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Abstract

Many ant species employ distributed population density estimation in applications ranging from
quorum sensing [Pra05], to task allocation [Gor99], to appraisal of enemy colony strength [Ada90]. It has
been shown that ants estimate density by tracking encounter rates — the higher the population density,
the more often the ants bump into each other [Pra05, GPT93].

We study distributed density estimation from a theoretical perspective. We show that a group of
anonymous agents randomly walking on a grid are able to estimate their density d to within a multiplica-
tive factor 1 + ¢ with probability 1 — 6 in just O (W) steps by measuring their encounter
rates with other agents. Despite dependencies inherent in the fact that nearby agents may collide re-
peatedly (and, worse, cannot recognize when this happens), this bound nearly matches what is required
to estimate d by independently sampling grid locations.

From a biological perspective, our work helps shed light on how ants and other social insects can
obtain relatively accurate density estimates via encounter rates. From a technical perspective, our
analysis requires novel understanding of collision probabilities of multiple random walks using local mizing
properties of the underlying graph. Our results extend beyond the grid to more general graphs and
we discuss applications to biologically-inspired algorithms for social network size estimation, density
estimation by robot swarms, and sensor network sampling.

*Full manuscript, including all proofs, available at: http://arxiv.org/abs/1603.02981


http://arxiv.org/abs/1603.02981

1 Introduction

The ability to sense local population density is an important tool used by many ant species. When a colony
must relocate to a new nest, scouts search for potential nest sites, assess their quality, and recruit other scouts
to high quality locations. A high enough density of scouts at a potential new nest (a quorum threshold)
triggers those ants to decide on the site and transport the rest of the colony there [Pra05]. When neighboring
colonies compete for territory, a high relative density of a colony’s ants in a contested area will cause those
ants to attack enemies in the area, while a low relative density will cause the colony to retreat [Ada90)].
Varying densities of ants successfully performing certain tasks such as foraging or brood care can trigger
other ants to switch tasks, maintaining proper worker allocation within in the colony [Gor99, SHGOG].

It has been shown that ants estimate density in a distributed manner, by measuring encounter rates
[Pra05, GPT93]. As ants randomly walk around an area, if they bump into a larger number of other ants,
this indicates a higher population density. By tracking encounters with specific types of ants, e.g. successful
foragers or enemies, ants can estimate more specific densities. This strategy allows each ant to obtain an
accurate density estimate and requires very little communication — ants must simply detect when they collide
and do not need to perform any higher level data aggregation.

1.1 Density Estimation on the Grid

We study distributed density estimation from a theoretical perspective. We model a colony of ants as a set
of anonymous agents randomly distributed on a two-dimensional torus graph (which we use in place of a
grid to simplify analysis and avoid complications due to boundary behavior).

Computation proceeds in rounds, with each agent stepping in a random direction in each round!. A
collision occurs when two agents reach the same position in the same round and encounter rate is measured
as the number of collisions an agent is involved in during a sequence of rounds divided by the number of
rounds. Aside from collision detection, the agents have no other means of communication.

The intuition that encounter rate tracks density is clear. It is easy to show that, for a set of randomly
walking agents, the expected encounter rate measured by each agent is exactly the density d — the number of
agents divided by the grid size. However, it is not obvious that encounter rate actually gives a good density
estimate — i.e., that it concentrates around its expectation.

Consider agents positioned not on the grid, but on a complete graph. In each round, each agent steps to
a uniformly random position and in expectation, the number of other agents they collide with in this step
is d. Since each agent chooses its new location uniformly at random in each step, collisions are essentially
independent between rounds. The agents are effectively taking independent Bernoulli samples with success

probability d, and by a standard Chernoff bound, within O (%) rounds obtain a (1 & ¢) multiplicative

approximation to d with probability 1 — 4.

