
Recursive Sampling for the Nyström Method

Cameron Musco
MIT EECS

cnmusco@mit.edu

Christopher Musco
MIT EECS

cpmusco@mit.edu

Abstract

We give the first algorithm for kernel Nyström approximation that runs in linear
time in the number of training points and is provably accurate for all kernel matrices,
without dependence on regularity or incoherence conditions. The algorithm projects
the kernel onto a set of s landmark points sampled by their ridge leverage scores,
requiring just O(ns) kernel evaluations and O(ns2) additional runtime. While
leverage score sampling has long been known to give strong theoretical guarantees
for Nyström approximation, by employing a fast recursive sampling scheme, our
algorithm is the first to make the approach scalable. Empirically we show that it
finds more accurate kernel approximations in less time than popular techniques
such as classic Nyström approximation and the random Fourier features method.

1 Introduction

The kernel method is a powerful for applying linear learning algorithms (SVMs, linear regression,
etc.) to nonlinear problems. The key idea is to map data to a higher dimensional kernel feature space,
where linear relationships correspond to nonlinear relationships in the original data.

Typically this mapping is implicit. A kernel function is used to compute inner products in the
high-dimensional kernel space, without ever actually mapping original data points to the space.
Given n data points x1, . . . ,xn, the n× n kernel matrix K is formed where Ki,j contains the high-
dimensional inner product between xi and xj , as computed by the kernel function. All computations
required by a linear learning method are performed using the inner product information in K.

Unfortunately, the transition from linear to nonlinear comes at a high cost. Just generating the entries
of K requires Θ(n2) time, which is prohibitive for large datasets.

1.1 Kernel approximation

A large body of work seeks to accelerate kernel methods by finding a compressed, often low-
rank, approximation K̃ to the true kernel matrix K. Techniques include random sampling and
embedding [AMS01, BBV06, ANW14], random Fourier feature methods for shift invariant kernels
[RR07, RR09, LSS13], and incomplete Cholesky factorization [FS02, BJ02].

One of the most popular techniques is the Nyström method, which constructs K̃ using a subset of
“landmark” data points [WS01]. Once s data points are selected, K̃ (in factored form) takes just
O(ns) kernel evaluations and O(s3) additional time to compute, requires O(ns) space to store, and
can be manipulated quickly in downstream applications. E.g., inverting K̃ takes O(ns2) time.

The Nyström method performs well in practice [YLM+12, GM13, TRVR16], is widely implemented
[HFH+09, PVG+11, IBM14], and is used in a number of applications under different names such as
“landmark isomap” [DST03] and “landmark MDS” [Pla05]. In the classic variant, landmark points are
selected uniformly at random. However, significant research seeks to improve performance via data-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

dependent sampling that selects landmarks which more closely approximate the full kernel matrix
than uniformly sampled landmarks [SS00, DM05, ZTK08, BW09, KMT12, WZ13, GM13, LJS16].

Theoretical work has converged on leverage score based approaches, as they give the strongest
provable guarantees for both kernel approximation [DMM08, GM13] and statistical performance
in downstream applications [AM15, RCR15, Wan16]. Leverage scores capture how important an
individual data point is in composing the span of the kernel matrix.

Unfortunately, these scores are prohibitively expensive to compute. All known approximation schemes
require Ω(n2) time or only run quickly under strong conditions on K – e.g. good conditioning or
data “incoherence” [DMIMW12, GM13, AM15, CLV16]. Hence, leverage score-based approaches
remain largely in the domain of theory, with limited practical impact [KMT12, LBKL15, YPW15].

1.2 Our contributions

In this work, we close the gap between strong approximation bounds and efficiency: we present a
new Nyström algorithm based on recursive leverage score sampling which achieves the “best of both
worlds”: it produces kernel approximations provably matching the high accuracy of leverage score
methods while only requiring O(ns) kernel evaluations and O(ns2) runtime for s landmark points.

Theoretically, this runtime is surprising. In the typical case when s� n, the algorithm evaluates just
a small subset of K, ignoring most of the kernel space inner products. Yet its performance guarantees
hold for general kernels, requiring no assumptions on coherence or regularity.

Empirically, the runtime’s linear dependence on n means that our method is the first leverage
score algorithm that can compete with the most commonly implemented techniques, including the
classic uniform sampling Nyström method and random Fourier features sampling [RR07]. Since our
algorithm obtains higher quality samples, we show experimentally that it outperforms these methods
on benchmark datasets – it can obtain as accurate a kernel approximation in significantly less time.
Our approximations also have lower rank, so they can be stored in less space and processed more
quickly in downstream learning tasks.

1.3 Paper outline

Our recursive sampling algorithm is built on top of a Nyström scheme of Alaoui and Mahoney that
samples landmark points based on their ridge leverage scores [AM15]. After reviewing preliminaries
in Section 2, in Section 3 we analyze this scheme, which we refer to as RLS-Nyström. To simplify
prior work, which studies the statistical performance of RLS-Nyström for specific kernel learning
tasks [AM15, RCR15, Wan16], we prove a strong, application independent approximation guarantee:
for any λ, if K̃ is constructed with s = Θ(dλeff log dλeff) samples1, where dλeff = tr(K(K + λI)−1) is
the so-called “λ-effective dimensionality” of K, then with high probability, ‖K− K̃‖2 ≤ λ.
In Appendix E, we show that this guarantee implies bounds on the statistical performance of RLS-
Nyström for kernel ridge regression and canonical correlation analysis. We also use it to prove new
results on the performance of RLS-Nyström for kernel rank-k PCA and k-means clustering – in both
cases just O(k log k) samples are required to obtain a solution with good accuracy.

After affirming the favorable theoretical properties of RLS-Nyström, in Section 4 we show that its
runtime can be significantly improved using a recursive sampling approach. Intuitively our algorithm
is simple. We show how to approximate the kernel ridge leverage scores using a uniform sample of 1

2

of our input points. While the subsampled kernel matrix still has a prohibitive n2/4 entries, we can
recursively approximate it, using our same sampling algorithm. If our final Nyström approximation
will use s landmarks, the recursive approximation only needs rank O(s), which lets us estimate
the ridge leverage scores of the original kernel matrix in just O(ns2) time. Since n is cut in half
at each level of recursion, our total runtime is O

(
ns2 + ns2

2 + ns2

4 + ...
)

= O(ns2), significantly

improving upon the method of [AM15], which takes Θ(n3) time in the worst case.

Our approach builds on recent work on iterative sampling methods for approximate linear algebra
[CLM+15, CMM17]. While the analysis in the kernel setting is technical, our final algorithm is

1This is within a log factor of the best possible for any low-rank approximation with error λ.

2

simple and easy to implement. We present and test a parameter-free variation of Recursive RLS-
Nyström in Section 5, confirming superior performance compared to existing methods.

2 Preliminaries

Consider an input space X and a positive semidefinite kernel function K : X × X → R. Let
F be an associated reproducing kernel Hilbert space and φ : X → F be a (typically nonlinear)
feature map such that for any x,y ∈ X , K(x,y) = 〈φ(x), φ(y)〉F . Given a set of n input points
x1, . . . ,xn ∈ X , define the kernel matrix K ∈ Rn×n by Ki,j = K(xi,xj).

It is often natural to consider the kernelized data matrix that generates K. Informally, let Φ ∈ Rn×d′

be the matrix containing φ(x1), ..., φ(xn) as its rows (note that d′ may be infinite). K = ΦΦT .
While we use Φ for intuition, in our formal proofs we replace it with any matrix B ∈ Rn×n satisfying
BBT = K (e.g. a Cholesky factor). Such a B is guaranteed to exist since K is positive semidefinite.

We repeatedly use the singular value decomposition, which allows us to write any rank r matrix
M ∈ Rn×d as M = UΣVT, where U ∈ Rn×r and V ∈ Rd×r have orthogonal columns (the left
and right singular vectors of M), and Σ ∈ Rr×r is a positive diagonal matrix containing the singular
values: σ1(M) ≥ σ2(M) ≥ . . . ≥ σr(M) > 0. M’s pseudoinverse is given by M+ = VΣ−1UT .

2.1 Nyström approximation

The Nyström method selects a subset of “landmark” points and uses them to construct a low-rank
approximation to K. Given a matrix S ∈ Rn×s that has a single entry in each column equal to 1 so
that KS is a subset of s columns from K, the associated Nyström approximation is:

K̃ = KS(STKS)+STK. (1)

K̃ can be stored in O(ns) space by separately storing KS ∈ Rn×s and (STKS)+ ∈ Rs×s. Further-
more, the factors can be computed using just O(ns) evaluations of the kernel inner product to form
KS and O(s3) time to compute (STKS)+. Typically s� n so these costs are significantly lower
than the cost to form and store the full kernel matrix K.

We view Nyström approximation as a low-rank approximation to the dataset in feature space. Re-
calling that K = ΦΦT , S selects s kernelized data points STΦ and we approximate Φ using its
projection onto these points. Informally, let PS ∈ Rd′×d′ be the orthogonal projection onto the row
span of STΦ. We approximate Φ by Φ̃

def
= ΦPS. We can write PS = ΦTS(STΦΦTS)+STΦ.

Since it is an orthogonal projection, PSPT
S = P2

S = PS, and so we can write:

K̃ = Φ̃Φ̃T = ΦP2
SΦT = Φ

(
ΦTS(STΦΦTS)+STΦ

)
ΦT = KS(STKS)+STK.

This recovers the standard Nyström approximation (1).

3 The RLS-Nyström method

We now introduce the RLS-Nyström method, which uses ridge leverage score sampling to select
landmark data points, and discuss its strong approximation guarantees for any kernel matrix K.

3.1 Ridge leverage scores

In classical Nyström approximation (1), S is formed by sampling data points uniformly at random.
Uniform sampling can work in practice, but it only gives theoretical guarantees under strong regularity
or incoherence assumptions on K [Git11]. It will fail for many natural kernel matrices where the
relative “importance” of points is not uniform across the dataset

For example, imagine a dataset where points fall into several clusters, but one of the clusters is much
larger than the rest. Uniform sampling will tend to oversample landmarks from the large cluster while
undersampling or possibly missing smaller but still important clusters. Approximation of K and
learning performance (e.g. classification accuracy) will decline as a result.

3

(a) Uniform landmark sampling. (b) Improved landmark sampling.

Figure 1: Uniform sampling for Nyström approximation can oversample from denser parts of the
dataset. A better Nyström scheme will select points that more equally cover the relevant data.

To combat this issue, alternative methods compute a measure of point importance that is used to
select landmarks. For example, one heuristic applies k-means clustering to the input and takes the
cluster centers as landmarks [ZTK08]. A large body of theoretical work measures importance using
variations on the statistical leverage scores. One natural variation is the ridge leverage score:

Definition 1 (Ridge leverage scores [AM15]). For any λ > 0, the λ-ridge leverage score of data
point xi with respect to the kernel matrix K is defined as

lλi (K)
def
=
(
K(K + λI)−1

)
i,i
, (2)

where I is the n× n identity matrix. For any B ∈ Rn×n satisfying BBT = K, we can also write:

lλi (K) = bTi (BTB + λI)−1bi, (3)

where bTi ∈ R1×n is the ith row of B.

For conciseness we typically write lλi (K) as lλi . To check that (2) and (3) are equivalent note that
bTi (BTB+λI)−1bi =

(
B(BTB + λI)−1BT

)
i,i

. Using the SVD to write B = UΣVT and accord-

ingly K = UΣ2UT confirms that K(K+λI)−1 = B(BTB+λI)−1BT = UΣ2
(
Σ2 + λI

)−1
UT .

It is not hard to check (see [CLM+15]) that the ridge scores can be defined alternatively as:

lλi = min
y∈Rn

1

λ
‖bTi − yTB‖22 + ‖y‖22. (4)

This formulation provides better insight into these scores. Since BBT = K, any kernel algorithm
effectively works with B’s rows as data points. The ridge scores reflect the relative importance of
these rows. From (4) it’s clear that lλi ≤ 1 since we can set y to the ith standard basis vector. bi will
have score� 1 (i.e. is less important) when it’s possible to find a more “spread out” y that uses other
rows in B to approximately reconstruct bi – in other words when the row is less unique.

3.2 Sum of ridge leverage scores

As is standard in leverage score methods, we don’t directly select landmarks to be the points with the
highest scores. Instead, we sample each point with probability proportional to lλi . Accordingly, the
number of landmarks selected, which controls K̃’s rank, is a random variable with expectation equal
to the sum of the λ-ridge leverage scores. To ensure compact kernel approximations, we want this
sum to be small. Immediately from Definition 1, we have:

Fact 2.
∑n
i=1 l

λ
i (K) = tr(K(K + λI)−1).

We denote dλeff
def
= tr(K(K+λI)−1). dλeff is a natural quantity, referred to as the “effective dimension”

or “degrees of freedom” for a ridge regression problem on K with regularization λ [HTF02, Zha06].
dλeff increases monotonically as λ decreases. For any fixed λ it is essentially the smallest possible rank
achievable for K̃ satisfying the approximation guarantee given by RLS-Nyström: ‖K− K̃‖2 < λ.

