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Abstract
Theoretically elegant and ubiquitous in practice, the Lanczos
method can approximate f(A)x for any symmetric matrix
A ∈ Rn×n, vector x ∈ Rn, and function f . In exact arith-
metic, the method’s error after k iterations is bounded by the
error of the best degree-k polynomial uniformly approximat-
ing the scalar function f(x) on the range [λmin(A), λmax(A)].
However, despite decades of work, it has been unclear if this
powerful guarantee holds in finite precision.

We resolve this problem, proving that when
maxx∈[λmin,λmax] |f(x)| ≤ C, Lanczos essentially matches
the exact arithmetic guarantee if computations use roughly
log(nC‖A‖) bits of precision. Our proof extends work of
Druskin and Knizhnerman [11], leveraging the stability of
the classic Chebyshev recurrence to bound the stability of
any polynomial approximating f(x).

We also study the special case of f(A) = A−1 for posi-
tive definite A, where stronger guarantees hold for Lanczos.
In exact arithmetic the algorithm performs as well as the
best polynomial approximating 1/x at each of A’s eigenval-
ues, rather than on the full range [λmin(A), λmax(A)]. In
seminal work, Greenbaum gives a natural approach to ex-
tending this bound to finite precision: she proves that finite
precision Lanczos and the related conjugate gradient method
match any polynomial approximating 1/x in a tiny range
around each eigenvalue [17].

For A−1, Greenbaum’s bound appears stronger than our
result. However, we exhibit matrices with condition number
κ where exact arithmetic Lanczos converges in polylog(κ)

iterations, but Greenbaum’s bound predicts at best Ω(κ1/5)
iterations in finite precision. It thus cannot offer more
than a polynomial improvement over the O(κ1/2) bound
achievable via our result for general f(A). Our analysis
bounds the power of stable approximating polynomials and
raises the question of if they fully characterize the behavior
of finite precision Lanczos in solving linear systems. If
they do, convergence in less than poly(κ) iterations cannot
be expected, even for matrices with clustered, skewed, or
otherwise favorable eigenvalue distributions.

1 Introduction

The Lanczos method for iteratively tridiagonalizing a
Hermitian matrix is one of the most important algo-
rithms in numerical computation. Introduced for com-
puting eigenvectors and eigenvalues [24], it remains the
standard algorithm for doing so over half a century later
[37]. It also underlies state-of-the-art iterative solvers
for linear systems [21, 36].

More generally, the Lanczos method can be used
to iteratively approximate any function of a matrix’s
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eigenvalues. Specifically, given f : R 7→ R, symmetric
A ∈ Rn×n with eigendecomposition VΛVT , and vector
x ∈ Rn, it approximates f(A)x, where:

f(A)
def
= Vf(Λ)VT .

f(Λ) is the result of applying f to each diagonal entry
of Λ, i.e., to the eigenvalues of A. In the special case
of linear systems, f(x) = 1/x and f(A) = A−1. Other
important matrix functions include the matrix log, the
matrix exponential, the matrix sign function, and the
matrix square root [23]. These functions are broadly
applicable in scientific computing, and are increasingly
used in theoretical computer science [3, 28, 38] and
machine learning [19, 14, 42, 2, 41]. In theses areas,
there is interest in obtaining worst-case, runtime bounds
for approximating f(A)x up to a given precision.

The main idea behind the Lanczos method is to
iteratively compute an orthonormal basis Q for the
rank-k Krylov subspace Kk = [x,Ax,A2x, . . . ,Ak−1x].
The method then approximates f(A)x with a vector in
Kk, i.e. with p(A)x for a polynomial p with degree < k.

Specifically, along with Q, the algorithm computes
T = QTAQ and approximates f(A)x with y = ‖x‖ ·
Qf(T)e1.1 Importantly, y can be computed efficiently:
iteratively constructing Q and T requires just k − 1
matrix-vector multiplications with A. Furthermore,
due to a special iterative construction, T is tridiagonal.
It is thus possible to accurately compute its eigende-
composition, and hence apply arbitrary functions f(T),
including T−1, in Õ(k2) time.

Note that y ∈ Kk and so can be written as p(A)x
for some polynomial p. While this is not necessarily
the polynomial minimizing ‖p(A)x − f(A)x‖, for the
Euclidean norm ‖ · ‖, y satisfies:

‖f(A)x− y‖ ≤2‖x‖ · δ∗(1.1)

where

δ∗ = min
polynomial p

with degree < k

(
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

)
.

1Here e1 is the first standard basis vector. There are many
variations on Lanczos, especially for the case of solving linear
systems. We consider just this simple, general version.
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λmax(A) and λmin(A) are the largest and smallest eigen-
values of A respectively. That is, up to a factor of 2, the
error of Lanczos in approximating f(A)x is bounded by
the uniform error of the best polynomial approximation
to f with degree < k. Thus, to bound the performance
of Lanczos after k iterations, it suffices to prove the exis-
tence of any degree-k polynomial approximating f , even
if the explicit polynomial is not known2.

2 Our contributions

Unfortunately, as has been understood since its intro-
duction, the performance of the Lanczos algorithm in
exact arithmetic does not predict its behavior when
implemented in finite precision. Specifically, it is well
known that the basis Q loses orthogonality. This leads
to slower convergence when computing eigenvectors and
values, and a wide range of reorthogonalization tech-
niques have been developed to remedy the issue (see
e.g. [33, 39] or [32, 26] for surveys).

However, in the case of matrix function approxima-
tion, these remedies appear unnecessary. Vanilla Lanc-
zos continues to perform well in practice, despite loss
of orthogonality. In fact, it even converges when Q has
numerical rank � k and thus cannot span Kk. Un-
derstanding when and why the Lanczos algorithm runs
efficiently in the face of numerical breakdown has been
the subject of research for decades – see [26] for a sur-
vey. Nevertheless, despite experimental and theoretical
evidence, no iteration bounds comparable to the exact
arithmetic guarantees were known for general matrix
function approximation in finite precision.

2.1 General function approximation in finite
precision. Our main positive result closes this gap
for general functions by showing that a bound nearly
matching (1.1) holds even when Lanczos is implemented
in finite precision. In Section 6 we show:

Theorem 2.1. (Function Approximation via
Lanczos in Finite Arithmetic) Given real
symmetric A ∈ Rn×n, x ∈ Rn, η ≤ ‖A‖,
ε ≤ 1, and any function f with |f(x)| < C for

x ∈ [λmin(A) − η, λmax(A) + η], let B = log
(
nk‖A‖
εη

)
.

The Lanczos algorithm run on a floating point computer
with Ω(B) bits of precision for k iterations returns y
satisfying:

‖f(A)x− y‖ ≤ (7k · δk + εC)‖x‖(2.2)

2Note that, if λmin(A) and λmax(A) are known, then using
Chebyshev interpolation it is always possible to find an explicit
polynomial p̄ such that maxx∈[λmin(A),λmax(A)] |f(x)− p̄(x)| is
within a multiplicative O (log k) factor of the optimal polynomial
with degree < k [34].

where

δk
def
= min

polynomial p
with degree

< k

[
max

x∈[λmin(A)−η,λmax(A)+η]
|p(x)− f(x)|

]
.

If basic arithmetic operations on floating point numbers
with Ω(B) bits of precision have runtime cost O(1), the
algorithm’s runtime is O(mv(A)k+ k2B+ kB2), where
mv(A) is the time required to multiply the matrix A
with a vector.

The bound of (2.2) matches (1.1) up to an O(k) factor
along with a small εC additive error term, which de-
creases exponentially in the bits of precision available.
For typical functions, the degree of the best uniform
approximating polynomial depends logarithmically on
the desired accuracy. So the O(k) factor equates to
just a logarithmic increase in the degree of the approxi-
mating polynomial, and hence the number of iterations
required for a given accuracy. The theorem requires a
uniform approximation bound on the slightly extended
range [λmin(A)−η, λmax(A)+η], however typically this
has nearly no effect on the bounds obtainable.

In Section 8 we give several example applications of
Theorem 2.1 that illustrate these principles. We show
how to stably approximate the matrix sign function, the
matrix exponential, and the top singular value of a ma-
trix. Our runtimes all either improve upon or match
state-of-the-art runtimes, while holding rigorously un-
der finite precision computation. They demonstrate the
broad usefulness of the Lanczos method and our approx-
imation guarantees for matrix functions.

2.1.1 Techniques and comparison to prior
work. We begin with the groundbreaking work of Paige
[29, 30, 31], which gives a number of results on the be-
havior of the Lanczos tridiagonalization process in finite
arithmetic. Using Paige’s bounds, we demonstrate that
if f(x) is a degree < k Chebyshev polynomial of the
first kind, Lanczos can apply it very accurately. This
proof, which is the technical core of our error bound,
leverages the well-understood stability of the recursive
formula for computing Chebyshev polynomials [7], even
though this formula is not explicitly used when applying
Chebyshev polynomials via Lanczos.

To extend this result to general functions, we first
show that Lanczos will effectively apply the ‘low degree
polynomial part’ of f(A), incurring error depending on
the residual δk (see Lemma 6.3). So we just need to show
that this polynomial component can be applied stably.
To do so, we appeal to our proof for the special case
of Chebyshev polynomials via the following argument,
which appears formally in the proof of Lemma 6.1: If
|f(x)| ≤ C on [λmin(A), λmax(A)], then the optimal
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degree k polynomial approximating f(x) on this range
is bounded by 2C in absolute value since it must have
uniform error < C, the error given by setting p(x) =
0. Since its magnitude is bounded, this polynomial
has coefficients bounded by O(C) when written in the
Chebyshev basis. Accordingly, by linearity, Lanczos
only incurs error O(C) times greater than what is
obtained when applying Chebyshev polynomials. This
yields the additive error bound εC in Theorem 2.1,
proving that, for any bounded function, Lanczos can
apply the optimal approximating polynomial accurately.

Ultimately, our proof can be seen as a more careful
application of the techniques of Druskin and Knizhner-
man [11, 12]. They also use the stability of Chebyshev
polynomials to understand stability for more general
functions, but give an error bound which depends on
a coarse upper bound for δk. Additionally, their work
ignores stability issues that can arise when computing
the final output y = ‖x‖ ·Qf(T)e1. We provide a com-
plete analysis by showing that y can be computed sta-
bly whenever f(x) is well approximated by a low degree
polynomial, and hence give the first end-to-end runtime
bound for Lanczos in finite arithmetic.

Our work is also similar to that of Orecchia,
Sachdeva, and Vishnoi, who give accuracy bounds for
a slower variant of Lanczos with re-orthogonalization
that requires ∼ O(mv(A)k+ k3) time, in contrast to ∼
O(mv(A)k+k2) time for our Theorem 2.1 [28]. Further-
more, their results require a bound on the coefficients
of the polynomial p(x). Many optimal approximating
polynomials, like the Chebyshev polynomials, have coef-
ficients which are exponential in their degree. [28] thus
requires that the number of bits used to match such
polynomials with Lanczos grows polynomially (rather
than logarithmically) with the approximating degree.
In fact, as shown in [14], any degree k polynomial with
coefficients bounded by C can be well approximated by
a polynomial with degree O(

√
k log(kC)). So [28] only

gives good bounds for polynomials that are inherently
suboptimal. Additionally, like Druskin and Knizhner-
man, [28] only addresses roundoff errors that arise dur-
ing matrix vector multiplication with A, assuming sta-
bility for other components of their algorithm.

