
onsensus through the use of quorums and ballot voting and we prove

the implementation through su

essive re�nement of multiple simulation relations. We use


ode from a 
ase study [DPLS

+

02℄ that de�nes a hierar
hy of automata. The highest-level

automaton, Cons, provides a spe
i�
ation for 
onsensus. The lowest-level automaton, Paxos,

provides a distributed implementation. An intermediate-level automaton, Global1, although

non-distributed, 
aptures the main idea of Paxos, that of using ballots and quorums to

a
hieve 
onsensus. A 
orre
tness proof involves showing the existen
e of a series of forward

simulation relations between su

essive levels in the hierar
hy. In this se
tion, we dis
uss

the forward simulation between Cons and Global1. This is based on the work by Ne Win,

et. al. in [NEG

+

03℄.

4.3.1 Spe
i�
ation automaton

The signature of the spe
i�
ation automaton Cons (Figure 4.3.1) 
ontains an input a
tion

init(i,v), representing the proposal of value v by pro
ess i, an internal a
tion 
hooseVal(v),

representing the 
hoi
e of a 
onsensus value v, an output a
tion de
ide(i,v), representing

the report of the 
onsensus value to pro
ess i, and an input a
tion fail(i), representing the

failure of pro
ess i. The automaton provides the required agreement and validity guarantees:

only a single 
onsensus value 
an be 
hosen, and that value must have been previously

proposed.
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type Node = tuple of lo
ation: Int

type Value = tuple of value: Int

automaton Cons

signature

input fail(i: Node), init(i: Node, v: Value)

output de
ide(i: Node, v: Value)

internal 
hooseVal(v: Value)

states

initiated: Set[Node℄ := {}, proposed: Set[Value℄ := {},


hosen: Set[Value℄ := {}, de
ided: Set[Node℄ := {},

failed: Set[Node℄ := {}

trans i t ions

input init(i, v)

e f f i f :(i 2 failed) ^ :(i 2 initiated) then

initiated := initiated [ {i};

proposed := proposed [ {v}

f i

internal 
hooseVal(v)

pre v 2 proposed ^ 
hosen = {}

e f f 
hosen := {v};

output de
ide(i, v)

pre i 2 initiated ^ :(i 2 de
ided) ^

:(i 2 failed) ^ v 2 
hosen

e f f de
ided := de
ided [ {i}

input fail(i)

e f f failed := failed [ {i}

Figure 4-6: Spe
i�
ation of 
onsensus in IOA

4.3.2 Implementation automaton

The automaton Global1 (Figure 4.3.1) spe
i�es an algorithm that implements 
onsensus in a

non-distributed setting. This automaton uses a totally ordered set of ballots for values, one

of whi
h may eventually be 
hosen as the 
onsensus value if suÆ
ient approval is 
olle
ted

from the pro
esses in the system.

In addition to the external a
tions of the automaton Cons, the signature of Global1 in-


ludes internal a
tions for making ballots, assigning them values, and voting for or abstaining

from ballots. The automaton Global1 determines the fate of a ballot by 
onsidering the a
-

tions of quorums, whi
h are �nite subsets of I, on that ballot. Global1 allows a ballot to

su

eed only if every node in a quorum has voted for it.

4.3.3 Exe
uting the Global1 automaton

The se
ond step in using our method to verify an automaton is to test its behavior by

simulating exe
ution. The simulator requires that IOA programs be transformed into a form

suitable for exe
ution. For example, the simulator requires quorums in Paxos to be initialized

operationally, whereas they were spe
i�ed de
laratively in the original I/O automaton model.
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type Ballot = tuple of ordering: Int

automaton Global1

signature

input fail(i: Node), init(i: Node, v: Value)

output de
ide(i: Node, v: Value)

internal start(theNodes: Set[Node℄), makeBallot(b: Ballot),

abstain(i: Node, B: Set[Ballot ℄),

assignVal(b: Ballot, v:Value),

vote(i: Node, b: Ballot ), internalDe
ide(b: Ballot)

states

initiated: Set[Node℄ := {}, proposed: Set[Value℄ := {},

de
ided: Set[Node℄ := {}, failed : Set[Node℄ := {},

ballots: Set[Ballot ℄ := {}, su

eeded: Set[Ballot ℄ := {},

val: Array[Ballot , Null[Value℄℄ := 
onstant(nil),

voted: Array[Node, Set[Ballot ℄℄ := 
onstant({}),

abstained: Array[Node, Set[Ballot ℄℄ := 
onstant({})

quorums: Set[Node℄,

dead: Set[Ballot ℄ := {}

trans i t ions

internal start(theNodes)

e f f quorums := delete ([1℄, theNodes);

for i: Node in theNodes do voted[i℄ := {};

abstained[i℄ := {} od;

input init(i, v)

e f f % As in Cons (Figure 1)

input fail (i)

e f f failed := failed [ {i}

internal makeBallot(b)

pre : (b 2 ballots);

e f f ballots := ballots [ {b};

internal assignVal(b, v)

pre b 2 ballots ^ val[b℄ = nil ^ v 2 proposed

^ 8 b

0

:Ballot (b

0

.ordering < b.ordering )

val[b

0

℄ = embed(v) _ b

0

2 dead)

e f f val[b℄ := embed(v)

internal vote(i, b)

pre i 2 initiated ^ :(i 2 failed) ^

b 2 ballots ^ :(b 2 abstained[i℄)

e f f voted[i℄ := voted[i℄ [ {b}

internal abstain(i, B)

pre i 2 initiated ^ :(i 2 failed) ^ voted[i℄ \ B = {}

e f f abstained[i℄ := abstained[i℄ [ B;

for aBallot:Ballot in B do

i f 8 aNode:Node (aNode 2 quorums )

aBallot 2 abstained[aNode℄)

then dead := insert (aBallot, dead);

f i ;

od;

internal internalDe
ide(b)

pre b 2 ballots ^ 8 j:Node (j 2 quorums ) b 2 voted[j℄)

e f f su

eeded := su

eeded [ {b}

output de
ide(i, v)

pre i 2 initiated ^ :(i 2 de
ided) ^ :(i 2 failed)

^ 9 b:Ballot (b 2 su

eeded ^ embed(v) = val[b℄)

e f f de
ided := de
ided [ {i}

Figure 4-7: A ballot-based implementation of 
onsensus in IOA
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Aside from su
h bookkeeping issues, the 
ru
ial problem is resolving nondeterminism by

spe
ifying a s
hedule. An example s
hedule is:

s
hedule

states

theNodes: Set[Node℄ := insert ([0℄, insert ([1℄, insert ([2℄, {}))) [

insert ([3℄, insert ([4℄, insert ([5℄, {})))

do

f i r e internal start(theNodes);

f i r e input init([0℄, [1℄);

f i r e input init([1℄, [2℄);

f i r e input fail([5℄);

f i r e internal makeBallot([0℄);


ausing the IOA simulator to exe
ute �ve a
tions. The output is:

1: internal start(([0℄ [1℄ [2℄ [3℄ [4℄ [5℄)) in automaton Global1

2: input init([0℄, [1℄) in automaton Global1

3: input init([1℄, [2℄) in automaton Global1

4: input fail([5℄) in automaton Global1

5: internal makeBallot([0℄) in automaton Global1

For our 
ase study, we wrote s
hedules to exe
ute Global1 with di�erent interleavings

of a
tions, some of whi
h 
ause nodes to fail or to abstain from a ballot. We did not use

stru
tured test generation methods to produ
e the s
hedules, nor did we evaluate them

a

ording to spe
i�
 
riteria (e.g., 
ode 
overage). Instead, we simply sele
ted exe
utions

that illustrates what we felt was the normal behavior of the automaton (and that exer
ised

every a
tion). In our experien
e, using simple s
hedules like these is adequate for the purpose

of dynami
 invariant dete
tion.

4.3.4 Dynami
 invariant dete
tion results

For Paxos, invariant dete
tion with Daikon produ
ed 23 invariants, four of whi
h were helpful

in the simulation relation proof in Se
tion 4.3.6. The four were:

Inv1: 8 anIndex:Node (size(voted[anIndex℄ \ abstained[anIndex℄) = 0)

Inv2: val.values.val(nonNull) � proposed

Inv3: size(su

eeded \ dead) = 0

Inv5: su

eeded � ballots

(We have added the names Invi for 
onvenien
e in this presentation.)

A full proof of the Paxos simulation relation required six invariants: �ve for the simulation

relation proper, and one more for one of the invariants. The two missing invariants were:

Inv4: 8 b:Ballot 8 b

0

:Ballot (val[b℄ 6= nil ^ b

0

< b )

val[b

0

℄ = val[b℄ _ b

0

2 dead(abstained))

Inv6: 8 b:Ballot (b 2 su

eeded )

9 q:Set[Node℄ 8 n:Node

(q 2 wquorums ^

(n 2 q ) b 2 voted[n℄)))
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These two invariants are outside Daikon's grammar, so it neither 
he
ked nor reported

them. Daikon does not report invariants with existential quanti�ers, nor does it report those

with more than a given number of subterms. This is not a fundamental limitation, but

a design 
hoi
e that redu
es Daikon's 
omputational requirements and, more importantly,

the number of false positives or unhelpful invariants that Daikon would otherwise report.

Se
tion 5 dis
usses potential ways of improving this grammar.

In our 
ase study, Daikon proposed four of the six required invariants. This redu
ed the

amount of human e�ort|parti
ularly non-imaginative e�ort| required for the 
orre
tness

proof, even though it did not eliminate all su
h human e�ort.

It is notable that Inv3, although true and ne
essary for the proof, was not provable in

isolation: establishing it required use of Inv6. In other words, dynami
 invariant dete
tion

postulated a useful simple property (inv3) whose proof is 
ompli
ated (be
ause it requires

Inv6). This ability to de
ompose a proof into parts demonstrates a strength of our te
hnique:

it is easy to 
he
k properties dynami
ally, even if they have 
ompli
ated proofs that are

beyond the 
apabilities of 
ompletely automati
 stati
 tools.

4.3.5 Paired exe
ution

The fourth step in our method is appropriate when attempting to verify a simulation relation.

As noted in Se
tion 4.3.3, the IOA simulator 
an help users formulate and test the validity

of a forward simulation relation, prior to su
h a veri�
ation. In this se
tion, we dis
uss how

a s
hedule and other information 
an help in exe
uting paired automata, while the IOA

simulator tests the 
onditions of the relation. This s
heduling will later be useful in guiding

veri�
ation.

In Figure 4-8, the simulation relation is the identity on all state variables of Cons ex
ept


hosen, whi
h is not a state variable of Global1. The simulation relation de�nes 
hosen in

Cons to 
ontain a value v if and only if there is a su

essful ballot in Global1 with value

v. The proof blo
k is straightforward for the start state and for the external a
tions: ea
h

external a
tion in the implementation automaton is mat
hed by the a
tion with the same

name in the spe
i�
ation automaton. The internal a
tions start, makeBallot, abstain, and

vote are mat
hed by an empty exe
ution sequen
e of the spe
i�
ation automaton.

In our 
ase study, the IOA simulator 
an reveal two problems with a more naive treatment

for internal assignVal(b: Ballot , v: Value) ignore

for internal internalDe
ide(b: Ballot)

do f i r e internal 
hooseVal(Global1.val[b℄.val) od

in the proof blo
k for the internal a
tions assignVal and internalDe
ide. First, given

a s
hedule that exe
utes internalDe
ide twi
e in Global1, the simulator dis
overs that the

pre
ondition for 
hooseVal fails the se
ond time it is exe
uted in the lo
kstep exe
ution of

Cons. Se
ond, assignVal needs to �re 
hooseVal if a ballot has been de
ided internally but

does not yet have a value assigned; hen
e we must �re 
hooseVal when �ring assignVal, but

only if no other ballot in Global1.su

eeded has a non-nil value. Most of this 
ase analysis

is ne
essary be
ause Global1 allows ballots to be voted on (and to su

eed) before they are

assigned values.
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forward simulation from Global1 to Cons:

Cons.initiated = Global1.initiated ^

Cons.proposed = Global1.proposed ^

Cons.de
ided = Global1.de
ided ^

Cons.failed = Global1.failed ^

8 v:Value (v 2 Cons.
hosen ,

9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ = embed(v) ))

proof

i n i t i a l l y

Cons.initiated: Set[Node℄ := Global1.initiated;

Cons.proposed: Set[Value℄ := Global1.proposed;

Cons.
hosen: Set[Value℄ := {};

Cons.de
ided: Set[Node℄ := Global1.de
ided;

Cons.failed: Set[Node℄ := Global1.failed

for internal start(S: Set[Node℄, B: Set[Ballot ℄) ignore

for input init(i: Node, v: Value) do f i r e input init(i, v) od

for input fail(i: Node) do f i r e input fail(i) od

for output de
ide(i: Node, v: Value) do f i r e output de
ide(i, v) od

for internal makeBallot(b: Ballot) ignore

for internal abstain(i: Node, B: Set[Ballot ℄) ignore

for internal vote(i: Node, b: Ballot) ignore

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.su

eeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal 
hooseVal(v)

f i od

for internal internalDe
ide(b: Ballot) do

i f (b 2 Global1.su

eeded) then

ignore

e l s e i f (Global1.val[b℄ = nil) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ 6= nil)

then ignore

e l se

f i r e internal 
hooseVal(Global1.val[b℄.val)

f i od

Figure 4-8: Forward simulation relation and step 
orresponden
e (proof blo
k) from the

Global1 spe
i�
ation (Figure 4.3.1) to the Cons implementation (Figure 4.3.1).
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This nondeterminism makes the algorithm more general, but it 
ompli
ates the 
orre
t-

ness proof. Hen
e it was helpful to use paired simulation to debug the details of the step


orresponden
e and arrive at the formulation shown in Figure 4-8.

4.3.6 Verifying a simulation relation in LP

The last step in our method is to prove the simulation relation (or invariant) using a theorem

prover. Here we des
ribe how the results of Se
tions 4.3.4 and 4.3.5 
an be used to generate

this input automati
ally. First, the invariants suggested by dynami
 invariant dete
tion

be
ome 
andidates lemmas, thereby saving the user time in �nding auxiliary invariants

needed for veri�
ation. Se
ond, the annotations for paired exe
ution provide a proof outline.

Re
all from Se
tion 2.5.1 that verifying a simulation relation requires verifying both a

start 
ondition and a step 
ondition. Translation tools in the IOA toolkit use the proof

blo
k for a simulation relation to generate proof ta
ti
s for ea
h 
ondition.

Start 
ondition

The start 
ondition requires �nding a witness start state b of the spe
i�
ation automaton. In

the Paxos 
ase study, the proof s
ript generator translated the initially se
tion of Figure 4-8

into the following 
ommands for LP:

de
lare operator StartRel: States[Global1℄ ! States[Cons℄

assert StartRel(a:States[Global1℄) = [{}, {}, {}, {}, {}℄

prove start(a:States[Global1℄) ) 9 b:States[Cons℄ ( start(b) ^ F(a, b))

resume by )

resume by spe
ializing b to StartRel(a
)

Here, the two resume by 
ommands dire
t LP to begin the proof by using its built-in impli-


ation ta
ti
, whi
h assumes the hypothesis and repla
es the universally quanti�ed variable

a by a �xed 
onstant a
, and then using StartRel(a
) as the witness for the existential

quanti�er 9 b. In the 
ase study, these 
ommands are suÆ
ient to 
omplete the proof of the

start 
ondition.

Step 
ondition

The step 
ondition requires �nding a witness exe
ution � of the spe
i�
ation automaton for

ea
h transition of the implementation automaton. The proof s
ript generator formulates this

proof obligation for LP as follows:

prove

F(a:States[A℄, b:States[B℄)

^ step(a, alpha: A
tions[A℄, a

0

:States[A℄) )

9 beta:A
tionSeq[B℄ ( exe
Frag(b, beta) ^ F(a

0

, last(b, beta)) ^

tra
e(beta) = tra
e(alpha))

It also generates a proof s
ript that divides the proof into 
ases based on the kind of the a
tion

a (using the 
ommand resume by indu
tion on a, whi
h dire
ts LP to perform stru
tural

indu
tion on the datatype of a) and generating lemmas to handle the details of the individual
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ases. For example, it generates the following lemma and proof s
ript from the proof blo
k

for the init a
tion in the Paxos 
ase study.

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, init(i, v), a

0

) )

9 beta:A
tionSeq[Cons℄ ( exe
Frag(b, beta) ^ F(a

0

, last(b, beta)) ^

tra
e(beta) = tra
e(alpha))

..

resume by )

resume by spe
ializing beta to init(i
, v
) * {}

LP �nishes the proof of this lemma automati
ally, as it also does for the fail, makeBallot,

abstain, and vote a
tions.

The proof s
ripts for the lemmas for the assignVal and internalDe
ide a
tions are

themselves divided into 
ases, in a

ordan
e with the for statements for those a
tions in

the proof blo
k. For example, the proof s
ript generator produ
es the following lemma and

s
ript for the internalDe
ide a
tion:

prove

F(a:States[Global1℄, b:States[Cons℄)

^ step(a, internalDe
ide(b:Ballot, a

0

) )

9 beta:A
tionSeq[Cons℄ ( exe
Frag(b, beta) ^ F(a

0

, last(b, beta)) ^

tra
e(beta) = tra
e(alpha))

..

resume by )

resume by 
ases b
 2 a
.su

eeded

% True 
ase

resume by spe
ializing beta to {}

% Elseif 
ase

resume by 
ases a
.val[b
℄ = nil

% True 
ase

resume by spe
ializing beta to {}

% Elseif 
ase

resume by 
ases 9 b:Ballot (b 2 a
.su

eeded ^ a
.val[b
℄ 6= nil)

% True 
ase

resume by spe
ializing beta to {}

% False 
ase

resume by spe
ializing beta to 
hooseVal(a
.val[b
℄.val) * {}

LP needs further assistan
e to �nish the proof of this lemma, whi
h uses invariants Inv1

through Inv5. Invariant Inv2 is used when 
hooseVal is the witness exe
ution for internalDe
ide

to show that the value being 
hosen belongs to Cons.proposed. The other four invariants,

whi
h show that all ballots not in Global1.dead have identi
al or nil values, help establish

that 
hanges to Global1.su

eeded and Global1.val preserve the simulation relation.