On the grid graph, the picture is more complex. If two agents are initially located near each other on the
grid, they are more likely to collide via random walking. After a first collision, due to their proximity, they
are likely to collide repeatedly in future rounds. The agents cannot recognize repeat collisions since they are
anonymous and even if they could, it is unclear that it would help. On average, compared to the complete
graph, agents collide with fewer individuals and collide multiple times with those individuals that they do
encounter, causing an increase in encounter rate variance and making density estimation more difficult.

Mathematically speaking, on a graph with a fast mizing time [Lov93], like the complete graph, each
agent’s location is only weakly correlated with its previous locations. This ensures that collisions are also
weakly correlated between rounds and encounter rate serves as a very accurate estimate of density. The grid
graph on the other hand is slow mixing — agent positions and hence collisions are highly correlated between
rounds. This correlation increases encounter rate variance.

1.2 Our Contributions

Surprisingly, despite this increased variance, encounter rate-based density estimation on the grid is nearly

as accurate as on the complete graph. We show that after just O <1°g(1/§) log 1056(21/6) log(l/de))

rounds, each

LOf course, real ant movement is more complex [GPT93, NTD05]. However, our model captures the highly random movement
of ants while remaining tractable to theoretical analysis and applicable to ant-inspired random walk-based algorithms



agent’s encounter rate is a (1 £ €) approximation to d with probability 1 — 4.

Technically, to bound accuracy on the grid, we obtain moment bounds on the number of times that two
randomly walking agents repeatedly collide over a set of rounds. These bounds also apply to the number of
equalizations (returns to starting location) of a single walk. While ezpected random walk hitting times, return
times, and collision rates are well understood [Lov93, ES09], higher moment bounds and high probability
results are much less common. We hope that beyond the analysis of density estimation, our bounds are of
general use in the theoretical study of random walks and random-walk based algorithms.

Our moment bounds show that, while the grid graph is slow mixing, it has sufficiently strong local mizing
to make random walk-based density estimation accurate. Random walks tend to spread quickly over a local
area and not repeatedly cover the same nodes. We discuss applications of our results to a number of random
walk-based, biologically-inspired algorithms — for social network size estimation [K1.S11], density estimation
by robot swarms, and sensor network sampling [AB04, LB07].

2 Density Estimation via Random Walk Collision Rates

We first formally define the density estimation problem.

Density Estimation Problem Consider a two-dimensional torus with A nodes (dimensions v'A x /A)

populated with (n + 1) randomly positioned agents. Define population density as d def n/A. Each agent’s
goal is to estimate d to (1 & €) accuracy with probability 1 — § for €, € (0,1) — i.e., to return an estimate d

with P [J €[(1—e)d,(1+¢€)d]| >1—4. As a technicality, with n + 1 agents we define d = n/A instead of

d = (n+1)/A for convenience of calculation. In the natural case, when n is large, the distinction is minor.

As discussed, ants solve this problem using an encounter rate-based strategy, formalized in Algorithm 1.

Algorithm 1 Random Walk Encounter Rate-Based Density Estimation
input: runtime t

c:=0 > Collision counter.
forr=1,...,t do
position := position + rand{(0,1), (0,-1),(1,0),(=1,0)} > Random step (up, down, left, or right).

¢ := ¢+ count(position) > count(position) = # others at position.
end for
return d = § > Estimate density as encounter rate.

Our main result bounds the accuracy of the density estimate returned by Algorithm 1.

Theorem 1 (Random Walk Sampling Accuracy Bound). After running for t rounds, assuming t < A,
Algorithm 1 returns d such that, for any 6 > 0, with probability > 1 — 46, d € [(1 — €)d, (1 + €)d] for

¢ — /log(l/fglog(t). In other words, for any €,8 € (0,1) if t = © (1og(1/6) 1og10dg€(21/6) IOg(l/de)>, dis a (1+e)
multiplicative estimate of d with probability > 1 — 4.

We defer proof to our full writeup [MSL16], briefly discussing some key components of our analysis below.
Throughout our analysis, we take the viewpoint of a single agent executing Algorithm 1, referred to as ‘agent
a’. The first step is to show that the encounter rate d is an unbiased estimator of d:

Lemma 2 (Unbiased Estimator). Ed = d.