2.2 Linear systems in finite precision. Theorem
2.1 shows that for general functions, Lanczos performs
nearly as accurately in finite precision as in exact
arithmetic: after k iterations, it still nearly matches the
accuracy of the best degree < k uniform polynomial
approximation to f(x) over A’s eigenvalue range.

However, in the important special case of solving
positive definite linear systems, i.e., when A has all pos-
itive eigenvalues and f(A) = A−1, it is well known that

(1.1) can be strengthened in exact arithmetic. Lanczos
performs as well as the best polynomial approximating
f(x) = 1/x at each of A’s eigenvalues rather than over
the full range [λmin(A), λmax(A)]. Specifically,3

‖A−1x− yk‖ ≤
√
κ(A) · ‖x‖ · δ̄∗(2.3)

where

δ̄∗ = min
polynomial p

with degree < k

max
x∈{λ1(A),λ2(A),...,λn(A)}

|p(x)− 1/x|

and κ(A) = ‖A‖‖A−1‖ is A’s condition number. (2.3)
is proven in Appendix B. It can be much stronger
than (1.1), and correspondingly Theorem 2.1. Specifi-
cally, the best bound obtainable from (1.1) is that after
Õ(
√
κ(A)) iterations, y ≈ ‖A−1x‖. In contrast, (2.3)

shows that even when κ(A) is very large, n iterations
are enough to compute A−1x exactly: p(x) can be set to
the polynomial which exactly interpolates 1/x at each
of A’s eigenvalues. (2.3) also gives improved bounds for
matrices with clustered, skewed, or otherwise favorable
eigenvalue distributions [4, 13]. For example, assuming
exact arithmetic, it can be used to analyze precondition-
ers for graph Laplacians, which induce heavily skewed
eigenvalue distributions [40, 9]. It can also be applied
to algorithms for solving asymmetric Laplacian systems
corresponding to directed graphs [8].

Understanding whether (2.3) carries over to finite
precision is an important open question, which has ac-
tually received more attention than the general matrix
function problem. In seminal work, Greenbaum [17]
gives a natural finite precision extension of (2.3): per-
formance can be bounded by the error in approximating
1/x in a tiny range around each eigenvalue. Here “tiny”
means essentially on the order of machine precision – the
approximation need only be over ranges of width η as
long as the bits of precision used is & log(1/η).

Greenbaum’s bound applies to the conjugate gra-
dient (CG) method, a somewhat optimized way of ap-
plying Lanczos to linear systems. A precise version of
Theorem 3 in [17] can be summarized as follows (see
Appendix B for a detailed discussion):

Theorem 2.2. (Conjugate Gradient in Finite
Arithmetic [17]) Given positive definite A ∈ Rn×n
and x ∈ Rn, after k iterations, the conjugate gradient

algorithm run on a computer with Ω
(

log nk‖A‖
min(η,λmin(A))

)
bits of precision returns y satisfying:

‖A−1x− y‖ ≤ 2κ(A) · δ̄k‖x‖

3Note that slightly stronger bounds where p depends on x are
available. We work with (2.3) for simplicity since it only depends
on A’s eigenvalues.
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where

δ̄k
def
= min

polynomial p
with degree

< k

[
max

x∈
⋃n
i=1[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
]
.

The CG algorithm run for k iterations requires
O(mv(A)k+nk) time, where mv(A) is the time required
to multiply A by a vector.

Theorem 2.2 does not apply to general matrix functions
but, at least for the case of f(A) = A−1, it is stronger
than our Theorem 2.1. It is natural to ask by how much.

2.2.1 Lower bound. Surprisingly, we show that
Greenbaum’s bound is much weaker than the exact
arithmetic guarantee (2.3), and in fact is not signifi-
cantly more powerful than Theorem 2.1. Specifically, in
Section 7 we prove that for any κ and interval width η,
there is a natural class of matrices with condition num-
ber κ and just O(log κ · log 1/η) eigenvalues for which
any ‘stable approximating polynomial’ of the form re-
quired by Theorem 2.2 achieving δ̄k ≤ 1/6 must have
degree Ω(κc) for a fixed constant c ≥ 1/5.

Theorem 2.3. (Stable Approximating Polyno-
mial Lower Bound)There exists a fixed constant
1/5 ≤ c ≤ 1/2 such that for any κ ≥ 2, 0 < η ≤ 1

20κ2 ,
and n ≥ blog2 κc · dln 1/ηe, there is a positive definite
A ∈ Rn×n with condition number ≤ κ, such that for
any k < bκc/377c:

δ̄k = min
polynomial p
with degree

< k

[
max

x∈
⋃n
i=1[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
]
≥ 1

6
.

Theorem 2.3 immediately gives a strong lower bound
against Greenbaum’s result, even if we only require
constant factor error. Setting log(1/η) = n/ log(κ):

Corollary 2.1. There exists c ≥ 1
5 so that for any

κ ≥ 2, there is a positive definite A ∈ Rn×n with
condition number ≤ κ such that Theorem 2.2 predicts
CG must run for Ω(κc) iterations to guarantee ‖A−1x−
y‖ ≤ κ·‖x‖

3 if o(n/ log κ) bits of precision are used.

As a consequence, if we set κ = nd for arbitrarily large
constant d, Theorem 2.2 only guarantees a Ω(ncd) it-
eration bound, even when the precision used is nearly
exponential in n. Since O(κ1/2) = O(nd/2) is already
achievable via Theorem 2.1 with O(log n) bits of preci-
sion, Greenbaum’s bound is not a significant improve-
ment, except in very high precision regimes. While our
constant c is < 1/2, we believe the proof can be tight-
ened to show that ∼ κ1/2 degree is necessary.

Alternatively, Corollary 2.1 shows the existence of
matrices with O(log2 κ) eigenvalues for which Theorem
2.2 requires Ω(κc) iterations for convergence if O(log κ)
bits of precision are used. This is nearly exponentially
worse than the exact arithmetic case, where (2.3) gives
convergence to perfect accuracy in O(log2 κ) iterations.

Theorem 2.3 seems damning for establishing itera-
tion bounds on the Lanczos and CG methods in finite
precision that go significantly beyond uniform approxi-
mation of 1/x. Informally, all known bounds improving
on O(

√
κ) iterations, including those for clustered or

skewed eigenvalue distributions, require a polynomial
that stably approximates 1/x on some small subset of
poorly conditioned eigenvalues. We rule out the exis-
tence of such polynomials.

However, Theorem 2.3 is not a general lower bound
on the performance of finite precision Lanczos methods
for linear systems. These methods might do something
“smarter” than applying a fixed stable polynomial.
Thus, we see our result as pointing to two possibilities:

Optimistic: Bounds comparable (2.3) can be
proven for finite precision Lanczos or conjugate gra-
dient, but are out of the reach of current techniques.
Proving such bounds may require looking beyond a
“polynomial” view of these methods.

Pessimistic: For finite precision Lanczos to con-
verge in k iterations, there must essentially exist
a stable degree k polynomial approximating 1/x in
small ranges around A’s eigenvalues. If this is the
case, our lower bound could be extended to an un-
conditional lower bound on the number of iterations
required for solving A−1x with such methods.

3 Notation and linear algebra preliminaries

Notation We use bold uppercase letters for matrices
and lowercase letters for vectors (i.e. matrices with
multiple rows, 1 column). A lowercase letter with a
subscript is used to denote a particular column vector
in the corresponding matrix. E.g. q5 denotes the 5th

column in the matrix Q. Non-bold letters denote scalar
quantities. A superscript T denotes the transpose of
a matrix or vector. ei denotes the ith standard basis
vector, i.e. a vector with a 1 at position i and 0’s
elsewhere. Its length will be clear from context. We use
Ik×k to denote the k × k identity matrix, removing the
subscript when it is clear from context. When discussing
runtimes, we occasionally use Õ(x) as shorthand for
O(x logc x), where c is a fixed positive constant.

Matrix Functions The main subject of this work
is matrix functions and their approximation by matrix
polynomials. We define matrix functions in the stan-
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dard way, via the eigendecomposition:

Definition 3.1. (Matrix Function) For any func-
tion f : R → R, for any real symmetric matrix M,
which can be diagonalized as M = VΛVT , we define
the matrix function f(M) as:

f(M)
def
= Vf(Λ)VT ,

where f(Λ) is a diagonal matrix obtained by applying f
independently to each eigenvalue on the diagonal of Λ
(including any 0 eigenvalues).

Other For a vector x, ‖x‖ denotes the Euclidean
norm. For a matrix M, ‖M‖ denotes the spectral norm
and κ(M) = ‖M‖‖M−1‖ the condition number. We
denote the eigenvalues of a symmetric matrix M ∈
Rn×n by λ1(M) ≥ λ2(M) ≥ . . . ≥ λn(M), often writing

λmax(M)
def
= λ1(M) and λmin(M)

def
= λn(M). nnz(M)

denotes the number of non-zero entries in M.

4 The Lanczos method in exact arithmetic

We begin by presenting the classic Lanczos method and
demonstrate how it can be used to approximate f(A)x
for any function f and vector x when computations are
performed in exact arithmetic. While the results in this
section are well known, we include an analysis that will
mirror and inform our eventual finite precision analysis.

Algorithm 1 Lanczos Method for Matrix Functions

input: symmetric A ∈ Rn×n, # of iterations k, vector
x ∈ Rn, function f : R→ R
output: vector y ∈ Rn which approximates
f(A)x

1: q0 = 0, q1 = x/‖x‖, β1 = 0
2: for i ∈ 1, . . . , k do
3: qi+1 ← Aqi − βiqi−1

4: αi ← 〈qi+1,qi〉
5: qi+1 ← qi+1 − αiqi
6: βi+1 ← ‖qi+1‖
7: if βi+1 == 0 then
8: break loop
9: end if

10: qi+1 ← qi+1/βi+1

11: end for

12: T ←


α1 β2 0

β2 α2
. . .

. . .
. . . βk

0 βk αk

, Q ←
[
q1 . . . qk

]
,

13: return y = ‖x‖ ·Qf(T)e1

We study the standard implementation of Lanczos
described in Algorithm 1. In exact arithmetic, the
algorithm computes an orthonormal matrix Q with
q1 = x/‖x‖ as its first column such that for all j ≤ k,
[q1,q2, . . . ,qj ] spans the rank-j Krylov subspace:

Kj = [x,Ax,A2x, . . . ,Aj−1x].(4.4)

The algorithm also computes symmetric tridiagonal T ∈
Rk×k such that T = QTAQ.4

While the Krylov subspace interpretation of Lanc-
zos is useful in understanding the function approxima-
tion guarantees that we will eventually prove, there is
a more succinct way of characterizing the algorithm’s
output that doesn’t use the notion of Krylov subspaces.
It has been quite useful in analyzing the algorithm since
the work of Paige [29], and will be especially useful when
we study the algorithm’s behavior in finite arithmetic.

