
DRAFT

Ant-Inspired Density Estimation via Random
Walks
Cameron Muscoa,1, Hsin-Hao Sua,1, and Nancy Lyncha,1,2

aComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

This manuscript was compiled on September 2, 2017

Many ant species employ distributed population density estimation
in applications ranging from quorum sensing, to task allocation, to
appraisal of enemy colony strength. It has been shown that ants
estimate local population density by tracking encounter rates – the
higher the density, the more often the ants bump into each other. We
study distributed density estimation from a theoretical perspective.
We prove that a group of anonymous agents randomly walking on
a grid are able to estimate their density within a small multiplicative
error in few steps by measuring their rates of encounter with other
agents. Despite dependencies inherent in the fact that nearby agents
may collide repeatedly (and, worse, cannot recognize when this hap-
pens), our bound nearly matches what would be required to estimate
density by independently sampling grid locations. From a biological
perspective, our work helps shed light on how ants and other so-
cial insects can obtain relatively accurate density estimates via en-
counter rates. From a technical perspective, our analysis provides
new tools for understanding complex dependencies in the collision
probabilities of multiple random walks. We bound the strength of
these dependencies using local mixing properties of the underlying
graph. Our results extend beyond the grid to more general graphs
and we discuss applications to size estimation for social networks,
density estimation for robot swarms, and random-walk-based sam-
pling for sensor networks.

population density estimation | random walk sampling | network explo-
ration | ant colony algorithms | biological distributed algorithms

The ability to sense local population density is an important
tool used by many ant species. When a colony of Temnothorax
ants must relocate to a new nest, scouts search for potential
nest sites, assess their quality, and recruit other scouts to
high quality locations. A high enough density of scouts at a
potential new nest (a quorum threshold) triggers those ants
to decide on the site and transport the rest of the colony
there (1). When neighboring colonies of Azteca ants compete
for territory, a high relative density of a colony’s ants in a
contested area will cause those ants to attack enemies in the
area, while a low relative density will cause the colony to
retreat (2). Varying densities of harvester ants successfully
performing certain tasks such as foraging or brood care can
trigger other ants to switch tasks, maintaining proper worker
allocation in the colony (3, 4).

It has been shown that ants estimate density in a distributed
manner, by measuring encounter rates (1, 5). As ants randomly
walk around an area, if they bump into a larger number of
other ants, this indicates a higher population density. By
tracking encounters with specific types of ants, for example,
successful foragers or enemies, ants can estimate more specific
densities. This strategy allows each ant to obtain an accurate
density estimate and requires very little communication – ants
must simply detect when they collide and do not need to
perform any higher level data aggregation.

Density Estimation on a Grid. We study distributed density
estimation from a theoretical perspective. We model a colony
of ants as a set of anonymous agents randomly placed on
a two-dimensional grid. Computation proceeds in rounds,
with each agent stepping in a random direction in each round.
A collision occurs when two agents reach the same position
in the same round and encounter rate is measured as the
number of collisions an agent is involved in during a sequence of
rounds divided by the number of rounds. Aside from collision
detection, the agents have no other means of communication.

The intuition that encounter rate tracks density is clear. It
is easy to show that, for a set of randomly walking agents, the
expected encounter rate measured by each agent is exactly the
density d – the number of agents divided by the grid size (see
Lemma 2). However, it is unclear if encounter rate actually
gives a good density estimate – that is, if the estimate is close
to its expectation with high probability.

Consider agents positioned not on the grid, but on a com-
plete graph. In each round, each agent steps to a uniformly
random position and in expectation, the number of other
agents it collides with in this step is d. Since each agent
chooses its new location uniformly at random in each step,
collisions are essentially independent between rounds. The
agents are effectively taking independent Bernoulli samples
with success probability d, and by a standard Chernoff bound,
within O

(log(1/δ)
dε2

)
rounds each obtains a (1±ε) multiplicative

approximation to d with probability 1− δ.
On the grid graph, the picture is significantly more complex.

If two agents are initially located near each other, they are

Significance Statement

Highly complex distributed algorithms are ubiquitous in nature:
from the behavior of social insect colonies and bird flocks, to
cellular differentiation in embryonic development, to neural in-
formation processing. In our research, we study biological
computation theoretically, combining a scientific perspective,
which seeks to better understand the systems being studied,
with an engineering perspective, which takes inspiration from
these systems to improve algorithm design. In this work, we
focus on the problem of population density estimation in ant
colonies, demonstrating that extremely simple algorithms, simi-
lar to those employed by ants, solve the problem with strong
theoretical guarantees and have a number of interesting com-
putational applications.

C.M., H.S., and N.L. designed and performed research and wrote the paper. C.M. and H.S. devel-
oped technical bounds.

The authors declare no conflict of interest.

1C.M., H.S., and N.L. contributed equally to this work.

2To whom correspondence should be addressed. E-mail: lynch@csail.mit.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | September 2, 2017 | vol. XXX | no. XX | 1–18

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

more likely to collide via random walking. After a first collision,
due to their proximity, they are likely to collide repeatedly in
future rounds. Since the agents are anonymous, they cannot
recognize repeat collisions, and even if they could, it is unclear
that it would help. On average, compared to the complete
graph, agents collide with fewer individuals and collide multiple
times with those individuals that they do encounter, making
encounter rates a less reliable estimate of population density.

Mathematically speaking, on a graph with a fast mixing
time (6), like the complete graph, each agent’s location is only
weakly correlated with its previous locations. This ensures
that collisions are also weakly correlated between rounds and
encounter rate serves as a very accurate estimate of density.
The grid graph on the other hand is slow mixing – agent posi-
tions and hence collisions are highly correlated between rounds,
lowering the accuracy of encounter-rate-based estimation.

Results. Surprisingly, despite the high correlation between col-
lisions, we show that encounter-rate-based density estimation
on the grid is nearly as accurate as on the complete graph.
After just O

(log(1/δ) log log(1/δ) log(1/dε)
dε2

)
rounds, each agent’s

encounter rate is a (1± ε) approximation to d with probability
1−δ (Theorem 1). This matches performance on the complete
graph up to a log log(1/δ) log(1/dε) factor.

Technically, to bound accuracy on the grid, we obtain
moment bounds on the number of times that two randomly
walking agents collide over a set of rounds (Lemma 5). These
bounds also apply to the number of equalizations (returns to
origin) of a single walk. While expected random walk hitting
times, return times, and collision rates are well studied for
many graphs, including grid graphs (6–8), higher moment
bounds and high probability results are much less common.

Our moment bounds show that, while the grid graph is
slow mixing, it has strong local mixing. That is, random walks
tend to spread quickly over a local area and not repeatedly
cover the same nodes, making random-walk-based density
estimation accurate. Significant work has focused on showing
that random walk sampling is nearly as good as independent
sampling for fast mixing expander graphs (9, 10). To the
best of our knowledge, we are the first to extend this type of
analysis to slowly mixing graphs, showing that strong local
mixing is sufficient in many applications.

The key to the local mixing property of the grid is an upper
bound on the probability that two random walks starting from
the same position re-collide (or that a single random walk
equalizes) after a certain number of steps (Lemma 3). We show
that re-collision probability bounds imply collision moment
bounds on general graphs, and apply this technique to extend
our results to d-dimensional grids, regular expanders, and
hypercubes. We discuss applications of our bounds to the task
of estimating the size of a social network using random walks
(11), obtaining improvements over prior work for networks with
relatively slow global mixing times but strong local mixing. We
also discuss connections to density estimation by robot swarms
and random-walk-based sensor network sampling (12, 13).

1. Theoretical Model for Density Estimation

We consider a set of agents populating a two-dimensional torus
with A nodes (dimensions

√
A×
√
A). At each time step, each

agent has an associated ordered pair position, which gives
its coordinates on the torus. We assume that A is large –

Fig. 1. A basic illustration of our computational model. Each agent (ant) may move to
a random adjacent position on the two-dimensional torus in each round (illustrated
by the red arrows). A collision occurs when two or more agents are located at the
same position. The agents detect collisions through the count(position) function
which returns the number of other agents at their current position. In this illustration,
position is given as the (x, y) position with the bottom left corner corresponding to
(1, 1). However, the precise convention used is unimportant.

larger than the area agents traverse over the runtimes of our
algorithms. We believe the torus model successfully captures
the dynamics of density estimation on a surface, while avoiding
complicating factors of boundary behavior on a finite grid.

Initially each agent is placed independently at a uni-
form random node in the torus. Computation proceeds
in discrete, synchronous rounds. Each agent updates its
position with a step chosen uniformly at random from
{(0, 1), (0,−1), (1, 0), (−1, 0)} in each round. Of course, in
reality ants do not move via pure random walk – observed
encounter rates seem to actually be lower than predicted by a
pure random walk model (5, 14). However, we feel that our
model sufficiently captures the highly random movement of
ants while remaining tractable to analysis and applicable to
ant-inspired random-walk-based algorithms (Section 4). Ex-
tending our work to more realistic models of ant movement
would be an interesting next direction.

Aside from the ability to move in each round, agents can
sense the number of agents other than themselves at their po-
sition at the end of each round, formally through the function
count(position). We say that two agents collide in round r if
they have the same position at the end of the round. Outside
of collision counting, agents have no means of communication.
They are anonymous (cannot uniquely identify each other)
and execute identical density estimation routines. A basic
illustration of our model is depicted in Figure 1.

The Density Estimation Problem. Let (n+1) be the number of
agents and define population density as ddef= n/A. Each agent’s
goal is to estimate d to (1± ε) accuracy with probability at
least 1 − δ for ε, δ ∈ (0, 1) – that is, to return an estimate
d̃ with P

[
d̃ ∈ [(1− ε)d, (1 + ε)d]

]
≥ 1 − δ. As a technicality,

with n+ 1 agents we define d = n/A instead of d = (n+ 1)/A
for convenience of calculation. In the natural case, when n is
large, the distinction is unimportant.

Local vs. Global Density. The problem described above requires
estimating the global population density. We assume that
agents are initially distributed uniformly at random on the

2 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

torus, which is critical for fast global density estimation –
when agents are uniformly distributed, the local density in a
small radius around their starting position reflects the global
density with good probability. Of course, in nature, ants are
not typically uniformly distributed in the nest or surrounding
areas. Additionally, they are often interested in estimating
local population densities – e.g., in a new nest site when house-
hunting (1) or around a nest entrance when estimating the
number of successful foragers for task allocation (3).

We view our work as a first step towards a theoretical
understanding of density estimation and focus on the global
density for simplicity. Removing our assumption of uniformly
distributed agents and understanding local density estimation
are important directions for future work.

2. Random-Walk-Based Density Estimation on the Two-
Dimensional Torus

As discussed, the challenge in analyzing random-walk-based
density estimation on the torus arises from correlations be-
tween collisions of nearby agents. If we do not restrict agents
to random walking, and instead allow each agent to take an
arbitrary step in each round, they can avoid collision corre-
lations by splitting into ‘stationary’ and ‘mobile’ groups and
counting collisions only between members of different groups.
This allows them to essentially simulate independent sampling
of grid locations to estimate density. This method is simple to
analyze (see SI Appendix, Section S1), but it is not ‘natural’
in a biological sense or useful for the applications of Section 4.
Further, independent sampling is unnecessary! Algorithm 1
describes a simple random-walk-based approach that gives a
nearly matching bound.

Algorithm 1 Random-Walk-Based Density Estimation
Each agent independently executes:
c := 0
for r = 1, ..., t do

step := rand{(0, 1), (0,−1), (1, 0), (−1, 0)}
position := position+ step
c := c+ count(position) . Update collision count.

return d̃ = c
t

Our main theoretical result follows; its proof appears at
the end of Section 2, after a number of preliminary lemmas.
Throughout our analysis, we take the viewpoint of a single
agent executing Algorithm 1.

