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ABSTRACT
Many ant species employ distributed population density es-
timation in applications ranging from quorum sensing [21],
to task allocation [9], to appraisal of enemy colony strength
[1]. It has been shown that ants estimate density by track-
ing encounter rates – the higher the population density, the
more often the ants bump into each other [21, 10].

We study distributed density estimation from a theoreti-
cal perspective. We show that a group of anonymous agents
randomly walking on a grid are able to estimate their den-
sity d to within a multiplicative factor 1± ✏ with probability

1 � � in just Õ
⇣

log(1/�) log(1/d✏)

d✏

2

⌘
steps by measuring their

encounter rates with other agents. Despite dependencies
inherent in the fact that nearby agents may collide repeat-
edly (and, worse, cannot recognize when this happens), this
bound nearly matches what is required to estimate d by in-
dependently sampling grid locations.

From a biological perspective, our work helps shed light on
how ants and other social insects can obtain relatively accu-
rate density estimates via encounter rates. From a technical
perspective, our analysis provides new tools for understand-
ing complex dependencies in the collision probabilities of
multiple random walks. We bound the strength of these de-
pendencies using local mixing properties of the underlying
graph. Our results extend beyond the grid to more general
graphs and we discuss applications to social network size es-
timation, density estimation by robot swarms, and random
walked-based sampling of sensor networks.

1. INTRODUCTION
The ability to sense local population density is an impor-

tant tool used by many ant species. When a colony must
relocate to a new nest, scouts search for potential nest sites,
assess their quality, and recruit other scouts to high quality
locations. A high enough density of scouts at a potential
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new nest (a quorum threshold) triggers those ants to decide
on the site and transport the rest of the colony there [21].
When neighboring colonies compete for territory, a high rel-
ative density of a colony’s ants in a contested area will cause
those ants to attack enemies in the area, while a low rela-
tive density will cause the colony to retreat [1]. Varying
densities of ants performing certain tasks such as foraging
or brood care can trigger other ants to switch tasks, main-
taining proper worker allocation within in the colony [9, 22].

It has been shown that ants estimate density in a dis-
tributed manner, via encounter rates [21, 10]. As ants ran-
domly walk around an area, if they bump into a larger num-
ber of other ants, this indicates a higher population density.
By tracking encounters with specific types of ants, e.g. suc-
cessful foragers or enemies, ants can estimate more specific
densities. This strategy allows each ant to obtain an accu-
rate density estimate and requires very little communication
– ants must simply detect when they collide and do not per-
form any higher level data aggregation.

1.1 Density Estimation on the Grid
We study distributed density estimation from a theoreti-

cal perspective. We model a colony of ants as a set of anony-
mous agents randomly distributed on a two-dimensional grid.
Computation proceeds in rounds, with each agent stepping
in a random direction in each round. A collision occurs
when two agents reach the same position in the same round
and encounter rate is measured as the number of collisions
an agent is involved in during a sequence of rounds divided
by the number of rounds. Aside from collision detection, the
agents have no other means of communication.

The intuition that encounter rate tracks density is clear.
It is easy to show that the expected encounter rate measured
by each agent is exactly the density d – the number of agents
divided by the grid size (see Lemma 2). However, it is un-
clear if encounter rate actually gives a good density estimate
– i.e., if it concentrates around its expectation.

Consider agents positioned not on the grid, but on a com-
plete graph. In each round, each agent steps to a uni-
formly random position and in expectation, the number of
other agents they collide with in this step is d. Since each
agent chooses its new location uniformly at random in each
step, collisions are essentially independent between rounds.
The agents are e↵ectively taking independent Bernoulli sam-
ples with success probability d, and by a standard Cherno↵

bound, within O
⇣

log(1/�)

d✏

2

⌘
rounds obtain a (1 ± ✏) multi-

plicative approximation to d with probability 1� �.



On the grid graph, the picture is significantly more com-
plex. If two agents are initially located near each other, they
are more likely to collide via random walking. After a first
collision, due to their proximity, they are likely to collide
repeatedly in future rounds. The agents cannot recognize
repeat collisions since they are anonymous and even if they
could, it is unclear that it would help. On average, compared
to the complete graph, agents collide with fewer individuals
and collide multiple times with those individuals that they
do encounter, causing an increase in encounter rate variance
and making density estimation more di�cult.

Mathematically speaking, on a graphs with fast mixing
times [14], like the complete graph, each agent’s location is
weakly correlated with its previous locations. This ensures
that collisions are also weakly correlated between rounds and
encounter rate serves as a very accurate estimate of density.
The grid graph on the other hand is slow mixing – agents’
positions and hence collisions are highly correlated between
rounds. This correlation increases encounter rate variance.

1.2 Our Contributions
Surprisingly, despite this increased variance, encounter

rate-based density estimation on the grid is nearly as accu-

rate as on the complete graph. O
⇣

log(1/�) log log(1/�) log(1/d✏)

d✏

2

⌘

rounds su�ces for each agent’s encounter rate to be a (1±✏)
approximation to d with probability 1� � (see Theorem 1).

Technically, to bound accuracy on the grid, we obtain mo-
ment bounds on the number of times that two randomly
walking agents repeatedly collide over a set of rounds. These
bounds also apply to the number of equalizations (returns to
starting location) of a single walk. While expected random
walk hitting times, return times, and collision rates are well
understood [14, 5], higher moment bounds and high proba-
bility results are much less common. We hope our bounds
are of general use in the theoretical study of random walks
and random-walk based algorithms.

Our moment bounds show that, while the grid graph is
slow mixing, it has su�ciently strong local mixing to make
random walk-based density estimation accurate. Random
walks tend to spread quickly over a local area and not re-
peatedly cover the same nodes. Significant work has focused
on showing that random walk sampling is nearly as good as
independent sampling for fast mixing expander graphs [7,
4]. We are the first to extend this type of analysis to slowly
mixing graphs, showing that strong local mixing is su�cient
in many applications.

Beyond the grid, we show how to generate moment bounds
from a bound on the probability that two random walks re-
collide (analogously, that a single random walk equalizes)
after a certain number of steps, and apply this technique
to d-dimensional grids, regular expanders, and hypercubes.
We discuss applications of our results to social network size
estimation via random walk [11], obtaining significant im-
provements over known work for networks with slow global
mixing time, but strong local mixing. We also discuss con-
nections to robot swarm density estimation by robot swarms
and random walk-based sensor network sampling [3, 13].