When proof blo
ks are more 
ompli
ated than those in the Paxos 
ase study, the job of

the proof s
ript generator is 
orrespondingly more 
ompli
ated. For example, the generator

must expand a for entry in the proof blo
k 
ontains a sequen
e of 
onditional statements

su
h as

i f P1 then f i r e a1 e l se f i r e a2 f i

i f P2 then f i r e a3 e l se f i r e a4 f i

into one that 
ontains nested 
onditionals su
h as
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i f P1 then

i f P2 then f i r e a1 f i r e a3 e l se f i r e a1 f i r e a4 f i

e l s e

i f P2 then f i r e a2 f i r e a3 e l se f i r e a2 f i r e a4 f i

f i

in order to generate the appropriate 
ase splits in the proof s
ript.

Of 
ourse, the invariants used to establish a simulation relation must be veri�ed them-

selves. Here too, the simulator and invariant dete
tor provide help. First, invariants some-

times require other invariants in their proofs. In the 
ase study, only Inv3 required auxiliary

invariants (Inv1 and Inv6), one of whi
h was Daikon dete
ted. Se
ond, the statement of 
om-

pli
ated invariants su
h as Inv6 
an be tested via simulated exe
ution; on
e stated properly,

the proof of this invariant was rather simple.

Our te
hniques do not 
ompletely eliminate the need for human guidan
e in proving

invariants and simulation relations. They 
an automati
ally dis
over, and prove with little

human assistan
e, invariants su
h as Inv1, Inv2, and Inv5. They 
annot yet dis
over invari-

ants su
h as Inv4 and Inv6, even though their proofs are simple. And although they dis
over

invariant Inv3, whi
h is simple, the proof of this invariant using LP requires moderate human

guidan
e.
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Chapter 5

A
hieving fast, s
alable and 
orre
t

dynami
 invariant dete
tion

5.1 Introdu
tion

A dynami
 invariant dete
tion tool observes program exe
utions and outputs properties

(logi
al formulae) that are true of the exe
utions and are likely to be true of the program in

general. For example, an invariant dete
tor might report that at entry to pro
edure 2foo,

a 6= null ) x = a:length; that at exit from pro
edure bar, y

0

= y + 1 (where y is the variable's

value at entry and y

0

is the value at exit); or that at from the point of view of any 
lient

of 
lass C, C:x � C:y. The reported properties, whi
h are synta
ti
ally identi
al to formal

spe
i�
ations, are also known as likely invariants.

Invariant dete
tion has appli
ations to program evolution [ECGN01b℄, stati
 veri�
a-

tion [NE01, Nim02a, NE02b, NE02
, ?℄, program refa
toring [KEGN01℄, automated theo-

rem proving [NE02a, NEG

+

03, ?℄, testing [?, Har02, ?, ?℄, software upgrades [?℄, anomaly

dete
tion [RKS02℄, fault dete
tion [DDLE02, Dod02, HL02, ?℄, error isolation [?, ?℄, and

error prevention [?℄, among others.

A naive implementation of dynami
 invariant dete
tion is not diÆ
ult. We present an

abstra
t algorithm in Se
tion 5.1.2. Doing it 
orre
tly and eÆ
iently, however, requires

some thought. The two 
orre
tness properties we wish to preserve while optimizing an

invariant inferen
e algorithm are soundness and 
ompleteness. We formally de�ne these as

in Se
tion 5.1.3, within the 
ontext of a grammar, or the set of formulae an algorithm 
an

output.

An eÆ
ient inferen
ing algorithm is desirable, in terms of time and spa
e needed. The

primary eÆ
ien
y 
on
ern, either when adding other optimizations or expanding the gram-

mar, is to keep the algorithm in
remental. An in
remental algorithm exhibits two properties

that are dual to ea
h other. First, it 
onsumes no extra spa
e with respe
t to the length

of the exe
utions that are given, and it runs linearly in time. Se
ond, it 
an run on-line,

alongside the program to be examined, re
eiving values as they are generated and dis
arding

them afterward. For example, an in
remental algorithm 
an monitor a web server over days

or weeks, without having to store the re
ord of ea
h transa
tion. This is important as a

week's transa
tions may not even �t on disk. An in
remental algorithm is also a one-pass

55



algorithm.

On
e in
rementality is a
hieved, there are se
ondary eÆ
ien
y 
on
erns. It is also im-

portant to save spa
e and time as a fun
tion of the size of the program, measured in the

number of variables. We optimize along this line by taking advantage of one general idea:

invariants often imply ea
h other. The spa
e and/or time resour
es used to 
he
k su
h im-

plied invariants 
an often be avoided. We present three optimizations based on the idea of

implied invariants in this 
hapter.

This 
hapter is organized as follows. Se
tion 5.1.2 des
ribes a naive invariant inferen
ing

algorithm as a ben
hmark to 
ompare against. Se
tion 5.1.4 des
ribes the di�erent parame-

ters that a�e
t resour
e 
onsumption and the data stru
ture spa
e over whi
h an algorithm

would operate. Se
tion 5.2.1 
lassi�es the di�erent methods by whi
h optimizations 
ould

be performed. Se
tions 5.3.1(largely borrowed from Nimmer [Nim02b℄, but repeated here for


larity of exposition), 5.4, and 5.5 show major optimizations that lead to better use of spa
e

and time by employing the fa
t that some invariants imply ea
h other in some way. These

optimizations are performed on the Daikon invariant dete
tor [ECGN01b℄, a general purpose

tool with a wide and useful grammar. Se
tion 5.7 shows extensions to Daikon's grammar

to make it more useful and allow it to extra
t more information from any given exe
ution.

Se
tion 5.8 presents future work and Se
tion 5.9 
on
ludes.

5.1.1 Terminology

Here we de�ne terminology, to give a foundation for the rest of this 
hapter.

A program point is slightly more general than just a spe
i�
 lo
ation in the program.

Instead, it represents a spe
i�
 s
ope (set of variables) and its asso
iated semanti
s. For

example, 
onsider a program point asso
iated with the pre-state of a method. Its s
ope is

all �elds of the 
lass and any arguments to the method. Its semanti
s are that every time

the method is 
alled, a snapshot of all pre-state within s
ope is taken. For a program point

asso
iated with the obje
t invariants of a 
lass, its s
ope is all �elds of the 
lass, and its

semanti
s are that every time the any publi
 method is 
alled, snapshots of all pre-state and

post-state within s
ope is taken.

A sample is the snapshot of program state taken for a spe
i�
 program point.

An exe
ution is a sequen
e of samples taken over the run of a program over time.

A variable is an expression asso
iated with a given s
ope (a program point). It may

be a simple �eld referen
e (su
h as this.x), may involve array indexing or sli
ing (su
h as

this.myArray[this.x..this.y℄), or may involve other 
ompound expressions. A primitive

variable is one whose value is provided in a sample. The a.[x℄ operator denotes array

subs
ripting as via C or Java syntax.

A derived variable is a variable whose value is not provided in a sample, but is instead


omputed as a fun
tion of other variables after the fa
t. For example, array sli
es like

this.myArray[this.x..this.y℄ are derived from the full array this.myArray[℄ given in the

sample.

An invariant obje
t is a data stru
ture that relates variables at a program point. It

represents a boolean formula that will be 
he
ked against data from samples in dynami


invariant dete
tion. For brevity, we will often refer to an invariant obje
t simply as an
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invariant, but we do not mean that it is true over all runs of a program.

A grammar is the set of boolean formulae over whi
h dynami
 invariant dete
tion o

urs.

It is also thus the set di�erent invariant obje
t types. For example, a grammar might 
ontain

the equality and less than operators on integers.

There are also some terms spe
i�
 to the Daikon dynami
 invariant dete
tion system.

A frontend is a tool that exe
utes a program, interprets runtime values and outputs the

values into a format understandable by the Daikon ba
k end, whi
h analyzes the data samples

in terms of invariants. For example, the IOA Simulator is the IOA front end for Daikon,

and the Daikon Frontend for Java (dfej) instruments Java programs to output values to a

�le readable by Daikon. The Daikon ba
k end is responsible for 
omputing derived variables

from primitive variables given in data samples.

5.1.2 Naive algorithm

Re
all that an invariant dete
tor reports all properties in its grammar that are not violated

at runtime. This se
tion gives a naive algorithm that a
hieves that goal. As noted later in

Se
tion 5.1.4, this algorithm runs too slowly to be pra
ti
al.

1. Initially, assume all properties in the grammar to be true. Instantiate an invariant for

ea
h property and 
ombination of variables. For example, if the available properties

are odd and =, and the variables are a, b, and 
, instantiate odd(a), odd(b), odd(
),

a = b, a = 
, and b = 
.

2. For ea
h sample, 
he
k ea
h 
andidate invariant asso
iated with the same program

point as the sample and eliminate (falsify) any that are 
ontradi
ted by the sample.

For example, the sample h3; 4; 3i eliminates the invariants odd(b), a = b, and b = 


from the above list.

3. Report the invariants that remain after all samples have been pro
essed.

5.1.3 Corre
tness properties

This algorithm has two desirable properties, soundness and 
ompleteness.

Soundness Any invariant reported by a sound invariant dete
tion algorithm holds for all

samples in the input (that is, in the test exe
utions).

Like other dynami
 te
hniques su
h as testing, invariant dete
tion is unsound over all

possible exe
utions of a program. The observed exe
utions are not guaranteed to 
hara
terize

all possible exe
ution environments of the program. Our de�nition is for soundness with

respe
t to observed exe
utions.

Completeness A 
omplete algorithm reports any property that: 1) is expressible in its

grammar, and 2) holds for all samples in the input.

Completeness with respe
t to all possible properties is possible in theory [CC77b℄ but

unattainable in pra
ti
e. An in�nite number of formulae are true of any set of exe
utions,
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Per-program-point variables:

V number of primitive variables at a program point

L number of samples for a program point

I number of instantiated invariants at a program point = O(V

6

)

RI number of reported invariants at a program point = O(I); in 
ommon 
ase, = O(1)

FI number of falsi�ed invariants at a program point = O(I)

Total (sum of all program points) variables:

P number of program points

I

t

total number of invariants = O(P � I)

L

t

total exe
ution length (\exploded") = O(P � L)

Other variables:

G number of invariant templates (grammar)

Figure 5-1: Variables used in the running time and spa
e analyses (see Se
tion 5.1.4 for

details). All variables ex
ept for RI, FI, L, and L

t

are known stati
ally.

and many of them are beyond the s
ope of any stati
 or dynami
 analysis. Our de�nition is


ompleteness with respe
t to a grammar of properties.

Given these de�nitions, the naive algorithm is sound be
ause every invariant is tested

against every relevant sample in Step 2. It is 
omplete be
ause all possible invariants are

instantiated in Step 1. It is in
remental be
ause it runs in one pass.

However, the algorithm a
hieves these three goals at a large time and spa
e 
ost, as shown

in Se
tion 5.1.4. By instantiating all invariants, many redundant invariants are instantiated

and tested. For example, if a = 
 and odd(a) holds, then odd(
) holds.

5.1.4 Performan
e analysis

This se
tion analyzes the time and spa
e performan
e of the naive dete
tion algorithm.

Analysis variables

Figure 5-1 lists the variables that in
uen
e performan
e:

V denotes the number of primitive variables at a program point. Con
eptually, this is

the number of variables in s
ope. In pra
ti
e, it is the number of variables that are measured

by a frontend. The pra
ti
al value may be less if the frontend omits 
ertain variables, or

may be more if it breaks out of s
ope (for example, by sampling private �elds of 
lasses in

obje
t oriented programs).

L denotes the number of samples at a program point.

I denotes the number of instantiated invariants at a program point. V will have a

positive, superlinear e�e
t on I, for two reasons. First, invariants often involve more than one

variable. For example, there are �(V

2

) pairwise equality invariants. Se
ond, the grammar of

a tool like Daikon will 
reate derived variables that represent a 
omputation on the original

variables. For example, if A is a sequen
e, and i is an integer, the derived variable A[i℄ may
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be interesting, even if it is not mentioned in the program text. In general, if the grammar

supports j-way derived variables, k-way invariants, and G di�erent invariant types, then

there 
ould be as many as I = �(GV

jk

) invariants. In the 
ase of Daikon, j = 2 and k = 3,

yielding the de�nition of I given in the �gure.

RI and FI, the reported and falsi�ed invariant 
ounts, respe
tively, are used to better

elu
idate 
ommon 
ase analyses where the reported invariants are a minus
ule subset of the

grammar's 
andidate set.

P , the number of program points, s
ales with program size. Also, the \total" values I

t

and L

t

denote the produ
t of P and their subs
ript-less 
ounterpart.

Naive performan
e

To study the performan
e of the naive algorithm, we 
ompute its spa
e and time performan
e

both in the worst and 
ommon 
ase. We measure spa
e S by the maximum number of

instantiated invariants, and time T by the number of 
he
ks on whether an invariant holds .

The naive algorithm performs quite poorly. Sin
e the algorithm instantiates every pos-

sible invariant (in step 1), its maximum spa
e usage is O(I

t

). This is the same for both the


ommon and worst 
ases, and makes the algorithm in
remental.

S = O(I

t

) = O(P � I)

Worst-
ase time o

urs when all invariants are 
he
ked against all samples for their

program point; this happens when no invariants are falsi�ed.

T = O(I � L

t

) = O(I

t

� L) = O(P � I � L)

Common-
ase time o

urs when falsi�ed invariants are falsi�ed qui
kly, so that there are

vanishingly few 
he
ks against falsi�ed invariants.

T = O(P � (RI � L+ FI �O(1))) = O(P �RI � L) +O(P � FI �O(1))

The �rst term is for the useful invariants that are a
tually true on the program, whi
h are

always 
he
ked, while the se
ond term is for invariants that are untrue and, in the 
ommon


ase, qui
kly falsi�ed.

Within the 
onstraints of soundness, 
ompleteness and the in
remental requirement, a

major way to save spa
e and/or time, as well as to redu
e 
lutter for the user, is to eliminate

some derived variables and invariants. There is no way to avoid examining all program

points and every exe
ution sample if soundness is to be preserved.

Lastly, it is important to note that the asymptoti
 notation hides one important detail:

it takes some amount of time to 
he
k if a sample 
ontradi
ts an invariant. If Daikon


ould dis
ern that no sample may ever falsify a 
ertain invariant, it 
ould omit 
he
king the

invariant, leading to signi�
ant improvement in the asymptoti
 
onstants.

5.2 Goal: eliminate invariants and derived variables

As mentioned in Se
tion 5.1.4, the most promising way to optimize invariant inferen
e is to

eliminate some derived variables and invariants that are uninteresting or logi
ally implied.

This also helps to redu
e 
lutter for the user.

When examining whi
h invariants and derived variables to eliminate, there are two or-

thogonal 
on
erns. The �rst is whether the elimination is stati
 or dynami
, and the se
ond
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is how mu
h it saves in resour
es.

5.2.1 Elimination type: stati
, dynami
 negative or dynami
 pos-

itive

The �rst 
on
ern for eliminating invariants and derived variables is whether the pro
ess 
an

be done stati
ally or must be done dynami
ally. Dynami
 elimination 
an be further split

into two 
ases: negative and positive.

A stati
 elimination is one that 
an be done without exe
ution tra
e data. An example is

A[i℄ 2 A[℄, whi
h is always true. A stati
 elimination is advantageous, as it 
an be done even

before data is seen. In 
ontrast, a dynami
 elimination needs exe
ution data. The example

where (x = y) ^ odd(x) eliminates odd(y) is a dynami
 elimination, for we 
annot be sure

that x = y until some data is seen. Within dynami
 elimination, there are two 
ases:

Nonsensi
al/Negative elimination is where one sample 
an forever remove an invariant

or derived variable. For example, if ever x � A:length, then A[x℄ is nonsensi
al. This is 
alled

negative elimination be
ause examples for elimination are 
ontradi
tory to the invariant or

derived variable.

Implied/Positive suppression is where an invariant or derived variable is eliminated

only through being implied by some other invariant. For example, (x = y)^odd(x)) odd(y).

Here, a positive statement is being made about the eliminated invariant by the two invariants

on the left. No one sample is enough: we 
annot be sure of the elimination until all data

has been seen, sin
e x = y or odd(x) 
ould be falsi�ed. Thus we use the term \suppression"

be
ause invariants are never 
ompletely eliminated.

5.2.2 Resour
es saved in elimination: time, spa
e or printing

The se
ond 
on
ern for elimination is what resour
es it saves. At best, it will save spa
e, save

time and let the inferen
ing algorithm avoid printing out extra information that is obvious

or uninteresting to the user. At worst, it will only redu
e printing, but have the same time

and spa
e 
osts.

To avoid printing extra invariants is relatively simple. Invariant inferen
e 
an be run as

before. When invariants are to be output, an invariant that is logi
ally implied by the rest


an be eliminated, and this pro
ess 
an be repeated.