Proof. We can decompose ¢ as the sum of collisions with different agents over different rounds. Specifically,
give the n other agents arbitrary ids 1,2, ...,n and let ¢;(r) equal 1 if agent a collides with agent j in round
r, and 0 otherwise. By linearity of expectation: Ec = 22:1 Zi:l Ec;(r).

Since each agent is initially at a uniform random location and after any number of steps, is still at uniform
random location, for all 7,7, Ec¢;(r) = 1/A. Thus, Ec = nt/A = dt and Ed = Ec¢/t = d. O



With Lemma 2 in place, the next step is to show that the encounter rate is close to its expectation with
high probability and hence provides a good estimate of density.

2.1 Bounding the Effects of Repeat Collisions

Let ¢; = Zizl ¢;(r) be the total number of collisions with agent j. Due to the initial uniform distribution
of the agents, the ¢;’s are all independent and identically distributed.

Each ¢; is the sum of highly correlated random variables — due to the slow mixing of the grid, if two
agents collide at round r, they are much more likely to collide in successive rounds. However, by bounding
the strength of this correlation, we are able to give strong bounds on the moments of the distribution of
each c;, showing that it is sub-exponential. It follows that d = % Z?:1 ¢j, is also sub-exponential and hence
concentrates strongly around its expectation, the true density d.

We first bound the probability of a re-collision in round r + m, assuming a collision in round 7:

Lemma 3 (Re-collision Probability Bound). Consider two agents a1 and as randomly walking on a two-
dimensional torus of dimensions VA x VA. If a1 and as collide again in round r, for any m > 0, the

probability that a; and ag collide in round r +m is © (ﬁ) + 0 (%)

Roughly, assuming as in Theorem 1 that t < A, by Lemma 3, in ¢ rounds, a expects to re-collide with any

1
m+1

giving a strong moment bound on the distribution of ¢;. Intuitively, not only does an agent expect to collide
at most O(logt) times with any other agent it encounters, but this bound extends to the higher moments of
the collision distribution, and so holds with high probability. In this sense, the grid has strong local mizing
— random walks spread quickly over a local area and do not cover the same nodes too many times.

agent it encounters an_:lo C) ( ) = O(logt) times. Our main technical lemma formalizes this intuition,

Lemma 4. (Collision Moment Bound) For all j € [1,...,n], let ¢ def c¢;j —Ec¢j. Forall k > 2, assuming

t<AE [Eﬂ =0 (% . k!logk_lt)'

2.2 Concentration of Encounter Rate-Based Density Estimate

Armed with the moment bound of Lemma 4 we can show that Z?Zl ¢; concentrates strongly about its
expectation. Since Z;.l:l ¢;j is just a mean-centered and scaled version of d = %Z?Zl ¢j, this is enough

to prove the accuracy of encounter rate-based density estimation. We first characterize 2?21 ¢j as sub-
exponential:

Corollary 5 (2?21 ¢; is sub-exponential). Assuming t < A, 2?21 ¢ 1s sub-exponential with parameters
22

b= 0O(logt) and 0® = O(tdlogt). Specifically, for any \ with |\ < % E [e)‘ Yij EJ'] <ez

We finally apply a standard sub-exponential tail bound [Wail5] to prove our main result.

Lemma 6 (Sub-exponential tail bound). Suppose that X is sub-exponential with parameters (o2,b). Then,
2
for any A < U—;, PIX —EX|>A] < %" 307 |

Proof of Theorem 1. Since ¢; is just a mean-centered version of c;, Z?Zl ¢; deviates from its mean exactly
the same amount as )7, ¢;. Further, d is just equal to 1 > i1 ¢j» 50 the probability that it falls within an
€ multiplicative factor of its mean is the same as the probability that 2721 c; falls within an e multiplicative
factor of its mean. By Corollary 5 and Lemma 6:

0=P ch—E ch > ek ch =P ch—td > etd SQ@Q(_%).
Jj=1 Jj=1 j=1

Jj=1

cid _ g (log(1/4)) and so e = © ( bg(l/fd)logt) yielding the theorem. O

logt



3 Algorithmic Applications

Beyond providing a theoretical understanding of how ants estimate density via encounter rates, our analysis
has a number of computational implications. In our full writeup, we discuss extensions to higher dimensional
tori, hypercubes, and regular expanders. This work helps provide a better understanding of random walk
collision rates and highlights the distinction between local and global mixing properties of these graphs.