4

3.3 The basic sampling algorithm

We can now introduce the RLS-Nyström method as Algorithm 1. We allow sampling each point by
any probability greater than lλi , which is useful later when we compute the scores approximately.
Oversampling landmarks can only improve K̃’s accuracy. It could cause us to take more samples, but
we will always ensure that the sum of our approximate ridge leverage scores is not too large.

Algorithm 1 RLS-NYSTRÖM SAMPLING

input: x1, . . . ,xn ∈ X , kernel matrix K, ridge parameter λ > 0, failure probability δ ∈ (0, 1/8)

1: Compute an over-approximation, l̃λi > lλi for the λ-ridge leverage score of each x1, . . . ,xn

2: Set pi := min
{

1, l̃λi · 16 log(
∑
l̃λi /δ)

}
.

3: Construct S ∈ Rn×s by sampling x1, . . . ,xn each independently with probability pi. In other
words, for each i add a column to S with a 1 in position i with probability pi.

4: return the Nyström factors KS ∈ Rn×s and (STKS)+ ∈ Rs×s.

3.4 Accuracy bounds

We show that RLS-Nyström produces K̃ which spectrally approximates K up to a small additive
error. This is the strongest type of approximation offered by any known Nyström method [GM13]. It
guarantees provable accuracy when K̃ is used in place of K in many learning applications [CMT10].

Theorem 3 (Spectral error approximation). For any λ > 0 and δ ∈ (0, 1/8), Algorithm 1 returns
S ∈ Rn×s such that with probability 1− δ, s ≤ 2

∑
i pi and K̃ = KS(STKS)+STK satisfies:

K̃ � K � K̃ + λI. (5)

When ridge scores are computed exactly,
∑
i pi = O

(
dλeff log(dλeff/δ)

)
.

� denotes the Loewner ordering: M � N means that N−M is positive semidefinite. Note that (5)
immediately implies the well studied (see e.g [GM13]) spectral norm guarantee, ‖K− K̃‖2 ≤ λ.

Intuitively, Theorem 3 guarantees that K̃ well approximates the top of K’s spectrum (i.e. any
eigenvalues > λ) while losing information about smaller, less important eigenvalues. Due to space
constraints, we defer the proof to Appendix A. It relies on the view of Nyström approximation as a
low-rank projection of the kernelized data (see Section 2.1) and we use an intrinsic dimension matrix
Bernstein bound to show accuracy of the sampled approximation.

Often the regularization parameter λ is specified for a learning task, and for near optimal performance
on this task, we set the approximation factor in Theorem 3 to ελ. In this case we have:

Corollary 4 (Tighter spectral error approximation). For any λ > 0 and δ ∈ (0, 1/8), Algorithm 1

run with ridge parameter ελ returns S ∈ Rn×s such that with probability 1− δ, s = O
(
dλeff
ε log

dλeff
δε

)
and K̃ = KS(STKS)+STK satisfies K̃ � K � K̃ + ελI.

Proof. This follows from Theorem 3 by noting dελeff ≤ dλeff/ε since (K+ελI)−1 � 1
ε (K+λI)−1.

Corollary 4 suffices to prove that K̃ can be used in place of K without sacrificing performance on
kernel ridge regression and canonical correlation tasks [AM15, Wan16]. We also use it to prove
a projection-cost preservation guarantee (Theorem 12, Appendix B), which gives approximation
bounds for kernel PCA and k-means clustering. Projection-cost preservation has proven a powerful
concept in the matrix sketching literature [FSS13, CEM+15, CMM17, BWZ16, CW17] and we hope
that extending the guarantee to kernels leads to applications beyond those considered in this work.

Our results on downstream learning bounds that can be derived from Theorem 3 are summarized in
Table 1. Details can be found in Appendices B and E.

5

Table 1: Downstream guarantees for K̃ obtained from RLS-Nyström (Algorithm 1).
Application Guarantee Theorem Space to store K̃

Kernel Ridge Regression w/ param λ (1 + ε) relative error risk bound Thm 16 Õ(
ndλeff
ε

)

Kernel k-means Clustering (1 + ε) relative error Thm 17 Õ(nk
ε
)

Rank k Kernel PCA (1 + ε) relative Frob norm error Thm 18 Õ(nk
ε
)

Kernel CCA w/ params λx, λy ε additive error Thm 19 Õ(
nd
λx
eff +nd

λy
eff

ε
)

∗ For conciseness, Õ(·) hides log factors in the failure probability, deff, and k.

4 Recursive sampling for efficient RLS-Nyström

Having established strong approximation guarantees for RLS-Nyström, it remains to provide an
efficient implementation. Specifically, Step 1 of Algorithm 1 naively requires Θ(n3) time. We show
that significant acceleration is possible using a recursive sampling approach.

4.1 Ridge leverage score approximation via uniform sampling

The key is to estimate the leverage scores by computing (3) approximately, using a uniform sample of
the data points. To ensure accuracy, the sample must be large – a constant fraction of the points. Our
fast runtimes are achieved by recursively approximating this large sample. In Appendix F we prove:

Lemma 5. For any B ∈ Rn×n with BBT = K and S ∈ Rn×s chosen by sampling each
data point independently with probability 1/2, let l̃λi = bTi (BTSSTB + λI)−1bi and pi =

min{1, 16l̃λi log(
∑
i l̃
λ
i /δ)} for any δ ∈ (0, 1/8). Then with probability at least 1− δ:

1) l̃λi ≥ lλi for all i 2)
∑
i

pi ≤ 64
∑
i

lλi log(
∑
i

lλi /δ).

The first condition ensures that the approximate scores l̃λi suffice for use in Algorithm 1. The second
ensures that the Nyström approximation obtained will not have too many sampled landmarks.

Naively computing l̃λi in Lemma 5 involves explicitly forming B, requiring Ω(n2) time (e.g. Θ(n3)
via Cholesky decomposition). Fortunately, the following formula (proof in Appx. F) avoids this cost:

Lemma 6. For any sampling matrix S ∈ Rn×s, and any λ > 0:

l̃λi
def
= bTi (BTSSTB + λI)−1bi =

1

λ

(
K−KS

(
STKS + λI

)−1
STK

)
i,i
.

It follows that we can compute all l̃λi for all i in O(ns2) time using just O(ns) kernel evaluations, to
compute KS and the diagonal of K.

4.2 Recursive RLS-Nyström

We apply Lemmas 5 and 6 to give an efficient recursive implementation of RLS-Nyström, Algorithm
2. We show that the output of this algorithm, S, is sampled according to approximate ridge leverage
scores for K and thus satisfies the approximation guarantee of Theorem 3.

Theorem 7 (Main Result). Let S ∈ Rn×s be computed by Algorithm 2. With probability 1 − 3δ,
s ≤ 384 · dλeff log(dλeff/δ), S is sampled by overestimates of the λ-ridge leverage scores of K, and
thus by Theorem 3, the Nyström approximation K̃ = KS(STKS)+STK satisfies:

K̃ � K � K̃ + λI.

Algorithm 2 uses O(ns) kernel evaluations and O(ns2) computation time.

6

Algorithm 2 RECURSIVERLS-NYSTRÖM.
input: x1, . . . ,xm ∈ X , kernel function K : X × X → R, ridge λ > 0, failure prob. δ ∈ (0, 1/32)
output: weighted sampling matrix S ∈ Rm×s

1: if m ≤ 192 log(1/δ) then
2: return S := Im×m.
3: end if
4: Let S̄ be a random subset of {1, ...,m}, with each i included independently with probability 1

2 .
. Let X̄ = {xi1 ,xi2 , ...,xi|S̄|} for ij ∈ S̄ be the data sample corresponding to S̄.
. Let S̄ = [ei1 , ei2 , ..., ei|S̄|] be the sampling matrix corresponding to S̄.

5: S̃ := RECURSIVERLS-NYSTRÖM(X̄,K, λ, δ/3).
6: Ŝ := S̄ · S̃.

7: Set l̃λi := 3
2λ

(
K−KŜ

(
ŜTKŜ + λI

)−1

ŜTK

)
i,i

for each i ∈ {1, . . . ,m} .

. By Lemma 6, equals 3
2 (B(BT ŜŜTB + λI)−1BT)i,i. K denotes the kernel matrix for data-

points {x1, . . . ,xm} and kernel function K.
8: Set pi := min{1, l̃λi · 16 log(

∑
l̃λi /δ)} for each i ∈ {1, . . . ,m}.

9: Initially set weighted sampling matrix S to be empty. For each i ∈ {1, . . . ,m}, with probability
pi, append the column 1√

pi
ei onto S.

10: return S.

Note that in Algorithm 2 the columns of S are weighted by 1/
√
pi. The Nyström approximation

K̃ = KS(STKS)+STK is not effected by column weights (see derivation in Section 2.1). However,
the weighting is necessary when the output is used in recursive calls (i.e. when S̃ is used in Step 6).

We prove Theorem 7 via the following intermediate result:
Theorem 8. For any inputs x1, . . . ,xm, K, λ > 0 and δ ∈ (0, 1/32), let K be the kernel matrix for
x1, . . . ,xm and kernel function K and let dλeff(K) be the effective dimension of K with parameter λ.
With probability (1− 3δ), RECURSIVERLS-NYSTRÖM outputs S with s columns that satisfies:

1

2
(BTB + λI) � (BTSSTB + λI) � 3

2
(BTB + λI) for any B with BBT = K. (6)

Additionally, s ≤ smax(dλeff(K), δ) where smax(w, z)
def
= 384 · (w + 1) log ((w + 1)/z). The al-

gorithm uses ≤ c1msmax(dλeff(K), δ) kernel evaluations and ≤ c2msmax(dλeff(K), δ)2 additional
computation time where c1 and c2 are fixed universal constants.

Theorem 8 is proved via an inductive argument, given in Appendix C. Roughly, consider in Step 6 of
Algorithm 2, setting Ŝ := S̄ instead of S̄ · S̃. By Lemma 5 and the formula in Lemma 6, the leverage
score approximations l̃λi computed in Step 7 would be good approximations to the true leverage
scores, and S would satisfy Theorem 8 by a standard matrix Bernstein bound (see Lemma 9).

However, if we set Ŝ := S̄, it will have n/2 columns in expectation, and the computation in Step 7
will be expensive – requiring roughly O(n3) time. By recursively calling Algorithm 8 and applying
Theorem 8 inductively, we obtain S̃ satisfying with high probability:

1

2
(BT S̄S̄TB + λI) � ((BS̄)S̃S̃T (S̄TB) + λI) � 3

2
(BS̄S̄TB + λI).

This guarantee ensures that when we use Ŝ = Ŝ · S̃ in place of S̄ in Step 7, the leverage score
estimates are changed only by a constant factor. Thus, sampling by these estimates, still gives us the
desired guarantee (6). Further, S̃ and therefore Ŝ has just O(smax(dλeff(K), δ)) columns, so Step 7
can be performed very efficiently, within the stated runtime bounds.

With Theorem 8 we can easily prove our main result, Theorem 7.

Proof of Theorem 7. In our proof of Theorem 3 in Appendix A.1, we show that if
1

2
(BTB + λI) � (BTSSTB + λI) � 3

2
(BTB + λI)

7

for a weighted sampling matrix S, then even if we remove the weights from S so that it has all unit
entries (they don’t effect the Nyström approximation), K̃ = KS(STKS)+STK satisfies:

K̃ � K � K̃ + λI.

The runtime bounds also follow nearly directly from Theorem 8. In particular, we have established
that O

(
nsmax(dλeff(K), δ)

)
kernel evaluations and O

(
nsmax(dλeff(K), δ)2

)
additional runtime are

required by RECURSIVERLS-NYSTRÖM. We only needed the upper bound to prove Theorem 8,
but along the way actually show that in a successful run of RECURSIVERLS-NYSTRÖM, S has
Θ
(
dλeff(K) log

(
dλeff(K)/δ

))
columns. Additionally, we may assume that deff(K) ≥ 1/2. If it is not,

then it’s not hard to check (see proof of Lemma 20) that λ must be ≥ ‖K‖. If this is the case, the
guarantee of Theorem 7 is vacuous: any Nyström approximation K̃ satisfies K̃ � K � K̃ + λI.
With deff(K) ≥ 1/2, dλeff(K) log

(
dλeff(K)/δ

)
and thus s are Θ(smax(dλeff(K), δ) so we conclude that

Theorem 7 uses O(ns) kernel evaluations and O(ns2) additional runtime.

5 Empirical evaluation

We conclude with an empirical evaluation of our recursive RLS-Nyström method. We use a variant
of Algorithm 2 where, instead of choosing a regularization parameter λ, the user sets a sample size
s and λ is automatically determined such that s = Θ(dλeff · log(dλeff/δ)). This variant is practically
appealing as it essentially yields the best possible approximation to K for a fixed sample budget.
Pseudocode and proofs of correctness are included in Appendix D.