To save spa
e, it is ne
essary to a
tually delete invariants or never instantiate them.

However, soudness and 
ompleteness need to be preserved. For example, if x = y^odd(x))

odd(y), then deleting odd(y) might be a good idea. However, this naive deletion produ
es

an in
omplete algorithm: should later x 6= y, yet odd(y) remain true, the user will not be

able to dedu
e odd(y) from odd(x). The 
orre
t solution, if odd(y) is to be eliminated, is to

preserve some me
hanism for regenerating odd(y) should x 6= y | i.e., should the dynami


suppression no longer apply.

To save time, invariants 
an be removed as with for spa
e. Alternatively, invariants 
an

be marked so they are not 
he
ked. These invariants would take up spa
e, but they would
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not need to be 
he
ked against data. For 
omplex invariants like 8

i

A[i℄ > 5 
he
king 
an

take up a signi�
ant amount of time.

In the following se
tions, we do not dis
uss any stati
 elimination te
hniques for there is

already adequate literature on standard stati
 analysis [CC77b, GC96℄. Similarly, dynami


negative elimination is also relatively straightforward: simply stop keeping tra
k of the

invariant when it is no longer interesting. Instead, we des
ribe three te
hniques for dynami


positive suppression.

5.3 Previous optimizations

Before this work, three optimizations were already performed on the Daikon system.

First, the 
on
ept of invariant weakening was added. For a series of invariants su
h as

x � 2; x � 1; x � 0 that imply ea
h other in a total order, it is only ne
essary to keep tra
k

of one of them, and weaken that invariant as fa
ts 
ome in. With the � invariant, we start

with x � MAX INT. The 
orre
t amount of weakening has to be done: if [5; 8; 1; 2℄ are seen,

then the �nal invariant must be x � 1. This ensures soundness and 
ompleteness.

Se
ond, a version (V2) of Daikon attempted to eliminate some invariants, but had to

make multiple passes over the data to do so. For example, Daikon V2 did a pass to 
olle
t

whi
h variables were equal to ea
h other before any other invariants were generated. If x = y

then only f(x) would be instantiated on the se
ond pass. Thus V2 eliminated many obvious

invariants and avoided examining extraneous data. This saved time at the expense of spa
e:

it took up spa
e in memory that was linear on E and was not in
remental.

Third, the 
on
ept of a data hierar
hy was introdu
ed, to relate variables a
ross program

points. We des
ribe this hierar
hy in the next se
tion.

5.3.1 Hierar
hy and 
ow

5.3.2 Nimmer's thesis paste, to be edited

This se
tion introdu
es a te
hnique to perform dynami
 positive suppression for invariant

dete
tion by taking advantage of impli
ation relationships between di�erent program points,

and organizing program points into a latti
e.

5.3.3 Staged inferen
e

In a previous version(Se
tion 5.3), the Daikon system operated in multiple passes over the

samples to infer invariants. The multiple passes permited optimizations be
ause 
ertain

invariants are always true or false, or 
ertain derived variables are unde�ned. By testing the

strongest invariants in earlier passes, the weaker invariants or 
ertain derived variables may

not need to be pro
essed at all. For example, if x = 0 always holds over an earlier pass, then

x � 0 is ne
essarily true and need not be instantiated, tested, or reported on a later pass.

Similarly, unless the invariant i < theArray:length holds, the derived variable theArray[i℄ may

be non-sensi
al.
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publi
 
lass A f publi
 
lass B f

publi
 stati
 int n; private int x;

private B b; publi
 int m2();

publi
 int m(B arg); g

g

Figure 5-2: Example de
larations for two simple Java 
lasses.

B.m2:::EXITreturnorig(this) orig(this.x) this.xthis

A:::CLASSA.n

A:::OBJECTthis.b this.b.x A.nthis

A.m:::ENTERarg arg.x this.b this.b.x A.nthis

B.m2:::ENTERthis.xthis

A.m:::EXITarg arg.x return this.b this.b.x A.norig(this)orig(arg) orig(arg.x) orig(this.b) orig(this.b.x) orig(A.n) this

B:::OBJECTthis.xthis

Figure 5-3: Flow relationship between variables for the 
ode shown in Figure 5-2. Shaded areas

name the program point, while unshaded boxes represent variables at that program point. Lines

show the partial ordering v

D

des
ribed in Se
tion 5.3.4, with a nub at the lesser end of the relation.

(For instan
e, arg v

D

orig(arg) in the lower left 
orner.) Relations implied by transitivity of the

partial order are not expli
itly drawn.

While operating in multiple passes, Daikon also treated ea
h program point indepen-

dently. Therefore, data from one program point may be dis
arded before the other points'

data is pro
essed.

5.3.4 Variable ordering

One major way to improve performan
e for dynami
 invariant dete
tion is for program points

to no longer be pro
essed independently. Instead, the dynami
 invariant dete
tion algorithm

relates variables from all program points in a partial order.

The relationship that de�nes the partial order v

D

is \sees as mu
h data as". If variables

X and Y satisfy X v

D

Y, then all data seen at Y must also be seen at X | X sees as mu
h data
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as Y. As a 
onsequen
e, the invariants that hold over X are a subset of those that hold over Y,

sin
e any data that 
ontradi
ts an invariant over Y must also 
ontradi
t the same invariant

over X.

Figure 5-3 shows the partial order formed by v

D

for the example 
lasses of Figure 5-

2. Consider the relationship between B:::OBJECT and B.m2:::ENTER. First, re
all that all

data from method entries must also apply to the obje
t invariants. (In other words, ob-

je
t invariants must always hold upon method entry.) Therefore, we have this

B:::OBJECT

v

D

this

B:m2:::ENTER

and this:x

B:::OBJECT

v

D

this:x

B:m2:::ENTER

. The same holds true for method exits:

this

B:::OBJECT

v

D

this

B:m2:::EXIT

. Finally, note that this

B:m2:::ENTER

v

D

orig(this)

B:::EXIT

, sin
e

any pre-state data asso
iated with a method exit must have been seen on entry.

For reasons similar to ones that relate B's variables a
ross program points, the relation-

ships that 
ontribute to the partial order are as follows.

De�nition of orig().

Variables on ENTER points are v

D

the 
orresponding orig() variables at all EXIT and

EXCEPTION program points.

Obje
t invariants hold at method boundaries.

Instan
e variables from the OBJECT program point are v

D

the 
orresponding instan
e

variables on all ENTER, EXIT, and EXCEPTION program points.

Obje
t invariants hold for all instan
es of a type.

Instan
e variables from the T:::OBJECT program point are v

D

the 
orresponding in-

stan
e variables on instrumented arguments and �elds of type T. (For example, see

arg

A:m:::ENTER

and this:b:

A:::OBJECT

in Figure 5-3.)

Sub
lassing preserves obje
t invariants.

Instan
e variables from the T:::OBJECT program point are v

D

the same instan
e vari-

ables on sub
lasses or non-stati
 inner 
lasses of T.

Overriding methods may only weaken the spe
i�
ation.

Argument(s) to a method m are v

D

argument(s) of methods that override or imple-

ment m, by the behavioral subtyping prin
iple.

5.3.5 Consequen
es of variable ordering

As shown in the previous se
tion, the partial ordering of variables implies that when invari-

ants hold true over variables at 
ertain program points, those invariants also must hold true at

lower (as drawn in Figure 5-3) program points. For instan
e, if we have this:x

B:::OBJECT

� 0,

then we also know that arg:x

A:m:::ENTER

� 0. We 
all this the hierar
hy property of program

points.

Dynami
 invariant dete
tion 
an be optimized by taking advantage of this hierar
hy

property. One way to do this, whi
h we have implemented in the Daikon system, is by

instantiating, 
he
king, and reporting invariants at the most general pla
e they 
ould be
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stated. For instan
e, if an invariant always holds over an obje
t's �elds, it would only exist

at the OBJECT program point (instead of ea
h method's ENTER and EXIT points), and would

only need to be tested on
e per sample.

For printing invariants for the user, the algorithm 
ould lo
ate all invariants over a set

of variables V at a program point P by forming the 
losure of V at P using the partial

ordering, and taking the union (
onjun
tion) of the invariants present at ea
h point in the


losure.

However, for this te
hnique of minimal invariant instantiation to work, both the samples

and the invariants must 
ow through the partial order in a spe
i�
 way, as explained in the

next two se
tions.

5.3.6 Invariant 
ow

The naive algorithm instantiates all possible invariants (modulo type 
onstraints) at all pro-

gram points. Now the hierar
hy property des
ribed above leads to new rules for instantiating

invariants and for what to do when 
he
king invariants against data.

Instantiation During the setup phase prior to seeing data, instantiate invariants only

where they would not be inferrable from a 
orresponding version higher in the hierar
hy.

For example, the algorithm would not instantiate arg:x

A:m:::ENTER

� 0 sin
e it would have

instantiated arg:x

A:m:::OBJECT

� 0 (or the equivalent invariant at a higher program point).

Formally, instantiation is only allowed when one or more of the variables of an invariant has

no prede
essor in the v

D

partial order. That is, a set V of n variables should be used to

instantiate an n-ary invariant only if 9v 2 V 8x : x 6<

D

v.

Che
king When an invariant is falsi�ed or weakened at a program point during inferen
e,


opy it \down" to the immediate 
hild program points. By 
hild program point, we mean

program point(s) where every variable used by the invariant is less in the partial ordering.

By nearest we mean that there must be no intermediate program points. For example, when

arg:x

A:m:::OBJECT

� 0 is falsi�ed, it is 
opied down to A.m:::ENTER as arg:x

A:m:::ENTER

� 0.

Formally, a falsi�ed invariant over a set of sour
e variablesA should be 
opied to a destination

set B when all variables in B are at the same program point and when 8a 2 A : 9b 2 B :

(a v

D

b) ^ (:9x : a <

D

x <

D

b).

One positive 
onsequen
e of this approa
h is that methods de�ned in interfa
es will have

invariants reported over their arguments, even though no samples 
an ever be taken on

interfa
es dire
tly. For example, if every implementation of an interfa
e's method is 
alled

with a non-null argument, Daikon will report this property as a requirement of the interfa
e,

instead of as a requirement of ea
h implementation.

5.3.7 Sample 
ow

In the invariant 
ow algorithm, invariants 
ow down as they are falsi�ed. This property

suggests a 
orresponding 
ow algorithm to pro
ess samples.
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A.m:::ENTERthis.b.x A.n

A:::OBJECTthis.b.x A.n

A.m:::EXITthis.b.x A.norig(this.b.x) orig(A.n)

1 10 0

Figure 5-4: Example indi
ating the need for path information in sample and invariant 
ow, as

des
ribed in Se
tion 5.3.8. A portion of Figure 5-3 is reprodu
ed, along with a potential sample

(0,0,1,1). Given only that sample, the invariant this:b:x = A:n at A:::OBJECT should hold. However,

if the sample 
ows as indi
ated by the bold links of the partial order, the invariant would be

in
orre
tly falsi�ed. Therefore, the path taken is important.

1. Identify the exa
t program point where the sample was drawn from.

2. Form the 
losure of program points that have any variable �lled in by following the

relations upward in the partial order.

3. Feed the sample to ea
h of these program points in a topologi
al order. A sample is

fed to a point after it has been fed to all points where a variable is greater. Therefore,

any falsi�ed invariants are always 
opied to lower program points before the sample is

fed there to falsify them.

5.3.8 Paths

For both invariant and sample 
ow, the path taken through the partial order is impor-

tant. For example, 
onsider Figure 5-4. Given only this data, Daikon should report that

this:b:x = A:n at A:::OBJECT. However, sin
e we have this:b:x

A:::OBJECT

v

D

orig(this:b:x)

A:m:::EXIT

and A:n

A:::OBJECT

v

D

A:n

A:m:::EXIT

, the values for orig(this.b.x) and A.n would falsify the in-

variant. The problem is that the two paths through the partial order are di�erent | they

traverse di�erent program points.

To address this problem, we annotate ea
h edge in the partial order with some non
e. A

pair of variables <A1,A2> is together related to <B1,B2> by the partial order if the path from

A1 to B1 follows the same non
es as the path from A2 to B2. The non
es must be 
hosen so

that sets of variables from two program points that are related due to the same item from

the list starting on page 63 must share the same non
e. In terms of Figure 5-3, parallel or

nearly-parallel lines from one program point to another will have the same non
e.

5.3.9 Hierar
hy shape

An important property of the hierar
hy property presented so far is that the variables and

program points form a tree under the v

D

relationship for any one reason that variables
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Figure 5-5: The advantage of handling equality spe
ially. Without equality handling (above)

there are 4 invariants saying a, b, 
 and d are even. There are 6 invariants saying the variables

are equal. With equality handling all the equality invariants 
ollapse into one equality set,

while even invariants are represented by even(a) on the leader of the set.

relate, su
h as method instan
e variables to obje
t instan
e variables. The variables of a

program would thus form a forest under the partial order. However, when multiple reasons

are 
ombined, variables are no longer always related a tree | they 
an be
ome a general

dire
ted a
y
li
 graph.

For example, with multiple inheritan
e (due to interfa
es), a method's spe
i�
ation 
ould

be governed by multiple interfa
es, so its arguments would have multiple parents in the

partial order.

Thus we 
an no longer say that \an invariant only appears at the one pla
e where it may

be most generally stated". Instead, we reword \one pla
e" to minimal number of pla
es.

An implementation would have to take into a

ount the non-tree nature of the partial order

when 
owing samples and variables.

5.4 Handling equality

One dynami
 positive elimination te
hnique is to handle equality spe
ially. This saves spa
e

and time in two ways. Given v variables that are always equal | i.e., belong to the same

equality set: 1) We have one equality invariant for the set rather than �(v

2

) two-way equality

invariants. 2) We have invariants only on one member of ea
h equality set rather than v

invariants for ea
h member. With invariants of more than one variable, the savings for the

latter 
an be enormous.

As seen in Figure5-5, let us say a program point has four variables, a; b; 
; d and they are

all equal. There is an invariant f that 
an apply over any one of them. Normally, we would

need 6 equality invariants to express the equality:

a = b; a = 
; a = d; b = 
; b = d; 
 = d

and 4 invariants to show f held on ea
h:

f(a); f(b); f(
); f(d)

With the use of equality sets, we have one data stru
ture that keeps tra
k of the equality

relationship, and only 
reate one 
opy of f for a 
anoni
al member, or leader of the set, f(a).

The leader is 
hosen arbitrarily from the set. This saves spa
e be
ause we do not need to
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keep tra
k of other instan
es of f or equality invariants. Further, this saves time, espe
ially

when 
he
king f is 
omputationally expensive.

This is a dynami
, positive elimination. f(b) is suppressed by f(a) and a = b, and should

the latter be falsi�ed, f(b) will have to be 
reated as an invariant to be 
he
ked. We do not

have to spe
ially handle f(a) being falsi�ed, sin
e as long as a = b held, f(b) would also be

falsi�ed.

The equality optimization to the Daikon tool is summarized below, as an augmentation

to the native algorithm.

Initialization Before running the rest of the algorithm, all 
omparable variables at a

program point are pla
ed into the same equality set (a data stru
ture). Ea
h equality set is

given an arbitrary leader from within the set. When the normal algorithm instantiates (non-

equality) invariants, we allow instantiation only for invariants whose variables are leaders of

their equality sets.

During 
he
king At every data sample during 
he
king, ea
h equality set is �rst 
he
ked

to see if its members are still equal. If not, the equality set is split into new sets, so that

variables with same values are pla
ed into the same set. The invariants of the old set's leader

are 
opied to ea
h of the new leaders. After this, all other invariants (some of whi
h may be

newly 
opied) are 
he
ked as usual.

Post pro
essing The equality sets 
an, at the end of the run through the exe
ution data,

be \devolved" ba
k into regular two-way equality invariants. How this is done depends on the

user's preferen
es. By default, this post pro
essing stage 
reates two-way equality invariants

between the leader of ea
h equality set and its members, rather than between all members

of an equality set.

Noti
e that the dynami
ally suppressed invariants, su
h as f(b), are kept impli
itly by

the equality me
hanism: when b no longer equals a, we simply 
opy f from a. The spa
e and

time savings depend on how many invariants are equal during 
he
king. The more variables

that are equal for a longer amount of time, the more the savings.

The above summary gives an overview of how a naive invariant inferen
e algorithm 
an be

altered for saving time and spa
e using equality. It is one-pass be
ause it simply adds some

steps to the algorithm before initialization and before ea
h sample is pro
essed. However,

ensuring soundness and 
ompleteness requires handling �ve issues:

� Copying and instantiating non-equality invariants between members of the same equal-

ity set.

� Counting the number of data samples seen

� Counting the number of missing data samples seen

� When invariants are not instantiated with respe
t to data 
ow

� Other post pro
essing issues

We dis
uss ea
h of these in the se
tions that follow.
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Figure 5-6: When b splits o� from fa; 
g it is not adequate to simply 
opy the invariants

from the old leader to the new. The two grayed-out invariants, g(a; b) and h(a; b; x) show

what would be missing.

5.4.1 Copying and instantiation of invariants

When an equality set is split during inferen
e, any invariants from the leader of the old set

are 
opied onto the leaders of the new sets. This is ne
essary to represent the fa
t that

invariants may remain true on the new sets but falsi�ed on the old sets. However, mere


opying is not adequate.