Theorem 1 (Random Walk Sampling Accuracy Bound). Af-
ter running for t rounds, assuming t ≤ A, an agent ex-
ecuting Algorithm 1 returns d̃ such that, for any δ > 0,
with probability ≥ 1 − δ, d̃ ∈ [(1 − ε)d, (1 + ε)d] for ε =

Θ
(√

log(1/δ) log(2t)
td

)
. In other words, for any ε, δ ∈ (0, 1) if

t = Θ
(log(1/δ) log log(1/δ) log(1/dε)

dε2

)
, d̃ is a (1± ε) multiplicative

estimate of d with probability ≥ 1− δ.

Theorem 1 focuses on the density estimate of a single
agent executing Algorithm 1. However, we note that if we
set δ = δ′

n
, then by a union bound, all n agents will have

d̃ ∈ [(1 − ε)d, (1 + ε)d] with probability δ′. The required
running time t will depend just logarithmically on δ′ and n.

Correctness of Encounter Rate in Expectation. The first step
in proving Theorem 1 is to show that the encounter rate d̃ is
an unbiased estimator of d. This result in fact holds for any
ants randomly walking on any regular graph.

Lemma 2 (Unbiased Estimator). E d̃ = d.

Proof. We can decompose the collision bound c maintained
by each agent in Algorithm 1 as the sum of collisions with
different agents over different rounds. Specifically, give the n
other agents arbitrary ids 1, 2, ..., n and let cj(r) equal 1 the
agent collides with agent j in round r, and 0 otherwise. By
linearity of expectation, E c =

∑n

j=1

∑t

r=1 E cj(r).
Since each agent is initially at a uniform random location

and after any number of steps, is still at uniform random
location, for all j, r, E cj(r) = 1/A. Thus, E c = nt/A = dt
and E d̃ = E c/t = d.

We note that the torus is bipartite, and hence two agents
initially located an odd number of steps away from each other
will never meet via random walking. However, this fact does
not change the expectation of d̃ computed above and in fact
does not affect any of our following proofs.

With Lemma 2 in place, it remains to show that the en-
counter rate is close to its expectation with high probability
and so provides a good estimate of density. In order to do this,
we must bound the strength of correlations between collisions
of nearby agents in successive rounds, which can decrease the
accuracy of the encounter-rate-based estimate.

A Re-collision Probability Bound. The key to bounding colli-
sion correlations is bounding the probability of a re-collision
between two agents in round r + m, assuming a collision in
round r, which we do in this section.

Let cj =
∑t

r=1 cj(r) be the total number of collisions with
agent j. Due to the initial uniform distribution of the agents,
the cj ’s are all independent and identically distributed.

Each cj is the sum of highly correlated random variables –
due to the slow mixing of the grid, if two agents collide at round
r, they are much more likely to collide in successive rounds.
However, by bounding this re-collision probability, we are able
to give strong moment bounds for the distribution of each cj .
We bound not only its variance, but all higher moments. This
allows us to show that the average d̃ = 1

t

∑n

j=1 cj falls close
to its expectation d with high probability, giving Theorem 1.

Lemma 3 (Re-collision Probability Bound). Consider two
agents a1 and a2 randomly walking on a two-dimensional torus
of dimensions

√
A×
√
A. If a1 and a2 collide in round r, for

any m ≥ 0, the probability that a1 and a2 collide again in
round r +m is Θ

(
1

m+1

)
+O

(
1
A

)
.

Proof Sketch. The full proof of Lemma 3 is given in SI Ap-
pendix, Section S2. We sketch the main ideas here and illus-
trate them in Figure 2.

We first show that the probability that a1 and a2 re-collide
in round r + m is identical to the probability that a single
2m-step random walk ends at its starting position.

The re-collision probability is the probability that a1 and
a2 have identical displacements after taking m steps each. By
symmetry of the random walk steps, this is equal to the prob-
ability that a1’s displacement vector is equal to the negative
of a2’s. Furthermore, this is just the probability that their 2m

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 3

DRAFT

Fig. 2. A schematic of the proof of Lemma 3. We argue that the re-collision probability
of two agents after m steps (shown in red and blue) is equivalent to the probability
that a length 2m random walk (shown in grey) returns to its origin. We then argue
that the random walk is likely to take roughly m steps in both the x and y directions
and hence has zero displacement in each direction with probability Θ(1/

√
m).

total random walk steps have 0 overall displacement, which is
the probability that a 2m-step random walk ends at its origin.

One idea might be to bound this ‘equalization probability’
using the global mixing time of the torus (6). After Θ(A logA)
steps, a random walk is nearly as likely to be at any node in the
graph, including its origin. Thus the equalization probability
is bounded by O(1

A
) for 2m = Ω(A logA). Unfortunately, such

a bound says nothing about this probability for small m.
Thus, we must take a different approach. We first assume

for simplicity that the walk is on an infinite grid, and so there
is no possibility of returning to its origin by ‘wrapping around’
the torus. We later show that this only affects the equalization
probability by an O

(
1
A

)
factor.

Considering a walk on the infinite grid, we condition on the
walk taking roughly m steps in both the x and y directions,
which occurs with high probability. We separately bound the
probability of zero displacement in each direction.

It is well known that an m-step random walk on the line
has roughly equal probability of ending at any point within
radius Θ(

√
m) of its origin. It thus has probability Θ

(
1√
m

)
of ending at its origin. Fixing the number of steps in each
direction, the walk’s x and y displacements are independent.
So, we can multiply the probabilities for each direction, giving
the final bound of Θ

(
1

m+1

)
(we writem+1 in the denominator

instead of m so that the formula holds for m = 0.)

Since it may be of independent interest, in Corollary 15
in SI Appendix, Section S3 we restate the result of Lemma 3
explicitly in terms of a bound on the probability that a single
random walk returns to its origin (equalizes) after m steps.

Collision Moment Bound. With Lemma 3 in hand, we can
prove our collision moment bound, which we use to show that
the number of collisions an agent sees concentrates strongly
around its expectation. We first show that any agent is likely
to collide with many other agents during the execution of
Algorithm 1, rather than repeatedly colliding with just a few
other agents. That is, the probability that an agent collides
at least once with any given other agent is not too low.

Lemma 4 (First Collision Probability). Assuming t ≤ A, for
all j ∈ [1, ..., n], P [cj ≥ 1] = Θ

(
t

A log 2t

)
.

Proof Sketch. By Lemma 3 and the assumption that t ≤ A,
in t rounds, an agent expects to re-collide with any agent it
encounters

∑t−1
m=0 Θ

(
1

m+1

)
= Θ(log 2t) times. By Lemma

2, an agent expects to be involved in dt = nt/A total col-
lisions. So accounting for re-collisions, it expects to collide
with Θ

(
nt

A log 2t

)
unique individuals. By symmetry, its collision

probability with any single individual is thus Θ
(

t
A log 2t

)
. A

formal proof is given in SI Appendix, Section S2.

Lemma 4 used that by Lemma 3 an agent expects to collide
O(log 2t) times with any other agent it encounters. We can
in fact show that this bound is not just in expectation, but
extends to the higher moments of the collision distribution.
Lemma 5 (Collision Moment Bound). For j ∈ [1, ..., n], let
c̄j

def= cj−E cj and assume t ≤ A. There is some fixed constant
w such that for any integer k ≥ 2,

E
[
c̄kj
]
≤ twk

A
· k! logk−1(2t).

When k = 2, Lemma 5 gives a bound on the variance of
cj , which can be used to show that cj falls close to its mean
with good probability. By bounding the kth moment E[c̄kj] for
all k, we are able to show even stronger concentration results.

Proof Sketch. Very roughly, we separately consider the simple
case when cj = 0 and the case when cj ≥ 1, whose probability
is bounded in Lemma 4. In the later case, we split cj over
rounds as cj =

∑t

r=1 cj(r) and expand out:

E[ckj] =
t∑

r1=1

t∑
r2=1

...

t∑
rk=1

E [cj(r1)cj(r2)...cj(rk)] . [1]

E [cj(r1)cj(r2)...cj(rk)] is just the probability that two
agents collide in each of rounds r1, r2, ..., rk. Assuming
that r1 ≤ r2 ≤ ... ≤ rk and that there is a collision in
round r1, we can apply Lemma 3 to bound this probability
≤ wk

(r2−r1+1)...(rk−rk−1+1) for some constant w.
Obtaining the theorem requires combining this bound with

Eq. (1) and applying a number of careful rearrangements.
However, the bound on E [cj(r1)cj(r2)...cj(rk)] is the crux of
the analysis. A full proof is in SI Appendix, Section S2.

As with Lemma 3, the techniques used in Lemma 5 can be
applied to bounding the moments of the number of equaliza-
tions of a single random walk. See Corollaries 16 and 17 in SI
Appendix, Section S3.

Correctness of Encounter Rate With High Probability. Armed
with Lemma 5 we can finally show that

∑n

j=1 cj concentrates
strongly about its expectation. Since d̃ = 1

t

∑n

j=1 cj , this is
enough to prove the accuracy of encounter-rate-based density
estimation (Algorithm 1). We first restate Lemma 5 using a
standard ‘Bernstein condition’ on the sum

∑n

j=1 cj .

Corollary 6 (Bernstein condition). Assuming t ≤ A:

E

(n∑
j=1

cj − E

[
n∑
j=1

cj

])k ≤ 1
2k!σ2bk−2

for all k ≥ 2 and some b = Θ(log 2t) and σ2 = Θ(td log 2t).

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

Proof. By Lemma 5, there exists some constant w such that
for σ2 = wt log 2t

A
and b = w log 2t, c̄j

def= cj − E cj satisfies:

E
[
c̄kj
]
≤ 1

2k!σ2bk−2.

Since each cj is independent:

E

(n∑
j=1

cj − E

[
n∑
j=1

cj

])k = E

(n∑
j=1

c̄j

)k
=

n∑
j=1

E[c̄kj] ≤ n · k!σ2bk−2

2 .

The lemma follows after replacing σ2 with nσ2 = Θ(td log 2t).

We employ the following concentration bound for random
variables satisfying such a Bernstein condition:

Lemma 7 (Proposition 2.3 of (15)). Suppose that X satisfies
E[(X−EX)k] ≤ 1

2k!σ2bk−2 for all k ≥ 3. Then for any ∆ ≥ 0,

P[|X − EX| ≥ ∆] ≤ 2e−
∆2

2(σ2+b∆) .

We conclude this section by proving our main theorem on
the accuracy of random-walk-based density estimation:

Proof of Theorem 1. In Algorithm 1, d̃ is set to 1
t

∑n

j=1 cj . So
the probability that d̃ falls within an ε multiplicative factor
of its mean is the same as the probability that

∑n

j=1 cj falls
within an ε multiplicative factor of its mean, which is equal to
tE d̃ = td by Lemma 2. By Corollary 6 and Lemma 7:

δ
def= P

[∣∣∣∣∣
n∑
j=1

cj − E

[
n∑
j=1

cj

]∣∣∣∣∣ ≥ εE
[

n∑
j=1

cj

]]

= P

[∣∣∣∣∣
n∑
j=1

cj − td

∣∣∣∣∣ ≥ εtd
]
≤ 2eΘ

(
− ε2t2d2

2(td log 2t+εtd log 2t)

)
.

Restricting ε ≤ 1 and rearranging gives ε2td
log 2t = Θ (log(1/δ))

and so ε = Θ
(√

log(1/δ) log 2t
td

)
, yielding the theorem.