5.1 Performance of Recursive RLS-Nyström for kernel approximation

We evaluate RLS-Nyström on the YearPredictionMSD, Covertype, Cod-RNA, and Adult datasets
downloaded from the UCI ML Repository [Lic13] and [UKM06]. These datasets contain 515345,
581012, 331152, and 48842 data points respectively. We compare against the classic Nyström method
with uniform sampling [WS01] and the random Fourier features method [RR07]. Due to the large
size of the datasets, prior leverage score based Nyström approaches [DMIMW12, GM13, AM15],
which require at least Ω(n2) time are infeasible, and thus not included in our tests.

We split categorical features into binary indicatory features and mean center and normalize features to
have variance 1. We use a Gaussian kernel for all tests, with the width parameter σ selected via cross
validation on regression and classification tasks. ‖K− K̃‖2 is used to measure approximation error.
Since this quantity is prohibitively expensive to compute directly (it requires building the full kernel
matrix K), the error is estimated using a random subset of 20,000 data points and repeated trials.

Samples
0 1000 2000 3000 4000 5000

‖K
−

K̃
‖ 2

10
-4

10
-2

10
0

10
2

10
4

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

(a) Adult

Samples
0 500 1000 1500 2000

‖K
−

K̃
‖ 2

10
-2

10
0

10
2

10
4

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

(b) Covertype

Samples
0 1000 2000 3000 4000 5000

‖K
−

K̃
‖ 2

10
-4

10
-2

10
0

10
2

10
4 Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

(c) Cod-RNA

Samples
0 1000 2000 3000 4000 5000

‖K
−

K̃
‖ 2

10
0

10
1

10
2

10
3

10
4

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

(d) YearPredictionMSD

Figure 2: For a given number of samples, Recursive RLS-Nyström yields approximations with lower
error, measured by ‖K− K̃‖2. Error is plotted on a logarithmic scale, averaged over 10 trials.

Figure 2 confirms that Recursive RLS-Nyström consistently obtains substantially better kernel
approximation error than the other methods. As we can see in Figure 3, with the exception of
YearPredictionMSD, the better quality of the landmarks obtained with Recursive RLS-Nyström
also translates into runtime improvements. While the cost per sample is higher for our method at
O(nd+ ns) time versus O(nd+ s2) for uniform Nyström and O(nd) for random Fourier features,
since RLS-Nyström requires fewer samples it more quickly obtains K̃ with a given accuracy. K̃ will
also have lower rank, which can accelerate processing in downstream applications.

8

Runtime (sec.)

0 5 10 15

‖K
−

K̃
‖
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Recursive RLS-Nystrom

Uniform Nystrom

(a) Adult

Runtime (sec.)
0 1 2 3 4 5

‖
K

−
K̃
‖ 2

10
-3

10
-2

10
-1

10
0

10
1

10
2

Recursive RLS-Nystrom

Uniform Nystrom

(b) Covertype

Runtime (sec.)
0 1 2 3 4 5

‖
K

−
K̃
‖
2

10
-3

10
-2

10
-1

10
0

10
1

10
2

Recursive RLS-Nystrom

Uniform Nystrom

(c) Cod-RNA

Runtime (sec.)

0 2 4 6 8 10

‖
K

−
K̃
‖
2

10
0

10
1

10
2

10
3

Recursive RLS-Nystrom

Uniform Nystrom

(d) YearPredictionMSD

Figure 3: Recursive RLS-Nyström obtains a fixed level of approximation faster than uniform sampling,
only underperforming on YearPredictionMSD. Results for random Fourier features are not shown:
while the method is faster, it never obtained high enough accuracy to be directly comparable.

In Appendix G, we show that that runtime of RLS-Nyström can be further accelerated, via a heuristic
approach that under-samples landmarks at each level of recursion. This approach brings the per
sample cost down to approximately that of random Fourier features and uniform Nyström while
nearly maintaining the same approximation quality. Results are shown in Figure 4.

For datasets such as Covertype in which Recursive RLS-Nyström performs significantly better than
uniform sampling, so does the accelerated method (see Figure 4b). However, the performance of the
accelerated method does not degrade when leverage scores are relatively uniform – it still offers the
best runtime to approximation quality tradeoff (Figure 4c).

We note further runtime optimizations may be possible. Subsequent work extends fast ridge leverage
score methods to distributed and streaming environments [CLV17]. Empirical evaluation of these
techniques could lead to even more scalable, high accuracy Nyström methods.

Samples
0 500 1000 1500 2000

R
u
n
ti
m
e
(s
ec
)

0

0.5

1

1.5

2

Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features
Acclerated Recursive RLS-Nystrom

(a) Runtimes for Covertype.

Samples
0 500 1000 1500 2000

‖K
−
K̃
‖ 2

10
-2

10
0

10
2

10
4

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

Accelerated Recursive RLS-Nystrom

(b) Errors for Covertype.
Runtime (sec.)

0 1 2 3 4 5

‖K
−
K̃
‖
2

10
0

10
1

10
2

10
3

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

Accelerated Recursive RLS-Nystrom

(c) Runtime/error tradeoff for
YearPredictionMSD.

Figure 4: Our accelerated Recursive RLS-Nyström, nearly matches the per sample runtime of random
Fourier features and uniform Nyström while still providing much better approximation.

5.2 Additional Empirical Results

In Appendix G we verify the usefulness of our kernel approximations in downstream learning tasks.
While full kernel methods do not scale to our large datasets, Recursive RLS-Nyström does since
its runtime depends linearly on n. For example, on YearPredictionMSD the method requires 307
sec. (averaged over 5 trials) to build a 2, 000 landmark Nyström approximation for 463,716 training
points. Ridge regression using the approximate kernel then requires 208 sec. for a total of 515
sec. These runtime are comparable to those of the very fast random Fourier features method, which
underperforms RLS-Nyström in terms of regression and classification accuracy.

Acknowledgements

We would like to thank Michael Mahoney for bringing the potential of ridge leverage scores to our
attention and suggesting their possible approximation via iterative sampling schemes. We would
also like to thank Michael Cohen for pointing out (and fixing) an error in our original manuscript
and generally for his close collaboration in our work on leverage score sampling algorithms. Finally,
thanks to Haim Avron for pointing our an error in our original analysis.

9

References
[AM15] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression

with statistical guarantees. In Advances in Neural Information Processing Systems 28
(NIPS), pages 775–783, 2015.

[AMS01] Dimitris Achlioptas, Frank Mcsherry, and Bernhard Schölkopf. Sampling techniques
for kernel methods. In Advances in Neural Information Processing Systems 14 (NIPS),
2001.

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the
polynomial kernel. In Advances in Neural Information Processing Systems 27 (NIPS),
pages 2258–2266, 2014.

[Bac13] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Pro-
ceedings of the 26th Annual Conference on Computational Learning Theory (COLT),
2013.

[BBV06] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. Kernels as features: On
kernels, margins, and low-dimensional mappings. Machine Learning, 65(1):79–94,
2006.

[BJ02] Francis Bach and Michael I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3(Jul):1–48, 2002.

[BMD09] Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. Unsupervised feature
selection for the k-means clustering problem. In Advances in Neural Information
Processing Systems 22 (NIPS), pages 153–161, 2009.

[BW09] Mohamed-Ali Belabbas and Patrick J. Wolfe. Spectral methods in machine learning:
New strategies for very large datasets. Proceedings of the National Academy of
Sciences of the USA, 106:369–374, 2009.

[BWZ16] Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing (STOC), 2016.

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC),
pages 163–172, 2015.

[CLL+15] Shouyuan Chen, Yang Liu, Michael Lyu, Irwin King, and Shengyu Zhang. Fast
relative-error approximation algorithm for ridge regression. In Proceedings of the 31st
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 201–210,
2015.

[CLM+15] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 6th Conference on Innovations in Theoretical Computer Science (ITCS), pages
181–190, 2015.

[CLV16] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Analysis of Nyström
method with sequential ridge leverage score sampling. In Proceedings of the 32nd
Annual Conference on Uncertainty in Artificial Intelligence (UAI), pages 62–71, 2016.

[CLV17] Daniele Calandriello, Alessandro Lazaric, and Michal Valko. Distributed adaptive
sampling for kernel matrix approximation. In Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[CMM17] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time
low-rank approximation via ridge leverage score sampling. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1758–1777,
2017.

10

[CMT10] Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the impact of kernel ap-
proximation on learning accuracy. In Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 113–120, 2010.

[CW17] Kenneth L. Clarkson and David P. Woodruff. Low-rank PSD approximation in input-
sparsity time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2061–2072, 2017.

[DM05] Petros Drineas and Michael W Mahoney. On the Nyström method for approximating
a Gram matrix for improved kernel-based learning. Journal of Machine Learning
Research, 6:2153–2175, 2005.

[DMIMW12] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff.
Fast approximation of matrix coherence and statistical leverage. Journal of Machine
Learning Research, 13:3475–3506, 2012.

[DMM08] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Relative-error CUR
matrix decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–
881, 2008.

[DST03] Vin De Silva and Joshua B Tenenbaum. Global versus local methods in nonlinear
dimensionality reduction. In Advances in Neural Information Processing Systems 16
(NIPS), pages 721–728, 2003.

[FS02] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel
representations. Journal of Machine Learning Research, 2:243–264, 2002.

[FSS13] Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA, and projective clustering. In Proceedings
of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1434–1453, 2013.

[Git11] Alex Gittens. The spectral norm error of the naive Nyström extension.
arXiv:1110.5305, 2011.

[GM13] Alex Gittens and Michael Mahoney. Revisiting the Nyström method for improved
large-scale machine learning. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 567–575, 2013. Full version at arXiv:1303.1849.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. The WEKA data mining software: an update. ACM SIGKDD
Explorations Newsletter, 11(1):10–18, 2009.

[HKZ14] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge
regression. Foundations of Computational Mathematics, 14(3):569–600, 2014.

[HTF02] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical
learning: data mining, inference and prediction. Springer, 2nd edition, 2002.

[IBM14] IBM Reseach Division, Skylark Team. Libskylark: Sketching-based Distributed
Matrix Computations for Machine Learning. IBM Corporation, Armonk, NY, 2014.

[KMT12] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the
Nyström method. Journal of Machine Learning Research, 13:981–1006, 2012.

[LBKL15] Mu Li, Wei Bi, James T Kwok, and Bao-Liang Lu. Large-scale Nyström kernel matrix
approximation using randomized SVD. IEEE Transactions on Neural Networks and
Learning Systems, 26(1):152–164, 2015.

[Lic13] M. Lichman. UCI machine learning repository, 2013.

[LJS16] Chengtao Li, Stefanie Jegelka, and Suvrit Sra. Fast DPP sampling for Nyström with
application to kernel methods. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), 2016.

11

http://arxiv.org/abs/1110.5305
http://arxiv.org/abs/1303.1849

[LSS13] Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood - Computing Hilbert space
expansions in loglinear time. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 244–252, 2013.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization
and Probabilistic Techniques in Algorithms and Data Analysis. Cambridge university
press, 2017.

[PD16] Saurabh Paul and Petros Drineas. Feature selection for ridge regression with provable
guarantees. Neural Computation, 28(4):716–742, 2016.

[Pla05] John Platt. FastMap, MetricMap, and Landmark MDS are all Nyström algorithms.
In Proceedings of the 8th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2005.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[RCR15] Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström
computational regularization. In Advances in Neural Information Processing Systems
28 (NIPS), pages 1648–1656, 2015.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems 20 (NIPS), pages 1177–1184,
2007.

[RR09] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning. In Advances in Neural Information
Processing Systems 22 (NIPS), pages 1313–1320, 2009.

[SS00] Alex J Smola and Bernhard Schökopf. Sparse greedy matrix approximation for
machine learning. In Proceedings of the 17th International Conference on Machine
Learning (ICML), pages 911–918, 2000.

[SS02] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[SSM99] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Advances in
kernel methods. chapter Kernel principal component analysis, pages 327–352. MIT
Press, 1999.

[Tro15] Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230, 2015.

[TRVR16] Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, and Benjamin Recht. Large
scale kernel learning using block coordinate descent. arXiv:1602.05310, 2016.

[UKM06] Andrew V Uzilov, Joshua M Keegan, and David H Mathews. Detection of non-coding
RNAs on the basis of predicted secondary structure formation free energy change.
BMC bioinformatics, 7(1):173, 2006.

[Wan16] Weiran Wang. On column selection in approximate kernel canonical correlation
analysis. arXiv:1602.02172, 2016.

[Woo14] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

[WS01] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 14 (NIPS),
pages 682–688, 2001.

12

http://arxiv.org/abs/1602.05310
http://arxiv.org/abs/1602.02172

[WZ13] Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and the
Nyström approximation via adaptive sampling. Journal of Machine Learning Research,
14:2729–2769, 2013.