Ea
h of the new leaders and the old leader might have other invariants between them-

selves. The example in Figure 5-6 demonstrates this. The top part shows the state of

invariant inferen
e before a 
ertain sample is seen, while the bottom shows the state after

the sample. Before, a is the leader of the equality set of fa; b; 
g. After, b splits o� into

its own equality set. x is a variable that was not in the original equality set a; b; 
. The

invariant templates are f (unary), g (binary) and h (ternary). Assume the invariants are


ommutative for their variables (i.e., g(a; b), g(b; a)). Originally, the invariants are:

f(a); f(x); g(a; x).

If we simply 
opied over the invariants of the old leader onto those of the new leaders,

we would additionally have:

f(b); g(b; x)

This does not 
over all possibilities, for we are missing:

g(a; b); h(a; b; x)

as shown grayed in the �gure. A possible g that 
ould hold at this point, for example, is

g(a; b) : a � b.

One way to have these invariants is to instantiate them at the time of the equality split.

Another is to instantiate them during initialization. We �rst explain why the �rst method
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is unsound, and then des
ribe the se
ond method.

Method 1: Instantiating invariants at the time of split

An algorithm 
ould instantiate new invariants at the time of splitting as follows: Let N be

the set of new leaders, o be the old leader, and X be the leaders outside of the old equality

set. The invariants to instantiate are all the invariants on fog+N +X minus the invariants

that were 
opied, minus the invariants that hold on X alone. This pre
isely 
overs the set

g(a; b); h(a; b; x) shown grayed in Figure 5-6.

The problem with this implementation is that some of the instantiated invariants may

have been falsi�ed by data at this point. Clearly, for an invariant like g(a; b) : a < b this is

easy to determine. However, there are some invariants for whi
h equality implies nothing.

For example, 
onsider the invariant g(a; b) : a+ b = 4. Knowing that, until now, a = b gives

no information on whether a + b = 4 has been true. Short of a
tually storing all samples

of a and b (whi
h would make a non-in
remental algorithm), there is no way to determine

if g(a; b) held for a general formula. Thus instantiating invariants at the time of split is

unsound, be
ause we do not know whi
h invariants to instantiate.

Method 2: Instantiating invariants during initialization

A way to know if g(a; b) held previously is to a
tually instantiate g(a; b) at the beginning.

This way, the invariant itself is 
he
ked against the samples before the time of the equality

split. However, we do not want to instantiate g(a; b) sin
e this would obviate the bene�ts of

equality optimization. However, we know that a = b before the split, so we 
an instantiate

g(a; a) instead for both g(a; b) and g(a; 
). We 
all these new types of invariants re
exive

invariants. When b splits o� from a, both the re
exive and non re
exive invariants are 
opied

onto b, using the same me
hanism. This approa
h 
an be seen more generally in two new

rules, one for initialization and one for during 
opying:

Initialization When instantiating (non-equality) invariants during initialization, let there

be r equality sets initially. In the summary des
ription of equality optimization, for every

invariant on k variables, the algorithm would instantiate

r

C

k

invariants. This is be
ause we

wanted all 
ombinations of k variables on r equality leaders. Now the algorithm instantiates

all k-way 
ombinations with repetition. This allows 
ases like g(a; a) and h(a; a; d).

In the example above, the invariants that would exist before the equality set split are

shown in Figure5-7:

f(a); f(x); g(a; x); g(a; a); h(a; a; a); h(a; a; x); h(a; x; x); h(x; x; x)

Copying during a split When an equality set is split o�, invariants are only 
opied

(no instantiation), but this 
opying is no longer a dire
t substitution of new leader for old

leader. We again use the 
ombinations with repetition te
hnique. Let r be the number of

new equality sets from one equality set. For ea
h invariant 
ontaining k instan
es of the old

leader, we 
opy the invariant for ea
h k-way 
ombination with repetition on the r leaders.

Figure 5-8 shows how ea
h of the invariants in the example would be 
opied when the set

with a as leader splits o�.
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Figure 5-7: Solving the 
opying problem by keeping invariants on the same variable. Lines


onne
ting invariants to variables have been removed for 
larity.

Original invariant Instan
es of leader Copied invariants

f(a) 1 f(b)

f(x) 0

g(a; x) 1 g(b; x)

g(a; a) 2 g(a; b), g(b; b)

h(a; a; a) 3 h(a; a; b), h(a; b; b), h(b; b; b)

h(a; a; x) 2 h(a; b; x), h(b; b; x)

h(a; x; x) 1 h(b; x; x)

h(x; x; x) 0

Figure 5-8: Copying of invariants using 
ombinations with repetition, where a is the old

leader and b is the new leader.

70



Figure 5-9: Optimizing the 
opying and re
exive pro
ess. Some invariants with more than

one instan
e of a variable do not have to be instantiated.

This method enumerates at least the invariants that would be instantiated in method 1,

and has adequate information from keeping around invariants within the same equality set.

We use 
ombinations with repetition rather than those without be
ause otherwise g(a; a)

would not appear. We use 
ombinations rather than permutations be
ause we assume the

data stru
tures for invariants are designed so that g will work regardless of the order of the

variables (i.e., g tra
ks both g(a; b) and g(b; a) if needed, as the Daikon system does).

It might appear at �rst that this method instantiates an unne
essary number of invariants.

However, we perform the following optimization: if a variable o

urs k times within an

invariant, the variable's equality set must have at least k members. Otherwise, the invariant

is no longer interesting and is destroyed (during run). This is shown in Figure 5-9. In the

example, if b is the only member of its equality set, then the invariants g(b; b), h(b; b; b),

h(b; b; 
), h(b; b; d) are destroyed. Thus the number of invariants is bounded by the number

of invariants without equality optimization.

5.4.2 Sample 
ounts

For statisti
al tests, invariant inferen
e systems like Daikon tra
k the number of sample

values seen for a variable. For ea
h variable, at ea
h sample data point, there is one of three

pie
es of information: that the data is 1) present and was assigned to sin
e it was last seen;
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2) present but unmodi�ed; 3) missing. Data 
an be missing for reasons dis
ussed in Se
tion

5.4.3. The 
ount of the number of modi�ed and unmodi�ed samples is used to later 
lassify

invariants as justi�ed or not (there is no need to tra
k missing samples).

Modi�ed/unmodi�ed/missing data is also 
ounted for ea
h group of k variables that has

invariants generated. For a k-tuple, if any variable is missing, then the tuple is 
onsidered

missing. Otherwise, if any variable is modi�ed, then the tuple is 
onsidered modi�ed. Thus

ea
h invariant 
an perform a more a

urate statisti
al test.

For statisti
al tests to 
ontinue to yield the same results under equality optimization, we

must provide the right sample data to variables and invariants, even though the variables are


ombined into equality sets so not all invariants are instantiated to keep tra
k of data. We

use the following 
onservative me
hanism: if any of the values in an equality set is modi�ed,

then the equality set's leader is 
onsidered modi�ed. Further, when invariants are 
opied

(due to equality sets splitting), sample 
ounts are also 
opied.

Missing values have to be handled spe
ially, as explained in the next se
tion.

5.4.3 Missing data samples

Sometimes, exe
ution data for invariant inferen
e 
ontains missing samples. This 
an hap-

pen, for example, for variables that are nonsensi
al in some 
ases, su
h as s:a when s is

null. In the naive implementation of inferen
e, invariants ignore missing data samples. This

is sound for the naive implementation be
ause a missing sample means there is inadequate

information to 
ontradi
t an invariant. However, with equality optimization, either ignoring

missing samples or handling missing samples like modi�ed/unmodi�ed values is unsound.

Figures 5-10 and 5-11 explain this. Consider a program point with two variables, a and

b, and a unary invariant f . Initially, a and b are equal, a is the leader, and f(a) holds. Now

a sample arrives that has a missing, but 
ontains a value for b that 
ontradi
ts f(b). We


annot falsify f(a) be
ause f might hold for a (and when a is missing, this is still true). We


annot maintain f(a) and say this implies f(b) be
ause we have seen a falsifying sample.

The sound solution is to split the equality set fa; bg and instantiate a two-way equality

invariant between a and b, as shown in Figure 5-12 In fa
t, when two-way equality invari-

ants are used during initialization, the instantiation is unne
essary: the 
opying me
hanism

produ
es the right results. The general rule, then, is to split o� all variables with missing

values from the old equality set into a new equality set and to use the 
opying me
hanism

as usual, while in
luding two-way equality invariants in the ones instantiated during initial-

ization. Not in
luding two-way equality invariants would be unsound, as the invariant a = b

would still hold in the example sin
e a was missing.

5.4.4 No more non-instantiation of invariants

One drawba
k of equality optimization is that a performan
e optimization done in data 
ow

is no longer 
orre
t (it is in
omplete). Data 
ow does not instantiate invariants in a program

point if a higher program point subsumes the invariants. However, the example in �gure 5-13

shows how this is now in
omplete. The upper program point 
ontains variable a

upper

and

the lower 
ontains variables a

lower

and x. The two as are 
onne
ted by 
ow, while initially
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Figure 5-10: It is wrong, as shown here, to assume even(b) holds even though a is missing.

It 
ould be the 
ase that b is not even.

x == a

lower

with a

lower

as leader. If the standard data 
ow non-instantiation is used, then

we initially only instantiate invariant f(a

upper

). f(a

lower

) is not instantiated due to data
ow

optimization, while f(x) is not instantiated be
ause x is not the leader.

Say a sample �rst arrives that shows x is not equal to a

lower

, followed by a sample that

falsi�es f on the as but not on x. An example of this 
ould be if f means \even" and the

samples seen are (2; 2), (2; 4) and (3; 4). Sin
e a

lower

has no invariants, when the inequality

sample is seen, x is split o� but no invariants are 
opied. Then when a

upper

has f falsi�ed,

f 
ows to a

lower

, where it is also falsi�ed. However, x never gets f , so now the output from

Daikon is wrong (i.e., in
omplete). Note that if f is falsi�ed before the inequality is seen,

then 
orre
tness is preserved, sin
e f(a

lower

) is �rst 
reated, and then 
opied as f(x) when

inequality happens.

One way to �x this data
ow problem is to make the non-instantiation rule no longer

apply. That is, all leaders at all program points now instantiate invariants, even if another

program point would eventually 
ow the invariant down. In the above 
ounterexample, this

approa
h is sound be
ause f(a

upper

) and f(a

lower

) both exist, so when the unequal sample is

seen, f(x) 
an be 
opied.

This �x in
reases the spa
e used for invariants, but does not add mu
h to the time, sin
e
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Figure 5-11: It is wrong, as shown here, to assume even(b) does not hold when a is missing.

It 
ould be the 
ase that f is even.

suppression optimization (Se
tion 5.5) prevents them from being 
he
ked. We also 
laim that

the number of invariants eliminated by the equality optimization dominates the number that

would be eliminated by data 
ow, espe
ially sin
e any invariant that weakens 
annot use the

data 
ow me
hanism.

An alternative way to �x this problem is to sear
h for all invariants that are on the old

leader in all the parent program points, and to 
opy the invariants onto the new leaders, In

the example in the �gure, x would have f 
opied to it when x is split from a. This is shown

in Figure 5-15.

5.4.5 Post pro
essing

The basi
 step in post pro
essing was des
ribed in the overview of equality optimization

in the start of Se
tion 5.4 | equality sets are 
onverted into two-way equality invariants.

However, it is often the 
ase that some variables are not interesting for printing, and these

variables may be the leaders of equality sets, in whi
h 
ase none of the invariants on any

of the variables will be printed. For example, a == b, and a is the leader, but a is not

interesting. In that 
ase, odd(a) will not be printed (this is 
orre
t) but neither will odd(b)

(this is wrong). Thus, before the post pro
essing 
onversion stage, some equality sets are

pivoted. If the leader of an equality set would not be printed, the leader is swit
hed to one
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Figure 5-12: The sound way to handle missing values: keep a two-way equality invariant

between a and b and split o� the equality sets.

that would be (if any exists). The invariants atta
hed to the former leader are swit
hed over

to the new leader.

5.5 Suppression optimization

An invariant is suppressed if it is implied by some set of other invariants. Suppression

optimization attempts to save time by not 
he
king suppressed invariants. It performs

dynami
, positive elimination only, but is general enough to work for all logi
al impli
ations.

Suppression and equality optimization are the only forms of dynami
 suppression used in

the Daikon tool. Suppression saves times and redu
es 
lutter from printing, but it does not

save spa
e: re
all that for positive elimination, it is not possible to entirely eliminate an

implied invariant. With equality optimization, we keep tra
k of invariants impli
itly, sin
e

the 
opying me
hanism is adequate for re-
reating invariants. With suppression optimization,

sin
e it works for all impli
ations in general, it is ne
essary to a
tually keep the suppressed

invariant.

A suppression link 
onne
ts an invariant and its suppressors. Using suppression links

entails two major 
hanges to the inferen
ing algorithm (we will assume we are 
hanging

it after equality optimization has been added). First, ea
h invariant is given suppression

fa
tories that des
ribe what kind of logi
al 
onditions 
an suppress it. Se
ond, the invariant


he
king me
hanism is modi�ed to save time by using suppression links.
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Figure 5-13: The problem with not instantiating invariants and relying on the data 
ow

hierar
hy. Problem with non-instantiation of invariants: sin
e f(b) is never instantiated, if

x splits o� from a in LOWER before f drops from UPPER, then x will never have f as an

invariant.
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Figure 5-14: One way to 
orre
t the problem of non-instantiation: instantiate invariants that

would hold on equality leaders at every program point.
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Figure 5-15: Another way to 
orre
t the problem of non-instantiation: 
opy relevant invari-

ants from upper program points upon splitting the equality set.
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When an invariant is 
opied over to a new equality set, we do not 
opy over suppression

links. Instead, we re-attempt suppression on the 
opied invariant, as shown in Se
tion 5.5.2.

5.5.1 Suppression fa
tories

The 
onditions for suppression are dependent on the type of invariant and the stru
ture

of the variables suppression works on. For example, A[i℄ 2 B is implied by A � B |

this suppression depends both on the fa
t that the suppressed invariant is an \element of"

invariant and that one of the variables is a lo
ation in an array.

Suppression fa
tories are atta
hed to the invariant they might suppress, sin
e ea
h sup-

pression link 
an 
onne
t to multiple suppressors but only one suppressee. When asked to

attempt suppression on an invariant, a suppression fa
tory generates a suppression template.

A suppression template 
onsists of a list of invariants and variables on these invariants. If

there exists these invariants on the variables, then the suppression template is �lled, and the

suppression fa
tory is allowed to suppress the suppressee. The suppression template for the

above example would be [h�; [A;B℄i℄, 
onsisting of one invariant and variable group. The


onditions for suppression are other invariants, in
luding equality sets.

The most important 
ompli
ation to �lling a suppression template is that suppression 
an

happen a
ross program points via their data 
ow 
onne
tions. Re
all that every invariant

that holds on a parent program point holds on the 
hild. Thus, we also want to s
an all

the an
estor program points of an invariant, in addition to the invariant's program point,

when looking for suppressors, while remapping the variables via their 
ow 
onne
tions. An

invariant does not have to have all its suppressors in the same program point.

Lastly, we also use suppression to hide invariants implied by data 
ow that the data 
ow

me
hanism 
annot 
at
h. With equality, we 
an no longer leave invariants uninstantiated if

parent program points have them. However, we 
an use suppression to save time on 
he
king

these invariants, sin
e when equality sets split, invariants are 
loned but not their suppression

fa
tories.

5.5.2 Handling suppression during Daikon's run

Below is a des
ription of how suppression is integrated into Daikon's inferen
ing loop. Even

though suppression links may 
onne
t a
ross program points, suppression itself is examined

in the 
ontext of one program point. For a program point:

1. When invariants are instantiated, attempt to suppress them. An invariant is sup-

pressed when any suppression link 
an be 
reated for it, but we only keep tra
k of one

suppression link.

2. During inferen
ing, 
he
k only the invariants that are not suppressed with values.

3. When an invariant is falsi�ed, 
olle
t all its suppressees, and remove their suppression

links. If the falsi�ed invariant was suppressing an invariant with another invariant, the

suppression link is still removed sin
e it is the 
onjun
tion that implies the suppression.

Take all the formerly suppressed invariants, and attempt to re-suppress them (using
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Figure 5-16: Suppression in a
tion for the logi
al impli
ations A � B ) A[i℄ 2 B and

A � B ) A[j℄ 2 B

unfalsi�ed invariants). For any unsuppressed invariants that remain, 
he
k them with

values if the invariant was in the same program point as the former suppressor. We

do not 
he
k invariants in di�erent program points be
ause they have to be in 
hild

program points and will be 
he
ked when values arrive.

4. Before invariants are printed (i.e., during post pro
essing) attempt to suppress ea
h

invariant again.

The above algorithm ensures the following property:

Theorem 5.5.2.1 (Suppression never falls): A suppressed invariant 
an

never 
ow to a lower program point.

Figure 5-16 shows suppression in a
tion. The variables are the arrays a and b, integers i

and j and derived variables a[i℄ and a[j℄. Initially, A � B, so this implies that A[i℄ 2 B and

A[j℄ 2 B have to hold. A suppression is established 
onne
ts A � B to the two suppressed
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invariants. Should any samples arrive that preserve A � B, the two suppressed invariants

will not be 
he
ked.

At a later time, a sample is seen that falsi�es A � B (and A[i℄ 2 B). The two invariants

that were suppressed now be
ome regular invariants. They are 
he
ked against the data

sample, and A[i℄ 2 B is falsi�ed, while A[j℄ 2 B is preserved.