2. THEORETICAL MODEL
We consider a two-dimensional torus with A nodes (di-

mensions
p
A ⇥

p
A) populated with identical anonymous

agents. We assume that A is large – larger than the area

agents traverse over the runtimes of our algorithms. We feel
that this torus model successfully captures the dynamics of
density estimation on a surface, while avoiding complicating
factors of boundary behavior.

Initially each agent is placed independently at a uniform
random node in the torus. This placement is important for
our bounds – otherwise adversarial positioning could force
the agents to walk for the mixing time of the grid O(A logA)
before obtaining good density estimates. We believe the
assumption is a reasonable model for the positioning of a
colony of active agents looking to perform density estima-
tion, however weakening it would be interesting.

Computation proceeds in discrete, synchronous rounds.
Each agent has an ordered pair position which it updates
in each round with a step chosen uniformly at random from
{(0, 1), (0,�1), (1, 0), (�1, 0)}. Of course, in reality ants do
not move via pure random walk – observed encounter rates
seem to actually be lower than predicted by a pure ran-
dom walk model [10, 20]. However, we feel that our model
su�ciently captures the highly random movement of ants
while remaining tractable to analysis and applicable to ant-
inspired random walk-based algorithms (Section 5).

Aside from the ability to move in each round, agents can
sense the number of agents other than themselves at their
position at the end of each round, formally through calling
count(position). We say that two agents collide in round r if
they have the same position at the end of the round. Outside
of collision counting, agents have no means of communica-
tion. They are anonymous (cannot uniquely identify each
other) and all execute identical density estimation routines.

Density Estimation Problem.
Let (n+1) be the number of agents and define population

density as d
def

= n/A. Each agent’s goal is to estimate d to
(1±✏) accuracy with probability 1�� for ✏, � 2 (0, 1) – i.e., to

return an estimate d̃ with P
h
d̃ 2 [(1� ✏)d, (1 + ✏)d]

i
� 1��.

As a technicality, with n + 1 agents we define d = n/A
instead of d = (n + 1)/A for convenience of calculation. In
the natural case, when n is large, the distinction is minor.

3. DENSITY ESTIMATION VIA RANDOM
WALK COLLISION RATES

As discussed, the challenge in analyzing random walk-
based density estimation arises from increased variance due
to repeated collisions of nearby agents. In our full paper [19],
we show that, if not restricted to random walking, agents can
avoid collision correlations by splitting into ‘stationary’ and
‘mobile’ groups and only counting collisions between mem-
bers of di↵erent groups. This allows them to essentially
simulate independent sampling of grid locations to estimate
density. This method is extremely simple to analyze, how-
ever is not ‘natural’ in a biological sense or useful in the
applications of Section 5. Further, independent sampling is
unnecessary! Algorithm 1 describes a simple random walk-
based approach that gives a nearly matching bound.

3.1 Random Walk Algorithm Analysis
Our main result follows; its proof appears at the end of

Section 3 after some preliminary lemmas.



Algorithm 1 Encounter Rate-Based Density Estimation

input: runtime t

c := 0
for r = 1, ..., t do
position := position+rand{(0, 1), (0,�1), (1, 0), (�1, 0)}
c := c+ count(position) . Update collision count.
end for

return d̃ = c

t

Theorem 1 (Density Estimation Accuracy).
After running for t rounds, for t  A, Algorithm 1 returns
d̃ such that, for any � > 0, with probability � 1 � �, d̃ 2
[(1�✏)d, (1+✏)d] for ✏ =

q
log(1/�) log(t)

td

. In other words, for

any ✏, � 2 (0, 1) if t = ⇥
⇣

log(1/�) log log(1/�) log(1/d✏)

d✏

2

⌘
, d̃ is a

(1± ✏) multiplicative estimate of d with probability � 1� �.

Throughout our analysis, we take the viewpoint of a sin-
gle agent executing Algorithm 1, referred to as ‘agent a’.
To start, we show that the encounter rate d̃ is an unbiased
estimator of d:

Lemma 2 (Unbiased Estimator). E d̃ = d.

Proof. We can decompose c as the sum of collisions with
di↵erent agents over di↵erent rounds. Specifically, give the
n other agents arbitrary ids 1, 2, ..., n and let c

j

(r) equal 1
if agent a collides with agent j in round r, and 0 otherwise.
By linearity of expectation: E c =

P
n

j=1

P
t

r=1

E c
j

(r).
Since each agent is initially at a uniform random location

and after any number of steps, is still at uniform random
location, for all j, r, E c

j

(r) = 1/A. Thus, E c = nt/A = dt

and E d̃ = E c/t = d.

With Lemma 2 in place, we now must show that the en-
counter rate is close to its expectation with high probability
and hence provides a good estimate of density.

3.2 Bounding Effects of Repeat Collisions
Let c

j

=
P

t

r=1

c
j

(r) be the total number of collisions with
agent j. Due to the initial uniform distribution of the agents,
the c

j

’s are all independent and identically distributed.
Each c

j

is the sum of highly correlated random variables
– due to the slow mixing of the grid, if two agents col-
lide at round r, they are much more likely to collide in
successive rounds. However, by bounding the strength of
this correlation, we are able to give strong bounds on the
moments of the distribution of each c

j

, showing that it is
sub-exponential. It follows that d̃ = 1

t

P
n

j=1

c
j

, is also sub-
exponential and hence concentrates strongly around its ex-
pectation, the true density d.

We first bound the probability of a re-collision in round
r +m, assuming a collision in round r.

Lemma 3 (Re-collision Probability Bound).
Consider two agents a

1

and a
2

randomly walking on a two-
dimensional torus of dimensions

p
A ⇥

p
A. If a

1

and a
2

collide again in round r, for any m � 0, the probability that

a
1

and a
2

collide in round r +m is ⇥
⇣

1

m+1

⌘
+O

�
1

A

�
.

Proof. From round r to round r+m, a
1

and a
2

take 2m
random steps in total. Let M

x

be the total number of steps
they take in the x direction and M

y

be the total number in
the y direction. M

x

+M
y

= 2m.