[YLM+12] Tianbao Yang, Yu-feng Li, Mehrdad Mahdavi, Rong Jin, and Zhi-Hua Zhou. Nyström
method vs random Fourier features: A theoretical and empirical comparison. In
Advances in Neural Information Processing Systems 25 (NIPS), pages 476–484, 2012.

[YPW15] Yun Yang, Mert Pilanci, and Martin J Wainwright. Randomized sketches for kernels:
Fast and optimal non-parametric regression. Annals of Statistics, 2015.

[YZ13] Martin Wainwright Yuchen Zhang, John Duchi. Divide and conquer kernel ridge
regression. Proceedings of the 26th Annual Conference on Computational Learning
Theory (COLT), 2013.

[Zha06] Tong Zhang. Learning bounds for kernel regression using effective data dimensionality.
Learning, 17(9), 2006.

[ZTK08] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-rank approxi-
mation and error analysis. In Proceedings of the 25th International Conference on
Machine Learning (ICML), pages 1232–1239, 2008.

13

A Ridge leverage score sampling bounds

Here we give the primary matrix concentration results used to bound the performance of ridge
leverage score sampling in Theorems 3, 7, and 14.

Lemma 9. For any λ > 0 and δ ∈ (0, 1/8), given ridge leverage score approximations l̃λi ≥ `λi

for all i, let pi = min
{

1, 16l̃λi log(
∑
l̃λi /δ)

}
. Let S ∈ Rn×s be selected by sampling the standard

basis vectors e1, . . . , en each independently with probability pi and rescaling selected columns by
1/
√
pi. With probability 1− δ, 1/2 ·

∑
i pi ≤ s ≤ 2

∑
i pi and:

1

2
BTB− 1

2
λI � BTSSTB � 3

2
BTB +

1

2
λI, (7)

Proof. Let B = UΣVT be the singular value decomposition of B. By Definition 1:

lλi = bTi
(
BTB + λI

)−1
bi = bTi

(
VΣ2VT + λVVT

)−1
bi

= bTi
(
VΣ̄2VT

)−1
bi

= bTi
(
VΣ̄−2VT

)
bi,

where Σ̄2
i,i = σ2

i (B) + λ. For each i ∈ 1, . . . , n define the matrix valued random variable:

Xi =

{(
1
pi
− 1
)

Σ̄−1VTbib
T
i VΣ̄−1 with probability pi

−Σ̄−1VTbib
T
i VΣ̄−1 with probability (1− pi)

Let Y =
∑
i Xi. We have EY = 0. Furthermore, BTSSTB = VΣ̄YΣ̄VT + BTB. If we can

show that ‖Y‖2 ≤ 1
2 , then since VΣ̄2VT = BTB + λI this would give the desired bound:

1

2
BTB− 1

2
λI � BTSSTB � 3

2
BTB +

1

2
λI.

To prove that ‖Y‖2 is small we use an intrinsic dimension matrix Bernstein inequality. This inequality
will bound the deviation of Y from its expectation as long as we can bound each ‖Xi‖2 and we can
bound the matrix variance E(Y2).

Theorem 10 (Theorem 7.3.1, [Tro15]). Let X1, . . . ,Xn be random symmetric matrices such that
for all i, EX = 0 and ‖Xi‖2 ≤ L. Let Y =

∑n
i=1 Xi. As long we can bound the matrix variance:

E(Y2) � Z,

then for for t ≥
√
‖Z‖2 + L/3,

P [‖Y‖ ≥ t] ≤ 4
tr(Z)

‖Z‖2
e

−t2/2
‖Z‖2+Lt/3 .

If pi = 1 (i.e. cl̃λi log(
∑
lλ̃i /δ) ≥ 1) then Xi = 0 so ‖Xi‖2 = 0. Otherwise, we use the fact that:

1

l̃λi
bib

T
i �

1

lλi
bib

T
i � BTB + λI. (8)

This follows because we can write any x as x = (BTB + λI)−1/2y for some y. We can then write:

xTbib
T
i x = yT (BTB + λI)−1/2bib

T
i (BTB + λI)−1/2y

≤ ‖y‖22 · ‖(BTB + λI)−1/2bib
T
i (BTB + λI)−1/2‖2.

Since (BTB + λI)−1/2bib
T
i (BTB + λI)−1/2 is rank 1, we have:

‖(BTB + λI)−1/2bib
T
i (BTB + λI)−1/2‖2 = tr

(
(BTB + λI)−1/2bib

T
i (BTB + λI)−1/2

)
= bTi (BTB + λI)−1bi = lλi (9)

14

where in the last step we use the cyclic property of the trace. Writing y = (BTB + λI)1/2x and
plugging back into (9) gives:

xTbib
T
i x ≤ ‖y‖22 · lλi = xT (BTB + λI)x · lλi .

Rearranging and using that l̃λi ≥ lλi gives (8). With this bound in place we get:
1

l̃λi
· Σ̄−1VTbib

T
i VΣ̄−1 � Σ̄−1VT

(
BTB + λI

)
VΣ̄−1 = I.

So we have:

Xi �
1

pi
Σ̄−1VTbib

T
i VΣ̄−1 � l̃λi

pi
I =

1

16 log
(∑

lλ̃i /δ
)I � 1

16 log
(∑

lλi /δ
)I.

Next we bound the variance of Y.

E(Y2) =
∑

E(X2
i) �

∑[
pi

(
1

pi
− 1

)2

+ (1− pi)

]
· Σ̄−1VTbib

T
i VΣ̄−2VTbib

T
i VΣ̄−1

�
∑ 1

pi
· lλ̃i · Σ̄−1VTbib

T
i VΣ̄−1 � 1

16 log
(∑

lλi /δ
)Σ̄−1VTBTBVΣ̄−1

� 1

16 log
(∑

lλi /δ
)Σ2Σ̄−2 � 1

16 log
(∑

lλi /δ
)D. (10)

where D1,1 = 1 and Di,i = (Σ2Σ̄−2)i,i =
σ2
i (B)

σ2
i (B)+λ

for all i ≥ 2. Note that ‖D‖2 = 1.

Then applying Theorem 10 with Z = D/16 log
(∑

lλi /δ
)

we see that:

P
[
‖Y‖2 ≥

1

2

]
≤ 4 tr(D)e

−1/8
1

16 log(
∑
lλ
i
/δ)

+ 1
192 log(

∑
lλ
i
/δ) . (11)

Then we observe that:

tr(D) ≤ 1 + tr(Σ2Σ̄−2) = 1 + tr
(
K(K + λI)−1

)
= 1 +

∑
i

lλi .

Plugging into (11), establishes (7):

P
[
‖Y‖ ≥ 1

2

]
≤ 4

(
1 +

∑
i

lλi

)
· e−2 log(

∑
lλi /δ) ≤ δ/2.

Note that here we make the extremely mild assumption that
∑
i l
λ
i ≥ 1. If not, we can simply use a

smaller λ that makes this condition true, and will have s = O(1).

All that remains to show is that the sample size s is bounded with high probability. If pi = 1, we
always sample i so there is no variance in s. Let S ⊆ [1, ..., n] be the set of indices with pi < 1. The
expected number of points sampled from S is

∑
i∈S pi = 16 log(

∑
l̃λi /δ)

∑
i∈S l̃

λ
i . Assume without

loss of generality that
∑
i∈S l̃

λ
i ≥ 1 – otherwise can just increase our leverage score estimates and

increase the expected sample size by at most 1. Then, by a standard Chernoff bound, with probability
at least 1− δ/2,

1

2
· 16 log(

∑
l̃λi /δ)

∑
i∈S

l̃λi ≤ s ≤ 2 · 16 log(
∑

l̃λi /δ)
∑
i∈S

l̃λi .

Union bounding over failure probabilities gives the lemma.

Lemma 9 yields an easy corollary about sampling without rescaling the columns in S:

Corollary 11. For any λ > 0 and δ ∈ (0, 1/8), given ridge leverage score approximations l̃λi ≥ λ
i for

all i, let pi = min
{

16l̃λi log(
∑
l̃λi /δ), 1

}
. Let S ∈ Rn×s be selected by sampling, but not rescaling,

the standard basis vectors e1, . . . , en each independently with probability pi. With probability 1− δ,
1/2 ·

∑
i pi ≤ s ≤ 2

∑
i pi and there exists some scaling factor C > 0 such that

BTB � C ·BTSSTB + λI. (12)

15

Proof. By Lemma 9, if we set C ′ = 1
mini pi

we have:

1

2
BTB− 1

2
λI � C ′ ·BTSSTB

BTB � 2C ′ ·BTSSTB + λI

which gives the corollary by setting C = 2C ′.

A.1 Spectral Error Kernel Approximation

We now give the deferred proof of Theorem 3, our main approximation bound, using the matrix
concentration results proven above.
Theorem 3 (Spectral error approximation). For any λ > 0 and δ ∈ (0, 1/8), Algorithm 1 returns
S ∈ Rn×s such that with probability 1− δ, s ≤ 2

∑
i pi and K̃ := KS(STKS)+STK satisfies:

K̃ � K � K̃ + λI. (13)

When ridge scores are computed exactly,
∑
i pi = O

(
dλeff log(dλeff/δ)

)
.

Proof. It is clear from the view of Nyström approximation as a low-rank projection of the kernelized
data (see Section 2.1) that K̃ � K. Formally, for any B ∈ Rn×n with BBT = K:

K̃ = KS(STKS)+STK = BPSBT ,

where PS = BTS(STBBTS)+STB is the orthogonal projection onto the row span of STB. Since
PS is a projection ‖PS‖2 ≤ 1. So, for any x ∈ Rn:

xT K̃x = xTBPSBx = ‖PSBx‖22 ≤ ‖Bx‖22 = xTKx,

which is equivalent to K̃ � K. It remains to show that K � K̃ + λI.

In Lemma 9 above, we apply a matrix Bernstein bound [Tro15] to prove that, when S’s columns are
reweighted by the inverse of their sampling probabilities, with probability 1− δ/2:

1

2

(
BTB + λI

)
� BTSSTB + λI � 3

2

(
BTB + λI

)
.

By Corollary 11, even if S is unweighted, as in Algorithm 1, this bound implies the existence of some
finite scaling factor C > 0 such that:

BTB � C ·BTSSTB + λI. (14)

Let P̄S = I−PS be the projection onto the complement of the row span of STB. By (14):

P̄SBTBP̄S � C · P̄SBTSSTBP̄S + λP̄SIP̄S. (15)

Since P̄S projects to the complement of the row span of STB, STBP̄S = 0. So (15) gives:

P̄SBTBP̄S � 0 + λP̄SIP̄S � λI.

In other notation, ‖P̄SBTBP̄S‖2 ≤ λ. This in turn implies ‖BP̄SBT ‖2 ≤ λ and so BP̄SBT � λI.

Rearranging and using K = BBT and K̃ = BPSBT gives the result.

B Projection-cost preserving kernel approximation

In addition to the basic spectral approximation guarantee of Theorem 3, we prove that, with high prob-
ability, the RLS-Nyström method presented in Algorithm 1 outputs an approximation K̃ satisfying
what is known as a projection-cost preservation guarantee.
Theorem 12 (Projection-cost preserving kernel approximation). Let λ = ε

k

∑n
i=k+1 σi(K). For

any ε ∈ (0, 1), δ ∈ (0, 1/8), RLS-Nyström returns an S ∈ Rn×s such that with probability 1 − δ,
1/2

∑
i pi ≤ s ≤ 2

∑
i pi and the approximation K̃ = KS(SKS)+SK satisfies, for any rank k

orthogonal projection X and a positive constant c independent of X:

tr(K−XKX) ≤ tr(K̃−XK̃X) + c ≤ (1 + ε) tr(K−XKX). (16)

When ridge leverage scores are computed exactly,
∑
i pi = O

(
k
ε log k

δε

)
.

16

Intuitively, Theorem 12 ensures that the distance from K̃ to any low dimensional subspace closely
approximates the distance from K to the subspace. Accordingly, K̃ can be used in place of K to
approximately solve low-rank approximation problems, both constrained (e.g. k-means clustering)
and unconstrained (e.g. principal component analysis). See Theorems 17 and 18.

Proof. Set c = tr(K)− tr(K̃), which is ≥ 0 since K̃ � K by Theorem 3. By linearity of trace:

tr(K̃−XK̃X) + c = tr(K)− tr(XK̃X).

So to obtain (16) it suffices to show:

tr(XKX)− ε tr(K−XKX) ≤ tr(XK̃X) ≤ tr(XKX). (17)

Since X is a rank k orthogonal projection we can write X = QQT where Q ∈ Rn×k has orthonormal
columns. Applying the cyclic property of the trace, and the spectral bound of Theorem 3:

tr(XK̃X) = tr(QT K̃Q) =

k∑
i=1

qTi K̃qi ≤
k∑
i=1

qTi Kqi = tr(QTKQ) = tr(XKX).