5.5.3 Suppressors that do not have their values set

Another issue that arises with suppression is that some suppressors may be invariants that

set their parameters only after a few samples have been read. For example, in invariants

of the form: y = ax + b , a and b are not set until at least 2 samples of (x; y) have been

observed. We know that y = x + 4 
an suppress y > x but it is in
orre
t to follow either of

the following approa
hes:

� Conne
t y = x + 4 to y > x via suppression links at the beginning. This is in
orre
t,

as we 
ould en
ounter just one value for (x; y), (1; 1) that does not set a and b but


ontradi
ts y > x. This would be unsound.

� Not 
onne
t y = x+ 4 to y > x via suppression links. In this 
ase, the 
onne
tion will

never form, even when a = 1 and b = 4. Sin
e it is the suppressor that is 
hanging, the

potential suppressee will not know when to look for the 
hange, as the two invariants

are not 
onne
ted.

The only way to have the suppression link form at the right time is to 
he
k o

asionally

whether x > y is suppressed. One su
h way to do this is to exa
tly look for when an invariant

of the form y = ax+ b 
hanges, but this would require adding spe
ial 
ase handlers to every

suppressor that 
hanges. Instead, it is easier to run a general suppression 
he
k (as done

during initialization) periodi
ally. If the suppression 
he
k is done using exponential ba
k

o� (every 10, 100, 1000, et
. samples) then the time 
ost is minimal, as most 
hanging

invariants have their parameters set early.

5.5.4 Suppression 
y
les

Lastly, there is a question of whether suppressed invariants 
an suppress other invariants.

The advantage of allowing this is greater suppression, the danger the presen
e of 
y
les.

If there is a 
y
le, then a set of invariants may never be falsi�ed. We allow suppressed

invariants to be suppressors, but 
he
k (at design time) that all the suppression fa
tories we

have 
ontain no logi
al 
y
les.

5.6 Conditional invariant dete
tion

Re
all that the grammar of any dynami
 invariant dete
tion system must be limited be
ause

there are an in�nite number of invariants that are true of a program. For example, the

Daikon system limits itself to invariants that 
ontain at most 3 variables as the atoms of its
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grammar. This limitation is a tradeo� between the general usefulness of the invariants and

the extra time (both 
omputer and user) involved in pro
essing them.

However, setting a hard limit like 3 variables is not suÆ
ient for some appli
ations. Thus,

the Daikon system supports a limited extension of its grammar by allowing for boolean


ombinations of atomi
 invariant units. For any two boolean values, there 
an be 2

4

= 16

di�erent binary fun
tions, but it is not useful to have all these fun
tions. Daikon allows the


he
king of two spe
i�
 forms [DDLE02℄: A ) B and :A ) B. These are useful be
ause

impli
ations are 
ommonly used to des
ribe program behavior, espe
ially in ex
eptional


ases.

In terms of terminology, we shall 
all the left hand side the 
ondition and the whole

invariant a 
onditional invariant.

However, even with potentially useful impli
ations, adding just one type of boolean ex-

pansion 
ould expand the grammar by squaring the number of invariants. Not all of these

invariants would be useful. Daikon thus de
ides on whi
h invariant atoms to 
hoose as left

hand sides. One me
hanism for de
iding this is to let the user spe
ify. Other me
hanisms,

su
h as examining boolean predi
ates in the program syntax and data 
lustering analysis

have been attempted [DDLE02℄. This se
tion shows how to eÆ
iently run dynami
 invari-

ant dete
tion, despite the seeming explosion in the number of invariants that impli
ations

introdu
e.

The main issue in dete
ting A ) B is the waste of 
omputation if A or B are always

true. Using a non-in
remental, multiple pass approa
h to this problem is easy: after dynami


invariant dete
tion is run the �rst time for atomi
 invariants, we only instantiate 
onditional

invariant A) B if A and B are not invariants themselves. In Daikon V2, this is implemented

via 
onditional program points, virtual program points that have been 
reated to represent

all the possible invariants on the right hand side of the impli
ation assuming A is true.

Conditional program points are passed in the right subset of the data for their 
onditions

(i.e., all the samples where A is true) and then ea
h invariant B in the 
onditional program

point is used as before.

5.6.1 In
remental dete
tion of 
onditional invariants

In an in
remental approa
h to dynami
 invariant dete
tion, 
reating 
onditional invariants

or 
onditional program points 
annot be done after data samples have been read. A naive

in
remental approa
h would be to simply instantiate all 
onditional invariants, but this

would result in the resour
e 
onsumption presented above. An optimizing approa
h is to take

advantage of the optimizations that are already used in the Daikon system. The key insight

here is that the hierar
hy established between program points also works for 
onditional

program points.

At the start of invariant dete
tion, when the program point hierar
hy is 
reated, 
ondi-

tional program points are 
reated just like regular program points. Ea
h 
onditional pro-

gram point PptCond

i

is 
onne
ted to two groups of program points via the v

D

relation-

ship: 1) the regular program point without the 
ondition Ppt

i

; 2) the 
onditional program

points PptCond

j

for whi
h the 
orresponding regular program points are in the relation

Ppt

i

v

D

Ppt

j

.
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This 
onne
tion is pre
isely in a

ordan
e with the v

D

relation. PptCond

i

v

D

Ppt

i

be
ause any any data samples seen under a 
ondition should be seen by the program point

that subsumes all samples. Ppt

i

v

D

Ppt

j

) PptCond

i

v

D

PptCond

j

is true be
ause the

upper program point Ppt

j


laims to see all samples at the lower program point Ppt

i

. This

new rule is also ne
essary be
ause it is not the 
ase that Ppt

i

v

D

PptCond

j

: the 
ondition

may not be true at Ppt

i

. Sin
e the v

D

ordering takes the transitive 
losure of the rules, we

are sure that PptCond

i

v

D

Ppt

j

. These two new rules together establish a latti
e (rather

than a tree) for data 
owing up from a parti
ular sample under a 
ondition, but this is

already handled by the hierar
hy.

On
e the hierar
hy is established, invariants are instantiated and 
he
ked under the

same rules as before. During 
he
king, on 
orresponding variables between related program

points, the upper invariant will shadow the lower one. Thus if B is always true, the invariant

A) B will not be 
he
ked. A) B will be 
he
ked pre
isely when it needs to be: when B

is destroyed at the upper program point.

There is one minor 
hange to the operation of the system during 
he
king: samples are

no longer always inserted at exa
tly one program point: for ea
h regular program point,

many 
onditions 
ould hold. However, performing multiple insertions is not a problem sin
e

the system is already 
apable of handling multiple sample 
ows to one program point. At

ea
h insertion, memoization 
an be used to make sure that a sample is not pro
essed again

at a program point.

One more optimization 
an be done to the system to eÆ
iently handle the 
ase where A

is always true. While A remains true, it is not ne
essary to keep the 
onditional program

points for Ppt. Thus, the 
reation of the hierar
hy 
ould be done dynami
ally, on
e A is

falsi�ed. The rules would be:

� For PptCondA, the 
onditional program point where A holds, 
opy no invariants,

sin
e the invariants in the two program points must be identi
al at the moment of A's

falsi�
ation and PptCondA v

D

Ppt. The 
ondition must be 
he
ked �rst however,

be
ause we want to 
opy the invariants that exist before the falsifying data sample is

seen.

� For PptCondA

0

, the 
ondition program point where A is false, instantiate exa
tly the

invariants not in Ppt. Sin
e until now, A has never been false, everything must be

true at PptCondA

0

. However, we do not need to 
opy the invariants in Ppt sin
e

PptCondA

0

v

D

Ppt.

These rules soundly and in
rementally performs 
onditional invariant dete
tion with the

same optimizations as in Daikon V2. If A is always true, then the 
onditional program points

are never 
reated. In fa
t, the rules are advantageous over a multiple pass approa
h: rather

than instantiating the 
onditional program point for A and :A early on, when there will be

many other invariants there are true, the in
remental optimizations 
reate the 
onditional

program point only when needed.
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5.7 Fun
tion parameters

During the implementation of dynami
 invariant dete
tion for the IOA language, it was

dis
overed that many invariants were obvious be
ause the variables involved were parameters

to transitions. To redu
e 
lutter for the user, we developed a me
hanism to eliminate 
ertain

invariants on parameter variables, and ported this te
hnique to the semanti
s of Java and C

fun
tion parameters.

A transition parameter in IOA is immutable. This means that the values of the variable

before and after the transition (
alled the pre- and post- values) will be equal and any

invariant on the post variable is uninteresting be
ause it will be present on the pre variable.

The same is true for any derived variable of the post variable.

In Java and C, fun
tion parameters are mutable, but some ways of 
hanging them render

them uninteresting. Consider a data stru
ture s with �eld s:a, passed into fun
tion f(). If

the value (of the pointer) s is 
hanged, there are two 
ases: 1) s is set to a new stru
ture; 2)

s is set to an existing data stru
ture. Case (1) 
annot be seen by the 
aller, unless s is also

in the return of f , in whi
h 
ase the return value will have the relevant information. Case

(2) may be seen by the 
aller, but the information is useless unless the new value of post(s)

is in a data stru
ture visible to the 
aller. If this is the 
ase, then the data stru
ture will


ontain all the ne
essary information. So for both 
ases, post(s) is not interesting.

If the value of s is not 
hanged, but the value of s:a is 
hanged, this e�e
t may be visible

to the 
aller. In this 
ase, post(s:a) is interesting, even though post(s) is not.

In implementation, language front ends are responsible for labeling variables as param-

eters. Any parameter and derivation done by Daikon of a parameter is treated like post(s)

above and is not interesting. Any variable issued by front ends that is related to a parameter

variable is labeled as a se
ondary (or front-end derived) parameter. In the example above,

this is true for s:a | the front end does not label it as a parameter, but Daikon labels it

as a se
ondary parameter. Post states of se
ondary parameters are interesting if the pa-

rameter variable they are related to have not 
hanged. Sin
e parameters in IOA are deeply

immutable, the IOA front end labels all se
ondary parameters as primary parameters.

Sin
e determining whether se
ondary parameters are interesting depends on the equality

between the pre- and post- variables of the 
orresponding primary parameters, suppressing

invariants that 
ontain se
ondary parameters is a dynami
 suppression. In 
ontrast, sup-

pressing invariants with primary parameters 
an be done stati
ally. However, the equality

set between the pre- and post- variables 
annot be eliminated, sin
e it will be used for

determining if se
ondary parameters are interesting.

5.8 Future work

automati
ally generate (or 
he
k) suppressors

(do more ambitious experiments using V3's 
apabilities)

implement online
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5.9 Con
lusion
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Chapter 6

Improving the IOA Simulator

This 
hapter 
overs improvements that were made to the IOA Simulator so that it would

be better suited for exe
uting IOA programs, espe
ially in relation to dynami
 invariant

dete
tion. We des
ribe three major improvements:

Simulating paired automata How the semanti
s of paired simulation was 
hanged to

make it identi
al to the semanti
s in the proof ta
ti
s that are generated by the translator

tools.

Handling quanti�ers How the IOA simulator handles quanti�ers in the language.

Conne
ting to the Daikon tool How the IOA Simulator passes data to the Daikon tool

su
h that data stru
tures in IOA be
ome data stru
tures understandable by Daikon.

6.1 Simulating paired automata

The proof blo
k of the IOA language syntax spe
i�es how the IOA Simulator exe
utes

a spe
i�
ation automaton given an implementation automaton's transition. In a previous

version of the IOA Simulator, simulation of paired automata was implemented so that only

the post-state of the implementation automaton was visible to the proof blo
k. Further,

with ea
h fire statement in the exe
ution, the spe
i�
ation automaton would 
hange state,

so that any if statements that examined the state of the spe
i�
ation automaton afterwards

would be doing so on the state after the fire. This made the semanti
s of the IOA Simulator

di�erent from the exe
ution given by the proof translator tools. The proof translator tools

assume that any examination of the state of either automaton would be the pre-state of both

automata. For example, in the Paxos 
ase study, one of the proof a
tions was:

for internal assignVal(b: Ballot , v: Value) do

i f :(b 2 Global1.su

eeded) then

ignore

e l s e i f 9 b:Ballot (b 2 Global1.su

eeded ^ Global1.val[b℄ 6= nil) then

ignore

e l se

f i r e internal 
hooseVal(v)
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f i od

The if statements would test the post-state of Global1 rather than the pre-state, as

desired in the proof. And after the fire statement, Cons itself would be 
hanged, so any

subsequent if statements would 
he
k a di�erent state. With this semanti
 mismat
h, paired

exe
utions 
annot not mat
h simulation relation proofs, so our veri�
ation methodology


annot be used. Further, users of the IOA tools should be able to expe
t a 
onsistent

handling of proof blo
ks.

Other than the semanti
 mismat
h, another limitation of this design is the la
k of in-

formation for the proof blo
k 
ode. There is no way the 
ode 
an tell what the pre-state

is, sin
e there 
ould be multiple pre-states that map to the same post-state. Choosing the


orre
t � exe
ution might depend on the pre-state.

Thus, the IOA Simulator was altered su
h that its paired exe
ution semanti
s mat
h

what the proof translator tools would output. All referen
es to automaton state variables

now refer to the pre-state of the automaton. The drawba
k is that we 
annot dire
tly

observe the post-state. However, it 
an be dedu
ed from the a
tion that has been �red and

its parameters. If there is any expli
it nondeterminism in the post-state, it is 
aptured in

the lo
al variables. Ideally, we would want to be able to refer to both the pre and post-states

in the IOA Simulator, but the IOA language itself does not permit this dual referen
e.

6.2 Handling quanti�ers in the Simulator

It is generally unde
idable for the IOA Simulator to determine 
ertain predi
ates, sin
e the

IOA language allows quanti�ers on in�nite data types to be used (though they are usually

used in pre
onditions or 
hoose blo
ks). For example, the IOA Toolkit allows the use of mul-

tipli
ation and addition in quanti�ed expressions over the integers. Even without quanti�ers,

if a transition 
ontains a lo
al variable, the lo
al variable is impli
itly (existentially) quan-

ti�ed. nevertheless, we still want to be able to simulate most IOA programs. We therefore

wish to develop two ways of handling quanti�ers. One is sound and the other unsound.

6.2.1 Sound exe
ution

Any expression without a quanti�er (or with a quanti�er over a �nite data type) is de�ned

as exe
utable. The sound method relies on the fa
t that 
ertain quanti�ed expressions are

de
idable through iteration on the possible values that the quanti�ed variable 
an take. If

S is a �nite set and P is exe
utable, the following two expressions are exe
utable:

8

e

(e 2 S ! P (e))

9

e

(e 2 S ^ P (e))

The expressions are exe
utable be
ause iterating through the set S is suÆ
ient to de-

termine the truth of the quanti�ed expression. If a program 
ontains only su
h limited

synta
ti
al forms, then the IOA Simulator 
an exe
ute them. In pra
ti
e, these forms are

used quite often, be
ause the programmer often means to say that every obje
t in a set obeys

a given property, or that there exists an obje
t in a set that obeys a given property.

Note that the two formulae above are a
tually instan
es of a more general set of two-way

boolean expressions of the form:
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(:)?A op (:)?B where op is either _ or ^, A is e 2 S and B is exe
utable. There are 4

forms of ea
h expression for ea
h operator, and thus 8 total. Only the two presented above

are exe
utable.

There may be more su
h soundly exe
utable expressions that are worth dis
overing. It

may be ne
essary to synta
ti
ally transform some exe
utable expressions so that they 
an

be re
ognized by the IOA Simulator as exe
utable.

6.2.2 Unsound exe
ution

The unsound method iterates through some large values of the in�nite datatype and hopes

that seeing these is enough to determine the truth value of the quanti�er. The method is

sound when a positive result is found for an existential quanti�er or a negative result for a

universal quanti�er, but unsound in general. For instan
e, it would be diÆ
ult to determine

the values of x, y and z to 
he
k for the following expression:

9

x;y;z:Int

x

3

+ y

3

= z

3

The disadvantage of using the unsound method is that it is possible to have an exe
ution

in the IOA Simulator that would not be a valid exe
ution a

ording to the 
ode. However,

we still permit unsound exe
ution in order to allow for program testing.

In pra
ti
e with IOA programs, we have found that the quanti�ers used are on a spe
i�


data set that is �nite within the 
ontext of a parti
ular exe
ution. For example, in the Paxos


ase study, we speak of quanti�ers on all ballots. However, we know exa
tly how many

ballots are 
urrently in existen
e. Thus it is suÆ
ient to simply 
he
k ballot quanti�ers

on these ballots. The sound method used above is not suÆ
ient for the Paxos 
ase study,

for there is no data stru
ture that keeps tra
k of all the existing ballots, in
luding future,

yet-to-be-
reated ones.

6.3 Conne
ting to the Daikon invariant dete
tor

This se
tion dis
usses what 
hanges were made to the IOA Simulator in order to have it

output useful data in the input format of the Daikon tool. The key problem here is that

the data stru
tures in IOA do not mat
h the data stru
tures in the Daikon tool. Sin
e we

use the Daikon tool to analyze IOA exe
utions, we need to better 
onne
t the two data

representations.

A general problem in linking spe
i�
ations and automated tools is that spe
i�
ations tend

to have greater notational 
omplexity than implementations or exe
utions. Whereas tools

are best at reporting simple properties of simple data stru
tures, spe
i�
ations may express

sophisti
ated properties of 
ompli
ated domain-spe
i�
 data stru
tures. We therefore extend

Daikon's grammar for 
he
ked invariants to in
lude properties and data stru
tures relevant

to IOA spe
i�
ations.