3. Extensions to Other Topologies

We now discuss extensions of our results to a broader set of
graph topologies, demonstrating the generality of our local
mixing analysis. We illustrate divergence between local and
global mixing properties, which can have significant effects on
random-walk-based algorithms. Full proofs for all results in
this section are deferred to SI Appendix, Section S4.

From Re-collision Bounds to Accurate Density Estimation.
Our proofs for the two-dimensional torus are largely indepen-
dent of graph structure, using just a re-collision probability
bound (Lemma 3) and the regularity (uniform node degrees) of
the grid, so agents remain uniformly distributed on the nodes
in each round (see for example, Lemma 2). Hence, extending
our results to other regular graphs primarily involves obtaining
re-collision probability bounds for these graphs.

We consider agents on a graph with A nodes that execute
analogously to Algorithm 1, stepping to a random neighbor

in each round. Again, we focus on the multi-agent case but
similar bounds (resembling Corollaries 16 and 17) hold for
a single random walk. We start with a lemma which gives
density estimation accuracy in terms of re-collision probability.
This is a direct generalization of our grid analysis.

Lemma 8 (Re-collision Probability to Density Estimation
Accuracy). Consider a regular graph with A nodes such that,
if two randomly walking agents a1 and a2 collide in round
r, for any 0 ≤ m ≤ t, the probability that they collide again
in round r +m is Θ (β(m)) for some non-increasing function
β(m). Let B(t)def=

∑t

m=0 β(m). After running for t ≤ A steps,
Algorithm 1 returns d̃ such that, for any δ > 0, with probability

≥ 1− δ, d̃ ∈ [(1− ε)d, (1 + ε)d] for ε = O

(√
log(1/δ)B(t)

td

)
.

Note that in the special case of the two-dimensional torus,
by Lemma 3, we can set β(m) = 1/(m+ 1) and hence B(t) =
Θ(log 2t), recovering Theorem 1.

Density Estimation on k-Dimensional Tori. We first consider
k-dimensional tori for general k. As k increases, local mixing
becomes stronger, fewer re-collisions occur, and density esti-
mation becomes easier. In fact, for constant k ≥ 3, although
the torus still mixes slowly, density estimation is as accurate
as on the complete graph! Throughout this section we assume
that k is a small constant and so hide multiplicative factors
in f(k) for any function f in our asymptotic notation. We
subscript the notation with k to make this clear. For k = 1:

Lemma 9 (Re-collision Probability Bound – Ring). If two ran-
domly walking agents a1 and a2 are located on a 1-dimensional
torus (a ring) with A nodes, and collide in round r, for any
m ≥ 0, the probability that a1 and a2 collide again in round
r +m for k ≥ 1 is Θ

(
1√
m+1

)
+O

(
1
A

)
.

Proof Sketch. This bound can be shown similarly to Lemma 3
(and in fact its proof is fully contained in the proof of Lemma
3.) A 2m-step random walk on a line ends at its origin with
probability Θ(1/

√
m+ 1). On a ring with A nodes the slightly

weaker bound of Θ
(

1√
m+1

)
+O

(
1
A

)
holds.

Form ≤ A, the O
(

1
A

)
term is absorbed into the Θ

(
1√
m+1

)
and one can show that

∑t

m=0 1/
√
m+ 1 = Θ(

√
t). Plugging

into Lemma 8, on a ring, random-walk-based density estima-

tion gives ε = O

(√
log(1/δ)

√
t

td

)
= O

(√
log(1/δ)√

td

)
. Rearrang-

ing, t = Θ
((log(1/δ)

ε2d

)2)
rounds are necessary to obtain a 1± ε

approximation with probability ≥ 1 − δ for any ε, δ ∈ (0, 1).
Local mixing on the ring is much worse than on the torus.
Hence, density estimation is much more difficult, requiring t
to be quadratic rather than linear in 1/d and 1/ε2.

We now cover k ≥ 3. While global mixing time is on the
order of A2/k (16), local mixing is so strong that our accuracy
bounds nearly match those of independent sampling.

Lemma 10 (Re-collision Probability Bound – High-Dimen-
sional Torus). If two randomly walking agents a1 and a2 are
located on a k-dimensional torus with A nodes, and collide in
round r, for any constant k ≥ 3, m ≥ 0, the probability that
a1 and a2 collide in round r +m is Θk

(
1

(m+1)k/2

)
+O

(
1
A

)
.

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 5

DRAFT

Proof Sketch. The proof is similar to that of Lemma 3. To
collide in round r+m, the agents must have identical displace-
ments in each of the k dimensions after m steps. Since k is a
small constant, with high probability the agents take Θ(m/k)
steps in each dimension. After conditioning on the step counts,
the k collisions are independent, each occurring with proba-
bility Θ

(
1√
m/k

)
via the argument of Lemma 3. The result

follows by multiplying these k probabilities together, noting
that k dependence is hidden in the asymptotic notation.

To convert the above bound to a density estimation ac-
curacy, we can use a slightly modified version of Lemma 8,
which applies to the case when our collision probability is
O(β(m)) but not neccesarily Θ(β(m)). For t ≤ A and k ≥ 3,∑t

m=0

(
1

(m+1)k/2 + 1
A

)
< 1 +

∑∞
m=0

1
(m+1)k/2 = O(1). So we

can set B(t) = Ok(1) and have ε = Ok

(√
log(1/δ)
td

)
. Rearrang-

ing, we require t = Θk

(log(1/δ)
ε2d

)
. This matches independent

sampling up to constants and multiplicative factors in k.

Density Estimation on Regular Expanders. When a graph does
mix well globally, it mixes well locally. An obvious exam-
ple is the complete graph, on which random-walk-based and
independent-sampling-based density estimation are equivalent.
We extend this intuition to any regular expander. An expander
is a graph whose random walk matrix has its second eigenvalue
bounded away from 1, and so on which random walks mix
quickly. Expanders are ‘well-connected’ graphs with many
applications, including in the design of robust communication
networks (17) and efficient sampling schemes (9).

Lemma 11 (Re-collision Probability Bound – Regular Ex-
pander). Let G be a k-regular expander with A nodes and
adjacency matrix M. Let W = 1

k
·M be its random walk

matrix, with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λA. Let λ =
max{|λ2|, |λA|} < 1. If two randomly walking agents a1 and
a2 collide in round r, for any m ≥ 0, the probability that they
collide again in round r +m is at most λm + 2/A.

Proof Sketch. The bound follows from noting that the stable
distribution on a regular expander is uniform, and the location
distribution of any agent after m steps converges exponentially
quickly to this distribution, with rate λ.

Again, we bound density estimation accuracy via a mod-
ification of Lemma 8, which applies when we have collision
probability O(β(m)) but not necessarily Θ(β(m)). This modi-
fied lemma gives a B(t)2 dependence. B(t) =

∑t

m=0 β(m) ≤
1

1−λ + 2t/A. Assuming t = O(A), ε = O
(√

log(1/δ)
td(1−λ)2

)
. Rear-

ranging, t = Θ
(

log(1/δ)
ε2d(1−λ)2

)
, matching independent sampling

up to a factor of O(1/(1− λ)2).

Density Estimation k-Dimensional Hypercubes. Finally, we
give bounds for a k-dimensional hypercube. Such a graph
has A = 2k vertices mapped to the elements of {±1}k, with
an edge between any two vertices that differ by hamming dis-
tance 1. The hypercube is relatively fast mixing. Its adjacency
matrix eigenvalues are [−k,−k + 2, ..., k − 2, k]. Since it is
bipartite, we can ignore the negative eigenvalues: to return to
its origin, a random walk must take an even number of steps,

so we need only need to consider the squared walk matrix W2,
which has all positive eigenvaules. Applying Lemma 11 with
λ = Θ(1−2/k) = Θ(1−1/ logA), gives t = Θ

(
log(1/δ) log2(A)

ε2d

)
.

However, it is possible to remove the dependence on A via a
more refined analysis – while the global mixing time of the
graph increases as A grows, local mixing becomes stronger!

Lemma 12 (Re-collision Probability Bound – k-Dimensional
Hypercube). If two randomly walking agents a1 and a2 are
located on a k-dimensional hypercube with A = 2k vertices and
collide in round r, for any m ≥ 0, the probability that a1 and
a2 collide in round r +m is O

(
(7/10)m + 1√

A

)
.

Converting to a density estimation bound, we have B(t) =∑t

m=0 β(m) ≤ 10
3 + t/

√
A. If we assume t = O(

√
A), this

gives ε = O

(√
log(1/δ)
td

)
and so t = Θ

(log(1/δ)
ε2d

)
, matching

independent sampling.

4. Applications

We conclude by discussing algorithmic applications of our ant-
inspired density estimation algorithm (Algorithm 1), variations
on this algorithm, and the analysis techniques we develop.

Social Network Size Estimation. Random-walk-based density
estimation is closely related to work on estimating the size of
social networks and other massive graphs using random walks
(11, 18–20). In these applications, one does not have access
to the full graph (so cannot exactly count the nodes), but
can simulate random walks by following links between nodes
(21, 22). One approach is to run a single random walk and
count repeat node visits (18, 19). Alternatively, (11) proposes
running multiple random walks and counting their collisions,
which gives an estimate of the walk’s density. Since the number
of walks is known, this yields an estimate for network size.

This approach can be significantly more efficient since the
dominant cost is typically in link queries to the network. With
multiple, shorter random walks, this cost can be trivially
distributed to multiple servers simulating walks independently.
Visit information can then be aggregated and the collision
count can be computed in a centralized manner.

Random-Walk-Based Algorithm for Network Size Estimation. Con-
sider an undirected, connected, non-bipartite graph G =
(V,E). Let S be the set of vertices of G that are ‘known’.
Initially, S = {v} where v is a seed vertex. We can access G
by looking up the neighborhood Γ(vi) of any vertex vi ∈ S
and adding Γ(vi) to S.

To compute the network size |V |, we could scan S, looking
up the neighbors of each vertex and adding them to the set.
Repeating this process until no new nodes are added ensures
that S = V and we know the network size. However, this
method requires |V | neighborhood queries. The goal is to use
significantly fewer queries using random-walk-based sampling.

A number of challenges are introduced by this application.
While we can simulate many random walks on G, we can no
longer assume these random walks start at randomly chosen
nodes, as we do not have the ability to uniformly sample
nodes from the network. Instead, we must allow the random
walks to run for a burn-in phase of length proportional to the

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

mixing time of G. After this phase, the walks are distributed
approximately according to the stable distribution of G.

Further, in general G is not regular. In the stable distribu-
tion, a random walk is located at a vertex with probability
proportional to its degree. Hence, collisions tend to occur
more at higher degree vertices. To correct for this bias, we
count a collision at vertex vi with weight 1/deg(vi).

Our results depend on a natural generalization of re-collision
probability. For any i, j, let p(vi, vj ,m) be the probability that
an m step random walk starting at vi ends at vj . Define:

β(m) def= maxi,j p(vi, vj ,m)
deg(vj)

.

Intuitively, β(m) is the maximum m step collision probability,
weighted by degree since higher degree vertices are visited
more in the stable distribution. Let B(t) =

∑t

m=1 β(m).
Note that this weighted B(t) is trivially upper bounded by
the unweighted measure used in Lemma 8.

For simplicity, we initially ignore burn-in and assume
that our walks start distributed exactly by the stable dis-
tribution of G. A walk starts at vertex vi with probabil-
ity pi

def= deg(vi)∑
i

deg(vi)
= deg(vi)

2|E| and initial locations are inde-

pendent. We also assume knowledge of the average degree
deg = 2|E|/|V |. See SI Appendix, Section S5 for a rigorous
analysis of burn-in and average degree estimation.