This gives us the upper bound of (17). For the lower bound we apply Corollary 4:

tr(XK̃X) =
k∑
i=1

qTi K̃qi ≥
k∑
i=1

qTi Kqi − kελ = tr(XKX)− kελ. (18)

Finally, kελ = ε
∑n
i=k+1 σi(K) ≤ ε tr(K−XKX) since tr(K) =

∑n
i=1 σi(K) and tr(XKX) ≤∑k

i=1 σi(K) by the Eckart-Young theorem. Plugging into (18) gives (17), completing the proof.

We conclude by showing that s is not too large. As in the proof of Theorem 3, s ≤ 2
∑
i pi with

probability 1− δ. When ridge leverage scores are computed exactly
∑
i pi ≤ 16

∑
lλi log(

∑
lλi /δ).∑

i

lλi = tr(K(K + ε

(
1

k

n∑
i=k+1

σi(K

)
I)−1)

≤ 1

ε
tr(K(K +

(
1

k

n∑
i=k+1

σi(K

)
I)−1)

=
1

ε

n∑
i=1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

=
1

ε

(
k∑
i=1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

+

n∑
i=k+1

σi(K)

σi(K) + 1
k

∑n
i=k+1 σi(K)

)

≤ 1

ε

(
k +

n∑
i=k+1

σi(K)
1
k

∑n
i=k+1 σi(K)

)
=

2k

ε
. (19)

Accordingly,
∑
i pi = 32kε log k

δε as desired.

C Correctness of Recursive RLS-Nyström Algorithm

In this section we prove Theorem 8, our main recursive invariant for proving the correctness of
Algorithm 2, RECURSIVERLS-NYSTRÖM.
Theorem 8. For any inputs x1, . . . ,xm, K, λ > 0 and δ ∈ (0, 1/32), let K be the kernel matrix for
x1, . . . ,xm and kernel function K and let dλeff(K) be the effective dimension of K with parameter λ.
With probability (1− 3δ), RECURSIVERLS-NYSTRÖM outputs S with s columns that satisfies:

1

2
(BTB + λI) � (BTSSTB + λI) � 3

2
(BTB + λI) for any B with BBT = K. (20)

Additionally, s ≤ smax(dλeff(K), δ) where smax(w, z)
def
= 384 · (w + 1) log ((w + 1)/z). The al-

gorithm uses ≤ c1msmax(dλeff(K), δ) kernel evaluations and ≤ c2msmax(dλeff(K), δ)2 additional
computation time where c1 and c2 are fixed universal constants.

17

Proof. RECURSIVERLS-NYSTRÖM is a recursive algorithm and we prove Theorem 8 via induction
on the size of the input, m. In particular, we will show that, if Theorem 8 holds for any all m < n,
then it also holds for m = n. Our base case is m = 1.

Base case: Theorem 8 holds for any inputs as long as m = 1.

Suppose m = 1, so the input consists of a single point x1. Then the if statement on Line 1 clearly
evaluates to true since 192 log(1/δ) > 1. So, S is set to a 1× 1 identity matrix and (20) of Theorem
8 holds trivially since (BTB+λI) = (BTSSTB+λI). Furthermore, s = 1 ≤ smax(dλeff(K), δ) for
any dλeff(K) and δ, as required. The algorithm runs in O(1) time and performs no kernel evaluations,
so the runtime requirements of Theorem 8 also hold as long as c2 set to a large enough constant. This
all holds with probability 1, and thus for any input failure probability δ.

Inductive Step: Theorem 8 holds for m = n as long as it holds for all m < n.

Depending on the setting of δ, we split our analysis into 2 cases:

Case 1: The number of input data points n is < 192 log(1/δ).

In this case, as for the base case, the if statement on Line 1 evaluates to true. S is set to an n × n
identity matrix so (6) holds trivially. Furthermore, the number of samples s is equal to n, and
n < 192 log(1/δ) ≤ smax(dλeff(K), δ) as required. Again the algorithm doesn’t compute any kernel
dot products, the runtime bound required by Theorem 8 holds, and all statements hold with probability
1, which is > 1− 3δ for any input failure probability δ.

Case 2: The number of input data points n is ≥ 192 log(1/δ).

For this case we will use our inductive assumption since RECURSIVERLS-NYSTRÖM will call itself
recursively at Step 5, for a smaller input size m < n.

We first note that the expected number of samples taken in Step 4 is n/2. I.e. E |S̄| = n/2. By a
standard multiplicative error Chernoff bound, with high probability the number of samples taken
is not much larger than this expectation. This is important because it tells us that our problem size
decreases substantially before we make the recursive call in Step 5. Following the simplified Chernoff
bounds in e.g. [MU17], when n ≥ 192 log(1/δ), and thus E |S̄| ≥ 96 log(1/δ), we have :

P
[
1 ≤ |S̄| ≤ .56n

]
≥ (1− δ) (21)

as long as δ < 1/32, as required by Theorem 8.

So, with probability (1− δ), on Step (5), RECURSIVERLS-NYSTRÖM is called recursively on a data
set X̄ of size ≥ 1 and ≤ .56n. Accordingly, we can apply our inductive assumption that Theorem 8
holds for all m between 1 and n− 1 to conclude that, with probability (1− 3 · δ/3)2:

1. Let KS̄ denote the kernel matrix for the data points in X̄ (corresponding to the sample S̄
with kernel function K. Then BS̄ = S̄TB satisfies BS̄B

T
S̄ = KS̄ . Thus:

1

2
(BT
S̄BS̄ + λI) � (BT

S̄ S̃S̃TBS̄ + λI) � 3

2
(BT
S̄BS̄ + λI). (22)

2. S̃ has ≤ smax(dλeff(KS̄), δ/3) columns.

3. The recursive call at Step 5 evaluatesK, the kernel function,≤ c1 · |S̄| ·smax(dλeff(KS̄), δ/3)
times and uses ≤ c2 · |S̄| · smax(dλeff(KS̄), δ/3)2 additional runtime steps.

We first use (22) to prove (20). We can write KS̄ = S̄TKS̄. For all i ∈ {1, . . . n} let

¯̀λ
i =

(
B
(
BT S̄S̄TB + λI

)−1
BT
)
i,i

and p̄i = min{1, 16l̄λi log(
∑
i

l̄λi /δ)}.

2Note that in Step 5 we run RECURSIVERLS-NYSTRÖM with failure probability δ/3

18

By Lemma 5, since S̄ is constructed by sampling with probability 1
2 , with probability 1− δ, for all i:

¯̀λ
i ≥ `λi (K) and

n∑
i=1

p̄i ≤ 64dλeff(K) log
(
dλeff(K)/δ

)
. (23)

Here `λi (K) is the exact ith λ-ridge leverage score of K.

Now, since BS̄ = S̄TB, it follows from (22) and from the well known fact that M � N =⇒
N−1 �M−1, that for any vector z,

2

3
zT
(
BT S̄S̄TB + λI

)−1
z ≤ zT

(
BT S̄S̃S̃T S̄TB + λI

)−1

z ≤ 2zT
(
BT S̄S̄TB + λI

)−1
z.

Accordingly, since we set Ŝ := S̄ · S̃, for all i ∈ {1, . . . , n}

¯̀λ
i ≤

3

2

(
B
(
BT ŜŜTWB + λI

)−1

BT

)
i,i

≤ 3¯̀λ
i . (24)

By Lemma 6, the middle term is exactly equal to l̃λi as computed in Step 7 of
RECURSIVERLS-NYSTRÖM. So combining (24) and (23) we have that:

˜̀λ
i ≥ `λi (K) and

n∑
i=1

pi ≤ 192dλeff(K) log
(
dλeff(K)/δ

)
. (25)

The second bound holds because, as computed on Step 8 of RECURSIVERLS-NYSTRÖM,

pi = min{1, l̃λi · 16 log(
∑

l̃λi /δ)} ≤ 3 min{1, l̄λi · 16 log(
∑

l̄λi /δ)}

= 3p̄i ≤ 192dλeff(K) log
(
dλeff(K)/δ

)
by (24). Equation (25) guarantees that S is sampled by valid over-estimates of the ridge leverage
scores and we have a bound on the sum of the sampling probabilities. So, to establish (20), we just
apply the matrix Bernstein results presented in Lemma 9. We conclude that, with probability (1− δ),

1

2
(BTB + λI) � (BTSSTB + λI) � 3

2
(BTB + λI) for any B with BBT = K.

The same lemma guarantees that S will have s columns where

1

2

∑
pi ≤ s ≤ 2

∑
pi. (26)

2
∑
pi ≤ 384dλeff(K) log

(
dλeff(K)/δ

)
≤ smax(dλeff(K), δ) columns.

To finish our proof of Theorem 8, we still need a bound the algorithms runtime.

Kernel evaluations are performed both during the recursive call at Step 5 and when computing
approximate leverage scores at Step 7. Let s̃ be the number of columns in S̃, and hence in Ŝ. At Step
7, K needs to be evaluated n · (s̃+ 1) times: ns̃ times to compute KŜ and n times to compute the
diagonal of K. Additionally, by the 3rd guarantee that comes from our inductive assumption, we
need at most c1 · |S̄| · smax(dλeff(KS̄), δ/3) kernel evaluations for the recursive call. We claim that:

smax(dλeff(KS̄), δ/3) ≤ 1.317smax(dλeff(K), δ). (27)

This follows from Lemma 20: since KS̄ = S̄TKS̄ and S̄S̄T � I for any sampling matrix, dλeff(KS̄) ≤
dλeff(K). Additionally, we use that log(3/δ) ≤ 1.317 log(1/δ) when δ ≤ 1/32.

Using this bound and (21) we see that our total number of kernel evaluations can be bounded by:

n · (s̃+ 1) + c1 · |S̄| · smax(dλeff(KS̄), δ/3)

≤ n · (smax(dλeff(KS̄), δ/3) + 1) + c1 · .56n · smax(dλeff(KS̄), δ/3)

≤ (2.317 + .74c1)n · smax(dλeff(K), δ).

As long as c1 > 9, the above is < c1nsmax(dλeff(K), δ), so we see that RECURSIVERLS-NYSTRÖM
run on a data set of size n performs no more kernel evaluations than that allowed by Theorem 8.

19

We finally bound runtime, accounting for the recursive call to RECURSIVERLS-NYSTRÖM and all
other steps. Again, using the 3rd guarantee from our inductive assumption, (27), and (21) to bound
|S̄|, the recursive call that computes S̃ has runtime at most:

c2 · |S̄| · smax(dλeff(KS̄), δ/3)2 ≤ .972c2n · smax(dλeff(K), δ)2.

In addition to the recursive call, the remaining runtime of the algorithm is dominated by the time to

compute
(
ŜTKŜ + λI

)−1

and then to multiply this matrix by the n× s̃ matrix KŜ at Step 7. Both

of these operations and all other steps can be performed in O(s̃3 + ns̃2) time. Since s̃ ≤ n, there is
some constant c such that the number of steps required for the algorithm besides the recursive call is
cns̃2 ≤ cnsmax(dλeff(KS̄), δ/3)2. Again applying (27), our total runtime is bounded by:

.972c2n · smax(dλeff(K), δ)2 + cnsmax(dλeff(KS̄), δ/3)2

which is ≤ c2n · smax(dλeff(K), δ)2 as long as c2 ≥ 40c.

The proof of our statements above relied on three events succeeding: (21), (23), that the recursive
call succeeded in satisfying (22) and the two following guarantees. Each of these events fails with
probability at most δ, so we conclude via a union bound that they all succeed with probability 1− 3δ.

Accordingly, we have proven that Theorem (8) holds for fixed universal constants c1 and c2 for any
input data set of size n as long as it holds for any input data set of size m with 1 ≤ m < n. Along
with our base case, this establishes the theorem for all input sizes.

D Recursive RLS-Nyström algorithm for fixed sample size

We now discuss our variant of Algorithm 2 where, instead of fixing λ, the user sets a sample size s and
λ is determined such that s = Θ(dλeff · log(dλeff/δ)). This variant is practically useful and necessary in
applications to kernel PCA and kernel k-means clustering, when λ is unknown, but where we set
s ≈ k log k (see Appendices B and E).

Given a fixed sample size s, we will control λ using the following fact:
Fact 13 (Proven in (19)). For any K and integer k, for λ = 1

k

∑n
i=k+1 σi(K), dλeff ≤ 2k.

If we choose k such that s ≈ k log k then setting λ as above will yield an RLS-Nyström approximation
with approximately s sampled columns. The details are given in Algorithm 3.

Algorithm 3 RECURSIVE RLS-NYSTRÖM SAMPLING, FIXED SAMPLE SIZE.
input: x1, . . . ,xm ∈ X , kernel function K : X ×X → R, sample size s, failure prob. δ ∈ (0, 1/32)

output: sampling matrix S ∈ Rm×s′ .
1: if m ≤ s then
2: return S := Im×m.
3: end if
4: Let S̄ be a random subset of {1, ...,m}, with each i included independently with probability 1

2 .
. Let X̄ = {xi1 ,xi2 , ...,xi|S̄|} for ij ∈ S̄ be the data sample corresponding to S̄.
. Let S̄ = [ei1 , ei2 , ..., ei|S̄|] be the sampling matrix corresponding to S̄.