The Daikon invariant dete
tor operates over basi
 datatypes: integers (s
alars and hash-


odes), strings, and sequen
es. This keeps its implementation simple, fast, and portable to

many di�erent programming languages. IOA spe
i�
ations use more sophisti
ated datatypes,

su
h as sets, tuples, and maps between arbitrary types.
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In our translation between the two tools, we alter the IOA Simulator so that 
ompli
ated

data stru
tures are represented using s
alars and sequen
es. For example, sets be
ome se-

quen
es. Sin
e Daikon ordinarily tests sequen
es for dupli
ates and order-related properties,

whi
h are irrelevant for sets, we extend Daikon to re
ognize when a sequen
e is marked as

representing a set and Daikon avoids these tests.

The next two subse
tions present the most important data translations done by the IOA

Simulator. First, we look at how IOA maps, or fun
tions from a domain data type to a range

data type, are translated into Daikon data stru
tures. Se
ond, we look at how 
onditional

invariant dete
tion, as des
ribed in Se
tion 5.6, 
an be implemented for IOA programs.

6.3.1 Translation of map data stru
tures

Map data types, su
h as Array and Map are used in many IOA programs. A map is a

fun
tion that 
onne
ts a domain data type to a range data type. Often, the domain data

type is not totally ordered, so the map 
annot be presented as a simple array to Daikon.

The IOA Simulator map data types in two ways. First, it linearizes the range of the

map, and reports the values that are present. For an array m, the Simulator thus reports

m.values[℄ as an array to Daikon. Se
ond, the Simulator samples key, value pairs of a map

m using two distin
t random keys named anIndex and anotherIndex. The output to Daikon

is two derived variables (see Se
tion 5.1.1) m[anIndex℄ and m[anotherIndex℄. We extend

Daikon to report invariants it dete
ts involving su
h syntheti
 variables as being universally

quanti�ed on the variables. For any map that has a range with a null element (i.e., a pointed

range data type), we introdu
e another syntheti
 variable to represent the elements of the

map that are not null.

We used me
hanisms su
h as these in our 
ase study involving the Paxos algorithm,

whi
h uses a map voted from parti
ipating nodes to sets of ballots. Without enhan
e-

ment, Daikon reports few interesting properties of this data stru
ture, whi
h is inherently

two-dimensional and involves sets of nodes and ballots represented as sequen
es. With infor-

mation about the type of this data stru
ture, and with syntheti
 variables voted[anIndex℄

and voted[anotherIndex℄, Daikon is able to dete
t and report properties useful for proofs,

su
h as:

8 anIndex:Node (size(voted[anIndex℄ \ abstained[anIndex℄) = 0)

6.3.2 Conditional splitting in IOA

As mentioned in Se
tion 5.6, Daikon is 
apable of dete
ting 
onditional invariants, or in-

variants with impli
ations. However, 
hoosing whi
h 
onditional invariant to sear
h for is

diÆ
ult to do without overly expanding Daikon's sear
h spa
e. Daikon leaves it up to other

tools to 
hoose the 
ondition, or left hand side, of impli
ations. This se
tion shows how


onditions are 
hosen in IOA.

A simple synta
ti
 analysis suÆ
es. The Simulator uses ea
h 
lause (
onjun
t) in a

pre
ondition as a 
ondition predi
ate. We repla
e transition parameters, whi
h appear in

pre
onditions but are not in s
ope at the automaton level, by spe
ial the variable anIndex.

The quanti�
ation te
hnique dis
ussed above ensure that the resulting expressions are sen-

sible. For example, in the Peterson 
ase study (Figure 4-2), the 
he
kFlag(p) pre
ondition
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be
omes the 
ondition p
[anIndex℄ = trying2. This 
ondition is used in the Peterson

invariant:

8 p (p
[p℄ = trying2 ) p
[turn℄ = trying2)

Thus, Daikon is able to report invariants that indi
ate properties of parti
ular points in

the 
ode despite performing invariant dete
tion on the system as a whole.
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Chapter 7

IO automata in Isabelle: enhan
ing

the representation of I/O automata in

the prover

Every theorem prover requires a prover model in its language for the system model it is to

verify. For example, Garland and others developed the model for I/O automata in the Lar
h

Prover [SAGG

+

93b℄. A prover model spe
i�es the semanti
s of the system model in the logi


of the prover.

The original prover model for I/O automata in Isabelle was designed by Mueller [M�ul98℄.

Its main purpose was to prove the meta theory about IO automata, su
h as the soundness of

forward simulation relation proofs. It also permitted proofs of properties of spe
i�
 automata.

Luhrs and Garland [Luh02℄ used this model to design and partially implement a translator

from IOA to Isabelle. However, the model and translation were, in pra
ti
e, in
onvenient

for designing automatable proofs of spe
i�
 automata. We des
ribe why below.

For our work, we 
hose to 
hange the Isabelle system model to be more similar to the

one 
reated by Bogdanov for his work with the Lar
h Prover [BGL02℄. This made ta
ti


writing easier. Here, we des
ribe the modi�
ations and formally spe
ify the prover model.

We use the memory 
ase study from Se
tion 4.2 to show the di�eren
es between the two

prover models.

7.1 The Mueller model

In the Mueller prover model, an IO automaton is a triple 
onsisting of an a
tion signature,

a set of start states, and a set of transitions. This is the same as the intuition for the a
tual

system model of an I/O automaton des
ribed in Se
tion 2.4. However, the Mueller model

also in
ludes an
illary data de�nitions for the prover to understand the model. Thus, the

whole prove model is represented by the following:

� Data type de
laration des
ribing the state spa
e of the automaton.

� Data type de
laration des
ribing the a
tion type of the automaton.
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� Classi�
ation of the a
tions as input, output or internal. These predi
ates are 
ombined

into the a
tion signature.

� De�nition of the set of start states.

� De�nition of the valid transitions relating a pre-state, a
tion and post-state of the

automaton.

The next se
tions des
ribe ea
h 
omponent in more detail.

State spa
es

State spa
es are de
lared as re
ords of the automaton state variables:

re
ord Mem_state =

memVar :: " Value"

a
t :: "( Node, A
tion Null) Array"

rsp :: "( Node, Response Null) Array"

The 
ommand 
reates an Isabelle data type, not a data value. Having a re
ord represent

the data type is the 
orre
t approa
h, be
ause state spa
es are 
artesian produ
ts of the

underlying variables.

A
tion data type

A
tions are de
lared as ML type 
onstru
tors:

datatype mem_a
tion =

invoke node a
tion j

respond node result j

update node

This 
reates a mutually ex
lusive set of 
onstru
tors be
ause automaton a
tions are

mutually ex
lusive. The parameters to the type 
onstru
tor 
orrespond to the parameters

of the a
tion. We use a di�erent means of 
onstru
ting the a
tion data type from the state

data type be
ause the automaton state is a 
artesian produ
t of ea
h state variable, while

the a
tions are mutually ex
lusive.

Classi�
ation of a
tions

We 
lassify the a
tions into three sets, input, output and internal:

Mem_input :: " Mem_a
tion set"

Mem_input == {a. 
ase a of

(invoke n a) ) False j

(respond n r) ) False j

(update n) ) False

}"

Mem_output :: " Mem_a
tion set"

Mem_output_def:

" Mem_output == {a. 
ase a of

(invoke n a) ) True j

(respond n r) ) True j

(update n) ) False
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}"

Mem_internal :: " Mem_a
tion set"

Mem_internal_def:

" Mem_internal == {a. 
ase a of

(invoke n a) ) False j

(respond n r) ) False j

(update n) ) True

}"

By 
onvention, we use the 
olle
t operator (\.") to de�ne the sets. The 
olle
t operator

�lls a set with all values that satisfy its predi
ate. However, they 
ould be de�ned by any

other set operators or by expli
itly enumerating the values.

The a
tion signature does not list the type of a
tions (for this is already done in a
tion

the data type) but simply groups the above three sets. It is an ML triple:

Mem_asig_def : " Mem_asig == ( Mem_input, Mem_output, Mem_internal)"

The start state

The start state is a subset of the states, also de�ned using the 
olle
t operator:

defs

Mem_start_def:

" Mem_start == { sMem.

(rsp sMem = (
onstant nil)) &

(a
t sMem = (
onstant nil)) &

(memVar sMem = v0)

}"

Transitions

A transition of an automaton is an ML triple of a pre-state, an a
tion, and a post-state. The

set of transitions is also de�ned via the 
olle
t operator:

types

(

0

a,

0

s)transition = "(

0

s *

0

a *

0

s)"

Mem_trans :: "( Mem_a
tion, Mem_state) transition set"

Mem_transitions = "{tr .

Let s = fst tr

a
t = snd tr

s

0

= lst tr

in


ase a
t of

(invoke n a) )

(memVar s

0

) = (memVar s) ^

(a
t s

0

) = (assign (a
t s) n (embed a)) ^

(rsp s

0

) = (rsp s)

(respond n r) )

(memVar s

0

) = (memVar s) ^

(a
t s

0

) = (assign (a
t s) n nil) ^
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(rsp s

0

) = (assign (rsp s) n nil)

(update n) )

9 a . (sub a
t n) = (embed a) ^

Let a = SOME a. (sub a
t n) = (embed a) in

(memVar s

0

) = (perform a (memVar s)) ^

(a
t s

0

) = (a
t s) ^

(rsp s

0

) = (assign (rsp s) n (embed (result a (memVar s))))

}"

The ti
ked variables (e.g., 's) are data type variables in ML, The star operator (*) makes

a tuple. We use these operators here to abbreviate the meaning of a transition as a triple.

The transition de�nition permits any number of post-states to mat
h a parti
ular pre-state,

a
tion pair | this is a form of nondeterminism. The existential quanti�er and Let syntax

handle the lo
al variable a, for a is not part of the a
tion's formal parameters but is used

in the transition for update (see the automaton 
ode in Se
tion 4.2). The pre
ondition for

update is written using an existential quanti�er, and then a is referred to in the e�e
t se
tion

using a Let and a SOME operator. The sub operator 
orresponds to array subs
ripting.

De�ning the automaton

Lastly, the automaton itself is de�ned:

Mem :: "( Mem_a
tion, Mem_state) ioa"

Mem_def:

Mem == (Mem_asig, Mem_start, Mem_transitions)

The datatype of Mem is an ioa, whi
h is a pre-de�ned data triple. The following de�nitions

are true for all automata, sin
e they are built into a helper �le in Isabelle:

('a,'s)transition = "('s * 'a * 's)"

('a,'s)ioa = "'a signature * 's set * ('a,'s)transition set"

The automaton has a few other helper pro
edures:

asig_of_def: "asig_of aut == (first aut)"

starts_of_def: "starts_of == (se
ond aut)"

trans_of_def: "trans_of aut == (third aut)"

Issues with the Mueller model for veri�
ation

There are two problems with this model for use in proofs of spe
i�
 automata, either for

humans or ma
hines:

� The enablement of a parti
ular transition is hidden in the transition de�nition, and

requires an existential quanti�er to spe
ify. Thus, to say that a is enabled in state s,

it is ne
essary to say:

(enabled aut s a) == 9 s

0

. (s, a, s

0

) : ( trans_of aut)

This is unfortunate, as existential quanti�ers 
an only be proved in the prover by

a
tually providing witness variables. Thus to say that an a
tion is enabled, the user

must provide a witness, even though the IOA 
ode itself made the enablement obvious

in the transition's pre
ondition.
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� An exe
ution fragment is not determined just by a given sequen
e of a
tions but

requires the post-states of ea
h of the a
tions. To show that an a
tion sequen
e is

valid, the user must provide multiple existential witnesses to des
ribe the post-states.

The �rst short
oming is less of a problem be
ause the standard invariant proof tends to

be a theorem in the form:

theorem Mem_Inv_step:

(s, a, s

0

) : ( trans_of Mem) ^ (Inv s) =) (Inv s

0

)

Thus, the post-state is expli
itly provided. However, the se
ond short
oming is a problem

be
ause when we want to show that there exists a witness exe
ution �, we have to provide

all the intermediate states also. This is tedious for the user, and 
lutters 
omputer-generated

proofs.

7.2 The new Isabelle model

The fundamental problem for pra
ti
al use of the Mueller model is that it allows nondeter-

minism in the post-state for ea
h a
tion, so that a proof is required to 
hoose a parti
ular

post-state. This arises from a dire
t translation of I/O automata, whi
h are by nature

nondeterministi
 for ea
h state, in both the next a
tion and the post-state given an a
tion.

In pra
ti
e, when we write I/O automata, the main sour
e of nondeterminism is in the

a
tion that is taken, not in the post-state. Further, when there is nondeterminism in the

post-state, in an overwhelming majority of 
ases, the nondeterminism is made expli
it by the

use of lo
al variables, whi
h en
apsulate the nondeterminism. Handling nondeterminism

in the a
tion is easier, sin
e we 
an perform stru
tural indu
tion on the a
tion data type

and 
over all possibilities. It is not possible to do the same on the post-state sin
e the

nondeterminism is mixed in with the a
tual state variables. There is thus an advantage in

pushing all nondeterminism into the a
tion and making the post-state deterministi
 on
e the

pre-state and a
tion are known. This was Bogdanov's insight [Bog00℄ for the Lar
h theory

of I/O automata, an approa
h we 
losely follow in the new model.

The general rule is that every 
hoose variable be
omes a lo
al parameter to the a
tion.

The a
tion datatype itself is now modi�ed to in
lude the lo
al variable as a parameter

to ea
h a
tion. Any 
onstraints on lo
al and 
hoose variables be
ome pre
onditions to

transitions

1

. The post-state is a deterministi
 fun
tion of the pre-state and the new a
tion.

Sin
e we 
hange the a
tion datatype, we need to also 
hange how a
tions between two

automata 
orrespond. We explain this later in Se
tion 7.2.2.

An automaton is now a 4-tuple, 
onsisting of an a
tion signature, start states, an enable-

ment fun
tion and an e�e
t fun
tion. We preserve the method of de�ning the automaton

signature and a
tion and state datatypes. By separating the enablement from the e�e
t, we


an say when an a
tion is enabled without having to quantify the post-state. For implemen-

tation 
onvenien
e, an automaton is no longer a tuple, but instead 
onstru
ted by the ML

type 
onstru
tor ioa:

1

Bogdanov did not resolve what happens when 
hoose variables appear inside for loops. We do not

attempt to remedy this either.
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datatype (

0

a
tion,

0

state) ioa =

IOA

"

0

a
tion signature" (* Signature *)

"

0

state set" (* Starts *)

"(

0

a
tion,

0

state) enablement" (* Enablement *)

"(

0

a
tion,

0

state) effe
t " (* Effe
ts *)

Isabelle automati
ally de�nes a

essor fun
tions when we use this means of de�nition.

We now de�ne the memory automaton in this prover model:

Mem == (IOA Mem_asig Mem_start Mem_enablement Mem_effe
t)"

where the data types enablement and effe
t are de�ned by:

types

(

0

a
tion,

0

state) enablement = "

0

state )

0

a
tion ) bool"

(

0

a
tion,

0

state) effe
t = "

0

state )

0

a
tion )

0

state"

Thus an enablement fun
tion tells whether a parti
ular a
tion is enabled from a state,

while the e�e
t fun
tion determines the new state. The e�e
t fun
tion is unspe
i�ed when

the a
tion is not enabled. Now it is possible to have a quanti�er-free predi
ate to determine

whether an a
tion is enabled, as long as the pre
ondition itself does not 
ontain a quanti�er.

For the shared memory 
ase study in Isabelle, the new translation results in the spe
i�
ations

shown in Figure 7-1 for the Mem automaton.

With determinism in a
tions, an exe
ution fragment is just a list of a
tions:

type

(

0

a
tion) exe
ution = "

0

a
tion list"

the head of the list 
ontains the last a
tion, so that we 
an re
ursively (or indu
tively) de�ne

the exe
ution as shown below.

Using this exe
ution format requires some helper fun
tions. The lastOf fun
tion returns

the state that is the result of exe
uting a parti
ular exe
ution fragment upon a state of an

automaton, from a given state:


onsts lastOf :: "(

0

a
tion,

0

state) ioa )

0

state )

(

0

a
tion) exe
ution )

0

state"

primre


lastOf_def:

"lastOf aut s [℄ = s"

lastOf_def2:

"lastOf aut s (Cons a
t rest) =

effe
ts_of aut (lastOf aut s rest) a
t

"

Note: the primre
 allows the de�nition of a partially spe
i�ed fun
tion in the Isabelle

language using ML pattern mat
hing. The isExe
ution fun
tion determines whether an

entire exe
ution fragment is valid:


onsts

isExe
ution :: "(

0

a
tion,

0

state) ioa )

0

state )

(

0

a
tion) exe
ution )

bool"

primre


isExe
ution_def:

"isExe
ution aut s [℄ = (
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re
ord Mem_state =

memVar :: " Value"

a
t :: "( Node, ( A
tion) Null) Array"

rsp :: "( Node, ( Response) Null) Array"

datatype Mem_a
tion =

invoke "Node" " A
tion" j respond "Node" "Response" j update "Node" " A
tion"

defs

Mem_start_def:

" Mem_start == { sMem.