We start by computing the probability that the agents
collide in round r+m conditioned on the values of M

x

and
M

y

. All steps are chosen independently, so we can consider
movement in the x and y directions separately. Specifically,
let C be the event that the a

1

and a
2

collide in round r+m,
C
x

be the event that they have the same x position, and C
y

be the event that they have the same y position. We have:

P [C|M
x

= m
x

,M
y

= m
y

]

= P [C
x

|M
x

= m
x

] · P [C
y

|M
y

= m
y

] . (1)

We first consider P [C
x

|M
x

= m
x

]. All bounds will hold
symmetrically for the y dimension. We split our analysis
into two cases. Let C1

x

be the event that the two agents have
the same x position after round r + m and have identical
displacements from their starting locations. Let C2

x

be the
event that the two agents have the same x position after
round r +m but do not have identical displacements. This
requires that the agents ‘wrap’ around the torus, ending
at the same position despite moving di↵erent amounts in
the x direction. We have P[C

x

|M
x

= m
x

] = P[C1

x

|M
x

=
m

x

] + P[C2

x

|M
x

= m
x

].
P[C1

x

|M
x

= m
x

] is identical to the probability that a single
random walk takesm

x

steps and has 0 overall displacement –
i.e. takes an equal number of clockwise and counterclockwise
steps. This is well known [6] and given by:

P[C1

x

|M
x

= m
x

] =

 
m

x

m
x

/2

!✓
1
2

◆
m

x

=
m

x

!
(mx

2

!)2

✓
1
2

◆
m

x

.

(2)

Above we assume m
x

is even – otherwise C1

x

cannot oc-
cur. By Stirling’s approximation for any n > 0, n! =p
2⇡n

�
n

e

�
n

�
1 +O

�
1

n

��
. Plugging this into 2:

P[C1

x

|M
x

= m
x

] =
m

x

!
(mx

2

!)2

✓
1
2

◆
m

x

=

p
2⇡m

x

�
m

x

e

�
m

x

⇣
1 +O

⇣
1

m

x

⌘⌘

⇡m
x

⇣
m

x

/2

e

⌘
m

x

⇣
1 +O

⇣
1

m

x

/2

⌘⌘
2

·
✓
1
2

◆
m

x

= ⇥

✓
1p

m
x

+ 1

◆
.

(We use m
x

+ 1 instead of m
x

in the denominator so that
the bound holds in the case when m

x

= 0.)
P
⇥
C2

x

|M
x

= m
x

⇤
is the probability that two agents have

the same x position after round r + m but have di↵erent
total displacements. It is identical to the probability that a
single m

x

step random walk has overall displacement ±c
p
A

for some integer c � 1 (and so ‘wraps around’ the torus,
ending at its starting location). Roughly, we bound the
probability of this event by the probability that the random
walk ends at any other location on the torus. There are

p
A

such locations, so the probability is bounded by O
⇣

1p
A

⌘
.

P
⇥
C2

x

|M
x

= m
x

⇤
= 2 ·

✓
1
2

◆
m

x

·

j
m

xp
A

k

X

c=1

 
m

x

m

x

�c

p
A

2

!
(3)

where the extra factor of 2 comes from the fact that the
displacement may be either clockwise or counterclockwise.

(Note that if m

x

�c

p
A

2

is not an integer we just define the
binomial coe�cient to equal 0.)



For i 2 [1, ...,
p
A � 1], let Di

x

be the event that a single
random walk is i steps clockwise from its starting location
after taking M

x

steps. We have:

P[Di

x

|M
x

= m
x

]

=

✓
1
2

◆
m

x

·

j
m

x

�ip
A

k

X

c=�
j
m

x

+ip
A

k

 
m

x

m

x

+i+c

p
A

2

!

�
✓
1
2

◆
m

x

·
�1X

c=�
j
m

x

+ip
A

k

 
m

x

m

x

+i+c

p
A

2

!

�
✓
1
2

◆
m

x

·

j
m

xp
A

k

X

c=1

 
m

x

m

x

+i�c

p
A

2

!
. (4)

For any i 2 [1, ...,
p
A � 1], and any c � 1, m

x

+i�c

p
A

2

is

closer to m

x

2

than m

x

�c

p
A

2

is, so
 

m
x

m

x

+i�c

p
A

2

!
>

 
m

x

m

x

�c

p
A

2

!
(5)

as long as m

x

+i�c

p
A

2

is an integer. This allows us to lower
bound P[Di

x

|M
x

= m
x

] using P
⇥
C2

x

|M
x

= m
x

⇤
. Let E

i,c

equal 1 if m

x

+i�c

p
A

2

is an integer and 0 otherwise. Since
C2

x

and each Di

x

are disjoint events:

P
⇥
C2

x

|M
x

= m
x

⇤
+

p
A�1X

i=1

P
h
Di

x

|M
x

= m
x

i
 1

P
⇥
C2

x

|M
x

= m
x

⇤
+

✓
1
2

◆
m

x

p
A�1X

i=1

j
m

xp
A

k

X

c=1

 
m

x

m

x

+i�c

p
A

2

!
 1

(applying (4))

P
⇥
C2

x

|M
x

= m
x

⇤
+

✓
1
2

◆
m

x

j
m

xp
A

k

X

c=1

0

@
 

m
x

m

x

�c

p
A

2

!p
A�1X

i=1

E
i,c

1

A  1

(by (5) and switching summations)

P
⇥
C2

x

|M
x

= m
x

⇤
·⇥(

p
A)  1.

The last step follows from combining (3) with the fact that
Pp

A�1

i=1

E
i,c

= ⇥
⇣p

A
⌘
for all c since m

x

+i�c

p
A

2

is integral

for half the possible i 2 [1, ...,
p
A � 1]. Rearranging, we

have P
⇥
C2

x

|M
x

= m
x

⇤
= O

⇣
1p
A

⌘
.

Combining our bounds for C1

x

and C2

x

, P [C
x

|M
x

= m
x

] =

⇥
⇣

1p
m

x

+1

⌘
+O

⇣
1p
A

⌘
. Identical bounds hold for the y di-

rection and by (1) we have:

P [C|M
x

= m
x

,M
y

= m
y

] = ⇥

 
1p

(m
x

+ 1)(m
y

+ 1)

!

+O

 
1p

A(m
x

+ 1)
+

1p
A(m

y

+ 1)

!
+O

✓
1
A

◆
. (6)

Finally, we remove the conditioning on M
x

and M
y

. Since
direction is chosen independently and uniformly at random

for each step, EM
x

= EM
y

= m. By a Cherno↵ bound:

P[M
x

 m/2]  2e�(1/2)

2·m/2 = O

✓
1

m+ 1

◆
.