5: S̃ := RECURSIVERLS-NYSTRÖM(X̄,K, s, δ/3).
6: Ŝ := S̄ · S̃.
7: Set k to the maximum integer with ck log(2k/δ) ≤ s, where c is some fixed constant.
8: λ̃ := 1

k

∑n
i=k+1 σi(Ŝ

TKŜ) . Approximate λ

9: Set l̃λi := 5
λ̃

(
K−KŜ

(
ŜTKŜ + λ̃I

)−1

ŜTK

)
i,i

for each i ∈ {1, ...,m}.

. By Lemma 6, equals 3
2 (B(BT ŜŜTB + λ̃I)−1BT)i,i. K denotes the kernel matrix for data-

points {x1, . . . ,xm} and kernel function K.
10: Set pi := min{1, l̃λi · 16 log(2k/δ)} for each i ∈ {1, ...,m}.
11: Initially set weighted sampling matrix S to be empty. For each i ∈ {1, . . . ,m}, with probability

pi, append the column 1√
pi

ei onto S.
12: return S

20

Theorem 14. For sufficiently large universal constant c, let k be any positive integer with s ≥
ck log(2k/δ) and λ = 1

k

∑n
i=k+1 σi(K). Let S ∈ Rn×s′ be computed by Algorithm 3. With

probability 1 − 3δ, s′ ≤ 2s, S is sampled by overestimates of the λ-ridge leverage scores of K,
and the Nyström approximation K̃ = KS(STKS)+STK satisfies the guarantee of Theorem 3.
Algorithm 3 uses O(ns) kernel evaluations and O(ns2) runtime.

For the λ given in Theorem 14, we have dλeff = Θ(k). Hence, since we set s = Θ(k log k/δ), additive
error λ is essentially the smallest we can obtain using an s sample Nyström approximation. The proof
of Theorem 14 is similar to that of Theorem 7. It follows from the recursive invariant:
Theorem 15. With probability 1 − 3δ, Algorithm 3 performs O(ns) kernel evaluations, runs in
O(ns2) time, and for any integer k with s ≥ ck log(2k/δ) returns S satisfying, for any B with
BBT = K:

1

2
(BTB + λI) � (BTSSTB + λI) � 3

2
(BTB + λI) (28)

for λ = 1
k

∑n
i=k+1 σi(K).

Proof. Assume by induction that after forming S̄ via uniformly sampling, the recursive call to
Algorithm 3 returns S̃ such that Ŝ = S̄ · S̃ satisfies:

1

2
(BT S̄S̄TB + λ′I) � (BT ŜŜTB + λ′I) � 3

2
(BT S̄S̄TB + λ′I). (29)

where λ′ = 1
k

∑n
i=k+1 σi(S̄

TKS̄). This implies that λ̃ = 1
k

∑n
i=k+1 σi(Ŝ

TKŜ) satisfies:

1

2k

(
n∑

i=k+1

σi(S̄
TKS̄) + kλ′

)
≤ λ̃ ≤ 3

2k

(
n∑

i=k+1

σi(S̄
TKS̄) + kλ′

)
λ′ ≤ λ̃ ≤ 3λ′.

Combining with (29) we have:

1

2
(BT S̄S̄TB + λ′I) � (BT ŜŜTB + λ̃I) � 9

2
(BT S̄S̄TB + λ′I).

So, for all i, l̃λi (which is computed using (BT ŜŜTB + λ̃I) and oversampling factor 5 in Step 9 of
Algorithm 3) is at least as large as the approximate leverage score computed using S̄ instead of Ŝ. If
we sample by these scores, by Lemma 5 and Lemma 9 we will have with probability 1− δ:

1

2
(BTB + λ′I) � (BTSSTB + λ′I) � 3

2
(BTB + λ′I)

which implies (28) since λ′ ≤ λ since ‖S̄‖2 ≤ 1 so σi(S̄TKS̄) ≤ σi(K) for all i.

It just remains to show that we do not sample too many points. This can be shown using a sim-
ilar reweighting argument to that used in the fixed λ case in Lemma 5. Full details appear in
Lemma 13 of [CMM17]. When forming the reweighting matrix W, decreasing Wi,i will decrease∑n
i=k+1 σi(WKW) and hence will decrease λ. However, it is not hard to show that the ith ridge

leverage score will still decrease. So we can find W giving a uniform ridge leverage score upper
bound of α. Let λ′ =

∑n
i=k+1 σi(WKW).

Using the same argument as Lemma 5, we can bound the sum of estimated sampling probabilities by
64 log(

∑
lλ
′

i (WKW)/δ) ·
∑
lλ
′

i (WKW) ≤ s/5 by Fact 13 if we set c large enough. The runtime
and failure probability analysis is identical to that of Algorithm 2 (Theorem 8) – the only extra step is
computing λ̃ which can be done in O(s3) time via an SVD of ŜTKŜ.

Proof of Theorem 14. The theorem follows immediately since Theorem 15 guarantees that in the
final level of recussion K is sampled by overestimates of its λ-ridge leverage scores. The runtime
bound follows from Theorem 15 and the fact that it is possible to compute KS using O(ns) kernel
evaluations and (STKS)+ using O(ns2 + s3) = O(ns2) additional time.

21

E Applications to learning tasks

In this section use our general approximation gaurantees from Theorems 3 and 12 to prove that
the kernel approximations given by RLS-Nyström sampling are sufficient for many downstream
learning tasks. In other words, K̃ can be used in place of K without sacrificing accuracy or statistical
performance in the final computation.

E.1 Kernel ridge regression

We begin with a standard formulation of the ubiquitous kernel ridge regression task [SS02]. Given
input data points x1, . . . ,xn ∈ Rd and labels y1, . . . , yn ∈ R this problem asks us to solve:

α
def
= arg min

c∈Rn
‖Kc− y‖22 + λcTKc, (30)

which can be done in closed form by computing:

α = (K + λI)−1y.

For prediction, when we’re given a new input x, we evaluate its label to be:

y =

n∑
i=1

αiK(xi,x). (31)

E.1.1 Approximate kernel ridge regression

Naively, solving for α exactly requires at least O(n2) time to compute K, plus the cost of a direct
or iterative matrix inversion algorithm. Prediction is also costly since it requires a kernel evaluation
with all n training points. These costs can be reduced significantly using Nyström approximation.

In particular, we first select landmark points and compute the kernel approximation K̃ =
KS(STKS)+STK. We can then compute an approximate set of coefficients:

α̃
def
= (K̃ + λI)−1y. (32)

With a direct matrix inversion, doing so only takes O(ns2) time when our sampling matrix S ∈ Rn×s
selects s landmark points. This is a significant improvement on the O(n3) time required to invert
the full kernel. Additionally, the cost of multiplying by K̃ + λI, which determines the cost of most
iterative regression solvers, is reduced, from O(n2) to O(ns).

To predict a label for a new x, we first compute its kernel product with all of our landmark points.
Specifically, let x(1), . . . ,x(s) be the landmarks selected by S’s columns. Define w ∈ Rs as:

wi
def
= K(x(i),x).

and let

y = wT (STKS)+STKα̃. (33)

Computationally, it makes sense to precompute (STKS)+STKα̃. Then the cost of prediction is just
s kernel evaluations to compute w, plus s additional operations to multiply wT by (STKS)+STKα̃.

This approach is the standard way of applying Nyström approximation to the ridge regression problem
and there are a number of ways to evaluate its performance. Beyond directly bounding minimization
error for (30) (see e.g. [CLL+15, YPW15, YZ13]), one particularly natural approach is to consider
how the statistical risk of the estimator output by our approximate ridge regression routine compares
to that of the exactly computed estimator.

E.1.2 Relative error bound on statistical risk

To evaluate statistical risk we consider a fixed design setting which has been especially -popular
[Bac13, AM15, LJS16, PD16]. Note that more complex statistical models can be analyzed as well

22

[HKZ14, RCR15]. In this setting, we assume that our observed labels y = [y1, . . . , yn] represent
underlying true labels z = [z1, . . . , zn] perturbed with noise. For simplicity, we assume uniform
Gaussian noise with variance σ2, but more general noise models can be handled with essentially the
same proof [Bac13]. In particular, our modeling assumption is that:

yi = zi + ηi

where ηi ∼ N(0, σ2).

Following, [Bac13] and [AM15], we want to bound the expected in sample risk of our estimator for
z, which is computed using the noisy measurements y = z + η. For exact kernel ridge regression,
we can check from (31) that this estimator is equal to Kα. The riskR is:

R def
= E

η
‖K(K + λI)−1(z + η)− z‖22

= ‖
(
K(K + λI)−1 − I

)
z‖22 + E

η
‖K(K + λI)−1η‖22

= λ2zT (K + λI)−2z + σ2 tr(K2(K + λI)−2).

The two terms that composeR are referred to as the bias and variance terms of the risk:

bias(K)2 def
= λ2zT (K + λI)−2z

variance(K)
def
= σ2 tr(K2(K + λI)−2).

For approximate kernel ridge regression, it follows from (33) that our predictor for z is K̃α̃. Accord-
ingly, the risk of the approximate estimator, R̃ is equal to:

R̃ = bias(K̃)2 + variance(K̃)

We’re are ready to prove our main theorem on kernel ridge regression.

Theorem 16 (Kernel Ridge Regression Risk Bound). Suppose K̃ is computed using RLS-Nyström
with approximation parameter ελ and failure probability δ ∈ (0, 1/8). Let α̃ = (K̃ + λI)−1y and
let K̃α̃ be our estimator for z computed with the approximate kernel. With probability 1− δ:

R̃ ≤ (1 + 3ε)R.

By Theorem 7, Algorithm 2 can compute K̃ with just O(ns) kernel evaluations and O(ns2) computa-

tion time, with s = O

(
dλeff

ε log
dλeff

δε

)
.

In other words, replacing K with the approximation K̃ is provably sufficient for obtaining a 1 + Θ(ε)
quality solution to the downstream task of ridge regression.

Proof. The proof follows that of Theorem 1 in [AM15]. First we show that:

bias(K̃) ≤ (1 + ε)bias(K). (34)
At first glance this might appear trivial as Theorem 3 easily implies that

(K̃ + λI)−1 � (1 + ε)(K + λI)−1

However, this statement does not imply that

(K̃ + λI)−2 � (1 + ε)2(K + λI)−2

since (K̃ + λI)−1 and (K + λI)−1 do not necessarily commute. Instead we proceed:
1

λ
bias(K̃) = ‖(K̃ + λI)−1z‖2

≤ ‖(K + λI)−1z‖2 + ‖(K̃ + λI)−1z− (K + λI)−1z‖2 (triangle inequality)

= ‖(K + λI)−1z‖2 + ‖(K̃ + λI)−1[(K + λI)− (K̃ + λI)](K + λI)−1z‖2
= ‖(K + λI)−1z‖2 + ‖(K̃ + λI)−1(K− K̃)(K + λI)−1z‖2
≤ ‖(K + λI)−1z‖2 + ‖(K̃ + λI)−1(K− K̃)‖2‖(K + λI)−1z‖2 (submultiplicativity)

=
1

λ
bias(K)

(
1 + ‖(K̃ + λI)−1(K− K̃)‖2

)
. (35)

23

So we just need to bound ‖(K̃ + λI)−1(K− K̃)‖2 ≤ ε. First note that, by Theorem 3, Corollary 4,

K− K̃ � ελI

and since (K− K̃) and I commute, it follows that

(K− K̃)2 � ε2λ2I. (36)

Accordingly,

‖(K̃ + λI)−1(K− K̃)‖22 = ‖(K̃ + λI)−1(K− K̃)2(K̃ + λI)−1‖2
≤ ε2λ2‖(K̃ + λI)−2‖2

≤ ε2λ2 1

λ2
= ε2.

So ‖(K̃ + λI)−1(K − K̃)‖2 ≤ ε as desired and plugging into (35) we have shown (34), that
bias(K̃) ≤ (1 + ε)bias(K). We next show that:

variance(K̃) ≤ variance(K), (37)

where variance(K) = σ2 tr(K2(K + λI)−2) = σ2
∑n
i=1

(
σi(K)

σi(K)+λ

)2

. Since K̃ � K by Theorem

3, σi(K̃) ≤ σi(K) for all i. It follows that, for every i,

σi(K̃)

σi(K̃) + λ
≤ σi(K)

σi(K) + λ
.

This in turn implies that
n∑
i=1

(
σi(K̃)

σi(K̃) + λ

)2

≤
n∑
i=1

(
σi(K)

σi(K) + λ

)2

,

which gives (37). Combining (37) and (34) we conclude that, for ε < 1,

R(f̂K̃) ≤ (1 + ε)2R(f̂K) ≤ (1 + 3ε)R(f̂K).