Algorithm 2 Random-Walk-Based Network Size Estimation
input: step count t, average degree deg, n random starting
locations [w1, ..., wn] distributed independently according to
the network’s stable distribution

[c1, ..., cn] := [0, 0, ..., 0]
for r = 1, ..., t do
∀j, set wj := randomElement(Γ(wj)) . Γ(wj) denotes

the neighborhood of wj .
∀j, set cj := cj + count(wj)

deg(wj)
. count(wj) returns the

number of other walkers currently at wj .

C :=
deg
∑

cj

n(n−1)t

return Ã = 1/C

Note that there are many ways to implement the count(·)
function used in Algorithm 2. One possibility is to simulate
the random walks in parallel, recording their paths, and then
to perform centralized post-processing to count collisions. As
queries to the network are considered to dominate time cost,
this collision counting step is relatively inexpensive.

We prove the following theorem in SI Appendix Section S5:

Theorem 13. If Algorithm 2 is run using n random walks
for t steps, as long as n2t = Θ

(
B(t)deg+1

ε2δ · |V |
)
, then with

probability at least 1− δ, it returns Ã ∈ [(1− ε)|V |, (1 + ε)|V |].

Proof Sketch. The proof is similar to that of Theorem 1. It is
not hard to see that due to our reweighting of each collision
by 1/deg(wj), EC = 1/|V |. The challenge is showing that
C concentrates around its expectation and hence Ã = 1/C is
close to |V |. Due to the complicating factors of non-uniform
degree, we are unable to compute a general moment bound for
each cj as done in Lemma 5. However, we can give a variance

bound on C, and bound its deviation via Chebyshev’s inequal-
ity. This gives a worse dependence on the failure probability:
1/δ instead of log(1/δ). We note that this can be improved
by running the algorithm log(1/δ) times, each with success
probability 1/3 and taking the median of the results.

Overall Runtime and Comparision to Previous Work. Let M denote
the burn-in time required before running Algorithm 2 (see
SI Appendix Section S5 for details). In order to obtain a
(1± ε) estimate of network size with probability 1− δ we must
run n random walks for M + t steps, making n(M + t) link
queries, where by Theorem 13, and our analysis of average
degree estimation in SI Appendix Section S5 we have:

n = Θ

(
max

{
deg

degmin ε
2δ
,

√
|V | · (B(t)deg + 1)

t · ε2δ

})
. [2]

Typically, the second term dominates since deg << |V |. Hence,
by increasing t, we are able to use fewer random walks, signifi-
cantly decreasing the number of link queries if M is large.

(11) uses a different approach, halting random walks and
counting collisions immediately after burn-in. For reason-

able node degrees they require n = Θ
(

|V |·deg

ε2δ·
√∑

deg(vi)2

)
.

Assuming that
√∑

deg(vi)2 < n, and setting t = 1, this is
somewhat smaller than our bound as

∑
deg(vi)2 ≥ |V | · deg.

However, Eq. (5) gives an important tradeoff – by increasing
t we can increase the number of steps in our random walks,
decreasing the total number of walks.

As an illustrative example, consider a k-dimensional torus
graph for k ≥ 3 (for k = 2 mixing time is Θ(|V |) so we might
as well census the full graph). The mixing time required
for Algorithm 2 (see SI Appendix Section S5 for details) is
M = Θ(log(|V |/δ)|V |2/k). All nodes have degree 2k, and
using the bounds above, to obtain a (1±ε) estimate of |V |, the
algorithm of (11) requires M · n = Θ

(
log(|V |/δ)

ε
√
d
· |V |2/k+1/2

)
link queries to obtain a size estimate. In contrast, assuming

|V | is large, we require n = Θ
(√

|V |
t·ε2δ

)
since by Lemma

10, B(t) = O(1/k) and deg = degmin = k. If we set t =
Θ(M), the total number of link queries needed is n(M + t) =
O
(√

log(|V |/δ)
ε
√
d

· |V |(k+1)/2k
)
. This beats (11) by improving

dependence on |V | and the logarithmic burn-in term. Ignoring
error dependences, if k = 3, (11) requires Θ(n7/6) queries
which is more expensive than fully censusing the graph. We
require O(n2/3) queries, which is sublinear in the graph size.

We leave open comparing our bounds with those of (11)
on more natural classes of graphs. It would be interesting
to determine typical values of B(t) in real work networks or
popular graph models, such as preferential attachment models
and others with power-law degree distributions.

Distributed Density Estimation by Robot Swarms. Algorithm
1 can be directly applied as a simple and robust density estima-
tion algorithm for robot swarms moving on a two-dimensional
plane modeled as a grid. Additionally, the algorithm can be
used to estimate the frequency of certain properties within
the swarm. Let d be the overall population density and dP be
the density of agents with some property P . Let fP = dP /d
be the relative frequency of P .

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 7

DRAFT

Assuming that agents with property P are distributed uni-
formly in population and that agents can detect this property
(through direct communication or some other signal), then
they can separately track encounters with these agents. They
can compute an estimate d̃ of d and d̃P of dP . By Theo-
rem 1, after running for t = Θ

(
log(1/δ) log log(1/δ) log(1/dε)

dP ε
2

)
steps, with probability 1−2δ, d̃P /d̃ ∈

[(
1−ε
1+ε

)
fP ,
(

1+ε
1−ε

)
fP
]

=
[(1−O(ε))fP , (1 +O(ε))fP] for small ε.

In an ant colony, properties may include whether or not
an ant has recently completed a successful foraging trip (3),
or if an ant is a nestmate or enemy (2). In a robotics setting,
properties may include whether a robot is part of a certain task
group, whether it has completed a certain task, or whether it
has detected a certain event or environmental property.

Random-Walk-Based Sensor Network Sampling. Finally, we
believe our moment bounds for a single random walk (Corol-
laries 16 and 17) can be applied to random-walk-based dis-
tributed algorithms for sensor network sampling. We leave
obtaining rigorous bounds in this domain to future work.

Random-walk-based sensor network sampling (12, 13) is
a technique in which a query message (a ‘token’) is initially
sent by a base station to some sensor. The token is relayed
randomly between sensors, which are connected via a grid
network, and its value is updated appropriately at each step
to give an answer to the query. This scheme is robust and
efficient - it easily adapts to node failures and does not require
setting up or storing spanning tree communication structures.

Random-walk-based sampling could be used, for example,
to estimate the percentage of sensors that have recorded a
specific condition, or the average value of some measurement
at each sensor. However, as in density estimation, unless an
effort is made to record which sensors have been previously
visited, additional error is added due to repeat visits. Record-
ing previous visits introduces computational burden – either
the token message size must increase or nodes themselves must
remember which tokens they have seen. We are hopeful that
our moment bounds can be used to show that this is unneces-
sary – due to strong local mixing, the number of repeat sensor
visits will be low, and the performance reduction limited.

We remark that estimating the percentage of sensors in a
network or the density of robots in a swarm with a property
that is uniformly distributed is a special case of a more general
data aggregation problem: each agent or sensor holds a value
vi drawn independently from some distribution D. The goal is
to estimate some statistic of D, such as its expectation. In the
case of density estimation, vi is simply an indicator random
variable which is 1 with probability d and 0 otherwise. Ex-
tending our results to more general data aggregation problems
and showing that random walk sampling matches independent
sampling in some cases is an interesting future direction.

5. Discussion and Future Work

We have presented a theoretical analysis of random-walk-based
density estimation by agents moving synchronously on a two-
dimensional torus graph. We have also presented applications
of our techniques to density estimation on other simple graph
topologies and to the problems of social network size estimation
and density estimation on robot swarms.

Aside from using our bounds to study sensor network sam-
pling and giving improved theoretical and empirical under-

standing of our social network size estimation algorithm, our
work leaves open a number of open questions related to mod-
eling random-walk-based density estimation in ant colonies.

We feel that our simple computational model well reflects
the behavior of ants estimating density via collision rates while
moving around a two-dimensional surface. However, extending
our results to more realistic models, e.g., with continuous
movement along a surface which is either bounded or extends
out indefinitely, is an interesting future direction.

As discussed, understanding how close actual ant move-
ments are to random walks, and how non-random behavior
influences density estimation via collision detection is also im-
portant. In conjunction with this issue, removing our uniform
density assumption and understanding how ants may estimate
local population densities which may vary throughout the nest
or surrounding area is an important direction.

Finally, we note that the accuracy bound of Theorem 1
depends on the density d. In many applications, such as in
quorum sensing, ants only need to detect when d is above
some fixed threshold. In this case, better bounds, where t can
be determined independently of the density, may be possible.

ACKNOWLEDGMENTS. We thank Amartya Shankha Biswas,
Christopher Musco, and Mira Radeva for useful discussions. We also
thank Yehuda Afek, Ziv Bar-Joseph, and Amos Korman for many
helpful comments and suggestions. Research was supported by
NSF Grants BIO-1455983 and CCF-1461559, NSF CSoI grant CCF-
0939370, and AFOSR grant FA9550-13-1-0042. Cameron Musco is
partially supported by an NSF graduate student fellowship.

1. Pratt SC (2005) Quorum sensing by encounter rates in the ant Temnothorax albipennis. Be-
havioral Ecology 16(2):488–496.

2. Adams ES (1990) Boundary disputes in the territorial ant Azteca trigona: effects of asymme-
tries in colony size. Animal Behaviour 39(2):321–328.

3. Gordon DM (1999) Interaction patterns and task allocation in ant colonies in Information
Processing in Social Insects. (Springer), pp. 51–67.

4. Schafer RJ, Holmes S, Gordon DM (2006) Forager activation and food availability in harvester
ants. Animal Behaviour 71(4):815–822.

5. Gordon DM, Paul RE, Thorpe K (1993) What is the function of encounter patterns in ant
colonies? Animal Behaviour 45(6):1083–1100.

6. Lovász L (1993) Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty
2(1):1–46.

7. Elsässer R, Sauerwald T (2009) Tight bounds for the cover time of multiple random walks in
Automata, Languages and Programming. (Springer), pp. 415–426.

8. Kanade V, Mallmann-Trenn F, Sauerwald T (2016) On coalescence time in graphs–when is
coalescing as fast as meeting? arXiv preprint arXiv:1611.02460.

9. Gillman D (1998) A Chernoff bound for random walks on expander graphs. SIAM Journal on
Computing 27(4):1203–1220.

10. Chung KM, Lam H, Liu Z, Mitzenmacher M (2012) Chernoff-Hoeffding bounds for Markov
chains: Generalized and simplified. arXiv preprint arXiv:1201.0559.

11. Katzir L, Liberty E, Somekh O, Cosma IA (2014) Estimating sizes of social networks via
biased sampling. Internet Mathematics 10(3-4):335–359.

12. Avin C, Brito C (2004) Efficient and robust query processing in dynamic environments using
random walk techniques in Proceedings of the 3rd International Symposium on Information
Processing in Sensor Networks. (ACM), pp. 277–286.

13. Lima L, Barros J (2007) Random walks on sensor networks in 5th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks and Workshops,
2007. (IEEE), pp. 1–5.

14. Nicolis SC, Theraulaz G, Deneubourg JL (2005) The effect of aggregates on interaction rate
in ant colonies. Animal Behaviour 69(3):535–540.

15. Wainwright MJ (2015) High-dimensional statistics: A non-asymptotic viewpoint, draft (http:
//www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf).

16. Aldous D, Fill J (2002) Reversible Markov chains and random walks on graphs.
17. Bassalygo L, Pinsker M (1973) The complexity of an optimal non-blocking commutation

scheme without reorganization. Problemy Peredaci Informacii 9(1):84–87.
18. Kurant M, Butts CT, Markopoulou A (2012) Graph size estimation. arXiv:1210.0460.
19. Lu J, Li D (2012) Sampling online social networks by random walk in Proceedings of the First

ACM International Workshop on Hot Topics on Interdisciplinary Social Networks Research.
(ACM), pp. 33–40.