(rsp sMem = (
onstant nil)) ^

(a
t sMem = (
onstant nil)) ^

(memVar sMem = v0)

}"

defs

Mem_enablement_def:

" Mem_enablement sMem aMem == 
ase aMem of

(invoke n a) )

((sub (a
t sMem) n) = nil) % sMem.a
t[n℄ = nil

j

(respond n r) )

((sub (rsp sMem) n) = (embed r)) % sMem.rsp[n℄ = embed(r)

j

(update n a) ) % sMem.rsp[n℄ = nul ^ sMem.a
t[n℄ = embed(a)

(((sub (rsp sMem) n) = nil) ^ ((sub (a
t sMem) n) = (embed a)))

"

defs

Mem_effe
t_def:

" Mem_effe
t sMem aMem == 
ase aMem of

(invoke n a) )

Mem_state.make

(memVar sMem)

(assign (a
t sMem) n (embed a))

(rsp sMem) j

(respond n r) )

Mem_state.make

(memVar sMem)

(assign (a
t sMem) n nil)

(assign (rsp sMem) n nil) j

(update n a) )

Mem_state.make

(perform a (memVar sMem))

(a
t sMem)

(assign (rsp sMem) n (embed (result a (memVar sMem))))

"

defs

Mem_def:

" Mem == (IOA Mem_asig Mem_start Mem_enablement Mem_effe
t)"

Figure 7-1: The spe
i�
ation automaton, Mem translated to Isabelle. Noti
e how the lo
al

variable a in the update transition is now a full parameter. This requires a 
hange in how

we mat
h tra
es for simulation relations.
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True

)"

isExe
ution_def2:

"isExe
ution aut s (a
t#rest) = (

(enablement_of aut (lastOf aut s rest) a
t) ^

(isExe
ution aut s rest)

)"

Now that we have the basi
 infrastru
ture, there are three useful aspe
ts of this model

to dis
uss. First is the pra
ti
al view of using this model for proofs. This has already been

presented in Se
tion 3.5.2. The main bene�t we get is that, like the LP translation, the

transition semanti
s is free of existential quanti�ers. Se
ond is the use of this model for the

theory of I/O automata in general. This is a useful dis
ussion be
ause we want to ensure

that the model 
an do meta-theoreti
 proofs, and that it is sound. Third is how this model

relates to simulation relations.

7.2.1 Meta theory for the new I/O automaton model

In this se
tion, we des
ribe how the infrastru
ture we have developed is still adequate for

meta-theoreti
 proofs as done by Mueller. First we de�ne two fun
tions on automata: rea
h-

ability and invarian
e. We then prove that the standard method of proving IOA invarian
e

(start 
ondition; step 
ondition) is a sound way to show invarian
e as de�ned here.

In order to de�ne rea
hability, we �rst de�ne a helper, rea
hableWith whi
h says that a

parti
ular state s is rea
hable from a parti
ular state s0 using a parti
ular exe
ution alpha:


onstdefs

rea
hableWith :: "(

0

a
tion,

0

state)ioa )

0

state )

0

state )

0

a
tion exe
ution )

bool"

"rea
hableWith aut s s0 alpha == (

(s0 : starts_of aut) ^

(isExe
ution aut s0 alpha) ^

(lastOf aut s0 alpha = s)

)"

Now this helper predi
ate is used by the de�nition of rea
hable in saying that there

exists a start state s0 and an exe
ution alpha that satis�es rea
hableWith, for a given

state s:


onstdefs

rea
hable :: "(

0

a
tion,

0

state)ioa )

0

state ) bool"

"rea
hable aut s ==

(9 s0 . (9 alpha . rea
hableWith aut s s0 alpha))

"

Given this de�nition of rea
hability, we 
an now de�ne what it means for an invariant to

hold on an automaton. An invariant is a predi
ate on the states of an automaton. Thus:


onstdefs

invariant :: "[(

0

a
tion,

0

state)ioa,

0

state)bool℄ ) bool"

" invariant aut P == (8 s. rea
hable aut s ! P(s))"

An invariant P is an invariant on automaton aut if for all rea
hable states s the invariant

holds. We now show that the IOA method for proving invariants is sound. We de�ne the
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start and step 
onditions holding as follows:


onstdefs

invariant_start :: "[(

0

a
tion,

0

state)ioa,

0

state ) bool℄ ) bool"

"invariant_start aut I ==

8 state . ( state : ( starts_of aut) ! I state)"


onstdefs

invariant_trans :: "[(

0

a
tion,

0

state)ioa,

0

state ) bool℄ ) bool"

"invariant_trans aut I ==

8 state a
t .

((rea
hable aut state) ^

(I state) ^

(enablement_of aut state a
t)

)!

I(effe
ts_of aut state a
t)"

These simply are the standard way we prove invariants in IOA. We then prove the

following main theorem:

theorem invariantI:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

shows " invariant aut I"

This is a 200 line proof shown in Appendix A. The reason why the two 
onditions are

suÆ
ient to prove invarian
e is the expe
ted one: a state is rea
hable if it is a start state

or 
an be rea
hed from a valid exe
ution. If the state is a start state, invariant start

handles this 
ase. If a state is rea
hable due to a valid exe
ution, invariant trans handles

this 
ase. The se
ond 
ase is a bit intri
ate, as we have to show that the invariant step


ondition holding is suÆ
ient to show that the invariant holds for the entire valid exe
ution.

We do this by stru
tural indu
tion on the valid exe
ution sequen
e (
ase nil, 
ase Cons).

Thus, we have proven, using only our Isabelle theory of I/O automata, that our method-

ology for proving invariants is sound. This gives a 
on
rete mathemati
al foundation for the

theorem prover ta
ti
s we use on our model.

7.2.2 Simulation relations

The model is also adequate for handling simulation relations. We have not yet performed the

meta-theoreti
 proofs showing that the IOA method for showing simulation relations implies

tra
e in
lusion (as is proven by hand in Lyn
h's book [Lyn96℄ and by Mueller in his model).

We simply present here the fun
tions for de�ning that a predi
ate is indeed a simulation

relation.

The a
tual mapping of the states between the implementation and spe
i�
ation automata

for a simulation relation is trivial: we simply use any F that takes in the right automaton

states. For the mapping from the Ca
he automaton to the Mem automaton, this is simply:


onsts

FCa
he2Mem :: " Ca
he_state ) Mem_state ) bool"

defs

FCa
he2Mem_def:

"FCa
he2Mem sCa
he sMem ==

((((Mem.memVar sMem) = (Ca
he.memVar sCa
he )) ^

((Mem.a
t sMem) = (Ca
he.a
t sCa
he ))) ^

((Mem.rsp sMem) = (Ca
he.rsp sCa
he )))"
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The diÆ
ulty is showing that the 
orresponding exe
utions exhibit the same tra
es. This

is be
ause of two reasons. First, the a
tion data types of the two automata are di�erent,

a

ording to the model. Thus, we 
annot simply equate the two a
tions in a strongly typed

language like Isabelle or LP. Se
ond, we 
hose to resolve the nondeterminism of post-states

by in
luding extra parameters in the a
tion. Now these parameters may not mat
h between

the automata (e.g. one automaton has nondeterminism, the other does not).

We resolve both of these problems using a te
hnique almost identi
al to the one used by

Bogdanov in the LP translator. We de�ne a new a
tion type that represents the a
tions 
om-

mon to both automata, and two a
tion mapping fun
tions that map from ea
h automaton's

a
tion type to the 
ommon type. With the memory example, this is:

datatype Ca
he2Mem_a
tion =

invoke Node A
tion j

respond Node Response j

dummy


onsts

mapCa
he :: " Ca
he_a
tion ) Ca
he2Mem_a
tion"

mapMem :: " Mem_a
tion ) Ca
he2Mem_a
tion"

defs

mapCa
he_def:

"mapCa
he aCa
he == 
ase aCa
he of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(read n a) ) dummy j

(write n a) ) dummy j

(
opy n) ) dummy j

(drop n) ) dummy"

defs

mapMem_def:

"mapMem aMem == 
ase aMem of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(update n a) ) dummy"

Noti
e that the internal transitions are mapped to dummy to indi
ate that there is no need

to 
ompare tra
es between them. Unfortunately, the memory example does not have any

external a
tions with lo
al parameters. Had update been an external a
tion, the mapping

would have been:

datatype Ca
he2Mem_a
tion =

invoke Node A
tion j

respond Node Response j

update Node

...

defs

mapMem_def:

"mapMem aMem == 
ase aMem of

(invoke n a) ) (invoke n a) j

(respond n r) ) (respond n r) j

(update n a) ) (update n)"
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Given this mapping fun
tion, we 
an now fully spe
ify what it means in Isabelle for two

automata to have a forward simulation relation.

A forward simulation between two automata is de�ned as follows:


onstdefs isFwdSim :: "(

0

a
tionL,

0

stateL) ioa ) (

0

a
tionU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

a
tionL )

0

a
tion ) )

(

0

a
tionU )

0

a
tion ) )

bool"

"isFwdSim autL autU relation mapL mapU ==

(isFwdSim_start autL autU relation)

^ (isFwdSim_trans autL autU relation mapL mapU)

"

The isFwdSim predi
ate takes in two automata, the a
tual simulation relation, and the

two mapping fun
tions and says that two 
onditions have to hold: the start and step 
ondi-

tions. The start 
ondition is de�ned as expe
ted:


onstdefs isFwdSim_start ::

"(

0

a
tionL,

0

stateL) ioa ) (

0

a
tionU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

bool"

"isFwdSim_start autL autU relation ==

(8 s0. s0: starts_of autL ! (9 u0 . (u0 : starts_of autU) ^

(relation s0 u0)

))

"

This is pre
isely the de�nition we use in LP or on paper: for all start states of the

implementation automaton, there exists a start state of the spe
i�
ation automaton that

satis�es the relation.

The step 
ondition is also as expe
ted:


onstdefs isFwdSim_trans ::

"(

0

a
tionL,

0

stateL) ioa ) (

0

a
tionU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

a
tionL,

0

a
tion) a
tionMap )

(

0

a
tionU,

0

a
tion) a
tionMap )

bool"

"isFwdSim_trans autL autU relation mapL mapU ==

(8 s a
t u. ( enablement_of autL s a
t) ^

(relation s u) ^

(rea
hable autL s) !

(9 beta . 
orrespExe
 autL autU relation mapL mapU s u [a
t℄ beta

)

)

"

For all implementation a
tions a
t, there exists an exe
ution beta of the spe
i�
ation au-

tomaton su
h that a
t and beta are 
orresponding exe
utions. The 
orresponden
e relation

is given by:


onstdefs 
orrespExe
 ::

"(

0

a
tionL,

0

stateL) ioa ) (

0

a
tionU,

0

stateU) ioa )

(

0

stateL )

0

stateU ) bool) )

(

0

a
tionL,

0

a
tion) a
tionMap )
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(

0

a
tionU,

0

a
tion) a
tionMap )

0

stateL )

0

stateU )

(

0

a
tionL exe
ution) ) (

0

a
tionU exe
ution) )

bool"

"
orrespExe
 autL autU relation mapL mapU s u alpha beta ==

(map mapU (tra
eOf autU beta)) = (map mapL (tra
eOf autL alpha))

^ (isExe
ution autU u beta)

^ (relation (lastOf autL s alpha) (lastOf autU u beta))

"

This gives the three requirements of the step 
ondition: tra
e equality, valid exe
ution,

and that the last states relate. The map fun
tion is the standard mapping fun
tion that

applies its �rst argument onto every element of its se
ond argument. In this 
ase, we map

the a
tion mapping fun
tion onto the automaton tra
e, whi
h is a list of a
tions.

7.3 Assessment

From out 
ase studies, we have seen that the new prover model for I/O automata, based

on Bogdanov's work, is adequate infrastru
ture for ena
ting pra
ti
al proofs of simulation

relations in Isabelle. We have also seen in Chapter 3 that the de�nitions have been useful

for generating proof ta
ti
s. The usefulness of this model for proofs stems from restri
ting

nondeterminism to the a
tions of a transition, rather than allowing it also in the post-state.

In the future, it would be helpful to prove the soundness of proving simulation relations in

Isabelle: showing that the simulation relation start and step 
onditions imply tra
e in
lusion.

This is a meta-theoreti
 proof. It is likely that the mapping fun
tion will need to be used in

the de�nition of tra
e in
lusion.
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Chapter 8

Dis
ussion

8.1 Further resear
h

There are at least four ways to extend this resear
h: improving dynami
 invariant dete
tion,

generating better proof ta
ti
s, programming in the prover, and sele
ting invariants for use

in proofs.

8.1.1 Improved dynami
 invariant dete
tion

The Daikon dynami
 invariant dete
tor 
ould be improved, in order to �nd more lemmas for

proofs and in
rease human insight regarding program behavior. A major problem in dynami


invariant dete
tion is 
hoosing a grammar of invariants that is useful for programmers but

does not generate an ex
essive amount of output. One way to 
hoose a grammar would be

to take boolean expressions appearing in IOA program 
ode as templates in the grammar.

Sin
e these templates 
ome from the semanti
s of the program, they may be likelier to be

useful invariants. For example, in the Paxos 
ase study (Se
tion 4.3), Inv4 
losely resembles

the pre
ondition for the assignVal transition.

8.1.2 Improved proof s
ripts from automaton 
ode

Stati
 analysis of I/O automata 
ould generate more detailed proof s
ripts so that prover


an do more work without human intervention. For example, in performing 
ase splits, we


urrently examine if statements in the annotations for paired exe
ution, but we 
ould also

look at if statements within the e�e
ts 
ode of the automaton itself.

8.1.3 Programming in the prover language

We 
an further extend our tools to use the Isabelle/HOL logi
 system and theorem prover

[Pau93, Gor89℄. Isabelle is a programmable prover, so we 
ould use its programming lan-

guage, ML, to derive better ta
ti
s. Presently, we have the IOA translator to Isabelle generate

the proof s
ript | using ML to drive the proof may be more produ
tive. Sin
e Isabelle has a
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larger user 
ommunity and a more extensive set of libraries, this may make our methodology

a

essible to more people.

8.1.4 Filtering invariants with automated heuristi
s for proofs

One of the stages in our method that involves human intervention is having to manually

sele
t invariants to use in a proof. We are in sear
h of true and useful invariants when we

perform this manual sele
tion. Here we suggest a way to automate this pro
ess. Invariants

output by dynami
 invariant dete
tion 
an be 
lassi�ed as follows:

� True and useful. These are later used in veri�
ation in theorem provers. There may

be more than one useful set of invariants that are used in veri�
ation. We want just

one su
h set.

� True and not useful. These may be useful for others, but are not used as lemmas in

our veri�
ation proof.

� False.

However, this 
lassi�
ation is generally unde
idable. We expe
t to rely on a 
ombination

of human 
lassi�
ation and automati
 invariant �ltering algorithms to 
ompensate. Human


lassi�
ation is still human intervention, but the intervention is greatly redu
ed 
ompared to

using the prover alone, be
ause the programmer no longer has to 
ome up with the invariants.

In proving invariants true with the prover, the main diÆ
ulty is the dependen
ies between

di�erent invariants. It 
ould be that invariant I

A

is true, but 
annot be proved without

another invariant I

B

in the indu
tive assumption. It 
ould also be that I

A

is false, but holds

true I

B

is true. We suggest an algorithm based on one by Rintanen [Rin00℄ that relies on

arriving at �x points:

Start with some set Inv of invariants to �lter and 
he
k for truth. Che
k if

invariants in Inv hold on the start state of the automaton. Remove any invariants

in Inv that fail. Assume the invariants in Inv hold for some state a in the

automaton. For all enabled a
tions from a to a', prove that they hold for a'.

Remove any invariants in Inv that fail. Repeat this pro
ess with the new Inv

until the members of Inv no longer 
hange. At this �x point, all the invariants

in Inv are true.

On
e we have a set of true invariants, they 
an be easily 
he
ked to see whi
h are needed

to prove a simulation relation (or any other property):

Assume the simulation relation F(a, b) holds. Also assume I holds for a. At-

tempt to prove the simulation relation holds for a rea
hable state a' from a by

showing the standard witness � from b to b'. Temporarily remove one invariant

i in Inv and test if the simulation relation 
an still be proved somehow. If so,

permanently remove i from Inv. Attempt this removal pro
ess on ea
h invariant.

106



The set Inv that remains is true, sin
e we started with a true set. It is \minimal" in the

sense that no subset of it will result in a proof, using a prover with the same 
apabilities.

There may be an alternative set of invariants that is of a smaller size, but we are interested

in only �nding some minimal set. Further, some provers may be able to identify whi
h

invariants were used in a proof, so the se
ond algorithm may not be ne
essary.

We 
ould implement both algorithms presented here using more automated proving meth-

ods built into Isabelle.

8.2 Con
lusion

The purpose of software veri�
ation is to ensure programmers and users that the systems

they develop and employ behave 
orre
tly. In this thesis, we ta
kled the problem of verify-

ing distributed or 
on
urrent systems, whi
h are often in�nite state and nondeterministi
.

Theorem provers 
an be used to reason soundly about the 
orre
tness of su
h systems. Su
h

ma
hine-
he
ked proofs provide more assuran
e of 
orre
tness than hand proofs, but in
ur

a 
ost in terms of human intera
tion. The methodology presented in this thesis redu
es the

human e�ort required in the theorem prover for verifying safety properties of distributed

algorithms modeled formally as I/O automata.

Our methodology integrates test exe
ution|running a distributed algorithm with a

test suite on a unipro
essor|with theorem proving. Exploratory analysis based on su
h

exe
utions is a well-known te
hnique for building intuition and performing inexpensive sanity


he
ks. Our methodology extends the use of run-time te
hniques in two ways.