Claim 4.1. (Lanczos Output Guarantee) Run
for k ≤ n iterations in exact arithmetic, the Lanczos
algorithm (Algorithm 1) computes Q ∈ Rn×k, an
additional column vector qk+1 ∈ Rn, a scalar βk+1, and
a symmetric tridiagonal matrix T ∈ Rk×k such that:

AQ = QT + βk+1qk+1e
T
k ,(4.5)

and

[Q,qk+1]
T

[Q,qk+1] = I.(4.6)

Together (4.5) and (4.6) also imply that:

λmin(T) ≥ λmin(A) , λmax(T) ≤ λmax(A).(4.7)

When run for k ≥ n iterations, the algorithm terminates
at the nth iteration with βn+1 = 0.

We include a brief proof in Appendix E for com-
pleteness. The formulation of Claim 4.1 is valuable
because it allows use to analyze how Lanczos applies
polynomials via the following identity:

AqQ−QTq =

q∑
i=1

Aq−i (AQ−QT) Ti−1.(4.8)

In particular, (4.5) gives an explicit expression for
(AQ−QT). Ultimately, our finite precision analysis is
based on a similar expression for this central quantity.

4 For conciseness, we ignore the case when the algorithm
terminates early because βi+1 = 0. In this case, either A has
rank i or x only has a non-zero projection onto i eigenvectors of
A. Accordingly, for any j ≥ 1 Kj is spanned by Ki so there is no
need to compute additional vectors beyond qi: any polynomial
p(A)x can be formed by recombining vectors in [q1, . . . ,qi]. It is
tedious but not hard to check that our proofs hold in this case.
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4.1 Function approximation in exact arith-
metic. We first show that Claim 4.1 can be used to
prove (1.1): Lanczos approximates matrix functions es-
sentially as well as the best degree k polynomial approx-
imates the corresponding scalar function on the range of
A’s eigenvalues. We begin with a statement that applies
for any function f(x):

Theorem 4.1. (Approximate Application of Ma-
trix Functions) Suppose Q ∈ Rn×k, T ∈ Rk×k,
βk+1, and qk+1 are computed by the Lanczos algorithm
(Algorithm 1), run with exact arithmetic on inputs A
and x. Let

δk = min
polynomial p
w/ degree < k

[
max

x∈[λmin(A),λmax(A)]
|f(x)− p(x)|

]
.

Then the output y = ‖x‖ ·Qf(T)e1 satisfies:

‖f(A)x− y‖ ≤ 2δk‖x‖.(4.9)

Theorem 4.1 is proven from the following lemma,
which says that Lanczos run for k iterations can exactly
apply any matrix polynomial with degree < k.

Lemma 4.1. (Exact Application of Polynomials)
If A, Q, T, βk+1, and qk+1 satisfy (4.5) of Claim
4.1 (e.g. because they are computed with the Lanczos
method), then for any polynomial p with degree < k:

p(A)q1 = Qp(T)e1.

Recall that in Algorithm 1, we set q1 = x/‖x‖, so
the above trivially gives p(A)x = ‖x‖Qp(T)e1.

Proof. We show that for any integer 1 ≤ q < k:

Aqq1 = QTqe1.(4.10)

The lemma then follows by linearity as any polynomial
p with degree < k can be written as the sum of these
monomial terms. To prove (4.10), we appeal to the
telescoping sum in (4.8). Specifically, since q1 = Qe1,
(4.10) is equivalent to:

(AqQ−QTq) e1 = 0.(4.11)

For q ≥ 1, (4.8) let’s us write:

(AqQ−QTq) e1 =

(
q∑
i=1

Aq−i (AQ−QT) Ti−1

)
e1.

Substituting in (4.5):

(AqQ−QTq) e1 = βk+1

q∑
i=1

Aq−iqk+1e
T
kTi−1e1.

(4.12)

Since T is tridiagonal, Ti−1e1 is zero everywhere besides
its first i entries. So, as long as q < k, eTkTi−1e1 = 0
for all i ≤ q. Accordingly, (4.12) evaluates to 0, proving
(4.11) and Lemma 4.1.

With Lemma 4.1 in place, Theorem 4.1 intuitively
follows because Lanczos always applies the “low degree
polynomial part” of f(A). The proof is a simple
application of triangle inequality.

Proof. [Proof of Theorem 4.1]

‖f(A)x− y‖ = ‖f(A)q1 −Qf(T)e1‖ · ‖x‖(4.13)

For any polynomial p, we can write:

‖f(A)q1 −Qf(T)e1‖(4.14)

≤ ‖p(A)q1 −Qp(T)e1‖
+ ‖ [f(A)− p(A)] q1 −Q [f(T)− p(T)] e1‖
≤ ‖ [f(A)− p(A)] q1‖+ ‖Q [f(T)− p(T)] e1‖
≤ ‖f(A)− p(A)‖+ ‖Q‖‖f(T)− p(T)‖.

In the second step we use triangle inequality, in the third
we use Lemma 4.1 and triangle inequality, and in the
fourth we use submultiplicativity of the spectral norm
and the fact that ‖q1‖ = ‖e1‖ = 1.

Since f(A) − p(A) is symmetric and has an eigen-
value equal to f(λ)− p(λ) for each eigenvalue λ of A,

‖f(A)− p(A)‖ ≤ max
x∈[λmin(A),λmax(A)]

|f(x)− p(x)|.

Additionally, by (4.7) of Claim 4.1, for any eigenvalue
λ(T) of T, λmin(A) ≤ λ(T) ≤ λmax(A) so:

‖f(T)− p(T)‖ ≤ max
x∈[λmin(A),λmax(A)]

|f(x)− p(x)|.

Plugging both bounds into (4.14), along with the fact
that ‖Q‖ = 1 and that these statements hold for any
polynomial with degree< k gives ‖f(A)x−y‖ ≤ 2δk‖x‖
after rescaling via (4.13).

As discussed in the introduction, Theorem 4.1 can
be tightened in certain special cases, including when
A is positive definite and f(A) = A−1. We defer
consideration of this point to Section 7.

5 Finite precision preliminaries

Our goal is to understand how Theorem 4.1 and related
bounds translate from exact arithmetic to finite preci-
sion. In particular, our results apply to machines that
employ floating-point arithmetic. We use εmach to de-
note the relative precision of the floating-point system.
An algorithm is generally considered “stable” if it runs
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accurately when 1/ εmach is bounded by some polyno-
mial in the input parameters, i.e., when the number of
bits required is logarithmic in these parameters.

We say a machine has precision εmach if it can
perform computations to relative error εmach, which
necessarily requires that it can represent numbers to
relative precision εmach, i.e., has ≥ log2(1/ εmach) bits in
its floating point significand. To be precise, we require:

Requirement 5.1. (Accuracy of floating-point
arithmetic) Let ◦ denote any of the four basic arith-
metic operations (+, −, ×, ÷) and let fl(x ◦ y) denote
the result of computing x ◦ y. Then a machine with pre-
cision εmach must be able to compute:

fl(x ◦ y) = (1 + δ)(x ◦ y) and

fl(
√
x) = (1 + δ)

√
x where |δ| ≤ εmach .

Requirement 5.1 is satisfied by any computer imple-
menting the IEEE 754 standard for floating-point arith-
metic [1] with ≥ log2(1/ εmach) bits of precision, as long
as operations do not overflow or underflow5. Underflow
or overflow occur when (1 + δ)(x ◦ y) cannot be rep-
resented in finite precision for any δ with |δ| ≤ εmach,
either because x ◦ y is so large that it exceeds the maxi-
mum expressible number on the computer or because it
is so small that expressing the number to relative preci-
sion would require a negative exponent that is larger in
magnitude than that supported by the computer. As is
typical in stability analysis, we will ignore the possibility
of overflow and underflow because doing so significantly
simplifies the presentation of our results [22].

However, because the version of Lanczos studied
normalizes vectors at each iteration, it is not hard to
check that our proofs, and the results of Paige, and
Gu and Eisenstat that we rely on, go through with
overflow and underflow accounted for. To be more
precise, overflow does not occur as long as all numbers in
the input (and their squares) are at least a poly(k, n, C)
factor smaller than the maximum expressible number
(recall that in Theorem 2.1, C is an upper bound on
|f(x)| over our eigenvalue range). That is, overflow is
avoided if we assume the exponent in our floating-point
system has Ω(log log(kn · max(C, 1))) bits overall and
Ω(1) bits more than what is needed to express the input.
This ensures, for example, that the computation of ‖x‖
does not overflow and that the multiplication Aw does
not overflow for any unit norm w.

To account of underflow, Requirement 5.1 can be
modified by including additive error γmach for × and ÷

5Underflow is only a concern for × and ÷ operations. On
any computer implementing gradual underflow and a guard bit,
Requirement 5.1 always holds for + and −, even when underflow
occurs.

√
x cannot underflow or overflow.

operations, where γmach denotes the smallest expressible
positive number on our floating-point machine. The
additive error carries through all calculations, but will
be swamped by multiplicative error as long as we assume
that ‖A‖, ‖x‖, εmach, and our function upper bound C
are larger than γmach by a poly(k, n, 1/ εmach) factor.
This ensures, e.g., that x can be normalized stably and,
as we will discuss, allows for accurate multiplication of
the input matrix A any vector.

In addition to Requirement 5.1, we also require the
following of matrix-vector multiplications involving our
input matrix A:

Requirement 5.2. (Accuracy of matrix multi-
plication) Let fl(Aw) be the result of computing Aw
on our floating-point computer. A computer with preci-
sion εmach must be able to compute, for any w ∈ Rn,

‖ fl(Aw)−Aw‖ ≤ 2n3/2‖A‖‖w‖ εmach .

If Aw is computed explicitly, as long as n εmach ≤ 1
2

(which holds for all of our results), any computer sat-
isfying Requirement 5.1 also satisfies Requirement 5.2
[43, 22]. We list Requirement 5.2 separately to allow
our analysis to apply in situations where Aw is com-
puted approximately for reasons other than rounding
error. For example, in many applications where A can-
not be accessed explicitly, Aw is approximated with an
iterative method [14, 28]. As long as this computation
is performed to the precision specified in Requirement
5.2, then our analysis holds.

As mentioned, when Aw is computed explicitly,
underflow could occur during intermediate steps. This
will add an error term of 2n3/2 γmach to ‖ fl(Aw)−Aw‖.
However, under our assumption that εmach ‖A‖ �
γmach, this term is subsumed by the 2n3/2‖A‖‖w‖ εmach

term whenever ‖w‖ is not tiny (in Algorithm 1, ‖w‖ is
always very close to 1).

Finally, we mention that, in our proofs, we typically
show that operations incur error εmach ·F for some value
F that depends on problem parameters. Ultimately, to
obtain error 0 < ε ≤ 1 we then require that εmach ≤ ε/F .
Accordingly, during the course of a proof we will often
assume that ε ·F ≤ 1. Additionally, all runtime bounds
are for the unit-cost RAM model: we assume that
computing fl(x ◦ y) and fl(

√
x) require O(1) time. For

simplicity, we also assume that the scalar function f
we are interested in applying to A can be computed to
relative error εmach in O(1) time.