(Again using m + 1 instead of m to cover the m = 0 case).
An identical bound holds for M

y

, and so, except with prob-

ability O
⇣

1

m+1

⌘
both are � m/2. Plugging into (6) gives:

P [C] = ⇥

✓
1

m+ 1

◆
+O

 
1p

A(m+ 1)

!
+O

✓
1
A

◆

= ⇥

✓
1

m+ 1

◆
+O

✓
1
A

◆
.

We note that the techniques of Lemma 3 also apply to
bounding the probability that a single random walk returns
to its origin (equalizes) after m steps (proof in full paper).

Corollary 4 (Equalization Probability Bound).
Consider agent a

1

randomly walking on a two-dimensional
torus of dimensions

p
A⇥

p
A. If a

1

is located at position p
after round r, for any even m � 0, the probability that a

1

is

again at position p after round r+m is ⇥
⇣

1

m+1

⌘
+O

�
1

A

�
.

Roughly, assuming as in Theorem 1 that t  A, by Lemma
3, in t rounds, a expects to re-collide with any agent it

encounters
P

t�1

m=0

⇥
⇣

1

m+1

⌘
= ⇥(log t) times. By Lemma

2, a expects to be involved in dt = nt/A total collisions.
So accounting for re-collisions, it expects to collide with

⇥
⇣

nt

A log t

⌘
unique individuals. This is formalized in Lemma

5 (proof in full paper).

Lemma 5 (First Collision Probability). Assuming

t  A, for all j 2 [1, ..., n], P [c
j

� 1] = ⇥
⇣

t

A log t

⌘
.

We now give our main technical lemma – a strong moment
bound on the distribution of c

j

. Intuitively, not only does
an agent expect to collide at most O(log t) times with any
other agent it encounters, but this bound extends to the
higher moments of the collision distribution, and so holds
with high probability. In this sense, the grid has strong local
mixing – random walks spread quickly over a local area and
do not cover the same nodes too many times.

Lemma 6. (Collision Moment Bound) For j 2 [1, ..., n],

let c̄
j

def

= c
j

� E c
j

. For all k � 2, assuming t  A, E
⇥
c̄k
j

⇤
=

O
�

t

A

· k! logk�1 t
�
.

Proof. We expand E[c̄k
j

] = P[c
j

� 1] · E[c̄k
j

|c
j

� 1] +
P[c

j

= 0] · E[c̄k
j

|c
j

= 0], and so by Lemma 5:

E
h
c̄k
j

i
= O

✓
t

A log t
· E
h
c̄k
j

|c
j

� 1
i
+ E

h
c̄k
j

|c
j

= 0
i◆

.

E
⇥
c̄k
j

|c
j

= 0
⇤
= (E c

j

)k = (t/A)k  t

A

k! logk�1 t for all k �
2. Further, E

⇥
c̄k
j

|c
j

� 1
⇤
 E

⇥
ck
j

|c
j

� 1
⇤
, since E c

j

= t

A


1. So to prove the lemma, it just remains to show that
E
⇥
ck
j

|c
j

� 1
⇤
= O

�
k! logk t

�
.

Conditioning on c
j

� 1, we know the agents have an initial
collision in some round t0  t. We split c

j

over rounds:

c
j

=
P

t

r=t

0 cj(r) 
P

t

0
+t�1

r=t

0 c
j

(r). To simplify notation we



relabel round t0 round 1 and so round t0 + t � 1 becomes
round t. Expanding ck

j

out fully using the summation:
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tX

r

k

=1

c
j

(r
1

)c
j

(r
2

)...c
j

(r
k

)

3

5

=
tX

r

1

=1

tX

r

2

=1

...
tX

r

k

=1

E [c
j

(r
1

)c
j

(r
2

)...c
j

(r
k

)] .
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)c
j

(r
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)...c
j
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k

)] is just the probability that the two
agents collide in each of rounds r

1

, r
2

, ...r
k

. Assume w.l.o.g.
that r

1

 r
2

 ...  r
k

. By Lemma 3 this is:
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So we can rewrite, by linearity of expectation:
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h
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We multiply by k! since in this sum we only have ordered k-
tuples, whereas the original sum is over unordered k-tuples.
We can bound:

tX

r

k

=r

k�1

1
r
k

� r
k�1

+ 1
= 1 +

1
2
+ ...+

1
t
= O(log t)

so rearranging the sum and simplifying gives:
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We repeat this simplification for each level of summation re-
placing

P
t

r

i

=r

i�1

1

r

i

�r

i�1

+1

with O(log t). Iterating through

the k levels gives E
⇥
ck
j

⇤
= O(k! logk t) giving the lemma.

As with Lemma 3, the techniques used in Lemmas 5 and
6 can be applied to a single walk. We give two bounds that
may be of independent interest (proofs in full paper)

Corollary 7 (Re-Visit Moment Bound). Consider
an agent a

1

randomly walking on a two-dimensional
p
A ⇥p

A torus that is initially located at a uniformly random lo-
cation and takes t  A steps. Let c

j

be the number of times
a
1

visits node j. For j 2 [1, ...A] and all k � 2,

E
h
c̄k
j

i
= O

✓
t

A
· k! logk�1 t

◆
.

Corollary 8 (Equalization Moment Bound).
Consider an agent a

1

randomly walking on a two-dimensionalp
A ⇥

p
A torus. If a

1

takes t  A steps and c is the num-
ber of times it returns to its starting position (the number of
equalizations), for all k � 2, E

⇥
c̄k
⇤
= O

�
k! logk t

�
.

3.3 Concentration of Density Estimate
Armed with the moment bound of Lemma 6 we can fi-

nally show that
P

n

j=1

c̄
j

concentrates strongly about its ex-
pectation. Since

P
n

j=1

c̄
j

is just a mean-centered and scaled

version of d̃ = 1

t

P
n

j=1

c
j

, this is enough to prove the accu-
racy of encounter rate-based density estimation. We start by
showing that

P
n

j=1

c̄
j

is a sub-exponential random variable.

Corollary 9 (
P

n

j=1

c̄
j

is sub-exponential).

Assuming t  A,
P

n

j=1

c̄
j

is sub-exponential with parameters

b = ⇥(log t) and �2 = ⇥(td log t). Specifically, for any �

with |�| < 1

b

E
h
e�

P
n

j=1

c̄

j

i
 e

�

2

�

2

2 .