Additionally, our ant-inspired density estimation algorithm (Algorithm 1), variations on this algorithm,
and our analysis techniques can be applied to biologically-inspired techniques for a number of tasks.

3.1 Social Network Size Estimation

Random walk-based density estimation is closely related to work on estimating the size of social networks
and other massive graphs [KLS11, KBMI12, LI.12]. Typically, one does not have access to the full graph
(so cannot exactly count the nodes), but can simulate random walks by following links between nodes
[MMGT07, GKBMO09]. One approach is to run a single random walk and count repeat node visits [LL12,
KBM12]. Alternatively, [KL.S11] proposes running multiple random walks and counting their collisions. The
dominant runtime cost is typically in link queries to the network, and with multiple random walks, this cost
can be trivially distributed to multiple servers simulating walks independently.

Walks are first run for a ‘burn-in period’ so that they are distributed by the network’s stable distribution.
The walks are then halted, and the number of collisions in this final round are counted. The collision count
gives an estimate of the walks’ density, and since the number of walks is known, an estimate of network size.

In our full paper, we show that ant-inspired algorithms can give runtime improvements over this method.
After burn-in, instead of halting the walks immediately, we run them for multiple rounds, recording encounter
rates as in Algorithm 1. This allows the use of fewer walks, decreasing total burn-in cost, and giving faster
runtimes when mixing time is relatively slow, as is common in social network graphs [MYK10].

3.2 Distributed Density Estimation by Robot Swarms

Algorithm 1 can be directly applied as a simple and robust density estimation algorithm for robot swarms,
and to estimate the frequency of certain properties within the swarm. Let d be the overall population density
and dp be the density of agents with some property P. Let fp = dp/d be the relative frequency of P.
Assuming that agents with property P are distributed uniformly in population and that agents can
detect this property (through direct communication or some other signal), then they can separately track
encounters with these agents. They can compute an estimate d of d and dp of dp. By Theorem 1, after

running for t = © (log(l/é) log log(1/9) log(l/de)) steps, with probability 1—26, dp/d € [(1_6> fp, (1+6) fp] =

dpe 1+e€ 1—e
[(1—0(e)fp,(1+ O(e)) fp] for small e.
In a biological setting, properties may include if an ant has completed a successful foraging trip [Gor99],
or if an ant is a nestmate or enemy [Ada90]. In a robotics setting, properties may include whether a robot
is part of a certain task group, has completed a task, or has detected an event or environmental property.

3.3 Random Walk-Based Sensor Network Sampling

Finally, we are hopeful that our bounds can be applied to distributed algorithms for sensor network sampling.
Random walk-based sensor network sampling [LB07, AB04] is a technique in which a query message (a
‘token’) is initially sent by a base station to some sensor. The token is relayed randomly between sensors,
which are connected via a grid network, and its value is updated appropriately at each step to give an answer
to the query. This scheme is robust and efficient - it easily adapts to node failures and does not require
setting up or storing spanning tree communication structures.

However, if attempting to estimate some quantity, such as the percentage of sensors that have recorded
a specific condition, as in density estimation, unless an effort is made to record which sensors have been
previously visited, additional variance is added due to repeat sensor visits. Recording previous can be
expensive — either the message size must increase or nodes themselves must remember which tokens they
have seen. We believe our bounds can be used to show that this is unnecessary — due to strong local mixing,
the number of repeat sensor visits will be low, and increased variance due to random walking will be limited.
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