6 Lanczos in finite precision

The most notable issue with the Lanczos algorithm
in finite precision is that Q’s column vectors lose the
mutual orthogonality property of (4.6). In practice,
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this loss of orthogonality is quite severe: Q will often
have numerical rank � k. Naturally, Q’s column
vectors will thus also fail to span the Krylov subspace
Kk = [q1, . . . ,A

k−1q1], and so we do not expect to be
able to accurately apply all degree < k polynomials.
Surprisingly, this is not much of a problem!

6.1 Starting point: Paige’s results. In particular,
a result of Paige shows that while (4.6) fails under finite
precision, (4.5) of Claim 4.1 still holds, up to small error.
In particular, in [30] he proves that:

Theorem 6.1. (Lanczos Output in Finite Preci-
sion, [30]) Run for k iterations on a computer satisfy-
ing Requirements 5.1 and 5.2 with precision εmach, the
Lanczos algorithm (Algorithm 1) computes Q ∈ Rn×k,
an additional column vector qk+1 ∈ Rn, a scalar βk, and
a symmetric tridiagonal matrix T ∈ Rk×k such that:

AQ = QT + βk+1qk+1e
T
k + E,(6.15)

and

‖E‖ ≤ k(2n3/2 + 7)‖A‖εmach,(6.16)

|‖qi‖ − 1| ≤ (n+ 4) εmach for all i.(6.17)

In [31] (see equation 3.28), it is shown that together, the
above bounds also imply:

λmin(A)− ε1 ≤ λ(T) ≤ λmax(A) + ε1(6.18)

where ε1 = k5/2‖A‖
(
68 + 17n3/2

)
εmach.

Paige was interested in using Theorem 6.1 to un-
derstand how T and Q can be used to compute approx-
imate eigenvectors and values for A. His bounds are
quite strong: for example, (6.18) shows that (4.7) still
holds up to tiny additive error, even though establish-
ing that result for exact arithmetic relied heavily on the
orthogonality of Q’s columns.

6.2 Finite precision lanczos for applying poly-
nomials. Theorem 6.1 allows us to give a finite preci-
sion analog of Lemma 4.1 for polynomials with magni-
tude |p(x)| bounded on a small extension of the eigen-
value range [λmin(A), λmax(A)].

Lemma 6.1. (Lanczos Applies Bounded Polyno-
mials)Suppose Q ∈ Rn×k and T ∈ Rk×k are com-
puted by the Lanczos algorithm on a computer satis-
fying Requirements 5.1 and 5.2 with relative precision
εmach, and thus these matrices satisfy the bounds of The-
orem 6.1. For any η ≥ 85n3/2k5/2‖A‖ εmach, if p is
a polynomial with degree < k and |p(x)| ≤ C for all
x ∈ [λmin(A)− η, λmax(A) + η] then:

‖Qp(T)e1 − p(A)q1‖ ≤
2Ck3‖E‖

η
(6.19)

where E is the error matrix defined in Theorem 6.1.

6.2.1 Finite precision Lanczos applies Cheby-
shev polynomials. It is not immediately clear how to
modify the proof of Lemma 4.1 to handle the error E
in (6.15). Intuitively, any bounded polynomial cannot
have a large derivative by the Markov brothers’ inequal-
ity [25], so we expect E to have limited effect. However,
we are not aware of how to make this reasoning formal
for matrix polynomials and asymmetric E.

As illustrated in [28], there is a natural way to prove
(6.19) for the monomials A,A2, . . . ,Ak−1. The bound
can then be extended to all polynomials via triangle
inequality, but error is amplified by the coefficients
of each monomial component in p(A). Unfortunately,
there are polynomials that are uniformly bounded by C
(and thus have bounded derivative) even though their
monomial components can have coefficients much larger
than C. The ultimate effect is that the approach taken
in [28] would incur an exponential dependence on k on
the right hand side of (6.19).

To obtain our stronger polynomial dependence, we
proceed with a different two-part analysis. We first show
that (6.19) holds for any Chebyshev polynomial with
degree < k that is appropriately stretched and shifted
to the range [λmin(A)− η, λmax(A) + η]. Chebyshev
polynomials have magnitude much smaller than that
of their monomial components, but because they can
be formed via a well-behaved recurrence, we can show
that they are stable to the perturbation E. We can
then obtain the general result of Lemma 6.1 because any
bounded polynomial can be written as a weighted sum
of such Chebyshev polynomials, with bounded weights.

Let T0, T1, . . . , Tk−1 be the first k Chebyshev poly-
nomials of the first kind, defined recursively:

T0(x) = 1,

T1(x) = x,

Ti(x) = 2xTi−1(x)− Ti−2(x).(6.20)

The roots of the Chebyshev polynomials lie in [−1, 1]
and this is precisely the range where they remain “well
behaved”: for |x| > 1, Ti(x) begins to grow quite
quickly. Define

rmax
def
= λmax +η and rmin

def
= λmin−η

and

δ =
2

rmax− rmin
, T i(x) = Ti (δ(x− rmin)− 1) .

(6.21)

T i(x) is the ith Chebyshev polynomial stretched and
shifted so that T i(rmin) = Ti(−1) and T i(rmax) = Ti(1).
We prove the following:
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Lemma 6.2. (Lanczos Applies Chebyshev Poly-
nomials Stably) Suppose Q ∈ Rn×k and T ∈ Rk×k
are computed by the Lanczos algorithm on a computer
satisfying Requirements 5.1 and 5.2 with precision εmach

and thus these matrices satisfy the bounds of Theorem
6.1. For any η ≥ 85n3/2k5/2‖A‖ εmach, for all i < k,

‖QT i(T)e1 − T i(A)q1‖ ≤
2i2 · ‖E‖

η
(6.22)

where E is the error matrix in Theorem 6.1 and T i is
the ith shifted Chebyshev polynomial of (6.21).

Proof. Define Ā
def
= δ(A − rmin I) − I and T̄

def
= δ(T −

rmin I)− I. so (6.22) is equivalent to:

‖QTi(T̄)e1 − Ti(Ā)q1‖ ≤
2i2 · ‖E‖

η
.(6.23)

So now we just focus on showing (6.23). We use the
following notation:

ti
def
= Ti(Ā)q1, t̃i

def
= Ti(T̄)e1,

di
def
= ti −Qt̃i, ξi

def
= δEt̃i−1.

Proving (6.23) is equivalent to showing ‖di‖ ≤ 2i2‖E‖
η .

From the Chebyshev recurrence (6.20) for all i ≥ 2:

di =
(
2 Ā ti−1 − ti−2

)
−Q

(
2 T̄ t̃i−1 − t̃i−2

)
= 2(Ā ti−1 −Q T̄ t̃i−1)− di−2.

Applying the perturbed Lanczos relation (6.15), we can
write Q T̄ = Ā Q − δβk+1qk+1e

T
k − δE. Plugging this

in above we then have:

di = 2 Ā(ti−1 −Qt̃i−1)− di−2

+ 2δβk+1qk+1e
T
k t̃i−1 + 2δEt̃t−1

= (2 Ā di−1 − di−2) + 2δβk+1qk+1e
T
k t̃i−1 + 2ξi.

Finally, we use as in Lemma 4.1, that eTk t̃i−1 =
eTk Ti−1(T̄)e1 = 0 since T̄ (like T) is tridiagonal. Thus,
Tq−1e1 is zero outside its first q entries and so for i < k,
Ti−1(T̄)e1 is zero outside of its first k − 1 entries. This
gives the error recurrence:

di = (2 Ā di−1 − di−2) + 2ξi.(6.24)

As in standard stability arguments for the scalar
Chebyshev recurrence, we can analyze (6.24) using
Chebyshev polynomials of the second kind [7]. The ith

Chebyshev polynomial of the second kind is denoted
Ui(x) and defined by the recurrence

U0(x) = 1,

U1(x) = 2x,

Ui(x) = 2xTi−1(x)− Ti−2(x).(6.25)

We claim that for any i ≥ 0, defining Uk(x) = 0 for any
k < 0 for convinience:

di = Ui−1(Ā)ξ1 + 2

i∑
j=2

Ui−j(Ā)ξj .(6.26)

This follows by induction starting with the base cases:

d0 = 0, and d1 = ξ1.

Using (6.24) and assuming by induction that (6.26)
holds for all j < i,

di = 2ξi +
(
2 Ā di−1 − di−2

)
= 2ξi + [2ĀUi−2(Ā)ξ1 − Ui−3(Ā)ξ1]

+ 4 Ā

i−1∑
j=2

Ui−1−j(Ā)ξj − 2

i−2∑
j=2

Ui−2−j(Ā)ξj

= 2ξi + Ui−1(Ā)ξ1

+

2
i−2∑
j=2

2 ĀUi−1−j(Ā)ξj − Ui−2−j(Ā)ξj


+ 4 ĀU0(Ā)ξi−1

= Ui−1(Ā)ξ1 + 2
i∑

j=2

Ui−j(Ā)ξj ,

establishing (6.26). It follows from triangle inequality
and submultiplicativity that

‖di‖ ≤ 2
i∑

j=1

‖Ui−j(Ā)‖‖ξj‖.

Since Ā is symmetric (it is just a shifted and scaled A),
Uk(Ā) is equivalent to the matrix obtained by applying
Uk(x) to each of Ā’s eigenvalues, which lie in the range
[−1, 1]. It is well known that, for values in this range
Uk(x) ≤ k + 1 [15]. Thus, ‖Ui−j(Ā)‖ ≤ i− j + 1, so

‖di‖ ≤ 2
i∑

j=1

(i− j + 1)‖ξj‖ ≤ 2
i∑

j=1

i‖ξj‖.(6.27)

We finally bound ‖ξj‖ = δEt̃j−1. Recall that t̃j−1
def
=

Tj−1(T̄)e1 so:

‖ξj‖ = ‖δETj−1(T̄)e1‖ ≤ δ ‖E‖
∣∣Tj−1(T̄)

∥∥(6.28)

=
2

rmax− rmin
· ‖E‖ ‖Tj−1 (δ (T− rmin I)− I)‖ ,

where we used that ‖e1‖ = 1, and δ = 2
rmax− rmin

.
By (6.18) of Theorem 6.1 and our requirement that
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η ≥ 85n3/2k5/2‖A‖ εmach, T has all eigenvalues in
[λmin−η, λmax +η]. Thus T̄ = δ (T− rmin I) − I has
all eigenvalues in [−1, 1]. We have Tj−1(x) ≤ 1 for
x ∈ [−1, 1], giving ‖Tj−1 (δ (T− rmin I)− I)‖ ≤ 1.

Plugging this back into (6.28), ‖ξj‖ ≤
2‖E‖

rmax− rmin

and plugging into (6.27), ‖di‖ ≤ 4i2‖E‖
rmax− rmin

. This gives
the lemma after noting that rmax− rmin ≥ 2η.

6.2.2 From Chebyshev polynomials to general
polynomials. As discussed, with Lemma 6.2 in place,
we can prove Lemma 6.1 by writing any bounded
polynomial in the Chebyshev basis.