20. Lu J, Wang H (2014) Variance reduction in large graph sampling. Information Processing &
Management 50(3):476–491.

21. Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B (2007) Measurement and
analysis of online social networks in Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement. (ACM), pp. 29–42.

22. Gjoka M, Kurant M, Butts CT, Markopoulou A (2009) A walk in Facebook: Uniform sampling
of users in online social networks. arXiv preprint arXiv:0906.0060.

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
http://www.stat.berkeley.edu/~mjwain/stat210b/Chap2_TailBounds_Jan22_2015.pdf
www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

Supporting Information Appendix
S1: Density Estimation via Simulation of Independent Sampling

Here we show that, if agents are not restricted to random walking, but can instead take arbitrary steps in each round, they can avoid
collision correlations by splitting into ‘stationary’ and ‘mobile’ groups and counting collisions only between members of different groups.
This allows them to essentially simulate independent sampling of grid locations to estimate density. This algorithm is not ‘natural’ in a
biological sense, however it is easy to analyze, and demonstrates the feasibility of density estimation by anonymous agents on the grid. We
give pseudocode in Algorithm 3. Recall that position is an ordered pair denoting an agent’s (x, y) coordinates on the torus graph, and
count(position) returns the number of other agents at the current position.

Algorithm 3 Independent-Sampling-Based Density Estimation
input: runtime t
Set c := 0 and with probability 1/2, state := walking, else state := stationary.
for r = 1, ..., t do

if state := walking then
position := position+ (0, 1) . Deterministic walk step.

c := c+ count(position) . Update collision count.
return d̃ = 2c

t

Theorem 14 (Independent Sampling Accuracy Bound). After running for t rounds, assuming t <
√
A and d ≤ 1, Algorithm 3 returns d̃

such that, for any δ > 0, with probability ≥ 1− δ, d̃ ∈ [(1− ε)d, (1 + ε)d] for ε = Θ
(√

log(1/δ)
td

)
. In other words, for any ε, δ ∈ (0, 1) if

t = Θ
(log(1/δ)

dε2

)
, d̃ is a (1± ε) multiplicative estimate of d with probability ≥ 1− δ.

Proof. Our analysis is from the perspective of an agent with state = walking. By symmetry, the distribution of d̃ is identical for walking
and stationary agents, so considering this case is sufficient.

Initially, assume that no two walking agents start in the same location. Given this assumption, we know that a walking agent never
collides with another walking agent – by assumption they all start in different positions and update these positions identically in each
round. In the written implementation agents always step up, however any fixed pattern (for example, a spiral) suffices.

In t steps, a walking agent visits t unique squares. Each of the n other agents is located in this set of squares and stationary with
probability t

2A . Further, each of these events is entirely independent from the rest, as the agents are positioned and choose their state
independently. So, for a walking agent, c is just a sample of n independent random coin flips, each with success probability t

2A . Clearly,
E c = n · t

2A = td
2 so E d̃ = E 2c

t
= d. Further, by a Chernoff bound, for any ε ∈ (0, 1), the probability that d̃ is not a (1± ε) multiplicative

estimate of d is:

δ = P
[
|d̃− d| ≥ εd

]
= P [|c− E c| ≥ εE c] ≤ 2e−ε

2 E c/3 ≤ 2e−ε
2td/6.

This gives log(1/δ) ≥ ε2td/6 so we can set ε = Θ
(√

log(1/δ)
td

)
, yielding the result.

We now remove the assumption that no two walking agents start in the same location. We slightly modify the algorithm – each agent
sets c := c (mod t) before returning d̃ = 2c

t
. If an agent starts alone and is involved in < t collisions, this operation has no effect – the

above bound holds.
If a walking agent is involved in < t ‘true collisions’ but starts in the same position as w ≥ 1 other walking agents, the agents move in

lockstep throughout the algorithm and are involved in w · t ‘spurious collisions’ (w in each round). Setting c := c (mod t) exactly corrects
for these spurious collisions and since c now includes only collisions with stationary agents, the bound above holds.

Finally, if an agent is involved in ≥ t true collisions, this modification cannot worsen their estimate. If c ≥ t and the agent does not
set c := c (mod t), they compute d̃ ≥ 2t

t
≥ 2. For ε < 1, the agent fails since by assumption d ≤ 1. So setting c := c (mod t) can only

increase success probability.

S2: Complete Proofs for Random-Walk-Based Density Estimation

We first prove our bound on the probability that two agents located in the same position at round r re-collide in round m.

Lemma 3 (Re-collision Probability Bound). Consider two agents a1 and a2 randomly walking on a two-dimensional torus of dimensions√
A×
√
A. If a1 and a2 collide in round r, for any m ≥ 0, the probability that a1 and a2 collide again in round r+m is Θ

(
1

m+1

)
+O
(

1
A

)
.

Proof. From round r to round r +m, a1 and a2 take 2m random steps in total. Let Mx be the total number of steps they take in the x
direction and My be the total number in the y direction. Mx +My = 2m.

We start by computing the probability that the agents collide in round r +m conditioned on the values of Mx and My . All steps are
chosen independently, so we can consider movement in the x and y directions separately. Let C be the event that the a1 and a2 collide in
round r +m, Cx be the event that they have the same x position, and Cy be the event that they have the same y position. We have:

P
[
C|Mx = mx,My = my

]
= P [Cx|Mx = mx] · P [Cy |My = my] . [3]

We first consider P [Cx|Mx = mx]. All bounds will hold symmetrically for the y dimension. We split our analysis into two cases. Let
C1
x be the event that the two agents have the same x position after round r +m and have identical displacements from their starting

locations. Let C2
x be the event that the two agents have the same x position after round r +m but do not have identical displacements.

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 9

DRAFT

This requires that the agents ‘wrap around’ the torus, ending at the same position despite moving different amounts in the x direction.
We have P[Cx|Mx = mx] = P[C1

x|Mx = mx] + P[C2
x|Mx = mx].

Let mix be the number of steps that agent ai takes in the x direction. We can write the displacement of agent i as
∑mix

j=1 s
i
j where sij

the direction of the agent’s jth step in the x direction. Each sij is an independent random variable equal to 1 with probability 1/2 and −1

with probability 1/2. With this notation we see that C1
x is the event that

∑m1
x

j=1 s
1
j −
∑m2

x
j=1 s

2
j = 0. Since each s2j is equal to ±1 with

equal probability, s2j is identically distributed to −s2j . We thus have:

P[C1
x|Mx = mx] = P

m1
x∑

j=1

s1j −
m2
x∑

j=1

s2j = 0

 |Mx = mx

 = P

m1
x∑

j=1

s1j +
m2
x∑

j=1

s2j = 0

 |Mx = mx


= P

[(
mx∑
j=1

tj = 0

)
|Mx = mx

]
.

where each tj is an independent random variable equal to 1 with probability 1/2 and −1 otherwise. The above probability is identical
to the probability that a single random walk takes mx steps and has 0 overall displacement – that is, that it takes an equal number of
clockwise and counterclockwise steps. It can be computed as:

P[C1
x|Mx = mx] =

(mx
mx/2

)(1
2

)mx
=

mx!
(mx2 !)2 ·

(1
2

)mx
. [4]

Above we assume mx is even – otherwise C1
x cannot occur. By Stirling’s approximation for any n > 0, n! =

√
2πn

(
n
e

)n (
1 +O

(
1
n

))
.

Plugging this into 4:

P[C1
x|Mx = mx] =

mx!
(mx2 !)2 ·

(1
2

)mx
= Θ

(1
√
mx + 1

)
.

We use mx + 1 instead of mx in the denominator so that the bound holds in the case when mx = 0.
We next bound P

[
C2
x|Mx = mx

]
– the probability that two agents have the same x position after round r +m but have different total

displacements. In order to have the same position by different displacements, the agent’s displacements must differ by an nonzero integer
multiple of

√
A – the side length of the torus. We can thus write, letting Z \ 0 denote the set of nonzero integers:

P
[
C2
x|Mx = mx

]
=
∑
c∈Z\0

P

m1
x∑

j=1

s1j −
m2
x∑

j=1

s2j = c
√
A

 |Mx = mx


=
∑
c∈Z\0

P

m1
x∑

j=1

s1j +
m2
x∑

j=1

s2j = c
√
A

 |Mx = mx


=
∑
c∈Z\0

P

[(
mx∑
j=1

tj = c
√
A

)
|Mx = mx

]

= 2

⌊
mx√
A

⌋∑
c=1

P

[(
mx∑
j=1

tj = c
√
A

)
|Mx = mx

]
[5]

where again each tj is an independent random variable equal to 1 with probability 1/2 and −1 otherwise. In the second step we again used
that s2j is identically distributed to −s2j . In the last step we used that tj is identically distributed to −tj and so the probability of the

displacement being c
√
A is identical to the probability of it being −c

√
A. Additionally, it suffices to consider c ≤

⌊
mx√
A

⌋
since otherwise

the total displacement after mx steps cannot possibly be c
√
A > mx.

The above is identical to the probability that a single mx step random walk has overall displacement ±c
√
A for some integer c ≥ 1

(and so ‘wraps around’ the torus, ending at its starting location). Roughly, we will bound the probability of this event by the probability

that the random walk ends at any other location on the torus. There are
√
A such locations, so the probability is bounded by O

(
1√
A

)
.

Formally, we have, using Eq. (5):

P
[
C2
x|Mx = mx

]
= 2

⌊
mx√
A

⌋∑
c=1

(1
2

)mx
·
(mx
mx−c

√
A

2

)
, [6]

If mx−c
√
A

2 is not an integer, we use the convention that the binomial coefficient equals 0.
For i ∈ [1, ...,

√
A− 1], let Dix be the event that a single random walk is i steps clockwise from its starting location after taking Mx

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

steps. We have:

P[Dix|Mx = mx] =
(1

2

)mx
·

⌊
mx−i√

A

⌋∑
c=−
⌊
mx+i√

A

⌋ (mx
mx+i+c

√
A

2

)

≥
(1

2

)mx
·

−1∑
c=−
⌊
mx+i√

A

⌋ (mx
mx+i+c

√
A

2

)

≥
(1

2

)mx
·

⌊
mx√
A

⌋∑
c=1

(mx
mx+i−c

√
A

2

)
. [7]

For any i ∈ [1, ...,
√
A− 1], and any c ≥ 1, mx+i−c

√
A

2 is closer to mx
2 than mx−c

√
A

2 is, so(mx
mx+i−c

√
A

2

)
>
(mx
mx−c

√
A

2

)
[8]

as long as mx+i−c
√
A

2 is an integer. This allows us to lower bound P[Dix|Mx = mx] using P
[
C2
x|Mx = mx

]
. Let Ei,c equal 1 if mx+i−c

√
A

2
is an integer and 0 otherwise. Since C2

x and each Dix are disjoint events:

P
[
C2
x|Mx = mx

]
+

√
A−1∑
i=1

P
[
Dix|Mx = mx

]
≤ 1

and so applying Eq. (7),

P
[
C2
x|Mx = mx

]
+
(1

2

)mx
·

√
A−1∑
i=1


⌊
mx√
A

⌋∑
c=1

(mx
mx+i−c

√
A

2

) ≤ 1.