Proof. By Lemma 6, for �2 = ⇥( t log t

A

) and b = ⇥(log t),

c̄
j

satisfies the Bernstein condition: E
⇥
c̄k
j

⇤
 1

2

k!�2bk�2.

This implies that c̄
j

is sub-exponential with parameters �2 =
⇥( t log t

A

) and b = ⇥(log t) (see [23], Chapter 2). Since each
c̄
j

is independent, this gives us, for all � with |�|  1

b

:

E
h
e�

P
n

j=1

c̄

j

i
=

nY

j=1

E e�c̄j  en·�
2

2

·⇥( t log t

A

) = e⇥(�

2

td log t).

This completes the proof by the definition of a sub-
exponential random variable.

We finally apply a standard sub-exponential tail bound
[23] to prove our main result.

Lemma 10 (Sub-exponential tail). Suppose that X
is sub-exponential with parameters (�2, b). Then, for any

�  �

2

b

, P[|X � EX| � �]  2e�
�

2

2�

2 .

Proof of Theorem 1. Since c̄
j

is just a mean-centered
version of c

j

,
P

n

j=1

c̄
j

deviates from its mean exactly the

same amount as
P

n

j=1

c
j

. Further, d̃ = 1

t

P
n

j=1

c
j

, so the
probability that it falls within an ✏ multiplicative factor of
its mean is the same as the probability that

P
n

j=1

c
j

falls
within an ✏ multiplicative factor of its mean. By Corollary
9 and Lemma 10:
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"�����
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◆

.

✏

2
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log t

= ⇥ (log(1/�)) and so ✏ = ⇥

✓q
log(1/�) log t

td

◆
.

4. MORE GENERAL TOPOLOGIES
We now extend our results to a broader set of graph

topologies, demonstrating the generality of the local mixing
analysis discussed above. We illustrate divergence between
local and global mixing properties, which can have signifi-
cant e↵ects on random walk-based algorithms.

4.1 From Repeat Collision Bounds to Estima-
tion Accuracy

Our proofs are largely independent of graph structure, us-
ing just a re-collision probability bound (Lemma 3) and the
regularity (uniform node degrees) of the grid, so agents re-
main uniformly distributed in each round. Hence, extending
our results to other regular graphs primarily involves obtain-
ing re-collision probability bounds for these graphs.

We consider agents on A node graphs that execute anal-
ogously to Algorithm 1, stepping to a random neighbor in
each round. Again, we focus on the multi-agent case but
similar bounds (resembling Corollaries 7, 8) hold for single
walks. We start with a general lemma, giving density es-
timation accuracy in terms of re-collision probability. The
proof (see full paper) closely follows our grid analysis.



Lemma 11 (General Accuracy Bound). Consider
a regular graph with A nodes such that, if two randomly
walking agents a

1

and a
2

collide in round r, for any 0 
m  t, the probability that they collide again in round r+m
is ⇥ (�(m)) for some non-increasing function �(m). Let

B(t)
def

=
P

t

m=0

�(m). After running for t  A steps, Algo-

rithm 1 returns d̃ such that, for any � > 0, with probability

� 1� �, d̃ 2 [(1� ✏)d, (1 + ✏)d] for ✏ = O

✓q
log(1/�)B(t)

td

◆
.

Note that in the special case of the grid, by Lemma 3, we can
set �(m) = 1/(m + 1) and hence B(t) = ⇥(log t), yielding
Theorem 1.

Applying the above bound requires a constant factor ap-
proximation to the re-collision probability – the probability
is ⇥(�(m)). Sometimes however, it is much easier to give
just an upper bound – so the probability is O(�(m)). In this
case a slightly weaker bound holds:

Lemma 12 (General Accuracy Bound 2). Consi-
der a regular graph with A nodes such that, if two ran-
domly walking agents a

1

and a
2

collide in round r, for any
0  m  t, the probability that they collide again in round
r +m is O (�(m)) for some non-increasing function �(m).

Let B(t)
def

=
P

t

m=0

�(m). After running for t  A steps, Al-

gorithm 1 returns d̃ such that, for any � > 0, with probability

� 1� � d̃ 2 [(1� ✏)d, (1 + ✏)d] for ✏ = O

✓q
log(1/�)·B(t)

2

td

◆
.

4.2 k-Dimensional Tori
We consider general k-dimensional tori. As k increases,

local mixing becomes stronger, fewer re-collisions occur, and
density estimation becomes easier. For k � 3, although the
torus still mixes slowly, density estimation is as accurate as
on the complete graph! We first study the ring:

Lemma 13 (Re-collision Bound – Ring). If two ran-
domly walking agents a

1

and a
2

are located on a 1-dimensional
torus (a ring) with A nodes, and collide in round r, for any
m � 0, the probability that a

1

and a
2

collide again in round

r +m for k � 1 is ⇥
⇣

1p
m+1

⌘
+O

�
1

A

�
.

Proof. We have already shown this re-collision bound in
the proof of Lemma 3. It is identical to P[C

x

|M
x

= m] on an

A⇥A grid, which is bounded by ⇥
⇣

1p
m+1

⌘
+O

�
1

A

�
.

For m  A, the O
�

1

A

�
is absorbed into the ⇥

⇣
1p

m+1

⌘
term.

We estimate the sum of repeat collision probabilities using
1p
x

 2(
p
x�

p
x� 1) (derivation in full paper). So:
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p
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p
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= 2
p
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Similarly, 1p
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p
x� 1) and so:
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p
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= 2
p
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So, overall
P

t

m=0

1p
m+1

= ⇥(
p
t). Plugging into Lemma

11, on a ring, random walk-based density estimation gives:

✏ = O

✓q
log(1/�)

p
t

td

◆
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⇣q
log(1/�)p

td

⌘
. Rearranging, t =

⇥

✓⇣
log(1/�)

✏

2

d

⌘
2

◆
rounds are necessary to obtain a 1± ✏ ap-

proximation with probability � 1 � �. Local mixing on the
ring is much worse than on the torus– we expect to see⇥(

p
t)

rather than ⇥(log t) repeat collisions with every agent inter-
acted with. Hence, density estimation is much more di�cult,
requiring t to be quadratic rather than linear in 1/d.

4.2.1 Higher Dimensional Tori
We now cover k � 3. While global mixing time is on the

order of A2/k [2] and so is slow if k << A, local mixing is
so strong that our accuracy bounds actually match those of
independent sampling! Throughout this section, we assume
that k is a small constant and hide it in asymptotic notation.