E.2 Kernel k-means

Kernel k-means clustering asks us to partition x1, . . . ,xn, into k cluster sets, {C1, . . . , Ck}. Let
µi = 1

|Ci|
∑

xj∈Ci φ(xj) be the centroid of the vectors in Ci after mapping to kernel space. The goal
is to choose {C1, . . . , Ck} which minimize the objective:

k∑
i=1

∑
xj∈Ci

‖φ(xj)− µi‖2F (38)

It is well known that this optimization problem can be rewritten as a constrained low-rank approxima-
tion problem (see e.g. [BMD09] or [CEM+15]). In particular, for any clustering C = {C1, . . . , Ck}
we can define a rank k orthonormal matrix C ∈ Rn×k called the cluster indicator matrix for C.
Ci,j = 1/

√
|Cj | if xi is assigned to Cj and Ci,j = 0 otherwise. CTC = I, so CCT is a rank k

projection matrix. Furthermore, it is not hard to check that:
k∑
i=1

∑
xj∈Ci

‖φ(xj)− µi‖2F = tr
(
K−CCTKCCT

)
. (39)

Informally, if we work with the kernalized data matrix Φ, (39) is equivalent to

‖Φ−CCTΦ‖2F .
Regardless, it’s clear that solving kernel k-means is equivalent to solving:

min
C∈S

tr
(
K−CCTKCCT

)
(40)

where S is the set of all rank k cluster indicator matrices. From this formulation, we easily obtain:

24

Theorem 17 (Kernel k-means Approximation Bound). Let K̃ be computed by RLS-Nyström with
λ = ε

k

∑n
i=k+1 σi(K) and δ ∈ (0, 1/8). Let C̃∗ be the optimal cluster indicator matrix for K̃ and

let C̃ be an approximately optimal cluster indicator matrix satisfying:

tr
(
K̃− C̃C̃T K̃C̃C̃T

)
≤ (1 + γ) tr

(
K̃− C̃∗C̃∗T K̃C̃∗C̃∗T

)
.

Then, if C∗ is the optimal cluster indicator matrix for K:

tr
(
K− C̃C̃TKC̃C̃T

)
≤ (1 + γ)(1 + ε) tr

(
K−C∗C∗TKC∗C∗T

)
By Theorem 14, Algorithm 3 can compute K̃ with O(ns) kernel evaluations and O(ns2) computation
time, with s = O

(
k
ε log k

δε

)
.

In other words, if we find an optimal set of clusters for our approximate kernel matrix, those clusters
will provide a (1 + ε) approximation to the original kernel k-means problem. Furthermore, if we only
solve the kernel k-means problem approximately on K̃, i.e. with some approximation factor (1 + γ),
we will do nearly as well on the original problem. This flexibility allows for the use of k-means
approximation algorithms (since the problem is NP-hard to solve exactly).

Proof. The proof is almost immediate from our bounds on RLS-Nyström:

tr
(
K− C̃C̃TKC̃C̃T

)
≤ tr

(
K̃− C̃C̃T K̃C̃C̃T

)
+ c (Theorem 12)

≤ (1 + γ) tr
(
K̃− C̃∗C̃∗T K̃C̃∗C̃∗T

)
+ (1 + γ)c (by assumption)

≤ (1 + γ) tr
(
K̃−C∗C∗T K̃C∗C∗T

)
+ (1 + γ)c (optimality of C̃∗)

≤ (1 + γ) tr
(
K̃−C∗C∗T K̃C∗C∗T

)
+ c (since c ≥ 0)

≤ (1 + γ)(1 + ε) tr
(
K− C̃∗C∗TKC∗C∗T

)
. (Theorem 12)

E.3 Kernel principal component analysis

We consider the standard formulation of kernel principal component analysis (PCA) presented in
[SSM99]. The goal is to find principal components in the kernel space F that capture as much
variance in the kernelized data as possible. In particular, if we work informally with the kernelized
data matrix Φ, we want to find a matrix Zk containing k orthonormal columns such that:

ΦΦT − (ΦZkZ
T
k)(ΦZkZ

T
k)T

is as small as possible. In other words, if we project Φ’s rows to the k dimensional subspace spanned
by Vk’s columns and then recompute our kernel, we want the approximate kernel to be close to the
original.

We focus in particular on minimizing PCA error according to the metric:

tr
(
ΦΦT − (ΦZkZ

T
k)(ΦZkZ

T
k)T

)
= ‖Φ−ΦZkZ

T
k ‖2F , (41)

which is standard in the literature [Woo14, ANW14]. As with f in kernel ridge regression, to solve
this problem we cannot write down Zk explicitly for most kernel functions. However, the optimal
Zk always lies in the column span of ΦT , so we can implicitly represent it by constructing a matrix
X ∈ Rn×k such that ΦTX = Zk. It is then easy to compute the projection of any new data vector
onto the span of Zk (the typical objective of principal component analysis) since we can multiply by
ΦTX using the kernel function.

By the Eckart-Young theorem the optimal Zk contains the top k row principal components of Φ.
Accordingly, if we write the singular value decomposition Φ = UΣVT we want to set X = UkΣ

−1
k ,

25

which can be computed from the SVD of K = UΣ2UT . Zk will equal Vk and (41) reduces to:

tr(K−ΦVkV
T
k Φ) = tr(K−VkV

T
k K) (cyclic property)

=

n∑
i=k+1

σi(K). (42)

Theorem 18 (Kernel PCA Approximation Bound). Let K̃ be computed by RLS-Nyström with
λ = ε

k

∑n
i=k+1 σi(K) and δ ∈ (0, 1/8). From K̃ we can compute a matrix X ∈ Rs×k such that if

we set Z = ΦTSX, with probability 1− δ:

‖Φ−ΦZZT ‖2F ≤ (1 + 2ε)‖Φ−ΦVkV
T
k ‖2F = (1 + 2ε)

n∑
i=k+1

σi(K).

By Theorem 14, Algorithm 3 can compute K̃ with O(ns) kernel evaluations and O(ns2) computation
time, with s = O

(
k
ε log k

δε

)
.

Note that S is the sampling matrix used to construct K̃. Z = ΦTSX can be applied to vectors (in
order to project onto the approximate low-rank subspace) using only s kernel evaluations.

Proof. Re-parameterizing Zk = ΦTY, we see that minimizing (41) is equivalent to minimizing

tr(K−KYYTK)

over Y ∈ Rn×k such that (ΦTY)TΦTY = YTKY = I. Then we re-parameterize again by writing
Y = K−1/2W where W is an n× k matrix with orthonormal columns. Using linearity and cyclic
property of the trace, we can write:

tr(K−KYYTK) = tr(K)− tr(YTKKY) = tr(K)− tr(WTKW) = tr(K)− tr(WWTKWWT).

So, we have reduced our problem to a low-rank approximation problem that looks exactly like the
k-means problem from Section E.2, except without constraints.

Accordingly, following the same argument as Theorem 17, if we find W̃ minimizing:

tr(K̃)− tr(W̃W̃T K̃W̃W̃T),

then:

tr(K)− tr(W̃W̃TKW̃W̃T) ≤ (1 + ε)
[
min
W

tr(K)− tr(WWTKWWT)
]

= (1 + ε)
n∑

i=k+1

σi(K).

W̃ can be taken to equal the top k eigenvectors of K̃, which can be found in O(n · s2) time.

However, we are not quite done. Thanks to our re-parameterization this bound guarantees that
ΦTK−1/2W̃ is a good set of approximate kernel principal components for Φ. Unfortunately,
ΦTK−1/2W̃ cannot be represented efficiently (it requires computing K−1/2) and projecting new
vectors to ΦTK−1/2W̃ would require n kernel evaluations to multiply by ΦT .

Instead, recalling the definition of PS = ΦTS(STKTS)+STΦ from Section 2.1, we suggest using
the approximate principal components:

PSΦT K̃−1/2W̃.

Clearly PSΦT K̃−1/2W̃ is orthonormal because:

(PSΦT K̃−1/2W̃)TPSΦT K̃−1/2W̃ = W̃T K̃−1/2ΦTPSΦK̃−1/2W̃

= W̃T IW̃ = I.

26

We will argue that it is offers nearly as a good of a solution as ΦTK−1/2W̃. Specifically, substituting
into (41) gives a value of:

tr(K−ΦPSΦT K̃−1/2W̃W̃T K̃−1/2ΦPSΦT) = tr(K)− tr(W̃W̃T K̃−1/2ΦPSΦTΦPSΦT K̃−1/2)

= tr(K)− tr(W̃W̃T K̃−1/2K̃2K̃−1/2)

= tr(K)− tr(W̃W̃T K̃).

Compare this to the value obtained from ΦTK−1/2W̃:[
tr(K)− tr(W̃W̃TKW̃W̃T)

]
−
[
tr(K)− tr(W̃W̃T K̃W̃W̃T)

]
= tr

(
W̃W̃T (K− K̃)

)
= tr

(
W̃T (K− K̃)W̃

)
=

k∑
i=1

w̃T
i (K− K̃)w̃i ≤ k

ε

k

n∑
i=k+1

σi(K).

(43)

The last step follows from Theorem 3 which guarantees that (K − K̃) � ελI. Recall that we set
λ = ε

k

∑n
i=k+1 σi(K) and each column w̃i of W̃ has unit norm.

We conclude that the cost obtained by PSΦT K̃−1/2W̃ is bounded by:

tr(K−ΦPSΦT K̃−1/2W̃W̃T K̃−1/2ΦPSΦT) ≤ tr(K)− tr(W̃W̃TKW̃W̃T) + ε

n∑
i=k+1

σi(K)

≤ (1 + 2ε)

n∑
i=k+1

σi(K).

This gives the result. Notice that PSΦT K̃−1/2W̃ = ΦTS(STKTS)+STΦΦT K̃−1/2W̃ so, if we
set:

X = (STKTS)+ST K̃1/2W̃,

our solution can be represented as Z = ΦTSX as desired.

E.4 Kernel canonical correlation analysis

We briefly discuss a final application to canonical correlation analysis (CCA) that follows from
applying our spectral approximation guarantee of Theorem 3 to recent work in [Wan16].

Consider n pairs of input points (x1,y1), ..., (xn,yn) ∈ (X ,Y) along with two positive semidefinite
kernels, Kx : X × X → R and Ky : Y × Y → R. Let Fx and Fy and φx : X → Fx and
φy : Y → Fy be the Hilbert spaces and feature maps associated with these kernels. Let Φx and
Φy denote the kernelized X and Y inputs respectively and Kx and Ky denote the associated kernel
matrices.

We consider standard regularized kernel CCA, following the presentation in [Wan16]. The goal is to
compute coefficient vectors αx and αy such that f∗x =

∑n
i=1 α

x
i φx(xi) and f∗y =

∑n
i=1 α

y
i φy(yi)

satisfy:

(f∗x , f
∗
y) = arg max

fx∈Fx,fy∈Fy
fTx ΦT

xΦyf
∗
y

subject to

fTx ΦT
xΦxfx + λx‖fx‖2Fx = 1

fTy ΦT
y Φyfy + λy‖fy‖2Fy = 1

In [Wan16], the kernelized points are centered to their means. For simplicity we ignore centering, but
note that [Wan16] shows how bounds for the uncentered problem carry over to the centered one.

It can be shown that αx = (Kx + λxI)−1βx and αy = (Ky + λyI)−1βy where βx and βy are the
top left and right singular vectors respectively of

T = (Kx + λxI)−1KxKy(Ky + λyI)−1.

27

The optimum value of the above program will be equal to σ1(T).

[Wan16] shows that if K̃x and K̃y satisfy:

K̃x � Kx � K̃x + ελxI

K̃y � Ky � K̃y + ελxI

then if α̃x and α̃y are computed using these approximations, the achieved objective function value
will be within ε of optimal (see their Lemma 1 and Theorem 1). So we have:

Theorem 19 (Kernel CCA Approximation Bound). Suppose K̃x and K̃y are computed by RLS-
Nyström with approximation parameters ελx and ελy and failure probability δ ∈ (0, 1/8). If we
solve for α̃x and α̃y, the approximate canonical correlation will be within an additive ε of the true
canonical correlation σ1(T).

By Theorem 7, Algorithm 2 can compute K̃x and K̃y with O(nsx + nsy) kernel evaluations and

O(ns2
x + ns2

y) computation time, with sx = O

(
dλxeff

ε log
dλxeff

δε

)
and sy = O

(
d
λy
eff

ε log
d
λy
eff

δε

)
.

F Additional proofs

F.1 Ridge leverage score approximation via uniform sampling

Lemma 5. For any B ∈ Rn×n with BBT = K and S ∈ Rn×s chosen by sampling each data point
independently with probability 1/2, let

l̃λi = bTi (BTSSTB + λI)−1bi (44)

and pi = min{1, 16l̃λi log(
∑
i l̃
λ
i /δ)} for any δ ∈ (0, 1/8). Then with probability at least 1− δ:

1. l̃λi ≥ lλi for all i.

2.
∑
i pi ≤ 64

∑
i l
λ
i log(

∑
i l
λ
i /δ).