Using Eq. (8) and switching summations we then have:

P
[
C2
x|Mx = mx

]
+
(1

2

)mx
·

⌊
mx√
A

⌋∑
c=1

(mx
mx−c

√
A

2

)
·

√
A−1∑
i=1

Ei,c

 ≤ 1

and so finally P
[
C2
x|Mx = mx

]
·Θ(
√
A) ≤ 1 by Eq. (6) with the fact that

∑√A−1
i=1 Ei,c = Θ

(√
A
)
for all c since mx+i−c

√
A

2 is integral

for half the possible i ∈ [1, ...,
√
A− 1]. Rearranging, we have P

[
C2
x|Mx = mx

]
= O

(
1√
A

)
.

Combining our bounds for C1
x and C2

x, P [Cx|Mx = mx] = Θ
(

1√
mx+1

)
+O

(
1√
A

)
. Identical bounds hold for the y direction and by

Eq. (3) we have:

P
[
C|Mx = mx,My = my

]
= Θ

(
1√

(mx + 1)(my + 1)

)
+O

(
1√

A(mx + 1)
+

1√
A(my + 1)

)
+O

(1
A

)
. [9]

Our final step is to remove the conditioning on Mx and My . Since direction is chosen independently and uniformly at random for each
step, EMx = EMy = m. By a standard Chernoff bound:

P[Mx ≤ m/2] ≤ 2e−(1/2)2·m/2 = O

(1
m+ 1

)
.

(Again using m+ 1 instead of m to cover the m = 0 case). An identical bound holds for My , and so, except with probability O
(

1
m+1

)
both are ≥ m/2. Plugging into Eq. (9) this gives us:

P [C] = Θ
(1
m+ 1

)
+O

(
1√

A(m+ 1)

)
+O

(1
A

)
= Θ

(1
m+ 1

)
+O

(1
A

)
.

We now give a proof of Lemma 4, which bounds the probability that two agents collide at least once.

Lemma 4 (First Collision Probability). Assuming t ≤ A, for all j ∈ [1, ..., n], P [cj ≥ 1] = Θ
(

t
A log 2t

)
.

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 11

DRAFT

Proof. Using the fact that cj is identically distributed for all j,

E d̃ = d =
1
t
· E

n∑
i=1

ci =
n

t
· E cj =

n

t
· P [cj ≥ 1] · E[cj |cj ≥ 1]

n

A
=
n

t
· P [cj ≥ 1] · E[cj |cj ≥ 1].

Rearranging gives:

P [cj ≥ 1] =
t

A · E[cj |cj ≥ 1]
. [10]

To compute E[cj |cj ≥ 1], we use Lemma 3 and linearity of expectation. Since t ≤ A, the O
(

1
A

)
term in Lemma 3 is absorbed into the

Θ
(

1
m+1

)
. Let r ≤ t be the first round that the two agents collide. We have:

E[cj |cj ≥ 1] =
t−r∑
m=0

Θ
(1
m+ 1

)
= Θ (log(2(t− r + 1))) . [11]

After any round the agents are located at uniformly and independently chosen positions, so collide with probability exactly 1/A. So,
the probability of the first collision between the agents being in a given round can only decrease as the round number increases. So, at
least 1/2 of the time that cj ≥ 1, there is a collision in the first t/2 rounds (Note that we can assume t ≥ 2 since if t = 1 we already have
E[cj |cj ≥ 1] = 1. So, overall, by Eq. (11), E[cj |cj ≥ 1] = Θ (log(2(t− t/2 + 1))) = Θ (log 2t). Using Eq. (10), P [cj ≥ 1] = Θ

(
t

A·log 2t

)
,

completing the proof.

Finally, we combine the results of Lemma 3 and 4 to give our collision moment bound.

Lemma 5 (Collision Moment Bound). For j ∈ [1, ..., n], let c̄j
def= cj − E cj and assume t ≤ A. There is some fixed constant w such that

for any integer k ≥ 2,

E
[
c̄kj
]
≤
twk

A
· k! logk−1(2t).

Proof. We expand E[c̄kj] = P[cj ≥ 1] · E[c̄kj |cj ≥ 1] + P[cj = 0] · E[c̄kj |cj = 0], and so by Lemma 4:

E
[
c̄kj
]

= O

(
t

A log 2t
· E
[
c̄kj |cj ≥ 1

]
+ E
[
c̄kj |cj = 0

])
.

E
[
c̄kj |cj = 0

]
= (E cj)k = (t/A)k. Further since t ≤ A by assumption, t/A ≤ 1 and we can loosely bound (t/A)k ≤ t

A
k! logk−1 2t

for all k ≥ 2. Further, E
[
c̄kj |cj ≥ 1

]
≤ E

[
ckj |cj ≥ 1

]
, since E cj = t

A
≤ 1. So to prove the lemma, it just remains to show that

E
[
ckj |cj ≥ 1

]
≤ k!wk logk 2t for some w.

Conditioning on cj ≥ 1, we know the agents have an initial collision in some round t′ ≤ t. We split cj over rounds as cj =
∑t

r=t′ cj(r) ≤∑t′+t−1
r=t′ cj(r). To simplify notation we relabel round t′ round 1 and so round t′ + t− 1 becomes round t. After this relabeling we have

cj(1) = 1. This relabeling is valid since the distribution over future collisions between two agents that collide in round t′ is identical, no
matter the value of t′. Expanding ckj out fully using the summation:

E
[
ckj
]

= E

[
t∑

r1=1

t∑
r2=1

...

t∑
rk=1

cj(r1)cj(r2)...cj(rk)

]

=
t∑

r1=1

t∑
r2=1

...

t∑
rk=1

E [cj(r1)cj(r2)...cj(rk)] .

E [cj(r1)cj(r2)...cj(rk)] is just the probability that the two agents collide in each of rounds r1, r2, ..., rk. Assume without loss of
generality that r1 ≤ r2 ≤ ... ≤ rk. By Lemma 3 and the fact that cj(1) = 1, for some fixed w we can bound this probability
≤ wk

r1(r2−r1+1)(r3−r2+1)...(rk−rk−1+1) . Here we use the assumption that t ≤ A so the O
(

1
A

)
term is absorbed into the Θ

(
1

m+1

)
term in

Lemma 3. We then rewrite, by linearity of expectation:

E
[
ckj
]
≤ k!

t∑
r1=1

...

t∑
rk=rk−1

wk

r1(r2 − r1 + 1)...(rk − rk−1 + 1)
.

The k! comes from the fact that in this sum we have only ordered k-tuples and so need to multiple by k! to account for the fact
that the original sum is over unordered k-tuples. We can bound:

t∑
rk=rk−1

1
rk − rk−1 + 1 = 1 + 1

2 + ...+ 1
t

= O(log 2t),

12 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

so rearranging the sum and simplifying gives:

E
[
ckj
]
≤ k!wk

t∑
r1=1

1
r1

t∑
r2=r1

1
r2 − r1 + 1 ...

t∑
rk=rk−1

1
rk − rk−1 + 1

≤ k!wk
t∑

r1=1

...

t∑
rk−1=rk−2

1
rk−2 − rk−1 + 1 ·O(log 2t).

We repeat this argument for each level of summation replacing
∑t

ri=ri−1
1

ri−ri−1+1 with O(log 2t). Iterating through the k
levels gives E

[
ckj
]
≤ k!wk logk 2t, after w is adjusted using the constant in the O(log 2t) term, establishing the lemma.

S3: Equalization Probability and Moment Bounds for Single Random Walks

Our analysis of the re-collision probabilities for two randomly walking agents given in Section 2 extends easily to bounds on the number
of equalizations (returns to origin) of a single random walk, which may be of independent interest. We first bound the equalization
probability of a walk after m steps, analogous to the two agent re-collision probability bound of Lemma 3.

Corollary 15 (Equalization Probability Bound). Consider agent a1 randomly walking on a two-dimensional torus of dimensions√
A ×
√
A. If a1 is located at position p after round r, for any even m ≥ 0, the probability that a1 is again at position p after round

r +m is Θ
(

1
m+1

)
+O

(
1
A

)
. For odd m the probability is 0.

Proof. The analysis of Lemma 3 treats the two walks of a1 and a2 as a single walk with 2m total steps. An identical analysis where 2m is
replaced by m yields the corollary.

We next extend Lemmas 4 and 5 to a single random walk, giving

Corollary 16 (Random Walk Visits Moment Bound). Consider an agent a1 randomly walking on a two-dimensional
√
A×
√
A torus

that is initially located at a uniformly random location and takes t ≤ A steps. Let cj be the number of times that a1 visits node j. There
exists a fixed constant w such that for all j ∈ [1, ...A] and all k ≥ 2,

E
[
c̄kj
]
≤
twk

A
· k! logk−1(2t).

Proof. This follows from noting that the expected number of visits to a given node is t/A and so Lemma 4 can be used in conjunction
with Corollary 15 to show that P[cj ≥ 1] = Θ

(
t

A log 2t

)
. We can then just follow the proof of Lemma 5, using Corollary 15 where needed

to obtain the result.

Corollary 17 (Equalization Moment Bound). Consider an agent a1 randomly walking on a two-dimensional
√
A×
√
A torus. If a1

takes t ≤ A steps and c is the number of times it returns to its starting position (the number of equalizations), there exists a fixed constant
w such that for all k ≥ 2, E

[
c̄k
]
≤ k!wk logk(2t).

Proof. This follows from the proof of the moment bound given in Lemma 5 for the number of collisions between two agents that are
assumed to collide at least once: E[ckj |cj ≥ 1] ≤ k!wk logk(2t). We simply replace the application of Lemma 3 with Corollary 15.

S4: Full Proofs for Extensions to Other Topologies

We now present a number of the missing proofs for our extensions to other graph topologies in Section 3.

From Re-collision Bounds to Accurate Density Estimation. We begin with our general lemma for converting collision probability bounds to
density estimation accuracy.

Lemma 8 (Re-collision Probability to Density Estimation Accuracy). Consider a regular graph with A nodes such that, if two randomly
walking agents a1 and a2 collide in round r, for any 0 ≤ m ≤ t, the probability that they collide again in round r +m is Θ (β(m)) for
some non-increasing function β(m). Let B(t) def=

∑t

m=0 β(m). After running for t ≤ A steps, Algorithm 1 returns d̃ such that, for any

δ > 0, with probability ≥ 1− δ, d̃ ∈ [(1− ε)d, (1 + ε)d] for ε = O

(√
log(1/δ)B(t)

td

)
.

Proof. E d̃ = d (Lemma 2) still holds as the regularity of the graph ensures that agents remain uniformly distributed on the nodes in every
round (the stable distribution of any regular graph is the uniform distribution). Lemma 4 is also analogous except that Eq. (11) becomes:

E[cj |cj ≥ 1] = Θ

(
t−r∑
m=0

β(m)

)
and using the fact that at least 1/2 the time that cj ≥ 1, there is a collision in the first t/2 rounds and that β(m) is non-increasing,

E[cj |cj ≥ 1] = Θ
(∑t/2

m=0 β(m)
)

= Θ (B(t)) . This gives:

P[cj ≥ 1] = Θ
(

t

A ·B(t)

)
.

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 13

DRAFT

Following the moment calculations in Lemma 5, E[ckj |cj ≥ 1] ≤ k!wkB(t)k for some constant w and hence:

E[c̄kj] ≤
twk

A
· k!B(t)k−1.

As in Corollary 6, this gives that
∑n

j=1 cj satisfies the Bernstein condition

E

(n∑
j=1

cj − E

[
n∑
j=1

cj

])k ≤ 1
2
k!σ2bk−2

for b = Θ(B(t)) and σ2 = Θ
(
n · tB(t)

A

)
= Θ (tdB(t)). Plugging into Lemma 7 gives ε2td

B(t) = Θ(log(1/δ)). Rearranging yields the result.