Lemma 14 (Re-collision Bound – Torus). If two
randomly walking agents a

1

and a
2

are located on a k-dim-
ensional torus with A nodes, and collide in round r, for any
constant k � 3, m � 0, the probability that a

1

and a
2

collide

in round r +m is ⇥
⇣

1

(m+1)

k/2

⌘
+O

�
1

A

�
.

Proof. We closely follow the proof of Lemma 3. a
1

and
a
2

take 2m total steps: M
i

in each dimension for i 2 [1, ..., k].
Let C

i

be the event that the agents have the same position
in the ith dimension in round r +m. Following Lemma 3,
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i

|M
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= m
i
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✓
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m
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◆
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So,
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]
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. (7)

In expectation, M
i

= 2m/k. So by a Cherno↵ bound,

P[M
i

 m/k]  2e�(1/2)

2·2m/3k = O

✓
1

(m+ 1)k/2

◆

again assuming k is a small constant. Union bounding over
all k dimensions, we have M

i

� m/k for all i except with

probability O
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1
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k/2

⌘
and hence by (7):
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giving the lemma (again, asymptotic notation hides multi-
plicative factors in k since it is constant).

We can plug the above bound into Lemma 12. For t  A

and k � 3,
P

t

m=0
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(m+1)
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+ 1

A

⌘
< 1 +
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O(1). So we can set B(t) = 1 and have ✏ = O
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Rearranging, we require t = ⇥
⇣

log(1/�)

✏

2

d

⌘
. This matches the

performance of independent sampling up to constants.



4.3 Regular Expanders
When a graph does mix well globally, it also mixes well

locally. The number of repeat collisions is low and accurate
density estimation is possible. The most obvious example is
the complete graph, on which random-walk based density es-
timation is equivalent to density estimation via independent
sampling. We generalize to any regular expander.

Lemma 15 (Re-collision Bound – Expander). Let
G be a k-regular expander with A nodes and adjacency ma-
trix M. Let W = 1

k

· M be its random walk matrix, with
eigenvalues �

1

� �
2

� ... � �
A

. Let � = max{|�
2

|, |�
A

|}.
If two randomly walking agents a

1

and a
2

collide in round
r, for any m � 0, the probability that they collide again in
round r +m is at most �m + 2/A.

Proof. Suppose that a
1

and a
2

collide at node i in round
r. The probability they re-collide at round r+m is ||Wm

e

i

||2
2

,
since for each j, Wm

i,j

= (Wm

e

i

)
j

is the probability an agent
is at node j after round r+m given that it is at node i after
round r. We bound this norm using the following lemma
on how rapidly an expander random walk converges to its
stable distribution:

Lemma 16 ([14]). Let G be a k-regular expander with
A nodes, adjacency matrix M, and random walk matrix
W = 1

k

· M. Let �
1

� �
2

� . . . � �
A

be the eigenvalues
of W and � = max{|�
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|, |�
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|}. For each 1  j  n,
����(W
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)
j
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����  �m.
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Lemma 16. Thus
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is maximized when the number of possible j with
�
j

= �m is maximized. Let S ⇢ [1, A] be the indices j with
�
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= �m. Since
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= 0, we have
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j2S

�m +
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j /2S
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=
0. Therefore, |S| · �m  �
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. Therefore,
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Thus, ||Wm

e

i

||2
2

 �m + 2/A, giving the lemma.

We now apply Lemma 12, with B(t) =
P

t

m=0

�(m)  1

1��

+

2t/A. Assuming t = O(A),
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log(1/�)(1/(1� �) + 2t/A)2
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Rearranging, t = ⇥
⇣

log(1/�)

✏

2

d(1��)

2

⌘
, matching independent sam-

pling up to a factor of O(1/(1� �)2).

4.4 k-Dimensional Hypercube
Finally, we give bounds for a k-dimensional hypercube.

Such a graph has A = 2k vertices mapped to the elements
of {±1}k, with an edge between any two vertices that dif-
fer by hamming distance 1. The hypercube is relatively
fast mixing. Its adjacency matrix eigenvalues are [�k,�k+
2,�k + 4, ..., k � 4, k � 2, k]. Since it is bipartite, we can ef-
fectively ignore the negative eigenvalues and apply Lemma
15 with � = ⇥(1 � 2/k) = ⇥(1 � 1/ logA). This yields

t = ⇥
⇣

log(1/�) log

2

(A)

✏

2

d

⌘
. However, it is possible to remove

the dependence on A via a more refined analysis – while the
global mixing time of the graph increases as A grows, local
mixing becomes stronger!

Lemma 17 (Re-collision Bound – Hypercube). If
two randomly walking agents a

1

and a
2

are located on a k-
dimensional hypercube with A = 2k vertices and collide in
round r, for any m � 0, the probability that a

1

and a
2

collide

in round r +m is at most (7/10)m +O
⇣

1p
A

⌘
.

Proof. A node of the hypercube can be represented as
a k-bit string and each random walk step seen as choosing
one of the bits uniformly at random and flipping it. If a

1

and a
2

collide, for each of the bit, the total number of times
a
1

and a
2

chose that bit must be even. The total number
of possible ways for re-collision to occur at round r + m is
exactly the number of ways 2m flips can be placed into k
buckets, where each bucket has even number of elements:
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1

+...+a

k

=2m

(a

i

mod 2)⌘0

(2m)!
a
1

! · . . . · a
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!
.

This value is equal to the coe�cient of x2m in the exponen-
tial generating function
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✓
ex + e�x

2

◆
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kX
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i

!
ex(2i�k).

Di↵erentiating 2m times, we see the coe�cient of x2m is:

1
2k

kX

i=0

 
k

i

!
(2i� k)2m =

kX

i=0

  
k

i

!
/2k
!

· (2i� k)2m.

This summation is exactly E[X2m], where X is a sum of k
i.i.d. random variables each equal to 1 with probability 1/2



and �1 otherwise. For any c 2 (0, 1], we can write:

E[X2m] = E[X2m||X| � ck] · P[|X| � ck]

+ E[X2m||X|  ck] · P[|X|  ck]

 k2m P[|X| � ck] + (ck)2m.

To bound the return probability bound, we this count by
the the total number of possible paths taken by a

1

and a
2

in m steps, k2m, giving an upper bound of:

P[|X| � ck] + c2m.