First, we use a dynami
 invariant dete
tor to generalize over observed exe
utions and

report logi
al properties that are likely to be true of the program. This te
hnique proposes

properties that would otherwise have to be synthesized by a person. Su
h properties 
an

reveal unexpe
ted properties of a program, and they 
an buttress understanding more ef-

fe
tively than 
an be done merely examining exe
ution tra
es. Most importantly for our

methodology, su
h properties 
an provide invariants and lemmas that simplify proofs and

redu
e theorem proving e�ort.

Se
ond, we leverage the e�ort used to build good test suites to produ
e s
ripts for theorem

provers, whi
h mirror the form of the s
ripts for driving paired exe
utions. These ta
ti
s


ombine with our knowledge of proofs of all I/O automata to provide the proof outline in a

prover.

We have illustrated the use of the methodology, and of the toolset that supports the

methodology, by means of three 
ase studies: Lamport's Paxos proto
ol, distributed strong


a
hing memory, and Peterson's 2-pro
ess mutual ex
lusion algorithm.

In order to eÆ
iently implement our methodology, it was ne
essary to extend the three

tools employed. We modi�ed the IOA Simulator to allow for simulation of some quanti�ed

expressions, and so that its semanti
s mat
hed that of the tools that translate IOA into

prover languages. We formalized the 
orre
tness properties of dynami
 invariant dete
tion,

and modi�ed the Daikon tool to make it more s
alable via two optimizations. Lastly, we

developed a new prover model for I/O automata in the Isabelle/HOL system based on

Bogdanov's work with LP and proved the soundness of our invariant proving methodology.

The prover model fa
ilitates generation of proof ta
ti
s in our methodology.
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Appendix A

Soundness proof of invariant method

in Isabelle

The following is Isabelle 
ode showing that in the Isabelle prover model, our method for

proving invariants is sound. We show that proving the start 
ondition and the step 
ondition

for invariants, invariant start and invariant trans for an automaton is suÆ
ient to

prove invarian
e (as de�ned in Isabelle). Invarian
e is de�ned for a predi
ate by saying that

the predi
ate holds on all rea
hable states. Along the way, we de�ne a few helper lemmas.


onstdefs

invariant_start :: "[(

0

a
tion,

0

state)ioa,

0

state)bool℄ ) bool"

"invariant_start aut I ==

8 state . ( state : ( starts_of aut) -! I state)"


onstdefs

invariant_trans :: "[(

0

a
tion,

0

state)ioa,

0

state)bool℄ ) bool"

"invariant_trans aut I ==

8 state a
t .

((rea
hable aut state) ^

(I state) ^

(enablement_of aut state a
t)

)-!

I(effe
ts_of aut state a
t)"

theorem exe
utionStep:

assumes a0: " isExe
ution automaton s alpha"

and a1: " enablement_of automaton (lastOf automaton s alpha) a
t"

shows "isExe
ution automaton s (a
t#alpha)"

apply (simp add: isExe
ution_def2 prems)

done

theorem lastOfStep:

"lastOf automaton s (a
t#alpha) =

effe
ts_of automaton (lastOf automaton s alpha) a
t"

apply (simp add: lastOf_def)

done

theorem rea
hableStep:

"[ j
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rea
hable automaton s;

enablement_of automaton s a
t

j ℄ =)

rea
hable automaton (effe
ts_of automaton s a
t)"

apply (simp add: rea
hable_def)

proof -

assume

a0: "9 s0. Ex (rea
hableWith automaton s s0)"

and a1: " enablement_of automaton s a
t"

def s0 == "SOME s0 . Ex (rea
hableWith automaton s s0)"

have t0: "Ex ( rea
hableWith automaton s s0)"

apply (simp add: s0_def a0 existen
eSome)

apply (rule existen
eSome)

apply (simp add: a0)

done

have t1: "9 u. rea
hableWith automaton s s0 u"

apply (simp add: t0)

done

def alpha == "SOME u . rea
hableWith automaton s s0 u"

have t2: " rea
hableWith automaton s s0 alpha"

apply (simp add: alpha_def t1)

done

have a2: "s0 : starts_of automaton"

and a3: " isExe
ution automaton s0 alpha"

and a4: "lastOf automaton s0 alpha = s"

apply (insert t2)

apply (simp_all add: rea
hableWith_def)

done

show "9 s0. Ex ( rea
hableWith automaton (effe
ts_of automaton s a
t) s0)"

proof (rule exI)+

show " rea
hableWith automaton (effe
ts_of automaton s a
t) s0 (a
t#alpha)"

apply (insert t2 a1)

apply (simp add: rea
hableWith_def)

done

qed

qed

theorem exe
utionStep_ba
k:

"isExe
ution aut s0 (a
t#alpha) -! isExe
ution aut s0 alpha"

apply (auto)

done

theorem invariantI2:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

and p2: "s0 : ( starts_of aut)"

shows

"isExe
ution aut s0 alpha -! I (lastOf aut s0 alpha)"

proof (indu
t alpha)

have f1: "I s0"

proof -

have f1_1: "8 state. ( state : starts_of aut -! I state)"

by (insert p0, simp add: invariant_start_def)
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show "?thesis"

by (insert f1_1, simp add: p2)

qed

{
ase Nil

show "? 
ase"

by (simp add: lastOf_def f1)

}

{
ase Cons

show "? 
ase"

proof (safe)

assume a0: " isExe
ution aut s0 (a_ # list_)"

show "I (lastOf aut s0 (a_ # list_))"

proof -

have

a1: " enablement_of aut (lastOf aut s0 list_) a_"

and a2: " isExe
ution aut s0 list_"

apply (insert a0)

apply (auto)

done

have f2: "I (lastOf aut s0 list_)"

apply (simp add: Cons a2)

done

have f3: "rea
hable aut (lastOf aut s0 list_)"

apply (simp add: rea
hable_def)

apply (rule exI, rule exI)

proof -

show "rea
hableWith aut (lastOf aut s0 list_) s0 list_"

apply (simp add: rea
hableWith_def)

apply (simp add: p2 a1 a2)

done

qed

have f4: "rea
hable aut (lastOf aut s0 (a_ # list_))"

apply (simp add: rea
hable_def)

apply (rule exI, rule exI)

proof -

show "rea
hableWith aut

(effe
ts_of aut (lastOf aut s0 list_) a_)

s0 (a_ # list_)"

apply (simp add: rea
hableWith_def)

apply (simp add: p2 a1 a2)

done

qed

have f5: "!! state a
t.

[ j rea
hable aut state ^

I state ^ enablement_of aut state a
t j ℄

=) I (effe
ts_of aut state a
t)"

apply (insert p1)

apply (simp add: invariant_trans_def)

done

show "?thesis"

apply (auto)

apply (insert f5 f3 f2 a1)

apply (auto) (* Booyeah, let

0

s see some unifi
ation! *)
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done

qed

qed

}

qed

theorem invariantI1:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

and p2: "s0 : ( starts_of aut)"

and p3: " isExe
ution aut s0 alpha"

shows

"I (lastOf aut s0 alpha)"

apply (simp add: invariantI2 p0 p1 p2 p3)

done

theorem invariantI:

assumes p0: " invariant_start aut I"

and p1: " invariant_trans aut I"

shows " invariant aut I"

apply (simp add: invariant_def)

apply (auto)

proof -

fix s

show "rea
hable aut s =) I s "

apply (simp add: rea
hable_def)

proof -

assume a0: "9 s0. Ex (rea
hableWith aut s s0)"

show "?thesis"

proof -

def s0 == "SOME s0 . Ex (rea
hableWith aut s s0)"

have t0: "Ex ( rea
hableWith aut s s0)"

apply (simp add: s0_def a0 existen
eSome)

apply (rule existen
eSome)

apply (simp add: a0)

done

have t1: "9 u. rea
hableWith aut s s0 u"

apply (simp add: t0)

done

def alpha == "SOME u . rea
hableWith aut s s0 u"

have f1: " rea
hableWith aut s s0 alpha"

apply (simp add: alpha_def t1)

done

have f2: "s0 : starts_of aut"

and f3: " isExe
ution aut s0 alpha"

and f4: "lastOf aut s0 alpha = s"

apply (insert f1)

apply (simp_all add: rea
hableWith_def)

done

show "I s"

apply (insert f4)

apply (auto)
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apply (rule invariantI1)

apply (simp_all add: f2 f3 f4 p0 p1)

done

qed

qed

qed
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Appendix B

The Paxos simulation relation proof

in Isabelle

The following is the automati
ally generated proof outline and ta
ti
s for the simulation

relation proof from the Global1 to Cons automaton in the Paxos 
ase study.

(* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% *)

(* %% Simulation from Global1 to Cons *)

(* %% *)

theory Global12Cons = Global1 + Cons:

datatype Global12Cons_a
tion =

init Node Value j

fail Node j

de
ide Node Value j

dummy


onsts

mapGlobal1 :: " Global1_a
tion ) Global12Cons_a
tion"

mapCons :: " Cons_a
tion ) Global12Cons_a
tion"

FGlobal12Cons :: " Global1_state ) Cons_state ) bool"

defs

mapGlobal1_def:

"mapGlobal1 aGlobal1 == 
ase aGlobal1 of

(init i v) ) (init i v) j

(fail i) ) (fail i) j

(de
ide i v) ) (de
ide i v) j

(makeBallot b) ) dummy j

(abstain i B) ) dummy j

(assignVal b v) ) dummy j

(vote i b) ) dummy j

(internalDe
ide b) ) dummy"

defs

mapCons_def:

"mapCons aCons == 
ase aCons of

(init i v) ) (init i v) j

(fail i) ) (fail i) j
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(de
ide i v) ) (de
ide i v) j

(
hooseVal v) ) dummy"

defs

FGlobal12Cons_def:

"FGlobal12Cons sGlobal1 sCons == (((((((Cons.initiated sCons) =

(Global1.initiated sGlobal1)) & ((Cons.proposed sCons) =

(Global1.proposed sGlobal1))) & (( Cons.de
ided sCons) =

(Global1.de
ided sGlobal1))) & (( Cons.failed sCons) =

(Global1.failed sGlobal1))) & (8 v:: Value . ((9 b:: Ballot . ((b

2 (Global1.su

eeded sGlobal1)) & ((sub (Global1.val sGlobal1) b) =

(embed v)))) -! (v 2 (Cons.
hosen sCons ))))) & (8 v:: Value . ((v

2 (Cons.
hosen sCons )) -! (9 b:: Ballot . ((b 2 (Global1.su

eeded

sGlobal1)) & ((sub (Global1.val sGlobal1) b) = (embed v)))))))"


onstdefs

startRelGlobal12Cons :: " Global1_state ) Cons_state"

"startRelGlobal12Cons sGlobal1 == Cons_state.make (Global1.initiated sGlobal1)

(Global1.proposed sGlobal1) {} ( Global1.de
ided sGlobal1) (Global1.failed sGlobal1)"

theorem FGlobal12Cons_start:

"isFwdSim_start Global1 Cons FGlobal12Cons"

apply (rule isFwdSim_startRule)

proof (- )

fix sGlobal1

assume a0: " sGlobal1: starts_of Global1"

show "9 sCons . sCons: starts_of Cons & FGlobal12Cons sGlobal1 sCons"

proof (rule exI)

show "( startRelGlobal12Cons sGlobal1) 2 starts_of Cons &

FGlobal12Cons sGlobal1 ( startRelGlobal12Cons sGlobal1)"

apply (simp add: startRelGlobal12Cons_def Cons_def

Cons_start_def FGlobal12Cons_def Cons_state.make_def)

apply (insert a0)

apply (auto )

apply (simp_all add: Global1_def Global1_start_def)

done

qed

qed

(* For enabled ( Global1.init i v) *)

theorem FGlobal12Cons_trans_init:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.init i v)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons

mapGlobal1 mapCons sGlobal1 sCons [ ( Global1.init i v)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.init i v)℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)
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show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.init i v)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *) apply (simp add: tra
eOf_def p0 p1

betaCons_def Global1_def Cons_def FGlobal12Cons_def prems

Global1_enablement_def Cons_enablement_def Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *) apply (simp add: tra
eOf_def p0 p1

betaCons_def Global1_def Cons_def FGlobal12Cons_def prems

Global1_effe
t_def Cons_effe
t_def Global1_state.make_def

Cons_state.make_def) done qed qed

(* For enabled ( Global1.fail i) *)

theorem FGlobal12Cons_trans_fail:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.fail i)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.fail i)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.fail i)℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.fail i)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)
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(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.de
ide i v b) *)

theorem FGlobal12Cons_trans_de
ide:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.de
ide i v b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.de
ide i v b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[( Cons.de
ide i v)℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.de
ide i v b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.makeBallot b) *)

theorem FGlobal12Cons_trans_makeBallot:

assumes
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p0: " enablement_of Global1 sGlobal1 ( Global1.makeBallot b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.makeBallot b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons sGlobal1

sCons [ ( Global1.makeBallot b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.abstain i B) *)

theorem FGlobal12Cons_trans_abstain:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.abstain i B)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.abstain i B)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.abstain i B)℄ betaCons"

apply (simp add: 
orrespExe
_def)
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apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.assignVal b v) *)

theorem FGlobal12Cons_trans_assignVal:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.assignVal b v)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

proof (- )

(* Proof entry available *)

show "?thesis"

proof (
ases "(:(b 2 (Global1.su

eeded sGlobal1)))")

{

(* True 
ase *)


ase True

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Let_def asig_internals_def Global1_asig_def

Cons_asig_def Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)
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(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def Cons_def

FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif 
ase *)


ase False

show "?thesis"

proof (
ases "(9 b:: Ballot . ((b 2 (Global1.su

eeded sGlobal1)) &

(:((sub (Global1.val sGlobal1) b) = nil))))")

{

(* True 
ase *)


ase True

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show " 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* False 
ase *)


ase False
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def betaCons == "[( Cons.
hooseVal v)℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show " 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.assignVal b v)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

done

qed

}

qed

}

qed

qed

(* For enabled ( Global1.vote i b) *)

theorem FGlobal12Cons_trans_vote:

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.vote i b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.vote i b)℄ betaCons"

proof (- )

(* Proof entry available *)

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.vote i b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )
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(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def

Global1_def

Cons_def FGlobal12Cons_def prems Let_def

asig_internals_def Global1_asig_def Cons_asig_def

Global1_internal_def Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

done

qed

qed

(* For enabled ( Global1.internalDe
ide b) *)

theorem FGlobal12Cons_trans_internalDe
ide :

assumes

p0: " enablement_of Global1 sGlobal1 ( Global1.internalDe
ide b)"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

shows "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDe
ide b)℄ betaCons"

proof (- )

(* Proof entry available *)

show "?thesis"

proof (
ases "(b 2 (Global1.su

eeded sGlobal1))")

{

(* True 
ase *)


ase True

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.internalDe
ide b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)
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apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif 
ase *)


ase False

show "?thesis"

proof (
ases "((sub (Global1.val sGlobal1) b) = nil)")

{

(* True 
ase *)


ase True

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show " 
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDe
ide b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* Elseif 
ase *)


ase False

show "?thesis"

proof (
ases "(9 b:: Ballot . ((b 2 (Global1.su

eeded sGlobal1)) &
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((sub (Global1.val sGlobal1) b) 6= nil)))")

{

(* True 
ase *)


ase True

def betaCons == "[℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1 mapCons

sGlobal1 sCons [ ( Global1.internalDe
ide b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

done

qed

}

{

(* False 
ase *)


ase False

def betaCons == "[( Cons.
hooseVal (val (sub (Global1.val sGlobal1) b)))℄ :: Cons_a
tion list"

show "?thesis"

proof (rule exI)

show "
orrespExe
 Global1 Cons FGlobal12Cons mapGlobal1

mapCons sGlobal1 sCons [ ( Global1.internalDe
ide b)℄ betaCons"

apply (simp add: 
orrespExe
_def)

apply (insert p0 p1)

apply (auto )

(* For tra
e equality: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Let_def asig_internals_def

Global1_asig_def Cons_asig_def Global1_internal_def

Cons_internal_def mapGlobal1_def mapCons_def)

(* For enablement: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_enablement_def

125



Cons_enablement_def Global1_effe
t_def Cons_effe
t_def

Global1_state.make_def Cons_state.make_def)

(* For posteffe
t relation: *)

apply (simp add: tra
eOf_def p0 p1 betaCons_def Global1_def

Cons_def FGlobal12Cons_def prems Global1_effe
t_def

Cons_effe
t_def Global1_state.make_def Cons_state.make_def)

done

qed

}

qed

}

qed

}

qed

qed

theorem FGlobal12Cons_trans:

"isFwdSim_trans Global1 Cons FGlobal12Cons mapGlobal1 mapCons"

proof (rule isFwdSim_transRule)

fix sGlobal1 aGlobal1 sCons

assume

p0: " enablement_of Global1 sGlobal1 aGlobal1"

and p1: " FGlobal12Cons sGlobal1 sCons"

and p2: " rea
hable Global1 sGlobal1"

show "9 betaCons . 
orrespExe
 Global1 Cons FGlobal12Cons

mapGlobal1 mapCons sGlobal1 sCons [ aGlobal1℄ betaCons"

apply (
ases aGlobal1)

apply (insert prems)

apply (simp_all add: FGlobal12Cons_trans_init)

apply (simp_all add: FGlobal12Cons_trans_fail)

apply (simp_all add: FGlobal12Cons_trans_de
ide)

apply (simp_all add: FGlobal12Cons_trans_makeBallot)

apply (simp_all add: FGlobal12Cons_trans_abstain)

apply (simp_all add: FGlobal12Cons_trans_assignVal)

apply (simp_all add: FGlobal12Cons_trans_vote)

apply (simp_all add: FGlobal12Cons_trans_internalDe
ide )

done

qed
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