Proof. [of Lemma 6.1] Recall that we define rmin =
λmin−η, rmax = λmax +η, and δ = 2

rmax− rmin
. Let

p(x) = p

(
x+ 1

δ
+ rmin

)
.

For any x ∈ [−1, 1], p(x) = p(y) for some y ∈
[rmin, rmax]. This immediately gives |p(x)| ≤ C
on [−1, 1] by the assumption that |p(x)| ≤ C on
[λmin−η, λmax +η] = [rmin, rmax].

Any polynomial with degree < k can be written as
a weighted sum of the first k Chebyshev polynomials
(see e.g. [15]). Specifically we have:

p(x) = c0T0(x) + c1T1(x) + . . .+ ck−1Tk−1(x),

where the ith coefficient is given by:

ci =
2

π

∫ 1

−1

p̄(x)Ti(x)√
1− x2

.

|Ti(x)| ≤ 1 on [−1, 1] and
∫ 1

−1
1√

1−x2
= π, and since

|p(x)| ≤ C for x ∈ [−1, 1] we have for all i:

|ci| ≤ 2C.(6.29)

By definition, p(x) = p (δ(x− rmin)− 1). Letting
Ā = δ(A − rmin I) − I and T̄ = δ(T − rmin I) − I as in
the proof of Lemma 6.2, we have

‖Qp(T)e1 − p(A)q1‖ =
∥∥Qp (T̄) e1 − p

(
Ā
)
q1

∥∥
so need to upper bound the right hand side to prove the
lemma. Applying triangle inequality:

∥∥Qp (T̄) e1 − p(Ā)q1

∥∥ ≤ k−1∑
i=0

ci
∥∥QTi (T̄) e1 − Ti(Ā)q1

∥∥ ,
where for each i, |ci| ≤ 2C by (6.29). Combining with
Lemma 6.2, we thus have:

∥∥Qp(T̄)e1 − p(Ā)q1

∥∥ ≤ 4C · ‖E‖
η

k−1∑
i=0

i2 ≤ 2Ck3‖E‖
η

which gives the lemma.

6.3 Completing the analysis. With Lemma 6.1,
we have nearly proven our main result, Theorem 2.1.
We first show, using a proof mirroring our analysis in
the exact arithmetic case, that Lemma 6.1 implies that
Qf(T)e1 well approximates f(A)q1. Thus the output
y = ‖x‖Qf(T)e1 well approximates f(A)x. With this
bound, all that remains in proving Theorem 2.1 is to
show that we can compute y accurately using known
techniques (although with a tedious error analysis).

Lemma 6.3. (Stable function approximation via
Lanczos) Suppose Q ∈ Rn×k and T ∈ Rk×k are com-
puted by Lanczos on a computer satisfying Requirements
5.1 and 5.2 with precision εmach and thus these matrices
satisfy the bounds of Theorem 6.1. For degree k and any
η with 85n3/2k5/2‖A‖εmach ≤ η ≤ ‖A‖ define:

δk = min
polynomial p
with degree

< k

[
max

x∈[λmin(A)−η,λmax(A)+η]
|f(x)− p(x)|

](6.30)

and C = maxx∈[λmin(A)−η,λmax(A)+η] |f(x)|. Then:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk(6.31)

+ εmach ·
41Ck4n3/2‖A‖

η
.

Proof. Applying Lemma 6.1, letting p be the optimal
degree < k polynomial achieving δk, by (6.30) and our
bound on f(x) on this range:

‖Qp(T)e1 − p(A)q1‖ ≤
2k3(C + δk)‖E‖

η
.

By triangle inequality, spectral norm submultiplicativ-
ity, and the fact that ‖q1‖ ≈ 1 (certainly ‖q1‖ ≤ 2 even
if x is normalized in finite-precision) we have:

‖Qf(T)e1 − f(A)q1‖
(6.32)

≤ ‖Qp(T)e1 − p(A)q1‖+ ‖Qf(T)e1 −Qp(T)e1‖
+ ‖f(A)q1 − p(A)q1‖

≤ 2k3(C + δk)‖E‖/η + ‖Q‖‖f(T)e1 − p(T)e1‖
+ ‖f(A)q1 − p(A)q1‖

≤ 2k3(C + δk)‖E‖/η + (‖Q‖+ 2)δk

where the last inequality follows from the definition of
δk in (6.30) and the fact that all eigenvalues of T lie
in [λmin(A) − η, λmax(A) + η] by (6.18) of Theorem
6.1 since η > 85n3/2k5/2‖A‖ εmach. By Theorem 6.1
we also have ‖qi‖ ≤ 1 + (n + 4) εmach for all i. This
gives ‖Q‖ ≤ ‖Q‖F ≤ k + k(n + 4) εmach. Further,
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‖E‖ ≤ k(2n3/2 + 7)‖A‖ εmach. Plugging back into
(6.32), loosely bounding δk < C (since we could always
set p(x) = 0), and using that η ≤ ‖A‖, gives (6.31) and
thus completes the lemma.

After scaling by a ‖x‖ factor, Lemma 6.3 shows that
the output y = ‖x‖Qf(T)e1 of Lanczos approximates
f(A)x to within a (k + 2)δk‖x‖ factor (plus a lower
order term depending on εmach), where δk is the best
approximation given by a degree < k polynomial on
the eigenvalue range. Of course, in finite precision, we
cannot exactly compute y. However, it is known that
it is possible to stably compute an eigendecomposition
of a symmetric tridiagonal T in Õ(n2) time ([18], see
Appendix A). This allows us to explicitly approximate
f(T) and thus y. The upshot is our main theorem:

Theorem 6.2. (Function Approximation via
Lanczos in Finite Arithmetic – Full version
of Theorem 2.1) Given real symmetric A ∈ Rn×n,
x ∈ Rn, η ≤ ‖A‖, ε ≤ 1, and any function f with
|f(x)| < C for x ∈ [λmin(A) − η, λmax(A) + η], let

B = log
(
nk‖A‖
εη

)
. Suppose Algorithm 1 is run for k

iterations on a computer satisfying Requirements 5.1
and 5.2 with relative precision εmach = 2−Ω(B) (e.g. on
computer using Ω(B) bits of precision). If in Step 13,
y is computed using the eigendecomposition algorithm
of [18], it satisfies:

‖f(A)x− y‖ ≤ (7k · δk + εC)‖x‖(6.33)

where

δk
def
= min

polynomial p
with degree

< k

[
max

x∈[λmin(A)−η,λmax(A)+η]
|p(x)− f(x)|

]
.

The algorithm’s runtime is O(mv(A)k + k2B + kB2),
where mv(A) is the time required to multiply A by a
vector to the precision required by Requirement 5.2 (e.g.
O(nnz(A) time if A is given explicitly).

We note that the dependence on η in our bound is
typically mild. For example, it A is positive semi-
definite, if it is possible to find a good polynomial
approximation on [λmin(A), λmax(A)], it is possible to
find an approximation with similar degree on, e.g.,
[ 1
2 λmin(A), 2λmax(A)], in which case η = Θ(λmin(A)|).

For some functions, we can get with an even larger η
(and thus fewer required bits). For example, in Section 8
our applications to the matrix step function and matrix
exponential both set η = λmax(A).

Proof. We can apply Lemma 6.3 to show that:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk(6.34)

+ εmach ·
41Ck4n3/2‖A‖

η
.

The lemma requires εmach ≤ η
85n3/2k5/2‖A‖ , which holds

since we require ε ≤ 1 and set εmach = 2−Ω(B) with

B = log
(
nk‖A‖
εη

)
. This also ensures that the second

term of (6.34) becomes very small, and so we can bound:

‖f(A)q1 −Qf(T)e1‖ ≤ (k + 2)δk + εC/4.(6.35)

We now show that a similar bound still holds when
we compute Qf(T)e1 approximately. Via an error anal-
ysis of the symmetric tridiagonal eigendecomposition al-
gorithm of Gu and Eisenstat [18], contained in Lemma
24 of Appendix A, for any ε1 ≤ 1/2 with

ck3 log k · εmach ≤ ε1 ≤
η

4‖T‖
(6.36)

for large enough c, in O(k2 log k
ε1

+ k log2 k
ε1

) time we
can compute z satisfying:

‖f(T)e1 − z‖ ≤ 2δk + ε1

(
8k3C‖T‖

η
+ 16C

)
.(6.37)

By our restriction that ε ≤ 1 and η ≤ ‖A‖, since

B = log
(
nk‖A‖
εη

)
, we have εmach = 2−Ω(B) ≤ 1

(nk)c

for some large constant c. This gives ‖T‖ ≤ ‖A‖ +
εmach k

5/2‖A‖(68 + 17n3/2) ≤ 2‖A‖ by (6.18) of The-

orem 6.1. Thus, if we set ε1 =
(

εη
3nk‖A‖

)c
for large

enough c, by (6.37) we will have:

‖f(T)e1 − z‖ ≤ 2δk +
εC

4(k + 1)
.(6.38)

Furthermore ‖Q‖ ≤ ‖Q‖F ≤ k + k(n + 4) εmach ≤
k+1 by Paige’s bounds (Theorem 6.1) and the fact that
εmach ≤

(
1
nk

)c
for some large c. Using (6.38), this gives:

‖Qf(T)e1 −Qz‖ ≤ (2k + 2)δk + εC/4.(6.39)

As discussed in Section 5, if Qz is computed on a
computer satisfying Requirement 5.1 then ȳ satisfies:

‖Qz− ȳ‖ ≤ 2 max(n, k)3/2 εmach ‖Q‖‖z‖.

By (6.38), ‖z‖ ≤ ‖f(T)‖+ 2δk + εC
4(k+1) = O(C + δk) =

O(C) since δk ≤ C. Accordingly, by our choice of εmach

we can bound ‖Qz−ȳ‖ ≤ εC/4. Combining with (6.35)
and (6.39) we have:

‖f(A)q1 − ȳ‖ ≤ (3k + 4)δk + 3εC/4.(6.40)
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This gives the final error bound of (6.33) after rescaling
by a ‖x‖ factor. ‖ȳ‖ ≤ ‖f(A)q1‖+(3k+4)δk+3εC/4 =
O(kC) and so, by our setting of εmach, we can compute

y = ‖x‖ · ȳ up to additive error εC·‖x‖
8 . Similarly,

we have ‖f(A)q1‖x‖ − f(A)x‖ = εC·‖x‖
8 even when

q1 = x/‖x‖ is computed approximately. Overall this
lets us claim using (6.40):

‖f(A)x− y‖ ≤ [(3k + 4)δk + εC] · ‖x‖

which gives our final error bound. The runtime fol-
lows from noting that each iteration of Lanczos requires
mv(A)+O(n) = O(mv(A)) time. Stable eigendecompo-
sition of T to error ε1 requires O(k2 log k

ε1
+k log2 k

ε1
) =

O(k2B+kB2) time by our setting of ε1. With the eigen-
decomposition in hand, computing Qf(T)e1 takes an
additional O(nk) = O(mv(A)k) time.