By a Hoe↵ding bound, P[|X| � ck]  2e�c

2

k/2. If we set
c =

p
lnA/k =

p
ln 2 then P[|X| � ck]  1/

p
A. So our

final probability bound is:

P[|X| � ck] + c2m  1p
A

+ (
p
ln 2)2m <

1p
A

+ (7/10)m.

Note that, by adjusting c, it is possible trade o↵ the terms
in the above bound, giving stronger inverse dependence on
A at the expense of slower exponential decay in m.

Using Lemma 12, we have B(t) =
P

t

m=0

�(m)  10

3

+ tp
A

.

Assuming t = O(
p
A), this gives ✏ = O
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log(1/�)

td
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and so

t = ⇥
⇣

log(1/�)

✏

2

d

⌘
, matching independent sampling.

5. APPLICATIONS
We conclude by discussing algorithmic applications of our

ant-inspired density estimation algorithm (Algorithm 1), vari-
ations on this algorithm, and our analysis techniques.

5.1 Social Network Size Estimation
Random walk-based density estimation is closely related

to work on estimating the size of social networks and other
massive graphs using random walks [11, 12, 15, 16]. In these
applications, one does not have access to the full graph (so
cannot exactly count the nodes), but can simulate random
walks by following links between nodes [17, 8]. One approach
is to run a single random walk and count repeat node vis-
its [15, 12]. Alternatively, [11] proposes running multiple
random walks and counting their collisions. This can be sig-
nificantly more e�cient since the dominant cost is typically
in link queries to the network. With multiple random walks,
this cost can be trivially distributed to multiple servers.

Walks are first run for a ‘burn-in’ period so their locations
are distributed approximately by the stable distribution of
the network. The walks are then halted, and the number
of collisions in this final round are counted. The collision
count gives an estimate of the walks’ density and since the
number of walks is known, an estimate for network size.

We show that ant-inspired algorithms can give runtime
improvements over this method. After burn-in, instead of
halting the walks, we run them for multiple rounds, record-
ing encounter rates as in Algorithm 1. This allows the use of
fewer random walks, decreasing total burn-in cost, and lead-
ing to faster runtimes when mixing time is relatively slow,
as is common in social network graphs [18].

5.1.1 Random Walk-Based Network Size Estimation
Consider an undirected, connected, non-bipartite graph

G = (V,E). Let S be the set of vertices of G that are
‘known’. Initially, S = {v} where v is a seed vertex. We

can access G by looking up the neighborhood �(v
i

) of any
vertex v

i

2 S and adding �(v
i

) to S.
To compute the number of nodes |V | in the network, we

could scan S, looking up the neighbors of each vertex and
adding them to the set. After querying all nodes in S we
will have S = V and will know the network size. How-
ever, the number of queries required equals |V |. The goal is
to estimate network size using a significantly more e�cient
random-walk based approach.

A number of challenges are introduced by this application.
While we can simulate many random walks on G, we can no
longer assume these random walks start at randomly chosen
nodes, as we do not have the ability to uniformly sample
nodes from the network. Instead, we must allow the random
walks to run for a burn-in phase of length proportional to the
mixing time of G. After this phase, the walks are distributed
approximately according to the stable distribution of G.

In general, G is not regular. In the stable distribution, a
random walk is located at a vertex with probability propor-
tional to its degree. Hence, collisions tend to occur more at
higher degree vertices. To correct for this bias, we count a
collision at vertex v

i

with weight 1/ deg(v
i

). As we will see,
with this modification, we must adjust our final estimate by
the average degree of the graph, which we must estimate.

We use a natural generalization of re-collision probability.
For any i, j 2 |V |, let p(v

i

, v
j

,m) be the probability of an m
step random walk starting at v

i

ending at v
j

. Define:

�(m)
def

=
max

i,j

p(v
i

, v
j

,m)
deg(v

j

)

Intuitively, this is the maximum m step collision probability,
weighted by degree since higher degree vertices are more
likely to be visited in the stable distribution. Let B(t) =P

t

m=1

�(m). Note that this weighted B(t) is upper bounded
by the unweighted B(t) used in Lemmas 11 and 12.

For simplicity, we ignore burn-in and assume that our
walks start distributed exactly by the stable distribution

of G. A walk starts at vertex v
i

with probability p
i

def

=
deg(v

i

)P
i

deg(v

i

)

= deg(v

i

)

2|E| and initial locations are independent.

We also assume knowledge of the average degree deg =
2|E|/|V |. In our full paper we rigorously analyze burn-in
and show to estimate deg, completing our analysis.

Algorithm 2 Random Walk Network Size Estimation

input: step count t, average degree deg, n random starting
locations [w

1

, ..., w
n

] distributed according to the network’s
stable distribution

[c
1

, ..., c
n

] := [0, 0, ..., 0]
for r = 1, ..., t do

8j, set w
j

:= randomElement(�(w
j

))
. �(w

j

) denotes the neighborhood of w
j

.

8j, set c
j

:= c
j

+
count(w

j

)

deg(w

j

)

. count(w
j

) returns # other walkers at w
j

.
end for

C :=
deg

P
c

j

·n(n�1)t

return Ã = 1/C

Theorem 18. If n2t = ⇥
⇣

B(t)deg

✏

2

�

|V |
⌘
, with probability

1� �, Algorithm 2 returns Ã 2 [(1� ✏)|V |, (1 + ✏)|V |].



Throughout this section, we work directly with the weighted
total collision count C, showing that it is close to its expec-
tation with high probability and hence giving the accuracy
bound for Ã. As in the density estimation case, we start by
showing that C is correct in expectation.

Lemma 19. EC = 1/|V |.
Proof. Let c

j

(r) be the number of collisions, weighted
by inverse vertex degree, walk j expects to be involved in
at round r. In each round all walks are at vertex v

i

with
probability p

i

= deg(v

i

)

2|E| , so:

E c
j

(r) =

|V |X

i=1


deg(v

i

)
2|E| · (n� 1) deg(v

i

)
2|E| · 1

deg(v
i

)

�

=
n� 1
4|E|2

|V |X

i=1

deg(v
i

) =
n� 1
2|E| .

By linearity of expectation: E c
j

= t(n�1)

2|E| , E
P

c
j

= tn(n�1)

2|E|

and hence, EC = deg

2|E| = 1/|V |.