Applying the above bound requires a constant factor approximation to the re-collision probability – the probability is Θ(β(m)).
Sometimes however, it is much easier (for example, in our proofs for k-dimensional tori, expander graphs, and hypercubes) to give just an
upper bound – so the probability is O(β(m)). In this case a slightly weaker bound holds:

Lemma 18 (Re-collision Probability Upper Bound to Density Estimation Accuracy). Consider a regular graph with A nodes such that,
if two randomly walking agents a1 and a2 collide in round r, for any 0 ≤ m ≤ t, the probability that they collide again in round r +m is
O (β(m)) for some non-increasing function β(m). Let B(t) def=

∑t

m=0 β(m). After running for t ≤ A steps, Algorithm 1 returns d̃ such

that, for any δ > 0, with probability ≥ 1− δ d̃ ∈ [(1− ε)d, (1 + ε)d] for ε = O

(√
log(1/δ)·B(t)2

td

)
.

Proof. The proof is identical to that of Lemma 8 except that, we can only show P[cj ≥ 1] = O
(
t
A

)
. Therefore, our moment bound

becomes:

E[c̄kj] ≤
twk

A
· k!B(t)k.

for some constant w. This gives that
∑n

j=1 cj satisfies the Bernstein condition with parameters b = Θ(B(t)) and σ2 = Θ(tdB(t)2).

Following Lemma 8 we therefore have ε2td
B(t)2 = Θ(log(1/δ)). Rearranging yields the proof.

Re-collision Probability Bounds for General Topologies.

Lemma 10 (Re-collision Probability Bound – High-Dimensional Torus). If two randomly walking agents a1 and a2 are located on a
k-dimensional torus with A nodes, and collide in round r, for any constant k ≥ 3, m ≥ 0, the probability that a1 and a2 collide in round
r +m is Θ

(
1

(m+1)k/2

)
+O

(
1
A

)
.

Proof. We closely follow the proof of Lemma 3. In total, a1 and a2 take 2m steps: Mi in each dimension for i ∈ [1, ..., k]. Let Ci be the
event that the agents have the same position in the ith dimension in round r +m. By the analysis of Lemma 3,

P[Ci|Mi = mi] = Θ
(1
√
mi + 1

)
+O

(1
A1/k

)
.

So,

P[C|M1 = m1, ...,Mk = mk] =
[

Θ
(1
√
m1 + 1

)
+O

(1
A1/k

)]
· ·

[
Θ
(1
√
mk + 1

)
+O

(1
A1/k

)]
. [12]

In expectation, Mi = 2m/k. So by a Chernoff bound,

P[Mi ≤ m/k] ≤ 2e−(1/2)2·2m/3k = O

(
1

(m+ 1)k/2

)
again assuming k is a small constant. Union bounding over all k dimensions, we have Mi ≥ m/k for all i except with probability

O

(
1

(m+1)k/2

)
and hence by Eq. (12):

P[C] = O

(
1

(m+ 1)k/2

)
+

[
Θ

(
1√

m/k + 1

)
+O

(1
A1/k

)]k
= Θ

(
1

(m+ 1)k/2

)
+O

(1
A

)
,

giving the lemma (again, asymptotic notation hides multiplicative factors in k since it is constant).

Lemma 11 (Re-collision Probability Bound – Regular Expander). Let G be a k-regular expander with A nodes and adjacency matrix M.
Let W = 1

k
·M be its random walk matrix, with eigenvalues λ1 ≥ λ2 ≥ ... ≥ λA. Let λ = max{|λ2|, |λA|} < 1. If two randomly walking

agents a1 and a2 collide in round r, for any m ≥ 0, the probability that they collide again in round r +m is at most λm + 2/A.

Proof. Suppose that a1 and a2 collide at node i in round r. The probability they re-collide at round r +m is ||Wmei||22, where ei is the
ith standard basis vector. This follows from noting that for each j, Wm

i,j = (Wmei)j is the probability an agent is at node j after round
r +m given that it is at node i after round r. Since the agents move independently, both starting from node i, the probability that they
both end at node j in round r +m is (Wmei)2

j . Summing over all possible ending positions, we thus have the re-collision probability
equal to

∑A

j=1(Wmei)2
j = ||Wmei||22.

We bound this norm using the following lemma on how rapidly an expander random walk converges to its stable distribution:

14 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

Lemma 19 (See (6)). Let G be a k-regular expander with A nodes, adjacency matrix M, and random walk matrix W = 1
k
·M. Let

λ1 ≥ λ2 ≥ . . . ≥ λA be the eigenvalues of W and λ = max{|λ2|, |λA|} < 1. For each 1 ≤ j ≤ n,∣∣∣(Wm · ei)j −
1
A

∣∣∣ ≤ λm.
Now we can bound ||Wmei||22 by:

||Wmei||22 =
A∑
j=1

(Wmei)2
j =

A∑
j=1

(1
A

+ χj

)2
,

where χj
def= (Wm · ei)j − 1

A
so that χj ∈ [−1/A, λm] due to Lemma 19. We have

∑
j
χj =

∑
j
(Wmei)j −A · (1/A) = 0. Therefore,

||Wmei||22 =
A∑
j=1

(1
A

+ χj

)2

=
A∑
j=1

((1
A

)2
+

2χj
A

+ χ2
j

)
=

1
A

+
A∑
j=1

χ2
j .∑

j
χ2
j is maximized when the number of possible j with χj = λm is maximized. Let S ⊂ [1, A] be the indices j with χj = λm. Since∑

j
χj = 0, we have

∑
j∈S λ

m +
∑

j /∈S χj = 0. Therefore, |S| · λm ≤ −
∑

j /∈S χj . Further, since χj ∈ [−1/A, λm] we have:

−
∑
j /∈S

χj ≤ |j /∈ S| · 1/A =
A− |S|
|A|

= 1−
|S|
A
.

So overall, |S| ≤ 1
λm+1/A . Therefore,

A∑
j=1

χ2
j ≤
∑
j∈S

λ2m +
∑
j /∈S

χ2
j

≤
λ2m

λm + 1/A
+
A− |S|
A2 ≤ λm + 1/A.

Thus, ||Wmei||22 ≤ λ
m + 2/A, giving the lemma.

Lemma 12 (Re-collision Probability Bound – k-Dimensional Hypercube). If two randomly walking agents a1 and a2 are located on a
k-dimensional hypercube with A = 2k vertices and collide in round r, for any m ≥ 0, the probability that a1 and a2 collide in round
r +m is O

(
(7/10)m + 1√

A

)
.

Proof. A node of the hypercube can be represented as a k-bit string and each random walk step seen as choosing one of the bits uniformly
at random and flipping it. If a1 and a2 collide, for each of the bits, the total number of times a1 and a2 chose that bit must be even. The
total number of possible ways for re-collision to occur at round r +m is exactly the number of ways 2m flips can be placed into k buckets,
where each bucket has even number of elements. This quantity is:∑

a1+...+ak=2m
(ai mod 2)≡0

(2m)!
a1! · . . . · ak!

.

This value is equal to the coefficient of x2m in the exponential generating function

(2m)!
(

1 +
x2

2!
+
x4

4!
+ . . .

)k
= (2m)!

(
ex + e−x

2

)k
=

(2m)!
2k

k∑
i=0

(k
i

)
ex(2i−k).

By differentiating 2m times, we find that the coefficient of x2m is:

1
2k

k∑
i=0

(k
i

)
(2i− k)2m =

k∑
i=0

((k
i

)
/2k
)
· (2i− k)2m.

This summation is exactly E[X2m], where X is a sum of k i.i.d. random variables each equal to 1 with probability 1/2 and −1 otherwise.
For any c ∈ (0, 1], we can split the expectation:

E[X2m] = E[X2m||X| ≥ ck] · P[|X| ≥ ck] + E[X2m||X| ≤ ck] · P[|X| ≤ ck]

≤ k2m · P[|X| ≥ ck] + (ck)2m.

To bound the return probability, we divide this count by the the total number of possible paths taken by a1 and a2 in m steps, k2m,
giving an upper bound of:

P[|X| ≥ ck] + c2m.

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 15

DRAFT

By a Hoeffding bound, P[|X| ≥ ck] ≤ 2e−c2k/2. If we set c =
√

lnA/k =
√

ln 2 then P[|X| ≥ ck] ≤ 1/
√
A. So our final probability

bound is:

P[|X| ≥ ck] + c2m ≤
1
√
A

+ (
√

ln 2)2m <
1
√
A

+ (7/10)m,

yielding the lemma. Note that, by adjusting c, it is possible to trade off the terms in the above bound, giving stronger inverse dependence
on A at the expense of slower exponential decay in m.

S5: Network Size Estimation via Random Walks

We now prove Theorem 13 which bounds the performance of Algorithm 2 for network size estimation. We then discuss how to estimate
the average node degree and bound the mixing time, removing the input assumptions from Algorithm 2 and completing our analysis.

Analysis of Idealized Algorithm. We start with the analysis of Algorithm 2, which is given the average degree deg as input and random
walk starting locations distributed according to the network’s stable distribution.

Throughout this section, we work directly with the weighted total collision count C =
deg
∑

cj

n(n−1)t , showing that it is close to its
expectation with high probability and hence giving the accuracy bound for Ã. As in the density estimation case, we start by showing that
C is correct in expectation.

Lemma 20. EC = 1/|V |.

Proof. Let cj(r) be the number of collisions, weighted by inverse vertex degree, walk j expects to be involved in at round r. In each round
all walks are at vertex vi with probability pi = deg(vi)

2|E| , so:

E cj(r) =
|V |∑
i=1

[deg(vi)
2|E|

·
(n− 1) deg(vi)

2|E|
·

1
deg(vi)

]
=
n− 1
4|E|2

|V |∑
i=1

deg(vi) =
n− 1
2|E|

.

By linearity of expectation, E cj = t(n−1)
2|E| , E

∑
cj = tn(n−1)

2|E| and hence, EC = deg
2|E| = 1/|V |.

We now need to show concentration of C about its expectation. Let ci,j be the weighted collision count between walks wi and wj where
i 6= j. It is possible to follow the moment bound proof of Lemma 5 and bound all moments of ci,j . However, we cannot claim that the
different ci,j ’s are independent. Hence, we cannot prove a bound analogous to Lemma 6 and employ the concentration result of Lemma 7.

Instead, we bound just second moment (the variance) of each ci,j and obtain our concentration results via Chebyshev’s inequality.
This leads to a linear rather than logarithmic dependence on the failure probability 1/δ. However, we note that we can simply perform
log(1/δ) estimates each with failure probability 1/3 and return the median, which will be correct with probability 1− δ.

Lemma 21 (Degree Weighted Collision Variance Bound). For all i, j ∈ [1, ..., n] with i 6= j, let c̄i,j
def= ci,j − E ci,j . E

[
c̄2i,j

]
=

O
(
t(B(t)+|V |/|E|)

|E|

)
.

Proof. We can write E c̄2i,j = E c2i,j − (E ci,j)2 ≤ E c2i,j . We can then split ci,j over rounds to give:

E c̄2i,j ≤ E

[(
t∑

r=1

ci,j(r)

)2]
=

t∑
r=1

E
[
ci,j(r)2

]
+ 2

t−1∑
r=1

t∑
r′=r+1

E
[
ci,j(r)ci,j(r′)

]
.