7 Lower bound

In the previous section, we proved that finite preci-
sion Lanczos essentially matches the best known ex-
act arithmetic iteration bounds for general matrix func-
tions. These bounds depend on the degree needed to
uniformly approximate of f(x) over [λmin(A), λmax(A)].
We now turn to the special case of positive definite lin-
ear systems, where tighter bounds can be shown.

Specifically, equation (2.3), proven in Theorem B.1,
shows that the error of Lanczos after k iterations
matches the error of the best polynomial approximating
1/x at each of A’s eigenvalues, rather than on the
full range [λmin(A), λmax(A)]. Greenbaum proved a
natural extension of this bound to the finite precision
CG method, showing that its performance matches
the best polynomial approximating 1/x on tiny ranges
around each of A’s eigenvalues [17]. Recall that “tiny”
means essentially on the order of machine precision –
the approximation need only be over ranges of width η
as long as the bits of precision used is & log(1/η). We
state a simplified version of this result as Theorem 2.2
and provide a full discussion in Appendix B.

At first glance, Theorem 2.2 appears to be a very
strong result – intuitively, approximating 1/x on small
intervals around each eigenvalue seems much easier than
uniform approximation.

7.1 Main theorem. Surprisingly, we show that this
is not the case: Greenbaum’s result can be much
weaker than the exact arithmetic bounds of Theorem
B.1. We prove that for any κ and interval width
η, there are matrices with condition number κ and
just O(log κ · log 1/η) eigenvalues for which any ‘stable
approximating polynomial’ of the form required by

Theorem 2.2 achieving error δ̄k
def
= ≤ 1/6 must have

degree Ω(κc) for a fixed constant c ≥ 1/5.
This result immediately implies a number of itera-

tion lower bounds on Greenbaum’s result, even when we
just ask for constant factor approximation to A−1x. See
Corollary 2.1 and surrounding discussion for a full ex-
position. As a simple example, setting η = 1/ poly(κ),
our result shows the existence of matrices with log2(κ)
eigenvalues for which Theorem 2.2 requires Ω(κc) it-
erations for convergence if O(log κ) bits of precision
are used. This is nearly exponentially worse than the
O(log2 κ) iterations required for exact computation of
A−1x in exact arithmetic by (2.3).

Theorem 7.1. (Full version of Theorem 2.3
)There exists a fixed constant 1/5 ≤ c ≤ 1/2 such that
for any κ ≥ 2, 0 < η < 1

20κ2 , and n ≥ blog2 κc ·dln 1/ηe,
there is a positive definite A ∈ Rn×n with condition
number ≤ κ, such that for any k < bκc/377c

δ̄k
def
= min
polynomial p
with degree

< k

[
max

x∈
⋃n
i=1[λi(A)−η,λi(A)+η]

|p(x)− 1/x|
]
≥ 1

6
.

We prove Theorem 2.3 by arguing that there is
no polynomial p(x) with degree ≤ κc/377 which has
p(0) = 1 and |p(x)| < 1/3 for every x ∈

⋃n
i=1[λi(A) −

η, λi(A) + η]. Specifically, we show:

Lemma 7.1. There exists a fixed 1/5 ≤ c ≤ 1/2 and
such that for any κ ≥ 2, 0 < η ≤ 1

20κ2 and n ≥
blog2 κc · dln 1/ηe, there are λ1, ..., λn ∈ [1/κ, 1], such
that for any polynomial p with degree k ≤ κc/377 and
p(0) = 1:

max
x∈

⋃n
i=1[λi−η,λi+η]

|p(x)| ≥ 1/3.

Lemma 7.1 can be viewed as an extension of the classic
Markov brother’s inequality [25], which implies that any
polynomial with p(0) = 1 and |p(x)| ≤ 1/3 for all
x ∈ [1/κ, 1] must have degree Ω(

√
κ). Lemma 7.1 shows

that even if we just restrict |p(x)| ≤ 1/3 on a few small
subintervals of [1/κ, 1], Ω(κc) degree is still required.
We do not carefully optimize the constant c, although
we believe it should be possible to improve to nearly 1/2
(see discussion in Appendix D). This would match the
upper bound achieved by the Chebyshev polynomials of
the first kind, appropriately shifted and scaled. Given
Lemma 7.1 it is easy to show Theorem 2.3:

Proof. [Proof of Theorem 2.3] Let A ∈ Rn×n be any
matrix with eigenvalues equal to λ1, ..., λn – e.g. a
diagonal matrix with these values as its entries. Assume
by way of contradiction that there is a polynomial p(x)
with degree k < bκc/377c which satisfies:

max
x∈

⋃n
i=1[λi(A)−η,λi(A)+η]

|p(x)− 1/x| < 1/6.
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Then if we set p̄(x) = 1 − xp(x), p̄(0) = 1 and for any
x ∈

⋃n
i=1[λi − η, λi + η],

|p̄(x)| ≤ |xp(x)− 1| ≤ |x| · |p(x)− 1/x| < |x|
6
≤ 1

3

since |x| ≤ 2 when η ≤ 1. Since p̄(x) has degree
k + 1 ≤ κc/377, it thus contradicts Lemma 7.1.

7.2 Hard instance construction. We begin by de-
scribing the “hard” eigenvalue distribution that is used
to prove Lemma 7.1 for any given condition number
κ ≥ 2 and range radius η. Define blog2(κ)c intervals:

Ii
def
=

[
1

2i
,

1

2i−1

]
for i = 1, . . . , blog2(κ)c.

In each Ii we place z evenly spaced eigenvalues, where:

z = dln 1/ηe.

That is, the eigenvalues in interval Ii are set to:

λi,j =
1

2i
+

j

z2i
for j = 1, . . . , z.(7.41)

Thus, our construction uses blog2 κc · dln 1/ηe eigenval-
ues total. The smallest is > 1

κ and the largest is ≤ 1,
as required in the statement of Lemma 7.1. For conve-
nience, we also define:

Ri,j
def
= [λi,j − η, λi,j + η]

Ri
def
=
⋃
j

Ri,j

and R def
=
⋃
i

Ri.

By the assumption of Lemma 7.1 that η ≤ 1
20k2 , we

have ηz = ηdln 1
η e ≤

√
η + η ≤ 1

4κ . So none of the Ri,j
overlap and in fact are distance at least 1

2zκ apart (since
the eigenvalues themselves have spacing at least 1

zκ by
(7.41)). An illustration is included in Figure 1.

//

0 1
k

1
8

1
4

1
2

1

R3,1 R3,4

︷ ︸︸ ︷R3

· · · R2,1 R2,2 R2,3 R2,4

︷ ︸︸ ︷R2

R1,1 R1,2 R1,3 R1,4

︷ ︸︸ ︷R1

Figure 1: A sample “hard” distribution of eigenvalues
with z = 4. The width of each range Ri,j is over-
exaggerated for illustration – in reality each interval has
width 2η, where η ≤ 1

4zκ .

7.3 Outline of the argument. Let p be any poly-
nomial with degree k that satisfies p(0) = 1. To

prove Lemma 7.1 we need to show that we cannot have
|p(x)| ≤ 1/3 for all x ∈ R unless k is relatively high
(i.e. ≥ κc). Let r1, . . . , rk denote p’s k roots. So

|p(x)| =
∏k
i=1 |1−

x
ri
|. Then define

g(x)
def
= ln |p(x)| =

k∑
i=1

ln

∣∣∣∣1− x

ri

∣∣∣∣ .(7.42)

To prove that |p(x)| ≥ 1/3 for some x ∈ R, it suffices
to show that,

max
x∈R

g(x) ≥ −1.(7.43)

We establish (7.43) via a potential function argument.
For any positive weight function w(x),

max
x∈R

g(x) ≥
∫
R w(x)g(x)dx∫
R w(x)dx

.

I.e., any weighted average lower bounds the maximum
of a function. From (7.42), we have:

1

k
max
x∈R

g(x) ≥ 1

k
·
∫
R w(x)g(x)dx∫
R w(x)dx

(7.44)

≥ min
r

∫
R w(x) ln |1− x/r|dx∫

R w(x)dx
.

We focus on bounding this last quantity. More specifi-
cally, we set w(x) to be:

w(x)
def
= 2ic for x ∈ Ri.

The weight function increases from a minimum of ∼ 2c

to a maximum of ∼ κc as x ∈ R decreases from 1
towards 1/κ. With this weight function, we will be able
prove that (7.44) is lower bounded by −O( 1

κc ). It will
then follow that (7.43) holds for any polynomial with
degree k = O(κc).

7.4 Initial Observations. Before giving the core
argument, we make an initial observation:

Claim 7.1. If Lemma 7.1 holds for the hard instance
described in Section 7.2 and all real rooted polynomials
with roots on the range [1/κ, 1 + η], then it holds for all
polynomials.

Proof. We first show that we can consider just real
rooted polynomials, before arguing that we can also
assume their roots are within the range [1/κ, 1 + η].

Real rooted: If there is any polynomial equal to 1 at
x = 0 with magnitude ≤ 1/3 for x ∈ R, then there must
be a real polynomial (i.e. with real coefficients) of the
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same degree that only has smaller magnitude on R. So
we focus on p(x) with real coefficients. Letting the roots
of p(x) be r1, . . . , rk and using that p(0) = 1:

p(x) =
k∏
i=1

(1− x/ri).(7.45)

By the complex conjugate root theorem, any polynomial
with real coefficients and a complex root must have its
conjugate as a root. Thus, if p(x) has root 1

a+bi for some
a, b, the above product contains a term of the form:

(1− x(a− bi))(1− x(a+ bi)) = 1− 2ax+ a2x2 + b2x2.

If we just set b = 0 (i.e. take the real part of the
root), 1 − 2ax + a2x2 + b2x2 decreases for all x > 0.
In fact, since (1 − 2ax + a2x2) = (1 − ax)2 > 0, the
absolute value |1 − 2ax + a2x2 + b2x2| decreases if we
set b = 0. Accordingly, by removing the complex part
of p’s complex root, we obtain a polynomial of the same
degree that remains 1 at 0, but has smaller magnitude
everywhere else.

Roots in eigenvalue range: First note that we can
assume p doesn’t have any negative roots: removing a
term in (7.45) of the form (1−x/ri) for ri < 0 produces
a polynomial with lower degree that is 1 at 0 but smaller
in magnitude for all x > 0. It is not hard to see that
by construction R ⊆ [1/κ, 1 + η] and thus x > 0 for all
x ∈ R. Thus removing a negative root can only lead to
smaller maximum magnitude over R.

Now, suppose p has some root 0 < r < 1/κ. For all
x ≥ 1/κ, ∣∣∣∣1− x

1/κ

∣∣∣∣ < ∣∣∣1− x

r

∣∣∣ .
Accordingly, by replacing p’s root at r with one at
(1/κ) we obtain a polynomial of the same degree that
is smaller in magnitude for all x ≥ 1/κ and thus for all
x ∈ R ⊆ [1/κ, 1 + η].

Similarly, suppose p has some root r > 1 + η. For
all x ≤ 1 + η, ∣∣∣∣1− x

1 + η

∣∣∣∣ < ∣∣∣1− x

r

∣∣∣ .
So by replacing p’s root at r with a root at (1 + η),
we obtain a polynomial that has smaller magnitude
everywhere in R.