We now need to show concentration of C about its expecta-
tion. Let c

i,j

be the weighted collision count between walks
w

i

and w
j

where i 6= j. It is possible to closely follow the
moment bound proof of Lemma 6 and show that c

i,j

is sub-
exponential. However, unlike in the case of regular graphs,
we will not be able to claim that the di↵erent c

i,j

’s are in-
dependent. Hence, we will not be able to use the same sub-
exponential tail bounds employed in Section 3.3.

Instead, we bound the second moment (the variance) of
each c

i,j

and show concentration via Chebyshev’s inequality.
This leads to a linear rather than logarithmic dependence on
the failure probability 1/�. However, note that we can sim-
ply perform log(1/�) estimates each with failure probability
1/3 and return the median, which will be correct with prob-
ability 1� �. Variance proofs are deferred to our full paper,
with the upshot being:

Lemma 20 (Total Collision Variance Bound).

Let C =
deg

P
j

c̄

j

n(n�1)t

. E
⇥
C̄2

⇤
= O

⇣
1

n

2

t

· B(t)|E|
|V |2

⌘
.

With this variance bound, we can prove Theorem 18.

Proof of Theorem 18. Note that C̄ = C � EC.
By Chebyshev’s inequality Lemma 20 gives:

P [|C � EC| � ✏EC]  1
✏2n2t

·B(t)|E|.

Rearranging gives that, in order to have C̄ 2
h
(1�✏)

|V | , 1+✏

|V |

i

with probability �, we must have:

n2t = ⇥

✓
1
✏2�

B(t)|E|
◆
.

Assuming ✏ < 1/4 this gives Ã 2 [(1� 2✏)|V |, (1 + 2✏)|V |],
giving the lemma after adjusting constants on ✏.

5.1.2 Runtime and Comparision to Previous Work
Let M = O

⇣
log(|E|/�)

1��

⌘
denote the burn-in time required

before running Algorithm 2 (see full paper for derivation).
Ignoring average degree estimation, which is typically of
lower order (see full paper), to obtain a (1 ± ✏) estimate
of network size with probability 1 � � we must run n ran-
dom walks for M + t steps, making n(M + t) link queries,

where by Theorem 18, n = ⇥

✓q
|V |·B(t)deg

t·✏2�

◆
. In the spe-

cial case with t = 1 we obtain a somewhat simpler bound

(proof in full paper), requiring n = ⇥

✓q
|V |·deg

✏

2

�

◆
.

[11] also uses t = 1, but uses a di↵erent estimator track-
ing degrees, inverse degrees, and collisions. Roughly, they

require: n = ⇥

✓
max

⇢q
1

✏

2

�

P
p

2

i

,
P

p

3

i

✏

2

�(
P

p

2

i

)2

�◆
where p

i

=

deg(v

i

)

2|E| . Their first term can be rewritten as

s
2|E|

P|V |
i=1

deg(v
i

)2
·

s
|V | · deg

✏2�
.

This will always be somewhat smaller than our bound term
as 2|E| 

P|V |
i=1

deg(v
i

)2. Their second term is harder to
compare but is upper bounded by:

P
p3
i

✏2� (
P

p2
i

)2
 deg3

max

deg
4|V |2

· 2|E|
✏2�

=
deg3

max

deg
3

· 1
✏2�|V | .

Assuming deg
max

/deg is not too large, this term will be
small. However, a few very high degree nodes in an otherwise
sparse graph can make it very large.

In sum, not directly comparable to [11], in the t = 1 case,
assuming reasonable node degrees, our bounds are of the
same order of magnitude. Further, the bound of Theorem
18 gives an important tradeo↵ for graphs with slow mixing
time – we can increase the number of steps in our random
walks, decreasing the total number of walks.

In our full paper we demonstrate that on a torus with
� 3 dimensions, our bounds give a polynomial speed up over
[11]. We leave it as an open question to compare our bounds
with those of [11] on more natural classes of graphs, and
to determine either experimentally or theoretically, typical
values of B(t) on these graphs.

5.2 Robot Swarm Density Estimation
Algorithm 1 can be directly applied for simple and ro-

bust density estimation in robot swarms. Additionally, the
algorithm can be used to estimate the frequency of certain
properties within the swarm. Let d be the overall population
density and d

P

be the density of agents with some property
P . Let f

P

= d
P

/d be the relative frequency of P .
Assuming that agents with property P are distributed uni-

formly in population and that agents can detect this prop-
erty (through direct communication or some other signal),
then they can separately track encounters with these agents.
They can compute an estimate d̃ of d and d̃

P

of d
P

. By The-

orem 1, after running for t = ⇥
⇣

log(1/�) log log(1/�) log(1/d✏)

d

P

✏

2

⌘

steps, with prob 1 � 2�, d̃
P

/d̃ 2
h⇣

1�✏

1+✏

⌘
f
P

,
⇣

1+✏

1�✏

⌘
f
P

i
=

[(1�O(✏))f
P

, (1 +O(✏))f
P

] for small ✏.
In a biological setting, properties may include if an ant

has recently completed a food foraging trip [9], or if an ant
is a nestmate or enemy [1]. In a robotics setting, properties
may include whether a robot is part of a certain task group,
whether a robot has completed a task, or whether a robot
has detected a certain event or environmental property.

5.3 Random Walk Sensor Network Sampling
Finally, we believe our moment bounds for a single random

walk (Corollaries 7 and 8) can be applied to random walk-



based distributed algorithms for sensor network sampling.
We leave obtaining rigorous bounds to future work.

Random walk-based sensor network sampling [13, 3] is a
technique in which a query message (a ‘token’) is initially
sent by a base station to a sensor. The token is relayed
randomly between sensors, which are connected via a grid
network, and its value is updated appropriately at each step
to give an answer to the query. This scheme is robust and
e�cient - it adapts to node failures and does not require set-
ting up or storing spanning tree communication structures.

However, if attempting to estimate some quantity, such
as the percentage of sensors that have recorded a specific
condition, as in density estimation, unless an e↵ort is made
to record which sensors have been previously visited, addi-
tional variance is added due to repeat sensor visits. Record-
ing previous visits introduces computational burden – either
the token message size must increase or nodes themselves
must remember which tokens they have seen. We are hope-
ful that our moment bounds can be used to show that this
is unnecessary – due to strong local mixing, the number of
repeat sensor visits will be low, and increased variance due
to random walking will be limited.
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