Since the walks are in the stable distribution, and hence located at vi in each round with probability deg(vi)
2|E| , we have the weighted

collision ci,j(r) = 1
deg(vi)

with probability deg(vi)2
(2|E|)2 . We thus have E

[
ci,j(r)2

]
=
∑|V |

i=1

(
deg(vi)2
(2|E|)2 ·

1
deg(vi)2

)
. E [ci,j(r)ci,j(r′)] can be

computed similarly by summing over all pairs of vertices 1
deg(v) deg(u) times the probability that the agents collide at vertex v in round r

and then again at vertex u in round r′. Overall this gives:

E c̄2i,j ≤ t
|V |∑
i=1

(
deg(vi)2

(2|E|)2 ·
1

deg(vi)2

)
+ 2

t−1∑
r=1

t∑
r′=r+1

(|V |∑
i=1

(
deg(vi)2

(2|E|)2 ·
1

deg(vi)
·
|V |∑
j=1

p(vi, vj , r − r′)2

deg(vj)

))

≤
t|V |

4|E|2
+ 2t

t−1∑
m=1

(|V |∑
i=1

(
deg(vi)
(2|E|)2 · β(m)

|V |∑
j=1

p(vi, vj ,m)

))

where in the last step we write r − r′ = m and use the fact that β(m) def= maxi,j p(vi,vj ,m)
deg(vj)

. We have
∑|V |

j=1 p(vi, vj ,m) = 1 and so can
simplify the above as:

E c̄2i,j ≤
t|V |

4|E|2
+ 2t

t−1∑
m=1

∑|V |
i=1 deg(vi)
(2|E|)2 · β(m)

=
t|V |

4|E|2
+ 2t

t−1∑
m=1

β(m)
2|E|

= O

(
t(B(t) + |V |/|E|)

|E|

)
.

16 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

DRAFT

Lemma 22 (Total Collision Variance Bound). Let C =
deg
∑

j
c̄j

n(n−1)t . E
[
C̄2
]

= O

(
1
n2t
· B(t)|E|+|V |

|V |2

)
.

Proof.
∑n

j=1 c̄j =
∑

i,j∈[1,...,n],i 6=j c̄i,j . We closely follow the variance calculation in (11):

E

 ∑
i,j∈[1,...,n],i 6=j

c̄i,j

2 =
∑

i,j∈[1,...,n],i6=j

 ∑
i′,j′∈[1,...,n],i 6=j

c̄i,j · c̄i′,j′


= 2
(n

2
)
E
[
c̄2i,j
]

+ 4!
(n

4
)

(E c̄i,j)2 + 2 · 3!
(n

3
)
E c̄i,j c̄i,k.

The first term corresponds to the cases when i = i′ and j = j′. The second corresponds to i 6= i′ and j 6= j′, in which case c̄i,j and c̄i′,j′
are independent and identically distributed. The 4!

(
n
4

)
multiplier is the number of ways to choose an ordered set of four distinct indices.

The last term corresponds to all cases when either i = i′ or j = j′. There are 3!
(
n
3

)
ways to choose an ordered set of three distinct indices,

multiplied by two to account for the repeated index being in either the first or second position. Using E c̄i,j = 0 and the bound on E[c̄2i,j]
from Lemma 21:

E

 ∑
i,j∈[1,...,n],i 6=j

c̄i,j

2 = O

(
n2t(B(t) + |V |/|E|)

|E|

)
+ 0 + 2 · 3!

(n
3
)
E c̄i,j c̄i,k. [13]

When j 6= k, c̄i,j and c̄i,k are independent and identically distributed conditioned on the path that walk wi traverses. Let Ψi be the t step
path chosen by wi.

E
[
c̄i,j c̄i,k

]
=
∑
ψi

P [Ψi = ψi] · E [c̄i,j |Ψi = ψi] · E
[
c̄i,k
∣∣Ψi = ψi

]
=
∑
ψi

P [Ψi = ψi] · E [c̄i,j |Ψi = ψi]2

=
∑
ψi

P [Ψi = ψi] · (E [ci,j |Ψi = ψi]− E [ci,j])2 . [14]

E [ci,j |Ψi = ψi] =
∑t

r=1
deg(ψi(r))

2|E| · 1
deg(ψi(r))

= t
2|E| = E [ci,j]. That is, the expected number of collisions is identical for every path of

wi. Plugging into Eq. (14), E
[
c̄i,j c̄i,k

]
= 0.

So finally, plugging back into equation Eq. (13), E
[(∑

i,j∈[1,...,n],i 6=j c̄i,j

)2
]

= O

(
n2t(B(t)+|V |/|E|)

|E|

)
and thus:

E
[
C

2
]

= O

(
n2t(B(t) + |V |/|E|)

|E|
·
(

deg
n(n− 1)t

)2
)

= O

(1
n2t
·

(B(t) + |V |/|E|) · |E|
|V |2

)
= O

(1
n2t
·
B(t)|E|+ |V |

|V |2

)
.

With this variance bound in place, we can finally prove Theorem 13.

Proof of Theorem 13. Note that C̄ = C − EC and by Lemma 20, EC = 1/|V |. By Chebyshev’s inequality Lemma 22 gives:

P [|C − EC| ≥ εEC] ≤
1

ε2n2t
· (B(t)|E|+ |V |).

Rearranging gives us that, in order to have C ∈
[

1−ε
|V | ,

1+ε
|V |

]
with probability δ, we must have:

n2t = Θ
(
B(t)|E|+ |V |

ε2δ

)
.

Since Ã = 1/C, if C ∈
[

1−ε
|V | ,

1+ε
|V |

]
then Ã ∈

[|V |
1+ε ,

|V |
1−ε

]
⊆ [(1− 2ε)|V |, (1 + 2ε)|V |] as long as ε < 1/2. This gives the theorem after

adjusting constants on ε and recalling that deg = |E|/|V |.

Estimating The Average Degree. We now show how to estimate the value of deg used in Algorithm 2. Specifically, we need a (1 ± ε)

approximation to 1
deg

. If we then substitute this into the formula Ã =

∑
j
cj

deg·n(n−1)t
, we still have a (1 ± O(ε)) approximation to

the true network size. We use the algorithm and analysis of (11), which gives a simple approximation via inverse degree sampling.

Algorithm 4 Average Degree Estimation
input: n random starting locations [w1, ..., wn] distributed independently according to the
network’s stable distribution.
∀j, set dj := 1

deg(wj)
. Sampling

return D :=
∑

dj

n

Musco et al. PNAS | September 2, 2017 | vol. XXX | no. XX | 17

DRAFT

Theorem 23 (Average Degree Estimation). If n = Θ
(

1
ε2δ
· deg

degmin

)
, Algorithm 4 returns D such that, with probability at least 1− δ,

D ∈
[

1−ε
deg

, 1+ε
deg

]
.

Proof. Using that in the stable distribution a walk is at vertex vi with probability deg(vi)
2|E| we have:

ED =
1
n

n∑
j=1

E dj =
1
n
· n ·

|V |∑
i=1

(deg(vi)
2|E|

·
1

deg(vi)

)
=
|V |
2|E|

=
1

deg
.

For each dj let d̄j = dj E dj . We have E[d̄2
j] = E[d2

j]− E[dj]2 ≤ E[d2
j]. We can explicitly compute this expectation as:

E[d2
j] =

|V |∑
i=1

deg(vi)
2|E|

1
deg(vi)2 ≤

|V |
2|E| degmin

=
1

degmin
·

1
deg

.

Additionally, since each dj is independent and identically distributed, and since D̄ = 1
n

∑
dj , letting D̄ = D − ED,

E
[
D̄2
]

=
1
n
E[d̄2

j] ≤
1
n
E[d2

j] =
1

n degmin
·

1
deg

Applying Chebyshev’s inequality and the fact that ED = 1
deg

: P
[
|D − ED| ≤ ε

deg

]
≤ deg

ε2n degmin
. Rearranging, to succeed with

probability at least 1− δ it suffices to set n = Θ
(

1
ε2δ
· deg

degmin

)
.

Handling Burn-In Error. Finally, we remove our assumption that walks start distributed exactly according to the network’s stable distribution,
rigorously bounding the length of burn-in required before running Algorithm 2.

Let D∗ ∈ R|V |n be a vector representing the true stable distribution of n random walks on G and Dt ∈ R|V |n be a vector representing
the distribution of the walks after running for t burn-in steps. Specifically, each walk w1, ..., wn is initialized at a single seed vertex v. For
t rounds we then update the location of each walk independently by moving to a randomly chosen neighbor. Both vectors are probability
distributions: they have all entries in [0, 1] and ‖D∗‖1 = ‖D‖1 = 1.

Let ∆ = D∗−Dt and assume that ‖∆‖1 ≤ δ. We can consider two equivalent algorithms: draw an initial set of locationsW = w1, ..., wn
from D∗, run Algorithm 2, and then artificially fail with probability max{0,∆(W)}. Alternatively, draw W = w1, ..., wn from Dt, run
Algorithm 2, and then artificially fail with probability max{0,−∆(W)}. These algorithms are clearly equivalent. The first obtains a good
estimator with probability 1− 2δ - probability δ that Algorithm 2 fails when initialized via the stable distribution D∗ by Theorem 13 plus
an artificial failure probability of ≤ ‖∆‖1 ≤ δ. The second then clearly also fails with probability 2δ. This can only be higher than if we
did not perform the artificial failure after running Algorithm 2. Therefore, running Algorithm 2 with a set of random walks initially
distributed according to Dt yields success probability ≥ 1− 2δ.

How long must the burn-in period be to ensure ‖D∗ −Dt‖1 ≤ δ? Let W be the random walk matrix of G. Let λ1 ≥ λ2 ≥ . . . ≥ λA be
the eigenvalues of W and λ = max{|λ2|, |λ|V ||}. Let Ct ∈ R|V | denote the location distribution for a single random walk after burn-in and
C∗ ∈ R|V | denote the stable distribution of a single random walk. If we have, for all i, |Ct(vi)− C∗(vi)| ≤ δ/n · C∗(vi) then for any W :

|Dt(W)−D∗(W)| =

∣∣∣∣∣
n∏
i=1

Ct(wi)−
n∏
i=1

C∗(wi)

∣∣∣∣∣
≤

n∏
i=1

(C∗(wi) + δ/n · C∗(wi))−
n∏
i=1

C∗(wi)

< D∗(W)
n∑
i=1

(n
i

)
(δ/n)i ≤ D∗(W)

n∑
i=1

δi ≤ 2δ · D∗(W),

as long as δ < 1/2. This multiplicative bound gives ‖D∗ − Dt‖1 ≤ 2δ. By standard mixing time bounds ((6), Theorem 5.1),
|Ct(vi)− C∗(vi)| ≤ δ

n|E| · C
∗(vi) for all i after M = O

(log(n|E|/δ)
1−λ

)
= O

(log(|E|/δ)
1−λ

)
burn-in steps (since n < |E| or else we could have

scanned the full graph.)

18 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Musco et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

	Density Estimation on a Grid
	Results
	Theoretical Model for Density Estimation
	The Density Estimation Problem
	Local vs. Global Density

	Random-Walk-Based Density Estimation on the Two-Dimensional Torus
	Correctness of Encounter Rate in Expectation
	A Re-collision Probability Bound
	Collision Moment Bound
	Correctness of Encounter Rate With High Probability

	Extensions to Other Topologies
	From Re-collision Bounds to Accurate Density Estimation
	Density Estimation on k-Dimensional Tori
	Density Estimation on Regular Expanders
	Density Estimation k-Dimensional Hypercubes

	Applications
	Social Network Size Estimation
	Random-Walk-Based Algorithm for Network Size Estimation
	Overall Runtime and Comparision to Previous Work
	Distributed Density Estimation by Robot Swarms
	Random-Walk-Based Sensor Network Sampling

	Discussion and Future Work
	From Re-collision Bounds to Accurate Density Estimation
	Re-collision Probability Bounds for General Topologies
	Analysis of Idealized Algorithm
	Estimating The Average Degree
	Handling Burn-In Error