7.5 Main argument. With Claim 7.1, we are now
ready to prove Lemma 7.1, which implies Theorem 2.3.

Proof. [Proof of Lemma 7.1] Since we can restrict our
attention to real rooted polynomials with each root

ri ∈ [ 1
κ , 1 +η], to prove (7.43) via (7.44) we just need to

establish that:

min
r∈[ 1

κ ,1+η]

∫
R w(x) ln |1− x/r|dx∫

R w(x)dx
≥ −377

κc
.(7.46)

Consider the denominator of the left hand side:∫
R
w(x)dx =

blog2(κ)c∑
i=1

∫
Ri

2icdx =

blog2(κ)c∑
i=1

2ηz2ic ≤ ηzκc.

With this bound in place, to prove (7.46) we need to
show:

min
r∈[ 1

κ ,1+η]

∫
R
w(x) ln |1− x/r|dx ≥ −377ηz.

Recalling our definition of R, this is equivalent to
showing that:

For all r ∈
[

1

κ
, 1 + η

]
,(7.47)

blog2(κ)c∑
i=1

∫
Ri
w(x) ln |1− x/r|dx ≥ −377ηz.

To prove (7.47) we divide the sum into three parts.
Letting λ`,h be the eigenvalue closest to r:

blog2(κ)c∑
i=1

∫
Ri
w(x) ln |1− x/r|dx =

`−2∑
i=1

∫
Ri
w(x) ln |1− x/r|dx(7.48)

+
`+1∑
i=`−1

∫
Ri
w(x) ln |1− x/r|dx(7.49)

+

blog2(κ)c∑
i=`+2

∫
Ri
w(x) ln |1− x/r|dx.(7.50)

Note that when ` lies towards the limits of
{1, . . . , blog2(κ)c}, the sums in (7.50) and (7.48) may
contain no terms and (7.49) may contain fewer than 3
terms.

To gain a better understanding of each of these
terms, consider Figure 2, which plots ln |1 − x/r| for
an example value of r. (7.48) is a weighted integral over
regions Ri that lie well above r. Specifically, for all
x ∈

⋃`−2
i=1 Ri, x ≥ 2r and thus ln |1 − x/r| is strictly

positive. Accordingly, (7.48) is a positive term and will
help in our effort to lower bound (7.47).

On the other hand, (7.49) and (7.50) involve values
of x which are close to r or lie below the root. For these
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values, ln |1−x/r| is negative and thus (7.49) and (7.50)
will hurt our effort to lower bound (7.47). We need to
show that the negative contribution cannot be too large.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-3

-2

-1

0

1

2
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Figure 2: Plot of ln |1 − x/r| for r = 1/10. Proving
that (7.47) cannot be too small for any root r requires
lower bounding a weighted integral of this function over
R ⊂ [1/κ, 1 + η].

7.5.1 Center region We first evaluate (7.49), which
is the range containing eigenvalues close to r. In
particular, we start by just consideringR`,h, the interval
around the eigenvalue nearest to r.∫
R`,h

w(x) ln |1− x/r|dx = 2`c
∫ λ`,h+η

λ`,h−η
ln |1− x/r|

≥ 2`c
∫ λ`,h+η

λ`,h−η
ln |1− x/λ`,h|.

The inequality follows because ln |1 − x/r| strictly in-
creases as x moves away from r. Accordingly, the inte-
gral takes on its minimum value when r is centered in
the interval [λ`,h − η, λ`,h + η].

2`c
∫ λ`,h+η

λ`,h−η
ln |1− x/λ`,h| = 2`c+1

∫ η

0

ln
x

λ`,h

= 2`c+1η (ln η − lnλ`,h − 1) .

Since ln(η) ≤ −1 by the assumption that η ≤ 1
20κ2 and

since − lnλ`,h ≥ 0 since λ`,h ≤ 1, we obtain:∫
R`,h

w(x) ln |1− x/r|dx ≥ 4 · 2`cη ln η(7.51)

≥ −4 · 2`cηz.

Now we consider the integral over R`,i for all i 6= h
and also over the entirety of R`+1 and R`−1. For all x ∈
[R`+1 ∪ (R` \ R`,h) ∪R`−1], w(x) ≤ 2(`+1)c ≤ 21/5 · 2lc

since c ≥ 1/5. So we have:

∫
R`+1∪(R`\R`,h)∪R`−1

w(x) ln |1− x/r|dx

(7.52)

≥
∫
R`+1∪(R`\R`,h)∪R`−1

w(x) min(ln |1− x/r|, 0)dx

≥ 21/5 · 2lc
∫
R`+1∪(R`\R`,h)∪R`−1

min(ln |1− x/r|, 0)dx.

where the last inequality holds by our bound on w(x)
and since min(ln |1− x/r|, 0) is nonpositive.

The nearest eigenvalue to λ`,h is 1
2`z

away from it.
Thus, the second closest eigenvalue to r besides λ`,h is
at least 1

2`+1z
away from r. By our assumption that

η ≤ 1
20κ2 , as discussed we have η ≤ 1

4κz ≤
1

2`+2z
.

Thus, the closest interval to r besides R`,h is at least
1

2`+1z
− 1

2`+2z
≥ r

8z away.
Thus, using that again that ln |1 − x/r| is strictly

increasing as x moves away from r, that there are 3z−1
eigenvalues in R`+1 ∪ (R` \R`,h)∪R`−1, and (7.52) we
can lower bound the integral by:

∫
R`+1∪(R`\R`,h)∪R`−1

w(x) ln |1− x/r|dx

≥ 21/5 · 2lc · 2η
∑

i∈{−b1.5zc,...,b1.5zc}\0

min

(
ln

∣∣∣∣∣1− r(1 + i
8z )

r

∣∣∣∣∣ , 0
)

≥ 4 · 21/5η · 2lc
b1.5zc∑
i=1

min(ln(i/8z), 0)

≥ 4 · 21/5η · 2lc
∫ 1.5z

x=0

ln(x/8z)dx

≥ −18.5 · 2lcηz.

This bound combines with (7.51) to obtain a final lower
bound on (7.49) of:

`+1∑
i=`−1

∫
Ri
w(x) ln |1− x/r|dx ≥ −22.5 · 2lcηz.(7.53)

7.5.2 Lower region Next consider (7.50), which in-
volves values that are at least a factor of 2 smaller than
r. We have:

For j ≥ 2 and x ∈ R`+j ,

ln
∣∣∣1− x

r

∣∣∣ ≥ ln

(
1− 1

2j−1

)
≥ − 1.39

2j−1
.
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For the last bound we use 1
2j−1 ≤ 1

2 . It follows that:

blog2(κ)c∑
i=`+2

∫
Ri
w(x) ln |1− x/r|dx(7.54)

≥
blog2(κ)c∑
i=`+2

−2.78ηz · 2ic

2i−`−1

= −5.56 · 2`cηz
blog2(κ)c−`∑

j=2

1

2j(1−c)
.

Since we restrict c ≥ 1/5, the sum above (which is
positive) is at most:

blog2(κ)c−`∑
j=2

1

2j(1−c)
≤ 1

28/5
· 1

1− 1
24/5

≤ .8

So we conclude using (7.54) that:

blog2(κ)c∑
i=`+2

∫
Ri
w(x) ln |1− x/r|dx > −4.5 · 2`cηz.(7.55)

7.5.3 Upper region From (7.53) and (7.55), we see
that (7.49) and (7.50) sum to −O(2`cηz). Recall that we
wanted the entirety of (7.48) + (7.49) + (7.50) to sum
to something greater than −O(ηz). For large values of
` (i.e., when r is small), the 2`c term is problematic. It
could be on the order −κc. If this is the case, we need
to rely on a positive value of (7.48) to cancel out the
negative contribution of (7.49) and (7.50). Fortunately,
from the intuition provided by Figure 2, we expect
(7.48) to increase as r decreases.

We start by noting that:

For j ≥ 2 and x ∈ R`−j ,

ln |1− x

r
| ≥ ln

(
2j−1 − 1

)
≥ j − 2

2
.

It follows that
`−2∑
i=1

∫
Ri
w(x) ln |1− x/r|dx(7.56)

≥
`−2∑
i=1

2η · 2ic · `− i− 2

2

= 2`cηz

`−2∑
i=1

`− i− 2

2c(`−i)
.

By our requirement that c ≥ 1/5, as long as ` ≥ 20 we
can explicitly compute:

`−2∑
i=1

`− i− 2

2c(`−i)
=

1

23c
+

2

24c
+ . . .+

`− 3

2c(`−1)
≥ 27.4

(7.57)

which finally gives, using (7.56):

`−2∑
i=1

∫
Ri
w(x) ln |1− x/r|dx ≥ 27.4 · 2`cηz.(7.58)

We note for the interested reader that (7.56) is the
reason that we cannot set c too large (e.g. c ≥ 1/2).
If c is too large, the sum in (7.57) will be small, and will
not be enough to cancel out the negative contributions
from the center and lower regions.

7.6 Putting it all together. We can bound (7.47)
using our bounds on the upper region (7.48) (given in
(7.58)), the center region (7.49) (given in (7.53)) and the
lower region (7.50) (given in (7.55)). As long as ` ≥ 20
we have:∫
R
w(x) ln |1− x/r|dx ≥ (−22.5− 4.5 + 27.4) · 2`cηz

≥ 0 ≥ −ηz.

It remains to handle the case of ` < 20. In this case,
the concerning 2`c term is not a problem. Specifically,
when ` < 20 we have 2`c ≤ 219/5. Even ignoring the
positive contribution of (7.48), we can thus lower bound
(7.47) using our center and lower region bounds by:∫

R
w(x) log |1− x/r|dx ≥ (−22.5− 4.5) · 219/5 · ηz

≥ −377ηz

and it follows that (7.46) is lower bounded by

min
r∈[ 1

κ ,1+η]

∫
R w(x) log |1− x/r|dx∫

R w(x)dx
≥ −377

κc
.

Then, by the argument outlined in Section 7.3, for
any k ≤ κc

377 , there is no real rooted, degree k polynomial
p with roots in [ 1

κ , 1 + η] such that:

p(0) = 1 and log |p(x)| ≤ −1 for all x ∈ R.

Finally, applying Claim 7.1 proves Lemma 7.1, as
desired.

8 Applications

Unfortunately do to space constraints, this section is
only available in the full version of our paper, available
at [6]. There give example applications of Theorem
2.1 to matrix step function, matrix exponential, and
top singular value approximation. We also show how
Lanczos can be used to accelerate the computation of
any function which is well approximated by a high
degree polynomial with bounded coefficients. For each
application, we show that Lanczos either improves
upon or matches state-of-the-art runtimes, even when
computations are performed with limited precision.
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9 Conclusions and future work

In this work we study the stability of the Lanczos
method for approximating matrix functions. We show
that the method’s finite arithmetic performance for
many functions essentially matches the strongest known
exact arithmetic bounds. At the same time, for the
special case of linear systems, known techniques give
finite precision bounds which are much weaker than
what is known in exact arithmetic.