Proof. The first bound follows trivially since BTSSTB � BTB so:

l̃λi = bTi (BTSSTB + λI)−1bi ≥ bTi (BTB + λI)−1bi = lλi .

The challenge is showing the second bound. The key observation is that there exists a diagonal
reweighting matrix W ∈ Rn×n, 0 � W � I such that for all i, lλi (WKW) ≤ α where α def

=
1
2 ·

1
16 log(

∑
lλi /δ)

. This bound ensures that uniformly sampling rows with probability 1/2 from the
reweighted kernel WKW is a valid ridge leverage score sampling. Additionally, |{i : Wi,i < 1}| ≤
32 log(

∑
lλi /δ) ·

∑
lλi . That is, we do not need to reweight too many columns to achieve the ridge

leverage score upper bound.

Although W is never actually computed, its existence can be proved algorithmically: we can construct
a valid W by iteratively considering any i with lλi (WKW) ≥ α. Since λ > 0, it is always possible
to decrease the ridge leverage score to exactly α by decreasing Wi,i sufficiently.

It is clear from the interpretation of Definition 1 given in (4) that decreasing Wi,i, which corresponds
to decreasing the weight of one row of B, will only increase the ridge leverage scores of other rows.
So, any reweighted row will always maintain leverage score ≥ α as other rows are reweighted.
Theorem 2 of [CLM+15] demonstrates rigorously that the leverage scores of these reweighted rows
in fact converge to α. Furthermore, since W � I, it is not hard to show (see Lemma 20):∑

i

lλi (WKW) ≤
∑
i

lλi (K)
def
=
∑
i

lλi .

Thus, since each reweighted row has lλi (WKW) ≥ α, α · |{i : Wi,i < 1}| ≤
∑
i l
λ
i and so:

|{i : Wi,i < 1}| ≤ 1

α

∑
i

lλi = 32 log
(∑

lλi /δ
)
·
∑

lλi .

28

We can now bound
∑
i pi. For any i that is reweighted by W we just trivially bound pi ≤ 1. Since

lλi (WKW) ≤ 1
2 ·

1
16 log(

∑
lλi /δ)

for all i, and since S samples each i with probability 1/2, by the
matrix Bernstein bound of Lemma 9, with probability 1− δ/2:

1

2
(BTW2B + λI) � (BTWSSTWB + λI) � 3

2
(BTW2B + λI).

Hence:
l̃λi = bTi (BTSSTB + λI)−1bi ≤ bTi (BTWSSTWB + λI)−1bi

≤ 2bTi (BTW2B + λI)−1bi

= 2lλi (WBBTW) = 2lλi (WKW).

Again using that W � I and Lemma 20,
∑
{i:Wi,i=1} l̃

λ
i ≤ 2

∑
i l
λ
i . Overall:∑

i

pi =
∑

{i:Wi,i<1}

pi +
∑

{i:Wi,i=1}

pi

≤ |{i : Wi,i < 1}|+ 32 log
(∑

lλi /δ
)
·
∑
i

lλi

= 64 log
(∑

lλi /δ
)
·
∑
i

lλi .

F.2 Formula for ridge leverage score computation

Lemma 6. For any sampling matrix S ∈ Rn×s, and any λ > 0:

l̃λi
def
= bTi (BTSSTB + λI)−1bi =

1

λ

(
K−KS

(
STKS + λI

)−1
STK

)
i,i
.

It follows that we can compute l̃λi for all i in O(ns2) time using just O(ns) kernel evaluations.

Proof. Using the SVD write STB = ŪΣ̄V̄T . V̄ ∈ Rn×s forms an orthonormal basis for the row
span of STB. Let V̄⊥ be span for the nullspace of STB. Then we can rewrite l̃λi as:

l̃λi = bTi
(
BTSSTB + λI

)−1
bi = bTi

[
V̄, V̄⊥

]
(Σ̄2 + λI)−1

[
V̄, V̄⊥

]T
bi.

Here we’re abusing notation a bit by letting Σ̄ represent an n × n diagonal matrix whose first s
entries are the singular values of STB and whose remaining entries are all equal to 0. Now:

l̃λi = bTi
[
V̄, V̄⊥

]
(Σ̄2 + λI)−1

[
V̄, V̄⊥

]T
bi =

1

λ
bTi V̄T

⊥V̄⊥bi + bTi V̄(Σ̄2 + λI)−1V̄TbTi .

(45)
Focusing on the second term of (45),

bTi V̄(Σ̄2 + λI)−1V̄Tbi = bTi V̄
1

λ

(
I− Σ̄2(Σ̄2 + λI)−1

)
V̄Tbi

=
1

λ
bTi V̄V̄Tbi −

1

λ
bTi V̄

(
Σ̄2(Σ̄2 + λI)−1

)
V̄Tbi. (46)

Focusing on the second term of (46),

bTi V̄
(
Σ̄2(Σ̄2 + λI)−1

)
V̄Tbi = bTi V̄Σ̄ŪT Ū(Σ̄2 + λI)−1ŪT ŪΣ̄V̄TbTi

= bTi BTS(STKS + λI)−1STBbi.

Substituting back into (46) and then (45), we conclude that:

l̃λi =
1

λ
bTi V̄T

⊥V̄⊥bi +
1

λ
bTi V̄V̄Tbi −

1

λ
bTi BTS(STKS + λI)−1STBbi

=
1

λ
bTi bi −

1

λ
bTi BTS(STKS + λI)−1STBbi

=
1

λ
Ki,i −

1

λ

(
KS

(
STKS + λI

)−1
STK

)
i,i
.

29

We can compute (STKS + λI)−1 in O(s3) ≤ O(ns2) time and O(s2) ≤ O(ns) kernel evaluations.
Given this inverse, computing the diagonal entries of KS

(
STKS + λI

)−1
STK requires just O(ns)

kernel evaluations to form KS and O(ns2) time to perform the necessary multiplications. Finally,
computing the diagonal entries of K requires n additional kernel evaluations.

F.3 Effective dimension bound

Lemma 20. For any W ∈ Rn×p with WWT � I,
n∑
i=1

lλi (WTKW) ≤
n∑
i=1

lλi (K),

or equivalently, by Fact 2,
dλeff(W

TKW) ≤ dλeff(K).

Proof. By Definition 1, lλi =
(
K(K + λI)−1

)
i,i

so

n∑
i=1

lλi (K) = tr
(
K(K + λI)−1

)
=

n∑
i=1

σi(K)

σi(K) + λ
.

Take any matrix B ∈ Rn×n such that BBT = K. Note that for any matrix Y, σi(YYT) =
σi(Y

TY) for any non-zero singular values. Accordingly,

σi(W
TKW) = σi(W

TBBTW) = σi(B
TWWTB) ≤ σi(BTB) = σi(BBT) = σi(K)

The ≤ step follows from WWT � I so BTWWTB � BTB. We thus have:
n∑
i=1

lλi (WTKW) =

p∑
i=1

σi(W
TKW)

σi(WTKW) + λ
≤

n∑
i=1

σi(K)

σi(K) + λ
=

n∑
i=1

lλi (K),

giving the lemma.

G Additional empirical results

G.1 Accelerated recursive method

While Recursive RLS-Nyström typically outperforms classic Nyström, on datasets with relatively
uniform ridge leverage scores, such as YearPredictionMSD, it only narrowly beats uniform sam-
pling in terms accuracy. As a result it incurs a higher runtime cost since it is slower per sample (see
Figure 3).

To combat this issue we implement a simple heuristic modification of our algorithm. We note that
the final cost of computing the Nyström factors KS and (STKS)+ is O(ns+ s3) for both methods.
Recursive RLS-Nyström is only slower because computing leverage scores at intermediate levels of
recursion takes O(ns2) time (Step 9, Algorithm 3) . This cost can be improved by simply adjusting
the regularization λ to restrict the sample size on each recursive call to be < s. Specifically, we can
balance runtimes by taking ≈

√
(ns+ s3)/n samples on lower levels.

Doing so improves our runtime, bringing the per sample cost down to approximately that of random
Fourier features and uniform Nyström (Figure 5a) while nearly maintaining the same approximation
quality.

For datasets such as Covertype in which Recursive RLS-Nyström performs significantly better than
uniform sampling, so does the accelerated method (see Figure 5b). However, the performance of the
accelerated method does not degrade when leverage scores are relatively uniform – it still offers the
best runtime to approximation quality tradeoff (Figure 5c).

We note further runtime optimizations may be possible. Subsequent work extends fast ridge leverage
score methods to distributed and streaming environments [CLV17]. Empirical evaluation of these
techniques could lead to even more scalable, high accuracy Nyström methods.

30

Samples
0 500 1000 1500 2000

R
u
n
ti
m
e
(s
ec
)

0

0.5

1

1.5

2

Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features
Acclerated Recursive RLS-Nystrom

(a) Runtimes for Covertype.

Samples
0 500 1000 1500 2000

‖
K

−
K̃
‖
2

10
-2

10
0

10
2

10
4

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

Accelerated Recursive RLS-Nystrom

(b) Errors for Covertype.

Runtime (sec.)

0 1 2 3 4 5

‖
K

−
K̃
‖ 2

10
0

10
1

10
2

10
3

Recursive RLS-Nystrom

Uniform Nystrom

Random Fourier Features

Accelerated Recursive RLS-Nystrom

(c) Runtime/error tradeoff for
YearPredictionMSD.

Figure 5: Our accelerated Recursive RLS-Nyström, which undersamples at intermediate recursive
calls, nearly matches the per sample runtime of random Fourier features and uniform Nyström while
still providing approximation nearly as good as the standard Recursive RLS-Nyström. For datasets
like YearPredictionMSD with relatively uniform kernel leverage scores, the accelerated version
offers the best runtime vs. approximation tradeoff. All results are averaged over 10 trials.

Samples
50 100 200

C
la
ss
ifi
ca
ti
on

R
at
e

70

75

80

85

Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features

(a) Covertype

Samples
500 1000 2000

R
M
S
E

8.9

9

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

Recursive RLS-Nystrom
Uniform Nystrom
Random Fourier Features

(b) YearPredictionMSD

Figure 6: Performance of kernel approximation methods for classification and clustering. For
Covertype, classification error is measured in separating Class 2 from the remaining classes. For
YearPredictionMSD, RMSE is for the unnormalized output. Regularization and kernel parameters
are obtained via cross validation on training data. Test results are averaged over 10 trials with a fixed
test set, as all three algorithms are randomized.

G.2 Performance of Recursive RLS-Nyström for learning tasks

We verify the usefulness of our kernel approximations in downstream learning tasks. We focus on
Covertype and YearPredictionMSD, which each have approximately n = 500, 000 data points.
While full kernel methods do not scale in this regime, Recursive RLS-Nyström does since its
runtime depends linearly on n. For example, on YearPredictionMSD the method requires 307 sec.
(averaged over 5 trials) to build a 2, 000 landmark Nyström approximation for 463, 716 training
points. Ridge regression using the approximate kernel then requires 208 sec. for a total of 515 sec.
In comparison, the fastest method, random Fourier features, required 43 sec. to build a rank 2, 000
kernel approximation and 222 sec. for regression, for a total time of 265 sec.

For Covertype we performed classification using the LIBLINEAR support vector machine li-
brary. For all sample sizes the SVM dominated runtime cost, so Recursive RLS-Nyström was only
marginally slower than uniform Nyström and random Fourier features for a fixed sample size.

In terms of classification performance for Covertype and RMSE error for YearPredictionMSD, as
can be seen in Figure 6, both Nyström methods outperform random features when using the same
number of features. However, we do not see much difference between the two Nyström methods. We
leave open understanding why the significantly better kernel approximations discussed in Section
5.1 do not necessarily translate to much better learning performance, or whether they would make a
larger difference for other problems.

31

	Introduction
	Kernel approximation
	Our contributions
	Paper outline

	Preliminaries
	Nyström approximation

	The RLS-Nyström method
	Ridge leverage scores
	Sum of ridge leverage scores
	The basic sampling algorithm
	Accuracy bounds

	Recursive sampling for efficient RLS-Nyström
	Ridge leverage score approximation via uniform sampling
	Recursive RLS-Nyström

	Empirical evaluation
	Performance of Recursive RLS-Nyström for kernel approximation
	Additional Empirical Results

	Ridge leverage score sampling bounds
	Spectral Error Kernel Approximation

	Projection-cost preserving kernel approximation
	Correctness of Recursive RLS-Nyström Algorithm
	Recursive RLS-Nyström algorithm for fixed sample size
	Applications to learning tasks
	Kernel ridge regression
	Approximate kernel ridge regression
	Relative error bound on statistical risk

	Kernel k-means
	Kernel principal component analysis
	Kernel canonical correlation analysis

	Additional proofs
	Ridge leverage score approximation via uniform sampling
	Formula for ridge leverage score computation
	Effective dimension bound

	Additional empirical results
	Accelerated recursive method
	Performance of Recursive RLS-Nyström for learning tasks