The most obvious question we leave open is under-
standing if our lower bound against Greenbaum’s results
for approximating A−1x in fact gives a lower bound on
the number of iterations required by the Lanczos and
CG algorithms. Alternatively, it is possible that an im-
proved analysis could lead to stronger error bounds for
finite precision Lanczos that actually match the guar-
antees available in exact arithmetic. It seems likely that
such an analysis would have to go beyond the view of
Lanczos as applying a single near optimal approximat-
ing polynomial, and thus could provide significant new
insight into the behavior of the algorithm.

Understanding whether finite precision Lanczos can
match the performance of non-uniform approximating
polynomials is also interesting beyond the case of posi-
tive definite linear systems. For a number of other func-
tions, it is possible to prove stronger bounds than The-
orem 4.1 in exact arithmetic. In some of these cases,
including for the matrix exponential, such results can
be extended to finite precision in an analogous way to
Greenbaum’s work on linear systems [16, 10]. It would
be interesting to explore the strength of these bounds
for functions besides 1/x.

Finally, investigating the stability of Lanczos
method for other tasks besides of the widely studied
problem of eigenvector computation would be interest-
ing. Block variants of Lanczos, or Lanczos with re-
orthogonalization, have recently been used to give state-
of-the-art runtimes for low-rank matrix approximation
[35, 27]. The analysis of these methods relies on the
ability of Lanczos to apply optimal approximating poly-
nomials and understanding the stability of this analysis
is an interesting question. It has already been addressed
for the closely related but slower block power method
[20, 5].
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A Stability of post-processing for Lanczos

Due to space limitations, this section is only included
in the full version of the paper available at [6].

B Tighter results for linear systems

In this section we discuss how bounds on function ap-
proximation via Lanczos can be improved for the special
case of f(A) = A−1 when A is positive definite, both
in exact arithmetic and finite precision. In particular,
we provide a short proof of the exact arithmetic bound
presented in (2.3) and discuss Greenbaum’s analogous
result for finite precision conjugate gradient (Theorem
2.2) in full detail. Ultimately, our lower bound in Sec-
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tion 7 shows that, while Theorem 2.2 is a natural exten-
sion of (2.3) to finite precision, it actually gives much
weaker iteration bounds.

One topic which we do not discuss in depth is
that, besides tighter approximation bounds, the com-
putational cost of the Lanczos method can be some-
what improved when solving linear systems. Specifi-
cally, it is possible to compute the approximation y =
‖x‖QT−1e1 “on-the-fly”, without explicitly storing Q
or T. While this does not improve on the asymp-
totic runtime complexity of Algorithm 1, it improves
the space complexity from O(kn) to simply order O(n).

Such space-optimized methods yield the popular
conjugate gradient algorithm (CG) and its relatives. In
fact, Greenbaum’s analysis applies to a variant of CG
(Algorithm 2). Like all variants, it computes an approx-
imation to A−1x that, at least in exact arithmetic, is
equivalent to ‖x‖QT−1e1, the approximation obtained
from the Lanczos method (Algorithm 1). The finite pre-
cision behavior of Greenbaum’s conjugate gradient im-
plementation is also very similar to the finite precision
behavior of the Lanczos method we study. In fact, her
work is based on the same basic results of Paige that we
depend on in Section 6.

B.1 Linear systems in exact arithmetic. We be-
gin by proving (2.3), showing that the approximation
quality of Lanczos in exact arithmetic (Theorem 4.1)
can be improved when our goal is to approximate A−1x
for positive definite A. It is not hard to see that an
identical bound holds when A is positive semidefinite
(i.e. may be singular) and f(A) = A+ is the pseudoin-
verse. That is, f(x) = 1/x for x > 0 and 0 for x = 0.
However, we restrict our attention to full rank matrices
for simplicity, and since it is for these matrices which
Greenbaum’s finite precision bounds hold.

Theorem B.1. (Approximate Application of
A−1) Suppose Q ∈ Rn×k, T ∈ Rk×k, βk+1, and qk+1

are computed by the Lanczos algorithm (Algorithm 1),
run with exact arithmetic on positive definite A ∈ Rn×n
and x ∈ Rn for k ≤ n iterations. Let

δ̄k = min
polynomial p

w/ degree < k

[
max

x∈{λ1(A),λ2(A),...,λn(A)}
|1/x− p(x)|

]
.

Then if we approximate A−1x by yk = ‖x‖QT−1e1, we
are guaranteed that:

‖A−1x− yk‖ ≤
√
κ(A)δ̄k‖x‖,(B.1)

where κ(A) is the condition number λmax(A)/ λmin(A).

Proof. Let A = VΛVT be A’s eigendecomposition. Let
A1/2 = VΛ1/2VT and A−1/2 = VΛ−1/2VT . Since A

is positive semidefinite, Λ has no negative entries, so
both of these matrices are real. Recall that q1 = x/‖x‖
and consider the minimization problem:

y∗ = arg min
y

‖A−1/2q1 −A1/2Qy‖.

This is a standard regression problem, solved by

y∗ =
(
QTAQ

)−1
(
QTA1/2

)
A−1/2x

=
(
QTAQ

)−1
QTq1.

From Claim 4.1 we have that QTAQ = T and that q1

is orthogonal to all other columns in Q. Thus,

y∗ = T−1e1.

Since p(A)q1 can be written as Qy for any polynomial
p with degree < k, it follows that

‖A−1/2q1 −A1/2QT−1e1‖(B.2)

≤ min
polynomial p

w/ degree < k

‖A−1/2q1 −A1/2p(A)q1‖.

As an aside, if we scale by ‖x‖ and define the A-norm

‖v‖A
def
= vTAv, then this can be rewritten:

‖A−1x−
(
‖x‖QT−1e1

)
‖A

≤ min
polynomial p

w/ degree < k

‖A−1x− p(A)x‖A.

So, (B.2) is equivalent to the perhaps more familiar
statement that, “the Lanczos approximation to A−1x is
optimal with respect to the A-norm amongst all degree
< k matrix polynomials p(A)x.” Returning to (B.2),

‖A−1/2q1 −A1/2QT−1e1‖(B.3)

= ‖A1/2
(
A−1q1 −QT−1e1

)
‖

≥
√
λmin(A)‖A−1q1 −QT−1e1‖.

Additionally,

‖A−1/2q1 −A1/2p(A)q1‖(B.4)

= ‖A1/2
(
A−1q1 − p(A)q1

)
‖

≤
√
λmax(A)‖A−1q1 − p(A)q1‖.(B.5)

Plugging (B.3) and (B.4) into (B.2), we see that

‖A−1q1 −QT−1e1‖

≤
√
κ(A) min

polynomial p
w/ degree < k

‖A−1q1 − p(A)q1‖

≤
√
κ(A) min

polynomial p
w/ degree

< k

[
max

x∈{λ1(A),...,λn(A)}
|1/x− p(x)|

]
.

Theorem B.1 follows from scaling both sides by ‖x‖.
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B.2 Linear systems in finite precision: Green-
baum’s Analysis. As discussed in the Section 2.2,
Greenbaum proves a natural extension of Theorem B.1
for finite precision computations in [17]. She studies
a standard implementation of the conjugate gradient
method, included here as Algorithm 2. This method
only requires O(n) space, in contrast to the O(nk) space
required by the more general Lanczos method.

Algorithm 2 Conjugate Gradient Method

input: positive semidefinite A ∈ Rn×n, # of iterations
k, vector x ∈ Rn
output: vector y ∈ Rn that approximates
A−1x

1: y = 0, r = b, p = b
2: for i ∈ 1, . . . , k do
3: α← ‖r‖/〈r,Ap〉
4: y← y + αp
5: rnew ← r− αAp
6: β ← −‖rnew‖/‖r‖
7: if β == 0 then
8: break loop
9: end if

10: p← rnew − βp
11: r← rnew
12: end for
13: return y

Although it’s not computed explicitly, just as in
the Lanczos algorithm, the changing coefficients α and
β generated by Algorithm 2 can be used to form a
tridiagonal matrix T. Furthermore, since each β shows
how the norm of the residual r = b−Ay decreases over
time, T’s entries uniquely determine the error of the
conjugate gradient iteration at any step k.

At a high level, Greenbaum shows that the T
produced by a finite precision CG implementation is
equivalent to the T that would be formed by a running
CG on a larger matrix, Ā, who’s eigenvalues all lie
in small intervals around the eigenvalues of A. She
can thus characterize the performance of CG in finite
precision on A by the performance of CG in exact
arithmetic on Ā. In particular, Theorem 3 in [17] gives:

Theorem B.2. (Theorem 3 in [17], simplified)
Let y be the output of Algorithm 2 run for k iterations
on positive definite A ∈ Rn×n and x ∈ Rn, with

computations performed with Ω
(

log nk(‖A‖+1)
min(η,λmin(A))

)
bits of precision. Let ∆ = min(η, λmin(A)/5)
There exists a matrix Ā who’s eigenvalues all lie
in
⋃n
i=1[λi(A) − ∆, λi(A) + ∆] and a vector x̄ with

‖x̄‖Ā = ‖x‖A such that, if Algorithm 2 is run for k

iterations on Ā and x̄ in exact arithmetic to produce
ȳ, then:

‖A−1x− y‖A ≤ 1.2‖Ā−1x̄− ȳ‖Ā.(B.6)

Note that for any positive definite M, and z we define

‖z‖M
def
= zTMz. Ā is positive definite since ∆ ≤

λmin(A)/5.
Theorem B.2 implies the version of Greenbaum’s

results stated in Theorem 2.2.

Proof. [Proof of Theorem 2.2] From our proof of Theo-
rem B.1 we have that:

‖Ā−1x̄− ȳ‖Ā ≤
√
λmax(Ā) ∗

min
polynomial p
with degree

< k

[
max

x∈
⋃n
i=1[λi(A)−∆,λi(A)+∆]

|p(x)− 1/x|
]
‖x̄‖.

Additionally,

‖A−1x− y‖A ≥
√
λmin(A)‖A−1x− y‖.

Since ∆ ≤ λmin(A)/5, λmax(Ā) ≤ 1.2λmax(A). Ac-
cordingly, (B.6) simplifies to

‖A−1x− yA‖ ≤ 1.44
√
κ(A) ∗

(B.7)

min
polynomial p
with degree

< k

(
max

x∈
⋃n
i=1[λi(A)−∆,λi(A)+∆]

|p(x)− 1/x|
)
‖x̄‖.

Finally,

‖x̄‖ ≤

√
1

λmin(Ā)
‖x̄‖Ā =

√
1

λmin(Ā)
‖x‖A

≤

√
λmax A

λmin(Ā)
‖x‖ ≤ 1.25

√
κ(A)‖x‖.

Plugging in (B.7) yields Theorem 2.2.

C General polynomial perturbation bounds

Due to space limitations, this section is only included
in the full version of the paper available at [6].

D Potential function proof of Chebyshev
polynomial optimality

Due to space limitations, this section is only included
in the full version of the paper available at [6].

E Other omitted proofs

Due to space limitations, this section is only included
in the full version of the paper available at [6].
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